xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 static const u32 hpd_gen11[HPD_NUM_PINS] = {
119 	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
120 	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
121 	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
122 	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
123 };
124 
125 static const u32 hpd_icp[HPD_NUM_PINS] = {
126 	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
127 	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
128 	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
129 	[HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
130 	[HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
131 	[HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
132 };
133 
134 /* IIR can theoretically queue up two events. Be paranoid. */
135 #define GEN8_IRQ_RESET_NDX(type, which) do { \
136 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
137 	POSTING_READ(GEN8_##type##_IMR(which)); \
138 	I915_WRITE(GEN8_##type##_IER(which), 0); \
139 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
140 	POSTING_READ(GEN8_##type##_IIR(which)); \
141 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
142 	POSTING_READ(GEN8_##type##_IIR(which)); \
143 } while (0)
144 
145 #define GEN3_IRQ_RESET(type) do { \
146 	I915_WRITE(type##IMR, 0xffffffff); \
147 	POSTING_READ(type##IMR); \
148 	I915_WRITE(type##IER, 0); \
149 	I915_WRITE(type##IIR, 0xffffffff); \
150 	POSTING_READ(type##IIR); \
151 	I915_WRITE(type##IIR, 0xffffffff); \
152 	POSTING_READ(type##IIR); \
153 } while (0)
154 
155 #define GEN2_IRQ_RESET(type) do { \
156 	I915_WRITE16(type##IMR, 0xffff); \
157 	POSTING_READ16(type##IMR); \
158 	I915_WRITE16(type##IER, 0); \
159 	I915_WRITE16(type##IIR, 0xffff); \
160 	POSTING_READ16(type##IIR); \
161 	I915_WRITE16(type##IIR, 0xffff); \
162 	POSTING_READ16(type##IIR); \
163 } while (0)
164 
165 /*
166  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
167  */
168 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169 				    i915_reg_t reg)
170 {
171 	u32 val = I915_READ(reg);
172 
173 	if (val == 0)
174 		return;
175 
176 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177 	     i915_mmio_reg_offset(reg), val);
178 	I915_WRITE(reg, 0xffffffff);
179 	POSTING_READ(reg);
180 	I915_WRITE(reg, 0xffffffff);
181 	POSTING_READ(reg);
182 }
183 
184 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
185 				    i915_reg_t reg)
186 {
187 	u16 val = I915_READ16(reg);
188 
189 	if (val == 0)
190 		return;
191 
192 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
193 	     i915_mmio_reg_offset(reg), val);
194 	I915_WRITE16(reg, 0xffff);
195 	POSTING_READ16(reg);
196 	I915_WRITE16(reg, 0xffff);
197 	POSTING_READ16(reg);
198 }
199 
200 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
201 	gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
202 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
203 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
204 	POSTING_READ(GEN8_##type##_IMR(which)); \
205 } while (0)
206 
207 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
208 	gen3_assert_iir_is_zero(dev_priv, type##IIR); \
209 	I915_WRITE(type##IER, (ier_val)); \
210 	I915_WRITE(type##IMR, (imr_val)); \
211 	POSTING_READ(type##IMR); \
212 } while (0)
213 
214 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
215 	gen2_assert_iir_is_zero(dev_priv, type##IIR); \
216 	I915_WRITE16(type##IER, (ier_val)); \
217 	I915_WRITE16(type##IMR, (imr_val)); \
218 	POSTING_READ16(type##IMR); \
219 } while (0)
220 
221 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
222 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
223 
224 /* For display hotplug interrupt */
225 static inline void
226 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
227 				     uint32_t mask,
228 				     uint32_t bits)
229 {
230 	uint32_t val;
231 
232 	lockdep_assert_held(&dev_priv->irq_lock);
233 	WARN_ON(bits & ~mask);
234 
235 	val = I915_READ(PORT_HOTPLUG_EN);
236 	val &= ~mask;
237 	val |= bits;
238 	I915_WRITE(PORT_HOTPLUG_EN, val);
239 }
240 
241 /**
242  * i915_hotplug_interrupt_update - update hotplug interrupt enable
243  * @dev_priv: driver private
244  * @mask: bits to update
245  * @bits: bits to enable
246  * NOTE: the HPD enable bits are modified both inside and outside
247  * of an interrupt context. To avoid that read-modify-write cycles
248  * interfer, these bits are protected by a spinlock. Since this
249  * function is usually not called from a context where the lock is
250  * held already, this function acquires the lock itself. A non-locking
251  * version is also available.
252  */
253 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
254 				   uint32_t mask,
255 				   uint32_t bits)
256 {
257 	spin_lock_irq(&dev_priv->irq_lock);
258 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
259 	spin_unlock_irq(&dev_priv->irq_lock);
260 }
261 
262 static u32
263 gen11_gt_engine_identity(struct drm_i915_private * const i915,
264 			 const unsigned int bank, const unsigned int bit);
265 
266 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
267 				const unsigned int bank,
268 				const unsigned int bit)
269 {
270 	void __iomem * const regs = i915->regs;
271 	u32 dw;
272 
273 	lockdep_assert_held(&i915->irq_lock);
274 
275 	dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
276 	if (dw & BIT(bit)) {
277 		/*
278 		 * According to the BSpec, DW_IIR bits cannot be cleared without
279 		 * first servicing the Selector & Shared IIR registers.
280 		 */
281 		gen11_gt_engine_identity(i915, bank, bit);
282 
283 		/*
284 		 * We locked GT INT DW by reading it. If we want to (try
285 		 * to) recover from this succesfully, we need to clear
286 		 * our bit, otherwise we are locking the register for
287 		 * everybody.
288 		 */
289 		raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
290 
291 		return true;
292 	}
293 
294 	return false;
295 }
296 
297 /**
298  * ilk_update_display_irq - update DEIMR
299  * @dev_priv: driver private
300  * @interrupt_mask: mask of interrupt bits to update
301  * @enabled_irq_mask: mask of interrupt bits to enable
302  */
303 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
304 			    uint32_t interrupt_mask,
305 			    uint32_t enabled_irq_mask)
306 {
307 	uint32_t new_val;
308 
309 	lockdep_assert_held(&dev_priv->irq_lock);
310 
311 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
312 
313 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
314 		return;
315 
316 	new_val = dev_priv->irq_mask;
317 	new_val &= ~interrupt_mask;
318 	new_val |= (~enabled_irq_mask & interrupt_mask);
319 
320 	if (new_val != dev_priv->irq_mask) {
321 		dev_priv->irq_mask = new_val;
322 		I915_WRITE(DEIMR, dev_priv->irq_mask);
323 		POSTING_READ(DEIMR);
324 	}
325 }
326 
327 /**
328  * ilk_update_gt_irq - update GTIMR
329  * @dev_priv: driver private
330  * @interrupt_mask: mask of interrupt bits to update
331  * @enabled_irq_mask: mask of interrupt bits to enable
332  */
333 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
334 			      uint32_t interrupt_mask,
335 			      uint32_t enabled_irq_mask)
336 {
337 	lockdep_assert_held(&dev_priv->irq_lock);
338 
339 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
340 
341 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
342 		return;
343 
344 	dev_priv->gt_irq_mask &= ~interrupt_mask;
345 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
346 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
347 }
348 
349 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
350 {
351 	ilk_update_gt_irq(dev_priv, mask, mask);
352 	POSTING_READ_FW(GTIMR);
353 }
354 
355 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
356 {
357 	ilk_update_gt_irq(dev_priv, mask, 0);
358 }
359 
360 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
361 {
362 	WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
363 
364 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
365 }
366 
367 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
368 {
369 	if (INTEL_GEN(dev_priv) >= 11)
370 		return GEN11_GPM_WGBOXPERF_INTR_MASK;
371 	else if (INTEL_GEN(dev_priv) >= 8)
372 		return GEN8_GT_IMR(2);
373 	else
374 		return GEN6_PMIMR;
375 }
376 
377 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
378 {
379 	if (INTEL_GEN(dev_priv) >= 11)
380 		return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
381 	else if (INTEL_GEN(dev_priv) >= 8)
382 		return GEN8_GT_IER(2);
383 	else
384 		return GEN6_PMIER;
385 }
386 
387 /**
388  * snb_update_pm_irq - update GEN6_PMIMR
389  * @dev_priv: driver private
390  * @interrupt_mask: mask of interrupt bits to update
391  * @enabled_irq_mask: mask of interrupt bits to enable
392  */
393 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
394 			      uint32_t interrupt_mask,
395 			      uint32_t enabled_irq_mask)
396 {
397 	uint32_t new_val;
398 
399 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
400 
401 	lockdep_assert_held(&dev_priv->irq_lock);
402 
403 	new_val = dev_priv->pm_imr;
404 	new_val &= ~interrupt_mask;
405 	new_val |= (~enabled_irq_mask & interrupt_mask);
406 
407 	if (new_val != dev_priv->pm_imr) {
408 		dev_priv->pm_imr = new_val;
409 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
410 		POSTING_READ(gen6_pm_imr(dev_priv));
411 	}
412 }
413 
414 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
415 {
416 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
417 		return;
418 
419 	snb_update_pm_irq(dev_priv, mask, mask);
420 }
421 
422 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
423 {
424 	snb_update_pm_irq(dev_priv, mask, 0);
425 }
426 
427 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
428 {
429 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
430 		return;
431 
432 	__gen6_mask_pm_irq(dev_priv, mask);
433 }
434 
435 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
436 {
437 	i915_reg_t reg = gen6_pm_iir(dev_priv);
438 
439 	lockdep_assert_held(&dev_priv->irq_lock);
440 
441 	I915_WRITE(reg, reset_mask);
442 	I915_WRITE(reg, reset_mask);
443 	POSTING_READ(reg);
444 }
445 
446 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
447 {
448 	lockdep_assert_held(&dev_priv->irq_lock);
449 
450 	dev_priv->pm_ier |= enable_mask;
451 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
452 	gen6_unmask_pm_irq(dev_priv, enable_mask);
453 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
454 }
455 
456 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
457 {
458 	lockdep_assert_held(&dev_priv->irq_lock);
459 
460 	dev_priv->pm_ier &= ~disable_mask;
461 	__gen6_mask_pm_irq(dev_priv, disable_mask);
462 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
463 	/* though a barrier is missing here, but don't really need a one */
464 }
465 
466 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
467 {
468 	spin_lock_irq(&dev_priv->irq_lock);
469 
470 	while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
471 		;
472 
473 	dev_priv->gt_pm.rps.pm_iir = 0;
474 
475 	spin_unlock_irq(&dev_priv->irq_lock);
476 }
477 
478 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
479 {
480 	spin_lock_irq(&dev_priv->irq_lock);
481 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
482 	dev_priv->gt_pm.rps.pm_iir = 0;
483 	spin_unlock_irq(&dev_priv->irq_lock);
484 }
485 
486 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
487 {
488 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
489 
490 	if (READ_ONCE(rps->interrupts_enabled))
491 		return;
492 
493 	spin_lock_irq(&dev_priv->irq_lock);
494 	WARN_ON_ONCE(rps->pm_iir);
495 
496 	if (INTEL_GEN(dev_priv) >= 11)
497 		WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
498 	else
499 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
500 
501 	rps->interrupts_enabled = true;
502 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
503 
504 	spin_unlock_irq(&dev_priv->irq_lock);
505 }
506 
507 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
508 {
509 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
510 
511 	if (!READ_ONCE(rps->interrupts_enabled))
512 		return;
513 
514 	spin_lock_irq(&dev_priv->irq_lock);
515 	rps->interrupts_enabled = false;
516 
517 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
518 
519 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
520 
521 	spin_unlock_irq(&dev_priv->irq_lock);
522 	synchronize_irq(dev_priv->drm.irq);
523 
524 	/* Now that we will not be generating any more work, flush any
525 	 * outstanding tasks. As we are called on the RPS idle path,
526 	 * we will reset the GPU to minimum frequencies, so the current
527 	 * state of the worker can be discarded.
528 	 */
529 	cancel_work_sync(&rps->work);
530 	if (INTEL_GEN(dev_priv) >= 11)
531 		gen11_reset_rps_interrupts(dev_priv);
532 	else
533 		gen6_reset_rps_interrupts(dev_priv);
534 }
535 
536 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
537 {
538 	assert_rpm_wakelock_held(dev_priv);
539 
540 	spin_lock_irq(&dev_priv->irq_lock);
541 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
542 	spin_unlock_irq(&dev_priv->irq_lock);
543 }
544 
545 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
546 {
547 	assert_rpm_wakelock_held(dev_priv);
548 
549 	spin_lock_irq(&dev_priv->irq_lock);
550 	if (!dev_priv->guc.interrupts_enabled) {
551 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
552 				       dev_priv->pm_guc_events);
553 		dev_priv->guc.interrupts_enabled = true;
554 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
555 	}
556 	spin_unlock_irq(&dev_priv->irq_lock);
557 }
558 
559 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
560 {
561 	assert_rpm_wakelock_held(dev_priv);
562 
563 	spin_lock_irq(&dev_priv->irq_lock);
564 	dev_priv->guc.interrupts_enabled = false;
565 
566 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
567 
568 	spin_unlock_irq(&dev_priv->irq_lock);
569 	synchronize_irq(dev_priv->drm.irq);
570 
571 	gen9_reset_guc_interrupts(dev_priv);
572 }
573 
574 /**
575  * bdw_update_port_irq - update DE port interrupt
576  * @dev_priv: driver private
577  * @interrupt_mask: mask of interrupt bits to update
578  * @enabled_irq_mask: mask of interrupt bits to enable
579  */
580 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
581 				uint32_t interrupt_mask,
582 				uint32_t enabled_irq_mask)
583 {
584 	uint32_t new_val;
585 	uint32_t old_val;
586 
587 	lockdep_assert_held(&dev_priv->irq_lock);
588 
589 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
590 
591 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
592 		return;
593 
594 	old_val = I915_READ(GEN8_DE_PORT_IMR);
595 
596 	new_val = old_val;
597 	new_val &= ~interrupt_mask;
598 	new_val |= (~enabled_irq_mask & interrupt_mask);
599 
600 	if (new_val != old_val) {
601 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
602 		POSTING_READ(GEN8_DE_PORT_IMR);
603 	}
604 }
605 
606 /**
607  * bdw_update_pipe_irq - update DE pipe interrupt
608  * @dev_priv: driver private
609  * @pipe: pipe whose interrupt to update
610  * @interrupt_mask: mask of interrupt bits to update
611  * @enabled_irq_mask: mask of interrupt bits to enable
612  */
613 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
614 			 enum pipe pipe,
615 			 uint32_t interrupt_mask,
616 			 uint32_t enabled_irq_mask)
617 {
618 	uint32_t new_val;
619 
620 	lockdep_assert_held(&dev_priv->irq_lock);
621 
622 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
623 
624 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
625 		return;
626 
627 	new_val = dev_priv->de_irq_mask[pipe];
628 	new_val &= ~interrupt_mask;
629 	new_val |= (~enabled_irq_mask & interrupt_mask);
630 
631 	if (new_val != dev_priv->de_irq_mask[pipe]) {
632 		dev_priv->de_irq_mask[pipe] = new_val;
633 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
634 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
635 	}
636 }
637 
638 /**
639  * ibx_display_interrupt_update - update SDEIMR
640  * @dev_priv: driver private
641  * @interrupt_mask: mask of interrupt bits to update
642  * @enabled_irq_mask: mask of interrupt bits to enable
643  */
644 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
645 				  uint32_t interrupt_mask,
646 				  uint32_t enabled_irq_mask)
647 {
648 	uint32_t sdeimr = I915_READ(SDEIMR);
649 	sdeimr &= ~interrupt_mask;
650 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
651 
652 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
653 
654 	lockdep_assert_held(&dev_priv->irq_lock);
655 
656 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
657 		return;
658 
659 	I915_WRITE(SDEIMR, sdeimr);
660 	POSTING_READ(SDEIMR);
661 }
662 
663 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
664 			      enum pipe pipe)
665 {
666 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
667 	u32 enable_mask = status_mask << 16;
668 
669 	lockdep_assert_held(&dev_priv->irq_lock);
670 
671 	if (INTEL_GEN(dev_priv) < 5)
672 		goto out;
673 
674 	/*
675 	 * On pipe A we don't support the PSR interrupt yet,
676 	 * on pipe B and C the same bit MBZ.
677 	 */
678 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
679 		return 0;
680 	/*
681 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
682 	 * A the same bit is for perf counters which we don't use either.
683 	 */
684 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
685 		return 0;
686 
687 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
688 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
689 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
690 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
691 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
692 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
693 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
694 
695 out:
696 	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
697 		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
698 		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
699 		  pipe_name(pipe), enable_mask, status_mask);
700 
701 	return enable_mask;
702 }
703 
704 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
705 			  enum pipe pipe, u32 status_mask)
706 {
707 	i915_reg_t reg = PIPESTAT(pipe);
708 	u32 enable_mask;
709 
710 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
711 		  "pipe %c: status_mask=0x%x\n",
712 		  pipe_name(pipe), status_mask);
713 
714 	lockdep_assert_held(&dev_priv->irq_lock);
715 	WARN_ON(!intel_irqs_enabled(dev_priv));
716 
717 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
718 		return;
719 
720 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
721 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
722 
723 	I915_WRITE(reg, enable_mask | status_mask);
724 	POSTING_READ(reg);
725 }
726 
727 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
728 			   enum pipe pipe, u32 status_mask)
729 {
730 	i915_reg_t reg = PIPESTAT(pipe);
731 	u32 enable_mask;
732 
733 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
734 		  "pipe %c: status_mask=0x%x\n",
735 		  pipe_name(pipe), status_mask);
736 
737 	lockdep_assert_held(&dev_priv->irq_lock);
738 	WARN_ON(!intel_irqs_enabled(dev_priv));
739 
740 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
741 		return;
742 
743 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
744 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
745 
746 	I915_WRITE(reg, enable_mask | status_mask);
747 	POSTING_READ(reg);
748 }
749 
750 /**
751  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
752  * @dev_priv: i915 device private
753  */
754 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
755 {
756 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
757 		return;
758 
759 	spin_lock_irq(&dev_priv->irq_lock);
760 
761 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
762 	if (INTEL_GEN(dev_priv) >= 4)
763 		i915_enable_pipestat(dev_priv, PIPE_A,
764 				     PIPE_LEGACY_BLC_EVENT_STATUS);
765 
766 	spin_unlock_irq(&dev_priv->irq_lock);
767 }
768 
769 /*
770  * This timing diagram depicts the video signal in and
771  * around the vertical blanking period.
772  *
773  * Assumptions about the fictitious mode used in this example:
774  *  vblank_start >= 3
775  *  vsync_start = vblank_start + 1
776  *  vsync_end = vblank_start + 2
777  *  vtotal = vblank_start + 3
778  *
779  *           start of vblank:
780  *           latch double buffered registers
781  *           increment frame counter (ctg+)
782  *           generate start of vblank interrupt (gen4+)
783  *           |
784  *           |          frame start:
785  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
786  *           |          may be shifted forward 1-3 extra lines via PIPECONF
787  *           |          |
788  *           |          |  start of vsync:
789  *           |          |  generate vsync interrupt
790  *           |          |  |
791  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
792  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
793  * ----va---> <-----------------vb--------------------> <--------va-------------
794  *       |          |       <----vs----->                     |
795  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
796  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
797  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
798  *       |          |                                         |
799  *       last visible pixel                                   first visible pixel
800  *                  |                                         increment frame counter (gen3/4)
801  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
802  *
803  * x  = horizontal active
804  * _  = horizontal blanking
805  * hs = horizontal sync
806  * va = vertical active
807  * vb = vertical blanking
808  * vs = vertical sync
809  * vbs = vblank_start (number)
810  *
811  * Summary:
812  * - most events happen at the start of horizontal sync
813  * - frame start happens at the start of horizontal blank, 1-4 lines
814  *   (depending on PIPECONF settings) after the start of vblank
815  * - gen3/4 pixel and frame counter are synchronized with the start
816  *   of horizontal active on the first line of vertical active
817  */
818 
819 /* Called from drm generic code, passed a 'crtc', which
820  * we use as a pipe index
821  */
822 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
823 {
824 	struct drm_i915_private *dev_priv = to_i915(dev);
825 	i915_reg_t high_frame, low_frame;
826 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
827 	const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
828 	unsigned long irqflags;
829 
830 	htotal = mode->crtc_htotal;
831 	hsync_start = mode->crtc_hsync_start;
832 	vbl_start = mode->crtc_vblank_start;
833 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
834 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
835 
836 	/* Convert to pixel count */
837 	vbl_start *= htotal;
838 
839 	/* Start of vblank event occurs at start of hsync */
840 	vbl_start -= htotal - hsync_start;
841 
842 	high_frame = PIPEFRAME(pipe);
843 	low_frame = PIPEFRAMEPIXEL(pipe);
844 
845 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
846 
847 	/*
848 	 * High & low register fields aren't synchronized, so make sure
849 	 * we get a low value that's stable across two reads of the high
850 	 * register.
851 	 */
852 	do {
853 		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
854 		low   = I915_READ_FW(low_frame);
855 		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
856 	} while (high1 != high2);
857 
858 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
859 
860 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
861 	pixel = low & PIPE_PIXEL_MASK;
862 	low >>= PIPE_FRAME_LOW_SHIFT;
863 
864 	/*
865 	 * The frame counter increments at beginning of active.
866 	 * Cook up a vblank counter by also checking the pixel
867 	 * counter against vblank start.
868 	 */
869 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
870 }
871 
872 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
873 {
874 	struct drm_i915_private *dev_priv = to_i915(dev);
875 
876 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
877 }
878 
879 /*
880  * On certain encoders on certain platforms, pipe
881  * scanline register will not work to get the scanline,
882  * since the timings are driven from the PORT or issues
883  * with scanline register updates.
884  * This function will use Framestamp and current
885  * timestamp registers to calculate the scanline.
886  */
887 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
888 {
889 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
890 	struct drm_vblank_crtc *vblank =
891 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
892 	const struct drm_display_mode *mode = &vblank->hwmode;
893 	u32 vblank_start = mode->crtc_vblank_start;
894 	u32 vtotal = mode->crtc_vtotal;
895 	u32 htotal = mode->crtc_htotal;
896 	u32 clock = mode->crtc_clock;
897 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
898 
899 	/*
900 	 * To avoid the race condition where we might cross into the
901 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
902 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
903 	 * during the same frame.
904 	 */
905 	do {
906 		/*
907 		 * This field provides read back of the display
908 		 * pipe frame time stamp. The time stamp value
909 		 * is sampled at every start of vertical blank.
910 		 */
911 		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
912 
913 		/*
914 		 * The TIMESTAMP_CTR register has the current
915 		 * time stamp value.
916 		 */
917 		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
918 
919 		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
920 	} while (scan_post_time != scan_prev_time);
921 
922 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
923 					clock), 1000 * htotal);
924 	scanline = min(scanline, vtotal - 1);
925 	scanline = (scanline + vblank_start) % vtotal;
926 
927 	return scanline;
928 }
929 
930 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
931 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
932 {
933 	struct drm_device *dev = crtc->base.dev;
934 	struct drm_i915_private *dev_priv = to_i915(dev);
935 	const struct drm_display_mode *mode;
936 	struct drm_vblank_crtc *vblank;
937 	enum pipe pipe = crtc->pipe;
938 	int position, vtotal;
939 
940 	if (!crtc->active)
941 		return -1;
942 
943 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
944 	mode = &vblank->hwmode;
945 
946 	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
947 		return __intel_get_crtc_scanline_from_timestamp(crtc);
948 
949 	vtotal = mode->crtc_vtotal;
950 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
951 		vtotal /= 2;
952 
953 	if (IS_GEN2(dev_priv))
954 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
955 	else
956 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
957 
958 	/*
959 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
960 	 * read it just before the start of vblank.  So try it again
961 	 * so we don't accidentally end up spanning a vblank frame
962 	 * increment, causing the pipe_update_end() code to squak at us.
963 	 *
964 	 * The nature of this problem means we can't simply check the ISR
965 	 * bit and return the vblank start value; nor can we use the scanline
966 	 * debug register in the transcoder as it appears to have the same
967 	 * problem.  We may need to extend this to include other platforms,
968 	 * but so far testing only shows the problem on HSW.
969 	 */
970 	if (HAS_DDI(dev_priv) && !position) {
971 		int i, temp;
972 
973 		for (i = 0; i < 100; i++) {
974 			udelay(1);
975 			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
976 			if (temp != position) {
977 				position = temp;
978 				break;
979 			}
980 		}
981 	}
982 
983 	/*
984 	 * See update_scanline_offset() for the details on the
985 	 * scanline_offset adjustment.
986 	 */
987 	return (position + crtc->scanline_offset) % vtotal;
988 }
989 
990 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
991 				     bool in_vblank_irq, int *vpos, int *hpos,
992 				     ktime_t *stime, ktime_t *etime,
993 				     const struct drm_display_mode *mode)
994 {
995 	struct drm_i915_private *dev_priv = to_i915(dev);
996 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
997 								pipe);
998 	int position;
999 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1000 	unsigned long irqflags;
1001 
1002 	if (WARN_ON(!mode->crtc_clock)) {
1003 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1004 				 "pipe %c\n", pipe_name(pipe));
1005 		return false;
1006 	}
1007 
1008 	htotal = mode->crtc_htotal;
1009 	hsync_start = mode->crtc_hsync_start;
1010 	vtotal = mode->crtc_vtotal;
1011 	vbl_start = mode->crtc_vblank_start;
1012 	vbl_end = mode->crtc_vblank_end;
1013 
1014 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1015 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
1016 		vbl_end /= 2;
1017 		vtotal /= 2;
1018 	}
1019 
1020 	/*
1021 	 * Lock uncore.lock, as we will do multiple timing critical raw
1022 	 * register reads, potentially with preemption disabled, so the
1023 	 * following code must not block on uncore.lock.
1024 	 */
1025 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1026 
1027 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1028 
1029 	/* Get optional system timestamp before query. */
1030 	if (stime)
1031 		*stime = ktime_get();
1032 
1033 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1034 		/* No obvious pixelcount register. Only query vertical
1035 		 * scanout position from Display scan line register.
1036 		 */
1037 		position = __intel_get_crtc_scanline(intel_crtc);
1038 	} else {
1039 		/* Have access to pixelcount since start of frame.
1040 		 * We can split this into vertical and horizontal
1041 		 * scanout position.
1042 		 */
1043 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1044 
1045 		/* convert to pixel counts */
1046 		vbl_start *= htotal;
1047 		vbl_end *= htotal;
1048 		vtotal *= htotal;
1049 
1050 		/*
1051 		 * In interlaced modes, the pixel counter counts all pixels,
1052 		 * so one field will have htotal more pixels. In order to avoid
1053 		 * the reported position from jumping backwards when the pixel
1054 		 * counter is beyond the length of the shorter field, just
1055 		 * clamp the position the length of the shorter field. This
1056 		 * matches how the scanline counter based position works since
1057 		 * the scanline counter doesn't count the two half lines.
1058 		 */
1059 		if (position >= vtotal)
1060 			position = vtotal - 1;
1061 
1062 		/*
1063 		 * Start of vblank interrupt is triggered at start of hsync,
1064 		 * just prior to the first active line of vblank. However we
1065 		 * consider lines to start at the leading edge of horizontal
1066 		 * active. So, should we get here before we've crossed into
1067 		 * the horizontal active of the first line in vblank, we would
1068 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1069 		 * always add htotal-hsync_start to the current pixel position.
1070 		 */
1071 		position = (position + htotal - hsync_start) % vtotal;
1072 	}
1073 
1074 	/* Get optional system timestamp after query. */
1075 	if (etime)
1076 		*etime = ktime_get();
1077 
1078 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1079 
1080 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1081 
1082 	/*
1083 	 * While in vblank, position will be negative
1084 	 * counting up towards 0 at vbl_end. And outside
1085 	 * vblank, position will be positive counting
1086 	 * up since vbl_end.
1087 	 */
1088 	if (position >= vbl_start)
1089 		position -= vbl_end;
1090 	else
1091 		position += vtotal - vbl_end;
1092 
1093 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1094 		*vpos = position;
1095 		*hpos = 0;
1096 	} else {
1097 		*vpos = position / htotal;
1098 		*hpos = position - (*vpos * htotal);
1099 	}
1100 
1101 	return true;
1102 }
1103 
1104 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1105 {
1106 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1107 	unsigned long irqflags;
1108 	int position;
1109 
1110 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1111 	position = __intel_get_crtc_scanline(crtc);
1112 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1113 
1114 	return position;
1115 }
1116 
1117 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1118 {
1119 	u32 busy_up, busy_down, max_avg, min_avg;
1120 	u8 new_delay;
1121 
1122 	spin_lock(&mchdev_lock);
1123 
1124 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1125 
1126 	new_delay = dev_priv->ips.cur_delay;
1127 
1128 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1129 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1130 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1131 	max_avg = I915_READ(RCBMAXAVG);
1132 	min_avg = I915_READ(RCBMINAVG);
1133 
1134 	/* Handle RCS change request from hw */
1135 	if (busy_up > max_avg) {
1136 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1137 			new_delay = dev_priv->ips.cur_delay - 1;
1138 		if (new_delay < dev_priv->ips.max_delay)
1139 			new_delay = dev_priv->ips.max_delay;
1140 	} else if (busy_down < min_avg) {
1141 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1142 			new_delay = dev_priv->ips.cur_delay + 1;
1143 		if (new_delay > dev_priv->ips.min_delay)
1144 			new_delay = dev_priv->ips.min_delay;
1145 	}
1146 
1147 	if (ironlake_set_drps(dev_priv, new_delay))
1148 		dev_priv->ips.cur_delay = new_delay;
1149 
1150 	spin_unlock(&mchdev_lock);
1151 
1152 	return;
1153 }
1154 
1155 static void notify_ring(struct intel_engine_cs *engine)
1156 {
1157 	const u32 seqno = intel_engine_get_seqno(engine);
1158 	struct i915_request *rq = NULL;
1159 	struct task_struct *tsk = NULL;
1160 	struct intel_wait *wait;
1161 
1162 	if (unlikely(!engine->breadcrumbs.irq_armed))
1163 		return;
1164 
1165 	rcu_read_lock();
1166 
1167 	spin_lock(&engine->breadcrumbs.irq_lock);
1168 	wait = engine->breadcrumbs.irq_wait;
1169 	if (wait) {
1170 		/*
1171 		 * We use a callback from the dma-fence to submit
1172 		 * requests after waiting on our own requests. To
1173 		 * ensure minimum delay in queuing the next request to
1174 		 * hardware, signal the fence now rather than wait for
1175 		 * the signaler to be woken up. We still wake up the
1176 		 * waiter in order to handle the irq-seqno coherency
1177 		 * issues (we may receive the interrupt before the
1178 		 * seqno is written, see __i915_request_irq_complete())
1179 		 * and to handle coalescing of multiple seqno updates
1180 		 * and many waiters.
1181 		 */
1182 		if (i915_seqno_passed(seqno, wait->seqno)) {
1183 			struct i915_request *waiter = wait->request;
1184 
1185 			if (waiter &&
1186 			    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1187 				      &waiter->fence.flags) &&
1188 			    intel_wait_check_request(wait, waiter))
1189 				rq = i915_request_get(waiter);
1190 
1191 			tsk = wait->tsk;
1192 		} else {
1193 			if (engine->irq_seqno_barrier &&
1194 			    i915_seqno_passed(seqno, wait->seqno - 1)) {
1195 				set_bit(ENGINE_IRQ_BREADCRUMB,
1196 					&engine->irq_posted);
1197 				tsk = wait->tsk;
1198 			}
1199 		}
1200 
1201 		engine->breadcrumbs.irq_count++;
1202 	} else {
1203 		if (engine->breadcrumbs.irq_armed)
1204 			__intel_engine_disarm_breadcrumbs(engine);
1205 	}
1206 	spin_unlock(&engine->breadcrumbs.irq_lock);
1207 
1208 	if (rq) {
1209 		spin_lock(&rq->lock);
1210 		dma_fence_signal_locked(&rq->fence);
1211 		GEM_BUG_ON(!i915_request_completed(rq));
1212 		spin_unlock(&rq->lock);
1213 
1214 		i915_request_put(rq);
1215 	}
1216 
1217 	if (tsk && tsk->state & TASK_NORMAL)
1218 		wake_up_process(tsk);
1219 
1220 	rcu_read_unlock();
1221 
1222 	trace_intel_engine_notify(engine, wait);
1223 }
1224 
1225 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1226 			struct intel_rps_ei *ei)
1227 {
1228 	ei->ktime = ktime_get_raw();
1229 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1230 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1231 }
1232 
1233 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1234 {
1235 	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1236 }
1237 
1238 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1239 {
1240 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1241 	const struct intel_rps_ei *prev = &rps->ei;
1242 	struct intel_rps_ei now;
1243 	u32 events = 0;
1244 
1245 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1246 		return 0;
1247 
1248 	vlv_c0_read(dev_priv, &now);
1249 
1250 	if (prev->ktime) {
1251 		u64 time, c0;
1252 		u32 render, media;
1253 
1254 		time = ktime_us_delta(now.ktime, prev->ktime);
1255 
1256 		time *= dev_priv->czclk_freq;
1257 
1258 		/* Workload can be split between render + media,
1259 		 * e.g. SwapBuffers being blitted in X after being rendered in
1260 		 * mesa. To account for this we need to combine both engines
1261 		 * into our activity counter.
1262 		 */
1263 		render = now.render_c0 - prev->render_c0;
1264 		media = now.media_c0 - prev->media_c0;
1265 		c0 = max(render, media);
1266 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1267 
1268 		if (c0 > time * rps->power.up_threshold)
1269 			events = GEN6_PM_RP_UP_THRESHOLD;
1270 		else if (c0 < time * rps->power.down_threshold)
1271 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1272 	}
1273 
1274 	rps->ei = now;
1275 	return events;
1276 }
1277 
1278 static void gen6_pm_rps_work(struct work_struct *work)
1279 {
1280 	struct drm_i915_private *dev_priv =
1281 		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1282 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1283 	bool client_boost = false;
1284 	int new_delay, adj, min, max;
1285 	u32 pm_iir = 0;
1286 
1287 	spin_lock_irq(&dev_priv->irq_lock);
1288 	if (rps->interrupts_enabled) {
1289 		pm_iir = fetch_and_zero(&rps->pm_iir);
1290 		client_boost = atomic_read(&rps->num_waiters);
1291 	}
1292 	spin_unlock_irq(&dev_priv->irq_lock);
1293 
1294 	/* Make sure we didn't queue anything we're not going to process. */
1295 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1296 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1297 		goto out;
1298 
1299 	mutex_lock(&dev_priv->pcu_lock);
1300 
1301 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1302 
1303 	adj = rps->last_adj;
1304 	new_delay = rps->cur_freq;
1305 	min = rps->min_freq_softlimit;
1306 	max = rps->max_freq_softlimit;
1307 	if (client_boost)
1308 		max = rps->max_freq;
1309 	if (client_boost && new_delay < rps->boost_freq) {
1310 		new_delay = rps->boost_freq;
1311 		adj = 0;
1312 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1313 		if (adj > 0)
1314 			adj *= 2;
1315 		else /* CHV needs even encode values */
1316 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1317 
1318 		if (new_delay >= rps->max_freq_softlimit)
1319 			adj = 0;
1320 	} else if (client_boost) {
1321 		adj = 0;
1322 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1323 		if (rps->cur_freq > rps->efficient_freq)
1324 			new_delay = rps->efficient_freq;
1325 		else if (rps->cur_freq > rps->min_freq_softlimit)
1326 			new_delay = rps->min_freq_softlimit;
1327 		adj = 0;
1328 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1329 		if (adj < 0)
1330 			adj *= 2;
1331 		else /* CHV needs even encode values */
1332 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1333 
1334 		if (new_delay <= rps->min_freq_softlimit)
1335 			adj = 0;
1336 	} else { /* unknown event */
1337 		adj = 0;
1338 	}
1339 
1340 	rps->last_adj = adj;
1341 
1342 	/* sysfs frequency interfaces may have snuck in while servicing the
1343 	 * interrupt
1344 	 */
1345 	new_delay += adj;
1346 	new_delay = clamp_t(int, new_delay, min, max);
1347 
1348 	if (intel_set_rps(dev_priv, new_delay)) {
1349 		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1350 		rps->last_adj = 0;
1351 	}
1352 
1353 	mutex_unlock(&dev_priv->pcu_lock);
1354 
1355 out:
1356 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1357 	spin_lock_irq(&dev_priv->irq_lock);
1358 	if (rps->interrupts_enabled)
1359 		gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1360 	spin_unlock_irq(&dev_priv->irq_lock);
1361 }
1362 
1363 
1364 /**
1365  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1366  * occurred.
1367  * @work: workqueue struct
1368  *
1369  * Doesn't actually do anything except notify userspace. As a consequence of
1370  * this event, userspace should try to remap the bad rows since statistically
1371  * it is likely the same row is more likely to go bad again.
1372  */
1373 static void ivybridge_parity_work(struct work_struct *work)
1374 {
1375 	struct drm_i915_private *dev_priv =
1376 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1377 	u32 error_status, row, bank, subbank;
1378 	char *parity_event[6];
1379 	uint32_t misccpctl;
1380 	uint8_t slice = 0;
1381 
1382 	/* We must turn off DOP level clock gating to access the L3 registers.
1383 	 * In order to prevent a get/put style interface, acquire struct mutex
1384 	 * any time we access those registers.
1385 	 */
1386 	mutex_lock(&dev_priv->drm.struct_mutex);
1387 
1388 	/* If we've screwed up tracking, just let the interrupt fire again */
1389 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1390 		goto out;
1391 
1392 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1393 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1394 	POSTING_READ(GEN7_MISCCPCTL);
1395 
1396 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1397 		i915_reg_t reg;
1398 
1399 		slice--;
1400 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1401 			break;
1402 
1403 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1404 
1405 		reg = GEN7_L3CDERRST1(slice);
1406 
1407 		error_status = I915_READ(reg);
1408 		row = GEN7_PARITY_ERROR_ROW(error_status);
1409 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1410 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1411 
1412 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1413 		POSTING_READ(reg);
1414 
1415 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1416 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1417 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1418 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1419 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1420 		parity_event[5] = NULL;
1421 
1422 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1423 				   KOBJ_CHANGE, parity_event);
1424 
1425 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1426 			  slice, row, bank, subbank);
1427 
1428 		kfree(parity_event[4]);
1429 		kfree(parity_event[3]);
1430 		kfree(parity_event[2]);
1431 		kfree(parity_event[1]);
1432 	}
1433 
1434 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1435 
1436 out:
1437 	WARN_ON(dev_priv->l3_parity.which_slice);
1438 	spin_lock_irq(&dev_priv->irq_lock);
1439 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1440 	spin_unlock_irq(&dev_priv->irq_lock);
1441 
1442 	mutex_unlock(&dev_priv->drm.struct_mutex);
1443 }
1444 
1445 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1446 					       u32 iir)
1447 {
1448 	if (!HAS_L3_DPF(dev_priv))
1449 		return;
1450 
1451 	spin_lock(&dev_priv->irq_lock);
1452 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1453 	spin_unlock(&dev_priv->irq_lock);
1454 
1455 	iir &= GT_PARITY_ERROR(dev_priv);
1456 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1457 		dev_priv->l3_parity.which_slice |= 1 << 1;
1458 
1459 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1460 		dev_priv->l3_parity.which_slice |= 1 << 0;
1461 
1462 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1463 }
1464 
1465 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1466 			       u32 gt_iir)
1467 {
1468 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1469 		notify_ring(dev_priv->engine[RCS]);
1470 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1471 		notify_ring(dev_priv->engine[VCS]);
1472 }
1473 
1474 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1475 			       u32 gt_iir)
1476 {
1477 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1478 		notify_ring(dev_priv->engine[RCS]);
1479 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1480 		notify_ring(dev_priv->engine[VCS]);
1481 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1482 		notify_ring(dev_priv->engine[BCS]);
1483 
1484 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1485 		      GT_BSD_CS_ERROR_INTERRUPT |
1486 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1487 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1488 
1489 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1490 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1491 }
1492 
1493 static void
1494 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1495 {
1496 	bool tasklet = false;
1497 
1498 	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1499 		tasklet = true;
1500 
1501 	if (iir & GT_RENDER_USER_INTERRUPT) {
1502 		notify_ring(engine);
1503 		tasklet |= USES_GUC_SUBMISSION(engine->i915);
1504 	}
1505 
1506 	if (tasklet)
1507 		tasklet_hi_schedule(&engine->execlists.tasklet);
1508 }
1509 
1510 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1511 			    u32 master_ctl, u32 gt_iir[4])
1512 {
1513 	void __iomem * const regs = i915->regs;
1514 
1515 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1516 		      GEN8_GT_BCS_IRQ | \
1517 		      GEN8_GT_VCS1_IRQ | \
1518 		      GEN8_GT_VCS2_IRQ | \
1519 		      GEN8_GT_VECS_IRQ | \
1520 		      GEN8_GT_PM_IRQ | \
1521 		      GEN8_GT_GUC_IRQ)
1522 
1523 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1524 		gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1525 		if (likely(gt_iir[0]))
1526 			raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1527 	}
1528 
1529 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1530 		gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1531 		if (likely(gt_iir[1]))
1532 			raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1533 	}
1534 
1535 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1536 		gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1537 		if (likely(gt_iir[2] & (i915->pm_rps_events |
1538 					i915->pm_guc_events)))
1539 			raw_reg_write(regs, GEN8_GT_IIR(2),
1540 				      gt_iir[2] & (i915->pm_rps_events |
1541 						   i915->pm_guc_events));
1542 	}
1543 
1544 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1545 		gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1546 		if (likely(gt_iir[3]))
1547 			raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1548 	}
1549 }
1550 
1551 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1552 				u32 master_ctl, u32 gt_iir[4])
1553 {
1554 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1555 		gen8_cs_irq_handler(i915->engine[RCS],
1556 				    gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1557 		gen8_cs_irq_handler(i915->engine[BCS],
1558 				    gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1559 	}
1560 
1561 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1562 		gen8_cs_irq_handler(i915->engine[VCS],
1563 				    gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1564 		gen8_cs_irq_handler(i915->engine[VCS2],
1565 				    gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1566 	}
1567 
1568 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1569 		gen8_cs_irq_handler(i915->engine[VECS],
1570 				    gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1571 	}
1572 
1573 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1574 		gen6_rps_irq_handler(i915, gt_iir[2]);
1575 		gen9_guc_irq_handler(i915, gt_iir[2]);
1576 	}
1577 }
1578 
1579 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1580 {
1581 	switch (pin) {
1582 	case HPD_PORT_C:
1583 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1584 	case HPD_PORT_D:
1585 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1586 	case HPD_PORT_E:
1587 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1588 	case HPD_PORT_F:
1589 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1590 	default:
1591 		return false;
1592 	}
1593 }
1594 
1595 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1596 {
1597 	switch (pin) {
1598 	case HPD_PORT_A:
1599 		return val & PORTA_HOTPLUG_LONG_DETECT;
1600 	case HPD_PORT_B:
1601 		return val & PORTB_HOTPLUG_LONG_DETECT;
1602 	case HPD_PORT_C:
1603 		return val & PORTC_HOTPLUG_LONG_DETECT;
1604 	default:
1605 		return false;
1606 	}
1607 }
1608 
1609 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1610 {
1611 	switch (pin) {
1612 	case HPD_PORT_A:
1613 		return val & ICP_DDIA_HPD_LONG_DETECT;
1614 	case HPD_PORT_B:
1615 		return val & ICP_DDIB_HPD_LONG_DETECT;
1616 	default:
1617 		return false;
1618 	}
1619 }
1620 
1621 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1622 {
1623 	switch (pin) {
1624 	case HPD_PORT_C:
1625 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1626 	case HPD_PORT_D:
1627 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1628 	case HPD_PORT_E:
1629 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1630 	case HPD_PORT_F:
1631 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1632 	default:
1633 		return false;
1634 	}
1635 }
1636 
1637 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1638 {
1639 	switch (pin) {
1640 	case HPD_PORT_E:
1641 		return val & PORTE_HOTPLUG_LONG_DETECT;
1642 	default:
1643 		return false;
1644 	}
1645 }
1646 
1647 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1648 {
1649 	switch (pin) {
1650 	case HPD_PORT_A:
1651 		return val & PORTA_HOTPLUG_LONG_DETECT;
1652 	case HPD_PORT_B:
1653 		return val & PORTB_HOTPLUG_LONG_DETECT;
1654 	case HPD_PORT_C:
1655 		return val & PORTC_HOTPLUG_LONG_DETECT;
1656 	case HPD_PORT_D:
1657 		return val & PORTD_HOTPLUG_LONG_DETECT;
1658 	default:
1659 		return false;
1660 	}
1661 }
1662 
1663 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1664 {
1665 	switch (pin) {
1666 	case HPD_PORT_A:
1667 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1668 	default:
1669 		return false;
1670 	}
1671 }
1672 
1673 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1674 {
1675 	switch (pin) {
1676 	case HPD_PORT_B:
1677 		return val & PORTB_HOTPLUG_LONG_DETECT;
1678 	case HPD_PORT_C:
1679 		return val & PORTC_HOTPLUG_LONG_DETECT;
1680 	case HPD_PORT_D:
1681 		return val & PORTD_HOTPLUG_LONG_DETECT;
1682 	default:
1683 		return false;
1684 	}
1685 }
1686 
1687 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1688 {
1689 	switch (pin) {
1690 	case HPD_PORT_B:
1691 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1692 	case HPD_PORT_C:
1693 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1694 	case HPD_PORT_D:
1695 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1696 	default:
1697 		return false;
1698 	}
1699 }
1700 
1701 /*
1702  * Get a bit mask of pins that have triggered, and which ones may be long.
1703  * This can be called multiple times with the same masks to accumulate
1704  * hotplug detection results from several registers.
1705  *
1706  * Note that the caller is expected to zero out the masks initially.
1707  */
1708 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1709 			       u32 *pin_mask, u32 *long_mask,
1710 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1711 			       const u32 hpd[HPD_NUM_PINS],
1712 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1713 {
1714 	enum hpd_pin pin;
1715 
1716 	for_each_hpd_pin(pin) {
1717 		if ((hpd[pin] & hotplug_trigger) == 0)
1718 			continue;
1719 
1720 		*pin_mask |= BIT(pin);
1721 
1722 		if (long_pulse_detect(pin, dig_hotplug_reg))
1723 			*long_mask |= BIT(pin);
1724 	}
1725 
1726 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1727 			 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1728 
1729 }
1730 
1731 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1732 {
1733 	wake_up_all(&dev_priv->gmbus_wait_queue);
1734 }
1735 
1736 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1737 {
1738 	wake_up_all(&dev_priv->gmbus_wait_queue);
1739 }
1740 
1741 #if defined(CONFIG_DEBUG_FS)
1742 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1743 					 enum pipe pipe,
1744 					 uint32_t crc0, uint32_t crc1,
1745 					 uint32_t crc2, uint32_t crc3,
1746 					 uint32_t crc4)
1747 {
1748 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1749 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1750 	uint32_t crcs[5];
1751 
1752 	spin_lock(&pipe_crc->lock);
1753 	/*
1754 	 * For some not yet identified reason, the first CRC is
1755 	 * bonkers. So let's just wait for the next vblank and read
1756 	 * out the buggy result.
1757 	 *
1758 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1759 	 * don't trust that one either.
1760 	 */
1761 	if (pipe_crc->skipped <= 0 ||
1762 	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1763 		pipe_crc->skipped++;
1764 		spin_unlock(&pipe_crc->lock);
1765 		return;
1766 	}
1767 	spin_unlock(&pipe_crc->lock);
1768 
1769 	crcs[0] = crc0;
1770 	crcs[1] = crc1;
1771 	crcs[2] = crc2;
1772 	crcs[3] = crc3;
1773 	crcs[4] = crc4;
1774 	drm_crtc_add_crc_entry(&crtc->base, true,
1775 				drm_crtc_accurate_vblank_count(&crtc->base),
1776 				crcs);
1777 }
1778 #else
1779 static inline void
1780 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1781 			     enum pipe pipe,
1782 			     uint32_t crc0, uint32_t crc1,
1783 			     uint32_t crc2, uint32_t crc3,
1784 			     uint32_t crc4) {}
1785 #endif
1786 
1787 
1788 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1789 				     enum pipe pipe)
1790 {
1791 	display_pipe_crc_irq_handler(dev_priv, pipe,
1792 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1793 				     0, 0, 0, 0);
1794 }
1795 
1796 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1797 				     enum pipe pipe)
1798 {
1799 	display_pipe_crc_irq_handler(dev_priv, pipe,
1800 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1801 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1802 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1803 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1804 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1805 }
1806 
1807 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1808 				      enum pipe pipe)
1809 {
1810 	uint32_t res1, res2;
1811 
1812 	if (INTEL_GEN(dev_priv) >= 3)
1813 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1814 	else
1815 		res1 = 0;
1816 
1817 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1818 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1819 	else
1820 		res2 = 0;
1821 
1822 	display_pipe_crc_irq_handler(dev_priv, pipe,
1823 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1824 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1825 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1826 				     res1, res2);
1827 }
1828 
1829 /* The RPS events need forcewake, so we add them to a work queue and mask their
1830  * IMR bits until the work is done. Other interrupts can be processed without
1831  * the work queue. */
1832 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1833 {
1834 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1835 
1836 	if (pm_iir & dev_priv->pm_rps_events) {
1837 		spin_lock(&dev_priv->irq_lock);
1838 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1839 		if (rps->interrupts_enabled) {
1840 			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1841 			schedule_work(&rps->work);
1842 		}
1843 		spin_unlock(&dev_priv->irq_lock);
1844 	}
1845 
1846 	if (INTEL_GEN(dev_priv) >= 8)
1847 		return;
1848 
1849 	if (HAS_VEBOX(dev_priv)) {
1850 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1851 			notify_ring(dev_priv->engine[VECS]);
1852 
1853 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1854 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1855 	}
1856 }
1857 
1858 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1859 {
1860 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1861 		intel_guc_to_host_event_handler(&dev_priv->guc);
1862 }
1863 
1864 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1865 {
1866 	enum pipe pipe;
1867 
1868 	for_each_pipe(dev_priv, pipe) {
1869 		I915_WRITE(PIPESTAT(pipe),
1870 			   PIPESTAT_INT_STATUS_MASK |
1871 			   PIPE_FIFO_UNDERRUN_STATUS);
1872 
1873 		dev_priv->pipestat_irq_mask[pipe] = 0;
1874 	}
1875 }
1876 
1877 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1878 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1879 {
1880 	int pipe;
1881 
1882 	spin_lock(&dev_priv->irq_lock);
1883 
1884 	if (!dev_priv->display_irqs_enabled) {
1885 		spin_unlock(&dev_priv->irq_lock);
1886 		return;
1887 	}
1888 
1889 	for_each_pipe(dev_priv, pipe) {
1890 		i915_reg_t reg;
1891 		u32 status_mask, enable_mask, iir_bit = 0;
1892 
1893 		/*
1894 		 * PIPESTAT bits get signalled even when the interrupt is
1895 		 * disabled with the mask bits, and some of the status bits do
1896 		 * not generate interrupts at all (like the underrun bit). Hence
1897 		 * we need to be careful that we only handle what we want to
1898 		 * handle.
1899 		 */
1900 
1901 		/* fifo underruns are filterered in the underrun handler. */
1902 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1903 
1904 		switch (pipe) {
1905 		case PIPE_A:
1906 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1907 			break;
1908 		case PIPE_B:
1909 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1910 			break;
1911 		case PIPE_C:
1912 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1913 			break;
1914 		}
1915 		if (iir & iir_bit)
1916 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1917 
1918 		if (!status_mask)
1919 			continue;
1920 
1921 		reg = PIPESTAT(pipe);
1922 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1923 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1924 
1925 		/*
1926 		 * Clear the PIPE*STAT regs before the IIR
1927 		 *
1928 		 * Toggle the enable bits to make sure we get an
1929 		 * edge in the ISR pipe event bit if we don't clear
1930 		 * all the enabled status bits. Otherwise the edge
1931 		 * triggered IIR on i965/g4x wouldn't notice that
1932 		 * an interrupt is still pending.
1933 		 */
1934 		if (pipe_stats[pipe]) {
1935 			I915_WRITE(reg, pipe_stats[pipe]);
1936 			I915_WRITE(reg, enable_mask);
1937 		}
1938 	}
1939 	spin_unlock(&dev_priv->irq_lock);
1940 }
1941 
1942 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1943 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1944 {
1945 	enum pipe pipe;
1946 
1947 	for_each_pipe(dev_priv, pipe) {
1948 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1949 			drm_handle_vblank(&dev_priv->drm, pipe);
1950 
1951 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1952 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1953 
1954 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1955 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1956 	}
1957 }
1958 
1959 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1960 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1961 {
1962 	bool blc_event = false;
1963 	enum pipe pipe;
1964 
1965 	for_each_pipe(dev_priv, pipe) {
1966 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1967 			drm_handle_vblank(&dev_priv->drm, pipe);
1968 
1969 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1970 			blc_event = true;
1971 
1972 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1973 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1974 
1975 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1976 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1977 	}
1978 
1979 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1980 		intel_opregion_asle_intr(dev_priv);
1981 }
1982 
1983 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1984 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1985 {
1986 	bool blc_event = false;
1987 	enum pipe pipe;
1988 
1989 	for_each_pipe(dev_priv, pipe) {
1990 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1991 			drm_handle_vblank(&dev_priv->drm, pipe);
1992 
1993 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1994 			blc_event = true;
1995 
1996 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1997 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1998 
1999 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2000 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2001 	}
2002 
2003 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
2004 		intel_opregion_asle_intr(dev_priv);
2005 
2006 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2007 		gmbus_irq_handler(dev_priv);
2008 }
2009 
2010 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2011 					    u32 pipe_stats[I915_MAX_PIPES])
2012 {
2013 	enum pipe pipe;
2014 
2015 	for_each_pipe(dev_priv, pipe) {
2016 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2017 			drm_handle_vblank(&dev_priv->drm, pipe);
2018 
2019 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2020 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2021 
2022 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2023 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2024 	}
2025 
2026 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2027 		gmbus_irq_handler(dev_priv);
2028 }
2029 
2030 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2031 {
2032 	u32 hotplug_status = 0, hotplug_status_mask;
2033 	int i;
2034 
2035 	if (IS_G4X(dev_priv) ||
2036 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2037 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2038 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2039 	else
2040 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2041 
2042 	/*
2043 	 * We absolutely have to clear all the pending interrupt
2044 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2045 	 * interrupt bit won't have an edge, and the i965/g4x
2046 	 * edge triggered IIR will not notice that an interrupt
2047 	 * is still pending. We can't use PORT_HOTPLUG_EN to
2048 	 * guarantee the edge as the act of toggling the enable
2049 	 * bits can itself generate a new hotplug interrupt :(
2050 	 */
2051 	for (i = 0; i < 10; i++) {
2052 		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2053 
2054 		if (tmp == 0)
2055 			return hotplug_status;
2056 
2057 		hotplug_status |= tmp;
2058 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2059 	}
2060 
2061 	WARN_ONCE(1,
2062 		  "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2063 		  I915_READ(PORT_HOTPLUG_STAT));
2064 
2065 	return hotplug_status;
2066 }
2067 
2068 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2069 				 u32 hotplug_status)
2070 {
2071 	u32 pin_mask = 0, long_mask = 0;
2072 
2073 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2074 	    IS_CHERRYVIEW(dev_priv)) {
2075 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2076 
2077 		if (hotplug_trigger) {
2078 			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2079 					   hotplug_trigger, hotplug_trigger,
2080 					   hpd_status_g4x,
2081 					   i9xx_port_hotplug_long_detect);
2082 
2083 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2084 		}
2085 
2086 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2087 			dp_aux_irq_handler(dev_priv);
2088 	} else {
2089 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2090 
2091 		if (hotplug_trigger) {
2092 			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2093 					   hotplug_trigger, hotplug_trigger,
2094 					   hpd_status_i915,
2095 					   i9xx_port_hotplug_long_detect);
2096 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2097 		}
2098 	}
2099 }
2100 
2101 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2102 {
2103 	struct drm_device *dev = arg;
2104 	struct drm_i915_private *dev_priv = to_i915(dev);
2105 	irqreturn_t ret = IRQ_NONE;
2106 
2107 	if (!intel_irqs_enabled(dev_priv))
2108 		return IRQ_NONE;
2109 
2110 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2111 	disable_rpm_wakeref_asserts(dev_priv);
2112 
2113 	do {
2114 		u32 iir, gt_iir, pm_iir;
2115 		u32 pipe_stats[I915_MAX_PIPES] = {};
2116 		u32 hotplug_status = 0;
2117 		u32 ier = 0;
2118 
2119 		gt_iir = I915_READ(GTIIR);
2120 		pm_iir = I915_READ(GEN6_PMIIR);
2121 		iir = I915_READ(VLV_IIR);
2122 
2123 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2124 			break;
2125 
2126 		ret = IRQ_HANDLED;
2127 
2128 		/*
2129 		 * Theory on interrupt generation, based on empirical evidence:
2130 		 *
2131 		 * x = ((VLV_IIR & VLV_IER) ||
2132 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2133 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2134 		 *
2135 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2136 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2137 		 * guarantee the CPU interrupt will be raised again even if we
2138 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2139 		 * bits this time around.
2140 		 */
2141 		I915_WRITE(VLV_MASTER_IER, 0);
2142 		ier = I915_READ(VLV_IER);
2143 		I915_WRITE(VLV_IER, 0);
2144 
2145 		if (gt_iir)
2146 			I915_WRITE(GTIIR, gt_iir);
2147 		if (pm_iir)
2148 			I915_WRITE(GEN6_PMIIR, pm_iir);
2149 
2150 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2151 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2152 
2153 		/* Call regardless, as some status bits might not be
2154 		 * signalled in iir */
2155 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2156 
2157 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2158 			   I915_LPE_PIPE_B_INTERRUPT))
2159 			intel_lpe_audio_irq_handler(dev_priv);
2160 
2161 		/*
2162 		 * VLV_IIR is single buffered, and reflects the level
2163 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2164 		 */
2165 		if (iir)
2166 			I915_WRITE(VLV_IIR, iir);
2167 
2168 		I915_WRITE(VLV_IER, ier);
2169 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2170 
2171 		if (gt_iir)
2172 			snb_gt_irq_handler(dev_priv, gt_iir);
2173 		if (pm_iir)
2174 			gen6_rps_irq_handler(dev_priv, pm_iir);
2175 
2176 		if (hotplug_status)
2177 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2178 
2179 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2180 	} while (0);
2181 
2182 	enable_rpm_wakeref_asserts(dev_priv);
2183 
2184 	return ret;
2185 }
2186 
2187 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2188 {
2189 	struct drm_device *dev = arg;
2190 	struct drm_i915_private *dev_priv = to_i915(dev);
2191 	irqreturn_t ret = IRQ_NONE;
2192 
2193 	if (!intel_irqs_enabled(dev_priv))
2194 		return IRQ_NONE;
2195 
2196 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2197 	disable_rpm_wakeref_asserts(dev_priv);
2198 
2199 	do {
2200 		u32 master_ctl, iir;
2201 		u32 pipe_stats[I915_MAX_PIPES] = {};
2202 		u32 hotplug_status = 0;
2203 		u32 gt_iir[4];
2204 		u32 ier = 0;
2205 
2206 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2207 		iir = I915_READ(VLV_IIR);
2208 
2209 		if (master_ctl == 0 && iir == 0)
2210 			break;
2211 
2212 		ret = IRQ_HANDLED;
2213 
2214 		/*
2215 		 * Theory on interrupt generation, based on empirical evidence:
2216 		 *
2217 		 * x = ((VLV_IIR & VLV_IER) ||
2218 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2219 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2220 		 *
2221 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2222 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2223 		 * guarantee the CPU interrupt will be raised again even if we
2224 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2225 		 * bits this time around.
2226 		 */
2227 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2228 		ier = I915_READ(VLV_IER);
2229 		I915_WRITE(VLV_IER, 0);
2230 
2231 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2232 
2233 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2234 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2235 
2236 		/* Call regardless, as some status bits might not be
2237 		 * signalled in iir */
2238 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2239 
2240 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2241 			   I915_LPE_PIPE_B_INTERRUPT |
2242 			   I915_LPE_PIPE_C_INTERRUPT))
2243 			intel_lpe_audio_irq_handler(dev_priv);
2244 
2245 		/*
2246 		 * VLV_IIR is single buffered, and reflects the level
2247 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2248 		 */
2249 		if (iir)
2250 			I915_WRITE(VLV_IIR, iir);
2251 
2252 		I915_WRITE(VLV_IER, ier);
2253 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2254 
2255 		gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2256 
2257 		if (hotplug_status)
2258 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2259 
2260 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2261 	} while (0);
2262 
2263 	enable_rpm_wakeref_asserts(dev_priv);
2264 
2265 	return ret;
2266 }
2267 
2268 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2269 				u32 hotplug_trigger,
2270 				const u32 hpd[HPD_NUM_PINS])
2271 {
2272 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2273 
2274 	/*
2275 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2276 	 * unless we touch the hotplug register, even if hotplug_trigger is
2277 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2278 	 * errors.
2279 	 */
2280 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2281 	if (!hotplug_trigger) {
2282 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2283 			PORTD_HOTPLUG_STATUS_MASK |
2284 			PORTC_HOTPLUG_STATUS_MASK |
2285 			PORTB_HOTPLUG_STATUS_MASK;
2286 		dig_hotplug_reg &= ~mask;
2287 	}
2288 
2289 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2290 	if (!hotplug_trigger)
2291 		return;
2292 
2293 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2294 			   dig_hotplug_reg, hpd,
2295 			   pch_port_hotplug_long_detect);
2296 
2297 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2298 }
2299 
2300 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2301 {
2302 	int pipe;
2303 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2304 
2305 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2306 
2307 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2308 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2309 			       SDE_AUDIO_POWER_SHIFT);
2310 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2311 				 port_name(port));
2312 	}
2313 
2314 	if (pch_iir & SDE_AUX_MASK)
2315 		dp_aux_irq_handler(dev_priv);
2316 
2317 	if (pch_iir & SDE_GMBUS)
2318 		gmbus_irq_handler(dev_priv);
2319 
2320 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2321 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2322 
2323 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2324 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2325 
2326 	if (pch_iir & SDE_POISON)
2327 		DRM_ERROR("PCH poison interrupt\n");
2328 
2329 	if (pch_iir & SDE_FDI_MASK)
2330 		for_each_pipe(dev_priv, pipe)
2331 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2332 					 pipe_name(pipe),
2333 					 I915_READ(FDI_RX_IIR(pipe)));
2334 
2335 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2336 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2337 
2338 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2339 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2340 
2341 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2342 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2343 
2344 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2345 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2346 }
2347 
2348 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2349 {
2350 	u32 err_int = I915_READ(GEN7_ERR_INT);
2351 	enum pipe pipe;
2352 
2353 	if (err_int & ERR_INT_POISON)
2354 		DRM_ERROR("Poison interrupt\n");
2355 
2356 	for_each_pipe(dev_priv, pipe) {
2357 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2358 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2359 
2360 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2361 			if (IS_IVYBRIDGE(dev_priv))
2362 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2363 			else
2364 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2365 		}
2366 	}
2367 
2368 	I915_WRITE(GEN7_ERR_INT, err_int);
2369 }
2370 
2371 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2372 {
2373 	u32 serr_int = I915_READ(SERR_INT);
2374 	enum pipe pipe;
2375 
2376 	if (serr_int & SERR_INT_POISON)
2377 		DRM_ERROR("PCH poison interrupt\n");
2378 
2379 	for_each_pipe(dev_priv, pipe)
2380 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2381 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2382 
2383 	I915_WRITE(SERR_INT, serr_int);
2384 }
2385 
2386 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2387 {
2388 	int pipe;
2389 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2390 
2391 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2392 
2393 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2394 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2395 			       SDE_AUDIO_POWER_SHIFT_CPT);
2396 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2397 				 port_name(port));
2398 	}
2399 
2400 	if (pch_iir & SDE_AUX_MASK_CPT)
2401 		dp_aux_irq_handler(dev_priv);
2402 
2403 	if (pch_iir & SDE_GMBUS_CPT)
2404 		gmbus_irq_handler(dev_priv);
2405 
2406 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2407 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2408 
2409 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2410 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2411 
2412 	if (pch_iir & SDE_FDI_MASK_CPT)
2413 		for_each_pipe(dev_priv, pipe)
2414 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2415 					 pipe_name(pipe),
2416 					 I915_READ(FDI_RX_IIR(pipe)));
2417 
2418 	if (pch_iir & SDE_ERROR_CPT)
2419 		cpt_serr_int_handler(dev_priv);
2420 }
2421 
2422 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2423 {
2424 	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2425 	u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2426 	u32 pin_mask = 0, long_mask = 0;
2427 
2428 	if (ddi_hotplug_trigger) {
2429 		u32 dig_hotplug_reg;
2430 
2431 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2432 		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2433 
2434 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2435 				   ddi_hotplug_trigger,
2436 				   dig_hotplug_reg, hpd_icp,
2437 				   icp_ddi_port_hotplug_long_detect);
2438 	}
2439 
2440 	if (tc_hotplug_trigger) {
2441 		u32 dig_hotplug_reg;
2442 
2443 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2444 		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2445 
2446 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2447 				   tc_hotplug_trigger,
2448 				   dig_hotplug_reg, hpd_icp,
2449 				   icp_tc_port_hotplug_long_detect);
2450 	}
2451 
2452 	if (pin_mask)
2453 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2454 
2455 	if (pch_iir & SDE_GMBUS_ICP)
2456 		gmbus_irq_handler(dev_priv);
2457 }
2458 
2459 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2460 {
2461 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2462 		~SDE_PORTE_HOTPLUG_SPT;
2463 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2464 	u32 pin_mask = 0, long_mask = 0;
2465 
2466 	if (hotplug_trigger) {
2467 		u32 dig_hotplug_reg;
2468 
2469 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2470 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2471 
2472 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2473 				   hotplug_trigger, dig_hotplug_reg, hpd_spt,
2474 				   spt_port_hotplug_long_detect);
2475 	}
2476 
2477 	if (hotplug2_trigger) {
2478 		u32 dig_hotplug_reg;
2479 
2480 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2481 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2482 
2483 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2484 				   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2485 				   spt_port_hotplug2_long_detect);
2486 	}
2487 
2488 	if (pin_mask)
2489 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2490 
2491 	if (pch_iir & SDE_GMBUS_CPT)
2492 		gmbus_irq_handler(dev_priv);
2493 }
2494 
2495 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2496 				u32 hotplug_trigger,
2497 				const u32 hpd[HPD_NUM_PINS])
2498 {
2499 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2500 
2501 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2502 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2503 
2504 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2505 			   dig_hotplug_reg, hpd,
2506 			   ilk_port_hotplug_long_detect);
2507 
2508 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2509 }
2510 
2511 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2512 				    u32 de_iir)
2513 {
2514 	enum pipe pipe;
2515 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2516 
2517 	if (hotplug_trigger)
2518 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2519 
2520 	if (de_iir & DE_AUX_CHANNEL_A)
2521 		dp_aux_irq_handler(dev_priv);
2522 
2523 	if (de_iir & DE_GSE)
2524 		intel_opregion_asle_intr(dev_priv);
2525 
2526 	if (de_iir & DE_POISON)
2527 		DRM_ERROR("Poison interrupt\n");
2528 
2529 	for_each_pipe(dev_priv, pipe) {
2530 		if (de_iir & DE_PIPE_VBLANK(pipe))
2531 			drm_handle_vblank(&dev_priv->drm, pipe);
2532 
2533 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2534 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2535 
2536 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2537 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2538 	}
2539 
2540 	/* check event from PCH */
2541 	if (de_iir & DE_PCH_EVENT) {
2542 		u32 pch_iir = I915_READ(SDEIIR);
2543 
2544 		if (HAS_PCH_CPT(dev_priv))
2545 			cpt_irq_handler(dev_priv, pch_iir);
2546 		else
2547 			ibx_irq_handler(dev_priv, pch_iir);
2548 
2549 		/* should clear PCH hotplug event before clear CPU irq */
2550 		I915_WRITE(SDEIIR, pch_iir);
2551 	}
2552 
2553 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2554 		ironlake_rps_change_irq_handler(dev_priv);
2555 }
2556 
2557 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2558 				    u32 de_iir)
2559 {
2560 	enum pipe pipe;
2561 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2562 
2563 	if (hotplug_trigger)
2564 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2565 
2566 	if (de_iir & DE_ERR_INT_IVB)
2567 		ivb_err_int_handler(dev_priv);
2568 
2569 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2570 		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2571 
2572 		intel_psr_irq_handler(dev_priv, psr_iir);
2573 		I915_WRITE(EDP_PSR_IIR, psr_iir);
2574 	}
2575 
2576 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2577 		dp_aux_irq_handler(dev_priv);
2578 
2579 	if (de_iir & DE_GSE_IVB)
2580 		intel_opregion_asle_intr(dev_priv);
2581 
2582 	for_each_pipe(dev_priv, pipe) {
2583 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2584 			drm_handle_vblank(&dev_priv->drm, pipe);
2585 	}
2586 
2587 	/* check event from PCH */
2588 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2589 		u32 pch_iir = I915_READ(SDEIIR);
2590 
2591 		cpt_irq_handler(dev_priv, pch_iir);
2592 
2593 		/* clear PCH hotplug event before clear CPU irq */
2594 		I915_WRITE(SDEIIR, pch_iir);
2595 	}
2596 }
2597 
2598 /*
2599  * To handle irqs with the minimum potential races with fresh interrupts, we:
2600  * 1 - Disable Master Interrupt Control.
2601  * 2 - Find the source(s) of the interrupt.
2602  * 3 - Clear the Interrupt Identity bits (IIR).
2603  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2604  * 5 - Re-enable Master Interrupt Control.
2605  */
2606 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2607 {
2608 	struct drm_device *dev = arg;
2609 	struct drm_i915_private *dev_priv = to_i915(dev);
2610 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2611 	irqreturn_t ret = IRQ_NONE;
2612 
2613 	if (!intel_irqs_enabled(dev_priv))
2614 		return IRQ_NONE;
2615 
2616 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2617 	disable_rpm_wakeref_asserts(dev_priv);
2618 
2619 	/* disable master interrupt before clearing iir  */
2620 	de_ier = I915_READ(DEIER);
2621 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2622 
2623 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2624 	 * interrupts will will be stored on its back queue, and then we'll be
2625 	 * able to process them after we restore SDEIER (as soon as we restore
2626 	 * it, we'll get an interrupt if SDEIIR still has something to process
2627 	 * due to its back queue). */
2628 	if (!HAS_PCH_NOP(dev_priv)) {
2629 		sde_ier = I915_READ(SDEIER);
2630 		I915_WRITE(SDEIER, 0);
2631 	}
2632 
2633 	/* Find, clear, then process each source of interrupt */
2634 
2635 	gt_iir = I915_READ(GTIIR);
2636 	if (gt_iir) {
2637 		I915_WRITE(GTIIR, gt_iir);
2638 		ret = IRQ_HANDLED;
2639 		if (INTEL_GEN(dev_priv) >= 6)
2640 			snb_gt_irq_handler(dev_priv, gt_iir);
2641 		else
2642 			ilk_gt_irq_handler(dev_priv, gt_iir);
2643 	}
2644 
2645 	de_iir = I915_READ(DEIIR);
2646 	if (de_iir) {
2647 		I915_WRITE(DEIIR, de_iir);
2648 		ret = IRQ_HANDLED;
2649 		if (INTEL_GEN(dev_priv) >= 7)
2650 			ivb_display_irq_handler(dev_priv, de_iir);
2651 		else
2652 			ilk_display_irq_handler(dev_priv, de_iir);
2653 	}
2654 
2655 	if (INTEL_GEN(dev_priv) >= 6) {
2656 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2657 		if (pm_iir) {
2658 			I915_WRITE(GEN6_PMIIR, pm_iir);
2659 			ret = IRQ_HANDLED;
2660 			gen6_rps_irq_handler(dev_priv, pm_iir);
2661 		}
2662 	}
2663 
2664 	I915_WRITE(DEIER, de_ier);
2665 	if (!HAS_PCH_NOP(dev_priv))
2666 		I915_WRITE(SDEIER, sde_ier);
2667 
2668 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2669 	enable_rpm_wakeref_asserts(dev_priv);
2670 
2671 	return ret;
2672 }
2673 
2674 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2675 				u32 hotplug_trigger,
2676 				const u32 hpd[HPD_NUM_PINS])
2677 {
2678 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2679 
2680 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2681 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2682 
2683 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2684 			   dig_hotplug_reg, hpd,
2685 			   bxt_port_hotplug_long_detect);
2686 
2687 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2688 }
2689 
2690 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2691 {
2692 	u32 pin_mask = 0, long_mask = 0;
2693 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2694 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2695 
2696 	if (trigger_tc) {
2697 		u32 dig_hotplug_reg;
2698 
2699 		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2700 		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2701 
2702 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2703 				   dig_hotplug_reg, hpd_gen11,
2704 				   gen11_port_hotplug_long_detect);
2705 	}
2706 
2707 	if (trigger_tbt) {
2708 		u32 dig_hotplug_reg;
2709 
2710 		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2711 		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2712 
2713 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2714 				   dig_hotplug_reg, hpd_gen11,
2715 				   gen11_port_hotplug_long_detect);
2716 	}
2717 
2718 	if (pin_mask)
2719 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2720 	else
2721 		DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2722 }
2723 
2724 static irqreturn_t
2725 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2726 {
2727 	irqreturn_t ret = IRQ_NONE;
2728 	u32 iir;
2729 	enum pipe pipe;
2730 
2731 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2732 		iir = I915_READ(GEN8_DE_MISC_IIR);
2733 		if (iir) {
2734 			bool found = false;
2735 
2736 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2737 			ret = IRQ_HANDLED;
2738 
2739 			if (iir & GEN8_DE_MISC_GSE) {
2740 				intel_opregion_asle_intr(dev_priv);
2741 				found = true;
2742 			}
2743 
2744 			if (iir & GEN8_DE_EDP_PSR) {
2745 				u32 psr_iir = I915_READ(EDP_PSR_IIR);
2746 
2747 				intel_psr_irq_handler(dev_priv, psr_iir);
2748 				I915_WRITE(EDP_PSR_IIR, psr_iir);
2749 				found = true;
2750 			}
2751 
2752 			if (!found)
2753 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2754 		}
2755 		else
2756 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2757 	}
2758 
2759 	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2760 		iir = I915_READ(GEN11_DE_HPD_IIR);
2761 		if (iir) {
2762 			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2763 			ret = IRQ_HANDLED;
2764 			gen11_hpd_irq_handler(dev_priv, iir);
2765 		} else {
2766 			DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2767 		}
2768 	}
2769 
2770 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2771 		iir = I915_READ(GEN8_DE_PORT_IIR);
2772 		if (iir) {
2773 			u32 tmp_mask;
2774 			bool found = false;
2775 
2776 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2777 			ret = IRQ_HANDLED;
2778 
2779 			tmp_mask = GEN8_AUX_CHANNEL_A;
2780 			if (INTEL_GEN(dev_priv) >= 9)
2781 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2782 					    GEN9_AUX_CHANNEL_C |
2783 					    GEN9_AUX_CHANNEL_D;
2784 
2785 			if (INTEL_GEN(dev_priv) >= 11)
2786 				tmp_mask |= ICL_AUX_CHANNEL_E;
2787 
2788 			if (IS_CNL_WITH_PORT_F(dev_priv) ||
2789 			    INTEL_GEN(dev_priv) >= 11)
2790 				tmp_mask |= CNL_AUX_CHANNEL_F;
2791 
2792 			if (iir & tmp_mask) {
2793 				dp_aux_irq_handler(dev_priv);
2794 				found = true;
2795 			}
2796 
2797 			if (IS_GEN9_LP(dev_priv)) {
2798 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2799 				if (tmp_mask) {
2800 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2801 							    hpd_bxt);
2802 					found = true;
2803 				}
2804 			} else if (IS_BROADWELL(dev_priv)) {
2805 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2806 				if (tmp_mask) {
2807 					ilk_hpd_irq_handler(dev_priv,
2808 							    tmp_mask, hpd_bdw);
2809 					found = true;
2810 				}
2811 			}
2812 
2813 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2814 				gmbus_irq_handler(dev_priv);
2815 				found = true;
2816 			}
2817 
2818 			if (!found)
2819 				DRM_ERROR("Unexpected DE Port interrupt\n");
2820 		}
2821 		else
2822 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2823 	}
2824 
2825 	for_each_pipe(dev_priv, pipe) {
2826 		u32 fault_errors;
2827 
2828 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2829 			continue;
2830 
2831 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2832 		if (!iir) {
2833 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2834 			continue;
2835 		}
2836 
2837 		ret = IRQ_HANDLED;
2838 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2839 
2840 		if (iir & GEN8_PIPE_VBLANK)
2841 			drm_handle_vblank(&dev_priv->drm, pipe);
2842 
2843 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2844 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2845 
2846 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2847 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2848 
2849 		fault_errors = iir;
2850 		if (INTEL_GEN(dev_priv) >= 9)
2851 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2852 		else
2853 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2854 
2855 		if (fault_errors)
2856 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2857 				  pipe_name(pipe),
2858 				  fault_errors);
2859 	}
2860 
2861 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2862 	    master_ctl & GEN8_DE_PCH_IRQ) {
2863 		/*
2864 		 * FIXME(BDW): Assume for now that the new interrupt handling
2865 		 * scheme also closed the SDE interrupt handling race we've seen
2866 		 * on older pch-split platforms. But this needs testing.
2867 		 */
2868 		iir = I915_READ(SDEIIR);
2869 		if (iir) {
2870 			I915_WRITE(SDEIIR, iir);
2871 			ret = IRQ_HANDLED;
2872 
2873 			if (HAS_PCH_ICP(dev_priv))
2874 				icp_irq_handler(dev_priv, iir);
2875 			else if (HAS_PCH_SPT(dev_priv) ||
2876 				 HAS_PCH_KBP(dev_priv) ||
2877 				 HAS_PCH_CNP(dev_priv))
2878 				spt_irq_handler(dev_priv, iir);
2879 			else
2880 				cpt_irq_handler(dev_priv, iir);
2881 		} else {
2882 			/*
2883 			 * Like on previous PCH there seems to be something
2884 			 * fishy going on with forwarding PCH interrupts.
2885 			 */
2886 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2887 		}
2888 	}
2889 
2890 	return ret;
2891 }
2892 
2893 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2894 {
2895 	struct drm_i915_private *dev_priv = to_i915(arg);
2896 	u32 master_ctl;
2897 	u32 gt_iir[4];
2898 
2899 	if (!intel_irqs_enabled(dev_priv))
2900 		return IRQ_NONE;
2901 
2902 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2903 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2904 	if (!master_ctl)
2905 		return IRQ_NONE;
2906 
2907 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2908 
2909 	/* Find, clear, then process each source of interrupt */
2910 	gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2911 
2912 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2913 	if (master_ctl & ~GEN8_GT_IRQS) {
2914 		disable_rpm_wakeref_asserts(dev_priv);
2915 		gen8_de_irq_handler(dev_priv, master_ctl);
2916 		enable_rpm_wakeref_asserts(dev_priv);
2917 	}
2918 
2919 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2920 
2921 	gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2922 
2923 	return IRQ_HANDLED;
2924 }
2925 
2926 struct wedge_me {
2927 	struct delayed_work work;
2928 	struct drm_i915_private *i915;
2929 	const char *name;
2930 };
2931 
2932 static void wedge_me(struct work_struct *work)
2933 {
2934 	struct wedge_me *w = container_of(work, typeof(*w), work.work);
2935 
2936 	dev_err(w->i915->drm.dev,
2937 		"%s timed out, cancelling all in-flight rendering.\n",
2938 		w->name);
2939 	i915_gem_set_wedged(w->i915);
2940 }
2941 
2942 static void __init_wedge(struct wedge_me *w,
2943 			 struct drm_i915_private *i915,
2944 			 long timeout,
2945 			 const char *name)
2946 {
2947 	w->i915 = i915;
2948 	w->name = name;
2949 
2950 	INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2951 	schedule_delayed_work(&w->work, timeout);
2952 }
2953 
2954 static void __fini_wedge(struct wedge_me *w)
2955 {
2956 	cancel_delayed_work_sync(&w->work);
2957 	destroy_delayed_work_on_stack(&w->work);
2958 	w->i915 = NULL;
2959 }
2960 
2961 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)				\
2962 	for (__init_wedge((W), (DEV), (TIMEOUT), __func__);		\
2963 	     (W)->i915;							\
2964 	     __fini_wedge((W)))
2965 
2966 static u32
2967 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2968 			 const unsigned int bank, const unsigned int bit)
2969 {
2970 	void __iomem * const regs = i915->regs;
2971 	u32 timeout_ts;
2972 	u32 ident;
2973 
2974 	lockdep_assert_held(&i915->irq_lock);
2975 
2976 	raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2977 
2978 	/*
2979 	 * NB: Specs do not specify how long to spin wait,
2980 	 * so we do ~100us as an educated guess.
2981 	 */
2982 	timeout_ts = (local_clock() >> 10) + 100;
2983 	do {
2984 		ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2985 	} while (!(ident & GEN11_INTR_DATA_VALID) &&
2986 		 !time_after32(local_clock() >> 10, timeout_ts));
2987 
2988 	if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2989 		DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2990 			  bank, bit, ident);
2991 		return 0;
2992 	}
2993 
2994 	raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
2995 		      GEN11_INTR_DATA_VALID);
2996 
2997 	return ident;
2998 }
2999 
3000 static void
3001 gen11_other_irq_handler(struct drm_i915_private * const i915,
3002 			const u8 instance, const u16 iir)
3003 {
3004 	if (instance == OTHER_GTPM_INSTANCE)
3005 		return gen6_rps_irq_handler(i915, iir);
3006 
3007 	WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3008 		  instance, iir);
3009 }
3010 
3011 static void
3012 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3013 			 const u8 class, const u8 instance, const u16 iir)
3014 {
3015 	struct intel_engine_cs *engine;
3016 
3017 	if (instance <= MAX_ENGINE_INSTANCE)
3018 		engine = i915->engine_class[class][instance];
3019 	else
3020 		engine = NULL;
3021 
3022 	if (likely(engine))
3023 		return gen8_cs_irq_handler(engine, iir);
3024 
3025 	WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3026 		  class, instance);
3027 }
3028 
3029 static void
3030 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3031 			  const u32 identity)
3032 {
3033 	const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3034 	const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3035 	const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3036 
3037 	if (unlikely(!intr))
3038 		return;
3039 
3040 	if (class <= COPY_ENGINE_CLASS)
3041 		return gen11_engine_irq_handler(i915, class, instance, intr);
3042 
3043 	if (class == OTHER_CLASS)
3044 		return gen11_other_irq_handler(i915, instance, intr);
3045 
3046 	WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3047 		  class, instance, intr);
3048 }
3049 
3050 static void
3051 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3052 		      const unsigned int bank)
3053 {
3054 	void __iomem * const regs = i915->regs;
3055 	unsigned long intr_dw;
3056 	unsigned int bit;
3057 
3058 	lockdep_assert_held(&i915->irq_lock);
3059 
3060 	intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3061 
3062 	if (unlikely(!intr_dw)) {
3063 		DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
3064 		return;
3065 	}
3066 
3067 	for_each_set_bit(bit, &intr_dw, 32) {
3068 		const u32 ident = gen11_gt_engine_identity(i915,
3069 							   bank, bit);
3070 
3071 		gen11_gt_identity_handler(i915, ident);
3072 	}
3073 
3074 	/* Clear must be after shared has been served for engine */
3075 	raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3076 }
3077 
3078 static void
3079 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3080 		     const u32 master_ctl)
3081 {
3082 	unsigned int bank;
3083 
3084 	spin_lock(&i915->irq_lock);
3085 
3086 	for (bank = 0; bank < 2; bank++) {
3087 		if (master_ctl & GEN11_GT_DW_IRQ(bank))
3088 			gen11_gt_bank_handler(i915, bank);
3089 	}
3090 
3091 	spin_unlock(&i915->irq_lock);
3092 }
3093 
3094 static void
3095 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl,
3096 		      u32 *iir)
3097 {
3098 	void __iomem * const regs = dev_priv->regs;
3099 
3100 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
3101 		return;
3102 
3103 	*iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3104 	if (likely(*iir))
3105 		raw_reg_write(regs, GEN11_GU_MISC_IIR, *iir);
3106 }
3107 
3108 static void
3109 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv,
3110 			  const u32 master_ctl, const u32 iir)
3111 {
3112 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
3113 		return;
3114 
3115 	if (unlikely(!iir)) {
3116 		DRM_ERROR("GU_MISC iir blank!\n");
3117 		return;
3118 	}
3119 
3120 	if (iir & GEN11_GU_MISC_GSE)
3121 		intel_opregion_asle_intr(dev_priv);
3122 	else
3123 		DRM_ERROR("Unexpected GU_MISC interrupt 0x%x\n", iir);
3124 }
3125 
3126 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3127 {
3128 	struct drm_i915_private * const i915 = to_i915(arg);
3129 	void __iomem * const regs = i915->regs;
3130 	u32 master_ctl;
3131 	u32 gu_misc_iir;
3132 
3133 	if (!intel_irqs_enabled(i915))
3134 		return IRQ_NONE;
3135 
3136 	master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3137 	master_ctl &= ~GEN11_MASTER_IRQ;
3138 	if (!master_ctl)
3139 		return IRQ_NONE;
3140 
3141 	/* Disable interrupts. */
3142 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3143 
3144 	/* Find, clear, then process each source of interrupt. */
3145 	gen11_gt_irq_handler(i915, master_ctl);
3146 
3147 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3148 	if (master_ctl & GEN11_DISPLAY_IRQ) {
3149 		const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3150 
3151 		disable_rpm_wakeref_asserts(i915);
3152 		/*
3153 		 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3154 		 * for the display related bits.
3155 		 */
3156 		gen8_de_irq_handler(i915, disp_ctl);
3157 		enable_rpm_wakeref_asserts(i915);
3158 	}
3159 
3160 	gen11_gu_misc_irq_ack(i915, master_ctl, &gu_misc_iir);
3161 
3162 	/* Acknowledge and enable interrupts. */
3163 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
3164 
3165 	gen11_gu_misc_irq_handler(i915, master_ctl, gu_misc_iir);
3166 
3167 	return IRQ_HANDLED;
3168 }
3169 
3170 static void i915_reset_device(struct drm_i915_private *dev_priv,
3171 			      u32 engine_mask,
3172 			      const char *reason)
3173 {
3174 	struct i915_gpu_error *error = &dev_priv->gpu_error;
3175 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
3176 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
3177 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
3178 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
3179 	struct wedge_me w;
3180 
3181 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
3182 
3183 	DRM_DEBUG_DRIVER("resetting chip\n");
3184 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
3185 
3186 	/* Use a watchdog to ensure that our reset completes */
3187 	i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
3188 		intel_prepare_reset(dev_priv);
3189 
3190 		error->reason = reason;
3191 		error->stalled_mask = engine_mask;
3192 
3193 		/* Signal that locked waiters should reset the GPU */
3194 		smp_mb__before_atomic();
3195 		set_bit(I915_RESET_HANDOFF, &error->flags);
3196 		wake_up_all(&error->wait_queue);
3197 
3198 		/* Wait for anyone holding the lock to wakeup, without
3199 		 * blocking indefinitely on struct_mutex.
3200 		 */
3201 		do {
3202 			if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
3203 				i915_reset(dev_priv, engine_mask, reason);
3204 				mutex_unlock(&dev_priv->drm.struct_mutex);
3205 			}
3206 		} while (wait_on_bit_timeout(&error->flags,
3207 					     I915_RESET_HANDOFF,
3208 					     TASK_UNINTERRUPTIBLE,
3209 					     1));
3210 
3211 		error->stalled_mask = 0;
3212 		error->reason = NULL;
3213 
3214 		intel_finish_reset(dev_priv);
3215 	}
3216 
3217 	if (!test_bit(I915_WEDGED, &error->flags))
3218 		kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
3219 }
3220 
3221 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
3222 {
3223 	u32 eir;
3224 
3225 	if (!IS_GEN2(dev_priv))
3226 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
3227 
3228 	if (INTEL_GEN(dev_priv) < 4)
3229 		I915_WRITE(IPEIR, I915_READ(IPEIR));
3230 	else
3231 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
3232 
3233 	I915_WRITE(EIR, I915_READ(EIR));
3234 	eir = I915_READ(EIR);
3235 	if (eir) {
3236 		/*
3237 		 * some errors might have become stuck,
3238 		 * mask them.
3239 		 */
3240 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
3241 		I915_WRITE(EMR, I915_READ(EMR) | eir);
3242 		I915_WRITE(IIR, I915_MASTER_ERROR_INTERRUPT);
3243 	}
3244 }
3245 
3246 /**
3247  * i915_handle_error - handle a gpu error
3248  * @dev_priv: i915 device private
3249  * @engine_mask: mask representing engines that are hung
3250  * @flags: control flags
3251  * @fmt: Error message format string
3252  *
3253  * Do some basic checking of register state at error time and
3254  * dump it to the syslog.  Also call i915_capture_error_state() to make
3255  * sure we get a record and make it available in debugfs.  Fire a uevent
3256  * so userspace knows something bad happened (should trigger collection
3257  * of a ring dump etc.).
3258  */
3259 void i915_handle_error(struct drm_i915_private *dev_priv,
3260 		       u32 engine_mask,
3261 		       unsigned long flags,
3262 		       const char *fmt, ...)
3263 {
3264 	struct intel_engine_cs *engine;
3265 	unsigned int tmp;
3266 	char error_msg[80];
3267 	char *msg = NULL;
3268 
3269 	if (fmt) {
3270 		va_list args;
3271 
3272 		va_start(args, fmt);
3273 		vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3274 		va_end(args);
3275 
3276 		msg = error_msg;
3277 	}
3278 
3279 	/*
3280 	 * In most cases it's guaranteed that we get here with an RPM
3281 	 * reference held, for example because there is a pending GPU
3282 	 * request that won't finish until the reset is done. This
3283 	 * isn't the case at least when we get here by doing a
3284 	 * simulated reset via debugfs, so get an RPM reference.
3285 	 */
3286 	intel_runtime_pm_get(dev_priv);
3287 
3288 	engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
3289 
3290 	if (flags & I915_ERROR_CAPTURE) {
3291 		i915_capture_error_state(dev_priv, engine_mask, msg);
3292 		i915_clear_error_registers(dev_priv);
3293 	}
3294 
3295 	/*
3296 	 * Try engine reset when available. We fall back to full reset if
3297 	 * single reset fails.
3298 	 */
3299 	if (intel_has_reset_engine(dev_priv)) {
3300 		for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3301 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3302 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3303 					     &dev_priv->gpu_error.flags))
3304 				continue;
3305 
3306 			if (i915_reset_engine(engine, msg) == 0)
3307 				engine_mask &= ~intel_engine_flag(engine);
3308 
3309 			clear_bit(I915_RESET_ENGINE + engine->id,
3310 				  &dev_priv->gpu_error.flags);
3311 			wake_up_bit(&dev_priv->gpu_error.flags,
3312 				    I915_RESET_ENGINE + engine->id);
3313 		}
3314 	}
3315 
3316 	if (!engine_mask)
3317 		goto out;
3318 
3319 	/* Full reset needs the mutex, stop any other user trying to do so. */
3320 	if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3321 		wait_event(dev_priv->gpu_error.reset_queue,
3322 			   !test_bit(I915_RESET_BACKOFF,
3323 				     &dev_priv->gpu_error.flags));
3324 		goto out;
3325 	}
3326 
3327 	/* Prevent any other reset-engine attempt. */
3328 	for_each_engine(engine, dev_priv, tmp) {
3329 		while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3330 					&dev_priv->gpu_error.flags))
3331 			wait_on_bit(&dev_priv->gpu_error.flags,
3332 				    I915_RESET_ENGINE + engine->id,
3333 				    TASK_UNINTERRUPTIBLE);
3334 	}
3335 
3336 	i915_reset_device(dev_priv, engine_mask, msg);
3337 
3338 	for_each_engine(engine, dev_priv, tmp) {
3339 		clear_bit(I915_RESET_ENGINE + engine->id,
3340 			  &dev_priv->gpu_error.flags);
3341 	}
3342 
3343 	clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3344 	wake_up_all(&dev_priv->gpu_error.reset_queue);
3345 
3346 out:
3347 	intel_runtime_pm_put(dev_priv);
3348 }
3349 
3350 /* Called from drm generic code, passed 'crtc' which
3351  * we use as a pipe index
3352  */
3353 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3354 {
3355 	struct drm_i915_private *dev_priv = to_i915(dev);
3356 	unsigned long irqflags;
3357 
3358 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3359 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3360 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3361 
3362 	return 0;
3363 }
3364 
3365 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3366 {
3367 	struct drm_i915_private *dev_priv = to_i915(dev);
3368 	unsigned long irqflags;
3369 
3370 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3371 	i915_enable_pipestat(dev_priv, pipe,
3372 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
3373 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3374 
3375 	return 0;
3376 }
3377 
3378 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3379 {
3380 	struct drm_i915_private *dev_priv = to_i915(dev);
3381 	unsigned long irqflags;
3382 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3383 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3384 
3385 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3386 	ilk_enable_display_irq(dev_priv, bit);
3387 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3388 
3389 	/* Even though there is no DMC, frame counter can get stuck when
3390 	 * PSR is active as no frames are generated.
3391 	 */
3392 	if (HAS_PSR(dev_priv))
3393 		drm_vblank_restore(dev, pipe);
3394 
3395 	return 0;
3396 }
3397 
3398 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3399 {
3400 	struct drm_i915_private *dev_priv = to_i915(dev);
3401 	unsigned long irqflags;
3402 
3403 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3404 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3405 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3406 
3407 	/* Even if there is no DMC, frame counter can get stuck when
3408 	 * PSR is active as no frames are generated, so check only for PSR.
3409 	 */
3410 	if (HAS_PSR(dev_priv))
3411 		drm_vblank_restore(dev, pipe);
3412 
3413 	return 0;
3414 }
3415 
3416 /* Called from drm generic code, passed 'crtc' which
3417  * we use as a pipe index
3418  */
3419 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3420 {
3421 	struct drm_i915_private *dev_priv = to_i915(dev);
3422 	unsigned long irqflags;
3423 
3424 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3425 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3426 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3427 }
3428 
3429 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3430 {
3431 	struct drm_i915_private *dev_priv = to_i915(dev);
3432 	unsigned long irqflags;
3433 
3434 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3435 	i915_disable_pipestat(dev_priv, pipe,
3436 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3437 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3438 }
3439 
3440 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3441 {
3442 	struct drm_i915_private *dev_priv = to_i915(dev);
3443 	unsigned long irqflags;
3444 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3445 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3446 
3447 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3448 	ilk_disable_display_irq(dev_priv, bit);
3449 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3450 }
3451 
3452 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3453 {
3454 	struct drm_i915_private *dev_priv = to_i915(dev);
3455 	unsigned long irqflags;
3456 
3457 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3458 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3459 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3460 }
3461 
3462 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3463 {
3464 	if (HAS_PCH_NOP(dev_priv))
3465 		return;
3466 
3467 	GEN3_IRQ_RESET(SDE);
3468 
3469 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3470 		I915_WRITE(SERR_INT, 0xffffffff);
3471 }
3472 
3473 /*
3474  * SDEIER is also touched by the interrupt handler to work around missed PCH
3475  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3476  * instead we unconditionally enable all PCH interrupt sources here, but then
3477  * only unmask them as needed with SDEIMR.
3478  *
3479  * This function needs to be called before interrupts are enabled.
3480  */
3481 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3482 {
3483 	struct drm_i915_private *dev_priv = to_i915(dev);
3484 
3485 	if (HAS_PCH_NOP(dev_priv))
3486 		return;
3487 
3488 	WARN_ON(I915_READ(SDEIER) != 0);
3489 	I915_WRITE(SDEIER, 0xffffffff);
3490 	POSTING_READ(SDEIER);
3491 }
3492 
3493 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3494 {
3495 	GEN3_IRQ_RESET(GT);
3496 	if (INTEL_GEN(dev_priv) >= 6)
3497 		GEN3_IRQ_RESET(GEN6_PM);
3498 }
3499 
3500 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3501 {
3502 	if (IS_CHERRYVIEW(dev_priv))
3503 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3504 	else
3505 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3506 
3507 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3508 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3509 
3510 	i9xx_pipestat_irq_reset(dev_priv);
3511 
3512 	GEN3_IRQ_RESET(VLV_);
3513 	dev_priv->irq_mask = ~0u;
3514 }
3515 
3516 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3517 {
3518 	u32 pipestat_mask;
3519 	u32 enable_mask;
3520 	enum pipe pipe;
3521 
3522 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3523 
3524 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3525 	for_each_pipe(dev_priv, pipe)
3526 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3527 
3528 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3529 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3530 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3531 		I915_LPE_PIPE_A_INTERRUPT |
3532 		I915_LPE_PIPE_B_INTERRUPT;
3533 
3534 	if (IS_CHERRYVIEW(dev_priv))
3535 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3536 			I915_LPE_PIPE_C_INTERRUPT;
3537 
3538 	WARN_ON(dev_priv->irq_mask != ~0u);
3539 
3540 	dev_priv->irq_mask = ~enable_mask;
3541 
3542 	GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3543 }
3544 
3545 /* drm_dma.h hooks
3546 */
3547 static void ironlake_irq_reset(struct drm_device *dev)
3548 {
3549 	struct drm_i915_private *dev_priv = to_i915(dev);
3550 
3551 	if (IS_GEN5(dev_priv))
3552 		I915_WRITE(HWSTAM, 0xffffffff);
3553 
3554 	GEN3_IRQ_RESET(DE);
3555 	if (IS_GEN7(dev_priv))
3556 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3557 
3558 	if (IS_HASWELL(dev_priv)) {
3559 		I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3560 		I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3561 	}
3562 
3563 	gen5_gt_irq_reset(dev_priv);
3564 
3565 	ibx_irq_reset(dev_priv);
3566 }
3567 
3568 static void valleyview_irq_reset(struct drm_device *dev)
3569 {
3570 	struct drm_i915_private *dev_priv = to_i915(dev);
3571 
3572 	I915_WRITE(VLV_MASTER_IER, 0);
3573 	POSTING_READ(VLV_MASTER_IER);
3574 
3575 	gen5_gt_irq_reset(dev_priv);
3576 
3577 	spin_lock_irq(&dev_priv->irq_lock);
3578 	if (dev_priv->display_irqs_enabled)
3579 		vlv_display_irq_reset(dev_priv);
3580 	spin_unlock_irq(&dev_priv->irq_lock);
3581 }
3582 
3583 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3584 {
3585 	GEN8_IRQ_RESET_NDX(GT, 0);
3586 	GEN8_IRQ_RESET_NDX(GT, 1);
3587 	GEN8_IRQ_RESET_NDX(GT, 2);
3588 	GEN8_IRQ_RESET_NDX(GT, 3);
3589 }
3590 
3591 static void gen8_irq_reset(struct drm_device *dev)
3592 {
3593 	struct drm_i915_private *dev_priv = to_i915(dev);
3594 	int pipe;
3595 
3596 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3597 	POSTING_READ(GEN8_MASTER_IRQ);
3598 
3599 	gen8_gt_irq_reset(dev_priv);
3600 
3601 	I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3602 	I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3603 
3604 	for_each_pipe(dev_priv, pipe)
3605 		if (intel_display_power_is_enabled(dev_priv,
3606 						   POWER_DOMAIN_PIPE(pipe)))
3607 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3608 
3609 	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3610 	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3611 	GEN3_IRQ_RESET(GEN8_PCU_);
3612 
3613 	if (HAS_PCH_SPLIT(dev_priv))
3614 		ibx_irq_reset(dev_priv);
3615 }
3616 
3617 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3618 {
3619 	/* Disable RCS, BCS, VCS and VECS class engines. */
3620 	I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3621 	I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,	  0);
3622 
3623 	/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3624 	I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,	~0);
3625 	I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,	~0);
3626 	I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,	~0);
3627 	I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,	~0);
3628 	I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK,	~0);
3629 
3630 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3631 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3632 }
3633 
3634 static void gen11_irq_reset(struct drm_device *dev)
3635 {
3636 	struct drm_i915_private *dev_priv = dev->dev_private;
3637 	int pipe;
3638 
3639 	I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
3640 	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3641 
3642 	gen11_gt_irq_reset(dev_priv);
3643 
3644 	I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3645 
3646 	for_each_pipe(dev_priv, pipe)
3647 		if (intel_display_power_is_enabled(dev_priv,
3648 						   POWER_DOMAIN_PIPE(pipe)))
3649 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3650 
3651 	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3652 	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3653 	GEN3_IRQ_RESET(GEN11_DE_HPD_);
3654 	GEN3_IRQ_RESET(GEN11_GU_MISC_);
3655 	GEN3_IRQ_RESET(GEN8_PCU_);
3656 
3657 	if (HAS_PCH_ICP(dev_priv))
3658 		GEN3_IRQ_RESET(SDE);
3659 }
3660 
3661 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3662 				     u8 pipe_mask)
3663 {
3664 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3665 	enum pipe pipe;
3666 
3667 	spin_lock_irq(&dev_priv->irq_lock);
3668 
3669 	if (!intel_irqs_enabled(dev_priv)) {
3670 		spin_unlock_irq(&dev_priv->irq_lock);
3671 		return;
3672 	}
3673 
3674 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3675 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3676 				  dev_priv->de_irq_mask[pipe],
3677 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3678 
3679 	spin_unlock_irq(&dev_priv->irq_lock);
3680 }
3681 
3682 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3683 				     u8 pipe_mask)
3684 {
3685 	enum pipe pipe;
3686 
3687 	spin_lock_irq(&dev_priv->irq_lock);
3688 
3689 	if (!intel_irqs_enabled(dev_priv)) {
3690 		spin_unlock_irq(&dev_priv->irq_lock);
3691 		return;
3692 	}
3693 
3694 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3695 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3696 
3697 	spin_unlock_irq(&dev_priv->irq_lock);
3698 
3699 	/* make sure we're done processing display irqs */
3700 	synchronize_irq(dev_priv->drm.irq);
3701 }
3702 
3703 static void cherryview_irq_reset(struct drm_device *dev)
3704 {
3705 	struct drm_i915_private *dev_priv = to_i915(dev);
3706 
3707 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3708 	POSTING_READ(GEN8_MASTER_IRQ);
3709 
3710 	gen8_gt_irq_reset(dev_priv);
3711 
3712 	GEN3_IRQ_RESET(GEN8_PCU_);
3713 
3714 	spin_lock_irq(&dev_priv->irq_lock);
3715 	if (dev_priv->display_irqs_enabled)
3716 		vlv_display_irq_reset(dev_priv);
3717 	spin_unlock_irq(&dev_priv->irq_lock);
3718 }
3719 
3720 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3721 				  const u32 hpd[HPD_NUM_PINS])
3722 {
3723 	struct intel_encoder *encoder;
3724 	u32 enabled_irqs = 0;
3725 
3726 	for_each_intel_encoder(&dev_priv->drm, encoder)
3727 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3728 			enabled_irqs |= hpd[encoder->hpd_pin];
3729 
3730 	return enabled_irqs;
3731 }
3732 
3733 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3734 {
3735 	u32 hotplug;
3736 
3737 	/*
3738 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3739 	 * duration to 2ms (which is the minimum in the Display Port spec).
3740 	 * The pulse duration bits are reserved on LPT+.
3741 	 */
3742 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3743 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3744 		     PORTC_PULSE_DURATION_MASK |
3745 		     PORTD_PULSE_DURATION_MASK);
3746 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3747 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3748 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3749 	/*
3750 	 * When CPU and PCH are on the same package, port A
3751 	 * HPD must be enabled in both north and south.
3752 	 */
3753 	if (HAS_PCH_LPT_LP(dev_priv))
3754 		hotplug |= PORTA_HOTPLUG_ENABLE;
3755 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3756 }
3757 
3758 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3759 {
3760 	u32 hotplug_irqs, enabled_irqs;
3761 
3762 	if (HAS_PCH_IBX(dev_priv)) {
3763 		hotplug_irqs = SDE_HOTPLUG_MASK;
3764 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3765 	} else {
3766 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3767 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3768 	}
3769 
3770 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3771 
3772 	ibx_hpd_detection_setup(dev_priv);
3773 }
3774 
3775 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3776 {
3777 	u32 hotplug;
3778 
3779 	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3780 	hotplug |= ICP_DDIA_HPD_ENABLE |
3781 		   ICP_DDIB_HPD_ENABLE;
3782 	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3783 
3784 	hotplug = I915_READ(SHOTPLUG_CTL_TC);
3785 	hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3786 		   ICP_TC_HPD_ENABLE(PORT_TC2) |
3787 		   ICP_TC_HPD_ENABLE(PORT_TC3) |
3788 		   ICP_TC_HPD_ENABLE(PORT_TC4);
3789 	I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3790 }
3791 
3792 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3793 {
3794 	u32 hotplug_irqs, enabled_irqs;
3795 
3796 	hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3797 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3798 
3799 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3800 
3801 	icp_hpd_detection_setup(dev_priv);
3802 }
3803 
3804 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3805 {
3806 	u32 hotplug;
3807 
3808 	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3809 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3810 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3811 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3812 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3813 	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3814 
3815 	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3816 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3817 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3818 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3819 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3820 	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3821 }
3822 
3823 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3824 {
3825 	u32 hotplug_irqs, enabled_irqs;
3826 	u32 val;
3827 
3828 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3829 	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3830 
3831 	val = I915_READ(GEN11_DE_HPD_IMR);
3832 	val &= ~hotplug_irqs;
3833 	I915_WRITE(GEN11_DE_HPD_IMR, val);
3834 	POSTING_READ(GEN11_DE_HPD_IMR);
3835 
3836 	gen11_hpd_detection_setup(dev_priv);
3837 
3838 	if (HAS_PCH_ICP(dev_priv))
3839 		icp_hpd_irq_setup(dev_priv);
3840 }
3841 
3842 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3843 {
3844 	u32 val, hotplug;
3845 
3846 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3847 	if (HAS_PCH_CNP(dev_priv)) {
3848 		val = I915_READ(SOUTH_CHICKEN1);
3849 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3850 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3851 		I915_WRITE(SOUTH_CHICKEN1, val);
3852 	}
3853 
3854 	/* Enable digital hotplug on the PCH */
3855 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3856 	hotplug |= PORTA_HOTPLUG_ENABLE |
3857 		   PORTB_HOTPLUG_ENABLE |
3858 		   PORTC_HOTPLUG_ENABLE |
3859 		   PORTD_HOTPLUG_ENABLE;
3860 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3861 
3862 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3863 	hotplug |= PORTE_HOTPLUG_ENABLE;
3864 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3865 }
3866 
3867 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3868 {
3869 	u32 hotplug_irqs, enabled_irqs;
3870 
3871 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3872 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3873 
3874 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3875 
3876 	spt_hpd_detection_setup(dev_priv);
3877 }
3878 
3879 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3880 {
3881 	u32 hotplug;
3882 
3883 	/*
3884 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3885 	 * duration to 2ms (which is the minimum in the Display Port spec)
3886 	 * The pulse duration bits are reserved on HSW+.
3887 	 */
3888 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3889 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3890 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3891 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3892 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3893 }
3894 
3895 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3896 {
3897 	u32 hotplug_irqs, enabled_irqs;
3898 
3899 	if (INTEL_GEN(dev_priv) >= 8) {
3900 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3901 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3902 
3903 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3904 	} else if (INTEL_GEN(dev_priv) >= 7) {
3905 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3906 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3907 
3908 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3909 	} else {
3910 		hotplug_irqs = DE_DP_A_HOTPLUG;
3911 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3912 
3913 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3914 	}
3915 
3916 	ilk_hpd_detection_setup(dev_priv);
3917 
3918 	ibx_hpd_irq_setup(dev_priv);
3919 }
3920 
3921 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3922 				      u32 enabled_irqs)
3923 {
3924 	u32 hotplug;
3925 
3926 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3927 	hotplug |= PORTA_HOTPLUG_ENABLE |
3928 		   PORTB_HOTPLUG_ENABLE |
3929 		   PORTC_HOTPLUG_ENABLE;
3930 
3931 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3932 		      hotplug, enabled_irqs);
3933 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3934 
3935 	/*
3936 	 * For BXT invert bit has to be set based on AOB design
3937 	 * for HPD detection logic, update it based on VBT fields.
3938 	 */
3939 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3940 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3941 		hotplug |= BXT_DDIA_HPD_INVERT;
3942 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3943 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3944 		hotplug |= BXT_DDIB_HPD_INVERT;
3945 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3946 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3947 		hotplug |= BXT_DDIC_HPD_INVERT;
3948 
3949 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3950 }
3951 
3952 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3953 {
3954 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3955 }
3956 
3957 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3958 {
3959 	u32 hotplug_irqs, enabled_irqs;
3960 
3961 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3962 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3963 
3964 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3965 
3966 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3967 }
3968 
3969 static void ibx_irq_postinstall(struct drm_device *dev)
3970 {
3971 	struct drm_i915_private *dev_priv = to_i915(dev);
3972 	u32 mask;
3973 
3974 	if (HAS_PCH_NOP(dev_priv))
3975 		return;
3976 
3977 	if (HAS_PCH_IBX(dev_priv))
3978 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3979 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3980 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3981 	else
3982 		mask = SDE_GMBUS_CPT;
3983 
3984 	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3985 	I915_WRITE(SDEIMR, ~mask);
3986 
3987 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3988 	    HAS_PCH_LPT(dev_priv))
3989 		ibx_hpd_detection_setup(dev_priv);
3990 	else
3991 		spt_hpd_detection_setup(dev_priv);
3992 }
3993 
3994 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3995 {
3996 	struct drm_i915_private *dev_priv = to_i915(dev);
3997 	u32 pm_irqs, gt_irqs;
3998 
3999 	pm_irqs = gt_irqs = 0;
4000 
4001 	dev_priv->gt_irq_mask = ~0;
4002 	if (HAS_L3_DPF(dev_priv)) {
4003 		/* L3 parity interrupt is always unmasked. */
4004 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
4005 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
4006 	}
4007 
4008 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
4009 	if (IS_GEN5(dev_priv)) {
4010 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
4011 	} else {
4012 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
4013 	}
4014 
4015 	GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
4016 
4017 	if (INTEL_GEN(dev_priv) >= 6) {
4018 		/*
4019 		 * RPS interrupts will get enabled/disabled on demand when RPS
4020 		 * itself is enabled/disabled.
4021 		 */
4022 		if (HAS_VEBOX(dev_priv)) {
4023 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
4024 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
4025 		}
4026 
4027 		dev_priv->pm_imr = 0xffffffff;
4028 		GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
4029 	}
4030 }
4031 
4032 static int ironlake_irq_postinstall(struct drm_device *dev)
4033 {
4034 	struct drm_i915_private *dev_priv = to_i915(dev);
4035 	u32 display_mask, extra_mask;
4036 
4037 	if (INTEL_GEN(dev_priv) >= 7) {
4038 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
4039 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
4040 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
4041 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
4042 			      DE_DP_A_HOTPLUG_IVB);
4043 	} else {
4044 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
4045 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
4046 				DE_PIPEA_CRC_DONE | DE_POISON);
4047 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
4048 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
4049 			      DE_DP_A_HOTPLUG);
4050 	}
4051 
4052 	if (IS_HASWELL(dev_priv)) {
4053 		gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4054 		intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4055 		display_mask |= DE_EDP_PSR_INT_HSW;
4056 	}
4057 
4058 	dev_priv->irq_mask = ~display_mask;
4059 
4060 	ibx_irq_pre_postinstall(dev);
4061 
4062 	GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
4063 
4064 	gen5_gt_irq_postinstall(dev);
4065 
4066 	ilk_hpd_detection_setup(dev_priv);
4067 
4068 	ibx_irq_postinstall(dev);
4069 
4070 	if (IS_IRONLAKE_M(dev_priv)) {
4071 		/* Enable PCU event interrupts
4072 		 *
4073 		 * spinlocking not required here for correctness since interrupt
4074 		 * setup is guaranteed to run in single-threaded context. But we
4075 		 * need it to make the assert_spin_locked happy. */
4076 		spin_lock_irq(&dev_priv->irq_lock);
4077 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4078 		spin_unlock_irq(&dev_priv->irq_lock);
4079 	}
4080 
4081 	return 0;
4082 }
4083 
4084 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4085 {
4086 	lockdep_assert_held(&dev_priv->irq_lock);
4087 
4088 	if (dev_priv->display_irqs_enabled)
4089 		return;
4090 
4091 	dev_priv->display_irqs_enabled = true;
4092 
4093 	if (intel_irqs_enabled(dev_priv)) {
4094 		vlv_display_irq_reset(dev_priv);
4095 		vlv_display_irq_postinstall(dev_priv);
4096 	}
4097 }
4098 
4099 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4100 {
4101 	lockdep_assert_held(&dev_priv->irq_lock);
4102 
4103 	if (!dev_priv->display_irqs_enabled)
4104 		return;
4105 
4106 	dev_priv->display_irqs_enabled = false;
4107 
4108 	if (intel_irqs_enabled(dev_priv))
4109 		vlv_display_irq_reset(dev_priv);
4110 }
4111 
4112 
4113 static int valleyview_irq_postinstall(struct drm_device *dev)
4114 {
4115 	struct drm_i915_private *dev_priv = to_i915(dev);
4116 
4117 	gen5_gt_irq_postinstall(dev);
4118 
4119 	spin_lock_irq(&dev_priv->irq_lock);
4120 	if (dev_priv->display_irqs_enabled)
4121 		vlv_display_irq_postinstall(dev_priv);
4122 	spin_unlock_irq(&dev_priv->irq_lock);
4123 
4124 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4125 	POSTING_READ(VLV_MASTER_IER);
4126 
4127 	return 0;
4128 }
4129 
4130 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4131 {
4132 	/* These are interrupts we'll toggle with the ring mask register */
4133 	uint32_t gt_interrupts[] = {
4134 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4135 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4136 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4137 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4138 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4139 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4140 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
4141 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4142 		0,
4143 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4144 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4145 		};
4146 
4147 	if (HAS_L3_DPF(dev_priv))
4148 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
4149 
4150 	dev_priv->pm_ier = 0x0;
4151 	dev_priv->pm_imr = ~dev_priv->pm_ier;
4152 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4153 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4154 	/*
4155 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
4156 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
4157 	 */
4158 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4159 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4160 }
4161 
4162 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4163 {
4164 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4165 	uint32_t de_pipe_enables;
4166 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4167 	u32 de_port_enables;
4168 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
4169 	enum pipe pipe;
4170 
4171 	if (INTEL_GEN(dev_priv) <= 10)
4172 		de_misc_masked |= GEN8_DE_MISC_GSE;
4173 
4174 	if (INTEL_GEN(dev_priv) >= 9) {
4175 		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4176 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4177 				  GEN9_AUX_CHANNEL_D;
4178 		if (IS_GEN9_LP(dev_priv))
4179 			de_port_masked |= BXT_DE_PORT_GMBUS;
4180 	} else {
4181 		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4182 	}
4183 
4184 	if (INTEL_GEN(dev_priv) >= 11)
4185 		de_port_masked |= ICL_AUX_CHANNEL_E;
4186 
4187 	if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4188 		de_port_masked |= CNL_AUX_CHANNEL_F;
4189 
4190 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4191 					   GEN8_PIPE_FIFO_UNDERRUN;
4192 
4193 	de_port_enables = de_port_masked;
4194 	if (IS_GEN9_LP(dev_priv))
4195 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4196 	else if (IS_BROADWELL(dev_priv))
4197 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4198 
4199 	gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4200 	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4201 
4202 	for_each_pipe(dev_priv, pipe) {
4203 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4204 
4205 		if (intel_display_power_is_enabled(dev_priv,
4206 				POWER_DOMAIN_PIPE(pipe)))
4207 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
4208 					  dev_priv->de_irq_mask[pipe],
4209 					  de_pipe_enables);
4210 	}
4211 
4212 	GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4213 	GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4214 
4215 	if (INTEL_GEN(dev_priv) >= 11) {
4216 		u32 de_hpd_masked = 0;
4217 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4218 				     GEN11_DE_TBT_HOTPLUG_MASK;
4219 
4220 		GEN3_IRQ_INIT(GEN11_DE_HPD_, ~de_hpd_masked, de_hpd_enables);
4221 		gen11_hpd_detection_setup(dev_priv);
4222 	} else if (IS_GEN9_LP(dev_priv)) {
4223 		bxt_hpd_detection_setup(dev_priv);
4224 	} else if (IS_BROADWELL(dev_priv)) {
4225 		ilk_hpd_detection_setup(dev_priv);
4226 	}
4227 }
4228 
4229 static int gen8_irq_postinstall(struct drm_device *dev)
4230 {
4231 	struct drm_i915_private *dev_priv = to_i915(dev);
4232 
4233 	if (HAS_PCH_SPLIT(dev_priv))
4234 		ibx_irq_pre_postinstall(dev);
4235 
4236 	gen8_gt_irq_postinstall(dev_priv);
4237 	gen8_de_irq_postinstall(dev_priv);
4238 
4239 	if (HAS_PCH_SPLIT(dev_priv))
4240 		ibx_irq_postinstall(dev);
4241 
4242 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4243 	POSTING_READ(GEN8_MASTER_IRQ);
4244 
4245 	return 0;
4246 }
4247 
4248 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4249 {
4250 	const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4251 
4252 	BUILD_BUG_ON(irqs & 0xffff0000);
4253 
4254 	/* Enable RCS, BCS, VCS and VECS class interrupts. */
4255 	I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4256 	I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,	  irqs << 16 | irqs);
4257 
4258 	/* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4259 	I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,	~(irqs << 16));
4260 	I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,	~(irqs << 16));
4261 	I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,	~(irqs | irqs << 16));
4262 	I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,	~(irqs | irqs << 16));
4263 	I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK,	~(irqs | irqs << 16));
4264 
4265 	/*
4266 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
4267 	 * is enabled/disabled.
4268 	 */
4269 	dev_priv->pm_ier = 0x0;
4270 	dev_priv->pm_imr = ~dev_priv->pm_ier;
4271 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4272 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4273 }
4274 
4275 static void icp_irq_postinstall(struct drm_device *dev)
4276 {
4277 	struct drm_i915_private *dev_priv = to_i915(dev);
4278 	u32 mask = SDE_GMBUS_ICP;
4279 
4280 	WARN_ON(I915_READ(SDEIER) != 0);
4281 	I915_WRITE(SDEIER, 0xffffffff);
4282 	POSTING_READ(SDEIER);
4283 
4284 	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4285 	I915_WRITE(SDEIMR, ~mask);
4286 
4287 	icp_hpd_detection_setup(dev_priv);
4288 }
4289 
4290 static int gen11_irq_postinstall(struct drm_device *dev)
4291 {
4292 	struct drm_i915_private *dev_priv = dev->dev_private;
4293 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4294 
4295 	if (HAS_PCH_ICP(dev_priv))
4296 		icp_irq_postinstall(dev);
4297 
4298 	gen11_gt_irq_postinstall(dev_priv);
4299 	gen8_de_irq_postinstall(dev_priv);
4300 
4301 	GEN3_IRQ_INIT(GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4302 
4303 	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4304 
4305 	I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
4306 	POSTING_READ(GEN11_GFX_MSTR_IRQ);
4307 
4308 	return 0;
4309 }
4310 
4311 static int cherryview_irq_postinstall(struct drm_device *dev)
4312 {
4313 	struct drm_i915_private *dev_priv = to_i915(dev);
4314 
4315 	gen8_gt_irq_postinstall(dev_priv);
4316 
4317 	spin_lock_irq(&dev_priv->irq_lock);
4318 	if (dev_priv->display_irqs_enabled)
4319 		vlv_display_irq_postinstall(dev_priv);
4320 	spin_unlock_irq(&dev_priv->irq_lock);
4321 
4322 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4323 	POSTING_READ(GEN8_MASTER_IRQ);
4324 
4325 	return 0;
4326 }
4327 
4328 static void i8xx_irq_reset(struct drm_device *dev)
4329 {
4330 	struct drm_i915_private *dev_priv = to_i915(dev);
4331 
4332 	i9xx_pipestat_irq_reset(dev_priv);
4333 
4334 	I915_WRITE16(HWSTAM, 0xffff);
4335 
4336 	GEN2_IRQ_RESET();
4337 }
4338 
4339 static int i8xx_irq_postinstall(struct drm_device *dev)
4340 {
4341 	struct drm_i915_private *dev_priv = to_i915(dev);
4342 	u16 enable_mask;
4343 
4344 	I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4345 			    I915_ERROR_MEMORY_REFRESH));
4346 
4347 	/* Unmask the interrupts that we always want on. */
4348 	dev_priv->irq_mask =
4349 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4350 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4351 		  I915_MASTER_ERROR_INTERRUPT);
4352 
4353 	enable_mask =
4354 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4355 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4356 		I915_MASTER_ERROR_INTERRUPT |
4357 		I915_USER_INTERRUPT;
4358 
4359 	GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4360 
4361 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4362 	 * just to make the assert_spin_locked check happy. */
4363 	spin_lock_irq(&dev_priv->irq_lock);
4364 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4365 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4366 	spin_unlock_irq(&dev_priv->irq_lock);
4367 
4368 	return 0;
4369 }
4370 
4371 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4372 			       u16 *eir, u16 *eir_stuck)
4373 {
4374 	u16 emr;
4375 
4376 	*eir = I915_READ16(EIR);
4377 
4378 	if (*eir)
4379 		I915_WRITE16(EIR, *eir);
4380 
4381 	*eir_stuck = I915_READ16(EIR);
4382 	if (*eir_stuck == 0)
4383 		return;
4384 
4385 	/*
4386 	 * Toggle all EMR bits to make sure we get an edge
4387 	 * in the ISR master error bit if we don't clear
4388 	 * all the EIR bits. Otherwise the edge triggered
4389 	 * IIR on i965/g4x wouldn't notice that an interrupt
4390 	 * is still pending. Also some EIR bits can't be
4391 	 * cleared except by handling the underlying error
4392 	 * (or by a GPU reset) so we mask any bit that
4393 	 * remains set.
4394 	 */
4395 	emr = I915_READ16(EMR);
4396 	I915_WRITE16(EMR, 0xffff);
4397 	I915_WRITE16(EMR, emr | *eir_stuck);
4398 }
4399 
4400 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4401 				   u16 eir, u16 eir_stuck)
4402 {
4403 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4404 
4405 	if (eir_stuck)
4406 		DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4407 }
4408 
4409 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4410 			       u32 *eir, u32 *eir_stuck)
4411 {
4412 	u32 emr;
4413 
4414 	*eir = I915_READ(EIR);
4415 
4416 	I915_WRITE(EIR, *eir);
4417 
4418 	*eir_stuck = I915_READ(EIR);
4419 	if (*eir_stuck == 0)
4420 		return;
4421 
4422 	/*
4423 	 * Toggle all EMR bits to make sure we get an edge
4424 	 * in the ISR master error bit if we don't clear
4425 	 * all the EIR bits. Otherwise the edge triggered
4426 	 * IIR on i965/g4x wouldn't notice that an interrupt
4427 	 * is still pending. Also some EIR bits can't be
4428 	 * cleared except by handling the underlying error
4429 	 * (or by a GPU reset) so we mask any bit that
4430 	 * remains set.
4431 	 */
4432 	emr = I915_READ(EMR);
4433 	I915_WRITE(EMR, 0xffffffff);
4434 	I915_WRITE(EMR, emr | *eir_stuck);
4435 }
4436 
4437 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4438 				   u32 eir, u32 eir_stuck)
4439 {
4440 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4441 
4442 	if (eir_stuck)
4443 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4444 }
4445 
4446 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4447 {
4448 	struct drm_device *dev = arg;
4449 	struct drm_i915_private *dev_priv = to_i915(dev);
4450 	irqreturn_t ret = IRQ_NONE;
4451 
4452 	if (!intel_irqs_enabled(dev_priv))
4453 		return IRQ_NONE;
4454 
4455 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4456 	disable_rpm_wakeref_asserts(dev_priv);
4457 
4458 	do {
4459 		u32 pipe_stats[I915_MAX_PIPES] = {};
4460 		u16 eir = 0, eir_stuck = 0;
4461 		u16 iir;
4462 
4463 		iir = I915_READ16(IIR);
4464 		if (iir == 0)
4465 			break;
4466 
4467 		ret = IRQ_HANDLED;
4468 
4469 		/* Call regardless, as some status bits might not be
4470 		 * signalled in iir */
4471 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4472 
4473 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4474 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4475 
4476 		I915_WRITE16(IIR, iir);
4477 
4478 		if (iir & I915_USER_INTERRUPT)
4479 			notify_ring(dev_priv->engine[RCS]);
4480 
4481 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4482 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4483 
4484 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4485 	} while (0);
4486 
4487 	enable_rpm_wakeref_asserts(dev_priv);
4488 
4489 	return ret;
4490 }
4491 
4492 static void i915_irq_reset(struct drm_device *dev)
4493 {
4494 	struct drm_i915_private *dev_priv = to_i915(dev);
4495 
4496 	if (I915_HAS_HOTPLUG(dev_priv)) {
4497 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4498 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4499 	}
4500 
4501 	i9xx_pipestat_irq_reset(dev_priv);
4502 
4503 	I915_WRITE(HWSTAM, 0xffffffff);
4504 
4505 	GEN3_IRQ_RESET();
4506 }
4507 
4508 static int i915_irq_postinstall(struct drm_device *dev)
4509 {
4510 	struct drm_i915_private *dev_priv = to_i915(dev);
4511 	u32 enable_mask;
4512 
4513 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4514 			  I915_ERROR_MEMORY_REFRESH));
4515 
4516 	/* Unmask the interrupts that we always want on. */
4517 	dev_priv->irq_mask =
4518 		~(I915_ASLE_INTERRUPT |
4519 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4520 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4521 		  I915_MASTER_ERROR_INTERRUPT);
4522 
4523 	enable_mask =
4524 		I915_ASLE_INTERRUPT |
4525 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4526 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4527 		I915_MASTER_ERROR_INTERRUPT |
4528 		I915_USER_INTERRUPT;
4529 
4530 	if (I915_HAS_HOTPLUG(dev_priv)) {
4531 		/* Enable in IER... */
4532 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4533 		/* and unmask in IMR */
4534 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4535 	}
4536 
4537 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4538 
4539 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4540 	 * just to make the assert_spin_locked check happy. */
4541 	spin_lock_irq(&dev_priv->irq_lock);
4542 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4543 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4544 	spin_unlock_irq(&dev_priv->irq_lock);
4545 
4546 	i915_enable_asle_pipestat(dev_priv);
4547 
4548 	return 0;
4549 }
4550 
4551 static irqreturn_t i915_irq_handler(int irq, void *arg)
4552 {
4553 	struct drm_device *dev = arg;
4554 	struct drm_i915_private *dev_priv = to_i915(dev);
4555 	irqreturn_t ret = IRQ_NONE;
4556 
4557 	if (!intel_irqs_enabled(dev_priv))
4558 		return IRQ_NONE;
4559 
4560 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4561 	disable_rpm_wakeref_asserts(dev_priv);
4562 
4563 	do {
4564 		u32 pipe_stats[I915_MAX_PIPES] = {};
4565 		u32 eir = 0, eir_stuck = 0;
4566 		u32 hotplug_status = 0;
4567 		u32 iir;
4568 
4569 		iir = I915_READ(IIR);
4570 		if (iir == 0)
4571 			break;
4572 
4573 		ret = IRQ_HANDLED;
4574 
4575 		if (I915_HAS_HOTPLUG(dev_priv) &&
4576 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4577 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4578 
4579 		/* Call regardless, as some status bits might not be
4580 		 * signalled in iir */
4581 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4582 
4583 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4584 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4585 
4586 		I915_WRITE(IIR, iir);
4587 
4588 		if (iir & I915_USER_INTERRUPT)
4589 			notify_ring(dev_priv->engine[RCS]);
4590 
4591 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4592 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4593 
4594 		if (hotplug_status)
4595 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4596 
4597 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4598 	} while (0);
4599 
4600 	enable_rpm_wakeref_asserts(dev_priv);
4601 
4602 	return ret;
4603 }
4604 
4605 static void i965_irq_reset(struct drm_device *dev)
4606 {
4607 	struct drm_i915_private *dev_priv = to_i915(dev);
4608 
4609 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4610 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4611 
4612 	i9xx_pipestat_irq_reset(dev_priv);
4613 
4614 	I915_WRITE(HWSTAM, 0xffffffff);
4615 
4616 	GEN3_IRQ_RESET();
4617 }
4618 
4619 static int i965_irq_postinstall(struct drm_device *dev)
4620 {
4621 	struct drm_i915_private *dev_priv = to_i915(dev);
4622 	u32 enable_mask;
4623 	u32 error_mask;
4624 
4625 	/*
4626 	 * Enable some error detection, note the instruction error mask
4627 	 * bit is reserved, so we leave it masked.
4628 	 */
4629 	if (IS_G4X(dev_priv)) {
4630 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4631 			       GM45_ERROR_MEM_PRIV |
4632 			       GM45_ERROR_CP_PRIV |
4633 			       I915_ERROR_MEMORY_REFRESH);
4634 	} else {
4635 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4636 			       I915_ERROR_MEMORY_REFRESH);
4637 	}
4638 	I915_WRITE(EMR, error_mask);
4639 
4640 	/* Unmask the interrupts that we always want on. */
4641 	dev_priv->irq_mask =
4642 		~(I915_ASLE_INTERRUPT |
4643 		  I915_DISPLAY_PORT_INTERRUPT |
4644 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4645 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4646 		  I915_MASTER_ERROR_INTERRUPT);
4647 
4648 	enable_mask =
4649 		I915_ASLE_INTERRUPT |
4650 		I915_DISPLAY_PORT_INTERRUPT |
4651 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4652 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4653 		I915_MASTER_ERROR_INTERRUPT |
4654 		I915_USER_INTERRUPT;
4655 
4656 	if (IS_G4X(dev_priv))
4657 		enable_mask |= I915_BSD_USER_INTERRUPT;
4658 
4659 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4660 
4661 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4662 	 * just to make the assert_spin_locked check happy. */
4663 	spin_lock_irq(&dev_priv->irq_lock);
4664 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4665 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4666 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4667 	spin_unlock_irq(&dev_priv->irq_lock);
4668 
4669 	i915_enable_asle_pipestat(dev_priv);
4670 
4671 	return 0;
4672 }
4673 
4674 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4675 {
4676 	u32 hotplug_en;
4677 
4678 	lockdep_assert_held(&dev_priv->irq_lock);
4679 
4680 	/* Note HDMI and DP share hotplug bits */
4681 	/* enable bits are the same for all generations */
4682 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4683 	/* Programming the CRT detection parameters tends
4684 	   to generate a spurious hotplug event about three
4685 	   seconds later.  So just do it once.
4686 	*/
4687 	if (IS_G4X(dev_priv))
4688 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4689 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4690 
4691 	/* Ignore TV since it's buggy */
4692 	i915_hotplug_interrupt_update_locked(dev_priv,
4693 					     HOTPLUG_INT_EN_MASK |
4694 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4695 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4696 					     hotplug_en);
4697 }
4698 
4699 static irqreturn_t i965_irq_handler(int irq, void *arg)
4700 {
4701 	struct drm_device *dev = arg;
4702 	struct drm_i915_private *dev_priv = to_i915(dev);
4703 	irqreturn_t ret = IRQ_NONE;
4704 
4705 	if (!intel_irqs_enabled(dev_priv))
4706 		return IRQ_NONE;
4707 
4708 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4709 	disable_rpm_wakeref_asserts(dev_priv);
4710 
4711 	do {
4712 		u32 pipe_stats[I915_MAX_PIPES] = {};
4713 		u32 eir = 0, eir_stuck = 0;
4714 		u32 hotplug_status = 0;
4715 		u32 iir;
4716 
4717 		iir = I915_READ(IIR);
4718 		if (iir == 0)
4719 			break;
4720 
4721 		ret = IRQ_HANDLED;
4722 
4723 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4724 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4725 
4726 		/* Call regardless, as some status bits might not be
4727 		 * signalled in iir */
4728 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4729 
4730 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4731 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4732 
4733 		I915_WRITE(IIR, iir);
4734 
4735 		if (iir & I915_USER_INTERRUPT)
4736 			notify_ring(dev_priv->engine[RCS]);
4737 
4738 		if (iir & I915_BSD_USER_INTERRUPT)
4739 			notify_ring(dev_priv->engine[VCS]);
4740 
4741 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4742 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4743 
4744 		if (hotplug_status)
4745 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4746 
4747 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4748 	} while (0);
4749 
4750 	enable_rpm_wakeref_asserts(dev_priv);
4751 
4752 	return ret;
4753 }
4754 
4755 /**
4756  * intel_irq_init - initializes irq support
4757  * @dev_priv: i915 device instance
4758  *
4759  * This function initializes all the irq support including work items, timers
4760  * and all the vtables. It does not setup the interrupt itself though.
4761  */
4762 void intel_irq_init(struct drm_i915_private *dev_priv)
4763 {
4764 	struct drm_device *dev = &dev_priv->drm;
4765 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4766 	int i;
4767 
4768 	intel_hpd_init_work(dev_priv);
4769 
4770 	INIT_WORK(&rps->work, gen6_pm_rps_work);
4771 
4772 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4773 	for (i = 0; i < MAX_L3_SLICES; ++i)
4774 		dev_priv->l3_parity.remap_info[i] = NULL;
4775 
4776 	if (HAS_GUC_SCHED(dev_priv))
4777 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4778 
4779 	/* Let's track the enabled rps events */
4780 	if (IS_VALLEYVIEW(dev_priv))
4781 		/* WaGsvRC0ResidencyMethod:vlv */
4782 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4783 	else
4784 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4785 
4786 	rps->pm_intrmsk_mbz = 0;
4787 
4788 	/*
4789 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4790 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4791 	 *
4792 	 * TODO: verify if this can be reproduced on VLV,CHV.
4793 	 */
4794 	if (INTEL_GEN(dev_priv) <= 7)
4795 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4796 
4797 	if (INTEL_GEN(dev_priv) >= 8)
4798 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4799 
4800 	if (IS_GEN2(dev_priv)) {
4801 		/* Gen2 doesn't have a hardware frame counter */
4802 		dev->max_vblank_count = 0;
4803 	} else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4804 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4805 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4806 	} else {
4807 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4808 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4809 	}
4810 
4811 	/*
4812 	 * Opt out of the vblank disable timer on everything except gen2.
4813 	 * Gen2 doesn't have a hardware frame counter and so depends on
4814 	 * vblank interrupts to produce sane vblank seuquence numbers.
4815 	 */
4816 	if (!IS_GEN2(dev_priv))
4817 		dev->vblank_disable_immediate = true;
4818 
4819 	/* Most platforms treat the display irq block as an always-on
4820 	 * power domain. vlv/chv can disable it at runtime and need
4821 	 * special care to avoid writing any of the display block registers
4822 	 * outside of the power domain. We defer setting up the display irqs
4823 	 * in this case to the runtime pm.
4824 	 */
4825 	dev_priv->display_irqs_enabled = true;
4826 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4827 		dev_priv->display_irqs_enabled = false;
4828 
4829 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4830 
4831 	dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4832 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4833 
4834 	if (IS_CHERRYVIEW(dev_priv)) {
4835 		dev->driver->irq_handler = cherryview_irq_handler;
4836 		dev->driver->irq_preinstall = cherryview_irq_reset;
4837 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4838 		dev->driver->irq_uninstall = cherryview_irq_reset;
4839 		dev->driver->enable_vblank = i965_enable_vblank;
4840 		dev->driver->disable_vblank = i965_disable_vblank;
4841 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4842 	} else if (IS_VALLEYVIEW(dev_priv)) {
4843 		dev->driver->irq_handler = valleyview_irq_handler;
4844 		dev->driver->irq_preinstall = valleyview_irq_reset;
4845 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4846 		dev->driver->irq_uninstall = valleyview_irq_reset;
4847 		dev->driver->enable_vblank = i965_enable_vblank;
4848 		dev->driver->disable_vblank = i965_disable_vblank;
4849 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4850 	} else if (INTEL_GEN(dev_priv) >= 11) {
4851 		dev->driver->irq_handler = gen11_irq_handler;
4852 		dev->driver->irq_preinstall = gen11_irq_reset;
4853 		dev->driver->irq_postinstall = gen11_irq_postinstall;
4854 		dev->driver->irq_uninstall = gen11_irq_reset;
4855 		dev->driver->enable_vblank = gen8_enable_vblank;
4856 		dev->driver->disable_vblank = gen8_disable_vblank;
4857 		dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4858 	} else if (INTEL_GEN(dev_priv) >= 8) {
4859 		dev->driver->irq_handler = gen8_irq_handler;
4860 		dev->driver->irq_preinstall = gen8_irq_reset;
4861 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4862 		dev->driver->irq_uninstall = gen8_irq_reset;
4863 		dev->driver->enable_vblank = gen8_enable_vblank;
4864 		dev->driver->disable_vblank = gen8_disable_vblank;
4865 		if (IS_GEN9_LP(dev_priv))
4866 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4867 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4868 			 HAS_PCH_CNP(dev_priv))
4869 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4870 		else
4871 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4872 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4873 		dev->driver->irq_handler = ironlake_irq_handler;
4874 		dev->driver->irq_preinstall = ironlake_irq_reset;
4875 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4876 		dev->driver->irq_uninstall = ironlake_irq_reset;
4877 		dev->driver->enable_vblank = ironlake_enable_vblank;
4878 		dev->driver->disable_vblank = ironlake_disable_vblank;
4879 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4880 	} else {
4881 		if (IS_GEN2(dev_priv)) {
4882 			dev->driver->irq_preinstall = i8xx_irq_reset;
4883 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4884 			dev->driver->irq_handler = i8xx_irq_handler;
4885 			dev->driver->irq_uninstall = i8xx_irq_reset;
4886 			dev->driver->enable_vblank = i8xx_enable_vblank;
4887 			dev->driver->disable_vblank = i8xx_disable_vblank;
4888 		} else if (IS_GEN3(dev_priv)) {
4889 			dev->driver->irq_preinstall = i915_irq_reset;
4890 			dev->driver->irq_postinstall = i915_irq_postinstall;
4891 			dev->driver->irq_uninstall = i915_irq_reset;
4892 			dev->driver->irq_handler = i915_irq_handler;
4893 			dev->driver->enable_vblank = i8xx_enable_vblank;
4894 			dev->driver->disable_vblank = i8xx_disable_vblank;
4895 		} else {
4896 			dev->driver->irq_preinstall = i965_irq_reset;
4897 			dev->driver->irq_postinstall = i965_irq_postinstall;
4898 			dev->driver->irq_uninstall = i965_irq_reset;
4899 			dev->driver->irq_handler = i965_irq_handler;
4900 			dev->driver->enable_vblank = i965_enable_vblank;
4901 			dev->driver->disable_vblank = i965_disable_vblank;
4902 		}
4903 		if (I915_HAS_HOTPLUG(dev_priv))
4904 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4905 	}
4906 }
4907 
4908 /**
4909  * intel_irq_fini - deinitializes IRQ support
4910  * @i915: i915 device instance
4911  *
4912  * This function deinitializes all the IRQ support.
4913  */
4914 void intel_irq_fini(struct drm_i915_private *i915)
4915 {
4916 	int i;
4917 
4918 	for (i = 0; i < MAX_L3_SLICES; ++i)
4919 		kfree(i915->l3_parity.remap_info[i]);
4920 }
4921 
4922 /**
4923  * intel_irq_install - enables the hardware interrupt
4924  * @dev_priv: i915 device instance
4925  *
4926  * This function enables the hardware interrupt handling, but leaves the hotplug
4927  * handling still disabled. It is called after intel_irq_init().
4928  *
4929  * In the driver load and resume code we need working interrupts in a few places
4930  * but don't want to deal with the hassle of concurrent probe and hotplug
4931  * workers. Hence the split into this two-stage approach.
4932  */
4933 int intel_irq_install(struct drm_i915_private *dev_priv)
4934 {
4935 	/*
4936 	 * We enable some interrupt sources in our postinstall hooks, so mark
4937 	 * interrupts as enabled _before_ actually enabling them to avoid
4938 	 * special cases in our ordering checks.
4939 	 */
4940 	dev_priv->runtime_pm.irqs_enabled = true;
4941 
4942 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4943 }
4944 
4945 /**
4946  * intel_irq_uninstall - finilizes all irq handling
4947  * @dev_priv: i915 device instance
4948  *
4949  * This stops interrupt and hotplug handling and unregisters and frees all
4950  * resources acquired in the init functions.
4951  */
4952 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4953 {
4954 	drm_irq_uninstall(&dev_priv->drm);
4955 	intel_hpd_cancel_work(dev_priv);
4956 	dev_priv->runtime_pm.irqs_enabled = false;
4957 }
4958 
4959 /**
4960  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4961  * @dev_priv: i915 device instance
4962  *
4963  * This function is used to disable interrupts at runtime, both in the runtime
4964  * pm and the system suspend/resume code.
4965  */
4966 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4967 {
4968 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4969 	dev_priv->runtime_pm.irqs_enabled = false;
4970 	synchronize_irq(dev_priv->drm.irq);
4971 }
4972 
4973 /**
4974  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4975  * @dev_priv: i915 device instance
4976  *
4977  * This function is used to enable interrupts at runtime, both in the runtime
4978  * pm and the system suspend/resume code.
4979  */
4980 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4981 {
4982 	dev_priv->runtime_pm.irqs_enabled = true;
4983 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4984 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4985 }
4986