xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 275876e2)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 static const u32 hpd_ibx[] = {
41 	[HPD_CRT] = SDE_CRT_HOTPLUG,
42 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47 
48 static const u32 hpd_cpt[] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55 
56 static const u32 hpd_mask_i915[] = {
57 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64 
65 static const u32 hpd_status_g4x[] = {
66 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73 
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82 
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 	POSTING_READ(GEN8_##type##_IMR(which)); \
87 	I915_WRITE(GEN8_##type##_IER(which), 0); \
88 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 	POSTING_READ(GEN8_##type##_IIR(which)); \
90 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 	POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93 
94 #define GEN5_IRQ_RESET(type) do { \
95 	I915_WRITE(type##IMR, 0xffffffff); \
96 	POSTING_READ(type##IMR); \
97 	I915_WRITE(type##IER, 0); \
98 	I915_WRITE(type##IIR, 0xffffffff); \
99 	POSTING_READ(type##IIR); \
100 	I915_WRITE(type##IIR, 0xffffffff); \
101 	POSTING_READ(type##IIR); \
102 } while (0)
103 
104 /*
105  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106  */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 	u32 val = I915_READ(reg); \
109 	if (val) { \
110 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 		     (reg), val); \
112 		I915_WRITE((reg), 0xffffffff); \
113 		POSTING_READ(reg); \
114 		I915_WRITE((reg), 0xffffffff); \
115 		POSTING_READ(reg); \
116 	} \
117 } while (0)
118 
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 	POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125 
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 	I915_WRITE(type##IMR, (imr_val)); \
129 	I915_WRITE(type##IER, (ier_val)); \
130 	POSTING_READ(type##IER); \
131 } while (0)
132 
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 	assert_spin_locked(&dev_priv->irq_lock);
138 
139 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
140 		return;
141 
142 	if ((dev_priv->irq_mask & mask) != 0) {
143 		dev_priv->irq_mask &= ~mask;
144 		I915_WRITE(DEIMR, dev_priv->irq_mask);
145 		POSTING_READ(DEIMR);
146 	}
147 }
148 
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 	assert_spin_locked(&dev_priv->irq_lock);
153 
154 	if (!intel_irqs_enabled(dev_priv))
155 		return;
156 
157 	if ((dev_priv->irq_mask & mask) != mask) {
158 		dev_priv->irq_mask |= mask;
159 		I915_WRITE(DEIMR, dev_priv->irq_mask);
160 		POSTING_READ(DEIMR);
161 	}
162 }
163 
164 /**
165  * ilk_update_gt_irq - update GTIMR
166  * @dev_priv: driver private
167  * @interrupt_mask: mask of interrupt bits to update
168  * @enabled_irq_mask: mask of interrupt bits to enable
169  */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 			      uint32_t interrupt_mask,
172 			      uint32_t enabled_irq_mask)
173 {
174 	assert_spin_locked(&dev_priv->irq_lock);
175 
176 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
177 		return;
178 
179 	dev_priv->gt_irq_mask &= ~interrupt_mask;
180 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 	POSTING_READ(GTIMR);
183 }
184 
185 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 	ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189 
190 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 	ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194 
195 /**
196   * snb_update_pm_irq - update GEN6_PMIMR
197   * @dev_priv: driver private
198   * @interrupt_mask: mask of interrupt bits to update
199   * @enabled_irq_mask: mask of interrupt bits to enable
200   */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 			      uint32_t interrupt_mask,
203 			      uint32_t enabled_irq_mask)
204 {
205 	uint32_t new_val;
206 
207 	assert_spin_locked(&dev_priv->irq_lock);
208 
209 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
210 		return;
211 
212 	new_val = dev_priv->pm_irq_mask;
213 	new_val &= ~interrupt_mask;
214 	new_val |= (~enabled_irq_mask & interrupt_mask);
215 
216 	if (new_val != dev_priv->pm_irq_mask) {
217 		dev_priv->pm_irq_mask = new_val;
218 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 		POSTING_READ(GEN6_PMIMR);
220 	}
221 }
222 
223 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 	snb_update_pm_irq(dev_priv, mask, mask);
226 }
227 
228 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 	snb_update_pm_irq(dev_priv, mask, 0);
231 }
232 
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 	struct drm_i915_private *dev_priv = dev->dev_private;
236 	struct intel_crtc *crtc;
237 	enum pipe pipe;
238 
239 	assert_spin_locked(&dev_priv->irq_lock);
240 
241 	for_each_pipe(pipe) {
242 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243 
244 		if (crtc->cpu_fifo_underrun_disabled)
245 			return false;
246 	}
247 
248 	return true;
249 }
250 
251 /**
252   * bdw_update_pm_irq - update GT interrupt 2
253   * @dev_priv: driver private
254   * @interrupt_mask: mask of interrupt bits to update
255   * @enabled_irq_mask: mask of interrupt bits to enable
256   *
257   * Copied from the snb function, updated with relevant register offsets
258   */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260 			      uint32_t interrupt_mask,
261 			      uint32_t enabled_irq_mask)
262 {
263 	uint32_t new_val;
264 
265 	assert_spin_locked(&dev_priv->irq_lock);
266 
267 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268 		return;
269 
270 	new_val = dev_priv->pm_irq_mask;
271 	new_val &= ~interrupt_mask;
272 	new_val |= (~enabled_irq_mask & interrupt_mask);
273 
274 	if (new_val != dev_priv->pm_irq_mask) {
275 		dev_priv->pm_irq_mask = new_val;
276 		I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277 		POSTING_READ(GEN8_GT_IMR(2));
278 	}
279 }
280 
281 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 	bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285 
286 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288 	bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290 
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293 	struct drm_i915_private *dev_priv = dev->dev_private;
294 	enum pipe pipe;
295 	struct intel_crtc *crtc;
296 
297 	assert_spin_locked(&dev_priv->irq_lock);
298 
299 	for_each_pipe(pipe) {
300 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301 
302 		if (crtc->pch_fifo_underrun_disabled)
303 			return false;
304 	}
305 
306 	return true;
307 }
308 
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311 	struct drm_i915_private *dev_priv = dev->dev_private;
312 	struct intel_crtc *crtc;
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
316 
317 	for_each_intel_crtc(dev, crtc) {
318 		u32 reg = PIPESTAT(crtc->pipe);
319 		u32 pipestat;
320 
321 		if (crtc->cpu_fifo_underrun_disabled)
322 			continue;
323 
324 		pipestat = I915_READ(reg) & 0xffff0000;
325 		if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326 			continue;
327 
328 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329 		POSTING_READ(reg);
330 
331 		DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332 	}
333 
334 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336 
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338 					     enum pipe pipe,
339 					     bool enable, bool old)
340 {
341 	struct drm_i915_private *dev_priv = dev->dev_private;
342 	u32 reg = PIPESTAT(pipe);
343 	u32 pipestat = I915_READ(reg) & 0xffff0000;
344 
345 	assert_spin_locked(&dev_priv->irq_lock);
346 
347 	if (enable) {
348 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349 		POSTING_READ(reg);
350 	} else {
351 		if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353 	}
354 }
355 
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357 						 enum pipe pipe, bool enable)
358 {
359 	struct drm_i915_private *dev_priv = dev->dev_private;
360 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361 					  DE_PIPEB_FIFO_UNDERRUN;
362 
363 	if (enable)
364 		ironlake_enable_display_irq(dev_priv, bit);
365 	else
366 		ironlake_disable_display_irq(dev_priv, bit);
367 }
368 
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370 						  enum pipe pipe,
371 						  bool enable, bool old)
372 {
373 	struct drm_i915_private *dev_priv = dev->dev_private;
374 	if (enable) {
375 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376 
377 		if (!ivb_can_enable_err_int(dev))
378 			return;
379 
380 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381 	} else {
382 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383 
384 		if (old &&
385 		    I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386 			DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387 				  pipe_name(pipe));
388 		}
389 	}
390 }
391 
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393 						  enum pipe pipe, bool enable)
394 {
395 	struct drm_i915_private *dev_priv = dev->dev_private;
396 
397 	assert_spin_locked(&dev_priv->irq_lock);
398 
399 	if (enable)
400 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401 	else
402 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406 
407 /**
408  * ibx_display_interrupt_update - update SDEIMR
409  * @dev_priv: driver private
410  * @interrupt_mask: mask of interrupt bits to update
411  * @enabled_irq_mask: mask of interrupt bits to enable
412  */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414 					 uint32_t interrupt_mask,
415 					 uint32_t enabled_irq_mask)
416 {
417 	uint32_t sdeimr = I915_READ(SDEIMR);
418 	sdeimr &= ~interrupt_mask;
419 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
420 
421 	assert_spin_locked(&dev_priv->irq_lock);
422 
423 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
424 		return;
425 
426 	I915_WRITE(SDEIMR, sdeimr);
427 	POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432 	ibx_display_interrupt_update((dev_priv), (bits), 0)
433 
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435 					    enum transcoder pch_transcoder,
436 					    bool enable)
437 {
438 	struct drm_i915_private *dev_priv = dev->dev_private;
439 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441 
442 	if (enable)
443 		ibx_enable_display_interrupt(dev_priv, bit);
444 	else
445 		ibx_disable_display_interrupt(dev_priv, bit);
446 }
447 
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449 					    enum transcoder pch_transcoder,
450 					    bool enable, bool old)
451 {
452 	struct drm_i915_private *dev_priv = dev->dev_private;
453 
454 	if (enable) {
455 		I915_WRITE(SERR_INT,
456 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457 
458 		if (!cpt_can_enable_serr_int(dev))
459 			return;
460 
461 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462 	} else {
463 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464 
465 		if (old && I915_READ(SERR_INT) &
466 		    SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467 			DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468 				  transcoder_name(pch_transcoder));
469 		}
470 	}
471 }
472 
473 /**
474  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475  * @dev: drm device
476  * @pipe: pipe
477  * @enable: true if we want to report FIFO underrun errors, false otherwise
478  *
479  * This function makes us disable or enable CPU fifo underruns for a specific
480  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481  * reporting for one pipe may also disable all the other CPU error interruts for
482  * the other pipes, due to the fact that there's just one interrupt mask/enable
483  * bit for all the pipes.
484  *
485  * Returns the previous state of underrun reporting.
486  */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488 						    enum pipe pipe, bool enable)
489 {
490 	struct drm_i915_private *dev_priv = dev->dev_private;
491 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 	bool old;
494 
495 	assert_spin_locked(&dev_priv->irq_lock);
496 
497 	old = !intel_crtc->cpu_fifo_underrun_disabled;
498 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
499 
500 	if (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
501 		i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502 	else if (IS_GEN5(dev) || IS_GEN6(dev))
503 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504 	else if (IS_GEN7(dev))
505 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506 	else if (IS_GEN8(dev))
507 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508 
509 	return old;
510 }
511 
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513 					   enum pipe pipe, bool enable)
514 {
515 	struct drm_i915_private *dev_priv = dev->dev_private;
516 	unsigned long flags;
517 	bool ret;
518 
519 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
520 	ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522 
523 	return ret;
524 }
525 
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527 						  enum pipe pipe)
528 {
529 	struct drm_i915_private *dev_priv = dev->dev_private;
530 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532 
533 	return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535 
536 /**
537  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538  * @dev: drm device
539  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540  * @enable: true if we want to report FIFO underrun errors, false otherwise
541  *
542  * This function makes us disable or enable PCH fifo underruns for a specific
543  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544  * underrun reporting for one transcoder may also disable all the other PCH
545  * error interruts for the other transcoders, due to the fact that there's just
546  * one interrupt mask/enable bit for all the transcoders.
547  *
548  * Returns the previous state of underrun reporting.
549  */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551 					   enum transcoder pch_transcoder,
552 					   bool enable)
553 {
554 	struct drm_i915_private *dev_priv = dev->dev_private;
555 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557 	unsigned long flags;
558 	bool old;
559 
560 	/*
561 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562 	 * has only one pch transcoder A that all pipes can use. To avoid racy
563 	 * pch transcoder -> pipe lookups from interrupt code simply store the
564 	 * underrun statistics in crtc A. Since we never expose this anywhere
565 	 * nor use it outside of the fifo underrun code here using the "wrong"
566 	 * crtc on LPT won't cause issues.
567 	 */
568 
569 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
570 
571 	old = !intel_crtc->pch_fifo_underrun_disabled;
572 	intel_crtc->pch_fifo_underrun_disabled = !enable;
573 
574 	if (HAS_PCH_IBX(dev))
575 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576 	else
577 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578 
579 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580 	return old;
581 }
582 
583 
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586 		       u32 enable_mask, u32 status_mask)
587 {
588 	u32 reg = PIPESTAT(pipe);
589 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590 
591 	assert_spin_locked(&dev_priv->irq_lock);
592 
593 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
595 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596 		      pipe_name(pipe), enable_mask, status_mask))
597 		return;
598 
599 	if ((pipestat & enable_mask) == enable_mask)
600 		return;
601 
602 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603 
604 	/* Enable the interrupt, clear any pending status */
605 	pipestat |= enable_mask | status_mask;
606 	I915_WRITE(reg, pipestat);
607 	POSTING_READ(reg);
608 }
609 
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612 		        u32 enable_mask, u32 status_mask)
613 {
614 	u32 reg = PIPESTAT(pipe);
615 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616 
617 	assert_spin_locked(&dev_priv->irq_lock);
618 
619 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
621 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622 		      pipe_name(pipe), enable_mask, status_mask))
623 		return;
624 
625 	if ((pipestat & enable_mask) == 0)
626 		return;
627 
628 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629 
630 	pipestat &= ~enable_mask;
631 	I915_WRITE(reg, pipestat);
632 	POSTING_READ(reg);
633 }
634 
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637 	u32 enable_mask = status_mask << 16;
638 
639 	/*
640 	 * On pipe A we don't support the PSR interrupt yet,
641 	 * on pipe B and C the same bit MBZ.
642 	 */
643 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644 		return 0;
645 	/*
646 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
647 	 * A the same bit is for perf counters which we don't use either.
648 	 */
649 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650 		return 0;
651 
652 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
654 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
655 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659 
660 	return enable_mask;
661 }
662 
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665 		     u32 status_mask)
666 {
667 	u32 enable_mask;
668 
669 	if (IS_VALLEYVIEW(dev_priv->dev))
670 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671 							   status_mask);
672 	else
673 		enable_mask = status_mask << 16;
674 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676 
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679 		      u32 status_mask)
680 {
681 	u32 enable_mask;
682 
683 	if (IS_VALLEYVIEW(dev_priv->dev))
684 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685 							   status_mask);
686 	else
687 		enable_mask = status_mask << 16;
688 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690 
691 /**
692  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693  */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696 	struct drm_i915_private *dev_priv = dev->dev_private;
697 	unsigned long irqflags;
698 
699 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700 		return;
701 
702 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703 
704 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705 	if (INTEL_INFO(dev)->gen >= 4)
706 		i915_enable_pipestat(dev_priv, PIPE_A,
707 				     PIPE_LEGACY_BLC_EVENT_STATUS);
708 
709 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711 
712 /**
713  * i915_pipe_enabled - check if a pipe is enabled
714  * @dev: DRM device
715  * @pipe: pipe to check
716  *
717  * Reading certain registers when the pipe is disabled can hang the chip.
718  * Use this routine to make sure the PLL is running and the pipe is active
719  * before reading such registers if unsure.
720  */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724 	struct drm_i915_private *dev_priv = dev->dev_private;
725 
726 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727 		/* Locking is horribly broken here, but whatever. */
728 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730 
731 		return intel_crtc->active;
732 	} else {
733 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734 	}
735 }
736 
737 /*
738  * This timing diagram depicts the video signal in and
739  * around the vertical blanking period.
740  *
741  * Assumptions about the fictitious mode used in this example:
742  *  vblank_start >= 3
743  *  vsync_start = vblank_start + 1
744  *  vsync_end = vblank_start + 2
745  *  vtotal = vblank_start + 3
746  *
747  *           start of vblank:
748  *           latch double buffered registers
749  *           increment frame counter (ctg+)
750  *           generate start of vblank interrupt (gen4+)
751  *           |
752  *           |          frame start:
753  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
754  *           |          may be shifted forward 1-3 extra lines via PIPECONF
755  *           |          |
756  *           |          |  start of vsync:
757  *           |          |  generate vsync interrupt
758  *           |          |  |
759  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
760  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
761  * ----va---> <-----------------vb--------------------> <--------va-------------
762  *       |          |       <----vs----->                     |
763  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766  *       |          |                                         |
767  *       last visible pixel                                   first visible pixel
768  *                  |                                         increment frame counter (gen3/4)
769  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
770  *
771  * x  = horizontal active
772  * _  = horizontal blanking
773  * hs = horizontal sync
774  * va = vertical active
775  * vb = vertical blanking
776  * vs = vertical sync
777  * vbs = vblank_start (number)
778  *
779  * Summary:
780  * - most events happen at the start of horizontal sync
781  * - frame start happens at the start of horizontal blank, 1-4 lines
782  *   (depending on PIPECONF settings) after the start of vblank
783  * - gen3/4 pixel and frame counter are synchronized with the start
784  *   of horizontal active on the first line of vertical active
785  */
786 
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789 	/* Gen2 doesn't have a hardware frame counter */
790 	return 0;
791 }
792 
793 /* Called from drm generic code, passed a 'crtc', which
794  * we use as a pipe index
795  */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798 	struct drm_i915_private *dev_priv = dev->dev_private;
799 	unsigned long high_frame;
800 	unsigned long low_frame;
801 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802 
803 	if (!i915_pipe_enabled(dev, pipe)) {
804 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805 				"pipe %c\n", pipe_name(pipe));
806 		return 0;
807 	}
808 
809 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810 		struct intel_crtc *intel_crtc =
811 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812 		const struct drm_display_mode *mode =
813 			&intel_crtc->config.adjusted_mode;
814 
815 		htotal = mode->crtc_htotal;
816 		hsync_start = mode->crtc_hsync_start;
817 		vbl_start = mode->crtc_vblank_start;
818 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
820 	} else {
821 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
822 
823 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824 		hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
825 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826 		if ((I915_READ(PIPECONF(cpu_transcoder)) &
827 		     PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
829 	}
830 
831 	/* Convert to pixel count */
832 	vbl_start *= htotal;
833 
834 	/* Start of vblank event occurs at start of hsync */
835 	vbl_start -= htotal - hsync_start;
836 
837 	high_frame = PIPEFRAME(pipe);
838 	low_frame = PIPEFRAMEPIXEL(pipe);
839 
840 	/*
841 	 * High & low register fields aren't synchronized, so make sure
842 	 * we get a low value that's stable across two reads of the high
843 	 * register.
844 	 */
845 	do {
846 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847 		low   = I915_READ(low_frame);
848 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849 	} while (high1 != high2);
850 
851 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
852 	pixel = low & PIPE_PIXEL_MASK;
853 	low >>= PIPE_FRAME_LOW_SHIFT;
854 
855 	/*
856 	 * The frame counter increments at beginning of active.
857 	 * Cook up a vblank counter by also checking the pixel
858 	 * counter against vblank start.
859 	 */
860 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862 
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865 	struct drm_i915_private *dev_priv = dev->dev_private;
866 	int reg = PIPE_FRMCOUNT_GM45(pipe);
867 
868 	if (!i915_pipe_enabled(dev, pipe)) {
869 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870 				 "pipe %c\n", pipe_name(pipe));
871 		return 0;
872 	}
873 
874 	return I915_READ(reg);
875 }
876 
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879 
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882 	struct drm_device *dev = crtc->base.dev;
883 	struct drm_i915_private *dev_priv = dev->dev_private;
884 	const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885 	enum pipe pipe = crtc->pipe;
886 	int position, vtotal;
887 
888 	vtotal = mode->crtc_vtotal;
889 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890 		vtotal /= 2;
891 
892 	if (IS_GEN2(dev))
893 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894 	else
895 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896 
897 	/*
898 	 * See update_scanline_offset() for the details on the
899 	 * scanline_offset adjustment.
900 	 */
901 	return (position + crtc->scanline_offset) % vtotal;
902 }
903 
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905 				    unsigned int flags, int *vpos, int *hpos,
906 				    ktime_t *stime, ktime_t *etime)
907 {
908 	struct drm_i915_private *dev_priv = dev->dev_private;
909 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912 	int position;
913 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914 	bool in_vbl = true;
915 	int ret = 0;
916 	unsigned long irqflags;
917 
918 	if (!intel_crtc->active) {
919 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920 				 "pipe %c\n", pipe_name(pipe));
921 		return 0;
922 	}
923 
924 	htotal = mode->crtc_htotal;
925 	hsync_start = mode->crtc_hsync_start;
926 	vtotal = mode->crtc_vtotal;
927 	vbl_start = mode->crtc_vblank_start;
928 	vbl_end = mode->crtc_vblank_end;
929 
930 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
932 		vbl_end /= 2;
933 		vtotal /= 2;
934 	}
935 
936 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937 
938 	/*
939 	 * Lock uncore.lock, as we will do multiple timing critical raw
940 	 * register reads, potentially with preemption disabled, so the
941 	 * following code must not block on uncore.lock.
942 	 */
943 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944 
945 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946 
947 	/* Get optional system timestamp before query. */
948 	if (stime)
949 		*stime = ktime_get();
950 
951 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952 		/* No obvious pixelcount register. Only query vertical
953 		 * scanout position from Display scan line register.
954 		 */
955 		position = __intel_get_crtc_scanline(intel_crtc);
956 	} else {
957 		/* Have access to pixelcount since start of frame.
958 		 * We can split this into vertical and horizontal
959 		 * scanout position.
960 		 */
961 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962 
963 		/* convert to pixel counts */
964 		vbl_start *= htotal;
965 		vbl_end *= htotal;
966 		vtotal *= htotal;
967 
968 		/*
969 		 * In interlaced modes, the pixel counter counts all pixels,
970 		 * so one field will have htotal more pixels. In order to avoid
971 		 * the reported position from jumping backwards when the pixel
972 		 * counter is beyond the length of the shorter field, just
973 		 * clamp the position the length of the shorter field. This
974 		 * matches how the scanline counter based position works since
975 		 * the scanline counter doesn't count the two half lines.
976 		 */
977 		if (position >= vtotal)
978 			position = vtotal - 1;
979 
980 		/*
981 		 * Start of vblank interrupt is triggered at start of hsync,
982 		 * just prior to the first active line of vblank. However we
983 		 * consider lines to start at the leading edge of horizontal
984 		 * active. So, should we get here before we've crossed into
985 		 * the horizontal active of the first line in vblank, we would
986 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987 		 * always add htotal-hsync_start to the current pixel position.
988 		 */
989 		position = (position + htotal - hsync_start) % vtotal;
990 	}
991 
992 	/* Get optional system timestamp after query. */
993 	if (etime)
994 		*etime = ktime_get();
995 
996 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997 
998 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999 
1000 	in_vbl = position >= vbl_start && position < vbl_end;
1001 
1002 	/*
1003 	 * While in vblank, position will be negative
1004 	 * counting up towards 0 at vbl_end. And outside
1005 	 * vblank, position will be positive counting
1006 	 * up since vbl_end.
1007 	 */
1008 	if (position >= vbl_start)
1009 		position -= vbl_end;
1010 	else
1011 		position += vtotal - vbl_end;
1012 
1013 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014 		*vpos = position;
1015 		*hpos = 0;
1016 	} else {
1017 		*vpos = position / htotal;
1018 		*hpos = position - (*vpos * htotal);
1019 	}
1020 
1021 	/* In vblank? */
1022 	if (in_vbl)
1023 		ret |= DRM_SCANOUTPOS_INVBL;
1024 
1025 	return ret;
1026 }
1027 
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031 	unsigned long irqflags;
1032 	int position;
1033 
1034 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035 	position = __intel_get_crtc_scanline(crtc);
1036 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037 
1038 	return position;
1039 }
1040 
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042 			      int *max_error,
1043 			      struct timeval *vblank_time,
1044 			      unsigned flags)
1045 {
1046 	struct drm_crtc *crtc;
1047 
1048 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049 		DRM_ERROR("Invalid crtc %d\n", pipe);
1050 		return -EINVAL;
1051 	}
1052 
1053 	/* Get drm_crtc to timestamp: */
1054 	crtc = intel_get_crtc_for_pipe(dev, pipe);
1055 	if (crtc == NULL) {
1056 		DRM_ERROR("Invalid crtc %d\n", pipe);
1057 		return -EINVAL;
1058 	}
1059 
1060 	if (!crtc->enabled) {
1061 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062 		return -EBUSY;
1063 	}
1064 
1065 	/* Helper routine in DRM core does all the work: */
1066 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067 						     vblank_time, flags,
1068 						     crtc,
1069 						     &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071 
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073 				struct drm_connector *connector)
1074 {
1075 	enum drm_connector_status old_status;
1076 
1077 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078 	old_status = connector->status;
1079 
1080 	connector->status = connector->funcs->detect(connector, false);
1081 	if (old_status == connector->status)
1082 		return false;
1083 
1084 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085 		      connector->base.id,
1086 		      connector->name,
1087 		      drm_get_connector_status_name(old_status),
1088 		      drm_get_connector_status_name(connector->status));
1089 
1090 	return true;
1091 }
1092 
1093 static void i915_digport_work_func(struct work_struct *work)
1094 {
1095 	struct drm_i915_private *dev_priv =
1096 		container_of(work, struct drm_i915_private, dig_port_work);
1097 	unsigned long irqflags;
1098 	u32 long_port_mask, short_port_mask;
1099 	struct intel_digital_port *intel_dig_port;
1100 	int i, ret;
1101 	u32 old_bits = 0;
1102 
1103 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1104 	long_port_mask = dev_priv->long_hpd_port_mask;
1105 	dev_priv->long_hpd_port_mask = 0;
1106 	short_port_mask = dev_priv->short_hpd_port_mask;
1107 	dev_priv->short_hpd_port_mask = 0;
1108 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1109 
1110 	for (i = 0; i < I915_MAX_PORTS; i++) {
1111 		bool valid = false;
1112 		bool long_hpd = false;
1113 		intel_dig_port = dev_priv->hpd_irq_port[i];
1114 		if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1115 			continue;
1116 
1117 		if (long_port_mask & (1 << i))  {
1118 			valid = true;
1119 			long_hpd = true;
1120 		} else if (short_port_mask & (1 << i))
1121 			valid = true;
1122 
1123 		if (valid) {
1124 			ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1125 			if (ret == true) {
1126 				/* if we get true fallback to old school hpd */
1127 				old_bits |= (1 << intel_dig_port->base.hpd_pin);
1128 			}
1129 		}
1130 	}
1131 
1132 	if (old_bits) {
1133 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1134 		dev_priv->hpd_event_bits |= old_bits;
1135 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1136 		schedule_work(&dev_priv->hotplug_work);
1137 	}
1138 }
1139 
1140 /*
1141  * Handle hotplug events outside the interrupt handler proper.
1142  */
1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1144 
1145 static void i915_hotplug_work_func(struct work_struct *work)
1146 {
1147 	struct drm_i915_private *dev_priv =
1148 		container_of(work, struct drm_i915_private, hotplug_work);
1149 	struct drm_device *dev = dev_priv->dev;
1150 	struct drm_mode_config *mode_config = &dev->mode_config;
1151 	struct intel_connector *intel_connector;
1152 	struct intel_encoder *intel_encoder;
1153 	struct drm_connector *connector;
1154 	unsigned long irqflags;
1155 	bool hpd_disabled = false;
1156 	bool changed = false;
1157 	u32 hpd_event_bits;
1158 
1159 	mutex_lock(&mode_config->mutex);
1160 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
1161 
1162 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1163 
1164 	hpd_event_bits = dev_priv->hpd_event_bits;
1165 	dev_priv->hpd_event_bits = 0;
1166 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1167 		intel_connector = to_intel_connector(connector);
1168 		if (!intel_connector->encoder)
1169 			continue;
1170 		intel_encoder = intel_connector->encoder;
1171 		if (intel_encoder->hpd_pin > HPD_NONE &&
1172 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1173 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
1174 			DRM_INFO("HPD interrupt storm detected on connector %s: "
1175 				 "switching from hotplug detection to polling\n",
1176 				connector->name);
1177 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1178 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
1179 				| DRM_CONNECTOR_POLL_DISCONNECT;
1180 			hpd_disabled = true;
1181 		}
1182 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1183 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1184 				      connector->name, intel_encoder->hpd_pin);
1185 		}
1186 	}
1187 	 /* if there were no outputs to poll, poll was disabled,
1188 	  * therefore make sure it's enabled when disabling HPD on
1189 	  * some connectors */
1190 	if (hpd_disabled) {
1191 		drm_kms_helper_poll_enable(dev);
1192 		mod_timer(&dev_priv->hotplug_reenable_timer,
1193 			  jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1194 	}
1195 
1196 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1197 
1198 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1199 		intel_connector = to_intel_connector(connector);
1200 		if (!intel_connector->encoder)
1201 			continue;
1202 		intel_encoder = intel_connector->encoder;
1203 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1204 			if (intel_encoder->hot_plug)
1205 				intel_encoder->hot_plug(intel_encoder);
1206 			if (intel_hpd_irq_event(dev, connector))
1207 				changed = true;
1208 		}
1209 	}
1210 	mutex_unlock(&mode_config->mutex);
1211 
1212 	if (changed)
1213 		drm_kms_helper_hotplug_event(dev);
1214 }
1215 
1216 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1217 {
1218 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
1219 }
1220 
1221 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1222 {
1223 	struct drm_i915_private *dev_priv = dev->dev_private;
1224 	u32 busy_up, busy_down, max_avg, min_avg;
1225 	u8 new_delay;
1226 
1227 	spin_lock(&mchdev_lock);
1228 
1229 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1230 
1231 	new_delay = dev_priv->ips.cur_delay;
1232 
1233 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1234 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1235 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1236 	max_avg = I915_READ(RCBMAXAVG);
1237 	min_avg = I915_READ(RCBMINAVG);
1238 
1239 	/* Handle RCS change request from hw */
1240 	if (busy_up > max_avg) {
1241 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1242 			new_delay = dev_priv->ips.cur_delay - 1;
1243 		if (new_delay < dev_priv->ips.max_delay)
1244 			new_delay = dev_priv->ips.max_delay;
1245 	} else if (busy_down < min_avg) {
1246 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1247 			new_delay = dev_priv->ips.cur_delay + 1;
1248 		if (new_delay > dev_priv->ips.min_delay)
1249 			new_delay = dev_priv->ips.min_delay;
1250 	}
1251 
1252 	if (ironlake_set_drps(dev, new_delay))
1253 		dev_priv->ips.cur_delay = new_delay;
1254 
1255 	spin_unlock(&mchdev_lock);
1256 
1257 	return;
1258 }
1259 
1260 static void notify_ring(struct drm_device *dev,
1261 			struct intel_engine_cs *ring)
1262 {
1263 	if (!intel_ring_initialized(ring))
1264 		return;
1265 
1266 	trace_i915_gem_request_complete(ring);
1267 
1268 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1269 		intel_notify_mmio_flip(ring);
1270 
1271 	wake_up_all(&ring->irq_queue);
1272 	i915_queue_hangcheck(dev);
1273 }
1274 
1275 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1276 			    struct intel_rps_ei *rps_ei)
1277 {
1278 	u32 cz_ts, cz_freq_khz;
1279 	u32 render_count, media_count;
1280 	u32 elapsed_render, elapsed_media, elapsed_time;
1281 	u32 residency = 0;
1282 
1283 	cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1284 	cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1285 
1286 	render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1287 	media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1288 
1289 	if (rps_ei->cz_clock == 0) {
1290 		rps_ei->cz_clock = cz_ts;
1291 		rps_ei->render_c0 = render_count;
1292 		rps_ei->media_c0 = media_count;
1293 
1294 		return dev_priv->rps.cur_freq;
1295 	}
1296 
1297 	elapsed_time = cz_ts - rps_ei->cz_clock;
1298 	rps_ei->cz_clock = cz_ts;
1299 
1300 	elapsed_render = render_count - rps_ei->render_c0;
1301 	rps_ei->render_c0 = render_count;
1302 
1303 	elapsed_media = media_count - rps_ei->media_c0;
1304 	rps_ei->media_c0 = media_count;
1305 
1306 	/* Convert all the counters into common unit of milli sec */
1307 	elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1308 	elapsed_render /=  cz_freq_khz;
1309 	elapsed_media /= cz_freq_khz;
1310 
1311 	/*
1312 	 * Calculate overall C0 residency percentage
1313 	 * only if elapsed time is non zero
1314 	 */
1315 	if (elapsed_time) {
1316 		residency =
1317 			((max(elapsed_render, elapsed_media) * 100)
1318 				/ elapsed_time);
1319 	}
1320 
1321 	return residency;
1322 }
1323 
1324 /**
1325  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1326  * busy-ness calculated from C0 counters of render & media power wells
1327  * @dev_priv: DRM device private
1328  *
1329  */
1330 static u32 vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1331 {
1332 	u32 residency_C0_up = 0, residency_C0_down = 0;
1333 	u8 new_delay, adj;
1334 
1335 	dev_priv->rps.ei_interrupt_count++;
1336 
1337 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1338 
1339 
1340 	if (dev_priv->rps.up_ei.cz_clock == 0) {
1341 		vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1342 		vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1343 		return dev_priv->rps.cur_freq;
1344 	}
1345 
1346 
1347 	/*
1348 	 * To down throttle, C0 residency should be less than down threshold
1349 	 * for continous EI intervals. So calculate down EI counters
1350 	 * once in VLV_INT_COUNT_FOR_DOWN_EI
1351 	 */
1352 	if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1353 
1354 		dev_priv->rps.ei_interrupt_count = 0;
1355 
1356 		residency_C0_down = vlv_c0_residency(dev_priv,
1357 						     &dev_priv->rps.down_ei);
1358 	} else {
1359 		residency_C0_up = vlv_c0_residency(dev_priv,
1360 						   &dev_priv->rps.up_ei);
1361 	}
1362 
1363 	new_delay = dev_priv->rps.cur_freq;
1364 
1365 	adj = dev_priv->rps.last_adj;
1366 	/* C0 residency is greater than UP threshold. Increase Frequency */
1367 	if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1368 		if (adj > 0)
1369 			adj *= 2;
1370 		else
1371 			adj = 1;
1372 
1373 		if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1374 			new_delay = dev_priv->rps.cur_freq + adj;
1375 
1376 		/*
1377 		 * For better performance, jump directly
1378 		 * to RPe if we're below it.
1379 		 */
1380 		if (new_delay < dev_priv->rps.efficient_freq)
1381 			new_delay = dev_priv->rps.efficient_freq;
1382 
1383 	} else if (!dev_priv->rps.ei_interrupt_count &&
1384 			(residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1385 		if (adj < 0)
1386 			adj *= 2;
1387 		else
1388 			adj = -1;
1389 		/*
1390 		 * This means, C0 residency is less than down threshold over
1391 		 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1392 		 */
1393 		if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1394 			new_delay = dev_priv->rps.cur_freq + adj;
1395 	}
1396 
1397 	return new_delay;
1398 }
1399 
1400 static void gen6_pm_rps_work(struct work_struct *work)
1401 {
1402 	struct drm_i915_private *dev_priv =
1403 		container_of(work, struct drm_i915_private, rps.work);
1404 	u32 pm_iir;
1405 	int new_delay, adj;
1406 
1407 	spin_lock_irq(&dev_priv->irq_lock);
1408 	pm_iir = dev_priv->rps.pm_iir;
1409 	dev_priv->rps.pm_iir = 0;
1410 	if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1411 		gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1412 	else {
1413 		/* Make sure not to corrupt PMIMR state used by ringbuffer */
1414 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1415 	}
1416 	spin_unlock_irq(&dev_priv->irq_lock);
1417 
1418 	/* Make sure we didn't queue anything we're not going to process. */
1419 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1420 
1421 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1422 		return;
1423 
1424 	mutex_lock(&dev_priv->rps.hw_lock);
1425 
1426 	adj = dev_priv->rps.last_adj;
1427 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1428 		if (adj > 0)
1429 			adj *= 2;
1430 		else {
1431 			/* CHV needs even encode values */
1432 			adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1433 		}
1434 		new_delay = dev_priv->rps.cur_freq + adj;
1435 
1436 		/*
1437 		 * For better performance, jump directly
1438 		 * to RPe if we're below it.
1439 		 */
1440 		if (new_delay < dev_priv->rps.efficient_freq)
1441 			new_delay = dev_priv->rps.efficient_freq;
1442 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1443 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1444 			new_delay = dev_priv->rps.efficient_freq;
1445 		else
1446 			new_delay = dev_priv->rps.min_freq_softlimit;
1447 		adj = 0;
1448 	} else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1449 		new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1450 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1451 		if (adj < 0)
1452 			adj *= 2;
1453 		else {
1454 			/* CHV needs even encode values */
1455 			adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1456 		}
1457 		new_delay = dev_priv->rps.cur_freq + adj;
1458 	} else { /* unknown event */
1459 		new_delay = dev_priv->rps.cur_freq;
1460 	}
1461 
1462 	/* sysfs frequency interfaces may have snuck in while servicing the
1463 	 * interrupt
1464 	 */
1465 	new_delay = clamp_t(int, new_delay,
1466 			    dev_priv->rps.min_freq_softlimit,
1467 			    dev_priv->rps.max_freq_softlimit);
1468 
1469 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1470 
1471 	if (IS_VALLEYVIEW(dev_priv->dev))
1472 		valleyview_set_rps(dev_priv->dev, new_delay);
1473 	else
1474 		gen6_set_rps(dev_priv->dev, new_delay);
1475 
1476 	mutex_unlock(&dev_priv->rps.hw_lock);
1477 }
1478 
1479 
1480 /**
1481  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1482  * occurred.
1483  * @work: workqueue struct
1484  *
1485  * Doesn't actually do anything except notify userspace. As a consequence of
1486  * this event, userspace should try to remap the bad rows since statistically
1487  * it is likely the same row is more likely to go bad again.
1488  */
1489 static void ivybridge_parity_work(struct work_struct *work)
1490 {
1491 	struct drm_i915_private *dev_priv =
1492 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1493 	u32 error_status, row, bank, subbank;
1494 	char *parity_event[6];
1495 	uint32_t misccpctl;
1496 	unsigned long flags;
1497 	uint8_t slice = 0;
1498 
1499 	/* We must turn off DOP level clock gating to access the L3 registers.
1500 	 * In order to prevent a get/put style interface, acquire struct mutex
1501 	 * any time we access those registers.
1502 	 */
1503 	mutex_lock(&dev_priv->dev->struct_mutex);
1504 
1505 	/* If we've screwed up tracking, just let the interrupt fire again */
1506 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1507 		goto out;
1508 
1509 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1510 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1511 	POSTING_READ(GEN7_MISCCPCTL);
1512 
1513 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1514 		u32 reg;
1515 
1516 		slice--;
1517 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1518 			break;
1519 
1520 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1521 
1522 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1523 
1524 		error_status = I915_READ(reg);
1525 		row = GEN7_PARITY_ERROR_ROW(error_status);
1526 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1527 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1528 
1529 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1530 		POSTING_READ(reg);
1531 
1532 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1533 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1534 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1535 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1536 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1537 		parity_event[5] = NULL;
1538 
1539 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1540 				   KOBJ_CHANGE, parity_event);
1541 
1542 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1543 			  slice, row, bank, subbank);
1544 
1545 		kfree(parity_event[4]);
1546 		kfree(parity_event[3]);
1547 		kfree(parity_event[2]);
1548 		kfree(parity_event[1]);
1549 	}
1550 
1551 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1552 
1553 out:
1554 	WARN_ON(dev_priv->l3_parity.which_slice);
1555 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1556 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1557 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1558 
1559 	mutex_unlock(&dev_priv->dev->struct_mutex);
1560 }
1561 
1562 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1563 {
1564 	struct drm_i915_private *dev_priv = dev->dev_private;
1565 
1566 	if (!HAS_L3_DPF(dev))
1567 		return;
1568 
1569 	spin_lock(&dev_priv->irq_lock);
1570 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1571 	spin_unlock(&dev_priv->irq_lock);
1572 
1573 	iir &= GT_PARITY_ERROR(dev);
1574 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1575 		dev_priv->l3_parity.which_slice |= 1 << 1;
1576 
1577 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1578 		dev_priv->l3_parity.which_slice |= 1 << 0;
1579 
1580 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1581 }
1582 
1583 static void ilk_gt_irq_handler(struct drm_device *dev,
1584 			       struct drm_i915_private *dev_priv,
1585 			       u32 gt_iir)
1586 {
1587 	if (gt_iir &
1588 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1589 		notify_ring(dev, &dev_priv->ring[RCS]);
1590 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1591 		notify_ring(dev, &dev_priv->ring[VCS]);
1592 }
1593 
1594 static void snb_gt_irq_handler(struct drm_device *dev,
1595 			       struct drm_i915_private *dev_priv,
1596 			       u32 gt_iir)
1597 {
1598 
1599 	if (gt_iir &
1600 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1601 		notify_ring(dev, &dev_priv->ring[RCS]);
1602 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1603 		notify_ring(dev, &dev_priv->ring[VCS]);
1604 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1605 		notify_ring(dev, &dev_priv->ring[BCS]);
1606 
1607 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1608 		      GT_BSD_CS_ERROR_INTERRUPT |
1609 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1610 		i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1611 				  gt_iir);
1612 	}
1613 
1614 	if (gt_iir & GT_PARITY_ERROR(dev))
1615 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1616 }
1617 
1618 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1619 {
1620 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1621 		return;
1622 
1623 	spin_lock(&dev_priv->irq_lock);
1624 	dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1625 	gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1626 	spin_unlock(&dev_priv->irq_lock);
1627 
1628 	queue_work(dev_priv->wq, &dev_priv->rps.work);
1629 }
1630 
1631 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1632 				       struct drm_i915_private *dev_priv,
1633 				       u32 master_ctl)
1634 {
1635 	u32 rcs, bcs, vcs;
1636 	uint32_t tmp = 0;
1637 	irqreturn_t ret = IRQ_NONE;
1638 
1639 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1640 		tmp = I915_READ(GEN8_GT_IIR(0));
1641 		if (tmp) {
1642 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1643 			ret = IRQ_HANDLED;
1644 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1645 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1646 			if (rcs & GT_RENDER_USER_INTERRUPT)
1647 				notify_ring(dev, &dev_priv->ring[RCS]);
1648 			if (bcs & GT_RENDER_USER_INTERRUPT)
1649 				notify_ring(dev, &dev_priv->ring[BCS]);
1650 		} else
1651 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1652 	}
1653 
1654 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1655 		tmp = I915_READ(GEN8_GT_IIR(1));
1656 		if (tmp) {
1657 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1658 			ret = IRQ_HANDLED;
1659 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1660 			if (vcs & GT_RENDER_USER_INTERRUPT)
1661 				notify_ring(dev, &dev_priv->ring[VCS]);
1662 			vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1663 			if (vcs & GT_RENDER_USER_INTERRUPT)
1664 				notify_ring(dev, &dev_priv->ring[VCS2]);
1665 		} else
1666 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1667 	}
1668 
1669 	if (master_ctl & GEN8_GT_PM_IRQ) {
1670 		tmp = I915_READ(GEN8_GT_IIR(2));
1671 		if (tmp & dev_priv->pm_rps_events) {
1672 			I915_WRITE(GEN8_GT_IIR(2),
1673 				   tmp & dev_priv->pm_rps_events);
1674 			ret = IRQ_HANDLED;
1675 			gen8_rps_irq_handler(dev_priv, tmp);
1676 		} else
1677 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1678 	}
1679 
1680 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1681 		tmp = I915_READ(GEN8_GT_IIR(3));
1682 		if (tmp) {
1683 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1684 			ret = IRQ_HANDLED;
1685 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1686 			if (vcs & GT_RENDER_USER_INTERRUPT)
1687 				notify_ring(dev, &dev_priv->ring[VECS]);
1688 		} else
1689 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1690 	}
1691 
1692 	return ret;
1693 }
1694 
1695 #define HPD_STORM_DETECT_PERIOD 1000
1696 #define HPD_STORM_THRESHOLD 5
1697 
1698 static int ilk_port_to_hotplug_shift(enum port port)
1699 {
1700 	switch (port) {
1701 	case PORT_A:
1702 	case PORT_E:
1703 	default:
1704 		return -1;
1705 	case PORT_B:
1706 		return 0;
1707 	case PORT_C:
1708 		return 8;
1709 	case PORT_D:
1710 		return 16;
1711 	}
1712 }
1713 
1714 static int g4x_port_to_hotplug_shift(enum port port)
1715 {
1716 	switch (port) {
1717 	case PORT_A:
1718 	case PORT_E:
1719 	default:
1720 		return -1;
1721 	case PORT_B:
1722 		return 17;
1723 	case PORT_C:
1724 		return 19;
1725 	case PORT_D:
1726 		return 21;
1727 	}
1728 }
1729 
1730 static inline enum port get_port_from_pin(enum hpd_pin pin)
1731 {
1732 	switch (pin) {
1733 	case HPD_PORT_B:
1734 		return PORT_B;
1735 	case HPD_PORT_C:
1736 		return PORT_C;
1737 	case HPD_PORT_D:
1738 		return PORT_D;
1739 	default:
1740 		return PORT_A; /* no hpd */
1741 	}
1742 }
1743 
1744 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1745 					 u32 hotplug_trigger,
1746 					 u32 dig_hotplug_reg,
1747 					 const u32 *hpd)
1748 {
1749 	struct drm_i915_private *dev_priv = dev->dev_private;
1750 	int i;
1751 	enum port port;
1752 	bool storm_detected = false;
1753 	bool queue_dig = false, queue_hp = false;
1754 	u32 dig_shift;
1755 	u32 dig_port_mask = 0;
1756 
1757 	if (!hotplug_trigger)
1758 		return;
1759 
1760 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1761 			 hotplug_trigger, dig_hotplug_reg);
1762 
1763 	spin_lock(&dev_priv->irq_lock);
1764 	for (i = 1; i < HPD_NUM_PINS; i++) {
1765 		if (!(hpd[i] & hotplug_trigger))
1766 			continue;
1767 
1768 		port = get_port_from_pin(i);
1769 		if (port && dev_priv->hpd_irq_port[port]) {
1770 			bool long_hpd;
1771 
1772 			if (IS_G4X(dev)) {
1773 				dig_shift = g4x_port_to_hotplug_shift(port);
1774 				long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1775 			} else {
1776 				dig_shift = ilk_port_to_hotplug_shift(port);
1777 				long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1778 			}
1779 
1780 			DRM_DEBUG_DRIVER("digital hpd port %d %d\n", port, long_hpd);
1781 			/* for long HPD pulses we want to have the digital queue happen,
1782 			   but we still want HPD storm detection to function. */
1783 			if (long_hpd) {
1784 				dev_priv->long_hpd_port_mask |= (1 << port);
1785 				dig_port_mask |= hpd[i];
1786 			} else {
1787 				/* for short HPD just trigger the digital queue */
1788 				dev_priv->short_hpd_port_mask |= (1 << port);
1789 				hotplug_trigger &= ~hpd[i];
1790 			}
1791 			queue_dig = true;
1792 		}
1793 	}
1794 
1795 	for (i = 1; i < HPD_NUM_PINS; i++) {
1796 		if (hpd[i] & hotplug_trigger &&
1797 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1798 			/*
1799 			 * On GMCH platforms the interrupt mask bits only
1800 			 * prevent irq generation, not the setting of the
1801 			 * hotplug bits itself. So only WARN about unexpected
1802 			 * interrupts on saner platforms.
1803 			 */
1804 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1805 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1806 				  hotplug_trigger, i, hpd[i]);
1807 
1808 			continue;
1809 		}
1810 
1811 		if (!(hpd[i] & hotplug_trigger) ||
1812 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1813 			continue;
1814 
1815 		if (!(dig_port_mask & hpd[i])) {
1816 			dev_priv->hpd_event_bits |= (1 << i);
1817 			queue_hp = true;
1818 		}
1819 
1820 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1821 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1822 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1823 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1824 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1825 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1826 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1827 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1828 			dev_priv->hpd_event_bits &= ~(1 << i);
1829 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1830 			storm_detected = true;
1831 		} else {
1832 			dev_priv->hpd_stats[i].hpd_cnt++;
1833 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1834 				      dev_priv->hpd_stats[i].hpd_cnt);
1835 		}
1836 	}
1837 
1838 	if (storm_detected)
1839 		dev_priv->display.hpd_irq_setup(dev);
1840 	spin_unlock(&dev_priv->irq_lock);
1841 
1842 	/*
1843 	 * Our hotplug handler can grab modeset locks (by calling down into the
1844 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1845 	 * queue for otherwise the flush_work in the pageflip code will
1846 	 * deadlock.
1847 	 */
1848 	if (queue_dig)
1849 		queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1850 	if (queue_hp)
1851 		schedule_work(&dev_priv->hotplug_work);
1852 }
1853 
1854 static void gmbus_irq_handler(struct drm_device *dev)
1855 {
1856 	struct drm_i915_private *dev_priv = dev->dev_private;
1857 
1858 	wake_up_all(&dev_priv->gmbus_wait_queue);
1859 }
1860 
1861 static void dp_aux_irq_handler(struct drm_device *dev)
1862 {
1863 	struct drm_i915_private *dev_priv = dev->dev_private;
1864 
1865 	wake_up_all(&dev_priv->gmbus_wait_queue);
1866 }
1867 
1868 #if defined(CONFIG_DEBUG_FS)
1869 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1870 					 uint32_t crc0, uint32_t crc1,
1871 					 uint32_t crc2, uint32_t crc3,
1872 					 uint32_t crc4)
1873 {
1874 	struct drm_i915_private *dev_priv = dev->dev_private;
1875 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1876 	struct intel_pipe_crc_entry *entry;
1877 	int head, tail;
1878 
1879 	spin_lock(&pipe_crc->lock);
1880 
1881 	if (!pipe_crc->entries) {
1882 		spin_unlock(&pipe_crc->lock);
1883 		DRM_ERROR("spurious interrupt\n");
1884 		return;
1885 	}
1886 
1887 	head = pipe_crc->head;
1888 	tail = pipe_crc->tail;
1889 
1890 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1891 		spin_unlock(&pipe_crc->lock);
1892 		DRM_ERROR("CRC buffer overflowing\n");
1893 		return;
1894 	}
1895 
1896 	entry = &pipe_crc->entries[head];
1897 
1898 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1899 	entry->crc[0] = crc0;
1900 	entry->crc[1] = crc1;
1901 	entry->crc[2] = crc2;
1902 	entry->crc[3] = crc3;
1903 	entry->crc[4] = crc4;
1904 
1905 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1906 	pipe_crc->head = head;
1907 
1908 	spin_unlock(&pipe_crc->lock);
1909 
1910 	wake_up_interruptible(&pipe_crc->wq);
1911 }
1912 #else
1913 static inline void
1914 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1915 			     uint32_t crc0, uint32_t crc1,
1916 			     uint32_t crc2, uint32_t crc3,
1917 			     uint32_t crc4) {}
1918 #endif
1919 
1920 
1921 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1922 {
1923 	struct drm_i915_private *dev_priv = dev->dev_private;
1924 
1925 	display_pipe_crc_irq_handler(dev, pipe,
1926 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1927 				     0, 0, 0, 0);
1928 }
1929 
1930 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1931 {
1932 	struct drm_i915_private *dev_priv = dev->dev_private;
1933 
1934 	display_pipe_crc_irq_handler(dev, pipe,
1935 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1936 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1937 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1938 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1939 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1940 }
1941 
1942 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1943 {
1944 	struct drm_i915_private *dev_priv = dev->dev_private;
1945 	uint32_t res1, res2;
1946 
1947 	if (INTEL_INFO(dev)->gen >= 3)
1948 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1949 	else
1950 		res1 = 0;
1951 
1952 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1953 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1954 	else
1955 		res2 = 0;
1956 
1957 	display_pipe_crc_irq_handler(dev, pipe,
1958 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1959 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1960 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1961 				     res1, res2);
1962 }
1963 
1964 /* The RPS events need forcewake, so we add them to a work queue and mask their
1965  * IMR bits until the work is done. Other interrupts can be processed without
1966  * the work queue. */
1967 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1968 {
1969 	if (pm_iir & dev_priv->pm_rps_events) {
1970 		spin_lock(&dev_priv->irq_lock);
1971 		dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1972 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1973 		spin_unlock(&dev_priv->irq_lock);
1974 
1975 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1976 	}
1977 
1978 	if (HAS_VEBOX(dev_priv->dev)) {
1979 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1980 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1981 
1982 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1983 			i915_handle_error(dev_priv->dev, false,
1984 					  "VEBOX CS error interrupt 0x%08x",
1985 					  pm_iir);
1986 		}
1987 	}
1988 }
1989 
1990 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1991 {
1992 	struct intel_crtc *crtc;
1993 
1994 	if (!drm_handle_vblank(dev, pipe))
1995 		return false;
1996 
1997 	crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
1998 	wake_up(&crtc->vbl_wait);
1999 
2000 	return true;
2001 }
2002 
2003 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
2004 {
2005 	struct drm_i915_private *dev_priv = dev->dev_private;
2006 	u32 pipe_stats[I915_MAX_PIPES] = { };
2007 	int pipe;
2008 
2009 	spin_lock(&dev_priv->irq_lock);
2010 	for_each_pipe(pipe) {
2011 		int reg;
2012 		u32 mask, iir_bit = 0;
2013 
2014 		/*
2015 		 * PIPESTAT bits get signalled even when the interrupt is
2016 		 * disabled with the mask bits, and some of the status bits do
2017 		 * not generate interrupts at all (like the underrun bit). Hence
2018 		 * we need to be careful that we only handle what we want to
2019 		 * handle.
2020 		 */
2021 		mask = 0;
2022 		if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2023 			mask |= PIPE_FIFO_UNDERRUN_STATUS;
2024 
2025 		switch (pipe) {
2026 		case PIPE_A:
2027 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2028 			break;
2029 		case PIPE_B:
2030 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2031 			break;
2032 		case PIPE_C:
2033 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2034 			break;
2035 		}
2036 		if (iir & iir_bit)
2037 			mask |= dev_priv->pipestat_irq_mask[pipe];
2038 
2039 		if (!mask)
2040 			continue;
2041 
2042 		reg = PIPESTAT(pipe);
2043 		mask |= PIPESTAT_INT_ENABLE_MASK;
2044 		pipe_stats[pipe] = I915_READ(reg) & mask;
2045 
2046 		/*
2047 		 * Clear the PIPE*STAT regs before the IIR
2048 		 */
2049 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2050 					PIPESTAT_INT_STATUS_MASK))
2051 			I915_WRITE(reg, pipe_stats[pipe]);
2052 	}
2053 	spin_unlock(&dev_priv->irq_lock);
2054 
2055 	for_each_pipe(pipe) {
2056 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2057 			intel_pipe_handle_vblank(dev, pipe);
2058 
2059 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2060 			intel_prepare_page_flip(dev, pipe);
2061 			intel_finish_page_flip(dev, pipe);
2062 		}
2063 
2064 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2065 			i9xx_pipe_crc_irq_handler(dev, pipe);
2066 
2067 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2068 		    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2069 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2070 	}
2071 
2072 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2073 		gmbus_irq_handler(dev);
2074 }
2075 
2076 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2077 {
2078 	struct drm_i915_private *dev_priv = dev->dev_private;
2079 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2080 
2081 	if (hotplug_status) {
2082 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2083 		/*
2084 		 * Make sure hotplug status is cleared before we clear IIR, or else we
2085 		 * may miss hotplug events.
2086 		 */
2087 		POSTING_READ(PORT_HOTPLUG_STAT);
2088 
2089 		if (IS_G4X(dev)) {
2090 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2091 
2092 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2093 		} else {
2094 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2095 
2096 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2097 		}
2098 
2099 		if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2100 		    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2101 			dp_aux_irq_handler(dev);
2102 	}
2103 }
2104 
2105 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2106 {
2107 	struct drm_device *dev = arg;
2108 	struct drm_i915_private *dev_priv = dev->dev_private;
2109 	u32 iir, gt_iir, pm_iir;
2110 	irqreturn_t ret = IRQ_NONE;
2111 
2112 	while (true) {
2113 		/* Find, clear, then process each source of interrupt */
2114 
2115 		gt_iir = I915_READ(GTIIR);
2116 		if (gt_iir)
2117 			I915_WRITE(GTIIR, gt_iir);
2118 
2119 		pm_iir = I915_READ(GEN6_PMIIR);
2120 		if (pm_iir)
2121 			I915_WRITE(GEN6_PMIIR, pm_iir);
2122 
2123 		iir = I915_READ(VLV_IIR);
2124 		if (iir) {
2125 			/* Consume port before clearing IIR or we'll miss events */
2126 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
2127 				i9xx_hpd_irq_handler(dev);
2128 			I915_WRITE(VLV_IIR, iir);
2129 		}
2130 
2131 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2132 			goto out;
2133 
2134 		ret = IRQ_HANDLED;
2135 
2136 		if (gt_iir)
2137 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2138 		if (pm_iir)
2139 			gen6_rps_irq_handler(dev_priv, pm_iir);
2140 		/* Call regardless, as some status bits might not be
2141 		 * signalled in iir */
2142 		valleyview_pipestat_irq_handler(dev, iir);
2143 	}
2144 
2145 out:
2146 	return ret;
2147 }
2148 
2149 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2150 {
2151 	struct drm_device *dev = arg;
2152 	struct drm_i915_private *dev_priv = dev->dev_private;
2153 	u32 master_ctl, iir;
2154 	irqreturn_t ret = IRQ_NONE;
2155 
2156 	for (;;) {
2157 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2158 		iir = I915_READ(VLV_IIR);
2159 
2160 		if (master_ctl == 0 && iir == 0)
2161 			break;
2162 
2163 		ret = IRQ_HANDLED;
2164 
2165 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2166 
2167 		/* Find, clear, then process each source of interrupt */
2168 
2169 		if (iir) {
2170 			/* Consume port before clearing IIR or we'll miss events */
2171 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
2172 				i9xx_hpd_irq_handler(dev);
2173 			I915_WRITE(VLV_IIR, iir);
2174 		}
2175 
2176 		gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2177 
2178 		/* Call regardless, as some status bits might not be
2179 		 * signalled in iir */
2180 		valleyview_pipestat_irq_handler(dev, iir);
2181 
2182 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2183 		POSTING_READ(GEN8_MASTER_IRQ);
2184 	}
2185 
2186 	return ret;
2187 }
2188 
2189 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2190 {
2191 	struct drm_i915_private *dev_priv = dev->dev_private;
2192 	int pipe;
2193 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2194 	u32 dig_hotplug_reg;
2195 
2196 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2197 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2198 
2199 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2200 
2201 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2202 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2203 			       SDE_AUDIO_POWER_SHIFT);
2204 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2205 				 port_name(port));
2206 	}
2207 
2208 	if (pch_iir & SDE_AUX_MASK)
2209 		dp_aux_irq_handler(dev);
2210 
2211 	if (pch_iir & SDE_GMBUS)
2212 		gmbus_irq_handler(dev);
2213 
2214 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2215 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2216 
2217 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2218 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2219 
2220 	if (pch_iir & SDE_POISON)
2221 		DRM_ERROR("PCH poison interrupt\n");
2222 
2223 	if (pch_iir & SDE_FDI_MASK)
2224 		for_each_pipe(pipe)
2225 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2226 					 pipe_name(pipe),
2227 					 I915_READ(FDI_RX_IIR(pipe)));
2228 
2229 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2230 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2231 
2232 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2233 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2234 
2235 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2236 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2237 							  false))
2238 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
2239 
2240 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2241 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2242 							  false))
2243 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2244 }
2245 
2246 static void ivb_err_int_handler(struct drm_device *dev)
2247 {
2248 	struct drm_i915_private *dev_priv = dev->dev_private;
2249 	u32 err_int = I915_READ(GEN7_ERR_INT);
2250 	enum pipe pipe;
2251 
2252 	if (err_int & ERR_INT_POISON)
2253 		DRM_ERROR("Poison interrupt\n");
2254 
2255 	for_each_pipe(pipe) {
2256 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2257 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2258 								  false))
2259 				DRM_ERROR("Pipe %c FIFO underrun\n",
2260 					  pipe_name(pipe));
2261 		}
2262 
2263 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2264 			if (IS_IVYBRIDGE(dev))
2265 				ivb_pipe_crc_irq_handler(dev, pipe);
2266 			else
2267 				hsw_pipe_crc_irq_handler(dev, pipe);
2268 		}
2269 	}
2270 
2271 	I915_WRITE(GEN7_ERR_INT, err_int);
2272 }
2273 
2274 static void cpt_serr_int_handler(struct drm_device *dev)
2275 {
2276 	struct drm_i915_private *dev_priv = dev->dev_private;
2277 	u32 serr_int = I915_READ(SERR_INT);
2278 
2279 	if (serr_int & SERR_INT_POISON)
2280 		DRM_ERROR("PCH poison interrupt\n");
2281 
2282 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2283 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2284 							  false))
2285 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
2286 
2287 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2288 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2289 							  false))
2290 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2291 
2292 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2293 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2294 							  false))
2295 			DRM_ERROR("PCH transcoder C FIFO underrun\n");
2296 
2297 	I915_WRITE(SERR_INT, serr_int);
2298 }
2299 
2300 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2301 {
2302 	struct drm_i915_private *dev_priv = dev->dev_private;
2303 	int pipe;
2304 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2305 	u32 dig_hotplug_reg;
2306 
2307 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2308 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2309 
2310 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2311 
2312 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2313 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2314 			       SDE_AUDIO_POWER_SHIFT_CPT);
2315 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2316 				 port_name(port));
2317 	}
2318 
2319 	if (pch_iir & SDE_AUX_MASK_CPT)
2320 		dp_aux_irq_handler(dev);
2321 
2322 	if (pch_iir & SDE_GMBUS_CPT)
2323 		gmbus_irq_handler(dev);
2324 
2325 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2326 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2327 
2328 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2329 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2330 
2331 	if (pch_iir & SDE_FDI_MASK_CPT)
2332 		for_each_pipe(pipe)
2333 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2334 					 pipe_name(pipe),
2335 					 I915_READ(FDI_RX_IIR(pipe)));
2336 
2337 	if (pch_iir & SDE_ERROR_CPT)
2338 		cpt_serr_int_handler(dev);
2339 }
2340 
2341 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2342 {
2343 	struct drm_i915_private *dev_priv = dev->dev_private;
2344 	enum pipe pipe;
2345 
2346 	if (de_iir & DE_AUX_CHANNEL_A)
2347 		dp_aux_irq_handler(dev);
2348 
2349 	if (de_iir & DE_GSE)
2350 		intel_opregion_asle_intr(dev);
2351 
2352 	if (de_iir & DE_POISON)
2353 		DRM_ERROR("Poison interrupt\n");
2354 
2355 	for_each_pipe(pipe) {
2356 		if (de_iir & DE_PIPE_VBLANK(pipe))
2357 			intel_pipe_handle_vblank(dev, pipe);
2358 
2359 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2360 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2361 				DRM_ERROR("Pipe %c FIFO underrun\n",
2362 					  pipe_name(pipe));
2363 
2364 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2365 			i9xx_pipe_crc_irq_handler(dev, pipe);
2366 
2367 		/* plane/pipes map 1:1 on ilk+ */
2368 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2369 			intel_prepare_page_flip(dev, pipe);
2370 			intel_finish_page_flip_plane(dev, pipe);
2371 		}
2372 	}
2373 
2374 	/* check event from PCH */
2375 	if (de_iir & DE_PCH_EVENT) {
2376 		u32 pch_iir = I915_READ(SDEIIR);
2377 
2378 		if (HAS_PCH_CPT(dev))
2379 			cpt_irq_handler(dev, pch_iir);
2380 		else
2381 			ibx_irq_handler(dev, pch_iir);
2382 
2383 		/* should clear PCH hotplug event before clear CPU irq */
2384 		I915_WRITE(SDEIIR, pch_iir);
2385 	}
2386 
2387 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2388 		ironlake_rps_change_irq_handler(dev);
2389 }
2390 
2391 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2392 {
2393 	struct drm_i915_private *dev_priv = dev->dev_private;
2394 	enum pipe pipe;
2395 
2396 	if (de_iir & DE_ERR_INT_IVB)
2397 		ivb_err_int_handler(dev);
2398 
2399 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2400 		dp_aux_irq_handler(dev);
2401 
2402 	if (de_iir & DE_GSE_IVB)
2403 		intel_opregion_asle_intr(dev);
2404 
2405 	for_each_pipe(pipe) {
2406 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2407 			intel_pipe_handle_vblank(dev, pipe);
2408 
2409 		/* plane/pipes map 1:1 on ilk+ */
2410 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2411 			intel_prepare_page_flip(dev, pipe);
2412 			intel_finish_page_flip_plane(dev, pipe);
2413 		}
2414 	}
2415 
2416 	/* check event from PCH */
2417 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2418 		u32 pch_iir = I915_READ(SDEIIR);
2419 
2420 		cpt_irq_handler(dev, pch_iir);
2421 
2422 		/* clear PCH hotplug event before clear CPU irq */
2423 		I915_WRITE(SDEIIR, pch_iir);
2424 	}
2425 }
2426 
2427 /*
2428  * To handle irqs with the minimum potential races with fresh interrupts, we:
2429  * 1 - Disable Master Interrupt Control.
2430  * 2 - Find the source(s) of the interrupt.
2431  * 3 - Clear the Interrupt Identity bits (IIR).
2432  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2433  * 5 - Re-enable Master Interrupt Control.
2434  */
2435 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2436 {
2437 	struct drm_device *dev = arg;
2438 	struct drm_i915_private *dev_priv = dev->dev_private;
2439 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2440 	irqreturn_t ret = IRQ_NONE;
2441 
2442 	/* We get interrupts on unclaimed registers, so check for this before we
2443 	 * do any I915_{READ,WRITE}. */
2444 	intel_uncore_check_errors(dev);
2445 
2446 	/* disable master interrupt before clearing iir  */
2447 	de_ier = I915_READ(DEIER);
2448 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2449 	POSTING_READ(DEIER);
2450 
2451 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2452 	 * interrupts will will be stored on its back queue, and then we'll be
2453 	 * able to process them after we restore SDEIER (as soon as we restore
2454 	 * it, we'll get an interrupt if SDEIIR still has something to process
2455 	 * due to its back queue). */
2456 	if (!HAS_PCH_NOP(dev)) {
2457 		sde_ier = I915_READ(SDEIER);
2458 		I915_WRITE(SDEIER, 0);
2459 		POSTING_READ(SDEIER);
2460 	}
2461 
2462 	/* Find, clear, then process each source of interrupt */
2463 
2464 	gt_iir = I915_READ(GTIIR);
2465 	if (gt_iir) {
2466 		I915_WRITE(GTIIR, gt_iir);
2467 		ret = IRQ_HANDLED;
2468 		if (INTEL_INFO(dev)->gen >= 6)
2469 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2470 		else
2471 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2472 	}
2473 
2474 	de_iir = I915_READ(DEIIR);
2475 	if (de_iir) {
2476 		I915_WRITE(DEIIR, de_iir);
2477 		ret = IRQ_HANDLED;
2478 		if (INTEL_INFO(dev)->gen >= 7)
2479 			ivb_display_irq_handler(dev, de_iir);
2480 		else
2481 			ilk_display_irq_handler(dev, de_iir);
2482 	}
2483 
2484 	if (INTEL_INFO(dev)->gen >= 6) {
2485 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2486 		if (pm_iir) {
2487 			I915_WRITE(GEN6_PMIIR, pm_iir);
2488 			ret = IRQ_HANDLED;
2489 			gen6_rps_irq_handler(dev_priv, pm_iir);
2490 		}
2491 	}
2492 
2493 	I915_WRITE(DEIER, de_ier);
2494 	POSTING_READ(DEIER);
2495 	if (!HAS_PCH_NOP(dev)) {
2496 		I915_WRITE(SDEIER, sde_ier);
2497 		POSTING_READ(SDEIER);
2498 	}
2499 
2500 	return ret;
2501 }
2502 
2503 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2504 {
2505 	struct drm_device *dev = arg;
2506 	struct drm_i915_private *dev_priv = dev->dev_private;
2507 	u32 master_ctl;
2508 	irqreturn_t ret = IRQ_NONE;
2509 	uint32_t tmp = 0;
2510 	enum pipe pipe;
2511 
2512 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
2513 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2514 	if (!master_ctl)
2515 		return IRQ_NONE;
2516 
2517 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2518 	POSTING_READ(GEN8_MASTER_IRQ);
2519 
2520 	/* Find, clear, then process each source of interrupt */
2521 
2522 	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2523 
2524 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2525 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2526 		if (tmp) {
2527 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2528 			ret = IRQ_HANDLED;
2529 			if (tmp & GEN8_DE_MISC_GSE)
2530 				intel_opregion_asle_intr(dev);
2531 			else
2532 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2533 		}
2534 		else
2535 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2536 	}
2537 
2538 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2539 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2540 		if (tmp) {
2541 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2542 			ret = IRQ_HANDLED;
2543 			if (tmp & GEN8_AUX_CHANNEL_A)
2544 				dp_aux_irq_handler(dev);
2545 			else
2546 				DRM_ERROR("Unexpected DE Port interrupt\n");
2547 		}
2548 		else
2549 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2550 	}
2551 
2552 	for_each_pipe(pipe) {
2553 		uint32_t pipe_iir;
2554 
2555 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2556 			continue;
2557 
2558 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2559 		if (pipe_iir) {
2560 			ret = IRQ_HANDLED;
2561 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2562 			if (pipe_iir & GEN8_PIPE_VBLANK)
2563 				intel_pipe_handle_vblank(dev, pipe);
2564 
2565 			if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2566 				intel_prepare_page_flip(dev, pipe);
2567 				intel_finish_page_flip_plane(dev, pipe);
2568 			}
2569 
2570 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2571 				hsw_pipe_crc_irq_handler(dev, pipe);
2572 
2573 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2574 				if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2575 									  false))
2576 					DRM_ERROR("Pipe %c FIFO underrun\n",
2577 						  pipe_name(pipe));
2578 			}
2579 
2580 			if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2581 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2582 					  pipe_name(pipe),
2583 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2584 			}
2585 		} else
2586 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2587 	}
2588 
2589 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2590 		/*
2591 		 * FIXME(BDW): Assume for now that the new interrupt handling
2592 		 * scheme also closed the SDE interrupt handling race we've seen
2593 		 * on older pch-split platforms. But this needs testing.
2594 		 */
2595 		u32 pch_iir = I915_READ(SDEIIR);
2596 		if (pch_iir) {
2597 			I915_WRITE(SDEIIR, pch_iir);
2598 			ret = IRQ_HANDLED;
2599 			cpt_irq_handler(dev, pch_iir);
2600 		} else
2601 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2602 
2603 	}
2604 
2605 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2606 	POSTING_READ(GEN8_MASTER_IRQ);
2607 
2608 	return ret;
2609 }
2610 
2611 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2612 			       bool reset_completed)
2613 {
2614 	struct intel_engine_cs *ring;
2615 	int i;
2616 
2617 	/*
2618 	 * Notify all waiters for GPU completion events that reset state has
2619 	 * been changed, and that they need to restart their wait after
2620 	 * checking for potential errors (and bail out to drop locks if there is
2621 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2622 	 */
2623 
2624 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2625 	for_each_ring(ring, dev_priv, i)
2626 		wake_up_all(&ring->irq_queue);
2627 
2628 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2629 	wake_up_all(&dev_priv->pending_flip_queue);
2630 
2631 	/*
2632 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2633 	 * reset state is cleared.
2634 	 */
2635 	if (reset_completed)
2636 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2637 }
2638 
2639 /**
2640  * i915_error_work_func - do process context error handling work
2641  * @work: work struct
2642  *
2643  * Fire an error uevent so userspace can see that a hang or error
2644  * was detected.
2645  */
2646 static void i915_error_work_func(struct work_struct *work)
2647 {
2648 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2649 						    work);
2650 	struct drm_i915_private *dev_priv =
2651 		container_of(error, struct drm_i915_private, gpu_error);
2652 	struct drm_device *dev = dev_priv->dev;
2653 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2654 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2655 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2656 	int ret;
2657 
2658 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2659 
2660 	/*
2661 	 * Note that there's only one work item which does gpu resets, so we
2662 	 * need not worry about concurrent gpu resets potentially incrementing
2663 	 * error->reset_counter twice. We only need to take care of another
2664 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2665 	 * quick check for that is good enough: schedule_work ensures the
2666 	 * correct ordering between hang detection and this work item, and since
2667 	 * the reset in-progress bit is only ever set by code outside of this
2668 	 * work we don't need to worry about any other races.
2669 	 */
2670 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2671 		DRM_DEBUG_DRIVER("resetting chip\n");
2672 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2673 				   reset_event);
2674 
2675 		/*
2676 		 * In most cases it's guaranteed that we get here with an RPM
2677 		 * reference held, for example because there is a pending GPU
2678 		 * request that won't finish until the reset is done. This
2679 		 * isn't the case at least when we get here by doing a
2680 		 * simulated reset via debugs, so get an RPM reference.
2681 		 */
2682 		intel_runtime_pm_get(dev_priv);
2683 		/*
2684 		 * All state reset _must_ be completed before we update the
2685 		 * reset counter, for otherwise waiters might miss the reset
2686 		 * pending state and not properly drop locks, resulting in
2687 		 * deadlocks with the reset work.
2688 		 */
2689 		ret = i915_reset(dev);
2690 
2691 		intel_display_handle_reset(dev);
2692 
2693 		intel_runtime_pm_put(dev_priv);
2694 
2695 		if (ret == 0) {
2696 			/*
2697 			 * After all the gem state is reset, increment the reset
2698 			 * counter and wake up everyone waiting for the reset to
2699 			 * complete.
2700 			 *
2701 			 * Since unlock operations are a one-sided barrier only,
2702 			 * we need to insert a barrier here to order any seqno
2703 			 * updates before
2704 			 * the counter increment.
2705 			 */
2706 			smp_mb__before_atomic();
2707 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2708 
2709 			kobject_uevent_env(&dev->primary->kdev->kobj,
2710 					   KOBJ_CHANGE, reset_done_event);
2711 		} else {
2712 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2713 		}
2714 
2715 		/*
2716 		 * Note: The wake_up also serves as a memory barrier so that
2717 		 * waiters see the update value of the reset counter atomic_t.
2718 		 */
2719 		i915_error_wake_up(dev_priv, true);
2720 	}
2721 }
2722 
2723 static void i915_report_and_clear_eir(struct drm_device *dev)
2724 {
2725 	struct drm_i915_private *dev_priv = dev->dev_private;
2726 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2727 	u32 eir = I915_READ(EIR);
2728 	int pipe, i;
2729 
2730 	if (!eir)
2731 		return;
2732 
2733 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2734 
2735 	i915_get_extra_instdone(dev, instdone);
2736 
2737 	if (IS_G4X(dev)) {
2738 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2739 			u32 ipeir = I915_READ(IPEIR_I965);
2740 
2741 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2742 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2743 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2744 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2745 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2746 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2747 			I915_WRITE(IPEIR_I965, ipeir);
2748 			POSTING_READ(IPEIR_I965);
2749 		}
2750 		if (eir & GM45_ERROR_PAGE_TABLE) {
2751 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2752 			pr_err("page table error\n");
2753 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2754 			I915_WRITE(PGTBL_ER, pgtbl_err);
2755 			POSTING_READ(PGTBL_ER);
2756 		}
2757 	}
2758 
2759 	if (!IS_GEN2(dev)) {
2760 		if (eir & I915_ERROR_PAGE_TABLE) {
2761 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2762 			pr_err("page table error\n");
2763 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2764 			I915_WRITE(PGTBL_ER, pgtbl_err);
2765 			POSTING_READ(PGTBL_ER);
2766 		}
2767 	}
2768 
2769 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2770 		pr_err("memory refresh error:\n");
2771 		for_each_pipe(pipe)
2772 			pr_err("pipe %c stat: 0x%08x\n",
2773 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2774 		/* pipestat has already been acked */
2775 	}
2776 	if (eir & I915_ERROR_INSTRUCTION) {
2777 		pr_err("instruction error\n");
2778 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2779 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2780 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2781 		if (INTEL_INFO(dev)->gen < 4) {
2782 			u32 ipeir = I915_READ(IPEIR);
2783 
2784 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2785 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2786 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2787 			I915_WRITE(IPEIR, ipeir);
2788 			POSTING_READ(IPEIR);
2789 		} else {
2790 			u32 ipeir = I915_READ(IPEIR_I965);
2791 
2792 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2793 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2794 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2795 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2796 			I915_WRITE(IPEIR_I965, ipeir);
2797 			POSTING_READ(IPEIR_I965);
2798 		}
2799 	}
2800 
2801 	I915_WRITE(EIR, eir);
2802 	POSTING_READ(EIR);
2803 	eir = I915_READ(EIR);
2804 	if (eir) {
2805 		/*
2806 		 * some errors might have become stuck,
2807 		 * mask them.
2808 		 */
2809 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2810 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2811 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2812 	}
2813 }
2814 
2815 /**
2816  * i915_handle_error - handle an error interrupt
2817  * @dev: drm device
2818  *
2819  * Do some basic checking of regsiter state at error interrupt time and
2820  * dump it to the syslog.  Also call i915_capture_error_state() to make
2821  * sure we get a record and make it available in debugfs.  Fire a uevent
2822  * so userspace knows something bad happened (should trigger collection
2823  * of a ring dump etc.).
2824  */
2825 void i915_handle_error(struct drm_device *dev, bool wedged,
2826 		       const char *fmt, ...)
2827 {
2828 	struct drm_i915_private *dev_priv = dev->dev_private;
2829 	va_list args;
2830 	char error_msg[80];
2831 
2832 	va_start(args, fmt);
2833 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2834 	va_end(args);
2835 
2836 	i915_capture_error_state(dev, wedged, error_msg);
2837 	i915_report_and_clear_eir(dev);
2838 
2839 	if (wedged) {
2840 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2841 				&dev_priv->gpu_error.reset_counter);
2842 
2843 		/*
2844 		 * Wakeup waiting processes so that the reset work function
2845 		 * i915_error_work_func doesn't deadlock trying to grab various
2846 		 * locks. By bumping the reset counter first, the woken
2847 		 * processes will see a reset in progress and back off,
2848 		 * releasing their locks and then wait for the reset completion.
2849 		 * We must do this for _all_ gpu waiters that might hold locks
2850 		 * that the reset work needs to acquire.
2851 		 *
2852 		 * Note: The wake_up serves as the required memory barrier to
2853 		 * ensure that the waiters see the updated value of the reset
2854 		 * counter atomic_t.
2855 		 */
2856 		i915_error_wake_up(dev_priv, false);
2857 	}
2858 
2859 	/*
2860 	 * Our reset work can grab modeset locks (since it needs to reset the
2861 	 * state of outstanding pagelips). Hence it must not be run on our own
2862 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2863 	 * code will deadlock.
2864 	 */
2865 	schedule_work(&dev_priv->gpu_error.work);
2866 }
2867 
2868 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2869 {
2870 	struct drm_i915_private *dev_priv = dev->dev_private;
2871 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2872 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2873 	struct drm_i915_gem_object *obj;
2874 	struct intel_unpin_work *work;
2875 	unsigned long flags;
2876 	bool stall_detected;
2877 
2878 	/* Ignore early vblank irqs */
2879 	if (intel_crtc == NULL)
2880 		return;
2881 
2882 	spin_lock_irqsave(&dev->event_lock, flags);
2883 	work = intel_crtc->unpin_work;
2884 
2885 	if (work == NULL ||
2886 	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2887 	    !work->enable_stall_check) {
2888 		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
2889 		spin_unlock_irqrestore(&dev->event_lock, flags);
2890 		return;
2891 	}
2892 
2893 	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2894 	obj = work->pending_flip_obj;
2895 	if (INTEL_INFO(dev)->gen >= 4) {
2896 		int dspsurf = DSPSURF(intel_crtc->plane);
2897 		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2898 					i915_gem_obj_ggtt_offset(obj);
2899 	} else {
2900 		int dspaddr = DSPADDR(intel_crtc->plane);
2901 		stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2902 							crtc->y * crtc->primary->fb->pitches[0] +
2903 							crtc->x * crtc->primary->fb->bits_per_pixel/8);
2904 	}
2905 
2906 	spin_unlock_irqrestore(&dev->event_lock, flags);
2907 
2908 	if (stall_detected) {
2909 		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2910 		intel_prepare_page_flip(dev, intel_crtc->plane);
2911 	}
2912 }
2913 
2914 /* Called from drm generic code, passed 'crtc' which
2915  * we use as a pipe index
2916  */
2917 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2918 {
2919 	struct drm_i915_private *dev_priv = dev->dev_private;
2920 	unsigned long irqflags;
2921 
2922 	if (!i915_pipe_enabled(dev, pipe))
2923 		return -EINVAL;
2924 
2925 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2926 	if (INTEL_INFO(dev)->gen >= 4)
2927 		i915_enable_pipestat(dev_priv, pipe,
2928 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2929 	else
2930 		i915_enable_pipestat(dev_priv, pipe,
2931 				     PIPE_VBLANK_INTERRUPT_STATUS);
2932 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2933 
2934 	return 0;
2935 }
2936 
2937 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2938 {
2939 	struct drm_i915_private *dev_priv = dev->dev_private;
2940 	unsigned long irqflags;
2941 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2942 						     DE_PIPE_VBLANK(pipe);
2943 
2944 	if (!i915_pipe_enabled(dev, pipe))
2945 		return -EINVAL;
2946 
2947 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2948 	ironlake_enable_display_irq(dev_priv, bit);
2949 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2950 
2951 	return 0;
2952 }
2953 
2954 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2955 {
2956 	struct drm_i915_private *dev_priv = dev->dev_private;
2957 	unsigned long irqflags;
2958 
2959 	if (!i915_pipe_enabled(dev, pipe))
2960 		return -EINVAL;
2961 
2962 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2963 	i915_enable_pipestat(dev_priv, pipe,
2964 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2965 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2966 
2967 	return 0;
2968 }
2969 
2970 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2971 {
2972 	struct drm_i915_private *dev_priv = dev->dev_private;
2973 	unsigned long irqflags;
2974 
2975 	if (!i915_pipe_enabled(dev, pipe))
2976 		return -EINVAL;
2977 
2978 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2979 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2980 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2981 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2982 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2983 	return 0;
2984 }
2985 
2986 /* Called from drm generic code, passed 'crtc' which
2987  * we use as a pipe index
2988  */
2989 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2990 {
2991 	struct drm_i915_private *dev_priv = dev->dev_private;
2992 	unsigned long irqflags;
2993 
2994 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2995 	i915_disable_pipestat(dev_priv, pipe,
2996 			      PIPE_VBLANK_INTERRUPT_STATUS |
2997 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2998 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2999 }
3000 
3001 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
3002 {
3003 	struct drm_i915_private *dev_priv = dev->dev_private;
3004 	unsigned long irqflags;
3005 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
3006 						     DE_PIPE_VBLANK(pipe);
3007 
3008 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3009 	ironlake_disable_display_irq(dev_priv, bit);
3010 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3011 }
3012 
3013 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
3014 {
3015 	struct drm_i915_private *dev_priv = dev->dev_private;
3016 	unsigned long irqflags;
3017 
3018 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3019 	i915_disable_pipestat(dev_priv, pipe,
3020 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3021 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3022 }
3023 
3024 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
3025 {
3026 	struct drm_i915_private *dev_priv = dev->dev_private;
3027 	unsigned long irqflags;
3028 
3029 	if (!i915_pipe_enabled(dev, pipe))
3030 		return;
3031 
3032 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3033 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
3034 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3035 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3036 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3037 }
3038 
3039 static u32
3040 ring_last_seqno(struct intel_engine_cs *ring)
3041 {
3042 	return list_entry(ring->request_list.prev,
3043 			  struct drm_i915_gem_request, list)->seqno;
3044 }
3045 
3046 static bool
3047 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3048 {
3049 	return (list_empty(&ring->request_list) ||
3050 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
3051 }
3052 
3053 static bool
3054 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3055 {
3056 	if (INTEL_INFO(dev)->gen >= 8) {
3057 		return (ipehr >> 23) == 0x1c;
3058 	} else {
3059 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3060 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3061 				 MI_SEMAPHORE_REGISTER);
3062 	}
3063 }
3064 
3065 static struct intel_engine_cs *
3066 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3067 {
3068 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3069 	struct intel_engine_cs *signaller;
3070 	int i;
3071 
3072 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3073 		for_each_ring(signaller, dev_priv, i) {
3074 			if (ring == signaller)
3075 				continue;
3076 
3077 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
3078 				return signaller;
3079 		}
3080 	} else {
3081 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3082 
3083 		for_each_ring(signaller, dev_priv, i) {
3084 			if(ring == signaller)
3085 				continue;
3086 
3087 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3088 				return signaller;
3089 		}
3090 	}
3091 
3092 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
3093 		  ring->id, ipehr, offset);
3094 
3095 	return NULL;
3096 }
3097 
3098 static struct intel_engine_cs *
3099 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3100 {
3101 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3102 	u32 cmd, ipehr, head;
3103 	u64 offset = 0;
3104 	int i, backwards;
3105 
3106 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3107 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3108 		return NULL;
3109 
3110 	/*
3111 	 * HEAD is likely pointing to the dword after the actual command,
3112 	 * so scan backwards until we find the MBOX. But limit it to just 3
3113 	 * or 4 dwords depending on the semaphore wait command size.
3114 	 * Note that we don't care about ACTHD here since that might
3115 	 * point at at batch, and semaphores are always emitted into the
3116 	 * ringbuffer itself.
3117 	 */
3118 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
3119 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3120 
3121 	for (i = backwards; i; --i) {
3122 		/*
3123 		 * Be paranoid and presume the hw has gone off into the wild -
3124 		 * our ring is smaller than what the hardware (and hence
3125 		 * HEAD_ADDR) allows. Also handles wrap-around.
3126 		 */
3127 		head &= ring->buffer->size - 1;
3128 
3129 		/* This here seems to blow up */
3130 		cmd = ioread32(ring->buffer->virtual_start + head);
3131 		if (cmd == ipehr)
3132 			break;
3133 
3134 		head -= 4;
3135 	}
3136 
3137 	if (!i)
3138 		return NULL;
3139 
3140 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3141 	if (INTEL_INFO(ring->dev)->gen >= 8) {
3142 		offset = ioread32(ring->buffer->virtual_start + head + 12);
3143 		offset <<= 32;
3144 		offset = ioread32(ring->buffer->virtual_start + head + 8);
3145 	}
3146 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3147 }
3148 
3149 static int semaphore_passed(struct intel_engine_cs *ring)
3150 {
3151 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3152 	struct intel_engine_cs *signaller;
3153 	u32 seqno;
3154 
3155 	ring->hangcheck.deadlock++;
3156 
3157 	signaller = semaphore_waits_for(ring, &seqno);
3158 	if (signaller == NULL)
3159 		return -1;
3160 
3161 	/* Prevent pathological recursion due to driver bugs */
3162 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3163 		return -1;
3164 
3165 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3166 		return 1;
3167 
3168 	/* cursory check for an unkickable deadlock */
3169 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3170 	    semaphore_passed(signaller) < 0)
3171 		return -1;
3172 
3173 	return 0;
3174 }
3175 
3176 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3177 {
3178 	struct intel_engine_cs *ring;
3179 	int i;
3180 
3181 	for_each_ring(ring, dev_priv, i)
3182 		ring->hangcheck.deadlock = 0;
3183 }
3184 
3185 static enum intel_ring_hangcheck_action
3186 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3187 {
3188 	struct drm_device *dev = ring->dev;
3189 	struct drm_i915_private *dev_priv = dev->dev_private;
3190 	u32 tmp;
3191 
3192 	if (acthd != ring->hangcheck.acthd) {
3193 		if (acthd > ring->hangcheck.max_acthd) {
3194 			ring->hangcheck.max_acthd = acthd;
3195 			return HANGCHECK_ACTIVE;
3196 		}
3197 
3198 		return HANGCHECK_ACTIVE_LOOP;
3199 	}
3200 
3201 	if (IS_GEN2(dev))
3202 		return HANGCHECK_HUNG;
3203 
3204 	/* Is the chip hanging on a WAIT_FOR_EVENT?
3205 	 * If so we can simply poke the RB_WAIT bit
3206 	 * and break the hang. This should work on
3207 	 * all but the second generation chipsets.
3208 	 */
3209 	tmp = I915_READ_CTL(ring);
3210 	if (tmp & RING_WAIT) {
3211 		i915_handle_error(dev, false,
3212 				  "Kicking stuck wait on %s",
3213 				  ring->name);
3214 		I915_WRITE_CTL(ring, tmp);
3215 		return HANGCHECK_KICK;
3216 	}
3217 
3218 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3219 		switch (semaphore_passed(ring)) {
3220 		default:
3221 			return HANGCHECK_HUNG;
3222 		case 1:
3223 			i915_handle_error(dev, false,
3224 					  "Kicking stuck semaphore on %s",
3225 					  ring->name);
3226 			I915_WRITE_CTL(ring, tmp);
3227 			return HANGCHECK_KICK;
3228 		case 0:
3229 			return HANGCHECK_WAIT;
3230 		}
3231 	}
3232 
3233 	return HANGCHECK_HUNG;
3234 }
3235 
3236 /**
3237  * This is called when the chip hasn't reported back with completed
3238  * batchbuffers in a long time. We keep track per ring seqno progress and
3239  * if there are no progress, hangcheck score for that ring is increased.
3240  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3241  * we kick the ring. If we see no progress on three subsequent calls
3242  * we assume chip is wedged and try to fix it by resetting the chip.
3243  */
3244 static void i915_hangcheck_elapsed(unsigned long data)
3245 {
3246 	struct drm_device *dev = (struct drm_device *)data;
3247 	struct drm_i915_private *dev_priv = dev->dev_private;
3248 	struct intel_engine_cs *ring;
3249 	int i;
3250 	int busy_count = 0, rings_hung = 0;
3251 	bool stuck[I915_NUM_RINGS] = { 0 };
3252 #define BUSY 1
3253 #define KICK 5
3254 #define HUNG 20
3255 
3256 	if (!i915.enable_hangcheck)
3257 		return;
3258 
3259 	for_each_ring(ring, dev_priv, i) {
3260 		u64 acthd;
3261 		u32 seqno;
3262 		bool busy = true;
3263 
3264 		semaphore_clear_deadlocks(dev_priv);
3265 
3266 		seqno = ring->get_seqno(ring, false);
3267 		acthd = intel_ring_get_active_head(ring);
3268 
3269 		if (ring->hangcheck.seqno == seqno) {
3270 			if (ring_idle(ring, seqno)) {
3271 				ring->hangcheck.action = HANGCHECK_IDLE;
3272 
3273 				if (waitqueue_active(&ring->irq_queue)) {
3274 					/* Issue a wake-up to catch stuck h/w. */
3275 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3276 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3277 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3278 								  ring->name);
3279 						else
3280 							DRM_INFO("Fake missed irq on %s\n",
3281 								 ring->name);
3282 						wake_up_all(&ring->irq_queue);
3283 					}
3284 					/* Safeguard against driver failure */
3285 					ring->hangcheck.score += BUSY;
3286 				} else
3287 					busy = false;
3288 			} else {
3289 				/* We always increment the hangcheck score
3290 				 * if the ring is busy and still processing
3291 				 * the same request, so that no single request
3292 				 * can run indefinitely (such as a chain of
3293 				 * batches). The only time we do not increment
3294 				 * the hangcheck score on this ring, if this
3295 				 * ring is in a legitimate wait for another
3296 				 * ring. In that case the waiting ring is a
3297 				 * victim and we want to be sure we catch the
3298 				 * right culprit. Then every time we do kick
3299 				 * the ring, add a small increment to the
3300 				 * score so that we can catch a batch that is
3301 				 * being repeatedly kicked and so responsible
3302 				 * for stalling the machine.
3303 				 */
3304 				ring->hangcheck.action = ring_stuck(ring,
3305 								    acthd);
3306 
3307 				switch (ring->hangcheck.action) {
3308 				case HANGCHECK_IDLE:
3309 				case HANGCHECK_WAIT:
3310 				case HANGCHECK_ACTIVE:
3311 					break;
3312 				case HANGCHECK_ACTIVE_LOOP:
3313 					ring->hangcheck.score += BUSY;
3314 					break;
3315 				case HANGCHECK_KICK:
3316 					ring->hangcheck.score += KICK;
3317 					break;
3318 				case HANGCHECK_HUNG:
3319 					ring->hangcheck.score += HUNG;
3320 					stuck[i] = true;
3321 					break;
3322 				}
3323 			}
3324 		} else {
3325 			ring->hangcheck.action = HANGCHECK_ACTIVE;
3326 
3327 			/* Gradually reduce the count so that we catch DoS
3328 			 * attempts across multiple batches.
3329 			 */
3330 			if (ring->hangcheck.score > 0)
3331 				ring->hangcheck.score--;
3332 
3333 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3334 		}
3335 
3336 		ring->hangcheck.seqno = seqno;
3337 		ring->hangcheck.acthd = acthd;
3338 		busy_count += busy;
3339 	}
3340 
3341 	for_each_ring(ring, dev_priv, i) {
3342 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3343 			DRM_INFO("%s on %s\n",
3344 				 stuck[i] ? "stuck" : "no progress",
3345 				 ring->name);
3346 			rings_hung++;
3347 		}
3348 	}
3349 
3350 	if (rings_hung)
3351 		return i915_handle_error(dev, true, "Ring hung");
3352 
3353 	if (busy_count)
3354 		/* Reset timer case chip hangs without another request
3355 		 * being added */
3356 		i915_queue_hangcheck(dev);
3357 }
3358 
3359 void i915_queue_hangcheck(struct drm_device *dev)
3360 {
3361 	struct drm_i915_private *dev_priv = dev->dev_private;
3362 	if (!i915.enable_hangcheck)
3363 		return;
3364 
3365 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3366 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3367 }
3368 
3369 static void ibx_irq_reset(struct drm_device *dev)
3370 {
3371 	struct drm_i915_private *dev_priv = dev->dev_private;
3372 
3373 	if (HAS_PCH_NOP(dev))
3374 		return;
3375 
3376 	GEN5_IRQ_RESET(SDE);
3377 
3378 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3379 		I915_WRITE(SERR_INT, 0xffffffff);
3380 }
3381 
3382 /*
3383  * SDEIER is also touched by the interrupt handler to work around missed PCH
3384  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3385  * instead we unconditionally enable all PCH interrupt sources here, but then
3386  * only unmask them as needed with SDEIMR.
3387  *
3388  * This function needs to be called before interrupts are enabled.
3389  */
3390 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3391 {
3392 	struct drm_i915_private *dev_priv = dev->dev_private;
3393 
3394 	if (HAS_PCH_NOP(dev))
3395 		return;
3396 
3397 	WARN_ON(I915_READ(SDEIER) != 0);
3398 	I915_WRITE(SDEIER, 0xffffffff);
3399 	POSTING_READ(SDEIER);
3400 }
3401 
3402 static void gen5_gt_irq_reset(struct drm_device *dev)
3403 {
3404 	struct drm_i915_private *dev_priv = dev->dev_private;
3405 
3406 	GEN5_IRQ_RESET(GT);
3407 	if (INTEL_INFO(dev)->gen >= 6)
3408 		GEN5_IRQ_RESET(GEN6_PM);
3409 }
3410 
3411 /* drm_dma.h hooks
3412 */
3413 static void ironlake_irq_reset(struct drm_device *dev)
3414 {
3415 	struct drm_i915_private *dev_priv = dev->dev_private;
3416 
3417 	I915_WRITE(HWSTAM, 0xffffffff);
3418 
3419 	GEN5_IRQ_RESET(DE);
3420 	if (IS_GEN7(dev))
3421 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3422 
3423 	gen5_gt_irq_reset(dev);
3424 
3425 	ibx_irq_reset(dev);
3426 }
3427 
3428 static void valleyview_irq_preinstall(struct drm_device *dev)
3429 {
3430 	struct drm_i915_private *dev_priv = dev->dev_private;
3431 	int pipe;
3432 
3433 	/* VLV magic */
3434 	I915_WRITE(VLV_IMR, 0);
3435 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3436 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3437 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3438 
3439 	/* and GT */
3440 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3441 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3442 
3443 	gen5_gt_irq_reset(dev);
3444 
3445 	I915_WRITE(DPINVGTT, 0xff);
3446 
3447 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3448 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3449 	for_each_pipe(pipe)
3450 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3451 	I915_WRITE(VLV_IIR, 0xffffffff);
3452 	I915_WRITE(VLV_IMR, 0xffffffff);
3453 	I915_WRITE(VLV_IER, 0x0);
3454 	POSTING_READ(VLV_IER);
3455 }
3456 
3457 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3458 {
3459 	GEN8_IRQ_RESET_NDX(GT, 0);
3460 	GEN8_IRQ_RESET_NDX(GT, 1);
3461 	GEN8_IRQ_RESET_NDX(GT, 2);
3462 	GEN8_IRQ_RESET_NDX(GT, 3);
3463 }
3464 
3465 static void gen8_irq_reset(struct drm_device *dev)
3466 {
3467 	struct drm_i915_private *dev_priv = dev->dev_private;
3468 	int pipe;
3469 
3470 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3471 	POSTING_READ(GEN8_MASTER_IRQ);
3472 
3473 	gen8_gt_irq_reset(dev_priv);
3474 
3475 	for_each_pipe(pipe)
3476 		if (intel_display_power_enabled(dev_priv,
3477 						POWER_DOMAIN_PIPE(pipe)))
3478 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3479 
3480 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3481 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3482 	GEN5_IRQ_RESET(GEN8_PCU_);
3483 
3484 	ibx_irq_reset(dev);
3485 }
3486 
3487 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3488 {
3489 	unsigned long irqflags;
3490 
3491 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3492 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3493 			  ~dev_priv->de_irq_mask[PIPE_B]);
3494 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3495 			  ~dev_priv->de_irq_mask[PIPE_C]);
3496 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3497 }
3498 
3499 static void cherryview_irq_preinstall(struct drm_device *dev)
3500 {
3501 	struct drm_i915_private *dev_priv = dev->dev_private;
3502 	int pipe;
3503 
3504 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3505 	POSTING_READ(GEN8_MASTER_IRQ);
3506 
3507 	gen8_gt_irq_reset(dev_priv);
3508 
3509 	GEN5_IRQ_RESET(GEN8_PCU_);
3510 
3511 	POSTING_READ(GEN8_PCU_IIR);
3512 
3513 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3514 
3515 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3516 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3517 
3518 	for_each_pipe(pipe)
3519 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3520 
3521 	I915_WRITE(VLV_IMR, 0xffffffff);
3522 	I915_WRITE(VLV_IER, 0x0);
3523 	I915_WRITE(VLV_IIR, 0xffffffff);
3524 	POSTING_READ(VLV_IIR);
3525 }
3526 
3527 static void ibx_hpd_irq_setup(struct drm_device *dev)
3528 {
3529 	struct drm_i915_private *dev_priv = dev->dev_private;
3530 	struct drm_mode_config *mode_config = &dev->mode_config;
3531 	struct intel_encoder *intel_encoder;
3532 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3533 
3534 	if (HAS_PCH_IBX(dev)) {
3535 		hotplug_irqs = SDE_HOTPLUG_MASK;
3536 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3537 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3538 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3539 	} else {
3540 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3541 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3542 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3543 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3544 	}
3545 
3546 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3547 
3548 	/*
3549 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3550 	 * duration to 2ms (which is the minimum in the Display Port spec)
3551 	 *
3552 	 * This register is the same on all known PCH chips.
3553 	 */
3554 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3555 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3556 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3557 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3558 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3559 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3560 }
3561 
3562 static void ibx_irq_postinstall(struct drm_device *dev)
3563 {
3564 	struct drm_i915_private *dev_priv = dev->dev_private;
3565 	u32 mask;
3566 
3567 	if (HAS_PCH_NOP(dev))
3568 		return;
3569 
3570 	if (HAS_PCH_IBX(dev))
3571 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3572 	else
3573 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3574 
3575 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3576 	I915_WRITE(SDEIMR, ~mask);
3577 }
3578 
3579 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3580 {
3581 	struct drm_i915_private *dev_priv = dev->dev_private;
3582 	u32 pm_irqs, gt_irqs;
3583 
3584 	pm_irqs = gt_irqs = 0;
3585 
3586 	dev_priv->gt_irq_mask = ~0;
3587 	if (HAS_L3_DPF(dev)) {
3588 		/* L3 parity interrupt is always unmasked. */
3589 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3590 		gt_irqs |= GT_PARITY_ERROR(dev);
3591 	}
3592 
3593 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3594 	if (IS_GEN5(dev)) {
3595 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3596 			   ILK_BSD_USER_INTERRUPT;
3597 	} else {
3598 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3599 	}
3600 
3601 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3602 
3603 	if (INTEL_INFO(dev)->gen >= 6) {
3604 		pm_irqs |= dev_priv->pm_rps_events;
3605 
3606 		if (HAS_VEBOX(dev))
3607 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3608 
3609 		dev_priv->pm_irq_mask = 0xffffffff;
3610 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3611 	}
3612 }
3613 
3614 static int ironlake_irq_postinstall(struct drm_device *dev)
3615 {
3616 	unsigned long irqflags;
3617 	struct drm_i915_private *dev_priv = dev->dev_private;
3618 	u32 display_mask, extra_mask;
3619 
3620 	if (INTEL_INFO(dev)->gen >= 7) {
3621 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3622 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3623 				DE_PLANEB_FLIP_DONE_IVB |
3624 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3625 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3626 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3627 	} else {
3628 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3629 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3630 				DE_AUX_CHANNEL_A |
3631 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3632 				DE_POISON);
3633 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3634 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3635 	}
3636 
3637 	dev_priv->irq_mask = ~display_mask;
3638 
3639 	I915_WRITE(HWSTAM, 0xeffe);
3640 
3641 	ibx_irq_pre_postinstall(dev);
3642 
3643 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3644 
3645 	gen5_gt_irq_postinstall(dev);
3646 
3647 	ibx_irq_postinstall(dev);
3648 
3649 	if (IS_IRONLAKE_M(dev)) {
3650 		/* Enable PCU event interrupts
3651 		 *
3652 		 * spinlocking not required here for correctness since interrupt
3653 		 * setup is guaranteed to run in single-threaded context. But we
3654 		 * need it to make the assert_spin_locked happy. */
3655 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3656 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3657 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3658 	}
3659 
3660 	return 0;
3661 }
3662 
3663 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3664 {
3665 	u32 pipestat_mask;
3666 	u32 iir_mask;
3667 
3668 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3669 			PIPE_FIFO_UNDERRUN_STATUS;
3670 
3671 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3672 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3673 	POSTING_READ(PIPESTAT(PIPE_A));
3674 
3675 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3676 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3677 
3678 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3679 					       PIPE_GMBUS_INTERRUPT_STATUS);
3680 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3681 
3682 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3683 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3684 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3685 	dev_priv->irq_mask &= ~iir_mask;
3686 
3687 	I915_WRITE(VLV_IIR, iir_mask);
3688 	I915_WRITE(VLV_IIR, iir_mask);
3689 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3690 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3691 	POSTING_READ(VLV_IER);
3692 }
3693 
3694 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3695 {
3696 	u32 pipestat_mask;
3697 	u32 iir_mask;
3698 
3699 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3700 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3701 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3702 
3703 	dev_priv->irq_mask |= iir_mask;
3704 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3705 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3706 	I915_WRITE(VLV_IIR, iir_mask);
3707 	I915_WRITE(VLV_IIR, iir_mask);
3708 	POSTING_READ(VLV_IIR);
3709 
3710 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3711 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3712 
3713 	i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3714 					        PIPE_GMBUS_INTERRUPT_STATUS);
3715 	i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3716 
3717 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3718 			PIPE_FIFO_UNDERRUN_STATUS;
3719 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3720 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3721 	POSTING_READ(PIPESTAT(PIPE_A));
3722 }
3723 
3724 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3725 {
3726 	assert_spin_locked(&dev_priv->irq_lock);
3727 
3728 	if (dev_priv->display_irqs_enabled)
3729 		return;
3730 
3731 	dev_priv->display_irqs_enabled = true;
3732 
3733 	if (dev_priv->dev->irq_enabled)
3734 		valleyview_display_irqs_install(dev_priv);
3735 }
3736 
3737 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3738 {
3739 	assert_spin_locked(&dev_priv->irq_lock);
3740 
3741 	if (!dev_priv->display_irqs_enabled)
3742 		return;
3743 
3744 	dev_priv->display_irqs_enabled = false;
3745 
3746 	if (dev_priv->dev->irq_enabled)
3747 		valleyview_display_irqs_uninstall(dev_priv);
3748 }
3749 
3750 static int valleyview_irq_postinstall(struct drm_device *dev)
3751 {
3752 	struct drm_i915_private *dev_priv = dev->dev_private;
3753 	unsigned long irqflags;
3754 
3755 	dev_priv->irq_mask = ~0;
3756 
3757 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3758 	POSTING_READ(PORT_HOTPLUG_EN);
3759 
3760 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3761 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3762 	I915_WRITE(VLV_IIR, 0xffffffff);
3763 	POSTING_READ(VLV_IER);
3764 
3765 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3766 	 * just to make the assert_spin_locked check happy. */
3767 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3768 	if (dev_priv->display_irqs_enabled)
3769 		valleyview_display_irqs_install(dev_priv);
3770 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3771 
3772 	I915_WRITE(VLV_IIR, 0xffffffff);
3773 	I915_WRITE(VLV_IIR, 0xffffffff);
3774 
3775 	gen5_gt_irq_postinstall(dev);
3776 
3777 	/* ack & enable invalid PTE error interrupts */
3778 #if 0 /* FIXME: add support to irq handler for checking these bits */
3779 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3780 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3781 #endif
3782 
3783 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3784 
3785 	return 0;
3786 }
3787 
3788 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3789 {
3790 	int i;
3791 
3792 	/* These are interrupts we'll toggle with the ring mask register */
3793 	uint32_t gt_interrupts[] = {
3794 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3795 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3796 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3797 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3798 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3799 		0,
3800 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3801 		};
3802 
3803 	for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3804 		GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3805 
3806 	dev_priv->pm_irq_mask = 0xffffffff;
3807 }
3808 
3809 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3810 {
3811 	struct drm_device *dev = dev_priv->dev;
3812 	uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3813 		GEN8_PIPE_CDCLK_CRC_DONE |
3814 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3815 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3816 		GEN8_PIPE_FIFO_UNDERRUN;
3817 	int pipe;
3818 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3819 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3820 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3821 
3822 	for_each_pipe(pipe)
3823 		if (intel_display_power_enabled(dev_priv,
3824 				POWER_DOMAIN_PIPE(pipe)))
3825 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3826 					  dev_priv->de_irq_mask[pipe],
3827 					  de_pipe_enables);
3828 
3829 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3830 }
3831 
3832 static int gen8_irq_postinstall(struct drm_device *dev)
3833 {
3834 	struct drm_i915_private *dev_priv = dev->dev_private;
3835 
3836 	ibx_irq_pre_postinstall(dev);
3837 
3838 	gen8_gt_irq_postinstall(dev_priv);
3839 	gen8_de_irq_postinstall(dev_priv);
3840 
3841 	ibx_irq_postinstall(dev);
3842 
3843 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3844 	POSTING_READ(GEN8_MASTER_IRQ);
3845 
3846 	return 0;
3847 }
3848 
3849 static int cherryview_irq_postinstall(struct drm_device *dev)
3850 {
3851 	struct drm_i915_private *dev_priv = dev->dev_private;
3852 	u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3853 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3854 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3855 		I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3856 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3857 		PIPE_CRC_DONE_INTERRUPT_STATUS;
3858 	unsigned long irqflags;
3859 	int pipe;
3860 
3861 	/*
3862 	 * Leave vblank interrupts masked initially.  enable/disable will
3863 	 * toggle them based on usage.
3864 	 */
3865 	dev_priv->irq_mask = ~enable_mask;
3866 
3867 	for_each_pipe(pipe)
3868 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3869 
3870 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3871 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3872 	for_each_pipe(pipe)
3873 		i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3874 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3875 
3876 	I915_WRITE(VLV_IIR, 0xffffffff);
3877 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3878 	I915_WRITE(VLV_IER, enable_mask);
3879 
3880 	gen8_gt_irq_postinstall(dev_priv);
3881 
3882 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3883 	POSTING_READ(GEN8_MASTER_IRQ);
3884 
3885 	return 0;
3886 }
3887 
3888 static void gen8_irq_uninstall(struct drm_device *dev)
3889 {
3890 	struct drm_i915_private *dev_priv = dev->dev_private;
3891 
3892 	if (!dev_priv)
3893 		return;
3894 
3895 	intel_hpd_irq_uninstall(dev_priv);
3896 
3897 	gen8_irq_reset(dev);
3898 }
3899 
3900 static void valleyview_irq_uninstall(struct drm_device *dev)
3901 {
3902 	struct drm_i915_private *dev_priv = dev->dev_private;
3903 	unsigned long irqflags;
3904 	int pipe;
3905 
3906 	if (!dev_priv)
3907 		return;
3908 
3909 	I915_WRITE(VLV_MASTER_IER, 0);
3910 
3911 	intel_hpd_irq_uninstall(dev_priv);
3912 
3913 	for_each_pipe(pipe)
3914 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3915 
3916 	I915_WRITE(HWSTAM, 0xffffffff);
3917 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3918 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3919 
3920 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3921 	if (dev_priv->display_irqs_enabled)
3922 		valleyview_display_irqs_uninstall(dev_priv);
3923 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3924 
3925 	dev_priv->irq_mask = 0;
3926 
3927 	I915_WRITE(VLV_IIR, 0xffffffff);
3928 	I915_WRITE(VLV_IMR, 0xffffffff);
3929 	I915_WRITE(VLV_IER, 0x0);
3930 	POSTING_READ(VLV_IER);
3931 }
3932 
3933 static void cherryview_irq_uninstall(struct drm_device *dev)
3934 {
3935 	struct drm_i915_private *dev_priv = dev->dev_private;
3936 	int pipe;
3937 
3938 	if (!dev_priv)
3939 		return;
3940 
3941 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3942 	POSTING_READ(GEN8_MASTER_IRQ);
3943 
3944 #define GEN8_IRQ_FINI_NDX(type, which)				\
3945 do {								\
3946 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);	\
3947 	I915_WRITE(GEN8_##type##_IER(which), 0);		\
3948 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3949 	POSTING_READ(GEN8_##type##_IIR(which));			\
3950 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3951 } while (0)
3952 
3953 #define GEN8_IRQ_FINI(type)				\
3954 do {							\
3955 	I915_WRITE(GEN8_##type##_IMR, 0xffffffff);	\
3956 	I915_WRITE(GEN8_##type##_IER, 0);		\
3957 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3958 	POSTING_READ(GEN8_##type##_IIR);		\
3959 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3960 } while (0)
3961 
3962 	GEN8_IRQ_FINI_NDX(GT, 0);
3963 	GEN8_IRQ_FINI_NDX(GT, 1);
3964 	GEN8_IRQ_FINI_NDX(GT, 2);
3965 	GEN8_IRQ_FINI_NDX(GT, 3);
3966 
3967 	GEN8_IRQ_FINI(PCU);
3968 
3969 #undef GEN8_IRQ_FINI
3970 #undef GEN8_IRQ_FINI_NDX
3971 
3972 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3973 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3974 
3975 	for_each_pipe(pipe)
3976 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3977 
3978 	I915_WRITE(VLV_IMR, 0xffffffff);
3979 	I915_WRITE(VLV_IER, 0x0);
3980 	I915_WRITE(VLV_IIR, 0xffffffff);
3981 	POSTING_READ(VLV_IIR);
3982 }
3983 
3984 static void ironlake_irq_uninstall(struct drm_device *dev)
3985 {
3986 	struct drm_i915_private *dev_priv = dev->dev_private;
3987 
3988 	if (!dev_priv)
3989 		return;
3990 
3991 	intel_hpd_irq_uninstall(dev_priv);
3992 
3993 	ironlake_irq_reset(dev);
3994 }
3995 
3996 static void i8xx_irq_preinstall(struct drm_device * dev)
3997 {
3998 	struct drm_i915_private *dev_priv = dev->dev_private;
3999 	int pipe;
4000 
4001 	for_each_pipe(pipe)
4002 		I915_WRITE(PIPESTAT(pipe), 0);
4003 	I915_WRITE16(IMR, 0xffff);
4004 	I915_WRITE16(IER, 0x0);
4005 	POSTING_READ16(IER);
4006 }
4007 
4008 static int i8xx_irq_postinstall(struct drm_device *dev)
4009 {
4010 	struct drm_i915_private *dev_priv = dev->dev_private;
4011 	unsigned long irqflags;
4012 
4013 	I915_WRITE16(EMR,
4014 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4015 
4016 	/* Unmask the interrupts that we always want on. */
4017 	dev_priv->irq_mask =
4018 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4019 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4020 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4021 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4022 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4023 	I915_WRITE16(IMR, dev_priv->irq_mask);
4024 
4025 	I915_WRITE16(IER,
4026 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4027 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4028 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4029 		     I915_USER_INTERRUPT);
4030 	POSTING_READ16(IER);
4031 
4032 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4033 	 * just to make the assert_spin_locked check happy. */
4034 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4035 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4036 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4037 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4038 
4039 	return 0;
4040 }
4041 
4042 /*
4043  * Returns true when a page flip has completed.
4044  */
4045 static bool i8xx_handle_vblank(struct drm_device *dev,
4046 			       int plane, int pipe, u32 iir)
4047 {
4048 	struct drm_i915_private *dev_priv = dev->dev_private;
4049 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4050 
4051 	if (!intel_pipe_handle_vblank(dev, pipe))
4052 		return false;
4053 
4054 	if ((iir & flip_pending) == 0)
4055 		return false;
4056 
4057 	intel_prepare_page_flip(dev, plane);
4058 
4059 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4060 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4061 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4062 	 * the flip is completed (no longer pending). Since this doesn't raise
4063 	 * an interrupt per se, we watch for the change at vblank.
4064 	 */
4065 	if (I915_READ16(ISR) & flip_pending)
4066 		return false;
4067 
4068 	intel_finish_page_flip(dev, pipe);
4069 
4070 	return true;
4071 }
4072 
4073 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4074 {
4075 	struct drm_device *dev = arg;
4076 	struct drm_i915_private *dev_priv = dev->dev_private;
4077 	u16 iir, new_iir;
4078 	u32 pipe_stats[2];
4079 	unsigned long irqflags;
4080 	int pipe;
4081 	u16 flip_mask =
4082 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4083 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4084 
4085 	iir = I915_READ16(IIR);
4086 	if (iir == 0)
4087 		return IRQ_NONE;
4088 
4089 	while (iir & ~flip_mask) {
4090 		/* Can't rely on pipestat interrupt bit in iir as it might
4091 		 * have been cleared after the pipestat interrupt was received.
4092 		 * It doesn't set the bit in iir again, but it still produces
4093 		 * interrupts (for non-MSI).
4094 		 */
4095 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4096 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4097 			i915_handle_error(dev, false,
4098 					  "Command parser error, iir 0x%08x",
4099 					  iir);
4100 
4101 		for_each_pipe(pipe) {
4102 			int reg = PIPESTAT(pipe);
4103 			pipe_stats[pipe] = I915_READ(reg);
4104 
4105 			/*
4106 			 * Clear the PIPE*STAT regs before the IIR
4107 			 */
4108 			if (pipe_stats[pipe] & 0x8000ffff)
4109 				I915_WRITE(reg, pipe_stats[pipe]);
4110 		}
4111 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4112 
4113 		I915_WRITE16(IIR, iir & ~flip_mask);
4114 		new_iir = I915_READ16(IIR); /* Flush posted writes */
4115 
4116 		i915_update_dri1_breadcrumb(dev);
4117 
4118 		if (iir & I915_USER_INTERRUPT)
4119 			notify_ring(dev, &dev_priv->ring[RCS]);
4120 
4121 		for_each_pipe(pipe) {
4122 			int plane = pipe;
4123 			if (HAS_FBC(dev))
4124 				plane = !plane;
4125 
4126 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4127 			    i8xx_handle_vblank(dev, plane, pipe, iir))
4128 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4129 
4130 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4131 				i9xx_pipe_crc_irq_handler(dev, pipe);
4132 
4133 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4134 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4135 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4136 		}
4137 
4138 		iir = new_iir;
4139 	}
4140 
4141 	return IRQ_HANDLED;
4142 }
4143 
4144 static void i8xx_irq_uninstall(struct drm_device * dev)
4145 {
4146 	struct drm_i915_private *dev_priv = dev->dev_private;
4147 	int pipe;
4148 
4149 	for_each_pipe(pipe) {
4150 		/* Clear enable bits; then clear status bits */
4151 		I915_WRITE(PIPESTAT(pipe), 0);
4152 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4153 	}
4154 	I915_WRITE16(IMR, 0xffff);
4155 	I915_WRITE16(IER, 0x0);
4156 	I915_WRITE16(IIR, I915_READ16(IIR));
4157 }
4158 
4159 static void i915_irq_preinstall(struct drm_device * dev)
4160 {
4161 	struct drm_i915_private *dev_priv = dev->dev_private;
4162 	int pipe;
4163 
4164 	if (I915_HAS_HOTPLUG(dev)) {
4165 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4166 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4167 	}
4168 
4169 	I915_WRITE16(HWSTAM, 0xeffe);
4170 	for_each_pipe(pipe)
4171 		I915_WRITE(PIPESTAT(pipe), 0);
4172 	I915_WRITE(IMR, 0xffffffff);
4173 	I915_WRITE(IER, 0x0);
4174 	POSTING_READ(IER);
4175 }
4176 
4177 static int i915_irq_postinstall(struct drm_device *dev)
4178 {
4179 	struct drm_i915_private *dev_priv = dev->dev_private;
4180 	u32 enable_mask;
4181 	unsigned long irqflags;
4182 
4183 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4184 
4185 	/* Unmask the interrupts that we always want on. */
4186 	dev_priv->irq_mask =
4187 		~(I915_ASLE_INTERRUPT |
4188 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4189 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4190 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4191 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4192 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4193 
4194 	enable_mask =
4195 		I915_ASLE_INTERRUPT |
4196 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4197 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4198 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4199 		I915_USER_INTERRUPT;
4200 
4201 	if (I915_HAS_HOTPLUG(dev)) {
4202 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4203 		POSTING_READ(PORT_HOTPLUG_EN);
4204 
4205 		/* Enable in IER... */
4206 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4207 		/* and unmask in IMR */
4208 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4209 	}
4210 
4211 	I915_WRITE(IMR, dev_priv->irq_mask);
4212 	I915_WRITE(IER, enable_mask);
4213 	POSTING_READ(IER);
4214 
4215 	i915_enable_asle_pipestat(dev);
4216 
4217 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4218 	 * just to make the assert_spin_locked check happy. */
4219 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4220 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4221 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4222 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4223 
4224 	return 0;
4225 }
4226 
4227 /*
4228  * Returns true when a page flip has completed.
4229  */
4230 static bool i915_handle_vblank(struct drm_device *dev,
4231 			       int plane, int pipe, u32 iir)
4232 {
4233 	struct drm_i915_private *dev_priv = dev->dev_private;
4234 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4235 
4236 	if (!intel_pipe_handle_vblank(dev, pipe))
4237 		return false;
4238 
4239 	if ((iir & flip_pending) == 0)
4240 		return false;
4241 
4242 	intel_prepare_page_flip(dev, plane);
4243 
4244 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4245 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4246 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4247 	 * the flip is completed (no longer pending). Since this doesn't raise
4248 	 * an interrupt per se, we watch for the change at vblank.
4249 	 */
4250 	if (I915_READ(ISR) & flip_pending)
4251 		return false;
4252 
4253 	intel_finish_page_flip(dev, pipe);
4254 
4255 	return true;
4256 }
4257 
4258 static irqreturn_t i915_irq_handler(int irq, void *arg)
4259 {
4260 	struct drm_device *dev = arg;
4261 	struct drm_i915_private *dev_priv = dev->dev_private;
4262 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4263 	unsigned long irqflags;
4264 	u32 flip_mask =
4265 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4266 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4267 	int pipe, ret = IRQ_NONE;
4268 
4269 	iir = I915_READ(IIR);
4270 	do {
4271 		bool irq_received = (iir & ~flip_mask) != 0;
4272 		bool blc_event = false;
4273 
4274 		/* Can't rely on pipestat interrupt bit in iir as it might
4275 		 * have been cleared after the pipestat interrupt was received.
4276 		 * It doesn't set the bit in iir again, but it still produces
4277 		 * interrupts (for non-MSI).
4278 		 */
4279 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4280 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4281 			i915_handle_error(dev, false,
4282 					  "Command parser error, iir 0x%08x",
4283 					  iir);
4284 
4285 		for_each_pipe(pipe) {
4286 			int reg = PIPESTAT(pipe);
4287 			pipe_stats[pipe] = I915_READ(reg);
4288 
4289 			/* Clear the PIPE*STAT regs before the IIR */
4290 			if (pipe_stats[pipe] & 0x8000ffff) {
4291 				I915_WRITE(reg, pipe_stats[pipe]);
4292 				irq_received = true;
4293 			}
4294 		}
4295 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4296 
4297 		if (!irq_received)
4298 			break;
4299 
4300 		/* Consume port.  Then clear IIR or we'll miss events */
4301 		if (I915_HAS_HOTPLUG(dev) &&
4302 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4303 			i9xx_hpd_irq_handler(dev);
4304 
4305 		I915_WRITE(IIR, iir & ~flip_mask);
4306 		new_iir = I915_READ(IIR); /* Flush posted writes */
4307 
4308 		if (iir & I915_USER_INTERRUPT)
4309 			notify_ring(dev, &dev_priv->ring[RCS]);
4310 
4311 		for_each_pipe(pipe) {
4312 			int plane = pipe;
4313 			if (HAS_FBC(dev))
4314 				plane = !plane;
4315 
4316 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4317 			    i915_handle_vblank(dev, plane, pipe, iir))
4318 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4319 
4320 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4321 				blc_event = true;
4322 
4323 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4324 				i9xx_pipe_crc_irq_handler(dev, pipe);
4325 
4326 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4327 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4328 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4329 		}
4330 
4331 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4332 			intel_opregion_asle_intr(dev);
4333 
4334 		/* With MSI, interrupts are only generated when iir
4335 		 * transitions from zero to nonzero.  If another bit got
4336 		 * set while we were handling the existing iir bits, then
4337 		 * we would never get another interrupt.
4338 		 *
4339 		 * This is fine on non-MSI as well, as if we hit this path
4340 		 * we avoid exiting the interrupt handler only to generate
4341 		 * another one.
4342 		 *
4343 		 * Note that for MSI this could cause a stray interrupt report
4344 		 * if an interrupt landed in the time between writing IIR and
4345 		 * the posting read.  This should be rare enough to never
4346 		 * trigger the 99% of 100,000 interrupts test for disabling
4347 		 * stray interrupts.
4348 		 */
4349 		ret = IRQ_HANDLED;
4350 		iir = new_iir;
4351 	} while (iir & ~flip_mask);
4352 
4353 	i915_update_dri1_breadcrumb(dev);
4354 
4355 	return ret;
4356 }
4357 
4358 static void i915_irq_uninstall(struct drm_device * dev)
4359 {
4360 	struct drm_i915_private *dev_priv = dev->dev_private;
4361 	int pipe;
4362 
4363 	intel_hpd_irq_uninstall(dev_priv);
4364 
4365 	if (I915_HAS_HOTPLUG(dev)) {
4366 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4367 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4368 	}
4369 
4370 	I915_WRITE16(HWSTAM, 0xffff);
4371 	for_each_pipe(pipe) {
4372 		/* Clear enable bits; then clear status bits */
4373 		I915_WRITE(PIPESTAT(pipe), 0);
4374 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4375 	}
4376 	I915_WRITE(IMR, 0xffffffff);
4377 	I915_WRITE(IER, 0x0);
4378 
4379 	I915_WRITE(IIR, I915_READ(IIR));
4380 }
4381 
4382 static void i965_irq_preinstall(struct drm_device * dev)
4383 {
4384 	struct drm_i915_private *dev_priv = dev->dev_private;
4385 	int pipe;
4386 
4387 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4388 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4389 
4390 	I915_WRITE(HWSTAM, 0xeffe);
4391 	for_each_pipe(pipe)
4392 		I915_WRITE(PIPESTAT(pipe), 0);
4393 	I915_WRITE(IMR, 0xffffffff);
4394 	I915_WRITE(IER, 0x0);
4395 	POSTING_READ(IER);
4396 }
4397 
4398 static int i965_irq_postinstall(struct drm_device *dev)
4399 {
4400 	struct drm_i915_private *dev_priv = dev->dev_private;
4401 	u32 enable_mask;
4402 	u32 error_mask;
4403 	unsigned long irqflags;
4404 
4405 	/* Unmask the interrupts that we always want on. */
4406 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4407 			       I915_DISPLAY_PORT_INTERRUPT |
4408 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4409 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4410 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4411 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4412 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4413 
4414 	enable_mask = ~dev_priv->irq_mask;
4415 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4416 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4417 	enable_mask |= I915_USER_INTERRUPT;
4418 
4419 	if (IS_G4X(dev))
4420 		enable_mask |= I915_BSD_USER_INTERRUPT;
4421 
4422 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4423 	 * just to make the assert_spin_locked check happy. */
4424 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4425 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4426 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4427 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4428 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4429 
4430 	/*
4431 	 * Enable some error detection, note the instruction error mask
4432 	 * bit is reserved, so we leave it masked.
4433 	 */
4434 	if (IS_G4X(dev)) {
4435 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4436 			       GM45_ERROR_MEM_PRIV |
4437 			       GM45_ERROR_CP_PRIV |
4438 			       I915_ERROR_MEMORY_REFRESH);
4439 	} else {
4440 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4441 			       I915_ERROR_MEMORY_REFRESH);
4442 	}
4443 	I915_WRITE(EMR, error_mask);
4444 
4445 	I915_WRITE(IMR, dev_priv->irq_mask);
4446 	I915_WRITE(IER, enable_mask);
4447 	POSTING_READ(IER);
4448 
4449 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4450 	POSTING_READ(PORT_HOTPLUG_EN);
4451 
4452 	i915_enable_asle_pipestat(dev);
4453 
4454 	return 0;
4455 }
4456 
4457 static void i915_hpd_irq_setup(struct drm_device *dev)
4458 {
4459 	struct drm_i915_private *dev_priv = dev->dev_private;
4460 	struct drm_mode_config *mode_config = &dev->mode_config;
4461 	struct intel_encoder *intel_encoder;
4462 	u32 hotplug_en;
4463 
4464 	assert_spin_locked(&dev_priv->irq_lock);
4465 
4466 	if (I915_HAS_HOTPLUG(dev)) {
4467 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4468 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4469 		/* Note HDMI and DP share hotplug bits */
4470 		/* enable bits are the same for all generations */
4471 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
4472 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4473 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4474 		/* Programming the CRT detection parameters tends
4475 		   to generate a spurious hotplug event about three
4476 		   seconds later.  So just do it once.
4477 		*/
4478 		if (IS_G4X(dev))
4479 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4480 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4481 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4482 
4483 		/* Ignore TV since it's buggy */
4484 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4485 	}
4486 }
4487 
4488 static irqreturn_t i965_irq_handler(int irq, void *arg)
4489 {
4490 	struct drm_device *dev = arg;
4491 	struct drm_i915_private *dev_priv = dev->dev_private;
4492 	u32 iir, new_iir;
4493 	u32 pipe_stats[I915_MAX_PIPES];
4494 	unsigned long irqflags;
4495 	int ret = IRQ_NONE, pipe;
4496 	u32 flip_mask =
4497 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4498 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4499 
4500 	iir = I915_READ(IIR);
4501 
4502 	for (;;) {
4503 		bool irq_received = (iir & ~flip_mask) != 0;
4504 		bool blc_event = false;
4505 
4506 		/* Can't rely on pipestat interrupt bit in iir as it might
4507 		 * have been cleared after the pipestat interrupt was received.
4508 		 * It doesn't set the bit in iir again, but it still produces
4509 		 * interrupts (for non-MSI).
4510 		 */
4511 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4512 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4513 			i915_handle_error(dev, false,
4514 					  "Command parser error, iir 0x%08x",
4515 					  iir);
4516 
4517 		for_each_pipe(pipe) {
4518 			int reg = PIPESTAT(pipe);
4519 			pipe_stats[pipe] = I915_READ(reg);
4520 
4521 			/*
4522 			 * Clear the PIPE*STAT regs before the IIR
4523 			 */
4524 			if (pipe_stats[pipe] & 0x8000ffff) {
4525 				I915_WRITE(reg, pipe_stats[pipe]);
4526 				irq_received = true;
4527 			}
4528 		}
4529 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4530 
4531 		if (!irq_received)
4532 			break;
4533 
4534 		ret = IRQ_HANDLED;
4535 
4536 		/* Consume port.  Then clear IIR or we'll miss events */
4537 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4538 			i9xx_hpd_irq_handler(dev);
4539 
4540 		I915_WRITE(IIR, iir & ~flip_mask);
4541 		new_iir = I915_READ(IIR); /* Flush posted writes */
4542 
4543 		if (iir & I915_USER_INTERRUPT)
4544 			notify_ring(dev, &dev_priv->ring[RCS]);
4545 		if (iir & I915_BSD_USER_INTERRUPT)
4546 			notify_ring(dev, &dev_priv->ring[VCS]);
4547 
4548 		for_each_pipe(pipe) {
4549 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4550 			    i915_handle_vblank(dev, pipe, pipe, iir))
4551 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4552 
4553 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4554 				blc_event = true;
4555 
4556 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4557 				i9xx_pipe_crc_irq_handler(dev, pipe);
4558 
4559 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4560 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4561 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4562 		}
4563 
4564 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4565 			intel_opregion_asle_intr(dev);
4566 
4567 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4568 			gmbus_irq_handler(dev);
4569 
4570 		/* With MSI, interrupts are only generated when iir
4571 		 * transitions from zero to nonzero.  If another bit got
4572 		 * set while we were handling the existing iir bits, then
4573 		 * we would never get another interrupt.
4574 		 *
4575 		 * This is fine on non-MSI as well, as if we hit this path
4576 		 * we avoid exiting the interrupt handler only to generate
4577 		 * another one.
4578 		 *
4579 		 * Note that for MSI this could cause a stray interrupt report
4580 		 * if an interrupt landed in the time between writing IIR and
4581 		 * the posting read.  This should be rare enough to never
4582 		 * trigger the 99% of 100,000 interrupts test for disabling
4583 		 * stray interrupts.
4584 		 */
4585 		iir = new_iir;
4586 	}
4587 
4588 	i915_update_dri1_breadcrumb(dev);
4589 
4590 	return ret;
4591 }
4592 
4593 static void i965_irq_uninstall(struct drm_device * dev)
4594 {
4595 	struct drm_i915_private *dev_priv = dev->dev_private;
4596 	int pipe;
4597 
4598 	if (!dev_priv)
4599 		return;
4600 
4601 	intel_hpd_irq_uninstall(dev_priv);
4602 
4603 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4604 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4605 
4606 	I915_WRITE(HWSTAM, 0xffffffff);
4607 	for_each_pipe(pipe)
4608 		I915_WRITE(PIPESTAT(pipe), 0);
4609 	I915_WRITE(IMR, 0xffffffff);
4610 	I915_WRITE(IER, 0x0);
4611 
4612 	for_each_pipe(pipe)
4613 		I915_WRITE(PIPESTAT(pipe),
4614 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4615 	I915_WRITE(IIR, I915_READ(IIR));
4616 }
4617 
4618 static void intel_hpd_irq_reenable(unsigned long data)
4619 {
4620 	struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
4621 	struct drm_device *dev = dev_priv->dev;
4622 	struct drm_mode_config *mode_config = &dev->mode_config;
4623 	unsigned long irqflags;
4624 	int i;
4625 
4626 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4627 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4628 		struct drm_connector *connector;
4629 
4630 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4631 			continue;
4632 
4633 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4634 
4635 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4636 			struct intel_connector *intel_connector = to_intel_connector(connector);
4637 
4638 			if (intel_connector->encoder->hpd_pin == i) {
4639 				if (connector->polled != intel_connector->polled)
4640 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4641 							 connector->name);
4642 				connector->polled = intel_connector->polled;
4643 				if (!connector->polled)
4644 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4645 			}
4646 		}
4647 	}
4648 	if (dev_priv->display.hpd_irq_setup)
4649 		dev_priv->display.hpd_irq_setup(dev);
4650 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4651 }
4652 
4653 void intel_irq_init(struct drm_device *dev)
4654 {
4655 	struct drm_i915_private *dev_priv = dev->dev_private;
4656 
4657 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4658 	INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4659 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4660 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4661 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4662 
4663 	/* Let's track the enabled rps events */
4664 	if (IS_VALLEYVIEW(dev))
4665 		/* WaGsvRC0ResidenncyMethod:VLV */
4666 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4667 	else
4668 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4669 
4670 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4671 		    i915_hangcheck_elapsed,
4672 		    (unsigned long) dev);
4673 	setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4674 		    (unsigned long) dev_priv);
4675 
4676 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4677 
4678 	/* Haven't installed the IRQ handler yet */
4679 	dev_priv->pm._irqs_disabled = true;
4680 
4681 	if (IS_GEN2(dev)) {
4682 		dev->max_vblank_count = 0;
4683 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4684 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4685 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4686 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4687 	} else {
4688 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4689 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4690 	}
4691 
4692 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4693 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4694 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4695 	}
4696 
4697 	if (IS_CHERRYVIEW(dev)) {
4698 		dev->driver->irq_handler = cherryview_irq_handler;
4699 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4700 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4701 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4702 		dev->driver->enable_vblank = valleyview_enable_vblank;
4703 		dev->driver->disable_vblank = valleyview_disable_vblank;
4704 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4705 	} else if (IS_VALLEYVIEW(dev)) {
4706 		dev->driver->irq_handler = valleyview_irq_handler;
4707 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4708 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4709 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4710 		dev->driver->enable_vblank = valleyview_enable_vblank;
4711 		dev->driver->disable_vblank = valleyview_disable_vblank;
4712 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4713 	} else if (IS_GEN8(dev)) {
4714 		dev->driver->irq_handler = gen8_irq_handler;
4715 		dev->driver->irq_preinstall = gen8_irq_reset;
4716 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4717 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4718 		dev->driver->enable_vblank = gen8_enable_vblank;
4719 		dev->driver->disable_vblank = gen8_disable_vblank;
4720 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4721 	} else if (HAS_PCH_SPLIT(dev)) {
4722 		dev->driver->irq_handler = ironlake_irq_handler;
4723 		dev->driver->irq_preinstall = ironlake_irq_reset;
4724 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4725 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4726 		dev->driver->enable_vblank = ironlake_enable_vblank;
4727 		dev->driver->disable_vblank = ironlake_disable_vblank;
4728 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4729 	} else {
4730 		if (INTEL_INFO(dev)->gen == 2) {
4731 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4732 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4733 			dev->driver->irq_handler = i8xx_irq_handler;
4734 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4735 		} else if (INTEL_INFO(dev)->gen == 3) {
4736 			dev->driver->irq_preinstall = i915_irq_preinstall;
4737 			dev->driver->irq_postinstall = i915_irq_postinstall;
4738 			dev->driver->irq_uninstall = i915_irq_uninstall;
4739 			dev->driver->irq_handler = i915_irq_handler;
4740 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4741 		} else {
4742 			dev->driver->irq_preinstall = i965_irq_preinstall;
4743 			dev->driver->irq_postinstall = i965_irq_postinstall;
4744 			dev->driver->irq_uninstall = i965_irq_uninstall;
4745 			dev->driver->irq_handler = i965_irq_handler;
4746 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4747 		}
4748 		dev->driver->enable_vblank = i915_enable_vblank;
4749 		dev->driver->disable_vblank = i915_disable_vblank;
4750 	}
4751 }
4752 
4753 void intel_hpd_init(struct drm_device *dev)
4754 {
4755 	struct drm_i915_private *dev_priv = dev->dev_private;
4756 	struct drm_mode_config *mode_config = &dev->mode_config;
4757 	struct drm_connector *connector;
4758 	unsigned long irqflags;
4759 	int i;
4760 
4761 	for (i = 1; i < HPD_NUM_PINS; i++) {
4762 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4763 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4764 	}
4765 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4766 		struct intel_connector *intel_connector = to_intel_connector(connector);
4767 		connector->polled = intel_connector->polled;
4768 		if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4769 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4770 		if (intel_connector->mst_port)
4771 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4772 	}
4773 
4774 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4775 	 * just to make the assert_spin_locked checks happy. */
4776 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4777 	if (dev_priv->display.hpd_irq_setup)
4778 		dev_priv->display.hpd_irq_setup(dev);
4779 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4780 }
4781 
4782 /* Disable interrupts so we can allow runtime PM. */
4783 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4784 {
4785 	struct drm_i915_private *dev_priv = dev->dev_private;
4786 
4787 	dev->driver->irq_uninstall(dev);
4788 	dev_priv->pm._irqs_disabled = true;
4789 }
4790 
4791 /* Restore interrupts so we can recover from runtime PM. */
4792 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4793 {
4794 	struct drm_i915_private *dev_priv = dev->dev_private;
4795 
4796 	dev_priv->pm._irqs_disabled = false;
4797 	dev->driver->irq_preinstall(dev);
4798 	dev->driver->irq_postinstall(dev);
4799 }
4800