xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 2208f39c)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34 
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37 
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43 
44 #include "gt/intel_breadcrumbs.h"
45 #include "gt/intel_gt.h"
46 #include "gt/intel_gt_irq.h"
47 #include "gt/intel_gt_pm_irq.h"
48 #include "gt/intel_rps.h"
49 
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
54 
55 /**
56  * DOC: interrupt handling
57  *
58  * These functions provide the basic support for enabling and disabling the
59  * interrupt handling support. There's a lot more functionality in i915_irq.c
60  * and related files, but that will be described in separate chapters.
61  */
62 
63 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
64 typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915,
65 				    enum hpd_pin pin);
66 
67 static const u32 hpd_ilk[HPD_NUM_PINS] = {
68 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
69 };
70 
71 static const u32 hpd_ivb[HPD_NUM_PINS] = {
72 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
73 };
74 
75 static const u32 hpd_bdw[HPD_NUM_PINS] = {
76 	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
77 };
78 
79 static const u32 hpd_ibx[HPD_NUM_PINS] = {
80 	[HPD_CRT] = SDE_CRT_HOTPLUG,
81 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
82 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
83 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
84 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
85 };
86 
87 static const u32 hpd_cpt[HPD_NUM_PINS] = {
88 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
89 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
90 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
91 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
92 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
93 };
94 
95 static const u32 hpd_spt[HPD_NUM_PINS] = {
96 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
97 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
98 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
99 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
100 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
101 };
102 
103 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
104 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
105 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
106 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
107 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
108 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
109 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
110 };
111 
112 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
113 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
114 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
115 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
116 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
117 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
118 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
119 };
120 
121 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
122 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
123 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
124 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
125 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
126 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
127 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
128 };
129 
130 static const u32 hpd_bxt[HPD_NUM_PINS] = {
131 	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
132 	[HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B),
133 	[HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C),
134 };
135 
136 static const u32 hpd_gen11[HPD_NUM_PINS] = {
137 	[HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1),
138 	[HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2),
139 	[HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3),
140 	[HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4),
141 	[HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5),
142 	[HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6),
143 };
144 
145 static const u32 hpd_icp[HPD_NUM_PINS] = {
146 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
147 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
148 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
149 	[HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1),
150 	[HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2),
151 	[HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3),
152 	[HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4),
153 	[HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5),
154 	[HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6),
155 };
156 
157 static const u32 hpd_sde_dg1[HPD_NUM_PINS] = {
158 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
159 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
160 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
161 	[HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D),
162 };
163 
164 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
165 {
166 	struct i915_hotplug *hpd = &dev_priv->hotplug;
167 
168 	if (HAS_GMCH(dev_priv)) {
169 		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
170 		    IS_CHERRYVIEW(dev_priv))
171 			hpd->hpd = hpd_status_g4x;
172 		else
173 			hpd->hpd = hpd_status_i915;
174 		return;
175 	}
176 
177 	if (INTEL_GEN(dev_priv) >= 11)
178 		hpd->hpd = hpd_gen11;
179 	else if (IS_GEN9_LP(dev_priv))
180 		hpd->hpd = hpd_bxt;
181 	else if (INTEL_GEN(dev_priv) >= 8)
182 		hpd->hpd = hpd_bdw;
183 	else if (INTEL_GEN(dev_priv) >= 7)
184 		hpd->hpd = hpd_ivb;
185 	else
186 		hpd->hpd = hpd_ilk;
187 
188 	if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) &&
189 	    (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)))
190 		return;
191 
192 	if (HAS_PCH_DG1(dev_priv))
193 		hpd->pch_hpd = hpd_sde_dg1;
194 	else if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv) ||
195 		 HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
196 		hpd->pch_hpd = hpd_icp;
197 	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
198 		hpd->pch_hpd = hpd_spt;
199 	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
200 		hpd->pch_hpd = hpd_cpt;
201 	else if (HAS_PCH_IBX(dev_priv))
202 		hpd->pch_hpd = hpd_ibx;
203 	else
204 		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
205 }
206 
207 static void
208 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
209 {
210 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
211 
212 	drm_crtc_handle_vblank(&crtc->base);
213 }
214 
215 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
216 		    i915_reg_t iir, i915_reg_t ier)
217 {
218 	intel_uncore_write(uncore, imr, 0xffffffff);
219 	intel_uncore_posting_read(uncore, imr);
220 
221 	intel_uncore_write(uncore, ier, 0);
222 
223 	/* IIR can theoretically queue up two events. Be paranoid. */
224 	intel_uncore_write(uncore, iir, 0xffffffff);
225 	intel_uncore_posting_read(uncore, iir);
226 	intel_uncore_write(uncore, iir, 0xffffffff);
227 	intel_uncore_posting_read(uncore, iir);
228 }
229 
230 void gen2_irq_reset(struct intel_uncore *uncore)
231 {
232 	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
233 	intel_uncore_posting_read16(uncore, GEN2_IMR);
234 
235 	intel_uncore_write16(uncore, GEN2_IER, 0);
236 
237 	/* IIR can theoretically queue up two events. Be paranoid. */
238 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
239 	intel_uncore_posting_read16(uncore, GEN2_IIR);
240 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
241 	intel_uncore_posting_read16(uncore, GEN2_IIR);
242 }
243 
244 /*
245  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
246  */
247 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
248 {
249 	u32 val = intel_uncore_read(uncore, reg);
250 
251 	if (val == 0)
252 		return;
253 
254 	drm_WARN(&uncore->i915->drm, 1,
255 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
256 		 i915_mmio_reg_offset(reg), val);
257 	intel_uncore_write(uncore, reg, 0xffffffff);
258 	intel_uncore_posting_read(uncore, reg);
259 	intel_uncore_write(uncore, reg, 0xffffffff);
260 	intel_uncore_posting_read(uncore, reg);
261 }
262 
263 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
264 {
265 	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
266 
267 	if (val == 0)
268 		return;
269 
270 	drm_WARN(&uncore->i915->drm, 1,
271 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
272 		 i915_mmio_reg_offset(GEN2_IIR), val);
273 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
274 	intel_uncore_posting_read16(uncore, GEN2_IIR);
275 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
276 	intel_uncore_posting_read16(uncore, GEN2_IIR);
277 }
278 
279 void gen3_irq_init(struct intel_uncore *uncore,
280 		   i915_reg_t imr, u32 imr_val,
281 		   i915_reg_t ier, u32 ier_val,
282 		   i915_reg_t iir)
283 {
284 	gen3_assert_iir_is_zero(uncore, iir);
285 
286 	intel_uncore_write(uncore, ier, ier_val);
287 	intel_uncore_write(uncore, imr, imr_val);
288 	intel_uncore_posting_read(uncore, imr);
289 }
290 
291 void gen2_irq_init(struct intel_uncore *uncore,
292 		   u32 imr_val, u32 ier_val)
293 {
294 	gen2_assert_iir_is_zero(uncore);
295 
296 	intel_uncore_write16(uncore, GEN2_IER, ier_val);
297 	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
298 	intel_uncore_posting_read16(uncore, GEN2_IMR);
299 }
300 
301 /* For display hotplug interrupt */
302 static inline void
303 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
304 				     u32 mask,
305 				     u32 bits)
306 {
307 	u32 val;
308 
309 	lockdep_assert_held(&dev_priv->irq_lock);
310 	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
311 
312 	val = I915_READ(PORT_HOTPLUG_EN);
313 	val &= ~mask;
314 	val |= bits;
315 	I915_WRITE(PORT_HOTPLUG_EN, val);
316 }
317 
318 /**
319  * i915_hotplug_interrupt_update - update hotplug interrupt enable
320  * @dev_priv: driver private
321  * @mask: bits to update
322  * @bits: bits to enable
323  * NOTE: the HPD enable bits are modified both inside and outside
324  * of an interrupt context. To avoid that read-modify-write cycles
325  * interfer, these bits are protected by a spinlock. Since this
326  * function is usually not called from a context where the lock is
327  * held already, this function acquires the lock itself. A non-locking
328  * version is also available.
329  */
330 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
331 				   u32 mask,
332 				   u32 bits)
333 {
334 	spin_lock_irq(&dev_priv->irq_lock);
335 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
336 	spin_unlock_irq(&dev_priv->irq_lock);
337 }
338 
339 /**
340  * ilk_update_display_irq - update DEIMR
341  * @dev_priv: driver private
342  * @interrupt_mask: mask of interrupt bits to update
343  * @enabled_irq_mask: mask of interrupt bits to enable
344  */
345 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
346 			    u32 interrupt_mask,
347 			    u32 enabled_irq_mask)
348 {
349 	u32 new_val;
350 
351 	lockdep_assert_held(&dev_priv->irq_lock);
352 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
353 
354 	new_val = dev_priv->irq_mask;
355 	new_val &= ~interrupt_mask;
356 	new_val |= (~enabled_irq_mask & interrupt_mask);
357 
358 	if (new_val != dev_priv->irq_mask &&
359 	    !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) {
360 		dev_priv->irq_mask = new_val;
361 		I915_WRITE(DEIMR, dev_priv->irq_mask);
362 		POSTING_READ(DEIMR);
363 	}
364 }
365 
366 /**
367  * bdw_update_port_irq - update DE port interrupt
368  * @dev_priv: driver private
369  * @interrupt_mask: mask of interrupt bits to update
370  * @enabled_irq_mask: mask of interrupt bits to enable
371  */
372 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
373 				u32 interrupt_mask,
374 				u32 enabled_irq_mask)
375 {
376 	u32 new_val;
377 	u32 old_val;
378 
379 	lockdep_assert_held(&dev_priv->irq_lock);
380 
381 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
382 
383 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
384 		return;
385 
386 	old_val = I915_READ(GEN8_DE_PORT_IMR);
387 
388 	new_val = old_val;
389 	new_val &= ~interrupt_mask;
390 	new_val |= (~enabled_irq_mask & interrupt_mask);
391 
392 	if (new_val != old_val) {
393 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
394 		POSTING_READ(GEN8_DE_PORT_IMR);
395 	}
396 }
397 
398 /**
399  * bdw_update_pipe_irq - update DE pipe interrupt
400  * @dev_priv: driver private
401  * @pipe: pipe whose interrupt to update
402  * @interrupt_mask: mask of interrupt bits to update
403  * @enabled_irq_mask: mask of interrupt bits to enable
404  */
405 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
406 			 enum pipe pipe,
407 			 u32 interrupt_mask,
408 			 u32 enabled_irq_mask)
409 {
410 	u32 new_val;
411 
412 	lockdep_assert_held(&dev_priv->irq_lock);
413 
414 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
415 
416 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
417 		return;
418 
419 	new_val = dev_priv->de_irq_mask[pipe];
420 	new_val &= ~interrupt_mask;
421 	new_val |= (~enabled_irq_mask & interrupt_mask);
422 
423 	if (new_val != dev_priv->de_irq_mask[pipe]) {
424 		dev_priv->de_irq_mask[pipe] = new_val;
425 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
426 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
427 	}
428 }
429 
430 /**
431  * ibx_display_interrupt_update - update SDEIMR
432  * @dev_priv: driver private
433  * @interrupt_mask: mask of interrupt bits to update
434  * @enabled_irq_mask: mask of interrupt bits to enable
435  */
436 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
437 				  u32 interrupt_mask,
438 				  u32 enabled_irq_mask)
439 {
440 	u32 sdeimr = I915_READ(SDEIMR);
441 	sdeimr &= ~interrupt_mask;
442 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
443 
444 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
445 
446 	lockdep_assert_held(&dev_priv->irq_lock);
447 
448 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
449 		return;
450 
451 	I915_WRITE(SDEIMR, sdeimr);
452 	POSTING_READ(SDEIMR);
453 }
454 
455 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
456 			      enum pipe pipe)
457 {
458 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
459 	u32 enable_mask = status_mask << 16;
460 
461 	lockdep_assert_held(&dev_priv->irq_lock);
462 
463 	if (INTEL_GEN(dev_priv) < 5)
464 		goto out;
465 
466 	/*
467 	 * On pipe A we don't support the PSR interrupt yet,
468 	 * on pipe B and C the same bit MBZ.
469 	 */
470 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
471 			     status_mask & PIPE_A_PSR_STATUS_VLV))
472 		return 0;
473 	/*
474 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
475 	 * A the same bit is for perf counters which we don't use either.
476 	 */
477 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
478 			     status_mask & PIPE_B_PSR_STATUS_VLV))
479 		return 0;
480 
481 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
482 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
483 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
484 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
485 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
486 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
487 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
488 
489 out:
490 	drm_WARN_ONCE(&dev_priv->drm,
491 		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
492 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
493 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
494 		      pipe_name(pipe), enable_mask, status_mask);
495 
496 	return enable_mask;
497 }
498 
499 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
500 			  enum pipe pipe, u32 status_mask)
501 {
502 	i915_reg_t reg = PIPESTAT(pipe);
503 	u32 enable_mask;
504 
505 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
506 		      "pipe %c: status_mask=0x%x\n",
507 		      pipe_name(pipe), status_mask);
508 
509 	lockdep_assert_held(&dev_priv->irq_lock);
510 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
511 
512 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
513 		return;
514 
515 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
516 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
517 
518 	I915_WRITE(reg, enable_mask | status_mask);
519 	POSTING_READ(reg);
520 }
521 
522 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
523 			   enum pipe pipe, u32 status_mask)
524 {
525 	i915_reg_t reg = PIPESTAT(pipe);
526 	u32 enable_mask;
527 
528 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
529 		      "pipe %c: status_mask=0x%x\n",
530 		      pipe_name(pipe), status_mask);
531 
532 	lockdep_assert_held(&dev_priv->irq_lock);
533 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
534 
535 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
536 		return;
537 
538 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
539 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
540 
541 	I915_WRITE(reg, enable_mask | status_mask);
542 	POSTING_READ(reg);
543 }
544 
545 static bool i915_has_asle(struct drm_i915_private *dev_priv)
546 {
547 	if (!dev_priv->opregion.asle)
548 		return false;
549 
550 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
551 }
552 
553 /**
554  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
555  * @dev_priv: i915 device private
556  */
557 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
558 {
559 	if (!i915_has_asle(dev_priv))
560 		return;
561 
562 	spin_lock_irq(&dev_priv->irq_lock);
563 
564 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
565 	if (INTEL_GEN(dev_priv) >= 4)
566 		i915_enable_pipestat(dev_priv, PIPE_A,
567 				     PIPE_LEGACY_BLC_EVENT_STATUS);
568 
569 	spin_unlock_irq(&dev_priv->irq_lock);
570 }
571 
572 /*
573  * This timing diagram depicts the video signal in and
574  * around the vertical blanking period.
575  *
576  * Assumptions about the fictitious mode used in this example:
577  *  vblank_start >= 3
578  *  vsync_start = vblank_start + 1
579  *  vsync_end = vblank_start + 2
580  *  vtotal = vblank_start + 3
581  *
582  *           start of vblank:
583  *           latch double buffered registers
584  *           increment frame counter (ctg+)
585  *           generate start of vblank interrupt (gen4+)
586  *           |
587  *           |          frame start:
588  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
589  *           |          may be shifted forward 1-3 extra lines via PIPECONF
590  *           |          |
591  *           |          |  start of vsync:
592  *           |          |  generate vsync interrupt
593  *           |          |  |
594  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
595  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
596  * ----va---> <-----------------vb--------------------> <--------va-------------
597  *       |          |       <----vs----->                     |
598  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
599  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
600  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
601  *       |          |                                         |
602  *       last visible pixel                                   first visible pixel
603  *                  |                                         increment frame counter (gen3/4)
604  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
605  *
606  * x  = horizontal active
607  * _  = horizontal blanking
608  * hs = horizontal sync
609  * va = vertical active
610  * vb = vertical blanking
611  * vs = vertical sync
612  * vbs = vblank_start (number)
613  *
614  * Summary:
615  * - most events happen at the start of horizontal sync
616  * - frame start happens at the start of horizontal blank, 1-4 lines
617  *   (depending on PIPECONF settings) after the start of vblank
618  * - gen3/4 pixel and frame counter are synchronized with the start
619  *   of horizontal active on the first line of vertical active
620  */
621 
622 /* Called from drm generic code, passed a 'crtc', which
623  * we use as a pipe index
624  */
625 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
626 {
627 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
628 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
629 	const struct drm_display_mode *mode = &vblank->hwmode;
630 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
631 	i915_reg_t high_frame, low_frame;
632 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
633 	unsigned long irqflags;
634 
635 	/*
636 	 * On i965gm TV output the frame counter only works up to
637 	 * the point when we enable the TV encoder. After that the
638 	 * frame counter ceases to work and reads zero. We need a
639 	 * vblank wait before enabling the TV encoder and so we
640 	 * have to enable vblank interrupts while the frame counter
641 	 * is still in a working state. However the core vblank code
642 	 * does not like us returning non-zero frame counter values
643 	 * when we've told it that we don't have a working frame
644 	 * counter. Thus we must stop non-zero values leaking out.
645 	 */
646 	if (!vblank->max_vblank_count)
647 		return 0;
648 
649 	htotal = mode->crtc_htotal;
650 	hsync_start = mode->crtc_hsync_start;
651 	vbl_start = mode->crtc_vblank_start;
652 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
653 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
654 
655 	/* Convert to pixel count */
656 	vbl_start *= htotal;
657 
658 	/* Start of vblank event occurs at start of hsync */
659 	vbl_start -= htotal - hsync_start;
660 
661 	high_frame = PIPEFRAME(pipe);
662 	low_frame = PIPEFRAMEPIXEL(pipe);
663 
664 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
665 
666 	/*
667 	 * High & low register fields aren't synchronized, so make sure
668 	 * we get a low value that's stable across two reads of the high
669 	 * register.
670 	 */
671 	do {
672 		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
673 		low   = intel_de_read_fw(dev_priv, low_frame);
674 		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
675 	} while (high1 != high2);
676 
677 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
678 
679 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
680 	pixel = low & PIPE_PIXEL_MASK;
681 	low >>= PIPE_FRAME_LOW_SHIFT;
682 
683 	/*
684 	 * The frame counter increments at beginning of active.
685 	 * Cook up a vblank counter by also checking the pixel
686 	 * counter against vblank start.
687 	 */
688 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
689 }
690 
691 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
692 {
693 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
694 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
695 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
696 
697 	if (!vblank->max_vblank_count)
698 		return 0;
699 
700 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
701 }
702 
703 /*
704  * On certain encoders on certain platforms, pipe
705  * scanline register will not work to get the scanline,
706  * since the timings are driven from the PORT or issues
707  * with scanline register updates.
708  * This function will use Framestamp and current
709  * timestamp registers to calculate the scanline.
710  */
711 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
712 {
713 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
714 	struct drm_vblank_crtc *vblank =
715 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
716 	const struct drm_display_mode *mode = &vblank->hwmode;
717 	u32 vblank_start = mode->crtc_vblank_start;
718 	u32 vtotal = mode->crtc_vtotal;
719 	u32 htotal = mode->crtc_htotal;
720 	u32 clock = mode->crtc_clock;
721 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
722 
723 	/*
724 	 * To avoid the race condition where we might cross into the
725 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
726 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
727 	 * during the same frame.
728 	 */
729 	do {
730 		/*
731 		 * This field provides read back of the display
732 		 * pipe frame time stamp. The time stamp value
733 		 * is sampled at every start of vertical blank.
734 		 */
735 		scan_prev_time = intel_de_read_fw(dev_priv,
736 						  PIPE_FRMTMSTMP(crtc->pipe));
737 
738 		/*
739 		 * The TIMESTAMP_CTR register has the current
740 		 * time stamp value.
741 		 */
742 		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
743 
744 		scan_post_time = intel_de_read_fw(dev_priv,
745 						  PIPE_FRMTMSTMP(crtc->pipe));
746 	} while (scan_post_time != scan_prev_time);
747 
748 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
749 					clock), 1000 * htotal);
750 	scanline = min(scanline, vtotal - 1);
751 	scanline = (scanline + vblank_start) % vtotal;
752 
753 	return scanline;
754 }
755 
756 /*
757  * intel_de_read_fw(), only for fast reads of display block, no need for
758  * forcewake etc.
759  */
760 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
761 {
762 	struct drm_device *dev = crtc->base.dev;
763 	struct drm_i915_private *dev_priv = to_i915(dev);
764 	const struct drm_display_mode *mode;
765 	struct drm_vblank_crtc *vblank;
766 	enum pipe pipe = crtc->pipe;
767 	int position, vtotal;
768 
769 	if (!crtc->active)
770 		return -1;
771 
772 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
773 	mode = &vblank->hwmode;
774 
775 	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
776 		return __intel_get_crtc_scanline_from_timestamp(crtc);
777 
778 	vtotal = mode->crtc_vtotal;
779 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
780 		vtotal /= 2;
781 
782 	if (IS_GEN(dev_priv, 2))
783 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
784 	else
785 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
786 
787 	/*
788 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
789 	 * read it just before the start of vblank.  So try it again
790 	 * so we don't accidentally end up spanning a vblank frame
791 	 * increment, causing the pipe_update_end() code to squak at us.
792 	 *
793 	 * The nature of this problem means we can't simply check the ISR
794 	 * bit and return the vblank start value; nor can we use the scanline
795 	 * debug register in the transcoder as it appears to have the same
796 	 * problem.  We may need to extend this to include other platforms,
797 	 * but so far testing only shows the problem on HSW.
798 	 */
799 	if (HAS_DDI(dev_priv) && !position) {
800 		int i, temp;
801 
802 		for (i = 0; i < 100; i++) {
803 			udelay(1);
804 			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
805 			if (temp != position) {
806 				position = temp;
807 				break;
808 			}
809 		}
810 	}
811 
812 	/*
813 	 * See update_scanline_offset() for the details on the
814 	 * scanline_offset adjustment.
815 	 */
816 	return (position + crtc->scanline_offset) % vtotal;
817 }
818 
819 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
820 				     bool in_vblank_irq,
821 				     int *vpos, int *hpos,
822 				     ktime_t *stime, ktime_t *etime,
823 				     const struct drm_display_mode *mode)
824 {
825 	struct drm_device *dev = _crtc->dev;
826 	struct drm_i915_private *dev_priv = to_i915(dev);
827 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
828 	enum pipe pipe = crtc->pipe;
829 	int position;
830 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
831 	unsigned long irqflags;
832 	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
833 		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
834 		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
835 
836 	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
837 		drm_dbg(&dev_priv->drm,
838 			"trying to get scanoutpos for disabled "
839 			"pipe %c\n", pipe_name(pipe));
840 		return false;
841 	}
842 
843 	htotal = mode->crtc_htotal;
844 	hsync_start = mode->crtc_hsync_start;
845 	vtotal = mode->crtc_vtotal;
846 	vbl_start = mode->crtc_vblank_start;
847 	vbl_end = mode->crtc_vblank_end;
848 
849 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
850 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
851 		vbl_end /= 2;
852 		vtotal /= 2;
853 	}
854 
855 	/*
856 	 * Lock uncore.lock, as we will do multiple timing critical raw
857 	 * register reads, potentially with preemption disabled, so the
858 	 * following code must not block on uncore.lock.
859 	 */
860 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
861 
862 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
863 
864 	/* Get optional system timestamp before query. */
865 	if (stime)
866 		*stime = ktime_get();
867 
868 	if (use_scanline_counter) {
869 		/* No obvious pixelcount register. Only query vertical
870 		 * scanout position from Display scan line register.
871 		 */
872 		position = __intel_get_crtc_scanline(crtc);
873 	} else {
874 		/* Have access to pixelcount since start of frame.
875 		 * We can split this into vertical and horizontal
876 		 * scanout position.
877 		 */
878 		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
879 
880 		/* convert to pixel counts */
881 		vbl_start *= htotal;
882 		vbl_end *= htotal;
883 		vtotal *= htotal;
884 
885 		/*
886 		 * In interlaced modes, the pixel counter counts all pixels,
887 		 * so one field will have htotal more pixels. In order to avoid
888 		 * the reported position from jumping backwards when the pixel
889 		 * counter is beyond the length of the shorter field, just
890 		 * clamp the position the length of the shorter field. This
891 		 * matches how the scanline counter based position works since
892 		 * the scanline counter doesn't count the two half lines.
893 		 */
894 		if (position >= vtotal)
895 			position = vtotal - 1;
896 
897 		/*
898 		 * Start of vblank interrupt is triggered at start of hsync,
899 		 * just prior to the first active line of vblank. However we
900 		 * consider lines to start at the leading edge of horizontal
901 		 * active. So, should we get here before we've crossed into
902 		 * the horizontal active of the first line in vblank, we would
903 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
904 		 * always add htotal-hsync_start to the current pixel position.
905 		 */
906 		position = (position + htotal - hsync_start) % vtotal;
907 	}
908 
909 	/* Get optional system timestamp after query. */
910 	if (etime)
911 		*etime = ktime_get();
912 
913 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
914 
915 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
916 
917 	/*
918 	 * While in vblank, position will be negative
919 	 * counting up towards 0 at vbl_end. And outside
920 	 * vblank, position will be positive counting
921 	 * up since vbl_end.
922 	 */
923 	if (position >= vbl_start)
924 		position -= vbl_end;
925 	else
926 		position += vtotal - vbl_end;
927 
928 	if (use_scanline_counter) {
929 		*vpos = position;
930 		*hpos = 0;
931 	} else {
932 		*vpos = position / htotal;
933 		*hpos = position - (*vpos * htotal);
934 	}
935 
936 	return true;
937 }
938 
939 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
940 				     ktime_t *vblank_time, bool in_vblank_irq)
941 {
942 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
943 		crtc, max_error, vblank_time, in_vblank_irq,
944 		i915_get_crtc_scanoutpos);
945 }
946 
947 int intel_get_crtc_scanline(struct intel_crtc *crtc)
948 {
949 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
950 	unsigned long irqflags;
951 	int position;
952 
953 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
954 	position = __intel_get_crtc_scanline(crtc);
955 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
956 
957 	return position;
958 }
959 
960 /**
961  * ivb_parity_work - Workqueue called when a parity error interrupt
962  * occurred.
963  * @work: workqueue struct
964  *
965  * Doesn't actually do anything except notify userspace. As a consequence of
966  * this event, userspace should try to remap the bad rows since statistically
967  * it is likely the same row is more likely to go bad again.
968  */
969 static void ivb_parity_work(struct work_struct *work)
970 {
971 	struct drm_i915_private *dev_priv =
972 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
973 	struct intel_gt *gt = &dev_priv->gt;
974 	u32 error_status, row, bank, subbank;
975 	char *parity_event[6];
976 	u32 misccpctl;
977 	u8 slice = 0;
978 
979 	/* We must turn off DOP level clock gating to access the L3 registers.
980 	 * In order to prevent a get/put style interface, acquire struct mutex
981 	 * any time we access those registers.
982 	 */
983 	mutex_lock(&dev_priv->drm.struct_mutex);
984 
985 	/* If we've screwed up tracking, just let the interrupt fire again */
986 	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
987 		goto out;
988 
989 	misccpctl = I915_READ(GEN7_MISCCPCTL);
990 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
991 	POSTING_READ(GEN7_MISCCPCTL);
992 
993 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
994 		i915_reg_t reg;
995 
996 		slice--;
997 		if (drm_WARN_ON_ONCE(&dev_priv->drm,
998 				     slice >= NUM_L3_SLICES(dev_priv)))
999 			break;
1000 
1001 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1002 
1003 		reg = GEN7_L3CDERRST1(slice);
1004 
1005 		error_status = I915_READ(reg);
1006 		row = GEN7_PARITY_ERROR_ROW(error_status);
1007 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1008 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1009 
1010 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1011 		POSTING_READ(reg);
1012 
1013 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1014 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1015 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1016 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1017 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1018 		parity_event[5] = NULL;
1019 
1020 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1021 				   KOBJ_CHANGE, parity_event);
1022 
1023 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1024 			  slice, row, bank, subbank);
1025 
1026 		kfree(parity_event[4]);
1027 		kfree(parity_event[3]);
1028 		kfree(parity_event[2]);
1029 		kfree(parity_event[1]);
1030 	}
1031 
1032 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1033 
1034 out:
1035 	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1036 	spin_lock_irq(&gt->irq_lock);
1037 	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1038 	spin_unlock_irq(&gt->irq_lock);
1039 
1040 	mutex_unlock(&dev_priv->drm.struct_mutex);
1041 }
1042 
1043 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1044 {
1045 	switch (pin) {
1046 	case HPD_PORT_TC1:
1047 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC1);
1048 	case HPD_PORT_TC2:
1049 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC2);
1050 	case HPD_PORT_TC3:
1051 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC3);
1052 	case HPD_PORT_TC4:
1053 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC4);
1054 	case HPD_PORT_TC5:
1055 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC5);
1056 	case HPD_PORT_TC6:
1057 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC6);
1058 	default:
1059 		return false;
1060 	}
1061 }
1062 
1063 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1064 {
1065 	switch (pin) {
1066 	case HPD_PORT_A:
1067 		return val & PORTA_HOTPLUG_LONG_DETECT;
1068 	case HPD_PORT_B:
1069 		return val & PORTB_HOTPLUG_LONG_DETECT;
1070 	case HPD_PORT_C:
1071 		return val & PORTC_HOTPLUG_LONG_DETECT;
1072 	default:
1073 		return false;
1074 	}
1075 }
1076 
1077 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1078 {
1079 	switch (pin) {
1080 	case HPD_PORT_A:
1081 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_A);
1082 	case HPD_PORT_B:
1083 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_B);
1084 	case HPD_PORT_C:
1085 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_C);
1086 	case HPD_PORT_D:
1087 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_D);
1088 	default:
1089 		return false;
1090 	}
1091 }
1092 
1093 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1094 {
1095 	switch (pin) {
1096 	case HPD_PORT_TC1:
1097 		return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC1);
1098 	case HPD_PORT_TC2:
1099 		return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC2);
1100 	case HPD_PORT_TC3:
1101 		return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC3);
1102 	case HPD_PORT_TC4:
1103 		return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC4);
1104 	case HPD_PORT_TC5:
1105 		return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC5);
1106 	case HPD_PORT_TC6:
1107 		return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC6);
1108 	default:
1109 		return false;
1110 	}
1111 }
1112 
1113 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1114 {
1115 	switch (pin) {
1116 	case HPD_PORT_E:
1117 		return val & PORTE_HOTPLUG_LONG_DETECT;
1118 	default:
1119 		return false;
1120 	}
1121 }
1122 
1123 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1124 {
1125 	switch (pin) {
1126 	case HPD_PORT_A:
1127 		return val & PORTA_HOTPLUG_LONG_DETECT;
1128 	case HPD_PORT_B:
1129 		return val & PORTB_HOTPLUG_LONG_DETECT;
1130 	case HPD_PORT_C:
1131 		return val & PORTC_HOTPLUG_LONG_DETECT;
1132 	case HPD_PORT_D:
1133 		return val & PORTD_HOTPLUG_LONG_DETECT;
1134 	default:
1135 		return false;
1136 	}
1137 }
1138 
1139 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1140 {
1141 	switch (pin) {
1142 	case HPD_PORT_A:
1143 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1144 	default:
1145 		return false;
1146 	}
1147 }
1148 
1149 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1150 {
1151 	switch (pin) {
1152 	case HPD_PORT_B:
1153 		return val & PORTB_HOTPLUG_LONG_DETECT;
1154 	case HPD_PORT_C:
1155 		return val & PORTC_HOTPLUG_LONG_DETECT;
1156 	case HPD_PORT_D:
1157 		return val & PORTD_HOTPLUG_LONG_DETECT;
1158 	default:
1159 		return false;
1160 	}
1161 }
1162 
1163 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1164 {
1165 	switch (pin) {
1166 	case HPD_PORT_B:
1167 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1168 	case HPD_PORT_C:
1169 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1170 	case HPD_PORT_D:
1171 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1172 	default:
1173 		return false;
1174 	}
1175 }
1176 
1177 /*
1178  * Get a bit mask of pins that have triggered, and which ones may be long.
1179  * This can be called multiple times with the same masks to accumulate
1180  * hotplug detection results from several registers.
1181  *
1182  * Note that the caller is expected to zero out the masks initially.
1183  */
1184 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1185 			       u32 *pin_mask, u32 *long_mask,
1186 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1187 			       const u32 hpd[HPD_NUM_PINS],
1188 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1189 {
1190 	enum hpd_pin pin;
1191 
1192 	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1193 
1194 	for_each_hpd_pin(pin) {
1195 		if ((hpd[pin] & hotplug_trigger) == 0)
1196 			continue;
1197 
1198 		*pin_mask |= BIT(pin);
1199 
1200 		if (long_pulse_detect(pin, dig_hotplug_reg))
1201 			*long_mask |= BIT(pin);
1202 	}
1203 
1204 	drm_dbg(&dev_priv->drm,
1205 		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1206 		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1207 
1208 }
1209 
1210 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
1211 				  const u32 hpd[HPD_NUM_PINS])
1212 {
1213 	struct intel_encoder *encoder;
1214 	u32 enabled_irqs = 0;
1215 
1216 	for_each_intel_encoder(&dev_priv->drm, encoder)
1217 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
1218 			enabled_irqs |= hpd[encoder->hpd_pin];
1219 
1220 	return enabled_irqs;
1221 }
1222 
1223 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
1224 				  const u32 hpd[HPD_NUM_PINS])
1225 {
1226 	struct intel_encoder *encoder;
1227 	u32 hotplug_irqs = 0;
1228 
1229 	for_each_intel_encoder(&dev_priv->drm, encoder)
1230 		hotplug_irqs |= hpd[encoder->hpd_pin];
1231 
1232 	return hotplug_irqs;
1233 }
1234 
1235 static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915,
1236 				     hotplug_enables_func hotplug_enables)
1237 {
1238 	struct intel_encoder *encoder;
1239 	u32 hotplug = 0;
1240 
1241 	for_each_intel_encoder(&i915->drm, encoder)
1242 		hotplug |= hotplug_enables(i915, encoder->hpd_pin);
1243 
1244 	return hotplug;
1245 }
1246 
1247 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1248 {
1249 	wake_up_all(&dev_priv->gmbus_wait_queue);
1250 }
1251 
1252 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1253 {
1254 	wake_up_all(&dev_priv->gmbus_wait_queue);
1255 }
1256 
1257 #if defined(CONFIG_DEBUG_FS)
1258 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1259 					 enum pipe pipe,
1260 					 u32 crc0, u32 crc1,
1261 					 u32 crc2, u32 crc3,
1262 					 u32 crc4)
1263 {
1264 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1265 	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1266 	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1267 
1268 	trace_intel_pipe_crc(crtc, crcs);
1269 
1270 	spin_lock(&pipe_crc->lock);
1271 	/*
1272 	 * For some not yet identified reason, the first CRC is
1273 	 * bonkers. So let's just wait for the next vblank and read
1274 	 * out the buggy result.
1275 	 *
1276 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1277 	 * don't trust that one either.
1278 	 */
1279 	if (pipe_crc->skipped <= 0 ||
1280 	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1281 		pipe_crc->skipped++;
1282 		spin_unlock(&pipe_crc->lock);
1283 		return;
1284 	}
1285 	spin_unlock(&pipe_crc->lock);
1286 
1287 	drm_crtc_add_crc_entry(&crtc->base, true,
1288 				drm_crtc_accurate_vblank_count(&crtc->base),
1289 				crcs);
1290 }
1291 #else
1292 static inline void
1293 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1294 			     enum pipe pipe,
1295 			     u32 crc0, u32 crc1,
1296 			     u32 crc2, u32 crc3,
1297 			     u32 crc4) {}
1298 #endif
1299 
1300 static void flip_done_handler(struct drm_i915_private *i915,
1301 			      enum pipe pipe)
1302 {
1303 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(i915, pipe);
1304 	struct drm_crtc_state *crtc_state = crtc->base.state;
1305 	struct drm_pending_vblank_event *e = crtc_state->event;
1306 	struct drm_device *dev = &i915->drm;
1307 	unsigned long irqflags;
1308 
1309 	spin_lock_irqsave(&dev->event_lock, irqflags);
1310 
1311 	crtc_state->event = NULL;
1312 
1313 	drm_crtc_send_vblank_event(&crtc->base, e);
1314 
1315 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1316 }
1317 
1318 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1319 				     enum pipe pipe)
1320 {
1321 	display_pipe_crc_irq_handler(dev_priv, pipe,
1322 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1323 				     0, 0, 0, 0);
1324 }
1325 
1326 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1327 				     enum pipe pipe)
1328 {
1329 	display_pipe_crc_irq_handler(dev_priv, pipe,
1330 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1331 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1332 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1333 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1334 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1335 }
1336 
1337 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1338 				      enum pipe pipe)
1339 {
1340 	u32 res1, res2;
1341 
1342 	if (INTEL_GEN(dev_priv) >= 3)
1343 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1344 	else
1345 		res1 = 0;
1346 
1347 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1348 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1349 	else
1350 		res2 = 0;
1351 
1352 	display_pipe_crc_irq_handler(dev_priv, pipe,
1353 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1354 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1355 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1356 				     res1, res2);
1357 }
1358 
1359 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1360 {
1361 	enum pipe pipe;
1362 
1363 	for_each_pipe(dev_priv, pipe) {
1364 		I915_WRITE(PIPESTAT(pipe),
1365 			   PIPESTAT_INT_STATUS_MASK |
1366 			   PIPE_FIFO_UNDERRUN_STATUS);
1367 
1368 		dev_priv->pipestat_irq_mask[pipe] = 0;
1369 	}
1370 }
1371 
1372 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1373 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1374 {
1375 	enum pipe pipe;
1376 
1377 	spin_lock(&dev_priv->irq_lock);
1378 
1379 	if (!dev_priv->display_irqs_enabled) {
1380 		spin_unlock(&dev_priv->irq_lock);
1381 		return;
1382 	}
1383 
1384 	for_each_pipe(dev_priv, pipe) {
1385 		i915_reg_t reg;
1386 		u32 status_mask, enable_mask, iir_bit = 0;
1387 
1388 		/*
1389 		 * PIPESTAT bits get signalled even when the interrupt is
1390 		 * disabled with the mask bits, and some of the status bits do
1391 		 * not generate interrupts at all (like the underrun bit). Hence
1392 		 * we need to be careful that we only handle what we want to
1393 		 * handle.
1394 		 */
1395 
1396 		/* fifo underruns are filterered in the underrun handler. */
1397 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1398 
1399 		switch (pipe) {
1400 		default:
1401 		case PIPE_A:
1402 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1403 			break;
1404 		case PIPE_B:
1405 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1406 			break;
1407 		case PIPE_C:
1408 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1409 			break;
1410 		}
1411 		if (iir & iir_bit)
1412 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1413 
1414 		if (!status_mask)
1415 			continue;
1416 
1417 		reg = PIPESTAT(pipe);
1418 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1419 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1420 
1421 		/*
1422 		 * Clear the PIPE*STAT regs before the IIR
1423 		 *
1424 		 * Toggle the enable bits to make sure we get an
1425 		 * edge in the ISR pipe event bit if we don't clear
1426 		 * all the enabled status bits. Otherwise the edge
1427 		 * triggered IIR on i965/g4x wouldn't notice that
1428 		 * an interrupt is still pending.
1429 		 */
1430 		if (pipe_stats[pipe]) {
1431 			I915_WRITE(reg, pipe_stats[pipe]);
1432 			I915_WRITE(reg, enable_mask);
1433 		}
1434 	}
1435 	spin_unlock(&dev_priv->irq_lock);
1436 }
1437 
1438 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1439 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1440 {
1441 	enum pipe pipe;
1442 
1443 	for_each_pipe(dev_priv, pipe) {
1444 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1445 			intel_handle_vblank(dev_priv, pipe);
1446 
1447 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1448 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1449 
1450 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1451 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1452 	}
1453 }
1454 
1455 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1456 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1457 {
1458 	bool blc_event = false;
1459 	enum pipe pipe;
1460 
1461 	for_each_pipe(dev_priv, pipe) {
1462 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1463 			intel_handle_vblank(dev_priv, pipe);
1464 
1465 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1466 			blc_event = true;
1467 
1468 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1469 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1470 
1471 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1472 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1473 	}
1474 
1475 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1476 		intel_opregion_asle_intr(dev_priv);
1477 }
1478 
1479 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1480 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1481 {
1482 	bool blc_event = false;
1483 	enum pipe pipe;
1484 
1485 	for_each_pipe(dev_priv, pipe) {
1486 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1487 			intel_handle_vblank(dev_priv, pipe);
1488 
1489 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1490 			blc_event = true;
1491 
1492 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1493 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1494 
1495 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1496 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1497 	}
1498 
1499 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1500 		intel_opregion_asle_intr(dev_priv);
1501 
1502 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1503 		gmbus_irq_handler(dev_priv);
1504 }
1505 
1506 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1507 					    u32 pipe_stats[I915_MAX_PIPES])
1508 {
1509 	enum pipe pipe;
1510 
1511 	for_each_pipe(dev_priv, pipe) {
1512 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1513 			intel_handle_vblank(dev_priv, pipe);
1514 
1515 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1516 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1517 
1518 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1519 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1520 	}
1521 
1522 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1523 		gmbus_irq_handler(dev_priv);
1524 }
1525 
1526 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1527 {
1528 	u32 hotplug_status = 0, hotplug_status_mask;
1529 	int i;
1530 
1531 	if (IS_G4X(dev_priv) ||
1532 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1533 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1534 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1535 	else
1536 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1537 
1538 	/*
1539 	 * We absolutely have to clear all the pending interrupt
1540 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1541 	 * interrupt bit won't have an edge, and the i965/g4x
1542 	 * edge triggered IIR will not notice that an interrupt
1543 	 * is still pending. We can't use PORT_HOTPLUG_EN to
1544 	 * guarantee the edge as the act of toggling the enable
1545 	 * bits can itself generate a new hotplug interrupt :(
1546 	 */
1547 	for (i = 0; i < 10; i++) {
1548 		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1549 
1550 		if (tmp == 0)
1551 			return hotplug_status;
1552 
1553 		hotplug_status |= tmp;
1554 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1555 	}
1556 
1557 	drm_WARN_ONCE(&dev_priv->drm, 1,
1558 		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1559 		      I915_READ(PORT_HOTPLUG_STAT));
1560 
1561 	return hotplug_status;
1562 }
1563 
1564 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1565 				 u32 hotplug_status)
1566 {
1567 	u32 pin_mask = 0, long_mask = 0;
1568 	u32 hotplug_trigger;
1569 
1570 	if (IS_G4X(dev_priv) ||
1571 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1572 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1573 	else
1574 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1575 
1576 	if (hotplug_trigger) {
1577 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1578 				   hotplug_trigger, hotplug_trigger,
1579 				   dev_priv->hotplug.hpd,
1580 				   i9xx_port_hotplug_long_detect);
1581 
1582 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1583 	}
1584 
1585 	if ((IS_G4X(dev_priv) ||
1586 	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1587 	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1588 		dp_aux_irq_handler(dev_priv);
1589 }
1590 
1591 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1592 {
1593 	struct drm_i915_private *dev_priv = arg;
1594 	irqreturn_t ret = IRQ_NONE;
1595 
1596 	if (!intel_irqs_enabled(dev_priv))
1597 		return IRQ_NONE;
1598 
1599 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1600 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1601 
1602 	do {
1603 		u32 iir, gt_iir, pm_iir;
1604 		u32 pipe_stats[I915_MAX_PIPES] = {};
1605 		u32 hotplug_status = 0;
1606 		u32 ier = 0;
1607 
1608 		gt_iir = I915_READ(GTIIR);
1609 		pm_iir = I915_READ(GEN6_PMIIR);
1610 		iir = I915_READ(VLV_IIR);
1611 
1612 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1613 			break;
1614 
1615 		ret = IRQ_HANDLED;
1616 
1617 		/*
1618 		 * Theory on interrupt generation, based on empirical evidence:
1619 		 *
1620 		 * x = ((VLV_IIR & VLV_IER) ||
1621 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1622 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1623 		 *
1624 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1625 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1626 		 * guarantee the CPU interrupt will be raised again even if we
1627 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1628 		 * bits this time around.
1629 		 */
1630 		I915_WRITE(VLV_MASTER_IER, 0);
1631 		ier = I915_READ(VLV_IER);
1632 		I915_WRITE(VLV_IER, 0);
1633 
1634 		if (gt_iir)
1635 			I915_WRITE(GTIIR, gt_iir);
1636 		if (pm_iir)
1637 			I915_WRITE(GEN6_PMIIR, pm_iir);
1638 
1639 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1640 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1641 
1642 		/* Call regardless, as some status bits might not be
1643 		 * signalled in iir */
1644 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1645 
1646 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1647 			   I915_LPE_PIPE_B_INTERRUPT))
1648 			intel_lpe_audio_irq_handler(dev_priv);
1649 
1650 		/*
1651 		 * VLV_IIR is single buffered, and reflects the level
1652 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1653 		 */
1654 		if (iir)
1655 			I915_WRITE(VLV_IIR, iir);
1656 
1657 		I915_WRITE(VLV_IER, ier);
1658 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1659 
1660 		if (gt_iir)
1661 			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1662 		if (pm_iir)
1663 			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1664 
1665 		if (hotplug_status)
1666 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1667 
1668 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1669 	} while (0);
1670 
1671 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1672 
1673 	return ret;
1674 }
1675 
1676 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1677 {
1678 	struct drm_i915_private *dev_priv = arg;
1679 	irqreturn_t ret = IRQ_NONE;
1680 
1681 	if (!intel_irqs_enabled(dev_priv))
1682 		return IRQ_NONE;
1683 
1684 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1685 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1686 
1687 	do {
1688 		u32 master_ctl, iir;
1689 		u32 pipe_stats[I915_MAX_PIPES] = {};
1690 		u32 hotplug_status = 0;
1691 		u32 ier = 0;
1692 
1693 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1694 		iir = I915_READ(VLV_IIR);
1695 
1696 		if (master_ctl == 0 && iir == 0)
1697 			break;
1698 
1699 		ret = IRQ_HANDLED;
1700 
1701 		/*
1702 		 * Theory on interrupt generation, based on empirical evidence:
1703 		 *
1704 		 * x = ((VLV_IIR & VLV_IER) ||
1705 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1706 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1707 		 *
1708 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1709 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1710 		 * guarantee the CPU interrupt will be raised again even if we
1711 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1712 		 * bits this time around.
1713 		 */
1714 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1715 		ier = I915_READ(VLV_IER);
1716 		I915_WRITE(VLV_IER, 0);
1717 
1718 		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1719 
1720 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1721 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1722 
1723 		/* Call regardless, as some status bits might not be
1724 		 * signalled in iir */
1725 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1726 
1727 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1728 			   I915_LPE_PIPE_B_INTERRUPT |
1729 			   I915_LPE_PIPE_C_INTERRUPT))
1730 			intel_lpe_audio_irq_handler(dev_priv);
1731 
1732 		/*
1733 		 * VLV_IIR is single buffered, and reflects the level
1734 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1735 		 */
1736 		if (iir)
1737 			I915_WRITE(VLV_IIR, iir);
1738 
1739 		I915_WRITE(VLV_IER, ier);
1740 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1741 
1742 		if (hotplug_status)
1743 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1744 
1745 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1746 	} while (0);
1747 
1748 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1749 
1750 	return ret;
1751 }
1752 
1753 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1754 				u32 hotplug_trigger)
1755 {
1756 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1757 
1758 	/*
1759 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1760 	 * unless we touch the hotplug register, even if hotplug_trigger is
1761 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1762 	 * errors.
1763 	 */
1764 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1765 	if (!hotplug_trigger) {
1766 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1767 			PORTD_HOTPLUG_STATUS_MASK |
1768 			PORTC_HOTPLUG_STATUS_MASK |
1769 			PORTB_HOTPLUG_STATUS_MASK;
1770 		dig_hotplug_reg &= ~mask;
1771 	}
1772 
1773 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1774 	if (!hotplug_trigger)
1775 		return;
1776 
1777 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1778 			   hotplug_trigger, dig_hotplug_reg,
1779 			   dev_priv->hotplug.pch_hpd,
1780 			   pch_port_hotplug_long_detect);
1781 
1782 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1783 }
1784 
1785 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1786 {
1787 	enum pipe pipe;
1788 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1789 
1790 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1791 
1792 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1793 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1794 			       SDE_AUDIO_POWER_SHIFT);
1795 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1796 			port_name(port));
1797 	}
1798 
1799 	if (pch_iir & SDE_AUX_MASK)
1800 		dp_aux_irq_handler(dev_priv);
1801 
1802 	if (pch_iir & SDE_GMBUS)
1803 		gmbus_irq_handler(dev_priv);
1804 
1805 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1806 		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1807 
1808 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1809 		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1810 
1811 	if (pch_iir & SDE_POISON)
1812 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1813 
1814 	if (pch_iir & SDE_FDI_MASK) {
1815 		for_each_pipe(dev_priv, pipe)
1816 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1817 				pipe_name(pipe),
1818 				I915_READ(FDI_RX_IIR(pipe)));
1819 	}
1820 
1821 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1822 		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1823 
1824 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1825 		drm_dbg(&dev_priv->drm,
1826 			"PCH transcoder CRC error interrupt\n");
1827 
1828 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1829 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1830 
1831 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1832 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1833 }
1834 
1835 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1836 {
1837 	u32 err_int = I915_READ(GEN7_ERR_INT);
1838 	enum pipe pipe;
1839 
1840 	if (err_int & ERR_INT_POISON)
1841 		drm_err(&dev_priv->drm, "Poison interrupt\n");
1842 
1843 	for_each_pipe(dev_priv, pipe) {
1844 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1845 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1846 
1847 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1848 			if (IS_IVYBRIDGE(dev_priv))
1849 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1850 			else
1851 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1852 		}
1853 	}
1854 
1855 	I915_WRITE(GEN7_ERR_INT, err_int);
1856 }
1857 
1858 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1859 {
1860 	u32 serr_int = I915_READ(SERR_INT);
1861 	enum pipe pipe;
1862 
1863 	if (serr_int & SERR_INT_POISON)
1864 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1865 
1866 	for_each_pipe(dev_priv, pipe)
1867 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1868 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1869 
1870 	I915_WRITE(SERR_INT, serr_int);
1871 }
1872 
1873 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1874 {
1875 	enum pipe pipe;
1876 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1877 
1878 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1879 
1880 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1881 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1882 			       SDE_AUDIO_POWER_SHIFT_CPT);
1883 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1884 			port_name(port));
1885 	}
1886 
1887 	if (pch_iir & SDE_AUX_MASK_CPT)
1888 		dp_aux_irq_handler(dev_priv);
1889 
1890 	if (pch_iir & SDE_GMBUS_CPT)
1891 		gmbus_irq_handler(dev_priv);
1892 
1893 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1894 		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1895 
1896 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1897 		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1898 
1899 	if (pch_iir & SDE_FDI_MASK_CPT) {
1900 		for_each_pipe(dev_priv, pipe)
1901 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1902 				pipe_name(pipe),
1903 				I915_READ(FDI_RX_IIR(pipe)));
1904 	}
1905 
1906 	if (pch_iir & SDE_ERROR_CPT)
1907 		cpt_serr_int_handler(dev_priv);
1908 }
1909 
1910 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1911 {
1912 	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP;
1913 	u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP;
1914 	u32 pin_mask = 0, long_mask = 0;
1915 
1916 	if (ddi_hotplug_trigger) {
1917 		u32 dig_hotplug_reg;
1918 
1919 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1920 		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1921 
1922 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1923 				   ddi_hotplug_trigger, dig_hotplug_reg,
1924 				   dev_priv->hotplug.pch_hpd,
1925 				   icp_ddi_port_hotplug_long_detect);
1926 	}
1927 
1928 	if (tc_hotplug_trigger) {
1929 		u32 dig_hotplug_reg;
1930 
1931 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1932 		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1933 
1934 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1935 				   tc_hotplug_trigger, dig_hotplug_reg,
1936 				   dev_priv->hotplug.pch_hpd,
1937 				   icp_tc_port_hotplug_long_detect);
1938 	}
1939 
1940 	if (pin_mask)
1941 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1942 
1943 	if (pch_iir & SDE_GMBUS_ICP)
1944 		gmbus_irq_handler(dev_priv);
1945 }
1946 
1947 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1948 {
1949 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1950 		~SDE_PORTE_HOTPLUG_SPT;
1951 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1952 	u32 pin_mask = 0, long_mask = 0;
1953 
1954 	if (hotplug_trigger) {
1955 		u32 dig_hotplug_reg;
1956 
1957 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1958 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1959 
1960 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1961 				   hotplug_trigger, dig_hotplug_reg,
1962 				   dev_priv->hotplug.pch_hpd,
1963 				   spt_port_hotplug_long_detect);
1964 	}
1965 
1966 	if (hotplug2_trigger) {
1967 		u32 dig_hotplug_reg;
1968 
1969 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1970 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1971 
1972 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1973 				   hotplug2_trigger, dig_hotplug_reg,
1974 				   dev_priv->hotplug.pch_hpd,
1975 				   spt_port_hotplug2_long_detect);
1976 	}
1977 
1978 	if (pin_mask)
1979 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1980 
1981 	if (pch_iir & SDE_GMBUS_CPT)
1982 		gmbus_irq_handler(dev_priv);
1983 }
1984 
1985 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1986 				u32 hotplug_trigger)
1987 {
1988 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1989 
1990 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1991 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1992 
1993 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1994 			   hotplug_trigger, dig_hotplug_reg,
1995 			   dev_priv->hotplug.hpd,
1996 			   ilk_port_hotplug_long_detect);
1997 
1998 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1999 }
2000 
2001 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2002 				    u32 de_iir)
2003 {
2004 	enum pipe pipe;
2005 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2006 
2007 	if (hotplug_trigger)
2008 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2009 
2010 	if (de_iir & DE_AUX_CHANNEL_A)
2011 		dp_aux_irq_handler(dev_priv);
2012 
2013 	if (de_iir & DE_GSE)
2014 		intel_opregion_asle_intr(dev_priv);
2015 
2016 	if (de_iir & DE_POISON)
2017 		drm_err(&dev_priv->drm, "Poison interrupt\n");
2018 
2019 	for_each_pipe(dev_priv, pipe) {
2020 		if (de_iir & DE_PIPE_VBLANK(pipe))
2021 			intel_handle_vblank(dev_priv, pipe);
2022 
2023 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2024 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2025 
2026 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2027 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2028 	}
2029 
2030 	/* check event from PCH */
2031 	if (de_iir & DE_PCH_EVENT) {
2032 		u32 pch_iir = I915_READ(SDEIIR);
2033 
2034 		if (HAS_PCH_CPT(dev_priv))
2035 			cpt_irq_handler(dev_priv, pch_iir);
2036 		else
2037 			ibx_irq_handler(dev_priv, pch_iir);
2038 
2039 		/* should clear PCH hotplug event before clear CPU irq */
2040 		I915_WRITE(SDEIIR, pch_iir);
2041 	}
2042 
2043 	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2044 		gen5_rps_irq_handler(&dev_priv->gt.rps);
2045 }
2046 
2047 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2048 				    u32 de_iir)
2049 {
2050 	enum pipe pipe;
2051 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2052 
2053 	if (hotplug_trigger)
2054 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2055 
2056 	if (de_iir & DE_ERR_INT_IVB)
2057 		ivb_err_int_handler(dev_priv);
2058 
2059 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2060 		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2061 
2062 		intel_psr_irq_handler(dev_priv, psr_iir);
2063 		I915_WRITE(EDP_PSR_IIR, psr_iir);
2064 	}
2065 
2066 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2067 		dp_aux_irq_handler(dev_priv);
2068 
2069 	if (de_iir & DE_GSE_IVB)
2070 		intel_opregion_asle_intr(dev_priv);
2071 
2072 	for_each_pipe(dev_priv, pipe) {
2073 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2074 			intel_handle_vblank(dev_priv, pipe);
2075 	}
2076 
2077 	/* check event from PCH */
2078 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2079 		u32 pch_iir = I915_READ(SDEIIR);
2080 
2081 		cpt_irq_handler(dev_priv, pch_iir);
2082 
2083 		/* clear PCH hotplug event before clear CPU irq */
2084 		I915_WRITE(SDEIIR, pch_iir);
2085 	}
2086 }
2087 
2088 /*
2089  * To handle irqs with the minimum potential races with fresh interrupts, we:
2090  * 1 - Disable Master Interrupt Control.
2091  * 2 - Find the source(s) of the interrupt.
2092  * 3 - Clear the Interrupt Identity bits (IIR).
2093  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2094  * 5 - Re-enable Master Interrupt Control.
2095  */
2096 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2097 {
2098 	struct drm_i915_private *i915 = arg;
2099 	void __iomem * const regs = i915->uncore.regs;
2100 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2101 	irqreturn_t ret = IRQ_NONE;
2102 
2103 	if (unlikely(!intel_irqs_enabled(i915)))
2104 		return IRQ_NONE;
2105 
2106 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2107 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2108 
2109 	/* disable master interrupt before clearing iir  */
2110 	de_ier = raw_reg_read(regs, DEIER);
2111 	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2112 
2113 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2114 	 * interrupts will will be stored on its back queue, and then we'll be
2115 	 * able to process them after we restore SDEIER (as soon as we restore
2116 	 * it, we'll get an interrupt if SDEIIR still has something to process
2117 	 * due to its back queue). */
2118 	if (!HAS_PCH_NOP(i915)) {
2119 		sde_ier = raw_reg_read(regs, SDEIER);
2120 		raw_reg_write(regs, SDEIER, 0);
2121 	}
2122 
2123 	/* Find, clear, then process each source of interrupt */
2124 
2125 	gt_iir = raw_reg_read(regs, GTIIR);
2126 	if (gt_iir) {
2127 		raw_reg_write(regs, GTIIR, gt_iir);
2128 		if (INTEL_GEN(i915) >= 6)
2129 			gen6_gt_irq_handler(&i915->gt, gt_iir);
2130 		else
2131 			gen5_gt_irq_handler(&i915->gt, gt_iir);
2132 		ret = IRQ_HANDLED;
2133 	}
2134 
2135 	de_iir = raw_reg_read(regs, DEIIR);
2136 	if (de_iir) {
2137 		raw_reg_write(regs, DEIIR, de_iir);
2138 		if (INTEL_GEN(i915) >= 7)
2139 			ivb_display_irq_handler(i915, de_iir);
2140 		else
2141 			ilk_display_irq_handler(i915, de_iir);
2142 		ret = IRQ_HANDLED;
2143 	}
2144 
2145 	if (INTEL_GEN(i915) >= 6) {
2146 		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2147 		if (pm_iir) {
2148 			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2149 			gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2150 			ret = IRQ_HANDLED;
2151 		}
2152 	}
2153 
2154 	raw_reg_write(regs, DEIER, de_ier);
2155 	if (sde_ier)
2156 		raw_reg_write(regs, SDEIER, sde_ier);
2157 
2158 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2159 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2160 
2161 	return ret;
2162 }
2163 
2164 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2165 				u32 hotplug_trigger)
2166 {
2167 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2168 
2169 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2170 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2171 
2172 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2173 			   hotplug_trigger, dig_hotplug_reg,
2174 			   dev_priv->hotplug.hpd,
2175 			   bxt_port_hotplug_long_detect);
2176 
2177 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2178 }
2179 
2180 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2181 {
2182 	u32 pin_mask = 0, long_mask = 0;
2183 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2184 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2185 
2186 	if (trigger_tc) {
2187 		u32 dig_hotplug_reg;
2188 
2189 		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2190 		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2191 
2192 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2193 				   trigger_tc, dig_hotplug_reg,
2194 				   dev_priv->hotplug.hpd,
2195 				   gen11_port_hotplug_long_detect);
2196 	}
2197 
2198 	if (trigger_tbt) {
2199 		u32 dig_hotplug_reg;
2200 
2201 		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2202 		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2203 
2204 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2205 				   trigger_tbt, dig_hotplug_reg,
2206 				   dev_priv->hotplug.hpd,
2207 				   gen11_port_hotplug_long_detect);
2208 	}
2209 
2210 	if (pin_mask)
2211 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2212 	else
2213 		drm_err(&dev_priv->drm,
2214 			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2215 }
2216 
2217 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2218 {
2219 	u32 mask;
2220 
2221 	if (INTEL_GEN(dev_priv) >= 12)
2222 		return TGL_DE_PORT_AUX_DDIA |
2223 			TGL_DE_PORT_AUX_DDIB |
2224 			TGL_DE_PORT_AUX_DDIC |
2225 			TGL_DE_PORT_AUX_USBC1 |
2226 			TGL_DE_PORT_AUX_USBC2 |
2227 			TGL_DE_PORT_AUX_USBC3 |
2228 			TGL_DE_PORT_AUX_USBC4 |
2229 			TGL_DE_PORT_AUX_USBC5 |
2230 			TGL_DE_PORT_AUX_USBC6;
2231 
2232 
2233 	mask = GEN8_AUX_CHANNEL_A;
2234 	if (INTEL_GEN(dev_priv) >= 9)
2235 		mask |= GEN9_AUX_CHANNEL_B |
2236 			GEN9_AUX_CHANNEL_C |
2237 			GEN9_AUX_CHANNEL_D;
2238 
2239 	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2240 		mask |= CNL_AUX_CHANNEL_F;
2241 
2242 	if (IS_GEN(dev_priv, 11))
2243 		mask |= ICL_AUX_CHANNEL_E;
2244 
2245 	return mask;
2246 }
2247 
2248 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2249 {
2250 	if (IS_ROCKETLAKE(dev_priv))
2251 		return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2252 	else if (INTEL_GEN(dev_priv) >= 11)
2253 		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2254 	else if (INTEL_GEN(dev_priv) >= 9)
2255 		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2256 	else
2257 		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2258 }
2259 
2260 static void
2261 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2262 {
2263 	bool found = false;
2264 
2265 	if (iir & GEN8_DE_MISC_GSE) {
2266 		intel_opregion_asle_intr(dev_priv);
2267 		found = true;
2268 	}
2269 
2270 	if (iir & GEN8_DE_EDP_PSR) {
2271 		u32 psr_iir;
2272 		i915_reg_t iir_reg;
2273 
2274 		if (INTEL_GEN(dev_priv) >= 12)
2275 			iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2276 		else
2277 			iir_reg = EDP_PSR_IIR;
2278 
2279 		psr_iir = I915_READ(iir_reg);
2280 		I915_WRITE(iir_reg, psr_iir);
2281 
2282 		if (psr_iir)
2283 			found = true;
2284 
2285 		intel_psr_irq_handler(dev_priv, psr_iir);
2286 	}
2287 
2288 	if (!found)
2289 		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2290 }
2291 
2292 static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv,
2293 					   u32 te_trigger)
2294 {
2295 	enum pipe pipe = INVALID_PIPE;
2296 	enum transcoder dsi_trans;
2297 	enum port port;
2298 	u32 val, tmp;
2299 
2300 	/*
2301 	 * Incase of dual link, TE comes from DSI_1
2302 	 * this is to check if dual link is enabled
2303 	 */
2304 	val = I915_READ(TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0));
2305 	val &= PORT_SYNC_MODE_ENABLE;
2306 
2307 	/*
2308 	 * if dual link is enabled, then read DSI_0
2309 	 * transcoder registers
2310 	 */
2311 	port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ?
2312 						  PORT_A : PORT_B;
2313 	dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1;
2314 
2315 	/* Check if DSI configured in command mode */
2316 	val = I915_READ(DSI_TRANS_FUNC_CONF(dsi_trans));
2317 	val = val & OP_MODE_MASK;
2318 
2319 	if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) {
2320 		drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n");
2321 		return;
2322 	}
2323 
2324 	/* Get PIPE for handling VBLANK event */
2325 	val = I915_READ(TRANS_DDI_FUNC_CTL(dsi_trans));
2326 	switch (val & TRANS_DDI_EDP_INPUT_MASK) {
2327 	case TRANS_DDI_EDP_INPUT_A_ON:
2328 		pipe = PIPE_A;
2329 		break;
2330 	case TRANS_DDI_EDP_INPUT_B_ONOFF:
2331 		pipe = PIPE_B;
2332 		break;
2333 	case TRANS_DDI_EDP_INPUT_C_ONOFF:
2334 		pipe = PIPE_C;
2335 		break;
2336 	default:
2337 		drm_err(&dev_priv->drm, "Invalid PIPE\n");
2338 		return;
2339 	}
2340 
2341 	intel_handle_vblank(dev_priv, pipe);
2342 
2343 	/* clear TE in dsi IIR */
2344 	port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A;
2345 	tmp = I915_READ(DSI_INTR_IDENT_REG(port));
2346 	I915_WRITE(DSI_INTR_IDENT_REG(port), tmp);
2347 }
2348 
2349 static irqreturn_t
2350 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2351 {
2352 	irqreturn_t ret = IRQ_NONE;
2353 	u32 iir;
2354 	enum pipe pipe;
2355 
2356 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2357 		iir = I915_READ(GEN8_DE_MISC_IIR);
2358 		if (iir) {
2359 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2360 			ret = IRQ_HANDLED;
2361 			gen8_de_misc_irq_handler(dev_priv, iir);
2362 		} else {
2363 			drm_err(&dev_priv->drm,
2364 				"The master control interrupt lied (DE MISC)!\n");
2365 		}
2366 	}
2367 
2368 	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2369 		iir = I915_READ(GEN11_DE_HPD_IIR);
2370 		if (iir) {
2371 			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2372 			ret = IRQ_HANDLED;
2373 			gen11_hpd_irq_handler(dev_priv, iir);
2374 		} else {
2375 			drm_err(&dev_priv->drm,
2376 				"The master control interrupt lied, (DE HPD)!\n");
2377 		}
2378 	}
2379 
2380 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2381 		iir = I915_READ(GEN8_DE_PORT_IIR);
2382 		if (iir) {
2383 			bool found = false;
2384 
2385 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2386 			ret = IRQ_HANDLED;
2387 
2388 			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2389 				dp_aux_irq_handler(dev_priv);
2390 				found = true;
2391 			}
2392 
2393 			if (IS_GEN9_LP(dev_priv)) {
2394 				u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK;
2395 
2396 				if (hotplug_trigger) {
2397 					bxt_hpd_irq_handler(dev_priv, hotplug_trigger);
2398 					found = true;
2399 				}
2400 			} else if (IS_BROADWELL(dev_priv)) {
2401 				u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK;
2402 
2403 				if (hotplug_trigger) {
2404 					ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2405 					found = true;
2406 				}
2407 			}
2408 
2409 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2410 				gmbus_irq_handler(dev_priv);
2411 				found = true;
2412 			}
2413 
2414 			if (INTEL_GEN(dev_priv) >= 11) {
2415 				u32 te_trigger = iir & (DSI0_TE | DSI1_TE);
2416 
2417 				if (te_trigger) {
2418 					gen11_dsi_te_interrupt_handler(dev_priv, te_trigger);
2419 					found = true;
2420 				}
2421 			}
2422 
2423 			if (!found)
2424 				drm_err(&dev_priv->drm,
2425 					"Unexpected DE Port interrupt\n");
2426 		}
2427 		else
2428 			drm_err(&dev_priv->drm,
2429 				"The master control interrupt lied (DE PORT)!\n");
2430 	}
2431 
2432 	for_each_pipe(dev_priv, pipe) {
2433 		u32 fault_errors;
2434 
2435 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2436 			continue;
2437 
2438 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2439 		if (!iir) {
2440 			drm_err(&dev_priv->drm,
2441 				"The master control interrupt lied (DE PIPE)!\n");
2442 			continue;
2443 		}
2444 
2445 		ret = IRQ_HANDLED;
2446 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2447 
2448 		if (iir & GEN8_PIPE_VBLANK)
2449 			intel_handle_vblank(dev_priv, pipe);
2450 
2451 		if (iir & GEN9_PIPE_PLANE1_FLIP_DONE)
2452 			flip_done_handler(dev_priv, pipe);
2453 
2454 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2455 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2456 
2457 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2458 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2459 
2460 		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2461 		if (fault_errors)
2462 			drm_err(&dev_priv->drm,
2463 				"Fault errors on pipe %c: 0x%08x\n",
2464 				pipe_name(pipe),
2465 				fault_errors);
2466 	}
2467 
2468 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2469 	    master_ctl & GEN8_DE_PCH_IRQ) {
2470 		/*
2471 		 * FIXME(BDW): Assume for now that the new interrupt handling
2472 		 * scheme also closed the SDE interrupt handling race we've seen
2473 		 * on older pch-split platforms. But this needs testing.
2474 		 */
2475 		iir = I915_READ(SDEIIR);
2476 		if (iir) {
2477 			I915_WRITE(SDEIIR, iir);
2478 			ret = IRQ_HANDLED;
2479 
2480 			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2481 				icp_irq_handler(dev_priv, iir);
2482 			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2483 				spt_irq_handler(dev_priv, iir);
2484 			else
2485 				cpt_irq_handler(dev_priv, iir);
2486 		} else {
2487 			/*
2488 			 * Like on previous PCH there seems to be something
2489 			 * fishy going on with forwarding PCH interrupts.
2490 			 */
2491 			drm_dbg(&dev_priv->drm,
2492 				"The master control interrupt lied (SDE)!\n");
2493 		}
2494 	}
2495 
2496 	return ret;
2497 }
2498 
2499 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2500 {
2501 	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2502 
2503 	/*
2504 	 * Now with master disabled, get a sample of level indications
2505 	 * for this interrupt. Indications will be cleared on related acks.
2506 	 * New indications can and will light up during processing,
2507 	 * and will generate new interrupt after enabling master.
2508 	 */
2509 	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2510 }
2511 
2512 static inline void gen8_master_intr_enable(void __iomem * const regs)
2513 {
2514 	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2515 }
2516 
2517 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2518 {
2519 	struct drm_i915_private *dev_priv = arg;
2520 	void __iomem * const regs = dev_priv->uncore.regs;
2521 	u32 master_ctl;
2522 
2523 	if (!intel_irqs_enabled(dev_priv))
2524 		return IRQ_NONE;
2525 
2526 	master_ctl = gen8_master_intr_disable(regs);
2527 	if (!master_ctl) {
2528 		gen8_master_intr_enable(regs);
2529 		return IRQ_NONE;
2530 	}
2531 
2532 	/* Find, queue (onto bottom-halves), then clear each source */
2533 	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2534 
2535 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2536 	if (master_ctl & ~GEN8_GT_IRQS) {
2537 		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2538 		gen8_de_irq_handler(dev_priv, master_ctl);
2539 		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2540 	}
2541 
2542 	gen8_master_intr_enable(regs);
2543 
2544 	return IRQ_HANDLED;
2545 }
2546 
2547 static u32
2548 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2549 {
2550 	void __iomem * const regs = gt->uncore->regs;
2551 	u32 iir;
2552 
2553 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2554 		return 0;
2555 
2556 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2557 	if (likely(iir))
2558 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2559 
2560 	return iir;
2561 }
2562 
2563 static void
2564 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2565 {
2566 	if (iir & GEN11_GU_MISC_GSE)
2567 		intel_opregion_asle_intr(gt->i915);
2568 }
2569 
2570 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2571 {
2572 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2573 
2574 	/*
2575 	 * Now with master disabled, get a sample of level indications
2576 	 * for this interrupt. Indications will be cleared on related acks.
2577 	 * New indications can and will light up during processing,
2578 	 * and will generate new interrupt after enabling master.
2579 	 */
2580 	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2581 }
2582 
2583 static inline void gen11_master_intr_enable(void __iomem * const regs)
2584 {
2585 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2586 }
2587 
2588 static void
2589 gen11_display_irq_handler(struct drm_i915_private *i915)
2590 {
2591 	void __iomem * const regs = i915->uncore.regs;
2592 	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2593 
2594 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2595 	/*
2596 	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2597 	 * for the display related bits.
2598 	 */
2599 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2600 	gen8_de_irq_handler(i915, disp_ctl);
2601 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2602 		      GEN11_DISPLAY_IRQ_ENABLE);
2603 
2604 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2605 }
2606 
2607 static __always_inline irqreturn_t
2608 __gen11_irq_handler(struct drm_i915_private * const i915,
2609 		    u32 (*intr_disable)(void __iomem * const regs),
2610 		    void (*intr_enable)(void __iomem * const regs))
2611 {
2612 	void __iomem * const regs = i915->uncore.regs;
2613 	struct intel_gt *gt = &i915->gt;
2614 	u32 master_ctl;
2615 	u32 gu_misc_iir;
2616 
2617 	if (!intel_irqs_enabled(i915))
2618 		return IRQ_NONE;
2619 
2620 	master_ctl = intr_disable(regs);
2621 	if (!master_ctl) {
2622 		intr_enable(regs);
2623 		return IRQ_NONE;
2624 	}
2625 
2626 	/* Find, queue (onto bottom-halves), then clear each source */
2627 	gen11_gt_irq_handler(gt, master_ctl);
2628 
2629 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2630 	if (master_ctl & GEN11_DISPLAY_IRQ)
2631 		gen11_display_irq_handler(i915);
2632 
2633 	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2634 
2635 	intr_enable(regs);
2636 
2637 	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2638 
2639 	return IRQ_HANDLED;
2640 }
2641 
2642 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2643 {
2644 	return __gen11_irq_handler(arg,
2645 				   gen11_master_intr_disable,
2646 				   gen11_master_intr_enable);
2647 }
2648 
2649 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2650 {
2651 	u32 val;
2652 
2653 	/* First disable interrupts */
2654 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2655 
2656 	/* Get the indication levels and ack the master unit */
2657 	val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2658 	if (unlikely(!val))
2659 		return 0;
2660 
2661 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2662 
2663 	/*
2664 	 * Now with master disabled, get a sample of level indications
2665 	 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2666 	 * out as this bit doesn't exist anymore for DG1
2667 	 */
2668 	val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2669 	if (unlikely(!val))
2670 		return 0;
2671 
2672 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2673 
2674 	return val;
2675 }
2676 
2677 static inline void dg1_master_intr_enable(void __iomem * const regs)
2678 {
2679 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2680 }
2681 
2682 static irqreturn_t dg1_irq_handler(int irq, void *arg)
2683 {
2684 	return __gen11_irq_handler(arg,
2685 				   dg1_master_intr_disable_and_ack,
2686 				   dg1_master_intr_enable);
2687 }
2688 
2689 /* Called from drm generic code, passed 'crtc' which
2690  * we use as a pipe index
2691  */
2692 int i8xx_enable_vblank(struct drm_crtc *crtc)
2693 {
2694 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2695 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2696 	unsigned long irqflags;
2697 
2698 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2699 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2700 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2701 
2702 	return 0;
2703 }
2704 
2705 int i915gm_enable_vblank(struct drm_crtc *crtc)
2706 {
2707 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2708 
2709 	/*
2710 	 * Vblank interrupts fail to wake the device up from C2+.
2711 	 * Disabling render clock gating during C-states avoids
2712 	 * the problem. There is a small power cost so we do this
2713 	 * only when vblank interrupts are actually enabled.
2714 	 */
2715 	if (dev_priv->vblank_enabled++ == 0)
2716 		I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2717 
2718 	return i8xx_enable_vblank(crtc);
2719 }
2720 
2721 int i965_enable_vblank(struct drm_crtc *crtc)
2722 {
2723 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2724 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2725 	unsigned long irqflags;
2726 
2727 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728 	i915_enable_pipestat(dev_priv, pipe,
2729 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2730 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2731 
2732 	return 0;
2733 }
2734 
2735 int ilk_enable_vblank(struct drm_crtc *crtc)
2736 {
2737 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2738 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2739 	unsigned long irqflags;
2740 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2741 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2742 
2743 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2744 	ilk_enable_display_irq(dev_priv, bit);
2745 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2746 
2747 	/* Even though there is no DMC, frame counter can get stuck when
2748 	 * PSR is active as no frames are generated.
2749 	 */
2750 	if (HAS_PSR(dev_priv))
2751 		drm_crtc_vblank_restore(crtc);
2752 
2753 	return 0;
2754 }
2755 
2756 static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc,
2757 				   bool enable)
2758 {
2759 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
2760 	enum port port;
2761 	u32 tmp;
2762 
2763 	if (!(intel_crtc->mode_flags &
2764 	    (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0)))
2765 		return false;
2766 
2767 	/* for dual link cases we consider TE from slave */
2768 	if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
2769 		port = PORT_B;
2770 	else
2771 		port = PORT_A;
2772 
2773 	tmp =  I915_READ(DSI_INTR_MASK_REG(port));
2774 	if (enable)
2775 		tmp &= ~DSI_TE_EVENT;
2776 	else
2777 		tmp |= DSI_TE_EVENT;
2778 
2779 	I915_WRITE(DSI_INTR_MASK_REG(port), tmp);
2780 
2781 	tmp = I915_READ(DSI_INTR_IDENT_REG(port));
2782 	I915_WRITE(DSI_INTR_IDENT_REG(port), tmp);
2783 
2784 	return true;
2785 }
2786 
2787 int bdw_enable_vblank(struct drm_crtc *crtc)
2788 {
2789 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2790 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2791 	enum pipe pipe = intel_crtc->pipe;
2792 	unsigned long irqflags;
2793 
2794 	if (gen11_dsi_configure_te(intel_crtc, true))
2795 		return 0;
2796 
2797 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2798 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2799 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2800 
2801 	/* Even if there is no DMC, frame counter can get stuck when
2802 	 * PSR is active as no frames are generated, so check only for PSR.
2803 	 */
2804 	if (HAS_PSR(dev_priv))
2805 		drm_crtc_vblank_restore(crtc);
2806 
2807 	return 0;
2808 }
2809 
2810 void skl_enable_flip_done(struct intel_crtc *crtc)
2811 {
2812 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2813 	enum pipe pipe = crtc->pipe;
2814 	unsigned long irqflags;
2815 
2816 	spin_lock_irqsave(&i915->irq_lock, irqflags);
2817 
2818 	bdw_enable_pipe_irq(i915, pipe, GEN9_PIPE_PLANE1_FLIP_DONE);
2819 
2820 	spin_unlock_irqrestore(&i915->irq_lock, irqflags);
2821 }
2822 
2823 /* Called from drm generic code, passed 'crtc' which
2824  * we use as a pipe index
2825  */
2826 void i8xx_disable_vblank(struct drm_crtc *crtc)
2827 {
2828 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2829 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2830 	unsigned long irqflags;
2831 
2832 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2833 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2834 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2835 }
2836 
2837 void i915gm_disable_vblank(struct drm_crtc *crtc)
2838 {
2839 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2840 
2841 	i8xx_disable_vblank(crtc);
2842 
2843 	if (--dev_priv->vblank_enabled == 0)
2844 		I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2845 }
2846 
2847 void i965_disable_vblank(struct drm_crtc *crtc)
2848 {
2849 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2850 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2851 	unsigned long irqflags;
2852 
2853 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2854 	i915_disable_pipestat(dev_priv, pipe,
2855 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2856 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2857 }
2858 
2859 void ilk_disable_vblank(struct drm_crtc *crtc)
2860 {
2861 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2862 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2863 	unsigned long irqflags;
2864 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2865 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2866 
2867 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2868 	ilk_disable_display_irq(dev_priv, bit);
2869 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2870 }
2871 
2872 void bdw_disable_vblank(struct drm_crtc *crtc)
2873 {
2874 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2875 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2876 	enum pipe pipe = intel_crtc->pipe;
2877 	unsigned long irqflags;
2878 
2879 	if (gen11_dsi_configure_te(intel_crtc, false))
2880 		return;
2881 
2882 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2883 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2884 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2885 }
2886 
2887 void skl_disable_flip_done(struct intel_crtc *crtc)
2888 {
2889 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2890 	enum pipe pipe = crtc->pipe;
2891 	unsigned long irqflags;
2892 
2893 	spin_lock_irqsave(&i915->irq_lock, irqflags);
2894 
2895 	bdw_disable_pipe_irq(i915, pipe, GEN9_PIPE_PLANE1_FLIP_DONE);
2896 
2897 	spin_unlock_irqrestore(&i915->irq_lock, irqflags);
2898 }
2899 
2900 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2901 {
2902 	struct intel_uncore *uncore = &dev_priv->uncore;
2903 
2904 	if (HAS_PCH_NOP(dev_priv))
2905 		return;
2906 
2907 	GEN3_IRQ_RESET(uncore, SDE);
2908 
2909 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2910 		I915_WRITE(SERR_INT, 0xffffffff);
2911 }
2912 
2913 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2914 {
2915 	struct intel_uncore *uncore = &dev_priv->uncore;
2916 
2917 	if (IS_CHERRYVIEW(dev_priv))
2918 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2919 	else
2920 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2921 
2922 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2923 	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2924 
2925 	i9xx_pipestat_irq_reset(dev_priv);
2926 
2927 	GEN3_IRQ_RESET(uncore, VLV_);
2928 	dev_priv->irq_mask = ~0u;
2929 }
2930 
2931 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2932 {
2933 	struct intel_uncore *uncore = &dev_priv->uncore;
2934 
2935 	u32 pipestat_mask;
2936 	u32 enable_mask;
2937 	enum pipe pipe;
2938 
2939 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2940 
2941 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2942 	for_each_pipe(dev_priv, pipe)
2943 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2944 
2945 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2946 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2947 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2948 		I915_LPE_PIPE_A_INTERRUPT |
2949 		I915_LPE_PIPE_B_INTERRUPT;
2950 
2951 	if (IS_CHERRYVIEW(dev_priv))
2952 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2953 			I915_LPE_PIPE_C_INTERRUPT;
2954 
2955 	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2956 
2957 	dev_priv->irq_mask = ~enable_mask;
2958 
2959 	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2960 }
2961 
2962 /* drm_dma.h hooks
2963 */
2964 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2965 {
2966 	struct intel_uncore *uncore = &dev_priv->uncore;
2967 
2968 	GEN3_IRQ_RESET(uncore, DE);
2969 	dev_priv->irq_mask = ~0u;
2970 
2971 	if (IS_GEN(dev_priv, 7))
2972 		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2973 
2974 	if (IS_HASWELL(dev_priv)) {
2975 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2976 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2977 	}
2978 
2979 	gen5_gt_irq_reset(&dev_priv->gt);
2980 
2981 	ibx_irq_reset(dev_priv);
2982 }
2983 
2984 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2985 {
2986 	I915_WRITE(VLV_MASTER_IER, 0);
2987 	POSTING_READ(VLV_MASTER_IER);
2988 
2989 	gen5_gt_irq_reset(&dev_priv->gt);
2990 
2991 	spin_lock_irq(&dev_priv->irq_lock);
2992 	if (dev_priv->display_irqs_enabled)
2993 		vlv_display_irq_reset(dev_priv);
2994 	spin_unlock_irq(&dev_priv->irq_lock);
2995 }
2996 
2997 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2998 {
2999 	struct intel_uncore *uncore = &dev_priv->uncore;
3000 	enum pipe pipe;
3001 
3002 	gen8_master_intr_disable(dev_priv->uncore.regs);
3003 
3004 	gen8_gt_irq_reset(&dev_priv->gt);
3005 
3006 	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3007 	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3008 
3009 	for_each_pipe(dev_priv, pipe)
3010 		if (intel_display_power_is_enabled(dev_priv,
3011 						   POWER_DOMAIN_PIPE(pipe)))
3012 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3013 
3014 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3015 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3016 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3017 
3018 	if (HAS_PCH_SPLIT(dev_priv))
3019 		ibx_irq_reset(dev_priv);
3020 }
3021 
3022 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
3023 {
3024 	struct intel_uncore *uncore = &dev_priv->uncore;
3025 	enum pipe pipe;
3026 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3027 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3028 
3029 	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3030 
3031 	if (INTEL_GEN(dev_priv) >= 12) {
3032 		enum transcoder trans;
3033 
3034 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3035 			enum intel_display_power_domain domain;
3036 
3037 			domain = POWER_DOMAIN_TRANSCODER(trans);
3038 			if (!intel_display_power_is_enabled(dev_priv, domain))
3039 				continue;
3040 
3041 			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
3042 			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
3043 		}
3044 	} else {
3045 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3046 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3047 	}
3048 
3049 	for_each_pipe(dev_priv, pipe)
3050 		if (intel_display_power_is_enabled(dev_priv,
3051 						   POWER_DOMAIN_PIPE(pipe)))
3052 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3053 
3054 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3055 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3056 	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3057 
3058 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3059 		GEN3_IRQ_RESET(uncore, SDE);
3060 
3061 	/* Wa_14010685332:icl,jsl,ehl,tgl,rkl */
3062 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) {
3063 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
3064 				 SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
3065 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
3066 				 SBCLK_RUN_REFCLK_DIS, 0);
3067 	}
3068 }
3069 
3070 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3071 {
3072 	struct intel_uncore *uncore = &dev_priv->uncore;
3073 
3074 	if (HAS_MASTER_UNIT_IRQ(dev_priv))
3075 		dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
3076 	else
3077 		gen11_master_intr_disable(dev_priv->uncore.regs);
3078 
3079 	gen11_gt_irq_reset(&dev_priv->gt);
3080 	gen11_display_irq_reset(dev_priv);
3081 
3082 	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3083 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3084 }
3085 
3086 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3087 				     u8 pipe_mask)
3088 {
3089 	struct intel_uncore *uncore = &dev_priv->uncore;
3090 
3091 	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3092 	enum pipe pipe;
3093 
3094 	if (INTEL_GEN(dev_priv) >= 9)
3095 		extra_ier |= GEN9_PIPE_PLANE1_FLIP_DONE;
3096 
3097 	spin_lock_irq(&dev_priv->irq_lock);
3098 
3099 	if (!intel_irqs_enabled(dev_priv)) {
3100 		spin_unlock_irq(&dev_priv->irq_lock);
3101 		return;
3102 	}
3103 
3104 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3105 		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3106 				  dev_priv->de_irq_mask[pipe],
3107 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3108 
3109 	spin_unlock_irq(&dev_priv->irq_lock);
3110 }
3111 
3112 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3113 				     u8 pipe_mask)
3114 {
3115 	struct intel_uncore *uncore = &dev_priv->uncore;
3116 	enum pipe pipe;
3117 
3118 	spin_lock_irq(&dev_priv->irq_lock);
3119 
3120 	if (!intel_irqs_enabled(dev_priv)) {
3121 		spin_unlock_irq(&dev_priv->irq_lock);
3122 		return;
3123 	}
3124 
3125 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3126 		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3127 
3128 	spin_unlock_irq(&dev_priv->irq_lock);
3129 
3130 	/* make sure we're done processing display irqs */
3131 	intel_synchronize_irq(dev_priv);
3132 }
3133 
3134 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3135 {
3136 	struct intel_uncore *uncore = &dev_priv->uncore;
3137 
3138 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3139 	POSTING_READ(GEN8_MASTER_IRQ);
3140 
3141 	gen8_gt_irq_reset(&dev_priv->gt);
3142 
3143 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3144 
3145 	spin_lock_irq(&dev_priv->irq_lock);
3146 	if (dev_priv->display_irqs_enabled)
3147 		vlv_display_irq_reset(dev_priv);
3148 	spin_unlock_irq(&dev_priv->irq_lock);
3149 }
3150 
3151 static u32 ibx_hotplug_enables(struct drm_i915_private *i915,
3152 			       enum hpd_pin pin)
3153 {
3154 	switch (pin) {
3155 	case HPD_PORT_A:
3156 		/*
3157 		 * When CPU and PCH are on the same package, port A
3158 		 * HPD must be enabled in both north and south.
3159 		 */
3160 		return HAS_PCH_LPT_LP(i915) ?
3161 			PORTA_HOTPLUG_ENABLE : 0;
3162 	case HPD_PORT_B:
3163 		return PORTB_HOTPLUG_ENABLE |
3164 			PORTB_PULSE_DURATION_2ms;
3165 	case HPD_PORT_C:
3166 		return PORTC_HOTPLUG_ENABLE |
3167 			PORTC_PULSE_DURATION_2ms;
3168 	case HPD_PORT_D:
3169 		return PORTD_HOTPLUG_ENABLE |
3170 			PORTD_PULSE_DURATION_2ms;
3171 	default:
3172 		return 0;
3173 	}
3174 }
3175 
3176 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3177 {
3178 	u32 hotplug;
3179 
3180 	/*
3181 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3182 	 * duration to 2ms (which is the minimum in the Display Port spec).
3183 	 * The pulse duration bits are reserved on LPT+.
3184 	 */
3185 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3186 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3187 		     PORTB_HOTPLUG_ENABLE |
3188 		     PORTC_HOTPLUG_ENABLE |
3189 		     PORTD_HOTPLUG_ENABLE |
3190 		     PORTB_PULSE_DURATION_MASK |
3191 		     PORTC_PULSE_DURATION_MASK |
3192 		     PORTD_PULSE_DURATION_MASK);
3193 	hotplug |= intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables);
3194 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3195 }
3196 
3197 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3198 {
3199 	u32 hotplug_irqs, enabled_irqs;
3200 
3201 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3202 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3203 
3204 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3205 
3206 	ibx_hpd_detection_setup(dev_priv);
3207 }
3208 
3209 static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915,
3210 				   enum hpd_pin pin)
3211 {
3212 	switch (pin) {
3213 	case HPD_PORT_A:
3214 	case HPD_PORT_B:
3215 	case HPD_PORT_C:
3216 	case HPD_PORT_D:
3217 		return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin);
3218 	default:
3219 		return 0;
3220 	}
3221 }
3222 
3223 static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915,
3224 				  enum hpd_pin pin)
3225 {
3226 	switch (pin) {
3227 	case HPD_PORT_TC1:
3228 	case HPD_PORT_TC2:
3229 	case HPD_PORT_TC3:
3230 	case HPD_PORT_TC4:
3231 	case HPD_PORT_TC5:
3232 	case HPD_PORT_TC6:
3233 		return ICP_TC_HPD_ENABLE(pin);
3234 	default:
3235 		return 0;
3236 	}
3237 }
3238 
3239 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv)
3240 {
3241 	u32 hotplug;
3242 
3243 	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3244 	hotplug &= ~(SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) |
3245 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) |
3246 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) |
3247 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D));
3248 	hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables);
3249 	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3250 }
3251 
3252 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3253 {
3254 	u32 hotplug;
3255 
3256 	hotplug = I915_READ(SHOTPLUG_CTL_TC);
3257 	hotplug &= ~(ICP_TC_HPD_ENABLE(HPD_PORT_TC1) |
3258 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC2) |
3259 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC3) |
3260 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC4) |
3261 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC5) |
3262 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC6));
3263 	hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables);
3264 	I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3265 }
3266 
3267 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3268 {
3269 	u32 hotplug_irqs, enabled_irqs;
3270 
3271 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3272 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3273 
3274 	if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3275 		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3276 
3277 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3278 
3279 	icp_ddi_hpd_detection_setup(dev_priv);
3280 	icp_tc_hpd_detection_setup(dev_priv);
3281 }
3282 
3283 static u32 gen11_hotplug_enables(struct drm_i915_private *i915,
3284 				 enum hpd_pin pin)
3285 {
3286 	switch (pin) {
3287 	case HPD_PORT_TC1:
3288 	case HPD_PORT_TC2:
3289 	case HPD_PORT_TC3:
3290 	case HPD_PORT_TC4:
3291 	case HPD_PORT_TC5:
3292 	case HPD_PORT_TC6:
3293 		return GEN11_HOTPLUG_CTL_ENABLE(pin);
3294 	default:
3295 		return 0;
3296 	}
3297 }
3298 
3299 static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv)
3300 {
3301 	u32 val;
3302 
3303 	val = I915_READ(SOUTH_CHICKEN1);
3304 	val |= (INVERT_DDIA_HPD |
3305 		INVERT_DDIB_HPD |
3306 		INVERT_DDIC_HPD |
3307 		INVERT_DDID_HPD);
3308 	I915_WRITE(SOUTH_CHICKEN1, val);
3309 
3310 	icp_hpd_irq_setup(dev_priv);
3311 }
3312 
3313 static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3314 {
3315 	u32 hotplug;
3316 
3317 	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3318 	hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3319 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3320 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3321 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3322 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3323 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3324 	hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3325 	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3326 }
3327 
3328 static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3329 {
3330 	u32 hotplug;
3331 
3332 	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3333 	hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3334 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3335 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3336 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3337 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3338 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3339 	hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3340 	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3341 }
3342 
3343 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3344 {
3345 	u32 hotplug_irqs, enabled_irqs;
3346 	u32 val;
3347 
3348 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3349 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3350 
3351 	val = I915_READ(GEN11_DE_HPD_IMR);
3352 	val &= ~hotplug_irqs;
3353 	val |= ~enabled_irqs & hotplug_irqs;
3354 	I915_WRITE(GEN11_DE_HPD_IMR, val);
3355 	POSTING_READ(GEN11_DE_HPD_IMR);
3356 
3357 	gen11_tc_hpd_detection_setup(dev_priv);
3358 	gen11_tbt_hpd_detection_setup(dev_priv);
3359 
3360 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3361 		icp_hpd_irq_setup(dev_priv);
3362 }
3363 
3364 static u32 spt_hotplug_enables(struct drm_i915_private *i915,
3365 			       enum hpd_pin pin)
3366 {
3367 	switch (pin) {
3368 	case HPD_PORT_A:
3369 		return PORTA_HOTPLUG_ENABLE;
3370 	case HPD_PORT_B:
3371 		return PORTB_HOTPLUG_ENABLE;
3372 	case HPD_PORT_C:
3373 		return PORTC_HOTPLUG_ENABLE;
3374 	case HPD_PORT_D:
3375 		return PORTD_HOTPLUG_ENABLE;
3376 	default:
3377 		return 0;
3378 	}
3379 }
3380 
3381 static u32 spt_hotplug2_enables(struct drm_i915_private *i915,
3382 				enum hpd_pin pin)
3383 {
3384 	switch (pin) {
3385 	case HPD_PORT_E:
3386 		return PORTE_HOTPLUG_ENABLE;
3387 	default:
3388 		return 0;
3389 	}
3390 }
3391 
3392 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3393 {
3394 	u32 val, hotplug;
3395 
3396 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3397 	if (HAS_PCH_CNP(dev_priv)) {
3398 		val = I915_READ(SOUTH_CHICKEN1);
3399 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3400 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3401 		I915_WRITE(SOUTH_CHICKEN1, val);
3402 	}
3403 
3404 	/* Enable digital hotplug on the PCH */
3405 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3406 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3407 		     PORTB_HOTPLUG_ENABLE |
3408 		     PORTC_HOTPLUG_ENABLE |
3409 		     PORTD_HOTPLUG_ENABLE);
3410 	hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables);
3411 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3412 
3413 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3414 	hotplug &= ~PORTE_HOTPLUG_ENABLE;
3415 	hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables);
3416 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3417 }
3418 
3419 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3420 {
3421 	u32 hotplug_irqs, enabled_irqs;
3422 
3423 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3424 		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3425 
3426 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3427 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3428 
3429 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3430 
3431 	spt_hpd_detection_setup(dev_priv);
3432 }
3433 
3434 static u32 ilk_hotplug_enables(struct drm_i915_private *i915,
3435 			       enum hpd_pin pin)
3436 {
3437 	switch (pin) {
3438 	case HPD_PORT_A:
3439 		return DIGITAL_PORTA_HOTPLUG_ENABLE |
3440 			DIGITAL_PORTA_PULSE_DURATION_2ms;
3441 	default:
3442 		return 0;
3443 	}
3444 }
3445 
3446 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3447 {
3448 	u32 hotplug;
3449 
3450 	/*
3451 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3452 	 * duration to 2ms (which is the minimum in the Display Port spec)
3453 	 * The pulse duration bits are reserved on HSW+.
3454 	 */
3455 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3456 	hotplug &= ~(DIGITAL_PORTA_HOTPLUG_ENABLE |
3457 		     DIGITAL_PORTA_PULSE_DURATION_MASK);
3458 	hotplug |= intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables);
3459 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3460 }
3461 
3462 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3463 {
3464 	u32 hotplug_irqs, enabled_irqs;
3465 
3466 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3467 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3468 
3469 	if (INTEL_GEN(dev_priv) >= 8)
3470 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3471 	else
3472 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3473 
3474 	ilk_hpd_detection_setup(dev_priv);
3475 
3476 	ibx_hpd_irq_setup(dev_priv);
3477 }
3478 
3479 static u32 bxt_hotplug_enables(struct drm_i915_private *i915,
3480 			       enum hpd_pin pin)
3481 {
3482 	u32 hotplug;
3483 
3484 	switch (pin) {
3485 	case HPD_PORT_A:
3486 		hotplug = PORTA_HOTPLUG_ENABLE;
3487 		if (intel_bios_is_port_hpd_inverted(i915, PORT_A))
3488 			hotplug |= BXT_DDIA_HPD_INVERT;
3489 		return hotplug;
3490 	case HPD_PORT_B:
3491 		hotplug = PORTB_HOTPLUG_ENABLE;
3492 		if (intel_bios_is_port_hpd_inverted(i915, PORT_B))
3493 			hotplug |= BXT_DDIB_HPD_INVERT;
3494 		return hotplug;
3495 	case HPD_PORT_C:
3496 		hotplug = PORTC_HOTPLUG_ENABLE;
3497 		if (intel_bios_is_port_hpd_inverted(i915, PORT_C))
3498 			hotplug |= BXT_DDIC_HPD_INVERT;
3499 		return hotplug;
3500 	default:
3501 		return 0;
3502 	}
3503 }
3504 
3505 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3506 {
3507 	u32 hotplug;
3508 
3509 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3510 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3511 		     PORTB_HOTPLUG_ENABLE |
3512 		     PORTC_HOTPLUG_ENABLE |
3513 		     BXT_DDIA_HPD_INVERT |
3514 		     BXT_DDIB_HPD_INVERT |
3515 		     BXT_DDIC_HPD_INVERT);
3516 	hotplug |= intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables);
3517 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3518 }
3519 
3520 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3521 {
3522 	u32 hotplug_irqs, enabled_irqs;
3523 
3524 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3525 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3526 
3527 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3528 
3529 	bxt_hpd_detection_setup(dev_priv);
3530 }
3531 
3532 /*
3533  * SDEIER is also touched by the interrupt handler to work around missed PCH
3534  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3535  * instead we unconditionally enable all PCH interrupt sources here, but then
3536  * only unmask them as needed with SDEIMR.
3537  *
3538  * Note that we currently do this after installing the interrupt handler,
3539  * but before we enable the master interrupt. That should be sufficient
3540  * to avoid races with the irq handler, assuming we have MSI. Shared legacy
3541  * interrupts could still race.
3542  */
3543 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3544 {
3545 	struct intel_uncore *uncore = &dev_priv->uncore;
3546 	u32 mask;
3547 
3548 	if (HAS_PCH_NOP(dev_priv))
3549 		return;
3550 
3551 	if (HAS_PCH_IBX(dev_priv))
3552 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3553 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3554 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3555 	else
3556 		mask = SDE_GMBUS_CPT;
3557 
3558 	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3559 }
3560 
3561 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3562 {
3563 	struct intel_uncore *uncore = &dev_priv->uncore;
3564 	u32 display_mask, extra_mask;
3565 
3566 	if (INTEL_GEN(dev_priv) >= 7) {
3567 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3568 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3569 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3570 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3571 			      DE_DP_A_HOTPLUG_IVB);
3572 	} else {
3573 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3574 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3575 				DE_PIPEA_CRC_DONE | DE_POISON);
3576 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK |
3577 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3578 			      DE_DP_A_HOTPLUG);
3579 	}
3580 
3581 	if (IS_HASWELL(dev_priv)) {
3582 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3583 		display_mask |= DE_EDP_PSR_INT_HSW;
3584 	}
3585 
3586 	if (IS_IRONLAKE_M(dev_priv))
3587 		extra_mask |= DE_PCU_EVENT;
3588 
3589 	dev_priv->irq_mask = ~display_mask;
3590 
3591 	ibx_irq_postinstall(dev_priv);
3592 
3593 	gen5_gt_irq_postinstall(&dev_priv->gt);
3594 
3595 	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3596 		      display_mask | extra_mask);
3597 }
3598 
3599 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3600 {
3601 	lockdep_assert_held(&dev_priv->irq_lock);
3602 
3603 	if (dev_priv->display_irqs_enabled)
3604 		return;
3605 
3606 	dev_priv->display_irqs_enabled = true;
3607 
3608 	if (intel_irqs_enabled(dev_priv)) {
3609 		vlv_display_irq_reset(dev_priv);
3610 		vlv_display_irq_postinstall(dev_priv);
3611 	}
3612 }
3613 
3614 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3615 {
3616 	lockdep_assert_held(&dev_priv->irq_lock);
3617 
3618 	if (!dev_priv->display_irqs_enabled)
3619 		return;
3620 
3621 	dev_priv->display_irqs_enabled = false;
3622 
3623 	if (intel_irqs_enabled(dev_priv))
3624 		vlv_display_irq_reset(dev_priv);
3625 }
3626 
3627 
3628 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3629 {
3630 	gen5_gt_irq_postinstall(&dev_priv->gt);
3631 
3632 	spin_lock_irq(&dev_priv->irq_lock);
3633 	if (dev_priv->display_irqs_enabled)
3634 		vlv_display_irq_postinstall(dev_priv);
3635 	spin_unlock_irq(&dev_priv->irq_lock);
3636 
3637 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3638 	POSTING_READ(VLV_MASTER_IER);
3639 }
3640 
3641 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3642 {
3643 	struct intel_uncore *uncore = &dev_priv->uncore;
3644 
3645 	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3646 		GEN8_PIPE_CDCLK_CRC_DONE;
3647 	u32 de_pipe_enables;
3648 	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3649 	u32 de_port_enables;
3650 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3651 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3652 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3653 	enum pipe pipe;
3654 
3655 	if (INTEL_GEN(dev_priv) <= 10)
3656 		de_misc_masked |= GEN8_DE_MISC_GSE;
3657 
3658 	if (IS_GEN9_LP(dev_priv))
3659 		de_port_masked |= BXT_DE_PORT_GMBUS;
3660 
3661 	if (INTEL_GEN(dev_priv) >= 11) {
3662 		enum port port;
3663 
3664 		if (intel_bios_is_dsi_present(dev_priv, &port))
3665 			de_port_masked |= DSI0_TE | DSI1_TE;
3666 	}
3667 
3668 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3669 					   GEN8_PIPE_FIFO_UNDERRUN;
3670 
3671 	if (INTEL_GEN(dev_priv) >= 9)
3672 		de_pipe_enables |= GEN9_PIPE_PLANE1_FLIP_DONE;
3673 
3674 	de_port_enables = de_port_masked;
3675 	if (IS_GEN9_LP(dev_priv))
3676 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3677 	else if (IS_BROADWELL(dev_priv))
3678 		de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK;
3679 
3680 	if (INTEL_GEN(dev_priv) >= 12) {
3681 		enum transcoder trans;
3682 
3683 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3684 			enum intel_display_power_domain domain;
3685 
3686 			domain = POWER_DOMAIN_TRANSCODER(trans);
3687 			if (!intel_display_power_is_enabled(dev_priv, domain))
3688 				continue;
3689 
3690 			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3691 		}
3692 	} else {
3693 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3694 	}
3695 
3696 	for_each_pipe(dev_priv, pipe) {
3697 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3698 
3699 		if (intel_display_power_is_enabled(dev_priv,
3700 				POWER_DOMAIN_PIPE(pipe)))
3701 			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3702 					  dev_priv->de_irq_mask[pipe],
3703 					  de_pipe_enables);
3704 	}
3705 
3706 	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3707 	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3708 
3709 	if (INTEL_GEN(dev_priv) >= 11) {
3710 		u32 de_hpd_masked = 0;
3711 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3712 				     GEN11_DE_TBT_HOTPLUG_MASK;
3713 
3714 		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3715 			      de_hpd_enables);
3716 	}
3717 }
3718 
3719 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3720 {
3721 	if (HAS_PCH_SPLIT(dev_priv))
3722 		ibx_irq_postinstall(dev_priv);
3723 
3724 	gen8_gt_irq_postinstall(&dev_priv->gt);
3725 	gen8_de_irq_postinstall(dev_priv);
3726 
3727 	gen8_master_intr_enable(dev_priv->uncore.regs);
3728 }
3729 
3730 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3731 {
3732 	struct intel_uncore *uncore = &dev_priv->uncore;
3733 	u32 mask = SDE_GMBUS_ICP;
3734 
3735 	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3736 }
3737 
3738 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3739 {
3740 	struct intel_uncore *uncore = &dev_priv->uncore;
3741 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3742 
3743 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3744 		icp_irq_postinstall(dev_priv);
3745 
3746 	gen11_gt_irq_postinstall(&dev_priv->gt);
3747 	gen8_de_irq_postinstall(dev_priv);
3748 
3749 	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3750 
3751 	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3752 
3753 	if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3754 		dg1_master_intr_enable(uncore->regs);
3755 		POSTING_READ(DG1_MSTR_UNIT_INTR);
3756 	} else {
3757 		gen11_master_intr_enable(uncore->regs);
3758 		POSTING_READ(GEN11_GFX_MSTR_IRQ);
3759 	}
3760 }
3761 
3762 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3763 {
3764 	gen8_gt_irq_postinstall(&dev_priv->gt);
3765 
3766 	spin_lock_irq(&dev_priv->irq_lock);
3767 	if (dev_priv->display_irqs_enabled)
3768 		vlv_display_irq_postinstall(dev_priv);
3769 	spin_unlock_irq(&dev_priv->irq_lock);
3770 
3771 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3772 	POSTING_READ(GEN8_MASTER_IRQ);
3773 }
3774 
3775 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3776 {
3777 	struct intel_uncore *uncore = &dev_priv->uncore;
3778 
3779 	i9xx_pipestat_irq_reset(dev_priv);
3780 
3781 	GEN2_IRQ_RESET(uncore);
3782 	dev_priv->irq_mask = ~0u;
3783 }
3784 
3785 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3786 {
3787 	struct intel_uncore *uncore = &dev_priv->uncore;
3788 	u16 enable_mask;
3789 
3790 	intel_uncore_write16(uncore,
3791 			     EMR,
3792 			     ~(I915_ERROR_PAGE_TABLE |
3793 			       I915_ERROR_MEMORY_REFRESH));
3794 
3795 	/* Unmask the interrupts that we always want on. */
3796 	dev_priv->irq_mask =
3797 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3798 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3799 		  I915_MASTER_ERROR_INTERRUPT);
3800 
3801 	enable_mask =
3802 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3803 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3804 		I915_MASTER_ERROR_INTERRUPT |
3805 		I915_USER_INTERRUPT;
3806 
3807 	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3808 
3809 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3810 	 * just to make the assert_spin_locked check happy. */
3811 	spin_lock_irq(&dev_priv->irq_lock);
3812 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3813 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3814 	spin_unlock_irq(&dev_priv->irq_lock);
3815 }
3816 
3817 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3818 			       u16 *eir, u16 *eir_stuck)
3819 {
3820 	struct intel_uncore *uncore = &i915->uncore;
3821 	u16 emr;
3822 
3823 	*eir = intel_uncore_read16(uncore, EIR);
3824 
3825 	if (*eir)
3826 		intel_uncore_write16(uncore, EIR, *eir);
3827 
3828 	*eir_stuck = intel_uncore_read16(uncore, EIR);
3829 	if (*eir_stuck == 0)
3830 		return;
3831 
3832 	/*
3833 	 * Toggle all EMR bits to make sure we get an edge
3834 	 * in the ISR master error bit if we don't clear
3835 	 * all the EIR bits. Otherwise the edge triggered
3836 	 * IIR on i965/g4x wouldn't notice that an interrupt
3837 	 * is still pending. Also some EIR bits can't be
3838 	 * cleared except by handling the underlying error
3839 	 * (or by a GPU reset) so we mask any bit that
3840 	 * remains set.
3841 	 */
3842 	emr = intel_uncore_read16(uncore, EMR);
3843 	intel_uncore_write16(uncore, EMR, 0xffff);
3844 	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3845 }
3846 
3847 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3848 				   u16 eir, u16 eir_stuck)
3849 {
3850 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3851 
3852 	if (eir_stuck)
3853 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3854 			eir_stuck);
3855 }
3856 
3857 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3858 			       u32 *eir, u32 *eir_stuck)
3859 {
3860 	u32 emr;
3861 
3862 	*eir = I915_READ(EIR);
3863 
3864 	I915_WRITE(EIR, *eir);
3865 
3866 	*eir_stuck = I915_READ(EIR);
3867 	if (*eir_stuck == 0)
3868 		return;
3869 
3870 	/*
3871 	 * Toggle all EMR bits to make sure we get an edge
3872 	 * in the ISR master error bit if we don't clear
3873 	 * all the EIR bits. Otherwise the edge triggered
3874 	 * IIR on i965/g4x wouldn't notice that an interrupt
3875 	 * is still pending. Also some EIR bits can't be
3876 	 * cleared except by handling the underlying error
3877 	 * (or by a GPU reset) so we mask any bit that
3878 	 * remains set.
3879 	 */
3880 	emr = I915_READ(EMR);
3881 	I915_WRITE(EMR, 0xffffffff);
3882 	I915_WRITE(EMR, emr | *eir_stuck);
3883 }
3884 
3885 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3886 				   u32 eir, u32 eir_stuck)
3887 {
3888 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3889 
3890 	if (eir_stuck)
3891 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3892 			eir_stuck);
3893 }
3894 
3895 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3896 {
3897 	struct drm_i915_private *dev_priv = arg;
3898 	irqreturn_t ret = IRQ_NONE;
3899 
3900 	if (!intel_irqs_enabled(dev_priv))
3901 		return IRQ_NONE;
3902 
3903 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3904 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3905 
3906 	do {
3907 		u32 pipe_stats[I915_MAX_PIPES] = {};
3908 		u16 eir = 0, eir_stuck = 0;
3909 		u16 iir;
3910 
3911 		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3912 		if (iir == 0)
3913 			break;
3914 
3915 		ret = IRQ_HANDLED;
3916 
3917 		/* Call regardless, as some status bits might not be
3918 		 * signalled in iir */
3919 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3920 
3921 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3922 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3923 
3924 		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3925 
3926 		if (iir & I915_USER_INTERRUPT)
3927 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3928 
3929 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3930 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3931 
3932 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3933 	} while (0);
3934 
3935 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3936 
3937 	return ret;
3938 }
3939 
3940 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3941 {
3942 	struct intel_uncore *uncore = &dev_priv->uncore;
3943 
3944 	if (I915_HAS_HOTPLUG(dev_priv)) {
3945 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3946 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3947 	}
3948 
3949 	i9xx_pipestat_irq_reset(dev_priv);
3950 
3951 	GEN3_IRQ_RESET(uncore, GEN2_);
3952 	dev_priv->irq_mask = ~0u;
3953 }
3954 
3955 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3956 {
3957 	struct intel_uncore *uncore = &dev_priv->uncore;
3958 	u32 enable_mask;
3959 
3960 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3961 			  I915_ERROR_MEMORY_REFRESH));
3962 
3963 	/* Unmask the interrupts that we always want on. */
3964 	dev_priv->irq_mask =
3965 		~(I915_ASLE_INTERRUPT |
3966 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3967 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3968 		  I915_MASTER_ERROR_INTERRUPT);
3969 
3970 	enable_mask =
3971 		I915_ASLE_INTERRUPT |
3972 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3973 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3974 		I915_MASTER_ERROR_INTERRUPT |
3975 		I915_USER_INTERRUPT;
3976 
3977 	if (I915_HAS_HOTPLUG(dev_priv)) {
3978 		/* Enable in IER... */
3979 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3980 		/* and unmask in IMR */
3981 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3982 	}
3983 
3984 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3985 
3986 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3987 	 * just to make the assert_spin_locked check happy. */
3988 	spin_lock_irq(&dev_priv->irq_lock);
3989 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3990 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3991 	spin_unlock_irq(&dev_priv->irq_lock);
3992 
3993 	i915_enable_asle_pipestat(dev_priv);
3994 }
3995 
3996 static irqreturn_t i915_irq_handler(int irq, void *arg)
3997 {
3998 	struct drm_i915_private *dev_priv = arg;
3999 	irqreturn_t ret = IRQ_NONE;
4000 
4001 	if (!intel_irqs_enabled(dev_priv))
4002 		return IRQ_NONE;
4003 
4004 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4005 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4006 
4007 	do {
4008 		u32 pipe_stats[I915_MAX_PIPES] = {};
4009 		u32 eir = 0, eir_stuck = 0;
4010 		u32 hotplug_status = 0;
4011 		u32 iir;
4012 
4013 		iir = I915_READ(GEN2_IIR);
4014 		if (iir == 0)
4015 			break;
4016 
4017 		ret = IRQ_HANDLED;
4018 
4019 		if (I915_HAS_HOTPLUG(dev_priv) &&
4020 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4021 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4022 
4023 		/* Call regardless, as some status bits might not be
4024 		 * signalled in iir */
4025 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4026 
4027 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4028 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4029 
4030 		I915_WRITE(GEN2_IIR, iir);
4031 
4032 		if (iir & I915_USER_INTERRUPT)
4033 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4034 
4035 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4036 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4037 
4038 		if (hotplug_status)
4039 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4040 
4041 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4042 	} while (0);
4043 
4044 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4045 
4046 	return ret;
4047 }
4048 
4049 static void i965_irq_reset(struct drm_i915_private *dev_priv)
4050 {
4051 	struct intel_uncore *uncore = &dev_priv->uncore;
4052 
4053 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4054 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4055 
4056 	i9xx_pipestat_irq_reset(dev_priv);
4057 
4058 	GEN3_IRQ_RESET(uncore, GEN2_);
4059 	dev_priv->irq_mask = ~0u;
4060 }
4061 
4062 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4063 {
4064 	struct intel_uncore *uncore = &dev_priv->uncore;
4065 	u32 enable_mask;
4066 	u32 error_mask;
4067 
4068 	/*
4069 	 * Enable some error detection, note the instruction error mask
4070 	 * bit is reserved, so we leave it masked.
4071 	 */
4072 	if (IS_G4X(dev_priv)) {
4073 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4074 			       GM45_ERROR_MEM_PRIV |
4075 			       GM45_ERROR_CP_PRIV |
4076 			       I915_ERROR_MEMORY_REFRESH);
4077 	} else {
4078 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4079 			       I915_ERROR_MEMORY_REFRESH);
4080 	}
4081 	I915_WRITE(EMR, error_mask);
4082 
4083 	/* Unmask the interrupts that we always want on. */
4084 	dev_priv->irq_mask =
4085 		~(I915_ASLE_INTERRUPT |
4086 		  I915_DISPLAY_PORT_INTERRUPT |
4087 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4088 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4089 		  I915_MASTER_ERROR_INTERRUPT);
4090 
4091 	enable_mask =
4092 		I915_ASLE_INTERRUPT |
4093 		I915_DISPLAY_PORT_INTERRUPT |
4094 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4095 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4096 		I915_MASTER_ERROR_INTERRUPT |
4097 		I915_USER_INTERRUPT;
4098 
4099 	if (IS_G4X(dev_priv))
4100 		enable_mask |= I915_BSD_USER_INTERRUPT;
4101 
4102 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4103 
4104 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4105 	 * just to make the assert_spin_locked check happy. */
4106 	spin_lock_irq(&dev_priv->irq_lock);
4107 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4108 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4109 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4110 	spin_unlock_irq(&dev_priv->irq_lock);
4111 
4112 	i915_enable_asle_pipestat(dev_priv);
4113 }
4114 
4115 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4116 {
4117 	u32 hotplug_en;
4118 
4119 	lockdep_assert_held(&dev_priv->irq_lock);
4120 
4121 	/* Note HDMI and DP share hotplug bits */
4122 	/* enable bits are the same for all generations */
4123 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4124 	/* Programming the CRT detection parameters tends
4125 	   to generate a spurious hotplug event about three
4126 	   seconds later.  So just do it once.
4127 	*/
4128 	if (IS_G4X(dev_priv))
4129 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4130 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4131 
4132 	/* Ignore TV since it's buggy */
4133 	i915_hotplug_interrupt_update_locked(dev_priv,
4134 					     HOTPLUG_INT_EN_MASK |
4135 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4136 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4137 					     hotplug_en);
4138 }
4139 
4140 static irqreturn_t i965_irq_handler(int irq, void *arg)
4141 {
4142 	struct drm_i915_private *dev_priv = arg;
4143 	irqreturn_t ret = IRQ_NONE;
4144 
4145 	if (!intel_irqs_enabled(dev_priv))
4146 		return IRQ_NONE;
4147 
4148 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4149 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4150 
4151 	do {
4152 		u32 pipe_stats[I915_MAX_PIPES] = {};
4153 		u32 eir = 0, eir_stuck = 0;
4154 		u32 hotplug_status = 0;
4155 		u32 iir;
4156 
4157 		iir = I915_READ(GEN2_IIR);
4158 		if (iir == 0)
4159 			break;
4160 
4161 		ret = IRQ_HANDLED;
4162 
4163 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4164 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4165 
4166 		/* Call regardless, as some status bits might not be
4167 		 * signalled in iir */
4168 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4169 
4170 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4171 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4172 
4173 		I915_WRITE(GEN2_IIR, iir);
4174 
4175 		if (iir & I915_USER_INTERRUPT)
4176 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4177 
4178 		if (iir & I915_BSD_USER_INTERRUPT)
4179 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
4180 
4181 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4182 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4183 
4184 		if (hotplug_status)
4185 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4186 
4187 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4188 	} while (0);
4189 
4190 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4191 
4192 	return ret;
4193 }
4194 
4195 /**
4196  * intel_irq_init - initializes irq support
4197  * @dev_priv: i915 device instance
4198  *
4199  * This function initializes all the irq support including work items, timers
4200  * and all the vtables. It does not setup the interrupt itself though.
4201  */
4202 void intel_irq_init(struct drm_i915_private *dev_priv)
4203 {
4204 	struct drm_device *dev = &dev_priv->drm;
4205 	int i;
4206 
4207 	intel_hpd_init_pins(dev_priv);
4208 
4209 	intel_hpd_init_work(dev_priv);
4210 
4211 	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4212 	for (i = 0; i < MAX_L3_SLICES; ++i)
4213 		dev_priv->l3_parity.remap_info[i] = NULL;
4214 
4215 	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4216 	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4217 		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4218 
4219 	dev->vblank_disable_immediate = true;
4220 
4221 	/* Most platforms treat the display irq block as an always-on
4222 	 * power domain. vlv/chv can disable it at runtime and need
4223 	 * special care to avoid writing any of the display block registers
4224 	 * outside of the power domain. We defer setting up the display irqs
4225 	 * in this case to the runtime pm.
4226 	 */
4227 	dev_priv->display_irqs_enabled = true;
4228 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4229 		dev_priv->display_irqs_enabled = false;
4230 
4231 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4232 	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4233 	 * detection, as short HPD storms will occur as a natural part of
4234 	 * sideband messaging with MST.
4235 	 * On older platforms however, IRQ storms can occur with both long and
4236 	 * short pulses, as seen on some G4x systems.
4237 	 */
4238 	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4239 
4240 	if (HAS_GMCH(dev_priv)) {
4241 		if (I915_HAS_HOTPLUG(dev_priv))
4242 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4243 	} else {
4244 		if (HAS_PCH_DG1(dev_priv))
4245 			dev_priv->display.hpd_irq_setup = dg1_hpd_irq_setup;
4246 		else if (INTEL_GEN(dev_priv) >= 11)
4247 			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4248 		else if (IS_GEN9_LP(dev_priv))
4249 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4250 		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4251 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4252 		else
4253 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4254 	}
4255 }
4256 
4257 /**
4258  * intel_irq_fini - deinitializes IRQ support
4259  * @i915: i915 device instance
4260  *
4261  * This function deinitializes all the IRQ support.
4262  */
4263 void intel_irq_fini(struct drm_i915_private *i915)
4264 {
4265 	int i;
4266 
4267 	for (i = 0; i < MAX_L3_SLICES; ++i)
4268 		kfree(i915->l3_parity.remap_info[i]);
4269 }
4270 
4271 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4272 {
4273 	if (HAS_GMCH(dev_priv)) {
4274 		if (IS_CHERRYVIEW(dev_priv))
4275 			return cherryview_irq_handler;
4276 		else if (IS_VALLEYVIEW(dev_priv))
4277 			return valleyview_irq_handler;
4278 		else if (IS_GEN(dev_priv, 4))
4279 			return i965_irq_handler;
4280 		else if (IS_GEN(dev_priv, 3))
4281 			return i915_irq_handler;
4282 		else
4283 			return i8xx_irq_handler;
4284 	} else {
4285 		if (HAS_MASTER_UNIT_IRQ(dev_priv))
4286 			return dg1_irq_handler;
4287 		if (INTEL_GEN(dev_priv) >= 11)
4288 			return gen11_irq_handler;
4289 		else if (INTEL_GEN(dev_priv) >= 8)
4290 			return gen8_irq_handler;
4291 		else
4292 			return ilk_irq_handler;
4293 	}
4294 }
4295 
4296 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4297 {
4298 	if (HAS_GMCH(dev_priv)) {
4299 		if (IS_CHERRYVIEW(dev_priv))
4300 			cherryview_irq_reset(dev_priv);
4301 		else if (IS_VALLEYVIEW(dev_priv))
4302 			valleyview_irq_reset(dev_priv);
4303 		else if (IS_GEN(dev_priv, 4))
4304 			i965_irq_reset(dev_priv);
4305 		else if (IS_GEN(dev_priv, 3))
4306 			i915_irq_reset(dev_priv);
4307 		else
4308 			i8xx_irq_reset(dev_priv);
4309 	} else {
4310 		if (INTEL_GEN(dev_priv) >= 11)
4311 			gen11_irq_reset(dev_priv);
4312 		else if (INTEL_GEN(dev_priv) >= 8)
4313 			gen8_irq_reset(dev_priv);
4314 		else
4315 			ilk_irq_reset(dev_priv);
4316 	}
4317 }
4318 
4319 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4320 {
4321 	if (HAS_GMCH(dev_priv)) {
4322 		if (IS_CHERRYVIEW(dev_priv))
4323 			cherryview_irq_postinstall(dev_priv);
4324 		else if (IS_VALLEYVIEW(dev_priv))
4325 			valleyview_irq_postinstall(dev_priv);
4326 		else if (IS_GEN(dev_priv, 4))
4327 			i965_irq_postinstall(dev_priv);
4328 		else if (IS_GEN(dev_priv, 3))
4329 			i915_irq_postinstall(dev_priv);
4330 		else
4331 			i8xx_irq_postinstall(dev_priv);
4332 	} else {
4333 		if (INTEL_GEN(dev_priv) >= 11)
4334 			gen11_irq_postinstall(dev_priv);
4335 		else if (INTEL_GEN(dev_priv) >= 8)
4336 			gen8_irq_postinstall(dev_priv);
4337 		else
4338 			ilk_irq_postinstall(dev_priv);
4339 	}
4340 }
4341 
4342 /**
4343  * intel_irq_install - enables the hardware interrupt
4344  * @dev_priv: i915 device instance
4345  *
4346  * This function enables the hardware interrupt handling, but leaves the hotplug
4347  * handling still disabled. It is called after intel_irq_init().
4348  *
4349  * In the driver load and resume code we need working interrupts in a few places
4350  * but don't want to deal with the hassle of concurrent probe and hotplug
4351  * workers. Hence the split into this two-stage approach.
4352  */
4353 int intel_irq_install(struct drm_i915_private *dev_priv)
4354 {
4355 	int irq = dev_priv->drm.pdev->irq;
4356 	int ret;
4357 
4358 	/*
4359 	 * We enable some interrupt sources in our postinstall hooks, so mark
4360 	 * interrupts as enabled _before_ actually enabling them to avoid
4361 	 * special cases in our ordering checks.
4362 	 */
4363 	dev_priv->runtime_pm.irqs_enabled = true;
4364 
4365 	dev_priv->drm.irq_enabled = true;
4366 
4367 	intel_irq_reset(dev_priv);
4368 
4369 	ret = request_irq(irq, intel_irq_handler(dev_priv),
4370 			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4371 	if (ret < 0) {
4372 		dev_priv->drm.irq_enabled = false;
4373 		return ret;
4374 	}
4375 
4376 	intel_irq_postinstall(dev_priv);
4377 
4378 	return ret;
4379 }
4380 
4381 /**
4382  * intel_irq_uninstall - finilizes all irq handling
4383  * @dev_priv: i915 device instance
4384  *
4385  * This stops interrupt and hotplug handling and unregisters and frees all
4386  * resources acquired in the init functions.
4387  */
4388 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4389 {
4390 	int irq = dev_priv->drm.pdev->irq;
4391 
4392 	/*
4393 	 * FIXME we can get called twice during driver probe
4394 	 * error handling as well as during driver remove due to
4395 	 * intel_modeset_driver_remove() calling us out of sequence.
4396 	 * Would be nice if it didn't do that...
4397 	 */
4398 	if (!dev_priv->drm.irq_enabled)
4399 		return;
4400 
4401 	dev_priv->drm.irq_enabled = false;
4402 
4403 	intel_irq_reset(dev_priv);
4404 
4405 	free_irq(irq, dev_priv);
4406 
4407 	intel_hpd_cancel_work(dev_priv);
4408 	dev_priv->runtime_pm.irqs_enabled = false;
4409 }
4410 
4411 /**
4412  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4413  * @dev_priv: i915 device instance
4414  *
4415  * This function is used to disable interrupts at runtime, both in the runtime
4416  * pm and the system suspend/resume code.
4417  */
4418 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4419 {
4420 	intel_irq_reset(dev_priv);
4421 	dev_priv->runtime_pm.irqs_enabled = false;
4422 	intel_synchronize_irq(dev_priv);
4423 }
4424 
4425 /**
4426  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4427  * @dev_priv: i915 device instance
4428  *
4429  * This function is used to enable interrupts at runtime, both in the runtime
4430  * pm and the system suspend/resume code.
4431  */
4432 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4433 {
4434 	dev_priv->runtime_pm.irqs_enabled = true;
4435 	intel_irq_reset(dev_priv);
4436 	intel_irq_postinstall(dev_priv);
4437 }
4438 
4439 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4440 {
4441 	/*
4442 	 * We only use drm_irq_uninstall() at unload and VT switch, so
4443 	 * this is the only thing we need to check.
4444 	 */
4445 	return dev_priv->runtime_pm.irqs_enabled;
4446 }
4447 
4448 void intel_synchronize_irq(struct drm_i915_private *i915)
4449 {
4450 	synchronize_irq(i915->drm.pdev->irq);
4451 }
4452