xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 232b0b08)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 				    i915_reg_t reg)
144 {
145 	u32 val = I915_READ(reg);
146 
147 	if (val == 0)
148 		return;
149 
150 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 	     i915_mmio_reg_offset(reg), val);
152 	I915_WRITE(reg, 0xffffffff);
153 	POSTING_READ(reg);
154 	I915_WRITE(reg, 0xffffffff);
155 	POSTING_READ(reg);
156 }
157 
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 	POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164 
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 	I915_WRITE(type##IER, (ier_val)); \
168 	I915_WRITE(type##IMR, (imr_val)); \
169 	POSTING_READ(type##IMR); \
170 } while (0)
171 
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174 
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 				     uint32_t mask,
179 				     uint32_t bits)
180 {
181 	uint32_t val;
182 
183 	assert_spin_locked(&dev_priv->irq_lock);
184 	WARN_ON(bits & ~mask);
185 
186 	val = I915_READ(PORT_HOTPLUG_EN);
187 	val &= ~mask;
188 	val |= bits;
189 	I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191 
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 				   uint32_t mask,
206 				   uint32_t bits)
207 {
208 	spin_lock_irq(&dev_priv->irq_lock);
209 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 	spin_unlock_irq(&dev_priv->irq_lock);
211 }
212 
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 			    uint32_t interrupt_mask,
221 			    uint32_t enabled_irq_mask)
222 {
223 	uint32_t new_val;
224 
225 	assert_spin_locked(&dev_priv->irq_lock);
226 
227 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
228 
229 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 		return;
231 
232 	new_val = dev_priv->irq_mask;
233 	new_val &= ~interrupt_mask;
234 	new_val |= (~enabled_irq_mask & interrupt_mask);
235 
236 	if (new_val != dev_priv->irq_mask) {
237 		dev_priv->irq_mask = new_val;
238 		I915_WRITE(DEIMR, dev_priv->irq_mask);
239 		POSTING_READ(DEIMR);
240 	}
241 }
242 
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 			      uint32_t interrupt_mask,
251 			      uint32_t enabled_irq_mask)
252 {
253 	assert_spin_locked(&dev_priv->irq_lock);
254 
255 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
256 
257 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 		return;
259 
260 	dev_priv->gt_irq_mask &= ~interrupt_mask;
261 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264 
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 	ilk_update_gt_irq(dev_priv, mask, mask);
268 	POSTING_READ_FW(GTIMR);
269 }
270 
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 	ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275 
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280 
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285 
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290 
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 			      uint32_t interrupt_mask,
299 			      uint32_t enabled_irq_mask)
300 {
301 	uint32_t new_val;
302 
303 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
304 
305 	assert_spin_locked(&dev_priv->irq_lock);
306 
307 	new_val = dev_priv->pm_imr;
308 	new_val &= ~interrupt_mask;
309 	new_val |= (~enabled_irq_mask & interrupt_mask);
310 
311 	if (new_val != dev_priv->pm_imr) {
312 		dev_priv->pm_imr = new_val;
313 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 		POSTING_READ(gen6_pm_imr(dev_priv));
315 	}
316 }
317 
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 		return;
322 
323 	snb_update_pm_irq(dev_priv, mask, mask);
324 }
325 
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 	snb_update_pm_irq(dev_priv, mask, 0);
329 }
330 
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 		return;
335 
336 	__gen6_mask_pm_irq(dev_priv, mask);
337 }
338 
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 	i915_reg_t reg = gen6_pm_iir(dev_priv);
342 
343 	assert_spin_locked(&dev_priv->irq_lock);
344 
345 	I915_WRITE(reg, reset_mask);
346 	I915_WRITE(reg, reset_mask);
347 	POSTING_READ(reg);
348 }
349 
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 	assert_spin_locked(&dev_priv->irq_lock);
353 
354 	dev_priv->pm_ier |= enable_mask;
355 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 	gen6_unmask_pm_irq(dev_priv, enable_mask);
357 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359 
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 	assert_spin_locked(&dev_priv->irq_lock);
363 
364 	dev_priv->pm_ier &= ~disable_mask;
365 	__gen6_mask_pm_irq(dev_priv, disable_mask);
366 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 	/* though a barrier is missing here, but don't really need a one */
368 }
369 
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 	spin_lock_irq(&dev_priv->irq_lock);
373 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 	dev_priv->rps.pm_iir = 0;
375 	spin_unlock_irq(&dev_priv->irq_lock);
376 }
377 
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 	if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 		return;
382 
383 	spin_lock_irq(&dev_priv->irq_lock);
384 	WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 	WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 	dev_priv->rps.interrupts_enabled = true;
387 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388 
389 	spin_unlock_irq(&dev_priv->irq_lock);
390 }
391 
392 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
393 {
394 	return (mask & ~dev_priv->rps.pm_intr_keep);
395 }
396 
397 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
398 {
399 	if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
400 		return;
401 
402 	spin_lock_irq(&dev_priv->irq_lock);
403 	dev_priv->rps.interrupts_enabled = false;
404 
405 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
406 
407 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
408 
409 	spin_unlock_irq(&dev_priv->irq_lock);
410 	synchronize_irq(dev_priv->drm.irq);
411 
412 	/* Now that we will not be generating any more work, flush any
413 	 * outsanding tasks. As we are called on the RPS idle path,
414 	 * we will reset the GPU to minimum frequencies, so the current
415 	 * state of the worker can be discarded.
416 	 */
417 	cancel_work_sync(&dev_priv->rps.work);
418 	gen6_reset_rps_interrupts(dev_priv);
419 }
420 
421 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
422 {
423 	spin_lock_irq(&dev_priv->irq_lock);
424 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
425 	spin_unlock_irq(&dev_priv->irq_lock);
426 }
427 
428 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
429 {
430 	spin_lock_irq(&dev_priv->irq_lock);
431 	if (!dev_priv->guc.interrupts_enabled) {
432 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
433 				       dev_priv->pm_guc_events);
434 		dev_priv->guc.interrupts_enabled = true;
435 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
436 	}
437 	spin_unlock_irq(&dev_priv->irq_lock);
438 }
439 
440 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
441 {
442 	spin_lock_irq(&dev_priv->irq_lock);
443 	dev_priv->guc.interrupts_enabled = false;
444 
445 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
446 
447 	spin_unlock_irq(&dev_priv->irq_lock);
448 	synchronize_irq(dev_priv->drm.irq);
449 
450 	gen9_reset_guc_interrupts(dev_priv);
451 }
452 
453 /**
454  * bdw_update_port_irq - update DE port interrupt
455  * @dev_priv: driver private
456  * @interrupt_mask: mask of interrupt bits to update
457  * @enabled_irq_mask: mask of interrupt bits to enable
458  */
459 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
460 				uint32_t interrupt_mask,
461 				uint32_t enabled_irq_mask)
462 {
463 	uint32_t new_val;
464 	uint32_t old_val;
465 
466 	assert_spin_locked(&dev_priv->irq_lock);
467 
468 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
469 
470 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
471 		return;
472 
473 	old_val = I915_READ(GEN8_DE_PORT_IMR);
474 
475 	new_val = old_val;
476 	new_val &= ~interrupt_mask;
477 	new_val |= (~enabled_irq_mask & interrupt_mask);
478 
479 	if (new_val != old_val) {
480 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
481 		POSTING_READ(GEN8_DE_PORT_IMR);
482 	}
483 }
484 
485 /**
486  * bdw_update_pipe_irq - update DE pipe interrupt
487  * @dev_priv: driver private
488  * @pipe: pipe whose interrupt to update
489  * @interrupt_mask: mask of interrupt bits to update
490  * @enabled_irq_mask: mask of interrupt bits to enable
491  */
492 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
493 			 enum pipe pipe,
494 			 uint32_t interrupt_mask,
495 			 uint32_t enabled_irq_mask)
496 {
497 	uint32_t new_val;
498 
499 	assert_spin_locked(&dev_priv->irq_lock);
500 
501 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
502 
503 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
504 		return;
505 
506 	new_val = dev_priv->de_irq_mask[pipe];
507 	new_val &= ~interrupt_mask;
508 	new_val |= (~enabled_irq_mask & interrupt_mask);
509 
510 	if (new_val != dev_priv->de_irq_mask[pipe]) {
511 		dev_priv->de_irq_mask[pipe] = new_val;
512 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
513 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
514 	}
515 }
516 
517 /**
518  * ibx_display_interrupt_update - update SDEIMR
519  * @dev_priv: driver private
520  * @interrupt_mask: mask of interrupt bits to update
521  * @enabled_irq_mask: mask of interrupt bits to enable
522  */
523 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
524 				  uint32_t interrupt_mask,
525 				  uint32_t enabled_irq_mask)
526 {
527 	uint32_t sdeimr = I915_READ(SDEIMR);
528 	sdeimr &= ~interrupt_mask;
529 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
530 
531 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
532 
533 	assert_spin_locked(&dev_priv->irq_lock);
534 
535 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536 		return;
537 
538 	I915_WRITE(SDEIMR, sdeimr);
539 	POSTING_READ(SDEIMR);
540 }
541 
542 static void
543 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
544 		       u32 enable_mask, u32 status_mask)
545 {
546 	i915_reg_t reg = PIPESTAT(pipe);
547 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
548 
549 	assert_spin_locked(&dev_priv->irq_lock);
550 	WARN_ON(!intel_irqs_enabled(dev_priv));
551 
552 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
553 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
554 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
555 		      pipe_name(pipe), enable_mask, status_mask))
556 		return;
557 
558 	if ((pipestat & enable_mask) == enable_mask)
559 		return;
560 
561 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
562 
563 	/* Enable the interrupt, clear any pending status */
564 	pipestat |= enable_mask | status_mask;
565 	I915_WRITE(reg, pipestat);
566 	POSTING_READ(reg);
567 }
568 
569 static void
570 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
571 		        u32 enable_mask, u32 status_mask)
572 {
573 	i915_reg_t reg = PIPESTAT(pipe);
574 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
575 
576 	assert_spin_locked(&dev_priv->irq_lock);
577 	WARN_ON(!intel_irqs_enabled(dev_priv));
578 
579 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
580 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
581 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
582 		      pipe_name(pipe), enable_mask, status_mask))
583 		return;
584 
585 	if ((pipestat & enable_mask) == 0)
586 		return;
587 
588 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
589 
590 	pipestat &= ~enable_mask;
591 	I915_WRITE(reg, pipestat);
592 	POSTING_READ(reg);
593 }
594 
595 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
596 {
597 	u32 enable_mask = status_mask << 16;
598 
599 	/*
600 	 * On pipe A we don't support the PSR interrupt yet,
601 	 * on pipe B and C the same bit MBZ.
602 	 */
603 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
604 		return 0;
605 	/*
606 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
607 	 * A the same bit is for perf counters which we don't use either.
608 	 */
609 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
610 		return 0;
611 
612 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
613 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
614 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
615 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
616 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
617 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
618 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
619 
620 	return enable_mask;
621 }
622 
623 void
624 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
625 		     u32 status_mask)
626 {
627 	u32 enable_mask;
628 
629 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
630 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
631 							   status_mask);
632 	else
633 		enable_mask = status_mask << 16;
634 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
635 }
636 
637 void
638 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
639 		      u32 status_mask)
640 {
641 	u32 enable_mask;
642 
643 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
644 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
645 							   status_mask);
646 	else
647 		enable_mask = status_mask << 16;
648 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
649 }
650 
651 /**
652  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
653  * @dev_priv: i915 device private
654  */
655 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
656 {
657 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
658 		return;
659 
660 	spin_lock_irq(&dev_priv->irq_lock);
661 
662 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
663 	if (INTEL_GEN(dev_priv) >= 4)
664 		i915_enable_pipestat(dev_priv, PIPE_A,
665 				     PIPE_LEGACY_BLC_EVENT_STATUS);
666 
667 	spin_unlock_irq(&dev_priv->irq_lock);
668 }
669 
670 /*
671  * This timing diagram depicts the video signal in and
672  * around the vertical blanking period.
673  *
674  * Assumptions about the fictitious mode used in this example:
675  *  vblank_start >= 3
676  *  vsync_start = vblank_start + 1
677  *  vsync_end = vblank_start + 2
678  *  vtotal = vblank_start + 3
679  *
680  *           start of vblank:
681  *           latch double buffered registers
682  *           increment frame counter (ctg+)
683  *           generate start of vblank interrupt (gen4+)
684  *           |
685  *           |          frame start:
686  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
687  *           |          may be shifted forward 1-3 extra lines via PIPECONF
688  *           |          |
689  *           |          |  start of vsync:
690  *           |          |  generate vsync interrupt
691  *           |          |  |
692  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
693  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
694  * ----va---> <-----------------vb--------------------> <--------va-------------
695  *       |          |       <----vs----->                     |
696  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
697  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
698  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
699  *       |          |                                         |
700  *       last visible pixel                                   first visible pixel
701  *                  |                                         increment frame counter (gen3/4)
702  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
703  *
704  * x  = horizontal active
705  * _  = horizontal blanking
706  * hs = horizontal sync
707  * va = vertical active
708  * vb = vertical blanking
709  * vs = vertical sync
710  * vbs = vblank_start (number)
711  *
712  * Summary:
713  * - most events happen at the start of horizontal sync
714  * - frame start happens at the start of horizontal blank, 1-4 lines
715  *   (depending on PIPECONF settings) after the start of vblank
716  * - gen3/4 pixel and frame counter are synchronized with the start
717  *   of horizontal active on the first line of vertical active
718  */
719 
720 /* Called from drm generic code, passed a 'crtc', which
721  * we use as a pipe index
722  */
723 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
724 {
725 	struct drm_i915_private *dev_priv = to_i915(dev);
726 	i915_reg_t high_frame, low_frame;
727 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
728 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
729 								pipe);
730 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
731 
732 	htotal = mode->crtc_htotal;
733 	hsync_start = mode->crtc_hsync_start;
734 	vbl_start = mode->crtc_vblank_start;
735 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
736 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
737 
738 	/* Convert to pixel count */
739 	vbl_start *= htotal;
740 
741 	/* Start of vblank event occurs at start of hsync */
742 	vbl_start -= htotal - hsync_start;
743 
744 	high_frame = PIPEFRAME(pipe);
745 	low_frame = PIPEFRAMEPIXEL(pipe);
746 
747 	/*
748 	 * High & low register fields aren't synchronized, so make sure
749 	 * we get a low value that's stable across two reads of the high
750 	 * register.
751 	 */
752 	do {
753 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
754 		low   = I915_READ(low_frame);
755 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
756 	} while (high1 != high2);
757 
758 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
759 	pixel = low & PIPE_PIXEL_MASK;
760 	low >>= PIPE_FRAME_LOW_SHIFT;
761 
762 	/*
763 	 * The frame counter increments at beginning of active.
764 	 * Cook up a vblank counter by also checking the pixel
765 	 * counter against vblank start.
766 	 */
767 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
768 }
769 
770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
771 {
772 	struct drm_i915_private *dev_priv = to_i915(dev);
773 
774 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
775 }
776 
777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779 {
780 	struct drm_device *dev = crtc->base.dev;
781 	struct drm_i915_private *dev_priv = to_i915(dev);
782 	const struct drm_display_mode *mode = &crtc->base.hwmode;
783 	enum pipe pipe = crtc->pipe;
784 	int position, vtotal;
785 
786 	vtotal = mode->crtc_vtotal;
787 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
788 		vtotal /= 2;
789 
790 	if (IS_GEN2(dev_priv))
791 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
792 	else
793 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
794 
795 	/*
796 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
797 	 * read it just before the start of vblank.  So try it again
798 	 * so we don't accidentally end up spanning a vblank frame
799 	 * increment, causing the pipe_update_end() code to squak at us.
800 	 *
801 	 * The nature of this problem means we can't simply check the ISR
802 	 * bit and return the vblank start value; nor can we use the scanline
803 	 * debug register in the transcoder as it appears to have the same
804 	 * problem.  We may need to extend this to include other platforms,
805 	 * but so far testing only shows the problem on HSW.
806 	 */
807 	if (HAS_DDI(dev_priv) && !position) {
808 		int i, temp;
809 
810 		for (i = 0; i < 100; i++) {
811 			udelay(1);
812 			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
813 				DSL_LINEMASK_GEN3;
814 			if (temp != position) {
815 				position = temp;
816 				break;
817 			}
818 		}
819 	}
820 
821 	/*
822 	 * See update_scanline_offset() for the details on the
823 	 * scanline_offset adjustment.
824 	 */
825 	return (position + crtc->scanline_offset) % vtotal;
826 }
827 
828 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
829 				    unsigned int flags, int *vpos, int *hpos,
830 				    ktime_t *stime, ktime_t *etime,
831 				    const struct drm_display_mode *mode)
832 {
833 	struct drm_i915_private *dev_priv = to_i915(dev);
834 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
835 								pipe);
836 	int position;
837 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
838 	bool in_vbl = true;
839 	int ret = 0;
840 	unsigned long irqflags;
841 
842 	if (WARN_ON(!mode->crtc_clock)) {
843 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
844 				 "pipe %c\n", pipe_name(pipe));
845 		return 0;
846 	}
847 
848 	htotal = mode->crtc_htotal;
849 	hsync_start = mode->crtc_hsync_start;
850 	vtotal = mode->crtc_vtotal;
851 	vbl_start = mode->crtc_vblank_start;
852 	vbl_end = mode->crtc_vblank_end;
853 
854 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
855 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
856 		vbl_end /= 2;
857 		vtotal /= 2;
858 	}
859 
860 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
861 
862 	/*
863 	 * Lock uncore.lock, as we will do multiple timing critical raw
864 	 * register reads, potentially with preemption disabled, so the
865 	 * following code must not block on uncore.lock.
866 	 */
867 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
868 
869 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
870 
871 	/* Get optional system timestamp before query. */
872 	if (stime)
873 		*stime = ktime_get();
874 
875 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
876 		/* No obvious pixelcount register. Only query vertical
877 		 * scanout position from Display scan line register.
878 		 */
879 		position = __intel_get_crtc_scanline(intel_crtc);
880 	} else {
881 		/* Have access to pixelcount since start of frame.
882 		 * We can split this into vertical and horizontal
883 		 * scanout position.
884 		 */
885 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
886 
887 		/* convert to pixel counts */
888 		vbl_start *= htotal;
889 		vbl_end *= htotal;
890 		vtotal *= htotal;
891 
892 		/*
893 		 * In interlaced modes, the pixel counter counts all pixels,
894 		 * so one field will have htotal more pixels. In order to avoid
895 		 * the reported position from jumping backwards when the pixel
896 		 * counter is beyond the length of the shorter field, just
897 		 * clamp the position the length of the shorter field. This
898 		 * matches how the scanline counter based position works since
899 		 * the scanline counter doesn't count the two half lines.
900 		 */
901 		if (position >= vtotal)
902 			position = vtotal - 1;
903 
904 		/*
905 		 * Start of vblank interrupt is triggered at start of hsync,
906 		 * just prior to the first active line of vblank. However we
907 		 * consider lines to start at the leading edge of horizontal
908 		 * active. So, should we get here before we've crossed into
909 		 * the horizontal active of the first line in vblank, we would
910 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
911 		 * always add htotal-hsync_start to the current pixel position.
912 		 */
913 		position = (position + htotal - hsync_start) % vtotal;
914 	}
915 
916 	/* Get optional system timestamp after query. */
917 	if (etime)
918 		*etime = ktime_get();
919 
920 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
921 
922 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
923 
924 	in_vbl = position >= vbl_start && position < vbl_end;
925 
926 	/*
927 	 * While in vblank, position will be negative
928 	 * counting up towards 0 at vbl_end. And outside
929 	 * vblank, position will be positive counting
930 	 * up since vbl_end.
931 	 */
932 	if (position >= vbl_start)
933 		position -= vbl_end;
934 	else
935 		position += vtotal - vbl_end;
936 
937 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
938 		*vpos = position;
939 		*hpos = 0;
940 	} else {
941 		*vpos = position / htotal;
942 		*hpos = position - (*vpos * htotal);
943 	}
944 
945 	/* In vblank? */
946 	if (in_vbl)
947 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
948 
949 	return ret;
950 }
951 
952 int intel_get_crtc_scanline(struct intel_crtc *crtc)
953 {
954 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
955 	unsigned long irqflags;
956 	int position;
957 
958 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
959 	position = __intel_get_crtc_scanline(crtc);
960 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
961 
962 	return position;
963 }
964 
965 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
966 			      int *max_error,
967 			      struct timeval *vblank_time,
968 			      unsigned flags)
969 {
970 	struct drm_i915_private *dev_priv = to_i915(dev);
971 	struct intel_crtc *crtc;
972 
973 	if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
974 		DRM_ERROR("Invalid crtc %u\n", pipe);
975 		return -EINVAL;
976 	}
977 
978 	/* Get drm_crtc to timestamp: */
979 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
980 	if (crtc == NULL) {
981 		DRM_ERROR("Invalid crtc %u\n", pipe);
982 		return -EINVAL;
983 	}
984 
985 	if (!crtc->base.hwmode.crtc_clock) {
986 		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
987 		return -EBUSY;
988 	}
989 
990 	/* Helper routine in DRM core does all the work: */
991 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
992 						     vblank_time, flags,
993 						     &crtc->base.hwmode);
994 }
995 
996 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
997 {
998 	u32 busy_up, busy_down, max_avg, min_avg;
999 	u8 new_delay;
1000 
1001 	spin_lock(&mchdev_lock);
1002 
1003 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1004 
1005 	new_delay = dev_priv->ips.cur_delay;
1006 
1007 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1008 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1009 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1010 	max_avg = I915_READ(RCBMAXAVG);
1011 	min_avg = I915_READ(RCBMINAVG);
1012 
1013 	/* Handle RCS change request from hw */
1014 	if (busy_up > max_avg) {
1015 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1016 			new_delay = dev_priv->ips.cur_delay - 1;
1017 		if (new_delay < dev_priv->ips.max_delay)
1018 			new_delay = dev_priv->ips.max_delay;
1019 	} else if (busy_down < min_avg) {
1020 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1021 			new_delay = dev_priv->ips.cur_delay + 1;
1022 		if (new_delay > dev_priv->ips.min_delay)
1023 			new_delay = dev_priv->ips.min_delay;
1024 	}
1025 
1026 	if (ironlake_set_drps(dev_priv, new_delay))
1027 		dev_priv->ips.cur_delay = new_delay;
1028 
1029 	spin_unlock(&mchdev_lock);
1030 
1031 	return;
1032 }
1033 
1034 static void notify_ring(struct intel_engine_cs *engine)
1035 {
1036 	smp_store_mb(engine->breadcrumbs.irq_posted, true);
1037 	if (intel_engine_wakeup(engine))
1038 		trace_i915_gem_request_notify(engine);
1039 }
1040 
1041 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1042 			struct intel_rps_ei *ei)
1043 {
1044 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1045 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1046 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1047 }
1048 
1049 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1050 {
1051 	memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1052 }
1053 
1054 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1055 {
1056 	const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1057 	struct intel_rps_ei now;
1058 	u32 events = 0;
1059 
1060 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1061 		return 0;
1062 
1063 	vlv_c0_read(dev_priv, &now);
1064 	if (now.cz_clock == 0)
1065 		return 0;
1066 
1067 	if (prev->cz_clock) {
1068 		u64 time, c0;
1069 		unsigned int mul;
1070 
1071 		mul = VLV_CZ_CLOCK_TO_MILLI_SEC * 100; /* scale to threshold% */
1072 		if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1073 			mul <<= 8;
1074 
1075 		time = now.cz_clock - prev->cz_clock;
1076 		time *= dev_priv->czclk_freq;
1077 
1078 		/* Workload can be split between render + media,
1079 		 * e.g. SwapBuffers being blitted in X after being rendered in
1080 		 * mesa. To account for this we need to combine both engines
1081 		 * into our activity counter.
1082 		 */
1083 		c0 = now.render_c0 - prev->render_c0;
1084 		c0 += now.media_c0 - prev->media_c0;
1085 		c0 *= mul;
1086 
1087 		if (c0 > time * dev_priv->rps.up_threshold)
1088 			events = GEN6_PM_RP_UP_THRESHOLD;
1089 		else if (c0 < time * dev_priv->rps.down_threshold)
1090 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1091 	}
1092 
1093 	dev_priv->rps.ei = now;
1094 	return events;
1095 }
1096 
1097 static bool any_waiters(struct drm_i915_private *dev_priv)
1098 {
1099 	struct intel_engine_cs *engine;
1100 	enum intel_engine_id id;
1101 
1102 	for_each_engine(engine, dev_priv, id)
1103 		if (intel_engine_has_waiter(engine))
1104 			return true;
1105 
1106 	return false;
1107 }
1108 
1109 static void gen6_pm_rps_work(struct work_struct *work)
1110 {
1111 	struct drm_i915_private *dev_priv =
1112 		container_of(work, struct drm_i915_private, rps.work);
1113 	bool client_boost;
1114 	int new_delay, adj, min, max;
1115 	u32 pm_iir;
1116 
1117 	spin_lock_irq(&dev_priv->irq_lock);
1118 	/* Speed up work cancelation during disabling rps interrupts. */
1119 	if (!dev_priv->rps.interrupts_enabled) {
1120 		spin_unlock_irq(&dev_priv->irq_lock);
1121 		return;
1122 	}
1123 
1124 	pm_iir = dev_priv->rps.pm_iir;
1125 	dev_priv->rps.pm_iir = 0;
1126 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1127 	gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1128 	client_boost = dev_priv->rps.client_boost;
1129 	dev_priv->rps.client_boost = false;
1130 	spin_unlock_irq(&dev_priv->irq_lock);
1131 
1132 	/* Make sure we didn't queue anything we're not going to process. */
1133 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1134 
1135 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1136 		return;
1137 
1138 	mutex_lock(&dev_priv->rps.hw_lock);
1139 
1140 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1141 
1142 	adj = dev_priv->rps.last_adj;
1143 	new_delay = dev_priv->rps.cur_freq;
1144 	min = dev_priv->rps.min_freq_softlimit;
1145 	max = dev_priv->rps.max_freq_softlimit;
1146 	if (client_boost || any_waiters(dev_priv))
1147 		max = dev_priv->rps.max_freq;
1148 	if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1149 		new_delay = dev_priv->rps.boost_freq;
1150 		adj = 0;
1151 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1152 		if (adj > 0)
1153 			adj *= 2;
1154 		else /* CHV needs even encode values */
1155 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1156 
1157 		if (new_delay >= dev_priv->rps.max_freq_softlimit)
1158 			adj = 0;
1159 		/*
1160 		 * For better performance, jump directly
1161 		 * to RPe if we're below it.
1162 		 */
1163 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1164 			new_delay = dev_priv->rps.efficient_freq;
1165 			adj = 0;
1166 		}
1167 	} else if (client_boost || any_waiters(dev_priv)) {
1168 		adj = 0;
1169 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1170 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1171 			new_delay = dev_priv->rps.efficient_freq;
1172 		else
1173 			new_delay = dev_priv->rps.min_freq_softlimit;
1174 		adj = 0;
1175 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1176 		if (adj < 0)
1177 			adj *= 2;
1178 		else /* CHV needs even encode values */
1179 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1180 
1181 		if (new_delay <= dev_priv->rps.min_freq_softlimit)
1182 			adj = 0;
1183 	} else { /* unknown event */
1184 		adj = 0;
1185 	}
1186 
1187 	dev_priv->rps.last_adj = adj;
1188 
1189 	/* sysfs frequency interfaces may have snuck in while servicing the
1190 	 * interrupt
1191 	 */
1192 	new_delay += adj;
1193 	new_delay = clamp_t(int, new_delay, min, max);
1194 
1195 	intel_set_rps(dev_priv, new_delay);
1196 
1197 	mutex_unlock(&dev_priv->rps.hw_lock);
1198 }
1199 
1200 
1201 /**
1202  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1203  * occurred.
1204  * @work: workqueue struct
1205  *
1206  * Doesn't actually do anything except notify userspace. As a consequence of
1207  * this event, userspace should try to remap the bad rows since statistically
1208  * it is likely the same row is more likely to go bad again.
1209  */
1210 static void ivybridge_parity_work(struct work_struct *work)
1211 {
1212 	struct drm_i915_private *dev_priv =
1213 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1214 	u32 error_status, row, bank, subbank;
1215 	char *parity_event[6];
1216 	uint32_t misccpctl;
1217 	uint8_t slice = 0;
1218 
1219 	/* We must turn off DOP level clock gating to access the L3 registers.
1220 	 * In order to prevent a get/put style interface, acquire struct mutex
1221 	 * any time we access those registers.
1222 	 */
1223 	mutex_lock(&dev_priv->drm.struct_mutex);
1224 
1225 	/* If we've screwed up tracking, just let the interrupt fire again */
1226 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1227 		goto out;
1228 
1229 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1230 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1231 	POSTING_READ(GEN7_MISCCPCTL);
1232 
1233 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1234 		i915_reg_t reg;
1235 
1236 		slice--;
1237 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1238 			break;
1239 
1240 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1241 
1242 		reg = GEN7_L3CDERRST1(slice);
1243 
1244 		error_status = I915_READ(reg);
1245 		row = GEN7_PARITY_ERROR_ROW(error_status);
1246 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1247 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1248 
1249 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1250 		POSTING_READ(reg);
1251 
1252 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1253 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1254 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1255 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1256 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1257 		parity_event[5] = NULL;
1258 
1259 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1260 				   KOBJ_CHANGE, parity_event);
1261 
1262 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1263 			  slice, row, bank, subbank);
1264 
1265 		kfree(parity_event[4]);
1266 		kfree(parity_event[3]);
1267 		kfree(parity_event[2]);
1268 		kfree(parity_event[1]);
1269 	}
1270 
1271 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1272 
1273 out:
1274 	WARN_ON(dev_priv->l3_parity.which_slice);
1275 	spin_lock_irq(&dev_priv->irq_lock);
1276 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1277 	spin_unlock_irq(&dev_priv->irq_lock);
1278 
1279 	mutex_unlock(&dev_priv->drm.struct_mutex);
1280 }
1281 
1282 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1283 					       u32 iir)
1284 {
1285 	if (!HAS_L3_DPF(dev_priv))
1286 		return;
1287 
1288 	spin_lock(&dev_priv->irq_lock);
1289 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1290 	spin_unlock(&dev_priv->irq_lock);
1291 
1292 	iir &= GT_PARITY_ERROR(dev_priv);
1293 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1294 		dev_priv->l3_parity.which_slice |= 1 << 1;
1295 
1296 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1297 		dev_priv->l3_parity.which_slice |= 1 << 0;
1298 
1299 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1300 }
1301 
1302 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1303 			       u32 gt_iir)
1304 {
1305 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1306 		notify_ring(dev_priv->engine[RCS]);
1307 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1308 		notify_ring(dev_priv->engine[VCS]);
1309 }
1310 
1311 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1312 			       u32 gt_iir)
1313 {
1314 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1315 		notify_ring(dev_priv->engine[RCS]);
1316 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1317 		notify_ring(dev_priv->engine[VCS]);
1318 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1319 		notify_ring(dev_priv->engine[BCS]);
1320 
1321 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1322 		      GT_BSD_CS_ERROR_INTERRUPT |
1323 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1324 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1325 
1326 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1327 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1328 }
1329 
1330 static __always_inline void
1331 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1332 {
1333 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1334 		notify_ring(engine);
1335 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1336 		tasklet_schedule(&engine->irq_tasklet);
1337 }
1338 
1339 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1340 				   u32 master_ctl,
1341 				   u32 gt_iir[4])
1342 {
1343 	irqreturn_t ret = IRQ_NONE;
1344 
1345 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1346 		gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1347 		if (gt_iir[0]) {
1348 			I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1349 			ret = IRQ_HANDLED;
1350 		} else
1351 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1352 	}
1353 
1354 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1355 		gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1356 		if (gt_iir[1]) {
1357 			I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1358 			ret = IRQ_HANDLED;
1359 		} else
1360 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1361 	}
1362 
1363 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1364 		gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1365 		if (gt_iir[3]) {
1366 			I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1367 			ret = IRQ_HANDLED;
1368 		} else
1369 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1370 	}
1371 
1372 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1373 		gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1374 		if (gt_iir[2] & (dev_priv->pm_rps_events |
1375 				 dev_priv->pm_guc_events)) {
1376 			I915_WRITE_FW(GEN8_GT_IIR(2),
1377 				      gt_iir[2] & (dev_priv->pm_rps_events |
1378 						   dev_priv->pm_guc_events));
1379 			ret = IRQ_HANDLED;
1380 		} else
1381 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1382 	}
1383 
1384 	return ret;
1385 }
1386 
1387 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1388 				u32 gt_iir[4])
1389 {
1390 	if (gt_iir[0]) {
1391 		gen8_cs_irq_handler(dev_priv->engine[RCS],
1392 				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1393 		gen8_cs_irq_handler(dev_priv->engine[BCS],
1394 				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1395 	}
1396 
1397 	if (gt_iir[1]) {
1398 		gen8_cs_irq_handler(dev_priv->engine[VCS],
1399 				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1400 		gen8_cs_irq_handler(dev_priv->engine[VCS2],
1401 				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1402 	}
1403 
1404 	if (gt_iir[3])
1405 		gen8_cs_irq_handler(dev_priv->engine[VECS],
1406 				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1407 
1408 	if (gt_iir[2] & dev_priv->pm_rps_events)
1409 		gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1410 
1411 	if (gt_iir[2] & dev_priv->pm_guc_events)
1412 		gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1413 }
1414 
1415 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 	switch (port) {
1418 	case PORT_A:
1419 		return val & PORTA_HOTPLUG_LONG_DETECT;
1420 	case PORT_B:
1421 		return val & PORTB_HOTPLUG_LONG_DETECT;
1422 	case PORT_C:
1423 		return val & PORTC_HOTPLUG_LONG_DETECT;
1424 	default:
1425 		return false;
1426 	}
1427 }
1428 
1429 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1430 {
1431 	switch (port) {
1432 	case PORT_E:
1433 		return val & PORTE_HOTPLUG_LONG_DETECT;
1434 	default:
1435 		return false;
1436 	}
1437 }
1438 
1439 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1440 {
1441 	switch (port) {
1442 	case PORT_A:
1443 		return val & PORTA_HOTPLUG_LONG_DETECT;
1444 	case PORT_B:
1445 		return val & PORTB_HOTPLUG_LONG_DETECT;
1446 	case PORT_C:
1447 		return val & PORTC_HOTPLUG_LONG_DETECT;
1448 	case PORT_D:
1449 		return val & PORTD_HOTPLUG_LONG_DETECT;
1450 	default:
1451 		return false;
1452 	}
1453 }
1454 
1455 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 	switch (port) {
1458 	case PORT_A:
1459 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1460 	default:
1461 		return false;
1462 	}
1463 }
1464 
1465 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1466 {
1467 	switch (port) {
1468 	case PORT_B:
1469 		return val & PORTB_HOTPLUG_LONG_DETECT;
1470 	case PORT_C:
1471 		return val & PORTC_HOTPLUG_LONG_DETECT;
1472 	case PORT_D:
1473 		return val & PORTD_HOTPLUG_LONG_DETECT;
1474 	default:
1475 		return false;
1476 	}
1477 }
1478 
1479 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1480 {
1481 	switch (port) {
1482 	case PORT_B:
1483 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1484 	case PORT_C:
1485 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1486 	case PORT_D:
1487 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1488 	default:
1489 		return false;
1490 	}
1491 }
1492 
1493 /*
1494  * Get a bit mask of pins that have triggered, and which ones may be long.
1495  * This can be called multiple times with the same masks to accumulate
1496  * hotplug detection results from several registers.
1497  *
1498  * Note that the caller is expected to zero out the masks initially.
1499  */
1500 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1501 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1502 			     const u32 hpd[HPD_NUM_PINS],
1503 			     bool long_pulse_detect(enum port port, u32 val))
1504 {
1505 	enum port port;
1506 	int i;
1507 
1508 	for_each_hpd_pin(i) {
1509 		if ((hpd[i] & hotplug_trigger) == 0)
1510 			continue;
1511 
1512 		*pin_mask |= BIT(i);
1513 
1514 		if (!intel_hpd_pin_to_port(i, &port))
1515 			continue;
1516 
1517 		if (long_pulse_detect(port, dig_hotplug_reg))
1518 			*long_mask |= BIT(i);
1519 	}
1520 
1521 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1522 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1523 
1524 }
1525 
1526 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1527 {
1528 	wake_up_all(&dev_priv->gmbus_wait_queue);
1529 }
1530 
1531 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1532 {
1533 	wake_up_all(&dev_priv->gmbus_wait_queue);
1534 }
1535 
1536 #if defined(CONFIG_DEBUG_FS)
1537 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1538 					 enum pipe pipe,
1539 					 uint32_t crc0, uint32_t crc1,
1540 					 uint32_t crc2, uint32_t crc3,
1541 					 uint32_t crc4)
1542 {
1543 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1544 	struct intel_pipe_crc_entry *entry;
1545 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1546 	struct drm_driver *driver = dev_priv->drm.driver;
1547 	uint32_t crcs[5];
1548 	int head, tail;
1549 
1550 	spin_lock(&pipe_crc->lock);
1551 	if (pipe_crc->source) {
1552 		if (!pipe_crc->entries) {
1553 			spin_unlock(&pipe_crc->lock);
1554 			DRM_DEBUG_KMS("spurious interrupt\n");
1555 			return;
1556 		}
1557 
1558 		head = pipe_crc->head;
1559 		tail = pipe_crc->tail;
1560 
1561 		if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1562 			spin_unlock(&pipe_crc->lock);
1563 			DRM_ERROR("CRC buffer overflowing\n");
1564 			return;
1565 		}
1566 
1567 		entry = &pipe_crc->entries[head];
1568 
1569 		entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1570 		entry->crc[0] = crc0;
1571 		entry->crc[1] = crc1;
1572 		entry->crc[2] = crc2;
1573 		entry->crc[3] = crc3;
1574 		entry->crc[4] = crc4;
1575 
1576 		head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1577 		pipe_crc->head = head;
1578 
1579 		spin_unlock(&pipe_crc->lock);
1580 
1581 		wake_up_interruptible(&pipe_crc->wq);
1582 	} else {
1583 		/*
1584 		 * For some not yet identified reason, the first CRC is
1585 		 * bonkers. So let's just wait for the next vblank and read
1586 		 * out the buggy result.
1587 		 *
1588 		 * On CHV sometimes the second CRC is bonkers as well, so
1589 		 * don't trust that one either.
1590 		 */
1591 		if (pipe_crc->skipped == 0 ||
1592 		    (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1593 			pipe_crc->skipped++;
1594 			spin_unlock(&pipe_crc->lock);
1595 			return;
1596 		}
1597 		spin_unlock(&pipe_crc->lock);
1598 		crcs[0] = crc0;
1599 		crcs[1] = crc1;
1600 		crcs[2] = crc2;
1601 		crcs[3] = crc3;
1602 		crcs[4] = crc4;
1603 		drm_crtc_add_crc_entry(&crtc->base, true,
1604 				       drm_accurate_vblank_count(&crtc->base),
1605 				       crcs);
1606 	}
1607 }
1608 #else
1609 static inline void
1610 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1611 			     enum pipe pipe,
1612 			     uint32_t crc0, uint32_t crc1,
1613 			     uint32_t crc2, uint32_t crc3,
1614 			     uint32_t crc4) {}
1615 #endif
1616 
1617 
1618 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1619 				     enum pipe pipe)
1620 {
1621 	display_pipe_crc_irq_handler(dev_priv, pipe,
1622 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1623 				     0, 0, 0, 0);
1624 }
1625 
1626 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1627 				     enum pipe pipe)
1628 {
1629 	display_pipe_crc_irq_handler(dev_priv, pipe,
1630 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1631 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1632 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1633 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1634 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1635 }
1636 
1637 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1638 				      enum pipe pipe)
1639 {
1640 	uint32_t res1, res2;
1641 
1642 	if (INTEL_GEN(dev_priv) >= 3)
1643 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1644 	else
1645 		res1 = 0;
1646 
1647 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1648 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1649 	else
1650 		res2 = 0;
1651 
1652 	display_pipe_crc_irq_handler(dev_priv, pipe,
1653 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1654 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1655 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1656 				     res1, res2);
1657 }
1658 
1659 /* The RPS events need forcewake, so we add them to a work queue and mask their
1660  * IMR bits until the work is done. Other interrupts can be processed without
1661  * the work queue. */
1662 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1663 {
1664 	if (pm_iir & dev_priv->pm_rps_events) {
1665 		spin_lock(&dev_priv->irq_lock);
1666 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1667 		if (dev_priv->rps.interrupts_enabled) {
1668 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1669 			schedule_work(&dev_priv->rps.work);
1670 		}
1671 		spin_unlock(&dev_priv->irq_lock);
1672 	}
1673 
1674 	if (INTEL_INFO(dev_priv)->gen >= 8)
1675 		return;
1676 
1677 	if (HAS_VEBOX(dev_priv)) {
1678 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1679 			notify_ring(dev_priv->engine[VECS]);
1680 
1681 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1682 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1683 	}
1684 }
1685 
1686 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1687 {
1688 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1689 		/* Sample the log buffer flush related bits & clear them out now
1690 		 * itself from the message identity register to minimize the
1691 		 * probability of losing a flush interrupt, when there are back
1692 		 * to back flush interrupts.
1693 		 * There can be a new flush interrupt, for different log buffer
1694 		 * type (like for ISR), whilst Host is handling one (for DPC).
1695 		 * Since same bit is used in message register for ISR & DPC, it
1696 		 * could happen that GuC sets the bit for 2nd interrupt but Host
1697 		 * clears out the bit on handling the 1st interrupt.
1698 		 */
1699 		u32 msg, flush;
1700 
1701 		msg = I915_READ(SOFT_SCRATCH(15));
1702 		flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1703 			       INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1704 		if (flush) {
1705 			/* Clear the message bits that are handled */
1706 			I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1707 
1708 			/* Handle flush interrupt in bottom half */
1709 			queue_work(dev_priv->guc.log.flush_wq,
1710 				   &dev_priv->guc.log.flush_work);
1711 
1712 			dev_priv->guc.log.flush_interrupt_count++;
1713 		} else {
1714 			/* Not clearing of unhandled event bits won't result in
1715 			 * re-triggering of the interrupt.
1716 			 */
1717 		}
1718 	}
1719 }
1720 
1721 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1722 				     enum pipe pipe)
1723 {
1724 	bool ret;
1725 
1726 	ret = drm_handle_vblank(&dev_priv->drm, pipe);
1727 	if (ret)
1728 		intel_finish_page_flip_mmio(dev_priv, pipe);
1729 
1730 	return ret;
1731 }
1732 
1733 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1734 					u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1735 {
1736 	int pipe;
1737 
1738 	spin_lock(&dev_priv->irq_lock);
1739 
1740 	if (!dev_priv->display_irqs_enabled) {
1741 		spin_unlock(&dev_priv->irq_lock);
1742 		return;
1743 	}
1744 
1745 	for_each_pipe(dev_priv, pipe) {
1746 		i915_reg_t reg;
1747 		u32 mask, iir_bit = 0;
1748 
1749 		/*
1750 		 * PIPESTAT bits get signalled even when the interrupt is
1751 		 * disabled with the mask bits, and some of the status bits do
1752 		 * not generate interrupts at all (like the underrun bit). Hence
1753 		 * we need to be careful that we only handle what we want to
1754 		 * handle.
1755 		 */
1756 
1757 		/* fifo underruns are filterered in the underrun handler. */
1758 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1759 
1760 		switch (pipe) {
1761 		case PIPE_A:
1762 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1763 			break;
1764 		case PIPE_B:
1765 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1766 			break;
1767 		case PIPE_C:
1768 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1769 			break;
1770 		}
1771 		if (iir & iir_bit)
1772 			mask |= dev_priv->pipestat_irq_mask[pipe];
1773 
1774 		if (!mask)
1775 			continue;
1776 
1777 		reg = PIPESTAT(pipe);
1778 		mask |= PIPESTAT_INT_ENABLE_MASK;
1779 		pipe_stats[pipe] = I915_READ(reg) & mask;
1780 
1781 		/*
1782 		 * Clear the PIPE*STAT regs before the IIR
1783 		 */
1784 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1785 					PIPESTAT_INT_STATUS_MASK))
1786 			I915_WRITE(reg, pipe_stats[pipe]);
1787 	}
1788 	spin_unlock(&dev_priv->irq_lock);
1789 }
1790 
1791 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1792 					    u32 pipe_stats[I915_MAX_PIPES])
1793 {
1794 	enum pipe pipe;
1795 
1796 	for_each_pipe(dev_priv, pipe) {
1797 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1798 		    intel_pipe_handle_vblank(dev_priv, pipe))
1799 			intel_check_page_flip(dev_priv, pipe);
1800 
1801 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1802 			intel_finish_page_flip_cs(dev_priv, pipe);
1803 
1804 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1805 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1806 
1807 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1808 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1809 	}
1810 
1811 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1812 		gmbus_irq_handler(dev_priv);
1813 }
1814 
1815 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1816 {
1817 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1818 
1819 	if (hotplug_status)
1820 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1821 
1822 	return hotplug_status;
1823 }
1824 
1825 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1826 				 u32 hotplug_status)
1827 {
1828 	u32 pin_mask = 0, long_mask = 0;
1829 
1830 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1831 	    IS_CHERRYVIEW(dev_priv)) {
1832 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1833 
1834 		if (hotplug_trigger) {
1835 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1836 					   hotplug_trigger, hpd_status_g4x,
1837 					   i9xx_port_hotplug_long_detect);
1838 
1839 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1840 		}
1841 
1842 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1843 			dp_aux_irq_handler(dev_priv);
1844 	} else {
1845 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1846 
1847 		if (hotplug_trigger) {
1848 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1849 					   hotplug_trigger, hpd_status_i915,
1850 					   i9xx_port_hotplug_long_detect);
1851 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1852 		}
1853 	}
1854 }
1855 
1856 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1857 {
1858 	struct drm_device *dev = arg;
1859 	struct drm_i915_private *dev_priv = to_i915(dev);
1860 	irqreturn_t ret = IRQ_NONE;
1861 
1862 	if (!intel_irqs_enabled(dev_priv))
1863 		return IRQ_NONE;
1864 
1865 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1866 	disable_rpm_wakeref_asserts(dev_priv);
1867 
1868 	do {
1869 		u32 iir, gt_iir, pm_iir;
1870 		u32 pipe_stats[I915_MAX_PIPES] = {};
1871 		u32 hotplug_status = 0;
1872 		u32 ier = 0;
1873 
1874 		gt_iir = I915_READ(GTIIR);
1875 		pm_iir = I915_READ(GEN6_PMIIR);
1876 		iir = I915_READ(VLV_IIR);
1877 
1878 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1879 			break;
1880 
1881 		ret = IRQ_HANDLED;
1882 
1883 		/*
1884 		 * Theory on interrupt generation, based on empirical evidence:
1885 		 *
1886 		 * x = ((VLV_IIR & VLV_IER) ||
1887 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1888 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1889 		 *
1890 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1891 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1892 		 * guarantee the CPU interrupt will be raised again even if we
1893 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1894 		 * bits this time around.
1895 		 */
1896 		I915_WRITE(VLV_MASTER_IER, 0);
1897 		ier = I915_READ(VLV_IER);
1898 		I915_WRITE(VLV_IER, 0);
1899 
1900 		if (gt_iir)
1901 			I915_WRITE(GTIIR, gt_iir);
1902 		if (pm_iir)
1903 			I915_WRITE(GEN6_PMIIR, pm_iir);
1904 
1905 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1906 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1907 
1908 		/* Call regardless, as some status bits might not be
1909 		 * signalled in iir */
1910 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1911 
1912 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1913 			   I915_LPE_PIPE_B_INTERRUPT))
1914 			intel_lpe_audio_irq_handler(dev_priv);
1915 
1916 		/*
1917 		 * VLV_IIR is single buffered, and reflects the level
1918 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1919 		 */
1920 		if (iir)
1921 			I915_WRITE(VLV_IIR, iir);
1922 
1923 		I915_WRITE(VLV_IER, ier);
1924 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1925 		POSTING_READ(VLV_MASTER_IER);
1926 
1927 		if (gt_iir)
1928 			snb_gt_irq_handler(dev_priv, gt_iir);
1929 		if (pm_iir)
1930 			gen6_rps_irq_handler(dev_priv, pm_iir);
1931 
1932 		if (hotplug_status)
1933 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1934 
1935 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1936 	} while (0);
1937 
1938 	enable_rpm_wakeref_asserts(dev_priv);
1939 
1940 	return ret;
1941 }
1942 
1943 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1944 {
1945 	struct drm_device *dev = arg;
1946 	struct drm_i915_private *dev_priv = to_i915(dev);
1947 	irqreturn_t ret = IRQ_NONE;
1948 
1949 	if (!intel_irqs_enabled(dev_priv))
1950 		return IRQ_NONE;
1951 
1952 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1953 	disable_rpm_wakeref_asserts(dev_priv);
1954 
1955 	do {
1956 		u32 master_ctl, iir;
1957 		u32 gt_iir[4] = {};
1958 		u32 pipe_stats[I915_MAX_PIPES] = {};
1959 		u32 hotplug_status = 0;
1960 		u32 ier = 0;
1961 
1962 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1963 		iir = I915_READ(VLV_IIR);
1964 
1965 		if (master_ctl == 0 && iir == 0)
1966 			break;
1967 
1968 		ret = IRQ_HANDLED;
1969 
1970 		/*
1971 		 * Theory on interrupt generation, based on empirical evidence:
1972 		 *
1973 		 * x = ((VLV_IIR & VLV_IER) ||
1974 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1975 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1976 		 *
1977 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1978 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1979 		 * guarantee the CPU interrupt will be raised again even if we
1980 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1981 		 * bits this time around.
1982 		 */
1983 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1984 		ier = I915_READ(VLV_IER);
1985 		I915_WRITE(VLV_IER, 0);
1986 
1987 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1988 
1989 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1990 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1991 
1992 		/* Call regardless, as some status bits might not be
1993 		 * signalled in iir */
1994 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1995 
1996 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1997 			   I915_LPE_PIPE_B_INTERRUPT |
1998 			   I915_LPE_PIPE_C_INTERRUPT))
1999 			intel_lpe_audio_irq_handler(dev_priv);
2000 
2001 		/*
2002 		 * VLV_IIR is single buffered, and reflects the level
2003 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2004 		 */
2005 		if (iir)
2006 			I915_WRITE(VLV_IIR, iir);
2007 
2008 		I915_WRITE(VLV_IER, ier);
2009 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2010 		POSTING_READ(GEN8_MASTER_IRQ);
2011 
2012 		gen8_gt_irq_handler(dev_priv, gt_iir);
2013 
2014 		if (hotplug_status)
2015 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016 
2017 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018 	} while (0);
2019 
2020 	enable_rpm_wakeref_asserts(dev_priv);
2021 
2022 	return ret;
2023 }
2024 
2025 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2026 				u32 hotplug_trigger,
2027 				const u32 hpd[HPD_NUM_PINS])
2028 {
2029 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2030 
2031 	/*
2032 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2033 	 * unless we touch the hotplug register, even if hotplug_trigger is
2034 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2035 	 * errors.
2036 	 */
2037 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2038 	if (!hotplug_trigger) {
2039 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2040 			PORTD_HOTPLUG_STATUS_MASK |
2041 			PORTC_HOTPLUG_STATUS_MASK |
2042 			PORTB_HOTPLUG_STATUS_MASK;
2043 		dig_hotplug_reg &= ~mask;
2044 	}
2045 
2046 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2047 	if (!hotplug_trigger)
2048 		return;
2049 
2050 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2051 			   dig_hotplug_reg, hpd,
2052 			   pch_port_hotplug_long_detect);
2053 
2054 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2055 }
2056 
2057 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2058 {
2059 	int pipe;
2060 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2061 
2062 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2063 
2064 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2065 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2066 			       SDE_AUDIO_POWER_SHIFT);
2067 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2068 				 port_name(port));
2069 	}
2070 
2071 	if (pch_iir & SDE_AUX_MASK)
2072 		dp_aux_irq_handler(dev_priv);
2073 
2074 	if (pch_iir & SDE_GMBUS)
2075 		gmbus_irq_handler(dev_priv);
2076 
2077 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2078 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2079 
2080 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2081 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2082 
2083 	if (pch_iir & SDE_POISON)
2084 		DRM_ERROR("PCH poison interrupt\n");
2085 
2086 	if (pch_iir & SDE_FDI_MASK)
2087 		for_each_pipe(dev_priv, pipe)
2088 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2089 					 pipe_name(pipe),
2090 					 I915_READ(FDI_RX_IIR(pipe)));
2091 
2092 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2093 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2094 
2095 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2096 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2097 
2098 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2099 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2100 
2101 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2102 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2103 }
2104 
2105 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2106 {
2107 	u32 err_int = I915_READ(GEN7_ERR_INT);
2108 	enum pipe pipe;
2109 
2110 	if (err_int & ERR_INT_POISON)
2111 		DRM_ERROR("Poison interrupt\n");
2112 
2113 	for_each_pipe(dev_priv, pipe) {
2114 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2115 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2116 
2117 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2118 			if (IS_IVYBRIDGE(dev_priv))
2119 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2120 			else
2121 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2122 		}
2123 	}
2124 
2125 	I915_WRITE(GEN7_ERR_INT, err_int);
2126 }
2127 
2128 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2129 {
2130 	u32 serr_int = I915_READ(SERR_INT);
2131 
2132 	if (serr_int & SERR_INT_POISON)
2133 		DRM_ERROR("PCH poison interrupt\n");
2134 
2135 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2136 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2137 
2138 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2139 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2140 
2141 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2142 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2143 
2144 	I915_WRITE(SERR_INT, serr_int);
2145 }
2146 
2147 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2148 {
2149 	int pipe;
2150 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2151 
2152 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2153 
2154 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2155 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2156 			       SDE_AUDIO_POWER_SHIFT_CPT);
2157 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2158 				 port_name(port));
2159 	}
2160 
2161 	if (pch_iir & SDE_AUX_MASK_CPT)
2162 		dp_aux_irq_handler(dev_priv);
2163 
2164 	if (pch_iir & SDE_GMBUS_CPT)
2165 		gmbus_irq_handler(dev_priv);
2166 
2167 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2168 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2169 
2170 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2171 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2172 
2173 	if (pch_iir & SDE_FDI_MASK_CPT)
2174 		for_each_pipe(dev_priv, pipe)
2175 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2176 					 pipe_name(pipe),
2177 					 I915_READ(FDI_RX_IIR(pipe)));
2178 
2179 	if (pch_iir & SDE_ERROR_CPT)
2180 		cpt_serr_int_handler(dev_priv);
2181 }
2182 
2183 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2184 {
2185 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2186 		~SDE_PORTE_HOTPLUG_SPT;
2187 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2188 	u32 pin_mask = 0, long_mask = 0;
2189 
2190 	if (hotplug_trigger) {
2191 		u32 dig_hotplug_reg;
2192 
2193 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2194 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2195 
2196 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2197 				   dig_hotplug_reg, hpd_spt,
2198 				   spt_port_hotplug_long_detect);
2199 	}
2200 
2201 	if (hotplug2_trigger) {
2202 		u32 dig_hotplug_reg;
2203 
2204 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2205 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2206 
2207 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2208 				   dig_hotplug_reg, hpd_spt,
2209 				   spt_port_hotplug2_long_detect);
2210 	}
2211 
2212 	if (pin_mask)
2213 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2214 
2215 	if (pch_iir & SDE_GMBUS_CPT)
2216 		gmbus_irq_handler(dev_priv);
2217 }
2218 
2219 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2220 				u32 hotplug_trigger,
2221 				const u32 hpd[HPD_NUM_PINS])
2222 {
2223 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2224 
2225 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2226 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2227 
2228 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2229 			   dig_hotplug_reg, hpd,
2230 			   ilk_port_hotplug_long_detect);
2231 
2232 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2233 }
2234 
2235 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2236 				    u32 de_iir)
2237 {
2238 	enum pipe pipe;
2239 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2240 
2241 	if (hotplug_trigger)
2242 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2243 
2244 	if (de_iir & DE_AUX_CHANNEL_A)
2245 		dp_aux_irq_handler(dev_priv);
2246 
2247 	if (de_iir & DE_GSE)
2248 		intel_opregion_asle_intr(dev_priv);
2249 
2250 	if (de_iir & DE_POISON)
2251 		DRM_ERROR("Poison interrupt\n");
2252 
2253 	for_each_pipe(dev_priv, pipe) {
2254 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2255 		    intel_pipe_handle_vblank(dev_priv, pipe))
2256 			intel_check_page_flip(dev_priv, pipe);
2257 
2258 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2259 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2260 
2261 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2262 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2263 
2264 		/* plane/pipes map 1:1 on ilk+ */
2265 		if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2266 			intel_finish_page_flip_cs(dev_priv, pipe);
2267 	}
2268 
2269 	/* check event from PCH */
2270 	if (de_iir & DE_PCH_EVENT) {
2271 		u32 pch_iir = I915_READ(SDEIIR);
2272 
2273 		if (HAS_PCH_CPT(dev_priv))
2274 			cpt_irq_handler(dev_priv, pch_iir);
2275 		else
2276 			ibx_irq_handler(dev_priv, pch_iir);
2277 
2278 		/* should clear PCH hotplug event before clear CPU irq */
2279 		I915_WRITE(SDEIIR, pch_iir);
2280 	}
2281 
2282 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2283 		ironlake_rps_change_irq_handler(dev_priv);
2284 }
2285 
2286 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2287 				    u32 de_iir)
2288 {
2289 	enum pipe pipe;
2290 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2291 
2292 	if (hotplug_trigger)
2293 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2294 
2295 	if (de_iir & DE_ERR_INT_IVB)
2296 		ivb_err_int_handler(dev_priv);
2297 
2298 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2299 		dp_aux_irq_handler(dev_priv);
2300 
2301 	if (de_iir & DE_GSE_IVB)
2302 		intel_opregion_asle_intr(dev_priv);
2303 
2304 	for_each_pipe(dev_priv, pipe) {
2305 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2306 		    intel_pipe_handle_vblank(dev_priv, pipe))
2307 			intel_check_page_flip(dev_priv, pipe);
2308 
2309 		/* plane/pipes map 1:1 on ilk+ */
2310 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2311 			intel_finish_page_flip_cs(dev_priv, pipe);
2312 	}
2313 
2314 	/* check event from PCH */
2315 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2316 		u32 pch_iir = I915_READ(SDEIIR);
2317 
2318 		cpt_irq_handler(dev_priv, pch_iir);
2319 
2320 		/* clear PCH hotplug event before clear CPU irq */
2321 		I915_WRITE(SDEIIR, pch_iir);
2322 	}
2323 }
2324 
2325 /*
2326  * To handle irqs with the minimum potential races with fresh interrupts, we:
2327  * 1 - Disable Master Interrupt Control.
2328  * 2 - Find the source(s) of the interrupt.
2329  * 3 - Clear the Interrupt Identity bits (IIR).
2330  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2331  * 5 - Re-enable Master Interrupt Control.
2332  */
2333 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2334 {
2335 	struct drm_device *dev = arg;
2336 	struct drm_i915_private *dev_priv = to_i915(dev);
2337 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2338 	irqreturn_t ret = IRQ_NONE;
2339 
2340 	if (!intel_irqs_enabled(dev_priv))
2341 		return IRQ_NONE;
2342 
2343 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2344 	disable_rpm_wakeref_asserts(dev_priv);
2345 
2346 	/* disable master interrupt before clearing iir  */
2347 	de_ier = I915_READ(DEIER);
2348 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2349 	POSTING_READ(DEIER);
2350 
2351 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2352 	 * interrupts will will be stored on its back queue, and then we'll be
2353 	 * able to process them after we restore SDEIER (as soon as we restore
2354 	 * it, we'll get an interrupt if SDEIIR still has something to process
2355 	 * due to its back queue). */
2356 	if (!HAS_PCH_NOP(dev_priv)) {
2357 		sde_ier = I915_READ(SDEIER);
2358 		I915_WRITE(SDEIER, 0);
2359 		POSTING_READ(SDEIER);
2360 	}
2361 
2362 	/* Find, clear, then process each source of interrupt */
2363 
2364 	gt_iir = I915_READ(GTIIR);
2365 	if (gt_iir) {
2366 		I915_WRITE(GTIIR, gt_iir);
2367 		ret = IRQ_HANDLED;
2368 		if (INTEL_GEN(dev_priv) >= 6)
2369 			snb_gt_irq_handler(dev_priv, gt_iir);
2370 		else
2371 			ilk_gt_irq_handler(dev_priv, gt_iir);
2372 	}
2373 
2374 	de_iir = I915_READ(DEIIR);
2375 	if (de_iir) {
2376 		I915_WRITE(DEIIR, de_iir);
2377 		ret = IRQ_HANDLED;
2378 		if (INTEL_GEN(dev_priv) >= 7)
2379 			ivb_display_irq_handler(dev_priv, de_iir);
2380 		else
2381 			ilk_display_irq_handler(dev_priv, de_iir);
2382 	}
2383 
2384 	if (INTEL_GEN(dev_priv) >= 6) {
2385 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2386 		if (pm_iir) {
2387 			I915_WRITE(GEN6_PMIIR, pm_iir);
2388 			ret = IRQ_HANDLED;
2389 			gen6_rps_irq_handler(dev_priv, pm_iir);
2390 		}
2391 	}
2392 
2393 	I915_WRITE(DEIER, de_ier);
2394 	POSTING_READ(DEIER);
2395 	if (!HAS_PCH_NOP(dev_priv)) {
2396 		I915_WRITE(SDEIER, sde_ier);
2397 		POSTING_READ(SDEIER);
2398 	}
2399 
2400 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2401 	enable_rpm_wakeref_asserts(dev_priv);
2402 
2403 	return ret;
2404 }
2405 
2406 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2407 				u32 hotplug_trigger,
2408 				const u32 hpd[HPD_NUM_PINS])
2409 {
2410 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2411 
2412 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2413 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2414 
2415 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2416 			   dig_hotplug_reg, hpd,
2417 			   bxt_port_hotplug_long_detect);
2418 
2419 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2420 }
2421 
2422 static irqreturn_t
2423 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2424 {
2425 	irqreturn_t ret = IRQ_NONE;
2426 	u32 iir;
2427 	enum pipe pipe;
2428 
2429 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2430 		iir = I915_READ(GEN8_DE_MISC_IIR);
2431 		if (iir) {
2432 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2433 			ret = IRQ_HANDLED;
2434 			if (iir & GEN8_DE_MISC_GSE)
2435 				intel_opregion_asle_intr(dev_priv);
2436 			else
2437 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2438 		}
2439 		else
2440 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2441 	}
2442 
2443 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2444 		iir = I915_READ(GEN8_DE_PORT_IIR);
2445 		if (iir) {
2446 			u32 tmp_mask;
2447 			bool found = false;
2448 
2449 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2450 			ret = IRQ_HANDLED;
2451 
2452 			tmp_mask = GEN8_AUX_CHANNEL_A;
2453 			if (INTEL_INFO(dev_priv)->gen >= 9)
2454 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2455 					    GEN9_AUX_CHANNEL_C |
2456 					    GEN9_AUX_CHANNEL_D;
2457 
2458 			if (iir & tmp_mask) {
2459 				dp_aux_irq_handler(dev_priv);
2460 				found = true;
2461 			}
2462 
2463 			if (IS_GEN9_LP(dev_priv)) {
2464 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2465 				if (tmp_mask) {
2466 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2467 							    hpd_bxt);
2468 					found = true;
2469 				}
2470 			} else if (IS_BROADWELL(dev_priv)) {
2471 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2472 				if (tmp_mask) {
2473 					ilk_hpd_irq_handler(dev_priv,
2474 							    tmp_mask, hpd_bdw);
2475 					found = true;
2476 				}
2477 			}
2478 
2479 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2480 				gmbus_irq_handler(dev_priv);
2481 				found = true;
2482 			}
2483 
2484 			if (!found)
2485 				DRM_ERROR("Unexpected DE Port interrupt\n");
2486 		}
2487 		else
2488 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2489 	}
2490 
2491 	for_each_pipe(dev_priv, pipe) {
2492 		u32 flip_done, fault_errors;
2493 
2494 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2495 			continue;
2496 
2497 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2498 		if (!iir) {
2499 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2500 			continue;
2501 		}
2502 
2503 		ret = IRQ_HANDLED;
2504 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2505 
2506 		if (iir & GEN8_PIPE_VBLANK &&
2507 		    intel_pipe_handle_vblank(dev_priv, pipe))
2508 			intel_check_page_flip(dev_priv, pipe);
2509 
2510 		flip_done = iir;
2511 		if (INTEL_INFO(dev_priv)->gen >= 9)
2512 			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2513 		else
2514 			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2515 
2516 		if (flip_done)
2517 			intel_finish_page_flip_cs(dev_priv, pipe);
2518 
2519 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2520 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2521 
2522 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2523 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2524 
2525 		fault_errors = iir;
2526 		if (INTEL_INFO(dev_priv)->gen >= 9)
2527 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2528 		else
2529 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2530 
2531 		if (fault_errors)
2532 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2533 				  pipe_name(pipe),
2534 				  fault_errors);
2535 	}
2536 
2537 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2538 	    master_ctl & GEN8_DE_PCH_IRQ) {
2539 		/*
2540 		 * FIXME(BDW): Assume for now that the new interrupt handling
2541 		 * scheme also closed the SDE interrupt handling race we've seen
2542 		 * on older pch-split platforms. But this needs testing.
2543 		 */
2544 		iir = I915_READ(SDEIIR);
2545 		if (iir) {
2546 			I915_WRITE(SDEIIR, iir);
2547 			ret = IRQ_HANDLED;
2548 
2549 			if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2550 				spt_irq_handler(dev_priv, iir);
2551 			else
2552 				cpt_irq_handler(dev_priv, iir);
2553 		} else {
2554 			/*
2555 			 * Like on previous PCH there seems to be something
2556 			 * fishy going on with forwarding PCH interrupts.
2557 			 */
2558 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2559 		}
2560 	}
2561 
2562 	return ret;
2563 }
2564 
2565 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2566 {
2567 	struct drm_device *dev = arg;
2568 	struct drm_i915_private *dev_priv = to_i915(dev);
2569 	u32 master_ctl;
2570 	u32 gt_iir[4] = {};
2571 	irqreturn_t ret;
2572 
2573 	if (!intel_irqs_enabled(dev_priv))
2574 		return IRQ_NONE;
2575 
2576 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2577 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2578 	if (!master_ctl)
2579 		return IRQ_NONE;
2580 
2581 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2582 
2583 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2584 	disable_rpm_wakeref_asserts(dev_priv);
2585 
2586 	/* Find, clear, then process each source of interrupt */
2587 	ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2588 	gen8_gt_irq_handler(dev_priv, gt_iir);
2589 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2590 
2591 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2592 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2593 
2594 	enable_rpm_wakeref_asserts(dev_priv);
2595 
2596 	return ret;
2597 }
2598 
2599 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2600 {
2601 	/*
2602 	 * Notify all waiters for GPU completion events that reset state has
2603 	 * been changed, and that they need to restart their wait after
2604 	 * checking for potential errors (and bail out to drop locks if there is
2605 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2606 	 */
2607 
2608 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2609 	wake_up_all(&dev_priv->gpu_error.wait_queue);
2610 
2611 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2612 	wake_up_all(&dev_priv->pending_flip_queue);
2613 }
2614 
2615 /**
2616  * i915_reset_and_wakeup - do process context error handling work
2617  * @dev_priv: i915 device private
2618  *
2619  * Fire an error uevent so userspace can see that a hang or error
2620  * was detected.
2621  */
2622 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2623 {
2624 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2625 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2626 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2627 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2628 
2629 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2630 
2631 	DRM_DEBUG_DRIVER("resetting chip\n");
2632 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2633 
2634 	/*
2635 	 * In most cases it's guaranteed that we get here with an RPM
2636 	 * reference held, for example because there is a pending GPU
2637 	 * request that won't finish until the reset is done. This
2638 	 * isn't the case at least when we get here by doing a
2639 	 * simulated reset via debugs, so get an RPM reference.
2640 	 */
2641 	intel_runtime_pm_get(dev_priv);
2642 	intel_prepare_reset(dev_priv);
2643 
2644 	do {
2645 		/*
2646 		 * All state reset _must_ be completed before we update the
2647 		 * reset counter, for otherwise waiters might miss the reset
2648 		 * pending state and not properly drop locks, resulting in
2649 		 * deadlocks with the reset work.
2650 		 */
2651 		if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2652 			i915_reset(dev_priv);
2653 			mutex_unlock(&dev_priv->drm.struct_mutex);
2654 		}
2655 
2656 		/* We need to wait for anyone holding the lock to wakeup */
2657 	} while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2658 				     I915_RESET_IN_PROGRESS,
2659 				     TASK_UNINTERRUPTIBLE,
2660 				     HZ));
2661 
2662 	intel_finish_reset(dev_priv);
2663 	intel_runtime_pm_put(dev_priv);
2664 
2665 	if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2666 		kobject_uevent_env(kobj,
2667 				   KOBJ_CHANGE, reset_done_event);
2668 
2669 	/*
2670 	 * Note: The wake_up also serves as a memory barrier so that
2671 	 * waiters see the updated value of the dev_priv->gpu_error.
2672 	 */
2673 	wake_up_all(&dev_priv->gpu_error.reset_queue);
2674 }
2675 
2676 static inline void
2677 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2678 			struct intel_instdone *instdone)
2679 {
2680 	int slice;
2681 	int subslice;
2682 
2683 	pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2684 
2685 	if (INTEL_GEN(dev_priv) <= 3)
2686 		return;
2687 
2688 	pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2689 
2690 	if (INTEL_GEN(dev_priv) <= 6)
2691 		return;
2692 
2693 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2694 		pr_err("  SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2695 		       slice, subslice, instdone->sampler[slice][subslice]);
2696 
2697 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2698 		pr_err("  ROW_INSTDONE[%d][%d]: 0x%08x\n",
2699 		       slice, subslice, instdone->row[slice][subslice]);
2700 }
2701 
2702 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2703 {
2704 	u32 eir;
2705 
2706 	if (!IS_GEN2(dev_priv))
2707 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2708 
2709 	if (INTEL_GEN(dev_priv) < 4)
2710 		I915_WRITE(IPEIR, I915_READ(IPEIR));
2711 	else
2712 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2713 
2714 	I915_WRITE(EIR, I915_READ(EIR));
2715 	eir = I915_READ(EIR);
2716 	if (eir) {
2717 		/*
2718 		 * some errors might have become stuck,
2719 		 * mask them.
2720 		 */
2721 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2722 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2723 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2724 	}
2725 }
2726 
2727 /**
2728  * i915_handle_error - handle a gpu error
2729  * @dev_priv: i915 device private
2730  * @engine_mask: mask representing engines that are hung
2731  * @fmt: Error message format string
2732  *
2733  * Do some basic checking of register state at error time and
2734  * dump it to the syslog.  Also call i915_capture_error_state() to make
2735  * sure we get a record and make it available in debugfs.  Fire a uevent
2736  * so userspace knows something bad happened (should trigger collection
2737  * of a ring dump etc.).
2738  */
2739 void i915_handle_error(struct drm_i915_private *dev_priv,
2740 		       u32 engine_mask,
2741 		       const char *fmt, ...)
2742 {
2743 	va_list args;
2744 	char error_msg[80];
2745 
2746 	va_start(args, fmt);
2747 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2748 	va_end(args);
2749 
2750 	i915_capture_error_state(dev_priv, engine_mask, error_msg);
2751 	i915_clear_error_registers(dev_priv);
2752 
2753 	if (!engine_mask)
2754 		return;
2755 
2756 	if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2757 			     &dev_priv->gpu_error.flags))
2758 		return;
2759 
2760 	/*
2761 	 * Wakeup waiting processes so that the reset function
2762 	 * i915_reset_and_wakeup doesn't deadlock trying to grab
2763 	 * various locks. By bumping the reset counter first, the woken
2764 	 * processes will see a reset in progress and back off,
2765 	 * releasing their locks and then wait for the reset completion.
2766 	 * We must do this for _all_ gpu waiters that might hold locks
2767 	 * that the reset work needs to acquire.
2768 	 *
2769 	 * Note: The wake_up also provides a memory barrier to ensure that the
2770 	 * waiters see the updated value of the reset flags.
2771 	 */
2772 	i915_error_wake_up(dev_priv);
2773 
2774 	i915_reset_and_wakeup(dev_priv);
2775 }
2776 
2777 /* Called from drm generic code, passed 'crtc' which
2778  * we use as a pipe index
2779  */
2780 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2781 {
2782 	struct drm_i915_private *dev_priv = to_i915(dev);
2783 	unsigned long irqflags;
2784 
2785 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2786 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2787 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2788 
2789 	return 0;
2790 }
2791 
2792 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2793 {
2794 	struct drm_i915_private *dev_priv = to_i915(dev);
2795 	unsigned long irqflags;
2796 
2797 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2798 	i915_enable_pipestat(dev_priv, pipe,
2799 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2800 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2801 
2802 	return 0;
2803 }
2804 
2805 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2806 {
2807 	struct drm_i915_private *dev_priv = to_i915(dev);
2808 	unsigned long irqflags;
2809 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2810 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2811 
2812 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2813 	ilk_enable_display_irq(dev_priv, bit);
2814 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2815 
2816 	return 0;
2817 }
2818 
2819 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2820 {
2821 	struct drm_i915_private *dev_priv = to_i915(dev);
2822 	unsigned long irqflags;
2823 
2824 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2825 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2826 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2827 
2828 	return 0;
2829 }
2830 
2831 /* Called from drm generic code, passed 'crtc' which
2832  * we use as a pipe index
2833  */
2834 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2835 {
2836 	struct drm_i915_private *dev_priv = to_i915(dev);
2837 	unsigned long irqflags;
2838 
2839 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2840 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2841 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2842 }
2843 
2844 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2845 {
2846 	struct drm_i915_private *dev_priv = to_i915(dev);
2847 	unsigned long irqflags;
2848 
2849 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2850 	i915_disable_pipestat(dev_priv, pipe,
2851 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2852 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2853 }
2854 
2855 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2856 {
2857 	struct drm_i915_private *dev_priv = to_i915(dev);
2858 	unsigned long irqflags;
2859 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2860 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2861 
2862 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2863 	ilk_disable_display_irq(dev_priv, bit);
2864 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2865 }
2866 
2867 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2868 {
2869 	struct drm_i915_private *dev_priv = to_i915(dev);
2870 	unsigned long irqflags;
2871 
2872 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2873 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2874 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2875 }
2876 
2877 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2878 {
2879 	if (HAS_PCH_NOP(dev_priv))
2880 		return;
2881 
2882 	GEN5_IRQ_RESET(SDE);
2883 
2884 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2885 		I915_WRITE(SERR_INT, 0xffffffff);
2886 }
2887 
2888 /*
2889  * SDEIER is also touched by the interrupt handler to work around missed PCH
2890  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2891  * instead we unconditionally enable all PCH interrupt sources here, but then
2892  * only unmask them as needed with SDEIMR.
2893  *
2894  * This function needs to be called before interrupts are enabled.
2895  */
2896 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2897 {
2898 	struct drm_i915_private *dev_priv = to_i915(dev);
2899 
2900 	if (HAS_PCH_NOP(dev_priv))
2901 		return;
2902 
2903 	WARN_ON(I915_READ(SDEIER) != 0);
2904 	I915_WRITE(SDEIER, 0xffffffff);
2905 	POSTING_READ(SDEIER);
2906 }
2907 
2908 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2909 {
2910 	GEN5_IRQ_RESET(GT);
2911 	if (INTEL_GEN(dev_priv) >= 6)
2912 		GEN5_IRQ_RESET(GEN6_PM);
2913 }
2914 
2915 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2916 {
2917 	enum pipe pipe;
2918 
2919 	if (IS_CHERRYVIEW(dev_priv))
2920 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2921 	else
2922 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2923 
2924 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2925 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2926 
2927 	for_each_pipe(dev_priv, pipe) {
2928 		I915_WRITE(PIPESTAT(pipe),
2929 			   PIPE_FIFO_UNDERRUN_STATUS |
2930 			   PIPESTAT_INT_STATUS_MASK);
2931 		dev_priv->pipestat_irq_mask[pipe] = 0;
2932 	}
2933 
2934 	GEN5_IRQ_RESET(VLV_);
2935 	dev_priv->irq_mask = ~0;
2936 }
2937 
2938 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2939 {
2940 	u32 pipestat_mask;
2941 	u32 enable_mask;
2942 	enum pipe pipe;
2943 	u32 val;
2944 
2945 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2946 			PIPE_CRC_DONE_INTERRUPT_STATUS;
2947 
2948 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2949 	for_each_pipe(dev_priv, pipe)
2950 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2951 
2952 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2953 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2954 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2955 	if (IS_CHERRYVIEW(dev_priv))
2956 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2957 
2958 	WARN_ON(dev_priv->irq_mask != ~0);
2959 
2960 	val = (I915_LPE_PIPE_A_INTERRUPT |
2961 		I915_LPE_PIPE_B_INTERRUPT |
2962 		I915_LPE_PIPE_C_INTERRUPT);
2963 
2964 	enable_mask |= val;
2965 
2966 	dev_priv->irq_mask = ~enable_mask;
2967 
2968 	GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2969 }
2970 
2971 /* drm_dma.h hooks
2972 */
2973 static void ironlake_irq_reset(struct drm_device *dev)
2974 {
2975 	struct drm_i915_private *dev_priv = to_i915(dev);
2976 
2977 	I915_WRITE(HWSTAM, 0xffffffff);
2978 
2979 	GEN5_IRQ_RESET(DE);
2980 	if (IS_GEN7(dev_priv))
2981 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2982 
2983 	gen5_gt_irq_reset(dev_priv);
2984 
2985 	ibx_irq_reset(dev_priv);
2986 }
2987 
2988 static void valleyview_irq_preinstall(struct drm_device *dev)
2989 {
2990 	struct drm_i915_private *dev_priv = to_i915(dev);
2991 
2992 	I915_WRITE(VLV_MASTER_IER, 0);
2993 	POSTING_READ(VLV_MASTER_IER);
2994 
2995 	gen5_gt_irq_reset(dev_priv);
2996 
2997 	spin_lock_irq(&dev_priv->irq_lock);
2998 	if (dev_priv->display_irqs_enabled)
2999 		vlv_display_irq_reset(dev_priv);
3000 	spin_unlock_irq(&dev_priv->irq_lock);
3001 }
3002 
3003 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3004 {
3005 	GEN8_IRQ_RESET_NDX(GT, 0);
3006 	GEN8_IRQ_RESET_NDX(GT, 1);
3007 	GEN8_IRQ_RESET_NDX(GT, 2);
3008 	GEN8_IRQ_RESET_NDX(GT, 3);
3009 }
3010 
3011 static void gen8_irq_reset(struct drm_device *dev)
3012 {
3013 	struct drm_i915_private *dev_priv = to_i915(dev);
3014 	int pipe;
3015 
3016 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3017 	POSTING_READ(GEN8_MASTER_IRQ);
3018 
3019 	gen8_gt_irq_reset(dev_priv);
3020 
3021 	for_each_pipe(dev_priv, pipe)
3022 		if (intel_display_power_is_enabled(dev_priv,
3023 						   POWER_DOMAIN_PIPE(pipe)))
3024 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3025 
3026 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3027 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3028 	GEN5_IRQ_RESET(GEN8_PCU_);
3029 
3030 	if (HAS_PCH_SPLIT(dev_priv))
3031 		ibx_irq_reset(dev_priv);
3032 }
3033 
3034 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3035 				     unsigned int pipe_mask)
3036 {
3037 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3038 	enum pipe pipe;
3039 
3040 	spin_lock_irq(&dev_priv->irq_lock);
3041 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3042 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3043 				  dev_priv->de_irq_mask[pipe],
3044 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3045 	spin_unlock_irq(&dev_priv->irq_lock);
3046 }
3047 
3048 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3049 				     unsigned int pipe_mask)
3050 {
3051 	enum pipe pipe;
3052 
3053 	spin_lock_irq(&dev_priv->irq_lock);
3054 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3055 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3056 	spin_unlock_irq(&dev_priv->irq_lock);
3057 
3058 	/* make sure we're done processing display irqs */
3059 	synchronize_irq(dev_priv->drm.irq);
3060 }
3061 
3062 static void cherryview_irq_preinstall(struct drm_device *dev)
3063 {
3064 	struct drm_i915_private *dev_priv = to_i915(dev);
3065 
3066 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3067 	POSTING_READ(GEN8_MASTER_IRQ);
3068 
3069 	gen8_gt_irq_reset(dev_priv);
3070 
3071 	GEN5_IRQ_RESET(GEN8_PCU_);
3072 
3073 	spin_lock_irq(&dev_priv->irq_lock);
3074 	if (dev_priv->display_irqs_enabled)
3075 		vlv_display_irq_reset(dev_priv);
3076 	spin_unlock_irq(&dev_priv->irq_lock);
3077 }
3078 
3079 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3080 				  const u32 hpd[HPD_NUM_PINS])
3081 {
3082 	struct intel_encoder *encoder;
3083 	u32 enabled_irqs = 0;
3084 
3085 	for_each_intel_encoder(&dev_priv->drm, encoder)
3086 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3087 			enabled_irqs |= hpd[encoder->hpd_pin];
3088 
3089 	return enabled_irqs;
3090 }
3091 
3092 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3093 {
3094 	u32 hotplug_irqs, hotplug, enabled_irqs;
3095 
3096 	if (HAS_PCH_IBX(dev_priv)) {
3097 		hotplug_irqs = SDE_HOTPLUG_MASK;
3098 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3099 	} else {
3100 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3101 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3102 	}
3103 
3104 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3105 
3106 	/*
3107 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3108 	 * duration to 2ms (which is the minimum in the Display Port spec).
3109 	 * The pulse duration bits are reserved on LPT+.
3110 	 */
3111 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3112 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3113 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3114 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3115 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3116 	/*
3117 	 * When CPU and PCH are on the same package, port A
3118 	 * HPD must be enabled in both north and south.
3119 	 */
3120 	if (HAS_PCH_LPT_LP(dev_priv))
3121 		hotplug |= PORTA_HOTPLUG_ENABLE;
3122 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3123 }
3124 
3125 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3126 {
3127 	u32 hotplug;
3128 
3129 	/* Enable digital hotplug on the PCH */
3130 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3131 	hotplug |= PORTA_HOTPLUG_ENABLE |
3132 		   PORTB_HOTPLUG_ENABLE |
3133 		   PORTC_HOTPLUG_ENABLE |
3134 		   PORTD_HOTPLUG_ENABLE;
3135 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3136 
3137 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3138 	hotplug |= PORTE_HOTPLUG_ENABLE;
3139 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3140 }
3141 
3142 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3143 {
3144 	u32 hotplug_irqs, enabled_irqs;
3145 
3146 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3147 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3148 
3149 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3150 
3151 	spt_hpd_detection_setup(dev_priv);
3152 }
3153 
3154 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3155 {
3156 	u32 hotplug_irqs, hotplug, enabled_irqs;
3157 
3158 	if (INTEL_GEN(dev_priv) >= 8) {
3159 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3160 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3161 
3162 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3163 	} else if (INTEL_GEN(dev_priv) >= 7) {
3164 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3165 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3166 
3167 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3168 	} else {
3169 		hotplug_irqs = DE_DP_A_HOTPLUG;
3170 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3171 
3172 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3173 	}
3174 
3175 	/*
3176 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3177 	 * duration to 2ms (which is the minimum in the Display Port spec)
3178 	 * The pulse duration bits are reserved on HSW+.
3179 	 */
3180 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3181 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3182 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3183 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3184 
3185 	ibx_hpd_irq_setup(dev_priv);
3186 }
3187 
3188 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3189 				      u32 enabled_irqs)
3190 {
3191 	u32 hotplug;
3192 
3193 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3194 	hotplug |= PORTA_HOTPLUG_ENABLE |
3195 		   PORTB_HOTPLUG_ENABLE |
3196 		   PORTC_HOTPLUG_ENABLE;
3197 
3198 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3199 		      hotplug, enabled_irqs);
3200 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3201 
3202 	/*
3203 	 * For BXT invert bit has to be set based on AOB design
3204 	 * for HPD detection logic, update it based on VBT fields.
3205 	 */
3206 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3207 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3208 		hotplug |= BXT_DDIA_HPD_INVERT;
3209 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3210 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3211 		hotplug |= BXT_DDIB_HPD_INVERT;
3212 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3213 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3214 		hotplug |= BXT_DDIC_HPD_INVERT;
3215 
3216 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3217 }
3218 
3219 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3220 {
3221 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3222 }
3223 
3224 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3225 {
3226 	u32 hotplug_irqs, enabled_irqs;
3227 
3228 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3229 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3230 
3231 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3232 
3233 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3234 }
3235 
3236 static void ibx_irq_postinstall(struct drm_device *dev)
3237 {
3238 	struct drm_i915_private *dev_priv = to_i915(dev);
3239 	u32 mask;
3240 
3241 	if (HAS_PCH_NOP(dev_priv))
3242 		return;
3243 
3244 	if (HAS_PCH_IBX(dev_priv))
3245 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3246 	else
3247 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3248 
3249 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3250 	I915_WRITE(SDEIMR, ~mask);
3251 
3252 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3253 	    HAS_PCH_LPT(dev_priv))
3254 		; /* TODO: Enable HPD detection on older PCH platforms too */
3255 	else
3256 		spt_hpd_detection_setup(dev_priv);
3257 }
3258 
3259 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3260 {
3261 	struct drm_i915_private *dev_priv = to_i915(dev);
3262 	u32 pm_irqs, gt_irqs;
3263 
3264 	pm_irqs = gt_irqs = 0;
3265 
3266 	dev_priv->gt_irq_mask = ~0;
3267 	if (HAS_L3_DPF(dev_priv)) {
3268 		/* L3 parity interrupt is always unmasked. */
3269 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3270 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3271 	}
3272 
3273 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3274 	if (IS_GEN5(dev_priv)) {
3275 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3276 	} else {
3277 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3278 	}
3279 
3280 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3281 
3282 	if (INTEL_GEN(dev_priv) >= 6) {
3283 		/*
3284 		 * RPS interrupts will get enabled/disabled on demand when RPS
3285 		 * itself is enabled/disabled.
3286 		 */
3287 		if (HAS_VEBOX(dev_priv)) {
3288 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3289 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3290 		}
3291 
3292 		dev_priv->pm_imr = 0xffffffff;
3293 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3294 	}
3295 }
3296 
3297 static int ironlake_irq_postinstall(struct drm_device *dev)
3298 {
3299 	struct drm_i915_private *dev_priv = to_i915(dev);
3300 	u32 display_mask, extra_mask;
3301 
3302 	if (INTEL_GEN(dev_priv) >= 7) {
3303 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3304 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3305 				DE_PLANEB_FLIP_DONE_IVB |
3306 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3307 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3308 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3309 			      DE_DP_A_HOTPLUG_IVB);
3310 	} else {
3311 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3312 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3313 				DE_AUX_CHANNEL_A |
3314 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3315 				DE_POISON);
3316 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3317 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3318 			      DE_DP_A_HOTPLUG);
3319 	}
3320 
3321 	dev_priv->irq_mask = ~display_mask;
3322 
3323 	I915_WRITE(HWSTAM, 0xeffe);
3324 
3325 	ibx_irq_pre_postinstall(dev);
3326 
3327 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3328 
3329 	gen5_gt_irq_postinstall(dev);
3330 
3331 	ibx_irq_postinstall(dev);
3332 
3333 	if (IS_IRONLAKE_M(dev_priv)) {
3334 		/* Enable PCU event interrupts
3335 		 *
3336 		 * spinlocking not required here for correctness since interrupt
3337 		 * setup is guaranteed to run in single-threaded context. But we
3338 		 * need it to make the assert_spin_locked happy. */
3339 		spin_lock_irq(&dev_priv->irq_lock);
3340 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3341 		spin_unlock_irq(&dev_priv->irq_lock);
3342 	}
3343 
3344 	return 0;
3345 }
3346 
3347 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3348 {
3349 	assert_spin_locked(&dev_priv->irq_lock);
3350 
3351 	if (dev_priv->display_irqs_enabled)
3352 		return;
3353 
3354 	dev_priv->display_irqs_enabled = true;
3355 
3356 	if (intel_irqs_enabled(dev_priv)) {
3357 		vlv_display_irq_reset(dev_priv);
3358 		vlv_display_irq_postinstall(dev_priv);
3359 	}
3360 }
3361 
3362 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3363 {
3364 	assert_spin_locked(&dev_priv->irq_lock);
3365 
3366 	if (!dev_priv->display_irqs_enabled)
3367 		return;
3368 
3369 	dev_priv->display_irqs_enabled = false;
3370 
3371 	if (intel_irqs_enabled(dev_priv))
3372 		vlv_display_irq_reset(dev_priv);
3373 }
3374 
3375 
3376 static int valleyview_irq_postinstall(struct drm_device *dev)
3377 {
3378 	struct drm_i915_private *dev_priv = to_i915(dev);
3379 
3380 	gen5_gt_irq_postinstall(dev);
3381 
3382 	spin_lock_irq(&dev_priv->irq_lock);
3383 	if (dev_priv->display_irqs_enabled)
3384 		vlv_display_irq_postinstall(dev_priv);
3385 	spin_unlock_irq(&dev_priv->irq_lock);
3386 
3387 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3388 	POSTING_READ(VLV_MASTER_IER);
3389 
3390 	return 0;
3391 }
3392 
3393 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3394 {
3395 	/* These are interrupts we'll toggle with the ring mask register */
3396 	uint32_t gt_interrupts[] = {
3397 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3398 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3399 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3400 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3401 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3402 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3403 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3404 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3405 		0,
3406 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3407 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3408 		};
3409 
3410 	if (HAS_L3_DPF(dev_priv))
3411 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3412 
3413 	dev_priv->pm_ier = 0x0;
3414 	dev_priv->pm_imr = ~dev_priv->pm_ier;
3415 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3416 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3417 	/*
3418 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3419 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
3420 	 */
3421 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3422 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3423 }
3424 
3425 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3426 {
3427 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3428 	uint32_t de_pipe_enables;
3429 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3430 	u32 de_port_enables;
3431 	u32 de_misc_masked = GEN8_DE_MISC_GSE;
3432 	enum pipe pipe;
3433 
3434 	if (INTEL_INFO(dev_priv)->gen >= 9) {
3435 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3436 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3437 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3438 				  GEN9_AUX_CHANNEL_D;
3439 		if (IS_GEN9_LP(dev_priv))
3440 			de_port_masked |= BXT_DE_PORT_GMBUS;
3441 	} else {
3442 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3443 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3444 	}
3445 
3446 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3447 					   GEN8_PIPE_FIFO_UNDERRUN;
3448 
3449 	de_port_enables = de_port_masked;
3450 	if (IS_GEN9_LP(dev_priv))
3451 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3452 	else if (IS_BROADWELL(dev_priv))
3453 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3454 
3455 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3456 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3457 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3458 
3459 	for_each_pipe(dev_priv, pipe)
3460 		if (intel_display_power_is_enabled(dev_priv,
3461 				POWER_DOMAIN_PIPE(pipe)))
3462 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3463 					  dev_priv->de_irq_mask[pipe],
3464 					  de_pipe_enables);
3465 
3466 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3467 	GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3468 
3469 	if (IS_GEN9_LP(dev_priv))
3470 		bxt_hpd_detection_setup(dev_priv);
3471 }
3472 
3473 static int gen8_irq_postinstall(struct drm_device *dev)
3474 {
3475 	struct drm_i915_private *dev_priv = to_i915(dev);
3476 
3477 	if (HAS_PCH_SPLIT(dev_priv))
3478 		ibx_irq_pre_postinstall(dev);
3479 
3480 	gen8_gt_irq_postinstall(dev_priv);
3481 	gen8_de_irq_postinstall(dev_priv);
3482 
3483 	if (HAS_PCH_SPLIT(dev_priv))
3484 		ibx_irq_postinstall(dev);
3485 
3486 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3487 	POSTING_READ(GEN8_MASTER_IRQ);
3488 
3489 	return 0;
3490 }
3491 
3492 static int cherryview_irq_postinstall(struct drm_device *dev)
3493 {
3494 	struct drm_i915_private *dev_priv = to_i915(dev);
3495 
3496 	gen8_gt_irq_postinstall(dev_priv);
3497 
3498 	spin_lock_irq(&dev_priv->irq_lock);
3499 	if (dev_priv->display_irqs_enabled)
3500 		vlv_display_irq_postinstall(dev_priv);
3501 	spin_unlock_irq(&dev_priv->irq_lock);
3502 
3503 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3504 	POSTING_READ(GEN8_MASTER_IRQ);
3505 
3506 	return 0;
3507 }
3508 
3509 static void gen8_irq_uninstall(struct drm_device *dev)
3510 {
3511 	struct drm_i915_private *dev_priv = to_i915(dev);
3512 
3513 	if (!dev_priv)
3514 		return;
3515 
3516 	gen8_irq_reset(dev);
3517 }
3518 
3519 static void valleyview_irq_uninstall(struct drm_device *dev)
3520 {
3521 	struct drm_i915_private *dev_priv = to_i915(dev);
3522 
3523 	if (!dev_priv)
3524 		return;
3525 
3526 	I915_WRITE(VLV_MASTER_IER, 0);
3527 	POSTING_READ(VLV_MASTER_IER);
3528 
3529 	gen5_gt_irq_reset(dev_priv);
3530 
3531 	I915_WRITE(HWSTAM, 0xffffffff);
3532 
3533 	spin_lock_irq(&dev_priv->irq_lock);
3534 	if (dev_priv->display_irqs_enabled)
3535 		vlv_display_irq_reset(dev_priv);
3536 	spin_unlock_irq(&dev_priv->irq_lock);
3537 }
3538 
3539 static void cherryview_irq_uninstall(struct drm_device *dev)
3540 {
3541 	struct drm_i915_private *dev_priv = to_i915(dev);
3542 
3543 	if (!dev_priv)
3544 		return;
3545 
3546 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3547 	POSTING_READ(GEN8_MASTER_IRQ);
3548 
3549 	gen8_gt_irq_reset(dev_priv);
3550 
3551 	GEN5_IRQ_RESET(GEN8_PCU_);
3552 
3553 	spin_lock_irq(&dev_priv->irq_lock);
3554 	if (dev_priv->display_irqs_enabled)
3555 		vlv_display_irq_reset(dev_priv);
3556 	spin_unlock_irq(&dev_priv->irq_lock);
3557 }
3558 
3559 static void ironlake_irq_uninstall(struct drm_device *dev)
3560 {
3561 	struct drm_i915_private *dev_priv = to_i915(dev);
3562 
3563 	if (!dev_priv)
3564 		return;
3565 
3566 	ironlake_irq_reset(dev);
3567 }
3568 
3569 static void i8xx_irq_preinstall(struct drm_device * dev)
3570 {
3571 	struct drm_i915_private *dev_priv = to_i915(dev);
3572 	int pipe;
3573 
3574 	for_each_pipe(dev_priv, pipe)
3575 		I915_WRITE(PIPESTAT(pipe), 0);
3576 	I915_WRITE16(IMR, 0xffff);
3577 	I915_WRITE16(IER, 0x0);
3578 	POSTING_READ16(IER);
3579 }
3580 
3581 static int i8xx_irq_postinstall(struct drm_device *dev)
3582 {
3583 	struct drm_i915_private *dev_priv = to_i915(dev);
3584 
3585 	I915_WRITE16(EMR,
3586 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3587 
3588 	/* Unmask the interrupts that we always want on. */
3589 	dev_priv->irq_mask =
3590 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3591 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3592 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3593 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3594 	I915_WRITE16(IMR, dev_priv->irq_mask);
3595 
3596 	I915_WRITE16(IER,
3597 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3598 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3599 		     I915_USER_INTERRUPT);
3600 	POSTING_READ16(IER);
3601 
3602 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3603 	 * just to make the assert_spin_locked check happy. */
3604 	spin_lock_irq(&dev_priv->irq_lock);
3605 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3606 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3607 	spin_unlock_irq(&dev_priv->irq_lock);
3608 
3609 	return 0;
3610 }
3611 
3612 /*
3613  * Returns true when a page flip has completed.
3614  */
3615 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3616 			       int plane, int pipe, u32 iir)
3617 {
3618 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3619 
3620 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
3621 		return false;
3622 
3623 	if ((iir & flip_pending) == 0)
3624 		goto check_page_flip;
3625 
3626 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3627 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3628 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3629 	 * the flip is completed (no longer pending). Since this doesn't raise
3630 	 * an interrupt per se, we watch for the change at vblank.
3631 	 */
3632 	if (I915_READ16(ISR) & flip_pending)
3633 		goto check_page_flip;
3634 
3635 	intel_finish_page_flip_cs(dev_priv, pipe);
3636 	return true;
3637 
3638 check_page_flip:
3639 	intel_check_page_flip(dev_priv, pipe);
3640 	return false;
3641 }
3642 
3643 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3644 {
3645 	struct drm_device *dev = arg;
3646 	struct drm_i915_private *dev_priv = to_i915(dev);
3647 	u16 iir, new_iir;
3648 	u32 pipe_stats[2];
3649 	int pipe;
3650 	u16 flip_mask =
3651 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3652 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3653 	irqreturn_t ret;
3654 
3655 	if (!intel_irqs_enabled(dev_priv))
3656 		return IRQ_NONE;
3657 
3658 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3659 	disable_rpm_wakeref_asserts(dev_priv);
3660 
3661 	ret = IRQ_NONE;
3662 	iir = I915_READ16(IIR);
3663 	if (iir == 0)
3664 		goto out;
3665 
3666 	while (iir & ~flip_mask) {
3667 		/* Can't rely on pipestat interrupt bit in iir as it might
3668 		 * have been cleared after the pipestat interrupt was received.
3669 		 * It doesn't set the bit in iir again, but it still produces
3670 		 * interrupts (for non-MSI).
3671 		 */
3672 		spin_lock(&dev_priv->irq_lock);
3673 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3674 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3675 
3676 		for_each_pipe(dev_priv, pipe) {
3677 			i915_reg_t reg = PIPESTAT(pipe);
3678 			pipe_stats[pipe] = I915_READ(reg);
3679 
3680 			/*
3681 			 * Clear the PIPE*STAT regs before the IIR
3682 			 */
3683 			if (pipe_stats[pipe] & 0x8000ffff)
3684 				I915_WRITE(reg, pipe_stats[pipe]);
3685 		}
3686 		spin_unlock(&dev_priv->irq_lock);
3687 
3688 		I915_WRITE16(IIR, iir & ~flip_mask);
3689 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3690 
3691 		if (iir & I915_USER_INTERRUPT)
3692 			notify_ring(dev_priv->engine[RCS]);
3693 
3694 		for_each_pipe(dev_priv, pipe) {
3695 			int plane = pipe;
3696 			if (HAS_FBC(dev_priv))
3697 				plane = !plane;
3698 
3699 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3700 			    i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3701 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3702 
3703 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3704 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3705 
3706 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3707 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3708 								    pipe);
3709 		}
3710 
3711 		iir = new_iir;
3712 	}
3713 	ret = IRQ_HANDLED;
3714 
3715 out:
3716 	enable_rpm_wakeref_asserts(dev_priv);
3717 
3718 	return ret;
3719 }
3720 
3721 static void i8xx_irq_uninstall(struct drm_device * dev)
3722 {
3723 	struct drm_i915_private *dev_priv = to_i915(dev);
3724 	int pipe;
3725 
3726 	for_each_pipe(dev_priv, pipe) {
3727 		/* Clear enable bits; then clear status bits */
3728 		I915_WRITE(PIPESTAT(pipe), 0);
3729 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3730 	}
3731 	I915_WRITE16(IMR, 0xffff);
3732 	I915_WRITE16(IER, 0x0);
3733 	I915_WRITE16(IIR, I915_READ16(IIR));
3734 }
3735 
3736 static void i915_irq_preinstall(struct drm_device * dev)
3737 {
3738 	struct drm_i915_private *dev_priv = to_i915(dev);
3739 	int pipe;
3740 
3741 	if (I915_HAS_HOTPLUG(dev_priv)) {
3742 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3743 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3744 	}
3745 
3746 	I915_WRITE16(HWSTAM, 0xeffe);
3747 	for_each_pipe(dev_priv, pipe)
3748 		I915_WRITE(PIPESTAT(pipe), 0);
3749 	I915_WRITE(IMR, 0xffffffff);
3750 	I915_WRITE(IER, 0x0);
3751 	POSTING_READ(IER);
3752 }
3753 
3754 static int i915_irq_postinstall(struct drm_device *dev)
3755 {
3756 	struct drm_i915_private *dev_priv = to_i915(dev);
3757 	u32 enable_mask;
3758 
3759 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3760 
3761 	/* Unmask the interrupts that we always want on. */
3762 	dev_priv->irq_mask =
3763 		~(I915_ASLE_INTERRUPT |
3764 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3765 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3766 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3767 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3768 
3769 	enable_mask =
3770 		I915_ASLE_INTERRUPT |
3771 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3772 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3773 		I915_USER_INTERRUPT;
3774 
3775 	if (I915_HAS_HOTPLUG(dev_priv)) {
3776 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3777 		POSTING_READ(PORT_HOTPLUG_EN);
3778 
3779 		/* Enable in IER... */
3780 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3781 		/* and unmask in IMR */
3782 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3783 	}
3784 
3785 	I915_WRITE(IMR, dev_priv->irq_mask);
3786 	I915_WRITE(IER, enable_mask);
3787 	POSTING_READ(IER);
3788 
3789 	i915_enable_asle_pipestat(dev_priv);
3790 
3791 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3792 	 * just to make the assert_spin_locked check happy. */
3793 	spin_lock_irq(&dev_priv->irq_lock);
3794 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3795 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3796 	spin_unlock_irq(&dev_priv->irq_lock);
3797 
3798 	return 0;
3799 }
3800 
3801 /*
3802  * Returns true when a page flip has completed.
3803  */
3804 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3805 			       int plane, int pipe, u32 iir)
3806 {
3807 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3808 
3809 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
3810 		return false;
3811 
3812 	if ((iir & flip_pending) == 0)
3813 		goto check_page_flip;
3814 
3815 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3816 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3817 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3818 	 * the flip is completed (no longer pending). Since this doesn't raise
3819 	 * an interrupt per se, we watch for the change at vblank.
3820 	 */
3821 	if (I915_READ(ISR) & flip_pending)
3822 		goto check_page_flip;
3823 
3824 	intel_finish_page_flip_cs(dev_priv, pipe);
3825 	return true;
3826 
3827 check_page_flip:
3828 	intel_check_page_flip(dev_priv, pipe);
3829 	return false;
3830 }
3831 
3832 static irqreturn_t i915_irq_handler(int irq, void *arg)
3833 {
3834 	struct drm_device *dev = arg;
3835 	struct drm_i915_private *dev_priv = to_i915(dev);
3836 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3837 	u32 flip_mask =
3838 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3839 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3840 	int pipe, ret = IRQ_NONE;
3841 
3842 	if (!intel_irqs_enabled(dev_priv))
3843 		return IRQ_NONE;
3844 
3845 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3846 	disable_rpm_wakeref_asserts(dev_priv);
3847 
3848 	iir = I915_READ(IIR);
3849 	do {
3850 		bool irq_received = (iir & ~flip_mask) != 0;
3851 		bool blc_event = false;
3852 
3853 		/* Can't rely on pipestat interrupt bit in iir as it might
3854 		 * have been cleared after the pipestat interrupt was received.
3855 		 * It doesn't set the bit in iir again, but it still produces
3856 		 * interrupts (for non-MSI).
3857 		 */
3858 		spin_lock(&dev_priv->irq_lock);
3859 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3860 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3861 
3862 		for_each_pipe(dev_priv, pipe) {
3863 			i915_reg_t reg = PIPESTAT(pipe);
3864 			pipe_stats[pipe] = I915_READ(reg);
3865 
3866 			/* Clear the PIPE*STAT regs before the IIR */
3867 			if (pipe_stats[pipe] & 0x8000ffff) {
3868 				I915_WRITE(reg, pipe_stats[pipe]);
3869 				irq_received = true;
3870 			}
3871 		}
3872 		spin_unlock(&dev_priv->irq_lock);
3873 
3874 		if (!irq_received)
3875 			break;
3876 
3877 		/* Consume port.  Then clear IIR or we'll miss events */
3878 		if (I915_HAS_HOTPLUG(dev_priv) &&
3879 		    iir & I915_DISPLAY_PORT_INTERRUPT) {
3880 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3881 			if (hotplug_status)
3882 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3883 		}
3884 
3885 		I915_WRITE(IIR, iir & ~flip_mask);
3886 		new_iir = I915_READ(IIR); /* Flush posted writes */
3887 
3888 		if (iir & I915_USER_INTERRUPT)
3889 			notify_ring(dev_priv->engine[RCS]);
3890 
3891 		for_each_pipe(dev_priv, pipe) {
3892 			int plane = pipe;
3893 			if (HAS_FBC(dev_priv))
3894 				plane = !plane;
3895 
3896 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3897 			    i915_handle_vblank(dev_priv, plane, pipe, iir))
3898 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3899 
3900 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3901 				blc_event = true;
3902 
3903 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3904 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3905 
3906 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3907 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3908 								    pipe);
3909 		}
3910 
3911 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3912 			intel_opregion_asle_intr(dev_priv);
3913 
3914 		/* With MSI, interrupts are only generated when iir
3915 		 * transitions from zero to nonzero.  If another bit got
3916 		 * set while we were handling the existing iir bits, then
3917 		 * we would never get another interrupt.
3918 		 *
3919 		 * This is fine on non-MSI as well, as if we hit this path
3920 		 * we avoid exiting the interrupt handler only to generate
3921 		 * another one.
3922 		 *
3923 		 * Note that for MSI this could cause a stray interrupt report
3924 		 * if an interrupt landed in the time between writing IIR and
3925 		 * the posting read.  This should be rare enough to never
3926 		 * trigger the 99% of 100,000 interrupts test for disabling
3927 		 * stray interrupts.
3928 		 */
3929 		ret = IRQ_HANDLED;
3930 		iir = new_iir;
3931 	} while (iir & ~flip_mask);
3932 
3933 	enable_rpm_wakeref_asserts(dev_priv);
3934 
3935 	return ret;
3936 }
3937 
3938 static void i915_irq_uninstall(struct drm_device * dev)
3939 {
3940 	struct drm_i915_private *dev_priv = to_i915(dev);
3941 	int pipe;
3942 
3943 	if (I915_HAS_HOTPLUG(dev_priv)) {
3944 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3945 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3946 	}
3947 
3948 	I915_WRITE16(HWSTAM, 0xffff);
3949 	for_each_pipe(dev_priv, pipe) {
3950 		/* Clear enable bits; then clear status bits */
3951 		I915_WRITE(PIPESTAT(pipe), 0);
3952 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3953 	}
3954 	I915_WRITE(IMR, 0xffffffff);
3955 	I915_WRITE(IER, 0x0);
3956 
3957 	I915_WRITE(IIR, I915_READ(IIR));
3958 }
3959 
3960 static void i965_irq_preinstall(struct drm_device * dev)
3961 {
3962 	struct drm_i915_private *dev_priv = to_i915(dev);
3963 	int pipe;
3964 
3965 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3966 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3967 
3968 	I915_WRITE(HWSTAM, 0xeffe);
3969 	for_each_pipe(dev_priv, pipe)
3970 		I915_WRITE(PIPESTAT(pipe), 0);
3971 	I915_WRITE(IMR, 0xffffffff);
3972 	I915_WRITE(IER, 0x0);
3973 	POSTING_READ(IER);
3974 }
3975 
3976 static int i965_irq_postinstall(struct drm_device *dev)
3977 {
3978 	struct drm_i915_private *dev_priv = to_i915(dev);
3979 	u32 enable_mask;
3980 	u32 error_mask;
3981 
3982 	/* Unmask the interrupts that we always want on. */
3983 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3984 			       I915_DISPLAY_PORT_INTERRUPT |
3985 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3986 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3987 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3988 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3989 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3990 
3991 	enable_mask = ~dev_priv->irq_mask;
3992 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3993 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3994 	enable_mask |= I915_USER_INTERRUPT;
3995 
3996 	if (IS_G4X(dev_priv))
3997 		enable_mask |= I915_BSD_USER_INTERRUPT;
3998 
3999 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4000 	 * just to make the assert_spin_locked check happy. */
4001 	spin_lock_irq(&dev_priv->irq_lock);
4002 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4003 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4004 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4005 	spin_unlock_irq(&dev_priv->irq_lock);
4006 
4007 	/*
4008 	 * Enable some error detection, note the instruction error mask
4009 	 * bit is reserved, so we leave it masked.
4010 	 */
4011 	if (IS_G4X(dev_priv)) {
4012 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4013 			       GM45_ERROR_MEM_PRIV |
4014 			       GM45_ERROR_CP_PRIV |
4015 			       I915_ERROR_MEMORY_REFRESH);
4016 	} else {
4017 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4018 			       I915_ERROR_MEMORY_REFRESH);
4019 	}
4020 	I915_WRITE(EMR, error_mask);
4021 
4022 	I915_WRITE(IMR, dev_priv->irq_mask);
4023 	I915_WRITE(IER, enable_mask);
4024 	POSTING_READ(IER);
4025 
4026 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4027 	POSTING_READ(PORT_HOTPLUG_EN);
4028 
4029 	i915_enable_asle_pipestat(dev_priv);
4030 
4031 	return 0;
4032 }
4033 
4034 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4035 {
4036 	u32 hotplug_en;
4037 
4038 	assert_spin_locked(&dev_priv->irq_lock);
4039 
4040 	/* Note HDMI and DP share hotplug bits */
4041 	/* enable bits are the same for all generations */
4042 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4043 	/* Programming the CRT detection parameters tends
4044 	   to generate a spurious hotplug event about three
4045 	   seconds later.  So just do it once.
4046 	*/
4047 	if (IS_G4X(dev_priv))
4048 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4049 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4050 
4051 	/* Ignore TV since it's buggy */
4052 	i915_hotplug_interrupt_update_locked(dev_priv,
4053 					     HOTPLUG_INT_EN_MASK |
4054 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4055 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4056 					     hotplug_en);
4057 }
4058 
4059 static irqreturn_t i965_irq_handler(int irq, void *arg)
4060 {
4061 	struct drm_device *dev = arg;
4062 	struct drm_i915_private *dev_priv = to_i915(dev);
4063 	u32 iir, new_iir;
4064 	u32 pipe_stats[I915_MAX_PIPES];
4065 	int ret = IRQ_NONE, pipe;
4066 	u32 flip_mask =
4067 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4068 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4069 
4070 	if (!intel_irqs_enabled(dev_priv))
4071 		return IRQ_NONE;
4072 
4073 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4074 	disable_rpm_wakeref_asserts(dev_priv);
4075 
4076 	iir = I915_READ(IIR);
4077 
4078 	for (;;) {
4079 		bool irq_received = (iir & ~flip_mask) != 0;
4080 		bool blc_event = false;
4081 
4082 		/* Can't rely on pipestat interrupt bit in iir as it might
4083 		 * have been cleared after the pipestat interrupt was received.
4084 		 * It doesn't set the bit in iir again, but it still produces
4085 		 * interrupts (for non-MSI).
4086 		 */
4087 		spin_lock(&dev_priv->irq_lock);
4088 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4089 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4090 
4091 		for_each_pipe(dev_priv, pipe) {
4092 			i915_reg_t reg = PIPESTAT(pipe);
4093 			pipe_stats[pipe] = I915_READ(reg);
4094 
4095 			/*
4096 			 * Clear the PIPE*STAT regs before the IIR
4097 			 */
4098 			if (pipe_stats[pipe] & 0x8000ffff) {
4099 				I915_WRITE(reg, pipe_stats[pipe]);
4100 				irq_received = true;
4101 			}
4102 		}
4103 		spin_unlock(&dev_priv->irq_lock);
4104 
4105 		if (!irq_received)
4106 			break;
4107 
4108 		ret = IRQ_HANDLED;
4109 
4110 		/* Consume port.  Then clear IIR or we'll miss events */
4111 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4112 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4113 			if (hotplug_status)
4114 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4115 		}
4116 
4117 		I915_WRITE(IIR, iir & ~flip_mask);
4118 		new_iir = I915_READ(IIR); /* Flush posted writes */
4119 
4120 		if (iir & I915_USER_INTERRUPT)
4121 			notify_ring(dev_priv->engine[RCS]);
4122 		if (iir & I915_BSD_USER_INTERRUPT)
4123 			notify_ring(dev_priv->engine[VCS]);
4124 
4125 		for_each_pipe(dev_priv, pipe) {
4126 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4127 			    i915_handle_vblank(dev_priv, pipe, pipe, iir))
4128 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4129 
4130 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4131 				blc_event = true;
4132 
4133 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4134 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4135 
4136 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4137 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4138 		}
4139 
4140 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4141 			intel_opregion_asle_intr(dev_priv);
4142 
4143 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4144 			gmbus_irq_handler(dev_priv);
4145 
4146 		/* With MSI, interrupts are only generated when iir
4147 		 * transitions from zero to nonzero.  If another bit got
4148 		 * set while we were handling the existing iir bits, then
4149 		 * we would never get another interrupt.
4150 		 *
4151 		 * This is fine on non-MSI as well, as if we hit this path
4152 		 * we avoid exiting the interrupt handler only to generate
4153 		 * another one.
4154 		 *
4155 		 * Note that for MSI this could cause a stray interrupt report
4156 		 * if an interrupt landed in the time between writing IIR and
4157 		 * the posting read.  This should be rare enough to never
4158 		 * trigger the 99% of 100,000 interrupts test for disabling
4159 		 * stray interrupts.
4160 		 */
4161 		iir = new_iir;
4162 	}
4163 
4164 	enable_rpm_wakeref_asserts(dev_priv);
4165 
4166 	return ret;
4167 }
4168 
4169 static void i965_irq_uninstall(struct drm_device * dev)
4170 {
4171 	struct drm_i915_private *dev_priv = to_i915(dev);
4172 	int pipe;
4173 
4174 	if (!dev_priv)
4175 		return;
4176 
4177 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4178 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4179 
4180 	I915_WRITE(HWSTAM, 0xffffffff);
4181 	for_each_pipe(dev_priv, pipe)
4182 		I915_WRITE(PIPESTAT(pipe), 0);
4183 	I915_WRITE(IMR, 0xffffffff);
4184 	I915_WRITE(IER, 0x0);
4185 
4186 	for_each_pipe(dev_priv, pipe)
4187 		I915_WRITE(PIPESTAT(pipe),
4188 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4189 	I915_WRITE(IIR, I915_READ(IIR));
4190 }
4191 
4192 /**
4193  * intel_irq_init - initializes irq support
4194  * @dev_priv: i915 device instance
4195  *
4196  * This function initializes all the irq support including work items, timers
4197  * and all the vtables. It does not setup the interrupt itself though.
4198  */
4199 void intel_irq_init(struct drm_i915_private *dev_priv)
4200 {
4201 	struct drm_device *dev = &dev_priv->drm;
4202 
4203 	intel_hpd_init_work(dev_priv);
4204 
4205 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4206 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4207 
4208 	if (HAS_GUC_SCHED(dev_priv))
4209 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4210 
4211 	/* Let's track the enabled rps events */
4212 	if (IS_VALLEYVIEW(dev_priv))
4213 		/* WaGsvRC0ResidencyMethod:vlv */
4214 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4215 	else
4216 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4217 
4218 	dev_priv->rps.pm_intr_keep = 0;
4219 
4220 	/*
4221 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4222 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4223 	 *
4224 	 * TODO: verify if this can be reproduced on VLV,CHV.
4225 	 */
4226 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4227 		dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4228 
4229 	if (INTEL_INFO(dev_priv)->gen >= 8)
4230 		dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4231 
4232 	if (IS_GEN2(dev_priv)) {
4233 		/* Gen2 doesn't have a hardware frame counter */
4234 		dev->max_vblank_count = 0;
4235 		dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
4236 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4237 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4238 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4239 	} else {
4240 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4241 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4242 	}
4243 
4244 	/*
4245 	 * Opt out of the vblank disable timer on everything except gen2.
4246 	 * Gen2 doesn't have a hardware frame counter and so depends on
4247 	 * vblank interrupts to produce sane vblank seuquence numbers.
4248 	 */
4249 	if (!IS_GEN2(dev_priv))
4250 		dev->vblank_disable_immediate = true;
4251 
4252 	/* Most platforms treat the display irq block as an always-on
4253 	 * power domain. vlv/chv can disable it at runtime and need
4254 	 * special care to avoid writing any of the display block registers
4255 	 * outside of the power domain. We defer setting up the display irqs
4256 	 * in this case to the runtime pm.
4257 	 */
4258 	dev_priv->display_irqs_enabled = true;
4259 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4260 		dev_priv->display_irqs_enabled = false;
4261 
4262 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4263 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4264 
4265 	if (IS_CHERRYVIEW(dev_priv)) {
4266 		dev->driver->irq_handler = cherryview_irq_handler;
4267 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4268 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4269 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4270 		dev->driver->enable_vblank = i965_enable_vblank;
4271 		dev->driver->disable_vblank = i965_disable_vblank;
4272 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4273 	} else if (IS_VALLEYVIEW(dev_priv)) {
4274 		dev->driver->irq_handler = valleyview_irq_handler;
4275 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4276 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4277 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4278 		dev->driver->enable_vblank = i965_enable_vblank;
4279 		dev->driver->disable_vblank = i965_disable_vblank;
4280 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4281 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4282 		dev->driver->irq_handler = gen8_irq_handler;
4283 		dev->driver->irq_preinstall = gen8_irq_reset;
4284 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4285 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4286 		dev->driver->enable_vblank = gen8_enable_vblank;
4287 		dev->driver->disable_vblank = gen8_disable_vblank;
4288 		if (IS_GEN9_LP(dev_priv))
4289 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4290 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4291 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4292 		else
4293 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4294 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4295 		dev->driver->irq_handler = ironlake_irq_handler;
4296 		dev->driver->irq_preinstall = ironlake_irq_reset;
4297 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4298 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4299 		dev->driver->enable_vblank = ironlake_enable_vblank;
4300 		dev->driver->disable_vblank = ironlake_disable_vblank;
4301 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4302 	} else {
4303 		if (IS_GEN2(dev_priv)) {
4304 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4305 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4306 			dev->driver->irq_handler = i8xx_irq_handler;
4307 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4308 			dev->driver->enable_vblank = i8xx_enable_vblank;
4309 			dev->driver->disable_vblank = i8xx_disable_vblank;
4310 		} else if (IS_GEN3(dev_priv)) {
4311 			dev->driver->irq_preinstall = i915_irq_preinstall;
4312 			dev->driver->irq_postinstall = i915_irq_postinstall;
4313 			dev->driver->irq_uninstall = i915_irq_uninstall;
4314 			dev->driver->irq_handler = i915_irq_handler;
4315 			dev->driver->enable_vblank = i8xx_enable_vblank;
4316 			dev->driver->disable_vblank = i8xx_disable_vblank;
4317 		} else {
4318 			dev->driver->irq_preinstall = i965_irq_preinstall;
4319 			dev->driver->irq_postinstall = i965_irq_postinstall;
4320 			dev->driver->irq_uninstall = i965_irq_uninstall;
4321 			dev->driver->irq_handler = i965_irq_handler;
4322 			dev->driver->enable_vblank = i965_enable_vblank;
4323 			dev->driver->disable_vblank = i965_disable_vblank;
4324 		}
4325 		if (I915_HAS_HOTPLUG(dev_priv))
4326 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4327 	}
4328 }
4329 
4330 /**
4331  * intel_irq_install - enables the hardware interrupt
4332  * @dev_priv: i915 device instance
4333  *
4334  * This function enables the hardware interrupt handling, but leaves the hotplug
4335  * handling still disabled. It is called after intel_irq_init().
4336  *
4337  * In the driver load and resume code we need working interrupts in a few places
4338  * but don't want to deal with the hassle of concurrent probe and hotplug
4339  * workers. Hence the split into this two-stage approach.
4340  */
4341 int intel_irq_install(struct drm_i915_private *dev_priv)
4342 {
4343 	/*
4344 	 * We enable some interrupt sources in our postinstall hooks, so mark
4345 	 * interrupts as enabled _before_ actually enabling them to avoid
4346 	 * special cases in our ordering checks.
4347 	 */
4348 	dev_priv->pm.irqs_enabled = true;
4349 
4350 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4351 }
4352 
4353 /**
4354  * intel_irq_uninstall - finilizes all irq handling
4355  * @dev_priv: i915 device instance
4356  *
4357  * This stops interrupt and hotplug handling and unregisters and frees all
4358  * resources acquired in the init functions.
4359  */
4360 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4361 {
4362 	drm_irq_uninstall(&dev_priv->drm);
4363 	intel_hpd_cancel_work(dev_priv);
4364 	dev_priv->pm.irqs_enabled = false;
4365 }
4366 
4367 /**
4368  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4369  * @dev_priv: i915 device instance
4370  *
4371  * This function is used to disable interrupts at runtime, both in the runtime
4372  * pm and the system suspend/resume code.
4373  */
4374 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4375 {
4376 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4377 	dev_priv->pm.irqs_enabled = false;
4378 	synchronize_irq(dev_priv->drm.irq);
4379 }
4380 
4381 /**
4382  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4383  * @dev_priv: i915 device instance
4384  *
4385  * This function is used to enable interrupts at runtime, both in the runtime
4386  * pm and the system suspend/resume code.
4387  */
4388 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4389 {
4390 	dev_priv->pm.irqs_enabled = true;
4391 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4392 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4393 }
4394