xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 2c684d89)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, u32 reg)
143 {
144 	u32 val = I915_READ(reg);
145 
146 	if (val == 0)
147 		return;
148 
149 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
150 	     reg, val);
151 	I915_WRITE(reg, 0xffffffff);
152 	POSTING_READ(reg);
153 	I915_WRITE(reg, 0xffffffff);
154 	POSTING_READ(reg);
155 }
156 
157 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
158 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
159 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
160 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
161 	POSTING_READ(GEN8_##type##_IMR(which)); \
162 } while (0)
163 
164 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
165 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
166 	I915_WRITE(type##IER, (ier_val)); \
167 	I915_WRITE(type##IMR, (imr_val)); \
168 	POSTING_READ(type##IMR); \
169 } while (0)
170 
171 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
172 
173 /* For display hotplug interrupt */
174 static inline void
175 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
176 				     uint32_t mask,
177 				     uint32_t bits)
178 {
179 	uint32_t val;
180 
181 	assert_spin_locked(&dev_priv->irq_lock);
182 	WARN_ON(bits & ~mask);
183 
184 	val = I915_READ(PORT_HOTPLUG_EN);
185 	val &= ~mask;
186 	val |= bits;
187 	I915_WRITE(PORT_HOTPLUG_EN, val);
188 }
189 
190 /**
191  * i915_hotplug_interrupt_update - update hotplug interrupt enable
192  * @dev_priv: driver private
193  * @mask: bits to update
194  * @bits: bits to enable
195  * NOTE: the HPD enable bits are modified both inside and outside
196  * of an interrupt context. To avoid that read-modify-write cycles
197  * interfer, these bits are protected by a spinlock. Since this
198  * function is usually not called from a context where the lock is
199  * held already, this function acquires the lock itself. A non-locking
200  * version is also available.
201  */
202 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
203 				   uint32_t mask,
204 				   uint32_t bits)
205 {
206 	spin_lock_irq(&dev_priv->irq_lock);
207 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
208 	spin_unlock_irq(&dev_priv->irq_lock);
209 }
210 
211 /**
212  * ilk_update_display_irq - update DEIMR
213  * @dev_priv: driver private
214  * @interrupt_mask: mask of interrupt bits to update
215  * @enabled_irq_mask: mask of interrupt bits to enable
216  */
217 static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
218 				   uint32_t interrupt_mask,
219 				   uint32_t enabled_irq_mask)
220 {
221 	uint32_t new_val;
222 
223 	assert_spin_locked(&dev_priv->irq_lock);
224 
225 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
226 
227 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
228 		return;
229 
230 	new_val = dev_priv->irq_mask;
231 	new_val &= ~interrupt_mask;
232 	new_val |= (~enabled_irq_mask & interrupt_mask);
233 
234 	if (new_val != dev_priv->irq_mask) {
235 		dev_priv->irq_mask = new_val;
236 		I915_WRITE(DEIMR, dev_priv->irq_mask);
237 		POSTING_READ(DEIMR);
238 	}
239 }
240 
241 void
242 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
243 {
244 	ilk_update_display_irq(dev_priv, mask, mask);
245 }
246 
247 void
248 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
249 {
250 	ilk_update_display_irq(dev_priv, mask, 0);
251 }
252 
253 /**
254  * ilk_update_gt_irq - update GTIMR
255  * @dev_priv: driver private
256  * @interrupt_mask: mask of interrupt bits to update
257  * @enabled_irq_mask: mask of interrupt bits to enable
258  */
259 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
260 			      uint32_t interrupt_mask,
261 			      uint32_t enabled_irq_mask)
262 {
263 	assert_spin_locked(&dev_priv->irq_lock);
264 
265 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
266 
267 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268 		return;
269 
270 	dev_priv->gt_irq_mask &= ~interrupt_mask;
271 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
272 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
273 	POSTING_READ(GTIMR);
274 }
275 
276 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278 	ilk_update_gt_irq(dev_priv, mask, mask);
279 }
280 
281 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 	ilk_update_gt_irq(dev_priv, mask, 0);
284 }
285 
286 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
287 {
288 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
289 }
290 
291 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
292 {
293 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
294 }
295 
296 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
297 {
298 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
299 }
300 
301 /**
302   * snb_update_pm_irq - update GEN6_PMIMR
303   * @dev_priv: driver private
304   * @interrupt_mask: mask of interrupt bits to update
305   * @enabled_irq_mask: mask of interrupt bits to enable
306   */
307 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
308 			      uint32_t interrupt_mask,
309 			      uint32_t enabled_irq_mask)
310 {
311 	uint32_t new_val;
312 
313 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
314 
315 	assert_spin_locked(&dev_priv->irq_lock);
316 
317 	new_val = dev_priv->pm_irq_mask;
318 	new_val &= ~interrupt_mask;
319 	new_val |= (~enabled_irq_mask & interrupt_mask);
320 
321 	if (new_val != dev_priv->pm_irq_mask) {
322 		dev_priv->pm_irq_mask = new_val;
323 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
324 		POSTING_READ(gen6_pm_imr(dev_priv));
325 	}
326 }
327 
328 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
329 {
330 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
331 		return;
332 
333 	snb_update_pm_irq(dev_priv, mask, mask);
334 }
335 
336 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
337 				  uint32_t mask)
338 {
339 	snb_update_pm_irq(dev_priv, mask, 0);
340 }
341 
342 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
343 {
344 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
345 		return;
346 
347 	__gen6_disable_pm_irq(dev_priv, mask);
348 }
349 
350 void gen6_reset_rps_interrupts(struct drm_device *dev)
351 {
352 	struct drm_i915_private *dev_priv = dev->dev_private;
353 	uint32_t reg = gen6_pm_iir(dev_priv);
354 
355 	spin_lock_irq(&dev_priv->irq_lock);
356 	I915_WRITE(reg, dev_priv->pm_rps_events);
357 	I915_WRITE(reg, dev_priv->pm_rps_events);
358 	POSTING_READ(reg);
359 	dev_priv->rps.pm_iir = 0;
360 	spin_unlock_irq(&dev_priv->irq_lock);
361 }
362 
363 void gen6_enable_rps_interrupts(struct drm_device *dev)
364 {
365 	struct drm_i915_private *dev_priv = dev->dev_private;
366 
367 	spin_lock_irq(&dev_priv->irq_lock);
368 
369 	WARN_ON(dev_priv->rps.pm_iir);
370 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
371 	dev_priv->rps.interrupts_enabled = true;
372 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
373 				dev_priv->pm_rps_events);
374 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
375 
376 	spin_unlock_irq(&dev_priv->irq_lock);
377 }
378 
379 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
380 {
381 	/*
382 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
383 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
384 	 *
385 	 * TODO: verify if this can be reproduced on VLV,CHV.
386 	 */
387 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
388 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
389 
390 	if (INTEL_INFO(dev_priv)->gen >= 8)
391 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
392 
393 	return mask;
394 }
395 
396 void gen6_disable_rps_interrupts(struct drm_device *dev)
397 {
398 	struct drm_i915_private *dev_priv = dev->dev_private;
399 
400 	spin_lock_irq(&dev_priv->irq_lock);
401 	dev_priv->rps.interrupts_enabled = false;
402 	spin_unlock_irq(&dev_priv->irq_lock);
403 
404 	cancel_work_sync(&dev_priv->rps.work);
405 
406 	spin_lock_irq(&dev_priv->irq_lock);
407 
408 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
409 
410 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
411 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
412 				~dev_priv->pm_rps_events);
413 
414 	spin_unlock_irq(&dev_priv->irq_lock);
415 
416 	synchronize_irq(dev->irq);
417 }
418 
419 /**
420   * bdw_update_port_irq - update DE port interrupt
421   * @dev_priv: driver private
422   * @interrupt_mask: mask of interrupt bits to update
423   * @enabled_irq_mask: mask of interrupt bits to enable
424   */
425 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
426 				uint32_t interrupt_mask,
427 				uint32_t enabled_irq_mask)
428 {
429 	uint32_t new_val;
430 	uint32_t old_val;
431 
432 	assert_spin_locked(&dev_priv->irq_lock);
433 
434 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
435 
436 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
437 		return;
438 
439 	old_val = I915_READ(GEN8_DE_PORT_IMR);
440 
441 	new_val = old_val;
442 	new_val &= ~interrupt_mask;
443 	new_val |= (~enabled_irq_mask & interrupt_mask);
444 
445 	if (new_val != old_val) {
446 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
447 		POSTING_READ(GEN8_DE_PORT_IMR);
448 	}
449 }
450 
451 /**
452  * ibx_display_interrupt_update - update SDEIMR
453  * @dev_priv: driver private
454  * @interrupt_mask: mask of interrupt bits to update
455  * @enabled_irq_mask: mask of interrupt bits to enable
456  */
457 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
458 				  uint32_t interrupt_mask,
459 				  uint32_t enabled_irq_mask)
460 {
461 	uint32_t sdeimr = I915_READ(SDEIMR);
462 	sdeimr &= ~interrupt_mask;
463 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
464 
465 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
466 
467 	assert_spin_locked(&dev_priv->irq_lock);
468 
469 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
470 		return;
471 
472 	I915_WRITE(SDEIMR, sdeimr);
473 	POSTING_READ(SDEIMR);
474 }
475 
476 static void
477 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
478 		       u32 enable_mask, u32 status_mask)
479 {
480 	u32 reg = PIPESTAT(pipe);
481 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
482 
483 	assert_spin_locked(&dev_priv->irq_lock);
484 	WARN_ON(!intel_irqs_enabled(dev_priv));
485 
486 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
487 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
488 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
489 		      pipe_name(pipe), enable_mask, status_mask))
490 		return;
491 
492 	if ((pipestat & enable_mask) == enable_mask)
493 		return;
494 
495 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
496 
497 	/* Enable the interrupt, clear any pending status */
498 	pipestat |= enable_mask | status_mask;
499 	I915_WRITE(reg, pipestat);
500 	POSTING_READ(reg);
501 }
502 
503 static void
504 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
505 		        u32 enable_mask, u32 status_mask)
506 {
507 	u32 reg = PIPESTAT(pipe);
508 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
509 
510 	assert_spin_locked(&dev_priv->irq_lock);
511 	WARN_ON(!intel_irqs_enabled(dev_priv));
512 
513 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
514 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
515 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
516 		      pipe_name(pipe), enable_mask, status_mask))
517 		return;
518 
519 	if ((pipestat & enable_mask) == 0)
520 		return;
521 
522 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
523 
524 	pipestat &= ~enable_mask;
525 	I915_WRITE(reg, pipestat);
526 	POSTING_READ(reg);
527 }
528 
529 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
530 {
531 	u32 enable_mask = status_mask << 16;
532 
533 	/*
534 	 * On pipe A we don't support the PSR interrupt yet,
535 	 * on pipe B and C the same bit MBZ.
536 	 */
537 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
538 		return 0;
539 	/*
540 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
541 	 * A the same bit is for perf counters which we don't use either.
542 	 */
543 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
544 		return 0;
545 
546 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
547 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
548 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
549 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
550 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
551 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
552 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
553 
554 	return enable_mask;
555 }
556 
557 void
558 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
559 		     u32 status_mask)
560 {
561 	u32 enable_mask;
562 
563 	if (IS_VALLEYVIEW(dev_priv->dev))
564 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
565 							   status_mask);
566 	else
567 		enable_mask = status_mask << 16;
568 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
569 }
570 
571 void
572 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
573 		      u32 status_mask)
574 {
575 	u32 enable_mask;
576 
577 	if (IS_VALLEYVIEW(dev_priv->dev))
578 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
579 							   status_mask);
580 	else
581 		enable_mask = status_mask << 16;
582 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
583 }
584 
585 /**
586  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
587  * @dev: drm device
588  */
589 static void i915_enable_asle_pipestat(struct drm_device *dev)
590 {
591 	struct drm_i915_private *dev_priv = dev->dev_private;
592 
593 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
594 		return;
595 
596 	spin_lock_irq(&dev_priv->irq_lock);
597 
598 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
599 	if (INTEL_INFO(dev)->gen >= 4)
600 		i915_enable_pipestat(dev_priv, PIPE_A,
601 				     PIPE_LEGACY_BLC_EVENT_STATUS);
602 
603 	spin_unlock_irq(&dev_priv->irq_lock);
604 }
605 
606 /*
607  * This timing diagram depicts the video signal in and
608  * around the vertical blanking period.
609  *
610  * Assumptions about the fictitious mode used in this example:
611  *  vblank_start >= 3
612  *  vsync_start = vblank_start + 1
613  *  vsync_end = vblank_start + 2
614  *  vtotal = vblank_start + 3
615  *
616  *           start of vblank:
617  *           latch double buffered registers
618  *           increment frame counter (ctg+)
619  *           generate start of vblank interrupt (gen4+)
620  *           |
621  *           |          frame start:
622  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
623  *           |          may be shifted forward 1-3 extra lines via PIPECONF
624  *           |          |
625  *           |          |  start of vsync:
626  *           |          |  generate vsync interrupt
627  *           |          |  |
628  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
629  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
630  * ----va---> <-----------------vb--------------------> <--------va-------------
631  *       |          |       <----vs----->                     |
632  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
633  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
634  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
635  *       |          |                                         |
636  *       last visible pixel                                   first visible pixel
637  *                  |                                         increment frame counter (gen3/4)
638  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
639  *
640  * x  = horizontal active
641  * _  = horizontal blanking
642  * hs = horizontal sync
643  * va = vertical active
644  * vb = vertical blanking
645  * vs = vertical sync
646  * vbs = vblank_start (number)
647  *
648  * Summary:
649  * - most events happen at the start of horizontal sync
650  * - frame start happens at the start of horizontal blank, 1-4 lines
651  *   (depending on PIPECONF settings) after the start of vblank
652  * - gen3/4 pixel and frame counter are synchronized with the start
653  *   of horizontal active on the first line of vertical active
654  */
655 
656 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
657 {
658 	/* Gen2 doesn't have a hardware frame counter */
659 	return 0;
660 }
661 
662 /* Called from drm generic code, passed a 'crtc', which
663  * we use as a pipe index
664  */
665 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
666 {
667 	struct drm_i915_private *dev_priv = dev->dev_private;
668 	unsigned long high_frame;
669 	unsigned long low_frame;
670 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
671 	struct intel_crtc *intel_crtc =
672 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
673 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
674 
675 	htotal = mode->crtc_htotal;
676 	hsync_start = mode->crtc_hsync_start;
677 	vbl_start = mode->crtc_vblank_start;
678 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
679 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
680 
681 	/* Convert to pixel count */
682 	vbl_start *= htotal;
683 
684 	/* Start of vblank event occurs at start of hsync */
685 	vbl_start -= htotal - hsync_start;
686 
687 	high_frame = PIPEFRAME(pipe);
688 	low_frame = PIPEFRAMEPIXEL(pipe);
689 
690 	/*
691 	 * High & low register fields aren't synchronized, so make sure
692 	 * we get a low value that's stable across two reads of the high
693 	 * register.
694 	 */
695 	do {
696 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
697 		low   = I915_READ(low_frame);
698 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
699 	} while (high1 != high2);
700 
701 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
702 	pixel = low & PIPE_PIXEL_MASK;
703 	low >>= PIPE_FRAME_LOW_SHIFT;
704 
705 	/*
706 	 * The frame counter increments at beginning of active.
707 	 * Cook up a vblank counter by also checking the pixel
708 	 * counter against vblank start.
709 	 */
710 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
711 }
712 
713 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
714 {
715 	struct drm_i915_private *dev_priv = dev->dev_private;
716 
717 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
718 }
719 
720 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
721 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
722 
723 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
724 {
725 	struct drm_device *dev = crtc->base.dev;
726 	struct drm_i915_private *dev_priv = dev->dev_private;
727 	const struct drm_display_mode *mode = &crtc->base.hwmode;
728 	enum pipe pipe = crtc->pipe;
729 	int position, vtotal;
730 
731 	vtotal = mode->crtc_vtotal;
732 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
733 		vtotal /= 2;
734 
735 	if (IS_GEN2(dev))
736 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
737 	else
738 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
739 
740 	/*
741 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
742 	 * read it just before the start of vblank.  So try it again
743 	 * so we don't accidentally end up spanning a vblank frame
744 	 * increment, causing the pipe_update_end() code to squak at us.
745 	 *
746 	 * The nature of this problem means we can't simply check the ISR
747 	 * bit and return the vblank start value; nor can we use the scanline
748 	 * debug register in the transcoder as it appears to have the same
749 	 * problem.  We may need to extend this to include other platforms,
750 	 * but so far testing only shows the problem on HSW.
751 	 */
752 	if (HAS_DDI(dev) && !position) {
753 		int i, temp;
754 
755 		for (i = 0; i < 100; i++) {
756 			udelay(1);
757 			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
758 				DSL_LINEMASK_GEN3;
759 			if (temp != position) {
760 				position = temp;
761 				break;
762 			}
763 		}
764 	}
765 
766 	/*
767 	 * See update_scanline_offset() for the details on the
768 	 * scanline_offset adjustment.
769 	 */
770 	return (position + crtc->scanline_offset) % vtotal;
771 }
772 
773 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
774 				    unsigned int flags, int *vpos, int *hpos,
775 				    ktime_t *stime, ktime_t *etime,
776 				    const struct drm_display_mode *mode)
777 {
778 	struct drm_i915_private *dev_priv = dev->dev_private;
779 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
780 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
781 	int position;
782 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
783 	bool in_vbl = true;
784 	int ret = 0;
785 	unsigned long irqflags;
786 
787 	if (WARN_ON(!mode->crtc_clock)) {
788 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
789 				 "pipe %c\n", pipe_name(pipe));
790 		return 0;
791 	}
792 
793 	htotal = mode->crtc_htotal;
794 	hsync_start = mode->crtc_hsync_start;
795 	vtotal = mode->crtc_vtotal;
796 	vbl_start = mode->crtc_vblank_start;
797 	vbl_end = mode->crtc_vblank_end;
798 
799 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
800 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
801 		vbl_end /= 2;
802 		vtotal /= 2;
803 	}
804 
805 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
806 
807 	/*
808 	 * Lock uncore.lock, as we will do multiple timing critical raw
809 	 * register reads, potentially with preemption disabled, so the
810 	 * following code must not block on uncore.lock.
811 	 */
812 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
813 
814 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
815 
816 	/* Get optional system timestamp before query. */
817 	if (stime)
818 		*stime = ktime_get();
819 
820 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
821 		/* No obvious pixelcount register. Only query vertical
822 		 * scanout position from Display scan line register.
823 		 */
824 		position = __intel_get_crtc_scanline(intel_crtc);
825 	} else {
826 		/* Have access to pixelcount since start of frame.
827 		 * We can split this into vertical and horizontal
828 		 * scanout position.
829 		 */
830 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
831 
832 		/* convert to pixel counts */
833 		vbl_start *= htotal;
834 		vbl_end *= htotal;
835 		vtotal *= htotal;
836 
837 		/*
838 		 * In interlaced modes, the pixel counter counts all pixels,
839 		 * so one field will have htotal more pixels. In order to avoid
840 		 * the reported position from jumping backwards when the pixel
841 		 * counter is beyond the length of the shorter field, just
842 		 * clamp the position the length of the shorter field. This
843 		 * matches how the scanline counter based position works since
844 		 * the scanline counter doesn't count the two half lines.
845 		 */
846 		if (position >= vtotal)
847 			position = vtotal - 1;
848 
849 		/*
850 		 * Start of vblank interrupt is triggered at start of hsync,
851 		 * just prior to the first active line of vblank. However we
852 		 * consider lines to start at the leading edge of horizontal
853 		 * active. So, should we get here before we've crossed into
854 		 * the horizontal active of the first line in vblank, we would
855 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
856 		 * always add htotal-hsync_start to the current pixel position.
857 		 */
858 		position = (position + htotal - hsync_start) % vtotal;
859 	}
860 
861 	/* Get optional system timestamp after query. */
862 	if (etime)
863 		*etime = ktime_get();
864 
865 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
866 
867 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
868 
869 	in_vbl = position >= vbl_start && position < vbl_end;
870 
871 	/*
872 	 * While in vblank, position will be negative
873 	 * counting up towards 0 at vbl_end. And outside
874 	 * vblank, position will be positive counting
875 	 * up since vbl_end.
876 	 */
877 	if (position >= vbl_start)
878 		position -= vbl_end;
879 	else
880 		position += vtotal - vbl_end;
881 
882 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
883 		*vpos = position;
884 		*hpos = 0;
885 	} else {
886 		*vpos = position / htotal;
887 		*hpos = position - (*vpos * htotal);
888 	}
889 
890 	/* In vblank? */
891 	if (in_vbl)
892 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
893 
894 	return ret;
895 }
896 
897 int intel_get_crtc_scanline(struct intel_crtc *crtc)
898 {
899 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
900 	unsigned long irqflags;
901 	int position;
902 
903 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
904 	position = __intel_get_crtc_scanline(crtc);
905 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
906 
907 	return position;
908 }
909 
910 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
911 			      int *max_error,
912 			      struct timeval *vblank_time,
913 			      unsigned flags)
914 {
915 	struct drm_crtc *crtc;
916 
917 	if (pipe >= INTEL_INFO(dev)->num_pipes) {
918 		DRM_ERROR("Invalid crtc %u\n", pipe);
919 		return -EINVAL;
920 	}
921 
922 	/* Get drm_crtc to timestamp: */
923 	crtc = intel_get_crtc_for_pipe(dev, pipe);
924 	if (crtc == NULL) {
925 		DRM_ERROR("Invalid crtc %u\n", pipe);
926 		return -EINVAL;
927 	}
928 
929 	if (!crtc->hwmode.crtc_clock) {
930 		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
931 		return -EBUSY;
932 	}
933 
934 	/* Helper routine in DRM core does all the work: */
935 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
936 						     vblank_time, flags,
937 						     &crtc->hwmode);
938 }
939 
940 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
941 {
942 	struct drm_i915_private *dev_priv = dev->dev_private;
943 	u32 busy_up, busy_down, max_avg, min_avg;
944 	u8 new_delay;
945 
946 	spin_lock(&mchdev_lock);
947 
948 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
949 
950 	new_delay = dev_priv->ips.cur_delay;
951 
952 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
953 	busy_up = I915_READ(RCPREVBSYTUPAVG);
954 	busy_down = I915_READ(RCPREVBSYTDNAVG);
955 	max_avg = I915_READ(RCBMAXAVG);
956 	min_avg = I915_READ(RCBMINAVG);
957 
958 	/* Handle RCS change request from hw */
959 	if (busy_up > max_avg) {
960 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
961 			new_delay = dev_priv->ips.cur_delay - 1;
962 		if (new_delay < dev_priv->ips.max_delay)
963 			new_delay = dev_priv->ips.max_delay;
964 	} else if (busy_down < min_avg) {
965 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
966 			new_delay = dev_priv->ips.cur_delay + 1;
967 		if (new_delay > dev_priv->ips.min_delay)
968 			new_delay = dev_priv->ips.min_delay;
969 	}
970 
971 	if (ironlake_set_drps(dev, new_delay))
972 		dev_priv->ips.cur_delay = new_delay;
973 
974 	spin_unlock(&mchdev_lock);
975 
976 	return;
977 }
978 
979 static void notify_ring(struct intel_engine_cs *ring)
980 {
981 	if (!intel_ring_initialized(ring))
982 		return;
983 
984 	trace_i915_gem_request_notify(ring);
985 
986 	wake_up_all(&ring->irq_queue);
987 }
988 
989 static void vlv_c0_read(struct drm_i915_private *dev_priv,
990 			struct intel_rps_ei *ei)
991 {
992 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
993 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
994 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
995 }
996 
997 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
998 			 const struct intel_rps_ei *old,
999 			 const struct intel_rps_ei *now,
1000 			 int threshold)
1001 {
1002 	u64 time, c0;
1003 	unsigned int mul = 100;
1004 
1005 	if (old->cz_clock == 0)
1006 		return false;
1007 
1008 	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1009 		mul <<= 8;
1010 
1011 	time = now->cz_clock - old->cz_clock;
1012 	time *= threshold * dev_priv->czclk_freq;
1013 
1014 	/* Workload can be split between render + media, e.g. SwapBuffers
1015 	 * being blitted in X after being rendered in mesa. To account for
1016 	 * this we need to combine both engines into our activity counter.
1017 	 */
1018 	c0 = now->render_c0 - old->render_c0;
1019 	c0 += now->media_c0 - old->media_c0;
1020 	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1021 
1022 	return c0 >= time;
1023 }
1024 
1025 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1026 {
1027 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1028 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1029 }
1030 
1031 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1032 {
1033 	struct intel_rps_ei now;
1034 	u32 events = 0;
1035 
1036 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1037 		return 0;
1038 
1039 	vlv_c0_read(dev_priv, &now);
1040 	if (now.cz_clock == 0)
1041 		return 0;
1042 
1043 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1044 		if (!vlv_c0_above(dev_priv,
1045 				  &dev_priv->rps.down_ei, &now,
1046 				  dev_priv->rps.down_threshold))
1047 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1048 		dev_priv->rps.down_ei = now;
1049 	}
1050 
1051 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1052 		if (vlv_c0_above(dev_priv,
1053 				 &dev_priv->rps.up_ei, &now,
1054 				 dev_priv->rps.up_threshold))
1055 			events |= GEN6_PM_RP_UP_THRESHOLD;
1056 		dev_priv->rps.up_ei = now;
1057 	}
1058 
1059 	return events;
1060 }
1061 
1062 static bool any_waiters(struct drm_i915_private *dev_priv)
1063 {
1064 	struct intel_engine_cs *ring;
1065 	int i;
1066 
1067 	for_each_ring(ring, dev_priv, i)
1068 		if (ring->irq_refcount)
1069 			return true;
1070 
1071 	return false;
1072 }
1073 
1074 static void gen6_pm_rps_work(struct work_struct *work)
1075 {
1076 	struct drm_i915_private *dev_priv =
1077 		container_of(work, struct drm_i915_private, rps.work);
1078 	bool client_boost;
1079 	int new_delay, adj, min, max;
1080 	u32 pm_iir;
1081 
1082 	spin_lock_irq(&dev_priv->irq_lock);
1083 	/* Speed up work cancelation during disabling rps interrupts. */
1084 	if (!dev_priv->rps.interrupts_enabled) {
1085 		spin_unlock_irq(&dev_priv->irq_lock);
1086 		return;
1087 	}
1088 	pm_iir = dev_priv->rps.pm_iir;
1089 	dev_priv->rps.pm_iir = 0;
1090 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1091 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1092 	client_boost = dev_priv->rps.client_boost;
1093 	dev_priv->rps.client_boost = false;
1094 	spin_unlock_irq(&dev_priv->irq_lock);
1095 
1096 	/* Make sure we didn't queue anything we're not going to process. */
1097 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1098 
1099 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1100 		return;
1101 
1102 	mutex_lock(&dev_priv->rps.hw_lock);
1103 
1104 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1105 
1106 	adj = dev_priv->rps.last_adj;
1107 	new_delay = dev_priv->rps.cur_freq;
1108 	min = dev_priv->rps.min_freq_softlimit;
1109 	max = dev_priv->rps.max_freq_softlimit;
1110 
1111 	if (client_boost) {
1112 		new_delay = dev_priv->rps.max_freq_softlimit;
1113 		adj = 0;
1114 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1115 		if (adj > 0)
1116 			adj *= 2;
1117 		else /* CHV needs even encode values */
1118 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1119 		/*
1120 		 * For better performance, jump directly
1121 		 * to RPe if we're below it.
1122 		 */
1123 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1124 			new_delay = dev_priv->rps.efficient_freq;
1125 			adj = 0;
1126 		}
1127 	} else if (any_waiters(dev_priv)) {
1128 		adj = 0;
1129 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1130 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1131 			new_delay = dev_priv->rps.efficient_freq;
1132 		else
1133 			new_delay = dev_priv->rps.min_freq_softlimit;
1134 		adj = 0;
1135 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1136 		if (adj < 0)
1137 			adj *= 2;
1138 		else /* CHV needs even encode values */
1139 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1140 	} else { /* unknown event */
1141 		adj = 0;
1142 	}
1143 
1144 	dev_priv->rps.last_adj = adj;
1145 
1146 	/* sysfs frequency interfaces may have snuck in while servicing the
1147 	 * interrupt
1148 	 */
1149 	new_delay += adj;
1150 	new_delay = clamp_t(int, new_delay, min, max);
1151 
1152 	intel_set_rps(dev_priv->dev, new_delay);
1153 
1154 	mutex_unlock(&dev_priv->rps.hw_lock);
1155 }
1156 
1157 
1158 /**
1159  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1160  * occurred.
1161  * @work: workqueue struct
1162  *
1163  * Doesn't actually do anything except notify userspace. As a consequence of
1164  * this event, userspace should try to remap the bad rows since statistically
1165  * it is likely the same row is more likely to go bad again.
1166  */
1167 static void ivybridge_parity_work(struct work_struct *work)
1168 {
1169 	struct drm_i915_private *dev_priv =
1170 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1171 	u32 error_status, row, bank, subbank;
1172 	char *parity_event[6];
1173 	uint32_t misccpctl;
1174 	uint8_t slice = 0;
1175 
1176 	/* We must turn off DOP level clock gating to access the L3 registers.
1177 	 * In order to prevent a get/put style interface, acquire struct mutex
1178 	 * any time we access those registers.
1179 	 */
1180 	mutex_lock(&dev_priv->dev->struct_mutex);
1181 
1182 	/* If we've screwed up tracking, just let the interrupt fire again */
1183 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1184 		goto out;
1185 
1186 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1187 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1188 	POSTING_READ(GEN7_MISCCPCTL);
1189 
1190 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1191 		u32 reg;
1192 
1193 		slice--;
1194 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1195 			break;
1196 
1197 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1198 
1199 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1200 
1201 		error_status = I915_READ(reg);
1202 		row = GEN7_PARITY_ERROR_ROW(error_status);
1203 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1204 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1205 
1206 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1207 		POSTING_READ(reg);
1208 
1209 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1210 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1211 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1212 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1213 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1214 		parity_event[5] = NULL;
1215 
1216 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1217 				   KOBJ_CHANGE, parity_event);
1218 
1219 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1220 			  slice, row, bank, subbank);
1221 
1222 		kfree(parity_event[4]);
1223 		kfree(parity_event[3]);
1224 		kfree(parity_event[2]);
1225 		kfree(parity_event[1]);
1226 	}
1227 
1228 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1229 
1230 out:
1231 	WARN_ON(dev_priv->l3_parity.which_slice);
1232 	spin_lock_irq(&dev_priv->irq_lock);
1233 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1234 	spin_unlock_irq(&dev_priv->irq_lock);
1235 
1236 	mutex_unlock(&dev_priv->dev->struct_mutex);
1237 }
1238 
1239 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1240 {
1241 	struct drm_i915_private *dev_priv = dev->dev_private;
1242 
1243 	if (!HAS_L3_DPF(dev))
1244 		return;
1245 
1246 	spin_lock(&dev_priv->irq_lock);
1247 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1248 	spin_unlock(&dev_priv->irq_lock);
1249 
1250 	iir &= GT_PARITY_ERROR(dev);
1251 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1252 		dev_priv->l3_parity.which_slice |= 1 << 1;
1253 
1254 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1255 		dev_priv->l3_parity.which_slice |= 1 << 0;
1256 
1257 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1258 }
1259 
1260 static void ilk_gt_irq_handler(struct drm_device *dev,
1261 			       struct drm_i915_private *dev_priv,
1262 			       u32 gt_iir)
1263 {
1264 	if (gt_iir &
1265 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266 		notify_ring(&dev_priv->ring[RCS]);
1267 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1268 		notify_ring(&dev_priv->ring[VCS]);
1269 }
1270 
1271 static void snb_gt_irq_handler(struct drm_device *dev,
1272 			       struct drm_i915_private *dev_priv,
1273 			       u32 gt_iir)
1274 {
1275 
1276 	if (gt_iir &
1277 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1278 		notify_ring(&dev_priv->ring[RCS]);
1279 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1280 		notify_ring(&dev_priv->ring[VCS]);
1281 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1282 		notify_ring(&dev_priv->ring[BCS]);
1283 
1284 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1285 		      GT_BSD_CS_ERROR_INTERRUPT |
1286 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1287 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1288 
1289 	if (gt_iir & GT_PARITY_ERROR(dev))
1290 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1291 }
1292 
1293 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1294 				       u32 master_ctl)
1295 {
1296 	irqreturn_t ret = IRQ_NONE;
1297 
1298 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1299 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1300 		if (tmp) {
1301 			I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1302 			ret = IRQ_HANDLED;
1303 
1304 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1305 				intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1306 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1307 				notify_ring(&dev_priv->ring[RCS]);
1308 
1309 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1310 				intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1311 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1312 				notify_ring(&dev_priv->ring[BCS]);
1313 		} else
1314 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1315 	}
1316 
1317 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1318 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1319 		if (tmp) {
1320 			I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1321 			ret = IRQ_HANDLED;
1322 
1323 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1324 				intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1325 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1326 				notify_ring(&dev_priv->ring[VCS]);
1327 
1328 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1329 				intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1330 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1331 				notify_ring(&dev_priv->ring[VCS2]);
1332 		} else
1333 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1334 	}
1335 
1336 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1337 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1338 		if (tmp) {
1339 			I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1340 			ret = IRQ_HANDLED;
1341 
1342 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1343 				intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1344 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1345 				notify_ring(&dev_priv->ring[VECS]);
1346 		} else
1347 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1348 	}
1349 
1350 	if (master_ctl & GEN8_GT_PM_IRQ) {
1351 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1352 		if (tmp & dev_priv->pm_rps_events) {
1353 			I915_WRITE_FW(GEN8_GT_IIR(2),
1354 				      tmp & dev_priv->pm_rps_events);
1355 			ret = IRQ_HANDLED;
1356 			gen6_rps_irq_handler(dev_priv, tmp);
1357 		} else
1358 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1359 	}
1360 
1361 	return ret;
1362 }
1363 
1364 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1365 {
1366 	switch (port) {
1367 	case PORT_A:
1368 		return val & PORTA_HOTPLUG_LONG_DETECT;
1369 	case PORT_B:
1370 		return val & PORTB_HOTPLUG_LONG_DETECT;
1371 	case PORT_C:
1372 		return val & PORTC_HOTPLUG_LONG_DETECT;
1373 	default:
1374 		return false;
1375 	}
1376 }
1377 
1378 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1379 {
1380 	switch (port) {
1381 	case PORT_E:
1382 		return val & PORTE_HOTPLUG_LONG_DETECT;
1383 	default:
1384 		return false;
1385 	}
1386 }
1387 
1388 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1389 {
1390 	switch (port) {
1391 	case PORT_A:
1392 		return val & PORTA_HOTPLUG_LONG_DETECT;
1393 	case PORT_B:
1394 		return val & PORTB_HOTPLUG_LONG_DETECT;
1395 	case PORT_C:
1396 		return val & PORTC_HOTPLUG_LONG_DETECT;
1397 	case PORT_D:
1398 		return val & PORTD_HOTPLUG_LONG_DETECT;
1399 	default:
1400 		return false;
1401 	}
1402 }
1403 
1404 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1405 {
1406 	switch (port) {
1407 	case PORT_A:
1408 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1409 	default:
1410 		return false;
1411 	}
1412 }
1413 
1414 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1415 {
1416 	switch (port) {
1417 	case PORT_B:
1418 		return val & PORTB_HOTPLUG_LONG_DETECT;
1419 	case PORT_C:
1420 		return val & PORTC_HOTPLUG_LONG_DETECT;
1421 	case PORT_D:
1422 		return val & PORTD_HOTPLUG_LONG_DETECT;
1423 	default:
1424 		return false;
1425 	}
1426 }
1427 
1428 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1429 {
1430 	switch (port) {
1431 	case PORT_B:
1432 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1433 	case PORT_C:
1434 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1435 	case PORT_D:
1436 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1437 	default:
1438 		return false;
1439 	}
1440 }
1441 
1442 /*
1443  * Get a bit mask of pins that have triggered, and which ones may be long.
1444  * This can be called multiple times with the same masks to accumulate
1445  * hotplug detection results from several registers.
1446  *
1447  * Note that the caller is expected to zero out the masks initially.
1448  */
1449 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1450 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1451 			     const u32 hpd[HPD_NUM_PINS],
1452 			     bool long_pulse_detect(enum port port, u32 val))
1453 {
1454 	enum port port;
1455 	int i;
1456 
1457 	for_each_hpd_pin(i) {
1458 		if ((hpd[i] & hotplug_trigger) == 0)
1459 			continue;
1460 
1461 		*pin_mask |= BIT(i);
1462 
1463 		if (!intel_hpd_pin_to_port(i, &port))
1464 			continue;
1465 
1466 		if (long_pulse_detect(port, dig_hotplug_reg))
1467 			*long_mask |= BIT(i);
1468 	}
1469 
1470 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1471 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1472 
1473 }
1474 
1475 static void gmbus_irq_handler(struct drm_device *dev)
1476 {
1477 	struct drm_i915_private *dev_priv = dev->dev_private;
1478 
1479 	wake_up_all(&dev_priv->gmbus_wait_queue);
1480 }
1481 
1482 static void dp_aux_irq_handler(struct drm_device *dev)
1483 {
1484 	struct drm_i915_private *dev_priv = dev->dev_private;
1485 
1486 	wake_up_all(&dev_priv->gmbus_wait_queue);
1487 }
1488 
1489 #if defined(CONFIG_DEBUG_FS)
1490 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1491 					 uint32_t crc0, uint32_t crc1,
1492 					 uint32_t crc2, uint32_t crc3,
1493 					 uint32_t crc4)
1494 {
1495 	struct drm_i915_private *dev_priv = dev->dev_private;
1496 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1497 	struct intel_pipe_crc_entry *entry;
1498 	int head, tail;
1499 
1500 	spin_lock(&pipe_crc->lock);
1501 
1502 	if (!pipe_crc->entries) {
1503 		spin_unlock(&pipe_crc->lock);
1504 		DRM_DEBUG_KMS("spurious interrupt\n");
1505 		return;
1506 	}
1507 
1508 	head = pipe_crc->head;
1509 	tail = pipe_crc->tail;
1510 
1511 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1512 		spin_unlock(&pipe_crc->lock);
1513 		DRM_ERROR("CRC buffer overflowing\n");
1514 		return;
1515 	}
1516 
1517 	entry = &pipe_crc->entries[head];
1518 
1519 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1520 	entry->crc[0] = crc0;
1521 	entry->crc[1] = crc1;
1522 	entry->crc[2] = crc2;
1523 	entry->crc[3] = crc3;
1524 	entry->crc[4] = crc4;
1525 
1526 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1527 	pipe_crc->head = head;
1528 
1529 	spin_unlock(&pipe_crc->lock);
1530 
1531 	wake_up_interruptible(&pipe_crc->wq);
1532 }
1533 #else
1534 static inline void
1535 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1536 			     uint32_t crc0, uint32_t crc1,
1537 			     uint32_t crc2, uint32_t crc3,
1538 			     uint32_t crc4) {}
1539 #endif
1540 
1541 
1542 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1543 {
1544 	struct drm_i915_private *dev_priv = dev->dev_private;
1545 
1546 	display_pipe_crc_irq_handler(dev, pipe,
1547 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1548 				     0, 0, 0, 0);
1549 }
1550 
1551 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1552 {
1553 	struct drm_i915_private *dev_priv = dev->dev_private;
1554 
1555 	display_pipe_crc_irq_handler(dev, pipe,
1556 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1557 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1558 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1559 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1560 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1561 }
1562 
1563 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1564 {
1565 	struct drm_i915_private *dev_priv = dev->dev_private;
1566 	uint32_t res1, res2;
1567 
1568 	if (INTEL_INFO(dev)->gen >= 3)
1569 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1570 	else
1571 		res1 = 0;
1572 
1573 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1574 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1575 	else
1576 		res2 = 0;
1577 
1578 	display_pipe_crc_irq_handler(dev, pipe,
1579 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1580 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1581 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1582 				     res1, res2);
1583 }
1584 
1585 /* The RPS events need forcewake, so we add them to a work queue and mask their
1586  * IMR bits until the work is done. Other interrupts can be processed without
1587  * the work queue. */
1588 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1589 {
1590 	if (pm_iir & dev_priv->pm_rps_events) {
1591 		spin_lock(&dev_priv->irq_lock);
1592 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1593 		if (dev_priv->rps.interrupts_enabled) {
1594 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1595 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1596 		}
1597 		spin_unlock(&dev_priv->irq_lock);
1598 	}
1599 
1600 	if (INTEL_INFO(dev_priv)->gen >= 8)
1601 		return;
1602 
1603 	if (HAS_VEBOX(dev_priv->dev)) {
1604 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1605 			notify_ring(&dev_priv->ring[VECS]);
1606 
1607 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1608 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1609 	}
1610 }
1611 
1612 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1613 {
1614 	if (!drm_handle_vblank(dev, pipe))
1615 		return false;
1616 
1617 	return true;
1618 }
1619 
1620 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1621 {
1622 	struct drm_i915_private *dev_priv = dev->dev_private;
1623 	u32 pipe_stats[I915_MAX_PIPES] = { };
1624 	int pipe;
1625 
1626 	spin_lock(&dev_priv->irq_lock);
1627 	for_each_pipe(dev_priv, pipe) {
1628 		int reg;
1629 		u32 mask, iir_bit = 0;
1630 
1631 		/*
1632 		 * PIPESTAT bits get signalled even when the interrupt is
1633 		 * disabled with the mask bits, and some of the status bits do
1634 		 * not generate interrupts at all (like the underrun bit). Hence
1635 		 * we need to be careful that we only handle what we want to
1636 		 * handle.
1637 		 */
1638 
1639 		/* fifo underruns are filterered in the underrun handler. */
1640 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1641 
1642 		switch (pipe) {
1643 		case PIPE_A:
1644 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1645 			break;
1646 		case PIPE_B:
1647 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1648 			break;
1649 		case PIPE_C:
1650 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1651 			break;
1652 		}
1653 		if (iir & iir_bit)
1654 			mask |= dev_priv->pipestat_irq_mask[pipe];
1655 
1656 		if (!mask)
1657 			continue;
1658 
1659 		reg = PIPESTAT(pipe);
1660 		mask |= PIPESTAT_INT_ENABLE_MASK;
1661 		pipe_stats[pipe] = I915_READ(reg) & mask;
1662 
1663 		/*
1664 		 * Clear the PIPE*STAT regs before the IIR
1665 		 */
1666 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1667 					PIPESTAT_INT_STATUS_MASK))
1668 			I915_WRITE(reg, pipe_stats[pipe]);
1669 	}
1670 	spin_unlock(&dev_priv->irq_lock);
1671 
1672 	for_each_pipe(dev_priv, pipe) {
1673 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1674 		    intel_pipe_handle_vblank(dev, pipe))
1675 			intel_check_page_flip(dev, pipe);
1676 
1677 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1678 			intel_prepare_page_flip(dev, pipe);
1679 			intel_finish_page_flip(dev, pipe);
1680 		}
1681 
1682 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1683 			i9xx_pipe_crc_irq_handler(dev, pipe);
1684 
1685 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1686 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1687 	}
1688 
1689 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1690 		gmbus_irq_handler(dev);
1691 }
1692 
1693 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1694 {
1695 	struct drm_i915_private *dev_priv = dev->dev_private;
1696 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1697 	u32 pin_mask = 0, long_mask = 0;
1698 
1699 	if (!hotplug_status)
1700 		return;
1701 
1702 	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1703 	/*
1704 	 * Make sure hotplug status is cleared before we clear IIR, or else we
1705 	 * may miss hotplug events.
1706 	 */
1707 	POSTING_READ(PORT_HOTPLUG_STAT);
1708 
1709 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1710 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1711 
1712 		if (hotplug_trigger) {
1713 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1714 					   hotplug_trigger, hpd_status_g4x,
1715 					   i9xx_port_hotplug_long_detect);
1716 
1717 			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1718 		}
1719 
1720 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1721 			dp_aux_irq_handler(dev);
1722 	} else {
1723 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1724 
1725 		if (hotplug_trigger) {
1726 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1727 					   hotplug_trigger, hpd_status_i915,
1728 					   i9xx_port_hotplug_long_detect);
1729 			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1730 		}
1731 	}
1732 }
1733 
1734 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1735 {
1736 	struct drm_device *dev = arg;
1737 	struct drm_i915_private *dev_priv = dev->dev_private;
1738 	u32 iir, gt_iir, pm_iir;
1739 	irqreturn_t ret = IRQ_NONE;
1740 
1741 	if (!intel_irqs_enabled(dev_priv))
1742 		return IRQ_NONE;
1743 
1744 	while (true) {
1745 		/* Find, clear, then process each source of interrupt */
1746 
1747 		gt_iir = I915_READ(GTIIR);
1748 		if (gt_iir)
1749 			I915_WRITE(GTIIR, gt_iir);
1750 
1751 		pm_iir = I915_READ(GEN6_PMIIR);
1752 		if (pm_iir)
1753 			I915_WRITE(GEN6_PMIIR, pm_iir);
1754 
1755 		iir = I915_READ(VLV_IIR);
1756 		if (iir) {
1757 			/* Consume port before clearing IIR or we'll miss events */
1758 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1759 				i9xx_hpd_irq_handler(dev);
1760 			I915_WRITE(VLV_IIR, iir);
1761 		}
1762 
1763 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1764 			goto out;
1765 
1766 		ret = IRQ_HANDLED;
1767 
1768 		if (gt_iir)
1769 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1770 		if (pm_iir)
1771 			gen6_rps_irq_handler(dev_priv, pm_iir);
1772 		/* Call regardless, as some status bits might not be
1773 		 * signalled in iir */
1774 		valleyview_pipestat_irq_handler(dev, iir);
1775 	}
1776 
1777 out:
1778 	return ret;
1779 }
1780 
1781 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1782 {
1783 	struct drm_device *dev = arg;
1784 	struct drm_i915_private *dev_priv = dev->dev_private;
1785 	u32 master_ctl, iir;
1786 	irqreturn_t ret = IRQ_NONE;
1787 
1788 	if (!intel_irqs_enabled(dev_priv))
1789 		return IRQ_NONE;
1790 
1791 	for (;;) {
1792 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1793 		iir = I915_READ(VLV_IIR);
1794 
1795 		if (master_ctl == 0 && iir == 0)
1796 			break;
1797 
1798 		ret = IRQ_HANDLED;
1799 
1800 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1801 
1802 		/* Find, clear, then process each source of interrupt */
1803 
1804 		if (iir) {
1805 			/* Consume port before clearing IIR or we'll miss events */
1806 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1807 				i9xx_hpd_irq_handler(dev);
1808 			I915_WRITE(VLV_IIR, iir);
1809 		}
1810 
1811 		gen8_gt_irq_handler(dev_priv, master_ctl);
1812 
1813 		/* Call regardless, as some status bits might not be
1814 		 * signalled in iir */
1815 		valleyview_pipestat_irq_handler(dev, iir);
1816 
1817 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1818 		POSTING_READ(GEN8_MASTER_IRQ);
1819 	}
1820 
1821 	return ret;
1822 }
1823 
1824 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1825 				const u32 hpd[HPD_NUM_PINS])
1826 {
1827 	struct drm_i915_private *dev_priv = to_i915(dev);
1828 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1829 
1830 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1831 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1832 
1833 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1834 			   dig_hotplug_reg, hpd,
1835 			   pch_port_hotplug_long_detect);
1836 
1837 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
1838 }
1839 
1840 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1841 {
1842 	struct drm_i915_private *dev_priv = dev->dev_private;
1843 	int pipe;
1844 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1845 
1846 	if (hotplug_trigger)
1847 		ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1848 
1849 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1850 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1851 			       SDE_AUDIO_POWER_SHIFT);
1852 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1853 				 port_name(port));
1854 	}
1855 
1856 	if (pch_iir & SDE_AUX_MASK)
1857 		dp_aux_irq_handler(dev);
1858 
1859 	if (pch_iir & SDE_GMBUS)
1860 		gmbus_irq_handler(dev);
1861 
1862 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1863 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1864 
1865 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1866 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1867 
1868 	if (pch_iir & SDE_POISON)
1869 		DRM_ERROR("PCH poison interrupt\n");
1870 
1871 	if (pch_iir & SDE_FDI_MASK)
1872 		for_each_pipe(dev_priv, pipe)
1873 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1874 					 pipe_name(pipe),
1875 					 I915_READ(FDI_RX_IIR(pipe)));
1876 
1877 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1878 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1879 
1880 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1881 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1882 
1883 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1884 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1885 
1886 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1887 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1888 }
1889 
1890 static void ivb_err_int_handler(struct drm_device *dev)
1891 {
1892 	struct drm_i915_private *dev_priv = dev->dev_private;
1893 	u32 err_int = I915_READ(GEN7_ERR_INT);
1894 	enum pipe pipe;
1895 
1896 	if (err_int & ERR_INT_POISON)
1897 		DRM_ERROR("Poison interrupt\n");
1898 
1899 	for_each_pipe(dev_priv, pipe) {
1900 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1901 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1902 
1903 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1904 			if (IS_IVYBRIDGE(dev))
1905 				ivb_pipe_crc_irq_handler(dev, pipe);
1906 			else
1907 				hsw_pipe_crc_irq_handler(dev, pipe);
1908 		}
1909 	}
1910 
1911 	I915_WRITE(GEN7_ERR_INT, err_int);
1912 }
1913 
1914 static void cpt_serr_int_handler(struct drm_device *dev)
1915 {
1916 	struct drm_i915_private *dev_priv = dev->dev_private;
1917 	u32 serr_int = I915_READ(SERR_INT);
1918 
1919 	if (serr_int & SERR_INT_POISON)
1920 		DRM_ERROR("PCH poison interrupt\n");
1921 
1922 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1923 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1924 
1925 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1926 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1927 
1928 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1929 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1930 
1931 	I915_WRITE(SERR_INT, serr_int);
1932 }
1933 
1934 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1935 {
1936 	struct drm_i915_private *dev_priv = dev->dev_private;
1937 	int pipe;
1938 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1939 
1940 	if (hotplug_trigger)
1941 		ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1942 
1943 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1944 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1945 			       SDE_AUDIO_POWER_SHIFT_CPT);
1946 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1947 				 port_name(port));
1948 	}
1949 
1950 	if (pch_iir & SDE_AUX_MASK_CPT)
1951 		dp_aux_irq_handler(dev);
1952 
1953 	if (pch_iir & SDE_GMBUS_CPT)
1954 		gmbus_irq_handler(dev);
1955 
1956 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1957 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1958 
1959 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1960 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1961 
1962 	if (pch_iir & SDE_FDI_MASK_CPT)
1963 		for_each_pipe(dev_priv, pipe)
1964 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1965 					 pipe_name(pipe),
1966 					 I915_READ(FDI_RX_IIR(pipe)));
1967 
1968 	if (pch_iir & SDE_ERROR_CPT)
1969 		cpt_serr_int_handler(dev);
1970 }
1971 
1972 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
1973 {
1974 	struct drm_i915_private *dev_priv = dev->dev_private;
1975 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1976 		~SDE_PORTE_HOTPLUG_SPT;
1977 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1978 	u32 pin_mask = 0, long_mask = 0;
1979 
1980 	if (hotplug_trigger) {
1981 		u32 dig_hotplug_reg;
1982 
1983 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1984 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1985 
1986 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1987 				   dig_hotplug_reg, hpd_spt,
1988 				   spt_port_hotplug_long_detect);
1989 	}
1990 
1991 	if (hotplug2_trigger) {
1992 		u32 dig_hotplug_reg;
1993 
1994 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1995 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1996 
1997 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
1998 				   dig_hotplug_reg, hpd_spt,
1999 				   spt_port_hotplug2_long_detect);
2000 	}
2001 
2002 	if (pin_mask)
2003 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
2004 
2005 	if (pch_iir & SDE_GMBUS_CPT)
2006 		gmbus_irq_handler(dev);
2007 }
2008 
2009 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2010 				const u32 hpd[HPD_NUM_PINS])
2011 {
2012 	struct drm_i915_private *dev_priv = to_i915(dev);
2013 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2014 
2015 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2016 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2017 
2018 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2019 			   dig_hotplug_reg, hpd,
2020 			   ilk_port_hotplug_long_detect);
2021 
2022 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2023 }
2024 
2025 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2026 {
2027 	struct drm_i915_private *dev_priv = dev->dev_private;
2028 	enum pipe pipe;
2029 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2030 
2031 	if (hotplug_trigger)
2032 		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2033 
2034 	if (de_iir & DE_AUX_CHANNEL_A)
2035 		dp_aux_irq_handler(dev);
2036 
2037 	if (de_iir & DE_GSE)
2038 		intel_opregion_asle_intr(dev);
2039 
2040 	if (de_iir & DE_POISON)
2041 		DRM_ERROR("Poison interrupt\n");
2042 
2043 	for_each_pipe(dev_priv, pipe) {
2044 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2045 		    intel_pipe_handle_vblank(dev, pipe))
2046 			intel_check_page_flip(dev, pipe);
2047 
2048 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2049 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2050 
2051 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2052 			i9xx_pipe_crc_irq_handler(dev, pipe);
2053 
2054 		/* plane/pipes map 1:1 on ilk+ */
2055 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2056 			intel_prepare_page_flip(dev, pipe);
2057 			intel_finish_page_flip_plane(dev, pipe);
2058 		}
2059 	}
2060 
2061 	/* check event from PCH */
2062 	if (de_iir & DE_PCH_EVENT) {
2063 		u32 pch_iir = I915_READ(SDEIIR);
2064 
2065 		if (HAS_PCH_CPT(dev))
2066 			cpt_irq_handler(dev, pch_iir);
2067 		else
2068 			ibx_irq_handler(dev, pch_iir);
2069 
2070 		/* should clear PCH hotplug event before clear CPU irq */
2071 		I915_WRITE(SDEIIR, pch_iir);
2072 	}
2073 
2074 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2075 		ironlake_rps_change_irq_handler(dev);
2076 }
2077 
2078 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2079 {
2080 	struct drm_i915_private *dev_priv = dev->dev_private;
2081 	enum pipe pipe;
2082 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2083 
2084 	if (hotplug_trigger)
2085 		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2086 
2087 	if (de_iir & DE_ERR_INT_IVB)
2088 		ivb_err_int_handler(dev);
2089 
2090 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2091 		dp_aux_irq_handler(dev);
2092 
2093 	if (de_iir & DE_GSE_IVB)
2094 		intel_opregion_asle_intr(dev);
2095 
2096 	for_each_pipe(dev_priv, pipe) {
2097 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2098 		    intel_pipe_handle_vblank(dev, pipe))
2099 			intel_check_page_flip(dev, pipe);
2100 
2101 		/* plane/pipes map 1:1 on ilk+ */
2102 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2103 			intel_prepare_page_flip(dev, pipe);
2104 			intel_finish_page_flip_plane(dev, pipe);
2105 		}
2106 	}
2107 
2108 	/* check event from PCH */
2109 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2110 		u32 pch_iir = I915_READ(SDEIIR);
2111 
2112 		cpt_irq_handler(dev, pch_iir);
2113 
2114 		/* clear PCH hotplug event before clear CPU irq */
2115 		I915_WRITE(SDEIIR, pch_iir);
2116 	}
2117 }
2118 
2119 /*
2120  * To handle irqs with the minimum potential races with fresh interrupts, we:
2121  * 1 - Disable Master Interrupt Control.
2122  * 2 - Find the source(s) of the interrupt.
2123  * 3 - Clear the Interrupt Identity bits (IIR).
2124  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2125  * 5 - Re-enable Master Interrupt Control.
2126  */
2127 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2128 {
2129 	struct drm_device *dev = arg;
2130 	struct drm_i915_private *dev_priv = dev->dev_private;
2131 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2132 	irqreturn_t ret = IRQ_NONE;
2133 
2134 	if (!intel_irqs_enabled(dev_priv))
2135 		return IRQ_NONE;
2136 
2137 	/* We get interrupts on unclaimed registers, so check for this before we
2138 	 * do any I915_{READ,WRITE}. */
2139 	intel_uncore_check_errors(dev);
2140 
2141 	/* disable master interrupt before clearing iir  */
2142 	de_ier = I915_READ(DEIER);
2143 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2144 	POSTING_READ(DEIER);
2145 
2146 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2147 	 * interrupts will will be stored on its back queue, and then we'll be
2148 	 * able to process them after we restore SDEIER (as soon as we restore
2149 	 * it, we'll get an interrupt if SDEIIR still has something to process
2150 	 * due to its back queue). */
2151 	if (!HAS_PCH_NOP(dev)) {
2152 		sde_ier = I915_READ(SDEIER);
2153 		I915_WRITE(SDEIER, 0);
2154 		POSTING_READ(SDEIER);
2155 	}
2156 
2157 	/* Find, clear, then process each source of interrupt */
2158 
2159 	gt_iir = I915_READ(GTIIR);
2160 	if (gt_iir) {
2161 		I915_WRITE(GTIIR, gt_iir);
2162 		ret = IRQ_HANDLED;
2163 		if (INTEL_INFO(dev)->gen >= 6)
2164 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2165 		else
2166 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2167 	}
2168 
2169 	de_iir = I915_READ(DEIIR);
2170 	if (de_iir) {
2171 		I915_WRITE(DEIIR, de_iir);
2172 		ret = IRQ_HANDLED;
2173 		if (INTEL_INFO(dev)->gen >= 7)
2174 			ivb_display_irq_handler(dev, de_iir);
2175 		else
2176 			ilk_display_irq_handler(dev, de_iir);
2177 	}
2178 
2179 	if (INTEL_INFO(dev)->gen >= 6) {
2180 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2181 		if (pm_iir) {
2182 			I915_WRITE(GEN6_PMIIR, pm_iir);
2183 			ret = IRQ_HANDLED;
2184 			gen6_rps_irq_handler(dev_priv, pm_iir);
2185 		}
2186 	}
2187 
2188 	I915_WRITE(DEIER, de_ier);
2189 	POSTING_READ(DEIER);
2190 	if (!HAS_PCH_NOP(dev)) {
2191 		I915_WRITE(SDEIER, sde_ier);
2192 		POSTING_READ(SDEIER);
2193 	}
2194 
2195 	return ret;
2196 }
2197 
2198 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2199 				const u32 hpd[HPD_NUM_PINS])
2200 {
2201 	struct drm_i915_private *dev_priv = to_i915(dev);
2202 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2203 
2204 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2205 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2206 
2207 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2208 			   dig_hotplug_reg, hpd,
2209 			   bxt_port_hotplug_long_detect);
2210 
2211 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2212 }
2213 
2214 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2215 {
2216 	struct drm_device *dev = arg;
2217 	struct drm_i915_private *dev_priv = dev->dev_private;
2218 	u32 master_ctl;
2219 	irqreturn_t ret = IRQ_NONE;
2220 	uint32_t tmp = 0;
2221 	enum pipe pipe;
2222 	u32 aux_mask = GEN8_AUX_CHANNEL_A;
2223 
2224 	if (!intel_irqs_enabled(dev_priv))
2225 		return IRQ_NONE;
2226 
2227 	if (INTEL_INFO(dev_priv)->gen >= 9)
2228 		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2229 			GEN9_AUX_CHANNEL_D;
2230 
2231 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2232 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2233 	if (!master_ctl)
2234 		return IRQ_NONE;
2235 
2236 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2237 
2238 	/* Find, clear, then process each source of interrupt */
2239 
2240 	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2241 
2242 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2243 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2244 		if (tmp) {
2245 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2246 			ret = IRQ_HANDLED;
2247 			if (tmp & GEN8_DE_MISC_GSE)
2248 				intel_opregion_asle_intr(dev);
2249 			else
2250 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2251 		}
2252 		else
2253 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2254 	}
2255 
2256 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2257 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2258 		if (tmp) {
2259 			bool found = false;
2260 			u32 hotplug_trigger = 0;
2261 
2262 			if (IS_BROXTON(dev_priv))
2263 				hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2264 			else if (IS_BROADWELL(dev_priv))
2265 				hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2266 
2267 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2268 			ret = IRQ_HANDLED;
2269 
2270 			if (tmp & aux_mask) {
2271 				dp_aux_irq_handler(dev);
2272 				found = true;
2273 			}
2274 
2275 			if (hotplug_trigger) {
2276 				if (IS_BROXTON(dev))
2277 					bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2278 				else
2279 					ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2280 				found = true;
2281 			}
2282 
2283 			if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2284 				gmbus_irq_handler(dev);
2285 				found = true;
2286 			}
2287 
2288 			if (!found)
2289 				DRM_ERROR("Unexpected DE Port interrupt\n");
2290 		}
2291 		else
2292 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2293 	}
2294 
2295 	for_each_pipe(dev_priv, pipe) {
2296 		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2297 
2298 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2299 			continue;
2300 
2301 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2302 		if (pipe_iir) {
2303 			ret = IRQ_HANDLED;
2304 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2305 
2306 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2307 			    intel_pipe_handle_vblank(dev, pipe))
2308 				intel_check_page_flip(dev, pipe);
2309 
2310 			if (INTEL_INFO(dev_priv)->gen >= 9)
2311 				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2312 			else
2313 				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2314 
2315 			if (flip_done) {
2316 				intel_prepare_page_flip(dev, pipe);
2317 				intel_finish_page_flip_plane(dev, pipe);
2318 			}
2319 
2320 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2321 				hsw_pipe_crc_irq_handler(dev, pipe);
2322 
2323 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2324 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2325 								    pipe);
2326 
2327 
2328 			if (INTEL_INFO(dev_priv)->gen >= 9)
2329 				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2330 			else
2331 				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2332 
2333 			if (fault_errors)
2334 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2335 					  pipe_name(pipe),
2336 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2337 		} else
2338 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2339 	}
2340 
2341 	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2342 	    master_ctl & GEN8_DE_PCH_IRQ) {
2343 		/*
2344 		 * FIXME(BDW): Assume for now that the new interrupt handling
2345 		 * scheme also closed the SDE interrupt handling race we've seen
2346 		 * on older pch-split platforms. But this needs testing.
2347 		 */
2348 		u32 pch_iir = I915_READ(SDEIIR);
2349 		if (pch_iir) {
2350 			I915_WRITE(SDEIIR, pch_iir);
2351 			ret = IRQ_HANDLED;
2352 
2353 			if (HAS_PCH_SPT(dev_priv))
2354 				spt_irq_handler(dev, pch_iir);
2355 			else
2356 				cpt_irq_handler(dev, pch_iir);
2357 		} else
2358 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2359 
2360 	}
2361 
2362 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2363 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2364 
2365 	return ret;
2366 }
2367 
2368 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2369 			       bool reset_completed)
2370 {
2371 	struct intel_engine_cs *ring;
2372 	int i;
2373 
2374 	/*
2375 	 * Notify all waiters for GPU completion events that reset state has
2376 	 * been changed, and that they need to restart their wait after
2377 	 * checking for potential errors (and bail out to drop locks if there is
2378 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2379 	 */
2380 
2381 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2382 	for_each_ring(ring, dev_priv, i)
2383 		wake_up_all(&ring->irq_queue);
2384 
2385 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2386 	wake_up_all(&dev_priv->pending_flip_queue);
2387 
2388 	/*
2389 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2390 	 * reset state is cleared.
2391 	 */
2392 	if (reset_completed)
2393 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2394 }
2395 
2396 /**
2397  * i915_reset_and_wakeup - do process context error handling work
2398  * @dev: drm device
2399  *
2400  * Fire an error uevent so userspace can see that a hang or error
2401  * was detected.
2402  */
2403 static void i915_reset_and_wakeup(struct drm_device *dev)
2404 {
2405 	struct drm_i915_private *dev_priv = to_i915(dev);
2406 	struct i915_gpu_error *error = &dev_priv->gpu_error;
2407 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2408 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2409 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2410 	int ret;
2411 
2412 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2413 
2414 	/*
2415 	 * Note that there's only one work item which does gpu resets, so we
2416 	 * need not worry about concurrent gpu resets potentially incrementing
2417 	 * error->reset_counter twice. We only need to take care of another
2418 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2419 	 * quick check for that is good enough: schedule_work ensures the
2420 	 * correct ordering between hang detection and this work item, and since
2421 	 * the reset in-progress bit is only ever set by code outside of this
2422 	 * work we don't need to worry about any other races.
2423 	 */
2424 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2425 		DRM_DEBUG_DRIVER("resetting chip\n");
2426 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2427 				   reset_event);
2428 
2429 		/*
2430 		 * In most cases it's guaranteed that we get here with an RPM
2431 		 * reference held, for example because there is a pending GPU
2432 		 * request that won't finish until the reset is done. This
2433 		 * isn't the case at least when we get here by doing a
2434 		 * simulated reset via debugs, so get an RPM reference.
2435 		 */
2436 		intel_runtime_pm_get(dev_priv);
2437 
2438 		intel_prepare_reset(dev);
2439 
2440 		/*
2441 		 * All state reset _must_ be completed before we update the
2442 		 * reset counter, for otherwise waiters might miss the reset
2443 		 * pending state and not properly drop locks, resulting in
2444 		 * deadlocks with the reset work.
2445 		 */
2446 		ret = i915_reset(dev);
2447 
2448 		intel_finish_reset(dev);
2449 
2450 		intel_runtime_pm_put(dev_priv);
2451 
2452 		if (ret == 0) {
2453 			/*
2454 			 * After all the gem state is reset, increment the reset
2455 			 * counter and wake up everyone waiting for the reset to
2456 			 * complete.
2457 			 *
2458 			 * Since unlock operations are a one-sided barrier only,
2459 			 * we need to insert a barrier here to order any seqno
2460 			 * updates before
2461 			 * the counter increment.
2462 			 */
2463 			smp_mb__before_atomic();
2464 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2465 
2466 			kobject_uevent_env(&dev->primary->kdev->kobj,
2467 					   KOBJ_CHANGE, reset_done_event);
2468 		} else {
2469 			atomic_or(I915_WEDGED, &error->reset_counter);
2470 		}
2471 
2472 		/*
2473 		 * Note: The wake_up also serves as a memory barrier so that
2474 		 * waiters see the update value of the reset counter atomic_t.
2475 		 */
2476 		i915_error_wake_up(dev_priv, true);
2477 	}
2478 }
2479 
2480 static void i915_report_and_clear_eir(struct drm_device *dev)
2481 {
2482 	struct drm_i915_private *dev_priv = dev->dev_private;
2483 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2484 	u32 eir = I915_READ(EIR);
2485 	int pipe, i;
2486 
2487 	if (!eir)
2488 		return;
2489 
2490 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2491 
2492 	i915_get_extra_instdone(dev, instdone);
2493 
2494 	if (IS_G4X(dev)) {
2495 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2496 			u32 ipeir = I915_READ(IPEIR_I965);
2497 
2498 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2499 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2500 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2501 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2502 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2503 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2504 			I915_WRITE(IPEIR_I965, ipeir);
2505 			POSTING_READ(IPEIR_I965);
2506 		}
2507 		if (eir & GM45_ERROR_PAGE_TABLE) {
2508 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2509 			pr_err("page table error\n");
2510 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2511 			I915_WRITE(PGTBL_ER, pgtbl_err);
2512 			POSTING_READ(PGTBL_ER);
2513 		}
2514 	}
2515 
2516 	if (!IS_GEN2(dev)) {
2517 		if (eir & I915_ERROR_PAGE_TABLE) {
2518 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2519 			pr_err("page table error\n");
2520 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2521 			I915_WRITE(PGTBL_ER, pgtbl_err);
2522 			POSTING_READ(PGTBL_ER);
2523 		}
2524 	}
2525 
2526 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2527 		pr_err("memory refresh error:\n");
2528 		for_each_pipe(dev_priv, pipe)
2529 			pr_err("pipe %c stat: 0x%08x\n",
2530 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2531 		/* pipestat has already been acked */
2532 	}
2533 	if (eir & I915_ERROR_INSTRUCTION) {
2534 		pr_err("instruction error\n");
2535 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2536 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2537 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2538 		if (INTEL_INFO(dev)->gen < 4) {
2539 			u32 ipeir = I915_READ(IPEIR);
2540 
2541 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2542 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2543 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2544 			I915_WRITE(IPEIR, ipeir);
2545 			POSTING_READ(IPEIR);
2546 		} else {
2547 			u32 ipeir = I915_READ(IPEIR_I965);
2548 
2549 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2550 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2551 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2552 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2553 			I915_WRITE(IPEIR_I965, ipeir);
2554 			POSTING_READ(IPEIR_I965);
2555 		}
2556 	}
2557 
2558 	I915_WRITE(EIR, eir);
2559 	POSTING_READ(EIR);
2560 	eir = I915_READ(EIR);
2561 	if (eir) {
2562 		/*
2563 		 * some errors might have become stuck,
2564 		 * mask them.
2565 		 */
2566 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2567 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2568 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2569 	}
2570 }
2571 
2572 /**
2573  * i915_handle_error - handle a gpu error
2574  * @dev: drm device
2575  *
2576  * Do some basic checking of register state at error time and
2577  * dump it to the syslog.  Also call i915_capture_error_state() to make
2578  * sure we get a record and make it available in debugfs.  Fire a uevent
2579  * so userspace knows something bad happened (should trigger collection
2580  * of a ring dump etc.).
2581  */
2582 void i915_handle_error(struct drm_device *dev, bool wedged,
2583 		       const char *fmt, ...)
2584 {
2585 	struct drm_i915_private *dev_priv = dev->dev_private;
2586 	va_list args;
2587 	char error_msg[80];
2588 
2589 	va_start(args, fmt);
2590 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2591 	va_end(args);
2592 
2593 	i915_capture_error_state(dev, wedged, error_msg);
2594 	i915_report_and_clear_eir(dev);
2595 
2596 	if (wedged) {
2597 		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2598 				&dev_priv->gpu_error.reset_counter);
2599 
2600 		/*
2601 		 * Wakeup waiting processes so that the reset function
2602 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2603 		 * various locks. By bumping the reset counter first, the woken
2604 		 * processes will see a reset in progress and back off,
2605 		 * releasing their locks and then wait for the reset completion.
2606 		 * We must do this for _all_ gpu waiters that might hold locks
2607 		 * that the reset work needs to acquire.
2608 		 *
2609 		 * Note: The wake_up serves as the required memory barrier to
2610 		 * ensure that the waiters see the updated value of the reset
2611 		 * counter atomic_t.
2612 		 */
2613 		i915_error_wake_up(dev_priv, false);
2614 	}
2615 
2616 	i915_reset_and_wakeup(dev);
2617 }
2618 
2619 /* Called from drm generic code, passed 'crtc' which
2620  * we use as a pipe index
2621  */
2622 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2623 {
2624 	struct drm_i915_private *dev_priv = dev->dev_private;
2625 	unsigned long irqflags;
2626 
2627 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2628 	if (INTEL_INFO(dev)->gen >= 4)
2629 		i915_enable_pipestat(dev_priv, pipe,
2630 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2631 	else
2632 		i915_enable_pipestat(dev_priv, pipe,
2633 				     PIPE_VBLANK_INTERRUPT_STATUS);
2634 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2635 
2636 	return 0;
2637 }
2638 
2639 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2640 {
2641 	struct drm_i915_private *dev_priv = dev->dev_private;
2642 	unsigned long irqflags;
2643 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2644 						     DE_PIPE_VBLANK(pipe);
2645 
2646 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2647 	ironlake_enable_display_irq(dev_priv, bit);
2648 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2649 
2650 	return 0;
2651 }
2652 
2653 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2654 {
2655 	struct drm_i915_private *dev_priv = dev->dev_private;
2656 	unsigned long irqflags;
2657 
2658 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2659 	i915_enable_pipestat(dev_priv, pipe,
2660 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2661 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2662 
2663 	return 0;
2664 }
2665 
2666 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2667 {
2668 	struct drm_i915_private *dev_priv = dev->dev_private;
2669 	unsigned long irqflags;
2670 
2671 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2672 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2673 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2674 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2675 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2676 	return 0;
2677 }
2678 
2679 /* Called from drm generic code, passed 'crtc' which
2680  * we use as a pipe index
2681  */
2682 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2683 {
2684 	struct drm_i915_private *dev_priv = dev->dev_private;
2685 	unsigned long irqflags;
2686 
2687 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2688 	i915_disable_pipestat(dev_priv, pipe,
2689 			      PIPE_VBLANK_INTERRUPT_STATUS |
2690 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2691 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2692 }
2693 
2694 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2695 {
2696 	struct drm_i915_private *dev_priv = dev->dev_private;
2697 	unsigned long irqflags;
2698 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2699 						     DE_PIPE_VBLANK(pipe);
2700 
2701 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2702 	ironlake_disable_display_irq(dev_priv, bit);
2703 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2704 }
2705 
2706 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2707 {
2708 	struct drm_i915_private *dev_priv = dev->dev_private;
2709 	unsigned long irqflags;
2710 
2711 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2712 	i915_disable_pipestat(dev_priv, pipe,
2713 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2714 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2715 }
2716 
2717 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2718 {
2719 	struct drm_i915_private *dev_priv = dev->dev_private;
2720 	unsigned long irqflags;
2721 
2722 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2723 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2724 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2725 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2726 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2727 }
2728 
2729 static bool
2730 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2731 {
2732 	return (list_empty(&ring->request_list) ||
2733 		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2734 }
2735 
2736 static bool
2737 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2738 {
2739 	if (INTEL_INFO(dev)->gen >= 8) {
2740 		return (ipehr >> 23) == 0x1c;
2741 	} else {
2742 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2743 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2744 				 MI_SEMAPHORE_REGISTER);
2745 	}
2746 }
2747 
2748 static struct intel_engine_cs *
2749 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2750 {
2751 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2752 	struct intel_engine_cs *signaller;
2753 	int i;
2754 
2755 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2756 		for_each_ring(signaller, dev_priv, i) {
2757 			if (ring == signaller)
2758 				continue;
2759 
2760 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2761 				return signaller;
2762 		}
2763 	} else {
2764 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2765 
2766 		for_each_ring(signaller, dev_priv, i) {
2767 			if(ring == signaller)
2768 				continue;
2769 
2770 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2771 				return signaller;
2772 		}
2773 	}
2774 
2775 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2776 		  ring->id, ipehr, offset);
2777 
2778 	return NULL;
2779 }
2780 
2781 static struct intel_engine_cs *
2782 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2783 {
2784 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2785 	u32 cmd, ipehr, head;
2786 	u64 offset = 0;
2787 	int i, backwards;
2788 
2789 	/*
2790 	 * This function does not support execlist mode - any attempt to
2791 	 * proceed further into this function will result in a kernel panic
2792 	 * when dereferencing ring->buffer, which is not set up in execlist
2793 	 * mode.
2794 	 *
2795 	 * The correct way of doing it would be to derive the currently
2796 	 * executing ring buffer from the current context, which is derived
2797 	 * from the currently running request. Unfortunately, to get the
2798 	 * current request we would have to grab the struct_mutex before doing
2799 	 * anything else, which would be ill-advised since some other thread
2800 	 * might have grabbed it already and managed to hang itself, causing
2801 	 * the hang checker to deadlock.
2802 	 *
2803 	 * Therefore, this function does not support execlist mode in its
2804 	 * current form. Just return NULL and move on.
2805 	 */
2806 	if (ring->buffer == NULL)
2807 		return NULL;
2808 
2809 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2810 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2811 		return NULL;
2812 
2813 	/*
2814 	 * HEAD is likely pointing to the dword after the actual command,
2815 	 * so scan backwards until we find the MBOX. But limit it to just 3
2816 	 * or 4 dwords depending on the semaphore wait command size.
2817 	 * Note that we don't care about ACTHD here since that might
2818 	 * point at at batch, and semaphores are always emitted into the
2819 	 * ringbuffer itself.
2820 	 */
2821 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2822 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2823 
2824 	for (i = backwards; i; --i) {
2825 		/*
2826 		 * Be paranoid and presume the hw has gone off into the wild -
2827 		 * our ring is smaller than what the hardware (and hence
2828 		 * HEAD_ADDR) allows. Also handles wrap-around.
2829 		 */
2830 		head &= ring->buffer->size - 1;
2831 
2832 		/* This here seems to blow up */
2833 		cmd = ioread32(ring->buffer->virtual_start + head);
2834 		if (cmd == ipehr)
2835 			break;
2836 
2837 		head -= 4;
2838 	}
2839 
2840 	if (!i)
2841 		return NULL;
2842 
2843 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2844 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2845 		offset = ioread32(ring->buffer->virtual_start + head + 12);
2846 		offset <<= 32;
2847 		offset = ioread32(ring->buffer->virtual_start + head + 8);
2848 	}
2849 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2850 }
2851 
2852 static int semaphore_passed(struct intel_engine_cs *ring)
2853 {
2854 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2855 	struct intel_engine_cs *signaller;
2856 	u32 seqno;
2857 
2858 	ring->hangcheck.deadlock++;
2859 
2860 	signaller = semaphore_waits_for(ring, &seqno);
2861 	if (signaller == NULL)
2862 		return -1;
2863 
2864 	/* Prevent pathological recursion due to driver bugs */
2865 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2866 		return -1;
2867 
2868 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2869 		return 1;
2870 
2871 	/* cursory check for an unkickable deadlock */
2872 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2873 	    semaphore_passed(signaller) < 0)
2874 		return -1;
2875 
2876 	return 0;
2877 }
2878 
2879 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2880 {
2881 	struct intel_engine_cs *ring;
2882 	int i;
2883 
2884 	for_each_ring(ring, dev_priv, i)
2885 		ring->hangcheck.deadlock = 0;
2886 }
2887 
2888 static enum intel_ring_hangcheck_action
2889 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2890 {
2891 	struct drm_device *dev = ring->dev;
2892 	struct drm_i915_private *dev_priv = dev->dev_private;
2893 	u32 tmp;
2894 
2895 	if (acthd != ring->hangcheck.acthd) {
2896 		if (acthd > ring->hangcheck.max_acthd) {
2897 			ring->hangcheck.max_acthd = acthd;
2898 			return HANGCHECK_ACTIVE;
2899 		}
2900 
2901 		return HANGCHECK_ACTIVE_LOOP;
2902 	}
2903 
2904 	if (IS_GEN2(dev))
2905 		return HANGCHECK_HUNG;
2906 
2907 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2908 	 * If so we can simply poke the RB_WAIT bit
2909 	 * and break the hang. This should work on
2910 	 * all but the second generation chipsets.
2911 	 */
2912 	tmp = I915_READ_CTL(ring);
2913 	if (tmp & RING_WAIT) {
2914 		i915_handle_error(dev, false,
2915 				  "Kicking stuck wait on %s",
2916 				  ring->name);
2917 		I915_WRITE_CTL(ring, tmp);
2918 		return HANGCHECK_KICK;
2919 	}
2920 
2921 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2922 		switch (semaphore_passed(ring)) {
2923 		default:
2924 			return HANGCHECK_HUNG;
2925 		case 1:
2926 			i915_handle_error(dev, false,
2927 					  "Kicking stuck semaphore on %s",
2928 					  ring->name);
2929 			I915_WRITE_CTL(ring, tmp);
2930 			return HANGCHECK_KICK;
2931 		case 0:
2932 			return HANGCHECK_WAIT;
2933 		}
2934 	}
2935 
2936 	return HANGCHECK_HUNG;
2937 }
2938 
2939 /*
2940  * This is called when the chip hasn't reported back with completed
2941  * batchbuffers in a long time. We keep track per ring seqno progress and
2942  * if there are no progress, hangcheck score for that ring is increased.
2943  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2944  * we kick the ring. If we see no progress on three subsequent calls
2945  * we assume chip is wedged and try to fix it by resetting the chip.
2946  */
2947 static void i915_hangcheck_elapsed(struct work_struct *work)
2948 {
2949 	struct drm_i915_private *dev_priv =
2950 		container_of(work, typeof(*dev_priv),
2951 			     gpu_error.hangcheck_work.work);
2952 	struct drm_device *dev = dev_priv->dev;
2953 	struct intel_engine_cs *ring;
2954 	int i;
2955 	int busy_count = 0, rings_hung = 0;
2956 	bool stuck[I915_NUM_RINGS] = { 0 };
2957 #define BUSY 1
2958 #define KICK 5
2959 #define HUNG 20
2960 
2961 	if (!i915.enable_hangcheck)
2962 		return;
2963 
2964 	for_each_ring(ring, dev_priv, i) {
2965 		u64 acthd;
2966 		u32 seqno;
2967 		bool busy = true;
2968 
2969 		semaphore_clear_deadlocks(dev_priv);
2970 
2971 		seqno = ring->get_seqno(ring, false);
2972 		acthd = intel_ring_get_active_head(ring);
2973 
2974 		if (ring->hangcheck.seqno == seqno) {
2975 			if (ring_idle(ring, seqno)) {
2976 				ring->hangcheck.action = HANGCHECK_IDLE;
2977 
2978 				if (waitqueue_active(&ring->irq_queue)) {
2979 					/* Issue a wake-up to catch stuck h/w. */
2980 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2981 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2982 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2983 								  ring->name);
2984 						else
2985 							DRM_INFO("Fake missed irq on %s\n",
2986 								 ring->name);
2987 						wake_up_all(&ring->irq_queue);
2988 					}
2989 					/* Safeguard against driver failure */
2990 					ring->hangcheck.score += BUSY;
2991 				} else
2992 					busy = false;
2993 			} else {
2994 				/* We always increment the hangcheck score
2995 				 * if the ring is busy and still processing
2996 				 * the same request, so that no single request
2997 				 * can run indefinitely (such as a chain of
2998 				 * batches). The only time we do not increment
2999 				 * the hangcheck score on this ring, if this
3000 				 * ring is in a legitimate wait for another
3001 				 * ring. In that case the waiting ring is a
3002 				 * victim and we want to be sure we catch the
3003 				 * right culprit. Then every time we do kick
3004 				 * the ring, add a small increment to the
3005 				 * score so that we can catch a batch that is
3006 				 * being repeatedly kicked and so responsible
3007 				 * for stalling the machine.
3008 				 */
3009 				ring->hangcheck.action = ring_stuck(ring,
3010 								    acthd);
3011 
3012 				switch (ring->hangcheck.action) {
3013 				case HANGCHECK_IDLE:
3014 				case HANGCHECK_WAIT:
3015 				case HANGCHECK_ACTIVE:
3016 					break;
3017 				case HANGCHECK_ACTIVE_LOOP:
3018 					ring->hangcheck.score += BUSY;
3019 					break;
3020 				case HANGCHECK_KICK:
3021 					ring->hangcheck.score += KICK;
3022 					break;
3023 				case HANGCHECK_HUNG:
3024 					ring->hangcheck.score += HUNG;
3025 					stuck[i] = true;
3026 					break;
3027 				}
3028 			}
3029 		} else {
3030 			ring->hangcheck.action = HANGCHECK_ACTIVE;
3031 
3032 			/* Gradually reduce the count so that we catch DoS
3033 			 * attempts across multiple batches.
3034 			 */
3035 			if (ring->hangcheck.score > 0)
3036 				ring->hangcheck.score--;
3037 
3038 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3039 		}
3040 
3041 		ring->hangcheck.seqno = seqno;
3042 		ring->hangcheck.acthd = acthd;
3043 		busy_count += busy;
3044 	}
3045 
3046 	for_each_ring(ring, dev_priv, i) {
3047 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3048 			DRM_INFO("%s on %s\n",
3049 				 stuck[i] ? "stuck" : "no progress",
3050 				 ring->name);
3051 			rings_hung++;
3052 		}
3053 	}
3054 
3055 	if (rings_hung)
3056 		return i915_handle_error(dev, true, "Ring hung");
3057 
3058 	if (busy_count)
3059 		/* Reset timer case chip hangs without another request
3060 		 * being added */
3061 		i915_queue_hangcheck(dev);
3062 }
3063 
3064 void i915_queue_hangcheck(struct drm_device *dev)
3065 {
3066 	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3067 
3068 	if (!i915.enable_hangcheck)
3069 		return;
3070 
3071 	/* Don't continually defer the hangcheck so that it is always run at
3072 	 * least once after work has been scheduled on any ring. Otherwise,
3073 	 * we will ignore a hung ring if a second ring is kept busy.
3074 	 */
3075 
3076 	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3077 			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3078 }
3079 
3080 static void ibx_irq_reset(struct drm_device *dev)
3081 {
3082 	struct drm_i915_private *dev_priv = dev->dev_private;
3083 
3084 	if (HAS_PCH_NOP(dev))
3085 		return;
3086 
3087 	GEN5_IRQ_RESET(SDE);
3088 
3089 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3090 		I915_WRITE(SERR_INT, 0xffffffff);
3091 }
3092 
3093 /*
3094  * SDEIER is also touched by the interrupt handler to work around missed PCH
3095  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3096  * instead we unconditionally enable all PCH interrupt sources here, but then
3097  * only unmask them as needed with SDEIMR.
3098  *
3099  * This function needs to be called before interrupts are enabled.
3100  */
3101 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3102 {
3103 	struct drm_i915_private *dev_priv = dev->dev_private;
3104 
3105 	if (HAS_PCH_NOP(dev))
3106 		return;
3107 
3108 	WARN_ON(I915_READ(SDEIER) != 0);
3109 	I915_WRITE(SDEIER, 0xffffffff);
3110 	POSTING_READ(SDEIER);
3111 }
3112 
3113 static void gen5_gt_irq_reset(struct drm_device *dev)
3114 {
3115 	struct drm_i915_private *dev_priv = dev->dev_private;
3116 
3117 	GEN5_IRQ_RESET(GT);
3118 	if (INTEL_INFO(dev)->gen >= 6)
3119 		GEN5_IRQ_RESET(GEN6_PM);
3120 }
3121 
3122 /* drm_dma.h hooks
3123 */
3124 static void ironlake_irq_reset(struct drm_device *dev)
3125 {
3126 	struct drm_i915_private *dev_priv = dev->dev_private;
3127 
3128 	I915_WRITE(HWSTAM, 0xffffffff);
3129 
3130 	GEN5_IRQ_RESET(DE);
3131 	if (IS_GEN7(dev))
3132 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3133 
3134 	gen5_gt_irq_reset(dev);
3135 
3136 	ibx_irq_reset(dev);
3137 }
3138 
3139 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3140 {
3141 	enum pipe pipe;
3142 
3143 	i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3144 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3145 
3146 	for_each_pipe(dev_priv, pipe)
3147 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3148 
3149 	GEN5_IRQ_RESET(VLV_);
3150 }
3151 
3152 static void valleyview_irq_preinstall(struct drm_device *dev)
3153 {
3154 	struct drm_i915_private *dev_priv = dev->dev_private;
3155 
3156 	/* VLV magic */
3157 	I915_WRITE(VLV_IMR, 0);
3158 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3159 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3160 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3161 
3162 	gen5_gt_irq_reset(dev);
3163 
3164 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3165 
3166 	vlv_display_irq_reset(dev_priv);
3167 }
3168 
3169 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3170 {
3171 	GEN8_IRQ_RESET_NDX(GT, 0);
3172 	GEN8_IRQ_RESET_NDX(GT, 1);
3173 	GEN8_IRQ_RESET_NDX(GT, 2);
3174 	GEN8_IRQ_RESET_NDX(GT, 3);
3175 }
3176 
3177 static void gen8_irq_reset(struct drm_device *dev)
3178 {
3179 	struct drm_i915_private *dev_priv = dev->dev_private;
3180 	int pipe;
3181 
3182 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3183 	POSTING_READ(GEN8_MASTER_IRQ);
3184 
3185 	gen8_gt_irq_reset(dev_priv);
3186 
3187 	for_each_pipe(dev_priv, pipe)
3188 		if (intel_display_power_is_enabled(dev_priv,
3189 						   POWER_DOMAIN_PIPE(pipe)))
3190 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3191 
3192 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3193 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3194 	GEN5_IRQ_RESET(GEN8_PCU_);
3195 
3196 	if (HAS_PCH_SPLIT(dev))
3197 		ibx_irq_reset(dev);
3198 }
3199 
3200 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3201 				     unsigned int pipe_mask)
3202 {
3203 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3204 
3205 	spin_lock_irq(&dev_priv->irq_lock);
3206 	if (pipe_mask & 1 << PIPE_A)
3207 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3208 				  dev_priv->de_irq_mask[PIPE_A],
3209 				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3210 	if (pipe_mask & 1 << PIPE_B)
3211 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3212 				  dev_priv->de_irq_mask[PIPE_B],
3213 				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3214 	if (pipe_mask & 1 << PIPE_C)
3215 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3216 				  dev_priv->de_irq_mask[PIPE_C],
3217 				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3218 	spin_unlock_irq(&dev_priv->irq_lock);
3219 }
3220 
3221 static void cherryview_irq_preinstall(struct drm_device *dev)
3222 {
3223 	struct drm_i915_private *dev_priv = dev->dev_private;
3224 
3225 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3226 	POSTING_READ(GEN8_MASTER_IRQ);
3227 
3228 	gen8_gt_irq_reset(dev_priv);
3229 
3230 	GEN5_IRQ_RESET(GEN8_PCU_);
3231 
3232 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3233 
3234 	vlv_display_irq_reset(dev_priv);
3235 }
3236 
3237 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3238 				  const u32 hpd[HPD_NUM_PINS])
3239 {
3240 	struct drm_i915_private *dev_priv = to_i915(dev);
3241 	struct intel_encoder *encoder;
3242 	u32 enabled_irqs = 0;
3243 
3244 	for_each_intel_encoder(dev, encoder)
3245 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3246 			enabled_irqs |= hpd[encoder->hpd_pin];
3247 
3248 	return enabled_irqs;
3249 }
3250 
3251 static void ibx_hpd_irq_setup(struct drm_device *dev)
3252 {
3253 	struct drm_i915_private *dev_priv = dev->dev_private;
3254 	u32 hotplug_irqs, hotplug, enabled_irqs;
3255 
3256 	if (HAS_PCH_IBX(dev)) {
3257 		hotplug_irqs = SDE_HOTPLUG_MASK;
3258 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3259 	} else {
3260 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3261 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3262 	}
3263 
3264 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3265 
3266 	/*
3267 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3268 	 * duration to 2ms (which is the minimum in the Display Port spec).
3269 	 * The pulse duration bits are reserved on LPT+.
3270 	 */
3271 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3272 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3273 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3274 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3275 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3276 	/*
3277 	 * When CPU and PCH are on the same package, port A
3278 	 * HPD must be enabled in both north and south.
3279 	 */
3280 	if (HAS_PCH_LPT_LP(dev))
3281 		hotplug |= PORTA_HOTPLUG_ENABLE;
3282 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3283 }
3284 
3285 static void spt_hpd_irq_setup(struct drm_device *dev)
3286 {
3287 	struct drm_i915_private *dev_priv = dev->dev_private;
3288 	u32 hotplug_irqs, hotplug, enabled_irqs;
3289 
3290 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3291 	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3292 
3293 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3294 
3295 	/* Enable digital hotplug on the PCH */
3296 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3297 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3298 		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3299 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3300 
3301 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3302 	hotplug |= PORTE_HOTPLUG_ENABLE;
3303 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3304 }
3305 
3306 static void ilk_hpd_irq_setup(struct drm_device *dev)
3307 {
3308 	struct drm_i915_private *dev_priv = dev->dev_private;
3309 	u32 hotplug_irqs, hotplug, enabled_irqs;
3310 
3311 	if (INTEL_INFO(dev)->gen >= 8) {
3312 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3313 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3314 
3315 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3316 	} else if (INTEL_INFO(dev)->gen >= 7) {
3317 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3318 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3319 
3320 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3321 	} else {
3322 		hotplug_irqs = DE_DP_A_HOTPLUG;
3323 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3324 
3325 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3326 	}
3327 
3328 	/*
3329 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3330 	 * duration to 2ms (which is the minimum in the Display Port spec)
3331 	 * The pulse duration bits are reserved on HSW+.
3332 	 */
3333 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3334 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3335 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3336 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3337 
3338 	ibx_hpd_irq_setup(dev);
3339 }
3340 
3341 static void bxt_hpd_irq_setup(struct drm_device *dev)
3342 {
3343 	struct drm_i915_private *dev_priv = dev->dev_private;
3344 	u32 hotplug_irqs, hotplug, enabled_irqs;
3345 
3346 	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3347 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3348 
3349 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3350 
3351 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3352 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3353 		PORTA_HOTPLUG_ENABLE;
3354 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3355 }
3356 
3357 static void ibx_irq_postinstall(struct drm_device *dev)
3358 {
3359 	struct drm_i915_private *dev_priv = dev->dev_private;
3360 	u32 mask;
3361 
3362 	if (HAS_PCH_NOP(dev))
3363 		return;
3364 
3365 	if (HAS_PCH_IBX(dev))
3366 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3367 	else
3368 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3369 
3370 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3371 	I915_WRITE(SDEIMR, ~mask);
3372 }
3373 
3374 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3375 {
3376 	struct drm_i915_private *dev_priv = dev->dev_private;
3377 	u32 pm_irqs, gt_irqs;
3378 
3379 	pm_irqs = gt_irqs = 0;
3380 
3381 	dev_priv->gt_irq_mask = ~0;
3382 	if (HAS_L3_DPF(dev)) {
3383 		/* L3 parity interrupt is always unmasked. */
3384 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3385 		gt_irqs |= GT_PARITY_ERROR(dev);
3386 	}
3387 
3388 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3389 	if (IS_GEN5(dev)) {
3390 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3391 			   ILK_BSD_USER_INTERRUPT;
3392 	} else {
3393 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3394 	}
3395 
3396 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3397 
3398 	if (INTEL_INFO(dev)->gen >= 6) {
3399 		/*
3400 		 * RPS interrupts will get enabled/disabled on demand when RPS
3401 		 * itself is enabled/disabled.
3402 		 */
3403 		if (HAS_VEBOX(dev))
3404 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3405 
3406 		dev_priv->pm_irq_mask = 0xffffffff;
3407 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3408 	}
3409 }
3410 
3411 static int ironlake_irq_postinstall(struct drm_device *dev)
3412 {
3413 	struct drm_i915_private *dev_priv = dev->dev_private;
3414 	u32 display_mask, extra_mask;
3415 
3416 	if (INTEL_INFO(dev)->gen >= 7) {
3417 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3418 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3419 				DE_PLANEB_FLIP_DONE_IVB |
3420 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3421 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3422 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3423 			      DE_DP_A_HOTPLUG_IVB);
3424 	} else {
3425 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3426 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3427 				DE_AUX_CHANNEL_A |
3428 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3429 				DE_POISON);
3430 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3431 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3432 			      DE_DP_A_HOTPLUG);
3433 	}
3434 
3435 	dev_priv->irq_mask = ~display_mask;
3436 
3437 	I915_WRITE(HWSTAM, 0xeffe);
3438 
3439 	ibx_irq_pre_postinstall(dev);
3440 
3441 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3442 
3443 	gen5_gt_irq_postinstall(dev);
3444 
3445 	ibx_irq_postinstall(dev);
3446 
3447 	if (IS_IRONLAKE_M(dev)) {
3448 		/* Enable PCU event interrupts
3449 		 *
3450 		 * spinlocking not required here for correctness since interrupt
3451 		 * setup is guaranteed to run in single-threaded context. But we
3452 		 * need it to make the assert_spin_locked happy. */
3453 		spin_lock_irq(&dev_priv->irq_lock);
3454 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3455 		spin_unlock_irq(&dev_priv->irq_lock);
3456 	}
3457 
3458 	return 0;
3459 }
3460 
3461 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3462 {
3463 	u32 pipestat_mask;
3464 	u32 iir_mask;
3465 	enum pipe pipe;
3466 
3467 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3468 			PIPE_FIFO_UNDERRUN_STATUS;
3469 
3470 	for_each_pipe(dev_priv, pipe)
3471 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3472 	POSTING_READ(PIPESTAT(PIPE_A));
3473 
3474 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3475 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3476 
3477 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3478 	for_each_pipe(dev_priv, pipe)
3479 		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3480 
3481 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3482 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3483 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3484 	if (IS_CHERRYVIEW(dev_priv))
3485 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3486 	dev_priv->irq_mask &= ~iir_mask;
3487 
3488 	I915_WRITE(VLV_IIR, iir_mask);
3489 	I915_WRITE(VLV_IIR, iir_mask);
3490 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3491 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3492 	POSTING_READ(VLV_IMR);
3493 }
3494 
3495 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3496 {
3497 	u32 pipestat_mask;
3498 	u32 iir_mask;
3499 	enum pipe pipe;
3500 
3501 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3502 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3503 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3504 	if (IS_CHERRYVIEW(dev_priv))
3505 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3506 
3507 	dev_priv->irq_mask |= iir_mask;
3508 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3509 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3510 	I915_WRITE(VLV_IIR, iir_mask);
3511 	I915_WRITE(VLV_IIR, iir_mask);
3512 	POSTING_READ(VLV_IIR);
3513 
3514 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3515 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3516 
3517 	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3518 	for_each_pipe(dev_priv, pipe)
3519 		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3520 
3521 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3522 			PIPE_FIFO_UNDERRUN_STATUS;
3523 
3524 	for_each_pipe(dev_priv, pipe)
3525 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3526 	POSTING_READ(PIPESTAT(PIPE_A));
3527 }
3528 
3529 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3530 {
3531 	assert_spin_locked(&dev_priv->irq_lock);
3532 
3533 	if (dev_priv->display_irqs_enabled)
3534 		return;
3535 
3536 	dev_priv->display_irqs_enabled = true;
3537 
3538 	if (intel_irqs_enabled(dev_priv))
3539 		valleyview_display_irqs_install(dev_priv);
3540 }
3541 
3542 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3543 {
3544 	assert_spin_locked(&dev_priv->irq_lock);
3545 
3546 	if (!dev_priv->display_irqs_enabled)
3547 		return;
3548 
3549 	dev_priv->display_irqs_enabled = false;
3550 
3551 	if (intel_irqs_enabled(dev_priv))
3552 		valleyview_display_irqs_uninstall(dev_priv);
3553 }
3554 
3555 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3556 {
3557 	dev_priv->irq_mask = ~0;
3558 
3559 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3560 	POSTING_READ(PORT_HOTPLUG_EN);
3561 
3562 	I915_WRITE(VLV_IIR, 0xffffffff);
3563 	I915_WRITE(VLV_IIR, 0xffffffff);
3564 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3565 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3566 	POSTING_READ(VLV_IMR);
3567 
3568 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3569 	 * just to make the assert_spin_locked check happy. */
3570 	spin_lock_irq(&dev_priv->irq_lock);
3571 	if (dev_priv->display_irqs_enabled)
3572 		valleyview_display_irqs_install(dev_priv);
3573 	spin_unlock_irq(&dev_priv->irq_lock);
3574 }
3575 
3576 static int valleyview_irq_postinstall(struct drm_device *dev)
3577 {
3578 	struct drm_i915_private *dev_priv = dev->dev_private;
3579 
3580 	vlv_display_irq_postinstall(dev_priv);
3581 
3582 	gen5_gt_irq_postinstall(dev);
3583 
3584 	/* ack & enable invalid PTE error interrupts */
3585 #if 0 /* FIXME: add support to irq handler for checking these bits */
3586 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3587 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3588 #endif
3589 
3590 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3591 
3592 	return 0;
3593 }
3594 
3595 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3596 {
3597 	/* These are interrupts we'll toggle with the ring mask register */
3598 	uint32_t gt_interrupts[] = {
3599 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3600 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3601 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3602 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3603 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3604 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3605 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3606 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3607 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3608 		0,
3609 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3610 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3611 		};
3612 
3613 	dev_priv->pm_irq_mask = 0xffffffff;
3614 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3615 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3616 	/*
3617 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3618 	 * is enabled/disabled.
3619 	 */
3620 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3621 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3622 }
3623 
3624 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3625 {
3626 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3627 	uint32_t de_pipe_enables;
3628 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3629 	u32 de_port_enables;
3630 	enum pipe pipe;
3631 
3632 	if (INTEL_INFO(dev_priv)->gen >= 9) {
3633 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3634 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3635 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3636 				  GEN9_AUX_CHANNEL_D;
3637 		if (IS_BROXTON(dev_priv))
3638 			de_port_masked |= BXT_DE_PORT_GMBUS;
3639 	} else {
3640 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3641 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3642 	}
3643 
3644 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3645 					   GEN8_PIPE_FIFO_UNDERRUN;
3646 
3647 	de_port_enables = de_port_masked;
3648 	if (IS_BROXTON(dev_priv))
3649 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3650 	else if (IS_BROADWELL(dev_priv))
3651 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3652 
3653 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3654 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3655 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3656 
3657 	for_each_pipe(dev_priv, pipe)
3658 		if (intel_display_power_is_enabled(dev_priv,
3659 				POWER_DOMAIN_PIPE(pipe)))
3660 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3661 					  dev_priv->de_irq_mask[pipe],
3662 					  de_pipe_enables);
3663 
3664 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3665 }
3666 
3667 static int gen8_irq_postinstall(struct drm_device *dev)
3668 {
3669 	struct drm_i915_private *dev_priv = dev->dev_private;
3670 
3671 	if (HAS_PCH_SPLIT(dev))
3672 		ibx_irq_pre_postinstall(dev);
3673 
3674 	gen8_gt_irq_postinstall(dev_priv);
3675 	gen8_de_irq_postinstall(dev_priv);
3676 
3677 	if (HAS_PCH_SPLIT(dev))
3678 		ibx_irq_postinstall(dev);
3679 
3680 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3681 	POSTING_READ(GEN8_MASTER_IRQ);
3682 
3683 	return 0;
3684 }
3685 
3686 static int cherryview_irq_postinstall(struct drm_device *dev)
3687 {
3688 	struct drm_i915_private *dev_priv = dev->dev_private;
3689 
3690 	vlv_display_irq_postinstall(dev_priv);
3691 
3692 	gen8_gt_irq_postinstall(dev_priv);
3693 
3694 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3695 	POSTING_READ(GEN8_MASTER_IRQ);
3696 
3697 	return 0;
3698 }
3699 
3700 static void gen8_irq_uninstall(struct drm_device *dev)
3701 {
3702 	struct drm_i915_private *dev_priv = dev->dev_private;
3703 
3704 	if (!dev_priv)
3705 		return;
3706 
3707 	gen8_irq_reset(dev);
3708 }
3709 
3710 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3711 {
3712 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3713 	 * just to make the assert_spin_locked check happy. */
3714 	spin_lock_irq(&dev_priv->irq_lock);
3715 	if (dev_priv->display_irqs_enabled)
3716 		valleyview_display_irqs_uninstall(dev_priv);
3717 	spin_unlock_irq(&dev_priv->irq_lock);
3718 
3719 	vlv_display_irq_reset(dev_priv);
3720 
3721 	dev_priv->irq_mask = ~0;
3722 }
3723 
3724 static void valleyview_irq_uninstall(struct drm_device *dev)
3725 {
3726 	struct drm_i915_private *dev_priv = dev->dev_private;
3727 
3728 	if (!dev_priv)
3729 		return;
3730 
3731 	I915_WRITE(VLV_MASTER_IER, 0);
3732 
3733 	gen5_gt_irq_reset(dev);
3734 
3735 	I915_WRITE(HWSTAM, 0xffffffff);
3736 
3737 	vlv_display_irq_uninstall(dev_priv);
3738 }
3739 
3740 static void cherryview_irq_uninstall(struct drm_device *dev)
3741 {
3742 	struct drm_i915_private *dev_priv = dev->dev_private;
3743 
3744 	if (!dev_priv)
3745 		return;
3746 
3747 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3748 	POSTING_READ(GEN8_MASTER_IRQ);
3749 
3750 	gen8_gt_irq_reset(dev_priv);
3751 
3752 	GEN5_IRQ_RESET(GEN8_PCU_);
3753 
3754 	vlv_display_irq_uninstall(dev_priv);
3755 }
3756 
3757 static void ironlake_irq_uninstall(struct drm_device *dev)
3758 {
3759 	struct drm_i915_private *dev_priv = dev->dev_private;
3760 
3761 	if (!dev_priv)
3762 		return;
3763 
3764 	ironlake_irq_reset(dev);
3765 }
3766 
3767 static void i8xx_irq_preinstall(struct drm_device * dev)
3768 {
3769 	struct drm_i915_private *dev_priv = dev->dev_private;
3770 	int pipe;
3771 
3772 	for_each_pipe(dev_priv, pipe)
3773 		I915_WRITE(PIPESTAT(pipe), 0);
3774 	I915_WRITE16(IMR, 0xffff);
3775 	I915_WRITE16(IER, 0x0);
3776 	POSTING_READ16(IER);
3777 }
3778 
3779 static int i8xx_irq_postinstall(struct drm_device *dev)
3780 {
3781 	struct drm_i915_private *dev_priv = dev->dev_private;
3782 
3783 	I915_WRITE16(EMR,
3784 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3785 
3786 	/* Unmask the interrupts that we always want on. */
3787 	dev_priv->irq_mask =
3788 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3789 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3790 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3791 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3792 	I915_WRITE16(IMR, dev_priv->irq_mask);
3793 
3794 	I915_WRITE16(IER,
3795 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3796 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3797 		     I915_USER_INTERRUPT);
3798 	POSTING_READ16(IER);
3799 
3800 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3801 	 * just to make the assert_spin_locked check happy. */
3802 	spin_lock_irq(&dev_priv->irq_lock);
3803 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3804 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3805 	spin_unlock_irq(&dev_priv->irq_lock);
3806 
3807 	return 0;
3808 }
3809 
3810 /*
3811  * Returns true when a page flip has completed.
3812  */
3813 static bool i8xx_handle_vblank(struct drm_device *dev,
3814 			       int plane, int pipe, u32 iir)
3815 {
3816 	struct drm_i915_private *dev_priv = dev->dev_private;
3817 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3818 
3819 	if (!intel_pipe_handle_vblank(dev, pipe))
3820 		return false;
3821 
3822 	if ((iir & flip_pending) == 0)
3823 		goto check_page_flip;
3824 
3825 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3826 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3827 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3828 	 * the flip is completed (no longer pending). Since this doesn't raise
3829 	 * an interrupt per se, we watch for the change at vblank.
3830 	 */
3831 	if (I915_READ16(ISR) & flip_pending)
3832 		goto check_page_flip;
3833 
3834 	intel_prepare_page_flip(dev, plane);
3835 	intel_finish_page_flip(dev, pipe);
3836 	return true;
3837 
3838 check_page_flip:
3839 	intel_check_page_flip(dev, pipe);
3840 	return false;
3841 }
3842 
3843 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3844 {
3845 	struct drm_device *dev = arg;
3846 	struct drm_i915_private *dev_priv = dev->dev_private;
3847 	u16 iir, new_iir;
3848 	u32 pipe_stats[2];
3849 	int pipe;
3850 	u16 flip_mask =
3851 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3852 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3853 
3854 	if (!intel_irqs_enabled(dev_priv))
3855 		return IRQ_NONE;
3856 
3857 	iir = I915_READ16(IIR);
3858 	if (iir == 0)
3859 		return IRQ_NONE;
3860 
3861 	while (iir & ~flip_mask) {
3862 		/* Can't rely on pipestat interrupt bit in iir as it might
3863 		 * have been cleared after the pipestat interrupt was received.
3864 		 * It doesn't set the bit in iir again, but it still produces
3865 		 * interrupts (for non-MSI).
3866 		 */
3867 		spin_lock(&dev_priv->irq_lock);
3868 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3869 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3870 
3871 		for_each_pipe(dev_priv, pipe) {
3872 			int reg = PIPESTAT(pipe);
3873 			pipe_stats[pipe] = I915_READ(reg);
3874 
3875 			/*
3876 			 * Clear the PIPE*STAT regs before the IIR
3877 			 */
3878 			if (pipe_stats[pipe] & 0x8000ffff)
3879 				I915_WRITE(reg, pipe_stats[pipe]);
3880 		}
3881 		spin_unlock(&dev_priv->irq_lock);
3882 
3883 		I915_WRITE16(IIR, iir & ~flip_mask);
3884 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3885 
3886 		if (iir & I915_USER_INTERRUPT)
3887 			notify_ring(&dev_priv->ring[RCS]);
3888 
3889 		for_each_pipe(dev_priv, pipe) {
3890 			int plane = pipe;
3891 			if (HAS_FBC(dev))
3892 				plane = !plane;
3893 
3894 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3895 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3896 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3897 
3898 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3899 				i9xx_pipe_crc_irq_handler(dev, pipe);
3900 
3901 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3902 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3903 								    pipe);
3904 		}
3905 
3906 		iir = new_iir;
3907 	}
3908 
3909 	return IRQ_HANDLED;
3910 }
3911 
3912 static void i8xx_irq_uninstall(struct drm_device * dev)
3913 {
3914 	struct drm_i915_private *dev_priv = dev->dev_private;
3915 	int pipe;
3916 
3917 	for_each_pipe(dev_priv, pipe) {
3918 		/* Clear enable bits; then clear status bits */
3919 		I915_WRITE(PIPESTAT(pipe), 0);
3920 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3921 	}
3922 	I915_WRITE16(IMR, 0xffff);
3923 	I915_WRITE16(IER, 0x0);
3924 	I915_WRITE16(IIR, I915_READ16(IIR));
3925 }
3926 
3927 static void i915_irq_preinstall(struct drm_device * dev)
3928 {
3929 	struct drm_i915_private *dev_priv = dev->dev_private;
3930 	int pipe;
3931 
3932 	if (I915_HAS_HOTPLUG(dev)) {
3933 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3934 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3935 	}
3936 
3937 	I915_WRITE16(HWSTAM, 0xeffe);
3938 	for_each_pipe(dev_priv, pipe)
3939 		I915_WRITE(PIPESTAT(pipe), 0);
3940 	I915_WRITE(IMR, 0xffffffff);
3941 	I915_WRITE(IER, 0x0);
3942 	POSTING_READ(IER);
3943 }
3944 
3945 static int i915_irq_postinstall(struct drm_device *dev)
3946 {
3947 	struct drm_i915_private *dev_priv = dev->dev_private;
3948 	u32 enable_mask;
3949 
3950 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3951 
3952 	/* Unmask the interrupts that we always want on. */
3953 	dev_priv->irq_mask =
3954 		~(I915_ASLE_INTERRUPT |
3955 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3956 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3957 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3958 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3959 
3960 	enable_mask =
3961 		I915_ASLE_INTERRUPT |
3962 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3963 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3964 		I915_USER_INTERRUPT;
3965 
3966 	if (I915_HAS_HOTPLUG(dev)) {
3967 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3968 		POSTING_READ(PORT_HOTPLUG_EN);
3969 
3970 		/* Enable in IER... */
3971 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3972 		/* and unmask in IMR */
3973 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3974 	}
3975 
3976 	I915_WRITE(IMR, dev_priv->irq_mask);
3977 	I915_WRITE(IER, enable_mask);
3978 	POSTING_READ(IER);
3979 
3980 	i915_enable_asle_pipestat(dev);
3981 
3982 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3983 	 * just to make the assert_spin_locked check happy. */
3984 	spin_lock_irq(&dev_priv->irq_lock);
3985 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3986 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3987 	spin_unlock_irq(&dev_priv->irq_lock);
3988 
3989 	return 0;
3990 }
3991 
3992 /*
3993  * Returns true when a page flip has completed.
3994  */
3995 static bool i915_handle_vblank(struct drm_device *dev,
3996 			       int plane, int pipe, u32 iir)
3997 {
3998 	struct drm_i915_private *dev_priv = dev->dev_private;
3999 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4000 
4001 	if (!intel_pipe_handle_vblank(dev, pipe))
4002 		return false;
4003 
4004 	if ((iir & flip_pending) == 0)
4005 		goto check_page_flip;
4006 
4007 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4008 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4009 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4010 	 * the flip is completed (no longer pending). Since this doesn't raise
4011 	 * an interrupt per se, we watch for the change at vblank.
4012 	 */
4013 	if (I915_READ(ISR) & flip_pending)
4014 		goto check_page_flip;
4015 
4016 	intel_prepare_page_flip(dev, plane);
4017 	intel_finish_page_flip(dev, pipe);
4018 	return true;
4019 
4020 check_page_flip:
4021 	intel_check_page_flip(dev, pipe);
4022 	return false;
4023 }
4024 
4025 static irqreturn_t i915_irq_handler(int irq, void *arg)
4026 {
4027 	struct drm_device *dev = arg;
4028 	struct drm_i915_private *dev_priv = dev->dev_private;
4029 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4030 	u32 flip_mask =
4031 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4032 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4033 	int pipe, ret = IRQ_NONE;
4034 
4035 	if (!intel_irqs_enabled(dev_priv))
4036 		return IRQ_NONE;
4037 
4038 	iir = I915_READ(IIR);
4039 	do {
4040 		bool irq_received = (iir & ~flip_mask) != 0;
4041 		bool blc_event = false;
4042 
4043 		/* Can't rely on pipestat interrupt bit in iir as it might
4044 		 * have been cleared after the pipestat interrupt was received.
4045 		 * It doesn't set the bit in iir again, but it still produces
4046 		 * interrupts (for non-MSI).
4047 		 */
4048 		spin_lock(&dev_priv->irq_lock);
4049 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4050 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4051 
4052 		for_each_pipe(dev_priv, pipe) {
4053 			int reg = PIPESTAT(pipe);
4054 			pipe_stats[pipe] = I915_READ(reg);
4055 
4056 			/* Clear the PIPE*STAT regs before the IIR */
4057 			if (pipe_stats[pipe] & 0x8000ffff) {
4058 				I915_WRITE(reg, pipe_stats[pipe]);
4059 				irq_received = true;
4060 			}
4061 		}
4062 		spin_unlock(&dev_priv->irq_lock);
4063 
4064 		if (!irq_received)
4065 			break;
4066 
4067 		/* Consume port.  Then clear IIR or we'll miss events */
4068 		if (I915_HAS_HOTPLUG(dev) &&
4069 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4070 			i9xx_hpd_irq_handler(dev);
4071 
4072 		I915_WRITE(IIR, iir & ~flip_mask);
4073 		new_iir = I915_READ(IIR); /* Flush posted writes */
4074 
4075 		if (iir & I915_USER_INTERRUPT)
4076 			notify_ring(&dev_priv->ring[RCS]);
4077 
4078 		for_each_pipe(dev_priv, pipe) {
4079 			int plane = pipe;
4080 			if (HAS_FBC(dev))
4081 				plane = !plane;
4082 
4083 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4084 			    i915_handle_vblank(dev, plane, pipe, iir))
4085 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4086 
4087 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4088 				blc_event = true;
4089 
4090 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4091 				i9xx_pipe_crc_irq_handler(dev, pipe);
4092 
4093 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4094 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4095 								    pipe);
4096 		}
4097 
4098 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4099 			intel_opregion_asle_intr(dev);
4100 
4101 		/* With MSI, interrupts are only generated when iir
4102 		 * transitions from zero to nonzero.  If another bit got
4103 		 * set while we were handling the existing iir bits, then
4104 		 * we would never get another interrupt.
4105 		 *
4106 		 * This is fine on non-MSI as well, as if we hit this path
4107 		 * we avoid exiting the interrupt handler only to generate
4108 		 * another one.
4109 		 *
4110 		 * Note that for MSI this could cause a stray interrupt report
4111 		 * if an interrupt landed in the time between writing IIR and
4112 		 * the posting read.  This should be rare enough to never
4113 		 * trigger the 99% of 100,000 interrupts test for disabling
4114 		 * stray interrupts.
4115 		 */
4116 		ret = IRQ_HANDLED;
4117 		iir = new_iir;
4118 	} while (iir & ~flip_mask);
4119 
4120 	return ret;
4121 }
4122 
4123 static void i915_irq_uninstall(struct drm_device * dev)
4124 {
4125 	struct drm_i915_private *dev_priv = dev->dev_private;
4126 	int pipe;
4127 
4128 	if (I915_HAS_HOTPLUG(dev)) {
4129 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4130 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4131 	}
4132 
4133 	I915_WRITE16(HWSTAM, 0xffff);
4134 	for_each_pipe(dev_priv, pipe) {
4135 		/* Clear enable bits; then clear status bits */
4136 		I915_WRITE(PIPESTAT(pipe), 0);
4137 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4138 	}
4139 	I915_WRITE(IMR, 0xffffffff);
4140 	I915_WRITE(IER, 0x0);
4141 
4142 	I915_WRITE(IIR, I915_READ(IIR));
4143 }
4144 
4145 static void i965_irq_preinstall(struct drm_device * dev)
4146 {
4147 	struct drm_i915_private *dev_priv = dev->dev_private;
4148 	int pipe;
4149 
4150 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4151 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4152 
4153 	I915_WRITE(HWSTAM, 0xeffe);
4154 	for_each_pipe(dev_priv, pipe)
4155 		I915_WRITE(PIPESTAT(pipe), 0);
4156 	I915_WRITE(IMR, 0xffffffff);
4157 	I915_WRITE(IER, 0x0);
4158 	POSTING_READ(IER);
4159 }
4160 
4161 static int i965_irq_postinstall(struct drm_device *dev)
4162 {
4163 	struct drm_i915_private *dev_priv = dev->dev_private;
4164 	u32 enable_mask;
4165 	u32 error_mask;
4166 
4167 	/* Unmask the interrupts that we always want on. */
4168 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4169 			       I915_DISPLAY_PORT_INTERRUPT |
4170 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4171 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4172 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4173 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4174 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4175 
4176 	enable_mask = ~dev_priv->irq_mask;
4177 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4178 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4179 	enable_mask |= I915_USER_INTERRUPT;
4180 
4181 	if (IS_G4X(dev))
4182 		enable_mask |= I915_BSD_USER_INTERRUPT;
4183 
4184 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4185 	 * just to make the assert_spin_locked check happy. */
4186 	spin_lock_irq(&dev_priv->irq_lock);
4187 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4188 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4189 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4190 	spin_unlock_irq(&dev_priv->irq_lock);
4191 
4192 	/*
4193 	 * Enable some error detection, note the instruction error mask
4194 	 * bit is reserved, so we leave it masked.
4195 	 */
4196 	if (IS_G4X(dev)) {
4197 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4198 			       GM45_ERROR_MEM_PRIV |
4199 			       GM45_ERROR_CP_PRIV |
4200 			       I915_ERROR_MEMORY_REFRESH);
4201 	} else {
4202 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4203 			       I915_ERROR_MEMORY_REFRESH);
4204 	}
4205 	I915_WRITE(EMR, error_mask);
4206 
4207 	I915_WRITE(IMR, dev_priv->irq_mask);
4208 	I915_WRITE(IER, enable_mask);
4209 	POSTING_READ(IER);
4210 
4211 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4212 	POSTING_READ(PORT_HOTPLUG_EN);
4213 
4214 	i915_enable_asle_pipestat(dev);
4215 
4216 	return 0;
4217 }
4218 
4219 static void i915_hpd_irq_setup(struct drm_device *dev)
4220 {
4221 	struct drm_i915_private *dev_priv = dev->dev_private;
4222 	u32 hotplug_en;
4223 
4224 	assert_spin_locked(&dev_priv->irq_lock);
4225 
4226 	/* Note HDMI and DP share hotplug bits */
4227 	/* enable bits are the same for all generations */
4228 	hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4229 	/* Programming the CRT detection parameters tends
4230 	   to generate a spurious hotplug event about three
4231 	   seconds later.  So just do it once.
4232 	*/
4233 	if (IS_G4X(dev))
4234 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4235 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4236 
4237 	/* Ignore TV since it's buggy */
4238 	i915_hotplug_interrupt_update_locked(dev_priv,
4239 					     HOTPLUG_INT_EN_MASK |
4240 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4241 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4242 					     hotplug_en);
4243 }
4244 
4245 static irqreturn_t i965_irq_handler(int irq, void *arg)
4246 {
4247 	struct drm_device *dev = arg;
4248 	struct drm_i915_private *dev_priv = dev->dev_private;
4249 	u32 iir, new_iir;
4250 	u32 pipe_stats[I915_MAX_PIPES];
4251 	int ret = IRQ_NONE, pipe;
4252 	u32 flip_mask =
4253 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4254 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4255 
4256 	if (!intel_irqs_enabled(dev_priv))
4257 		return IRQ_NONE;
4258 
4259 	iir = I915_READ(IIR);
4260 
4261 	for (;;) {
4262 		bool irq_received = (iir & ~flip_mask) != 0;
4263 		bool blc_event = false;
4264 
4265 		/* Can't rely on pipestat interrupt bit in iir as it might
4266 		 * have been cleared after the pipestat interrupt was received.
4267 		 * It doesn't set the bit in iir again, but it still produces
4268 		 * interrupts (for non-MSI).
4269 		 */
4270 		spin_lock(&dev_priv->irq_lock);
4271 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4272 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4273 
4274 		for_each_pipe(dev_priv, pipe) {
4275 			int reg = PIPESTAT(pipe);
4276 			pipe_stats[pipe] = I915_READ(reg);
4277 
4278 			/*
4279 			 * Clear the PIPE*STAT regs before the IIR
4280 			 */
4281 			if (pipe_stats[pipe] & 0x8000ffff) {
4282 				I915_WRITE(reg, pipe_stats[pipe]);
4283 				irq_received = true;
4284 			}
4285 		}
4286 		spin_unlock(&dev_priv->irq_lock);
4287 
4288 		if (!irq_received)
4289 			break;
4290 
4291 		ret = IRQ_HANDLED;
4292 
4293 		/* Consume port.  Then clear IIR or we'll miss events */
4294 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4295 			i9xx_hpd_irq_handler(dev);
4296 
4297 		I915_WRITE(IIR, iir & ~flip_mask);
4298 		new_iir = I915_READ(IIR); /* Flush posted writes */
4299 
4300 		if (iir & I915_USER_INTERRUPT)
4301 			notify_ring(&dev_priv->ring[RCS]);
4302 		if (iir & I915_BSD_USER_INTERRUPT)
4303 			notify_ring(&dev_priv->ring[VCS]);
4304 
4305 		for_each_pipe(dev_priv, pipe) {
4306 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4307 			    i915_handle_vblank(dev, pipe, pipe, iir))
4308 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4309 
4310 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4311 				blc_event = true;
4312 
4313 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4314 				i9xx_pipe_crc_irq_handler(dev, pipe);
4315 
4316 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4317 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4318 		}
4319 
4320 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4321 			intel_opregion_asle_intr(dev);
4322 
4323 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4324 			gmbus_irq_handler(dev);
4325 
4326 		/* With MSI, interrupts are only generated when iir
4327 		 * transitions from zero to nonzero.  If another bit got
4328 		 * set while we were handling the existing iir bits, then
4329 		 * we would never get another interrupt.
4330 		 *
4331 		 * This is fine on non-MSI as well, as if we hit this path
4332 		 * we avoid exiting the interrupt handler only to generate
4333 		 * another one.
4334 		 *
4335 		 * Note that for MSI this could cause a stray interrupt report
4336 		 * if an interrupt landed in the time between writing IIR and
4337 		 * the posting read.  This should be rare enough to never
4338 		 * trigger the 99% of 100,000 interrupts test for disabling
4339 		 * stray interrupts.
4340 		 */
4341 		iir = new_iir;
4342 	}
4343 
4344 	return ret;
4345 }
4346 
4347 static void i965_irq_uninstall(struct drm_device * dev)
4348 {
4349 	struct drm_i915_private *dev_priv = dev->dev_private;
4350 	int pipe;
4351 
4352 	if (!dev_priv)
4353 		return;
4354 
4355 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4356 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4357 
4358 	I915_WRITE(HWSTAM, 0xffffffff);
4359 	for_each_pipe(dev_priv, pipe)
4360 		I915_WRITE(PIPESTAT(pipe), 0);
4361 	I915_WRITE(IMR, 0xffffffff);
4362 	I915_WRITE(IER, 0x0);
4363 
4364 	for_each_pipe(dev_priv, pipe)
4365 		I915_WRITE(PIPESTAT(pipe),
4366 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4367 	I915_WRITE(IIR, I915_READ(IIR));
4368 }
4369 
4370 /**
4371  * intel_irq_init - initializes irq support
4372  * @dev_priv: i915 device instance
4373  *
4374  * This function initializes all the irq support including work items, timers
4375  * and all the vtables. It does not setup the interrupt itself though.
4376  */
4377 void intel_irq_init(struct drm_i915_private *dev_priv)
4378 {
4379 	struct drm_device *dev = dev_priv->dev;
4380 
4381 	intel_hpd_init_work(dev_priv);
4382 
4383 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4384 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4385 
4386 	/* Let's track the enabled rps events */
4387 	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4388 		/* WaGsvRC0ResidencyMethod:vlv */
4389 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4390 	else
4391 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4392 
4393 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4394 			  i915_hangcheck_elapsed);
4395 
4396 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4397 
4398 	if (IS_GEN2(dev_priv)) {
4399 		dev->max_vblank_count = 0;
4400 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4401 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4402 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4403 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4404 	} else {
4405 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4406 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4407 	}
4408 
4409 	/*
4410 	 * Opt out of the vblank disable timer on everything except gen2.
4411 	 * Gen2 doesn't have a hardware frame counter and so depends on
4412 	 * vblank interrupts to produce sane vblank seuquence numbers.
4413 	 */
4414 	if (!IS_GEN2(dev_priv))
4415 		dev->vblank_disable_immediate = true;
4416 
4417 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4418 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4419 
4420 	if (IS_CHERRYVIEW(dev_priv)) {
4421 		dev->driver->irq_handler = cherryview_irq_handler;
4422 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4423 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4424 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4425 		dev->driver->enable_vblank = valleyview_enable_vblank;
4426 		dev->driver->disable_vblank = valleyview_disable_vblank;
4427 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4428 	} else if (IS_VALLEYVIEW(dev_priv)) {
4429 		dev->driver->irq_handler = valleyview_irq_handler;
4430 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4431 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4432 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4433 		dev->driver->enable_vblank = valleyview_enable_vblank;
4434 		dev->driver->disable_vblank = valleyview_disable_vblank;
4435 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4436 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4437 		dev->driver->irq_handler = gen8_irq_handler;
4438 		dev->driver->irq_preinstall = gen8_irq_reset;
4439 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4440 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4441 		dev->driver->enable_vblank = gen8_enable_vblank;
4442 		dev->driver->disable_vblank = gen8_disable_vblank;
4443 		if (IS_BROXTON(dev))
4444 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4445 		else if (HAS_PCH_SPT(dev))
4446 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4447 		else
4448 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4449 	} else if (HAS_PCH_SPLIT(dev)) {
4450 		dev->driver->irq_handler = ironlake_irq_handler;
4451 		dev->driver->irq_preinstall = ironlake_irq_reset;
4452 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4453 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4454 		dev->driver->enable_vblank = ironlake_enable_vblank;
4455 		dev->driver->disable_vblank = ironlake_disable_vblank;
4456 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4457 	} else {
4458 		if (INTEL_INFO(dev_priv)->gen == 2) {
4459 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4460 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4461 			dev->driver->irq_handler = i8xx_irq_handler;
4462 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4463 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4464 			dev->driver->irq_preinstall = i915_irq_preinstall;
4465 			dev->driver->irq_postinstall = i915_irq_postinstall;
4466 			dev->driver->irq_uninstall = i915_irq_uninstall;
4467 			dev->driver->irq_handler = i915_irq_handler;
4468 		} else {
4469 			dev->driver->irq_preinstall = i965_irq_preinstall;
4470 			dev->driver->irq_postinstall = i965_irq_postinstall;
4471 			dev->driver->irq_uninstall = i965_irq_uninstall;
4472 			dev->driver->irq_handler = i965_irq_handler;
4473 		}
4474 		if (I915_HAS_HOTPLUG(dev_priv))
4475 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4476 		dev->driver->enable_vblank = i915_enable_vblank;
4477 		dev->driver->disable_vblank = i915_disable_vblank;
4478 	}
4479 }
4480 
4481 /**
4482  * intel_irq_install - enables the hardware interrupt
4483  * @dev_priv: i915 device instance
4484  *
4485  * This function enables the hardware interrupt handling, but leaves the hotplug
4486  * handling still disabled. It is called after intel_irq_init().
4487  *
4488  * In the driver load and resume code we need working interrupts in a few places
4489  * but don't want to deal with the hassle of concurrent probe and hotplug
4490  * workers. Hence the split into this two-stage approach.
4491  */
4492 int intel_irq_install(struct drm_i915_private *dev_priv)
4493 {
4494 	/*
4495 	 * We enable some interrupt sources in our postinstall hooks, so mark
4496 	 * interrupts as enabled _before_ actually enabling them to avoid
4497 	 * special cases in our ordering checks.
4498 	 */
4499 	dev_priv->pm.irqs_enabled = true;
4500 
4501 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4502 }
4503 
4504 /**
4505  * intel_irq_uninstall - finilizes all irq handling
4506  * @dev_priv: i915 device instance
4507  *
4508  * This stops interrupt and hotplug handling and unregisters and frees all
4509  * resources acquired in the init functions.
4510  */
4511 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4512 {
4513 	drm_irq_uninstall(dev_priv->dev);
4514 	intel_hpd_cancel_work(dev_priv);
4515 	dev_priv->pm.irqs_enabled = false;
4516 }
4517 
4518 /**
4519  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4520  * @dev_priv: i915 device instance
4521  *
4522  * This function is used to disable interrupts at runtime, both in the runtime
4523  * pm and the system suspend/resume code.
4524  */
4525 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4526 {
4527 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4528 	dev_priv->pm.irqs_enabled = false;
4529 	synchronize_irq(dev_priv->dev->irq);
4530 }
4531 
4532 /**
4533  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4534  * @dev_priv: i915 device instance
4535  *
4536  * This function is used to enable interrupts at runtime, both in the runtime
4537  * pm and the system suspend/resume code.
4538  */
4539 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4540 {
4541 	dev_priv->pm.irqs_enabled = true;
4542 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4543 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4544 }
4545