1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- 2 */ 3 /* 4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/circ_buf.h> 32 #include <linux/slab.h> 33 #include <linux/sysrq.h> 34 35 #include <drm/drm_drv.h> 36 #include <drm/drm_irq.h> 37 38 #include "display/intel_display_types.h" 39 #include "display/intel_fifo_underrun.h" 40 #include "display/intel_hotplug.h" 41 #include "display/intel_lpe_audio.h" 42 #include "display/intel_psr.h" 43 44 #include "gt/intel_breadcrumbs.h" 45 #include "gt/intel_gt.h" 46 #include "gt/intel_gt_irq.h" 47 #include "gt/intel_gt_pm_irq.h" 48 #include "gt/intel_rps.h" 49 50 #include "i915_drv.h" 51 #include "i915_irq.h" 52 #include "i915_trace.h" 53 #include "intel_pm.h" 54 55 /** 56 * DOC: interrupt handling 57 * 58 * These functions provide the basic support for enabling and disabling the 59 * interrupt handling support. There's a lot more functionality in i915_irq.c 60 * and related files, but that will be described in separate chapters. 61 */ 62 63 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val); 64 65 static const u32 hpd_ilk[HPD_NUM_PINS] = { 66 [HPD_PORT_A] = DE_DP_A_HOTPLUG, 67 }; 68 69 static const u32 hpd_ivb[HPD_NUM_PINS] = { 70 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, 71 }; 72 73 static const u32 hpd_bdw[HPD_NUM_PINS] = { 74 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG, 75 }; 76 77 static const u32 hpd_ibx[HPD_NUM_PINS] = { 78 [HPD_CRT] = SDE_CRT_HOTPLUG, 79 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, 80 [HPD_PORT_B] = SDE_PORTB_HOTPLUG, 81 [HPD_PORT_C] = SDE_PORTC_HOTPLUG, 82 [HPD_PORT_D] = SDE_PORTD_HOTPLUG, 83 }; 84 85 static const u32 hpd_cpt[HPD_NUM_PINS] = { 86 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, 87 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, 88 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 89 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 90 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 91 }; 92 93 static const u32 hpd_spt[HPD_NUM_PINS] = { 94 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, 95 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 96 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 97 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 98 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT, 99 }; 100 101 static const u32 hpd_mask_i915[HPD_NUM_PINS] = { 102 [HPD_CRT] = CRT_HOTPLUG_INT_EN, 103 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, 104 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, 105 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, 106 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, 107 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN, 108 }; 109 110 static const u32 hpd_status_g4x[HPD_NUM_PINS] = { 111 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 112 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, 113 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, 114 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 115 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 116 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS, 117 }; 118 119 static const u32 hpd_status_i915[HPD_NUM_PINS] = { 120 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 121 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, 122 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, 123 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 124 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 125 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS, 126 }; 127 128 static const u32 hpd_bxt[HPD_NUM_PINS] = { 129 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA, 130 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB, 131 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC, 132 }; 133 134 static const u32 hpd_gen11[HPD_NUM_PINS] = { 135 [HPD_PORT_TC1] = GEN11_TC_HOTPLUG(PORT_TC1) | GEN11_TBT_HOTPLUG(PORT_TC1), 136 [HPD_PORT_TC2] = GEN11_TC_HOTPLUG(PORT_TC2) | GEN11_TBT_HOTPLUG(PORT_TC2), 137 [HPD_PORT_TC3] = GEN11_TC_HOTPLUG(PORT_TC3) | GEN11_TBT_HOTPLUG(PORT_TC3), 138 [HPD_PORT_TC4] = GEN11_TC_HOTPLUG(PORT_TC4) | GEN11_TBT_HOTPLUG(PORT_TC4), 139 [HPD_PORT_TC5] = GEN11_TC_HOTPLUG(PORT_TC5) | GEN11_TBT_HOTPLUG(PORT_TC5), 140 [HPD_PORT_TC6] = GEN11_TC_HOTPLUG(PORT_TC6) | GEN11_TBT_HOTPLUG(PORT_TC6), 141 }; 142 143 static const u32 hpd_icp[HPD_NUM_PINS] = { 144 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A), 145 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B), 146 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C), 147 [HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(PORT_TC1), 148 [HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(PORT_TC2), 149 [HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(PORT_TC3), 150 [HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(PORT_TC4), 151 [HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(PORT_TC5), 152 [HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(PORT_TC6), 153 }; 154 155 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv) 156 { 157 struct i915_hotplug *hpd = &dev_priv->hotplug; 158 159 if (HAS_GMCH(dev_priv)) { 160 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 161 IS_CHERRYVIEW(dev_priv)) 162 hpd->hpd = hpd_status_g4x; 163 else 164 hpd->hpd = hpd_status_i915; 165 return; 166 } 167 168 if (INTEL_GEN(dev_priv) >= 11) 169 hpd->hpd = hpd_gen11; 170 else if (IS_GEN9_LP(dev_priv)) 171 hpd->hpd = hpd_bxt; 172 else if (INTEL_GEN(dev_priv) >= 8) 173 hpd->hpd = hpd_bdw; 174 else if (INTEL_GEN(dev_priv) >= 7) 175 hpd->hpd = hpd_ivb; 176 else 177 hpd->hpd = hpd_ilk; 178 179 if (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)) 180 return; 181 182 if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv) || 183 HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv)) 184 hpd->pch_hpd = hpd_icp; 185 else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv)) 186 hpd->pch_hpd = hpd_spt; 187 else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv)) 188 hpd->pch_hpd = hpd_cpt; 189 else if (HAS_PCH_IBX(dev_priv)) 190 hpd->pch_hpd = hpd_ibx; 191 else 192 MISSING_CASE(INTEL_PCH_TYPE(dev_priv)); 193 } 194 195 static void 196 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe) 197 { 198 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 199 200 drm_crtc_handle_vblank(&crtc->base); 201 } 202 203 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr, 204 i915_reg_t iir, i915_reg_t ier) 205 { 206 intel_uncore_write(uncore, imr, 0xffffffff); 207 intel_uncore_posting_read(uncore, imr); 208 209 intel_uncore_write(uncore, ier, 0); 210 211 /* IIR can theoretically queue up two events. Be paranoid. */ 212 intel_uncore_write(uncore, iir, 0xffffffff); 213 intel_uncore_posting_read(uncore, iir); 214 intel_uncore_write(uncore, iir, 0xffffffff); 215 intel_uncore_posting_read(uncore, iir); 216 } 217 218 void gen2_irq_reset(struct intel_uncore *uncore) 219 { 220 intel_uncore_write16(uncore, GEN2_IMR, 0xffff); 221 intel_uncore_posting_read16(uncore, GEN2_IMR); 222 223 intel_uncore_write16(uncore, GEN2_IER, 0); 224 225 /* IIR can theoretically queue up two events. Be paranoid. */ 226 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 227 intel_uncore_posting_read16(uncore, GEN2_IIR); 228 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 229 intel_uncore_posting_read16(uncore, GEN2_IIR); 230 } 231 232 /* 233 * We should clear IMR at preinstall/uninstall, and just check at postinstall. 234 */ 235 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg) 236 { 237 u32 val = intel_uncore_read(uncore, reg); 238 239 if (val == 0) 240 return; 241 242 drm_WARN(&uncore->i915->drm, 1, 243 "Interrupt register 0x%x is not zero: 0x%08x\n", 244 i915_mmio_reg_offset(reg), val); 245 intel_uncore_write(uncore, reg, 0xffffffff); 246 intel_uncore_posting_read(uncore, reg); 247 intel_uncore_write(uncore, reg, 0xffffffff); 248 intel_uncore_posting_read(uncore, reg); 249 } 250 251 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore) 252 { 253 u16 val = intel_uncore_read16(uncore, GEN2_IIR); 254 255 if (val == 0) 256 return; 257 258 drm_WARN(&uncore->i915->drm, 1, 259 "Interrupt register 0x%x is not zero: 0x%08x\n", 260 i915_mmio_reg_offset(GEN2_IIR), val); 261 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 262 intel_uncore_posting_read16(uncore, GEN2_IIR); 263 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 264 intel_uncore_posting_read16(uncore, GEN2_IIR); 265 } 266 267 void gen3_irq_init(struct intel_uncore *uncore, 268 i915_reg_t imr, u32 imr_val, 269 i915_reg_t ier, u32 ier_val, 270 i915_reg_t iir) 271 { 272 gen3_assert_iir_is_zero(uncore, iir); 273 274 intel_uncore_write(uncore, ier, ier_val); 275 intel_uncore_write(uncore, imr, imr_val); 276 intel_uncore_posting_read(uncore, imr); 277 } 278 279 void gen2_irq_init(struct intel_uncore *uncore, 280 u32 imr_val, u32 ier_val) 281 { 282 gen2_assert_iir_is_zero(uncore); 283 284 intel_uncore_write16(uncore, GEN2_IER, ier_val); 285 intel_uncore_write16(uncore, GEN2_IMR, imr_val); 286 intel_uncore_posting_read16(uncore, GEN2_IMR); 287 } 288 289 /* For display hotplug interrupt */ 290 static inline void 291 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, 292 u32 mask, 293 u32 bits) 294 { 295 u32 val; 296 297 lockdep_assert_held(&dev_priv->irq_lock); 298 drm_WARN_ON(&dev_priv->drm, bits & ~mask); 299 300 val = I915_READ(PORT_HOTPLUG_EN); 301 val &= ~mask; 302 val |= bits; 303 I915_WRITE(PORT_HOTPLUG_EN, val); 304 } 305 306 /** 307 * i915_hotplug_interrupt_update - update hotplug interrupt enable 308 * @dev_priv: driver private 309 * @mask: bits to update 310 * @bits: bits to enable 311 * NOTE: the HPD enable bits are modified both inside and outside 312 * of an interrupt context. To avoid that read-modify-write cycles 313 * interfer, these bits are protected by a spinlock. Since this 314 * function is usually not called from a context where the lock is 315 * held already, this function acquires the lock itself. A non-locking 316 * version is also available. 317 */ 318 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 319 u32 mask, 320 u32 bits) 321 { 322 spin_lock_irq(&dev_priv->irq_lock); 323 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); 324 spin_unlock_irq(&dev_priv->irq_lock); 325 } 326 327 /** 328 * ilk_update_display_irq - update DEIMR 329 * @dev_priv: driver private 330 * @interrupt_mask: mask of interrupt bits to update 331 * @enabled_irq_mask: mask of interrupt bits to enable 332 */ 333 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 334 u32 interrupt_mask, 335 u32 enabled_irq_mask) 336 { 337 u32 new_val; 338 339 lockdep_assert_held(&dev_priv->irq_lock); 340 341 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 342 343 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 344 return; 345 346 new_val = dev_priv->irq_mask; 347 new_val &= ~interrupt_mask; 348 new_val |= (~enabled_irq_mask & interrupt_mask); 349 350 if (new_val != dev_priv->irq_mask) { 351 dev_priv->irq_mask = new_val; 352 I915_WRITE(DEIMR, dev_priv->irq_mask); 353 POSTING_READ(DEIMR); 354 } 355 } 356 357 /** 358 * bdw_update_port_irq - update DE port interrupt 359 * @dev_priv: driver private 360 * @interrupt_mask: mask of interrupt bits to update 361 * @enabled_irq_mask: mask of interrupt bits to enable 362 */ 363 static void bdw_update_port_irq(struct drm_i915_private *dev_priv, 364 u32 interrupt_mask, 365 u32 enabled_irq_mask) 366 { 367 u32 new_val; 368 u32 old_val; 369 370 lockdep_assert_held(&dev_priv->irq_lock); 371 372 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 373 374 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 375 return; 376 377 old_val = I915_READ(GEN8_DE_PORT_IMR); 378 379 new_val = old_val; 380 new_val &= ~interrupt_mask; 381 new_val |= (~enabled_irq_mask & interrupt_mask); 382 383 if (new_val != old_val) { 384 I915_WRITE(GEN8_DE_PORT_IMR, new_val); 385 POSTING_READ(GEN8_DE_PORT_IMR); 386 } 387 } 388 389 /** 390 * bdw_update_pipe_irq - update DE pipe interrupt 391 * @dev_priv: driver private 392 * @pipe: pipe whose interrupt to update 393 * @interrupt_mask: mask of interrupt bits to update 394 * @enabled_irq_mask: mask of interrupt bits to enable 395 */ 396 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 397 enum pipe pipe, 398 u32 interrupt_mask, 399 u32 enabled_irq_mask) 400 { 401 u32 new_val; 402 403 lockdep_assert_held(&dev_priv->irq_lock); 404 405 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 406 407 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 408 return; 409 410 new_val = dev_priv->de_irq_mask[pipe]; 411 new_val &= ~interrupt_mask; 412 new_val |= (~enabled_irq_mask & interrupt_mask); 413 414 if (new_val != dev_priv->de_irq_mask[pipe]) { 415 dev_priv->de_irq_mask[pipe] = new_val; 416 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 417 POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); 418 } 419 } 420 421 /** 422 * ibx_display_interrupt_update - update SDEIMR 423 * @dev_priv: driver private 424 * @interrupt_mask: mask of interrupt bits to update 425 * @enabled_irq_mask: mask of interrupt bits to enable 426 */ 427 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 428 u32 interrupt_mask, 429 u32 enabled_irq_mask) 430 { 431 u32 sdeimr = I915_READ(SDEIMR); 432 sdeimr &= ~interrupt_mask; 433 sdeimr |= (~enabled_irq_mask & interrupt_mask); 434 435 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 436 437 lockdep_assert_held(&dev_priv->irq_lock); 438 439 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 440 return; 441 442 I915_WRITE(SDEIMR, sdeimr); 443 POSTING_READ(SDEIMR); 444 } 445 446 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 447 enum pipe pipe) 448 { 449 u32 status_mask = dev_priv->pipestat_irq_mask[pipe]; 450 u32 enable_mask = status_mask << 16; 451 452 lockdep_assert_held(&dev_priv->irq_lock); 453 454 if (INTEL_GEN(dev_priv) < 5) 455 goto out; 456 457 /* 458 * On pipe A we don't support the PSR interrupt yet, 459 * on pipe B and C the same bit MBZ. 460 */ 461 if (drm_WARN_ON_ONCE(&dev_priv->drm, 462 status_mask & PIPE_A_PSR_STATUS_VLV)) 463 return 0; 464 /* 465 * On pipe B and C we don't support the PSR interrupt yet, on pipe 466 * A the same bit is for perf counters which we don't use either. 467 */ 468 if (drm_WARN_ON_ONCE(&dev_priv->drm, 469 status_mask & PIPE_B_PSR_STATUS_VLV)) 470 return 0; 471 472 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | 473 SPRITE0_FLIP_DONE_INT_EN_VLV | 474 SPRITE1_FLIP_DONE_INT_EN_VLV); 475 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) 476 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; 477 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) 478 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; 479 480 out: 481 drm_WARN_ONCE(&dev_priv->drm, 482 enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 483 status_mask & ~PIPESTAT_INT_STATUS_MASK, 484 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 485 pipe_name(pipe), enable_mask, status_mask); 486 487 return enable_mask; 488 } 489 490 void i915_enable_pipestat(struct drm_i915_private *dev_priv, 491 enum pipe pipe, u32 status_mask) 492 { 493 i915_reg_t reg = PIPESTAT(pipe); 494 u32 enable_mask; 495 496 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK, 497 "pipe %c: status_mask=0x%x\n", 498 pipe_name(pipe), status_mask); 499 500 lockdep_assert_held(&dev_priv->irq_lock); 501 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)); 502 503 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask) 504 return; 505 506 dev_priv->pipestat_irq_mask[pipe] |= status_mask; 507 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 508 509 I915_WRITE(reg, enable_mask | status_mask); 510 POSTING_READ(reg); 511 } 512 513 void i915_disable_pipestat(struct drm_i915_private *dev_priv, 514 enum pipe pipe, u32 status_mask) 515 { 516 i915_reg_t reg = PIPESTAT(pipe); 517 u32 enable_mask; 518 519 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK, 520 "pipe %c: status_mask=0x%x\n", 521 pipe_name(pipe), status_mask); 522 523 lockdep_assert_held(&dev_priv->irq_lock); 524 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)); 525 526 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0) 527 return; 528 529 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; 530 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 531 532 I915_WRITE(reg, enable_mask | status_mask); 533 POSTING_READ(reg); 534 } 535 536 static bool i915_has_asle(struct drm_i915_private *dev_priv) 537 { 538 if (!dev_priv->opregion.asle) 539 return false; 540 541 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 542 } 543 544 /** 545 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion 546 * @dev_priv: i915 device private 547 */ 548 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) 549 { 550 if (!i915_has_asle(dev_priv)) 551 return; 552 553 spin_lock_irq(&dev_priv->irq_lock); 554 555 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); 556 if (INTEL_GEN(dev_priv) >= 4) 557 i915_enable_pipestat(dev_priv, PIPE_A, 558 PIPE_LEGACY_BLC_EVENT_STATUS); 559 560 spin_unlock_irq(&dev_priv->irq_lock); 561 } 562 563 /* 564 * This timing diagram depicts the video signal in and 565 * around the vertical blanking period. 566 * 567 * Assumptions about the fictitious mode used in this example: 568 * vblank_start >= 3 569 * vsync_start = vblank_start + 1 570 * vsync_end = vblank_start + 2 571 * vtotal = vblank_start + 3 572 * 573 * start of vblank: 574 * latch double buffered registers 575 * increment frame counter (ctg+) 576 * generate start of vblank interrupt (gen4+) 577 * | 578 * | frame start: 579 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 580 * | may be shifted forward 1-3 extra lines via PIPECONF 581 * | | 582 * | | start of vsync: 583 * | | generate vsync interrupt 584 * | | | 585 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 586 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 587 * ----va---> <-----------------vb--------------------> <--------va------------- 588 * | | <----vs-----> | 589 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 590 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 591 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 592 * | | | 593 * last visible pixel first visible pixel 594 * | increment frame counter (gen3/4) 595 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 596 * 597 * x = horizontal active 598 * _ = horizontal blanking 599 * hs = horizontal sync 600 * va = vertical active 601 * vb = vertical blanking 602 * vs = vertical sync 603 * vbs = vblank_start (number) 604 * 605 * Summary: 606 * - most events happen at the start of horizontal sync 607 * - frame start happens at the start of horizontal blank, 1-4 lines 608 * (depending on PIPECONF settings) after the start of vblank 609 * - gen3/4 pixel and frame counter are synchronized with the start 610 * of horizontal active on the first line of vertical active 611 */ 612 613 /* Called from drm generic code, passed a 'crtc', which 614 * we use as a pipe index 615 */ 616 u32 i915_get_vblank_counter(struct drm_crtc *crtc) 617 { 618 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 619 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; 620 const struct drm_display_mode *mode = &vblank->hwmode; 621 enum pipe pipe = to_intel_crtc(crtc)->pipe; 622 i915_reg_t high_frame, low_frame; 623 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; 624 unsigned long irqflags; 625 626 /* 627 * On i965gm TV output the frame counter only works up to 628 * the point when we enable the TV encoder. After that the 629 * frame counter ceases to work and reads zero. We need a 630 * vblank wait before enabling the TV encoder and so we 631 * have to enable vblank interrupts while the frame counter 632 * is still in a working state. However the core vblank code 633 * does not like us returning non-zero frame counter values 634 * when we've told it that we don't have a working frame 635 * counter. Thus we must stop non-zero values leaking out. 636 */ 637 if (!vblank->max_vblank_count) 638 return 0; 639 640 htotal = mode->crtc_htotal; 641 hsync_start = mode->crtc_hsync_start; 642 vbl_start = mode->crtc_vblank_start; 643 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 644 vbl_start = DIV_ROUND_UP(vbl_start, 2); 645 646 /* Convert to pixel count */ 647 vbl_start *= htotal; 648 649 /* Start of vblank event occurs at start of hsync */ 650 vbl_start -= htotal - hsync_start; 651 652 high_frame = PIPEFRAME(pipe); 653 low_frame = PIPEFRAMEPIXEL(pipe); 654 655 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 656 657 /* 658 * High & low register fields aren't synchronized, so make sure 659 * we get a low value that's stable across two reads of the high 660 * register. 661 */ 662 do { 663 high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK; 664 low = intel_de_read_fw(dev_priv, low_frame); 665 high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK; 666 } while (high1 != high2); 667 668 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 669 670 high1 >>= PIPE_FRAME_HIGH_SHIFT; 671 pixel = low & PIPE_PIXEL_MASK; 672 low >>= PIPE_FRAME_LOW_SHIFT; 673 674 /* 675 * The frame counter increments at beginning of active. 676 * Cook up a vblank counter by also checking the pixel 677 * counter against vblank start. 678 */ 679 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; 680 } 681 682 u32 g4x_get_vblank_counter(struct drm_crtc *crtc) 683 { 684 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 685 enum pipe pipe = to_intel_crtc(crtc)->pipe; 686 687 return I915_READ(PIPE_FRMCOUNT_G4X(pipe)); 688 } 689 690 /* 691 * On certain encoders on certain platforms, pipe 692 * scanline register will not work to get the scanline, 693 * since the timings are driven from the PORT or issues 694 * with scanline register updates. 695 * This function will use Framestamp and current 696 * timestamp registers to calculate the scanline. 697 */ 698 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 699 { 700 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 701 struct drm_vblank_crtc *vblank = 702 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 703 const struct drm_display_mode *mode = &vblank->hwmode; 704 u32 vblank_start = mode->crtc_vblank_start; 705 u32 vtotal = mode->crtc_vtotal; 706 u32 htotal = mode->crtc_htotal; 707 u32 clock = mode->crtc_clock; 708 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time; 709 710 /* 711 * To avoid the race condition where we might cross into the 712 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 713 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 714 * during the same frame. 715 */ 716 do { 717 /* 718 * This field provides read back of the display 719 * pipe frame time stamp. The time stamp value 720 * is sampled at every start of vertical blank. 721 */ 722 scan_prev_time = intel_de_read_fw(dev_priv, 723 PIPE_FRMTMSTMP(crtc->pipe)); 724 725 /* 726 * The TIMESTAMP_CTR register has the current 727 * time stamp value. 728 */ 729 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR); 730 731 scan_post_time = intel_de_read_fw(dev_priv, 732 PIPE_FRMTMSTMP(crtc->pipe)); 733 } while (scan_post_time != scan_prev_time); 734 735 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 736 clock), 1000 * htotal); 737 scanline = min(scanline, vtotal - 1); 738 scanline = (scanline + vblank_start) % vtotal; 739 740 return scanline; 741 } 742 743 /* 744 * intel_de_read_fw(), only for fast reads of display block, no need for 745 * forcewake etc. 746 */ 747 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 748 { 749 struct drm_device *dev = crtc->base.dev; 750 struct drm_i915_private *dev_priv = to_i915(dev); 751 const struct drm_display_mode *mode; 752 struct drm_vblank_crtc *vblank; 753 enum pipe pipe = crtc->pipe; 754 int position, vtotal; 755 756 if (!crtc->active) 757 return -1; 758 759 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 760 mode = &vblank->hwmode; 761 762 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 763 return __intel_get_crtc_scanline_from_timestamp(crtc); 764 765 vtotal = mode->crtc_vtotal; 766 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 767 vtotal /= 2; 768 769 if (IS_GEN(dev_priv, 2)) 770 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; 771 else 772 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 773 774 /* 775 * On HSW, the DSL reg (0x70000) appears to return 0 if we 776 * read it just before the start of vblank. So try it again 777 * so we don't accidentally end up spanning a vblank frame 778 * increment, causing the pipe_update_end() code to squak at us. 779 * 780 * The nature of this problem means we can't simply check the ISR 781 * bit and return the vblank start value; nor can we use the scanline 782 * debug register in the transcoder as it appears to have the same 783 * problem. We may need to extend this to include other platforms, 784 * but so far testing only shows the problem on HSW. 785 */ 786 if (HAS_DDI(dev_priv) && !position) { 787 int i, temp; 788 789 for (i = 0; i < 100; i++) { 790 udelay(1); 791 temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 792 if (temp != position) { 793 position = temp; 794 break; 795 } 796 } 797 } 798 799 /* 800 * See update_scanline_offset() for the details on the 801 * scanline_offset adjustment. 802 */ 803 return (position + crtc->scanline_offset) % vtotal; 804 } 805 806 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, 807 bool in_vblank_irq, 808 int *vpos, int *hpos, 809 ktime_t *stime, ktime_t *etime, 810 const struct drm_display_mode *mode) 811 { 812 struct drm_device *dev = _crtc->dev; 813 struct drm_i915_private *dev_priv = to_i915(dev); 814 struct intel_crtc *crtc = to_intel_crtc(_crtc); 815 enum pipe pipe = crtc->pipe; 816 int position; 817 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 818 unsigned long irqflags; 819 bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 || 820 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) || 821 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 822 823 if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) { 824 drm_dbg(&dev_priv->drm, 825 "trying to get scanoutpos for disabled " 826 "pipe %c\n", pipe_name(pipe)); 827 return false; 828 } 829 830 htotal = mode->crtc_htotal; 831 hsync_start = mode->crtc_hsync_start; 832 vtotal = mode->crtc_vtotal; 833 vbl_start = mode->crtc_vblank_start; 834 vbl_end = mode->crtc_vblank_end; 835 836 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 837 vbl_start = DIV_ROUND_UP(vbl_start, 2); 838 vbl_end /= 2; 839 vtotal /= 2; 840 } 841 842 /* 843 * Lock uncore.lock, as we will do multiple timing critical raw 844 * register reads, potentially with preemption disabled, so the 845 * following code must not block on uncore.lock. 846 */ 847 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 848 849 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 850 851 /* Get optional system timestamp before query. */ 852 if (stime) 853 *stime = ktime_get(); 854 855 if (use_scanline_counter) { 856 /* No obvious pixelcount register. Only query vertical 857 * scanout position from Display scan line register. 858 */ 859 position = __intel_get_crtc_scanline(crtc); 860 } else { 861 /* Have access to pixelcount since start of frame. 862 * We can split this into vertical and horizontal 863 * scanout position. 864 */ 865 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 866 867 /* convert to pixel counts */ 868 vbl_start *= htotal; 869 vbl_end *= htotal; 870 vtotal *= htotal; 871 872 /* 873 * In interlaced modes, the pixel counter counts all pixels, 874 * so one field will have htotal more pixels. In order to avoid 875 * the reported position from jumping backwards when the pixel 876 * counter is beyond the length of the shorter field, just 877 * clamp the position the length of the shorter field. This 878 * matches how the scanline counter based position works since 879 * the scanline counter doesn't count the two half lines. 880 */ 881 if (position >= vtotal) 882 position = vtotal - 1; 883 884 /* 885 * Start of vblank interrupt is triggered at start of hsync, 886 * just prior to the first active line of vblank. However we 887 * consider lines to start at the leading edge of horizontal 888 * active. So, should we get here before we've crossed into 889 * the horizontal active of the first line in vblank, we would 890 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 891 * always add htotal-hsync_start to the current pixel position. 892 */ 893 position = (position + htotal - hsync_start) % vtotal; 894 } 895 896 /* Get optional system timestamp after query. */ 897 if (etime) 898 *etime = ktime_get(); 899 900 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 901 902 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 903 904 /* 905 * While in vblank, position will be negative 906 * counting up towards 0 at vbl_end. And outside 907 * vblank, position will be positive counting 908 * up since vbl_end. 909 */ 910 if (position >= vbl_start) 911 position -= vbl_end; 912 else 913 position += vtotal - vbl_end; 914 915 if (use_scanline_counter) { 916 *vpos = position; 917 *hpos = 0; 918 } else { 919 *vpos = position / htotal; 920 *hpos = position - (*vpos * htotal); 921 } 922 923 return true; 924 } 925 926 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, 927 ktime_t *vblank_time, bool in_vblank_irq) 928 { 929 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 930 crtc, max_error, vblank_time, in_vblank_irq, 931 i915_get_crtc_scanoutpos); 932 } 933 934 int intel_get_crtc_scanline(struct intel_crtc *crtc) 935 { 936 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 937 unsigned long irqflags; 938 int position; 939 940 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 941 position = __intel_get_crtc_scanline(crtc); 942 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 943 944 return position; 945 } 946 947 /** 948 * ivb_parity_work - Workqueue called when a parity error interrupt 949 * occurred. 950 * @work: workqueue struct 951 * 952 * Doesn't actually do anything except notify userspace. As a consequence of 953 * this event, userspace should try to remap the bad rows since statistically 954 * it is likely the same row is more likely to go bad again. 955 */ 956 static void ivb_parity_work(struct work_struct *work) 957 { 958 struct drm_i915_private *dev_priv = 959 container_of(work, typeof(*dev_priv), l3_parity.error_work); 960 struct intel_gt *gt = &dev_priv->gt; 961 u32 error_status, row, bank, subbank; 962 char *parity_event[6]; 963 u32 misccpctl; 964 u8 slice = 0; 965 966 /* We must turn off DOP level clock gating to access the L3 registers. 967 * In order to prevent a get/put style interface, acquire struct mutex 968 * any time we access those registers. 969 */ 970 mutex_lock(&dev_priv->drm.struct_mutex); 971 972 /* If we've screwed up tracking, just let the interrupt fire again */ 973 if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice)) 974 goto out; 975 976 misccpctl = I915_READ(GEN7_MISCCPCTL); 977 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 978 POSTING_READ(GEN7_MISCCPCTL); 979 980 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { 981 i915_reg_t reg; 982 983 slice--; 984 if (drm_WARN_ON_ONCE(&dev_priv->drm, 985 slice >= NUM_L3_SLICES(dev_priv))) 986 break; 987 988 dev_priv->l3_parity.which_slice &= ~(1<<slice); 989 990 reg = GEN7_L3CDERRST1(slice); 991 992 error_status = I915_READ(reg); 993 row = GEN7_PARITY_ERROR_ROW(error_status); 994 bank = GEN7_PARITY_ERROR_BANK(error_status); 995 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); 996 997 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); 998 POSTING_READ(reg); 999 1000 parity_event[0] = I915_L3_PARITY_UEVENT "=1"; 1001 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); 1002 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); 1003 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); 1004 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); 1005 parity_event[5] = NULL; 1006 1007 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj, 1008 KOBJ_CHANGE, parity_event); 1009 1010 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", 1011 slice, row, bank, subbank); 1012 1013 kfree(parity_event[4]); 1014 kfree(parity_event[3]); 1015 kfree(parity_event[2]); 1016 kfree(parity_event[1]); 1017 } 1018 1019 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 1020 1021 out: 1022 drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice); 1023 spin_lock_irq(>->irq_lock); 1024 gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv)); 1025 spin_unlock_irq(>->irq_lock); 1026 1027 mutex_unlock(&dev_priv->drm.struct_mutex); 1028 } 1029 1030 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1031 { 1032 switch (pin) { 1033 case HPD_PORT_TC1: 1034 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1); 1035 case HPD_PORT_TC2: 1036 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2); 1037 case HPD_PORT_TC3: 1038 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3); 1039 case HPD_PORT_TC4: 1040 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4); 1041 case HPD_PORT_TC5: 1042 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5); 1043 case HPD_PORT_TC6: 1044 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6); 1045 default: 1046 return false; 1047 } 1048 } 1049 1050 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1051 { 1052 switch (pin) { 1053 case HPD_PORT_A: 1054 return val & PORTA_HOTPLUG_LONG_DETECT; 1055 case HPD_PORT_B: 1056 return val & PORTB_HOTPLUG_LONG_DETECT; 1057 case HPD_PORT_C: 1058 return val & PORTC_HOTPLUG_LONG_DETECT; 1059 default: 1060 return false; 1061 } 1062 } 1063 1064 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1065 { 1066 switch (pin) { 1067 case HPD_PORT_A: 1068 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A); 1069 case HPD_PORT_B: 1070 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B); 1071 case HPD_PORT_C: 1072 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C); 1073 default: 1074 return false; 1075 } 1076 } 1077 1078 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1079 { 1080 switch (pin) { 1081 case HPD_PORT_TC1: 1082 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1); 1083 case HPD_PORT_TC2: 1084 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2); 1085 case HPD_PORT_TC3: 1086 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3); 1087 case HPD_PORT_TC4: 1088 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4); 1089 case HPD_PORT_TC5: 1090 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5); 1091 case HPD_PORT_TC6: 1092 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6); 1093 default: 1094 return false; 1095 } 1096 } 1097 1098 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val) 1099 { 1100 switch (pin) { 1101 case HPD_PORT_E: 1102 return val & PORTE_HOTPLUG_LONG_DETECT; 1103 default: 1104 return false; 1105 } 1106 } 1107 1108 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1109 { 1110 switch (pin) { 1111 case HPD_PORT_A: 1112 return val & PORTA_HOTPLUG_LONG_DETECT; 1113 case HPD_PORT_B: 1114 return val & PORTB_HOTPLUG_LONG_DETECT; 1115 case HPD_PORT_C: 1116 return val & PORTC_HOTPLUG_LONG_DETECT; 1117 case HPD_PORT_D: 1118 return val & PORTD_HOTPLUG_LONG_DETECT; 1119 default: 1120 return false; 1121 } 1122 } 1123 1124 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1125 { 1126 switch (pin) { 1127 case HPD_PORT_A: 1128 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; 1129 default: 1130 return false; 1131 } 1132 } 1133 1134 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1135 { 1136 switch (pin) { 1137 case HPD_PORT_B: 1138 return val & PORTB_HOTPLUG_LONG_DETECT; 1139 case HPD_PORT_C: 1140 return val & PORTC_HOTPLUG_LONG_DETECT; 1141 case HPD_PORT_D: 1142 return val & PORTD_HOTPLUG_LONG_DETECT; 1143 default: 1144 return false; 1145 } 1146 } 1147 1148 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1149 { 1150 switch (pin) { 1151 case HPD_PORT_B: 1152 return val & PORTB_HOTPLUG_INT_LONG_PULSE; 1153 case HPD_PORT_C: 1154 return val & PORTC_HOTPLUG_INT_LONG_PULSE; 1155 case HPD_PORT_D: 1156 return val & PORTD_HOTPLUG_INT_LONG_PULSE; 1157 default: 1158 return false; 1159 } 1160 } 1161 1162 /* 1163 * Get a bit mask of pins that have triggered, and which ones may be long. 1164 * This can be called multiple times with the same masks to accumulate 1165 * hotplug detection results from several registers. 1166 * 1167 * Note that the caller is expected to zero out the masks initially. 1168 */ 1169 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv, 1170 u32 *pin_mask, u32 *long_mask, 1171 u32 hotplug_trigger, u32 dig_hotplug_reg, 1172 const u32 hpd[HPD_NUM_PINS], 1173 bool long_pulse_detect(enum hpd_pin pin, u32 val)) 1174 { 1175 enum hpd_pin pin; 1176 1177 BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS); 1178 1179 for_each_hpd_pin(pin) { 1180 if ((hpd[pin] & hotplug_trigger) == 0) 1181 continue; 1182 1183 *pin_mask |= BIT(pin); 1184 1185 if (long_pulse_detect(pin, dig_hotplug_reg)) 1186 *long_mask |= BIT(pin); 1187 } 1188 1189 drm_dbg(&dev_priv->drm, 1190 "hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n", 1191 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask); 1192 1193 } 1194 1195 static void gmbus_irq_handler(struct drm_i915_private *dev_priv) 1196 { 1197 wake_up_all(&dev_priv->gmbus_wait_queue); 1198 } 1199 1200 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) 1201 { 1202 wake_up_all(&dev_priv->gmbus_wait_queue); 1203 } 1204 1205 #if defined(CONFIG_DEBUG_FS) 1206 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1207 enum pipe pipe, 1208 u32 crc0, u32 crc1, 1209 u32 crc2, u32 crc3, 1210 u32 crc4) 1211 { 1212 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 1213 struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc; 1214 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 }; 1215 1216 trace_intel_pipe_crc(crtc, crcs); 1217 1218 spin_lock(&pipe_crc->lock); 1219 /* 1220 * For some not yet identified reason, the first CRC is 1221 * bonkers. So let's just wait for the next vblank and read 1222 * out the buggy result. 1223 * 1224 * On GEN8+ sometimes the second CRC is bonkers as well, so 1225 * don't trust that one either. 1226 */ 1227 if (pipe_crc->skipped <= 0 || 1228 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) { 1229 pipe_crc->skipped++; 1230 spin_unlock(&pipe_crc->lock); 1231 return; 1232 } 1233 spin_unlock(&pipe_crc->lock); 1234 1235 drm_crtc_add_crc_entry(&crtc->base, true, 1236 drm_crtc_accurate_vblank_count(&crtc->base), 1237 crcs); 1238 } 1239 #else 1240 static inline void 1241 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1242 enum pipe pipe, 1243 u32 crc0, u32 crc1, 1244 u32 crc2, u32 crc3, 1245 u32 crc4) {} 1246 #endif 1247 1248 1249 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1250 enum pipe pipe) 1251 { 1252 display_pipe_crc_irq_handler(dev_priv, pipe, 1253 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1254 0, 0, 0, 0); 1255 } 1256 1257 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1258 enum pipe pipe) 1259 { 1260 display_pipe_crc_irq_handler(dev_priv, pipe, 1261 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1262 I915_READ(PIPE_CRC_RES_2_IVB(pipe)), 1263 I915_READ(PIPE_CRC_RES_3_IVB(pipe)), 1264 I915_READ(PIPE_CRC_RES_4_IVB(pipe)), 1265 I915_READ(PIPE_CRC_RES_5_IVB(pipe))); 1266 } 1267 1268 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1269 enum pipe pipe) 1270 { 1271 u32 res1, res2; 1272 1273 if (INTEL_GEN(dev_priv) >= 3) 1274 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); 1275 else 1276 res1 = 0; 1277 1278 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1279 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); 1280 else 1281 res2 = 0; 1282 1283 display_pipe_crc_irq_handler(dev_priv, pipe, 1284 I915_READ(PIPE_CRC_RES_RED(pipe)), 1285 I915_READ(PIPE_CRC_RES_GREEN(pipe)), 1286 I915_READ(PIPE_CRC_RES_BLUE(pipe)), 1287 res1, res2); 1288 } 1289 1290 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv) 1291 { 1292 enum pipe pipe; 1293 1294 for_each_pipe(dev_priv, pipe) { 1295 I915_WRITE(PIPESTAT(pipe), 1296 PIPESTAT_INT_STATUS_MASK | 1297 PIPE_FIFO_UNDERRUN_STATUS); 1298 1299 dev_priv->pipestat_irq_mask[pipe] = 0; 1300 } 1301 } 1302 1303 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv, 1304 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1305 { 1306 enum pipe pipe; 1307 1308 spin_lock(&dev_priv->irq_lock); 1309 1310 if (!dev_priv->display_irqs_enabled) { 1311 spin_unlock(&dev_priv->irq_lock); 1312 return; 1313 } 1314 1315 for_each_pipe(dev_priv, pipe) { 1316 i915_reg_t reg; 1317 u32 status_mask, enable_mask, iir_bit = 0; 1318 1319 /* 1320 * PIPESTAT bits get signalled even when the interrupt is 1321 * disabled with the mask bits, and some of the status bits do 1322 * not generate interrupts at all (like the underrun bit). Hence 1323 * we need to be careful that we only handle what we want to 1324 * handle. 1325 */ 1326 1327 /* fifo underruns are filterered in the underrun handler. */ 1328 status_mask = PIPE_FIFO_UNDERRUN_STATUS; 1329 1330 switch (pipe) { 1331 default: 1332 case PIPE_A: 1333 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; 1334 break; 1335 case PIPE_B: 1336 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 1337 break; 1338 case PIPE_C: 1339 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 1340 break; 1341 } 1342 if (iir & iir_bit) 1343 status_mask |= dev_priv->pipestat_irq_mask[pipe]; 1344 1345 if (!status_mask) 1346 continue; 1347 1348 reg = PIPESTAT(pipe); 1349 pipe_stats[pipe] = I915_READ(reg) & status_mask; 1350 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 1351 1352 /* 1353 * Clear the PIPE*STAT regs before the IIR 1354 * 1355 * Toggle the enable bits to make sure we get an 1356 * edge in the ISR pipe event bit if we don't clear 1357 * all the enabled status bits. Otherwise the edge 1358 * triggered IIR on i965/g4x wouldn't notice that 1359 * an interrupt is still pending. 1360 */ 1361 if (pipe_stats[pipe]) { 1362 I915_WRITE(reg, pipe_stats[pipe]); 1363 I915_WRITE(reg, enable_mask); 1364 } 1365 } 1366 spin_unlock(&dev_priv->irq_lock); 1367 } 1368 1369 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1370 u16 iir, u32 pipe_stats[I915_MAX_PIPES]) 1371 { 1372 enum pipe pipe; 1373 1374 for_each_pipe(dev_priv, pipe) { 1375 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1376 intel_handle_vblank(dev_priv, pipe); 1377 1378 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1379 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1380 1381 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1382 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1383 } 1384 } 1385 1386 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1387 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1388 { 1389 bool blc_event = false; 1390 enum pipe pipe; 1391 1392 for_each_pipe(dev_priv, pipe) { 1393 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1394 intel_handle_vblank(dev_priv, pipe); 1395 1396 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1397 blc_event = true; 1398 1399 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1400 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1401 1402 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1403 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1404 } 1405 1406 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1407 intel_opregion_asle_intr(dev_priv); 1408 } 1409 1410 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1411 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1412 { 1413 bool blc_event = false; 1414 enum pipe pipe; 1415 1416 for_each_pipe(dev_priv, pipe) { 1417 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1418 intel_handle_vblank(dev_priv, pipe); 1419 1420 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1421 blc_event = true; 1422 1423 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1424 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1425 1426 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1427 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1428 } 1429 1430 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1431 intel_opregion_asle_intr(dev_priv); 1432 1433 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1434 gmbus_irq_handler(dev_priv); 1435 } 1436 1437 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1438 u32 pipe_stats[I915_MAX_PIPES]) 1439 { 1440 enum pipe pipe; 1441 1442 for_each_pipe(dev_priv, pipe) { 1443 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1444 intel_handle_vblank(dev_priv, pipe); 1445 1446 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1447 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1448 1449 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1450 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1451 } 1452 1453 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1454 gmbus_irq_handler(dev_priv); 1455 } 1456 1457 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) 1458 { 1459 u32 hotplug_status = 0, hotplug_status_mask; 1460 int i; 1461 1462 if (IS_G4X(dev_priv) || 1463 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1464 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X | 1465 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X; 1466 else 1467 hotplug_status_mask = HOTPLUG_INT_STATUS_I915; 1468 1469 /* 1470 * We absolutely have to clear all the pending interrupt 1471 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port 1472 * interrupt bit won't have an edge, and the i965/g4x 1473 * edge triggered IIR will not notice that an interrupt 1474 * is still pending. We can't use PORT_HOTPLUG_EN to 1475 * guarantee the edge as the act of toggling the enable 1476 * bits can itself generate a new hotplug interrupt :( 1477 */ 1478 for (i = 0; i < 10; i++) { 1479 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask; 1480 1481 if (tmp == 0) 1482 return hotplug_status; 1483 1484 hotplug_status |= tmp; 1485 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); 1486 } 1487 1488 drm_WARN_ONCE(&dev_priv->drm, 1, 1489 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n", 1490 I915_READ(PORT_HOTPLUG_STAT)); 1491 1492 return hotplug_status; 1493 } 1494 1495 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, 1496 u32 hotplug_status) 1497 { 1498 u32 pin_mask = 0, long_mask = 0; 1499 u32 hotplug_trigger; 1500 1501 if (IS_G4X(dev_priv) || 1502 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1503 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; 1504 else 1505 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; 1506 1507 if (hotplug_trigger) { 1508 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1509 hotplug_trigger, hotplug_trigger, 1510 dev_priv->hotplug.hpd, 1511 i9xx_port_hotplug_long_detect); 1512 1513 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1514 } 1515 1516 if ((IS_G4X(dev_priv) || 1517 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1518 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) 1519 dp_aux_irq_handler(dev_priv); 1520 } 1521 1522 static irqreturn_t valleyview_irq_handler(int irq, void *arg) 1523 { 1524 struct drm_i915_private *dev_priv = arg; 1525 irqreturn_t ret = IRQ_NONE; 1526 1527 if (!intel_irqs_enabled(dev_priv)) 1528 return IRQ_NONE; 1529 1530 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1531 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1532 1533 do { 1534 u32 iir, gt_iir, pm_iir; 1535 u32 pipe_stats[I915_MAX_PIPES] = {}; 1536 u32 hotplug_status = 0; 1537 u32 ier = 0; 1538 1539 gt_iir = I915_READ(GTIIR); 1540 pm_iir = I915_READ(GEN6_PMIIR); 1541 iir = I915_READ(VLV_IIR); 1542 1543 if (gt_iir == 0 && pm_iir == 0 && iir == 0) 1544 break; 1545 1546 ret = IRQ_HANDLED; 1547 1548 /* 1549 * Theory on interrupt generation, based on empirical evidence: 1550 * 1551 * x = ((VLV_IIR & VLV_IER) || 1552 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && 1553 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); 1554 * 1555 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1556 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to 1557 * guarantee the CPU interrupt will be raised again even if we 1558 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR 1559 * bits this time around. 1560 */ 1561 I915_WRITE(VLV_MASTER_IER, 0); 1562 ier = I915_READ(VLV_IER); 1563 I915_WRITE(VLV_IER, 0); 1564 1565 if (gt_iir) 1566 I915_WRITE(GTIIR, gt_iir); 1567 if (pm_iir) 1568 I915_WRITE(GEN6_PMIIR, pm_iir); 1569 1570 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1571 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1572 1573 /* Call regardless, as some status bits might not be 1574 * signalled in iir */ 1575 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1576 1577 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 1578 I915_LPE_PIPE_B_INTERRUPT)) 1579 intel_lpe_audio_irq_handler(dev_priv); 1580 1581 /* 1582 * VLV_IIR is single buffered, and reflects the level 1583 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1584 */ 1585 if (iir) 1586 I915_WRITE(VLV_IIR, iir); 1587 1588 I915_WRITE(VLV_IER, ier); 1589 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 1590 1591 if (gt_iir) 1592 gen6_gt_irq_handler(&dev_priv->gt, gt_iir); 1593 if (pm_iir) 1594 gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir); 1595 1596 if (hotplug_status) 1597 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1598 1599 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1600 } while (0); 1601 1602 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1603 1604 return ret; 1605 } 1606 1607 static irqreturn_t cherryview_irq_handler(int irq, void *arg) 1608 { 1609 struct drm_i915_private *dev_priv = arg; 1610 irqreturn_t ret = IRQ_NONE; 1611 1612 if (!intel_irqs_enabled(dev_priv)) 1613 return IRQ_NONE; 1614 1615 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1616 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1617 1618 do { 1619 u32 master_ctl, iir; 1620 u32 pipe_stats[I915_MAX_PIPES] = {}; 1621 u32 hotplug_status = 0; 1622 u32 ier = 0; 1623 1624 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; 1625 iir = I915_READ(VLV_IIR); 1626 1627 if (master_ctl == 0 && iir == 0) 1628 break; 1629 1630 ret = IRQ_HANDLED; 1631 1632 /* 1633 * Theory on interrupt generation, based on empirical evidence: 1634 * 1635 * x = ((VLV_IIR & VLV_IER) || 1636 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && 1637 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); 1638 * 1639 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1640 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to 1641 * guarantee the CPU interrupt will be raised again even if we 1642 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL 1643 * bits this time around. 1644 */ 1645 I915_WRITE(GEN8_MASTER_IRQ, 0); 1646 ier = I915_READ(VLV_IER); 1647 I915_WRITE(VLV_IER, 0); 1648 1649 gen8_gt_irq_handler(&dev_priv->gt, master_ctl); 1650 1651 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1652 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1653 1654 /* Call regardless, as some status bits might not be 1655 * signalled in iir */ 1656 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1657 1658 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 1659 I915_LPE_PIPE_B_INTERRUPT | 1660 I915_LPE_PIPE_C_INTERRUPT)) 1661 intel_lpe_audio_irq_handler(dev_priv); 1662 1663 /* 1664 * VLV_IIR is single buffered, and reflects the level 1665 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1666 */ 1667 if (iir) 1668 I915_WRITE(VLV_IIR, iir); 1669 1670 I915_WRITE(VLV_IER, ier); 1671 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 1672 1673 if (hotplug_status) 1674 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1675 1676 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1677 } while (0); 1678 1679 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1680 1681 return ret; 1682 } 1683 1684 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, 1685 u32 hotplug_trigger) 1686 { 1687 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 1688 1689 /* 1690 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU 1691 * unless we touch the hotplug register, even if hotplug_trigger is 1692 * zero. Not acking leads to "The master control interrupt lied (SDE)!" 1693 * errors. 1694 */ 1695 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 1696 if (!hotplug_trigger) { 1697 u32 mask = PORTA_HOTPLUG_STATUS_MASK | 1698 PORTD_HOTPLUG_STATUS_MASK | 1699 PORTC_HOTPLUG_STATUS_MASK | 1700 PORTB_HOTPLUG_STATUS_MASK; 1701 dig_hotplug_reg &= ~mask; 1702 } 1703 1704 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 1705 if (!hotplug_trigger) 1706 return; 1707 1708 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1709 hotplug_trigger, dig_hotplug_reg, 1710 dev_priv->hotplug.pch_hpd, 1711 pch_port_hotplug_long_detect); 1712 1713 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1714 } 1715 1716 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1717 { 1718 enum pipe pipe; 1719 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; 1720 1721 ibx_hpd_irq_handler(dev_priv, hotplug_trigger); 1722 1723 if (pch_iir & SDE_AUDIO_POWER_MASK) { 1724 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> 1725 SDE_AUDIO_POWER_SHIFT); 1726 drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n", 1727 port_name(port)); 1728 } 1729 1730 if (pch_iir & SDE_AUX_MASK) 1731 dp_aux_irq_handler(dev_priv); 1732 1733 if (pch_iir & SDE_GMBUS) 1734 gmbus_irq_handler(dev_priv); 1735 1736 if (pch_iir & SDE_AUDIO_HDCP_MASK) 1737 drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n"); 1738 1739 if (pch_iir & SDE_AUDIO_TRANS_MASK) 1740 drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n"); 1741 1742 if (pch_iir & SDE_POISON) 1743 drm_err(&dev_priv->drm, "PCH poison interrupt\n"); 1744 1745 if (pch_iir & SDE_FDI_MASK) { 1746 for_each_pipe(dev_priv, pipe) 1747 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n", 1748 pipe_name(pipe), 1749 I915_READ(FDI_RX_IIR(pipe))); 1750 } 1751 1752 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) 1753 drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n"); 1754 1755 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) 1756 drm_dbg(&dev_priv->drm, 1757 "PCH transcoder CRC error interrupt\n"); 1758 1759 if (pch_iir & SDE_TRANSA_FIFO_UNDER) 1760 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A); 1761 1762 if (pch_iir & SDE_TRANSB_FIFO_UNDER) 1763 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B); 1764 } 1765 1766 static void ivb_err_int_handler(struct drm_i915_private *dev_priv) 1767 { 1768 u32 err_int = I915_READ(GEN7_ERR_INT); 1769 enum pipe pipe; 1770 1771 if (err_int & ERR_INT_POISON) 1772 drm_err(&dev_priv->drm, "Poison interrupt\n"); 1773 1774 for_each_pipe(dev_priv, pipe) { 1775 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) 1776 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1777 1778 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { 1779 if (IS_IVYBRIDGE(dev_priv)) 1780 ivb_pipe_crc_irq_handler(dev_priv, pipe); 1781 else 1782 hsw_pipe_crc_irq_handler(dev_priv, pipe); 1783 } 1784 } 1785 1786 I915_WRITE(GEN7_ERR_INT, err_int); 1787 } 1788 1789 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) 1790 { 1791 u32 serr_int = I915_READ(SERR_INT); 1792 enum pipe pipe; 1793 1794 if (serr_int & SERR_INT_POISON) 1795 drm_err(&dev_priv->drm, "PCH poison interrupt\n"); 1796 1797 for_each_pipe(dev_priv, pipe) 1798 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe)) 1799 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe); 1800 1801 I915_WRITE(SERR_INT, serr_int); 1802 } 1803 1804 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1805 { 1806 enum pipe pipe; 1807 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; 1808 1809 ibx_hpd_irq_handler(dev_priv, hotplug_trigger); 1810 1811 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { 1812 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> 1813 SDE_AUDIO_POWER_SHIFT_CPT); 1814 drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n", 1815 port_name(port)); 1816 } 1817 1818 if (pch_iir & SDE_AUX_MASK_CPT) 1819 dp_aux_irq_handler(dev_priv); 1820 1821 if (pch_iir & SDE_GMBUS_CPT) 1822 gmbus_irq_handler(dev_priv); 1823 1824 if (pch_iir & SDE_AUDIO_CP_REQ_CPT) 1825 drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n"); 1826 1827 if (pch_iir & SDE_AUDIO_CP_CHG_CPT) 1828 drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n"); 1829 1830 if (pch_iir & SDE_FDI_MASK_CPT) { 1831 for_each_pipe(dev_priv, pipe) 1832 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n", 1833 pipe_name(pipe), 1834 I915_READ(FDI_RX_IIR(pipe))); 1835 } 1836 1837 if (pch_iir & SDE_ERROR_CPT) 1838 cpt_serr_int_handler(dev_priv); 1839 } 1840 1841 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1842 { 1843 u32 ddi_hotplug_trigger, tc_hotplug_trigger; 1844 u32 pin_mask = 0, long_mask = 0; 1845 1846 if (HAS_PCH_TGP(dev_priv)) { 1847 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP; 1848 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP; 1849 } else if (HAS_PCH_JSP(dev_priv)) { 1850 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP; 1851 tc_hotplug_trigger = 0; 1852 } else if (HAS_PCH_MCC(dev_priv)) { 1853 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP; 1854 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1); 1855 } else { 1856 drm_WARN(&dev_priv->drm, !HAS_PCH_ICP(dev_priv), 1857 "Unrecognized PCH type 0x%x\n", 1858 INTEL_PCH_TYPE(dev_priv)); 1859 1860 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP; 1861 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP; 1862 } 1863 1864 if (ddi_hotplug_trigger) { 1865 u32 dig_hotplug_reg; 1866 1867 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI); 1868 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg); 1869 1870 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1871 ddi_hotplug_trigger, dig_hotplug_reg, 1872 dev_priv->hotplug.pch_hpd, 1873 icp_ddi_port_hotplug_long_detect); 1874 } 1875 1876 if (tc_hotplug_trigger) { 1877 u32 dig_hotplug_reg; 1878 1879 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC); 1880 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg); 1881 1882 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1883 tc_hotplug_trigger, dig_hotplug_reg, 1884 dev_priv->hotplug.pch_hpd, 1885 icp_tc_port_hotplug_long_detect); 1886 } 1887 1888 if (pin_mask) 1889 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1890 1891 if (pch_iir & SDE_GMBUS_ICP) 1892 gmbus_irq_handler(dev_priv); 1893 } 1894 1895 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1896 { 1897 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & 1898 ~SDE_PORTE_HOTPLUG_SPT; 1899 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; 1900 u32 pin_mask = 0, long_mask = 0; 1901 1902 if (hotplug_trigger) { 1903 u32 dig_hotplug_reg; 1904 1905 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 1906 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 1907 1908 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1909 hotplug_trigger, dig_hotplug_reg, 1910 dev_priv->hotplug.pch_hpd, 1911 spt_port_hotplug_long_detect); 1912 } 1913 1914 if (hotplug2_trigger) { 1915 u32 dig_hotplug_reg; 1916 1917 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2); 1918 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg); 1919 1920 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1921 hotplug2_trigger, dig_hotplug_reg, 1922 dev_priv->hotplug.pch_hpd, 1923 spt_port_hotplug2_long_detect); 1924 } 1925 1926 if (pin_mask) 1927 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1928 1929 if (pch_iir & SDE_GMBUS_CPT) 1930 gmbus_irq_handler(dev_priv); 1931 } 1932 1933 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, 1934 u32 hotplug_trigger) 1935 { 1936 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 1937 1938 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 1939 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg); 1940 1941 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1942 hotplug_trigger, dig_hotplug_reg, 1943 dev_priv->hotplug.hpd, 1944 ilk_port_hotplug_long_detect); 1945 1946 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1947 } 1948 1949 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, 1950 u32 de_iir) 1951 { 1952 enum pipe pipe; 1953 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; 1954 1955 if (hotplug_trigger) 1956 ilk_hpd_irq_handler(dev_priv, hotplug_trigger); 1957 1958 if (de_iir & DE_AUX_CHANNEL_A) 1959 dp_aux_irq_handler(dev_priv); 1960 1961 if (de_iir & DE_GSE) 1962 intel_opregion_asle_intr(dev_priv); 1963 1964 if (de_iir & DE_POISON) 1965 drm_err(&dev_priv->drm, "Poison interrupt\n"); 1966 1967 for_each_pipe(dev_priv, pipe) { 1968 if (de_iir & DE_PIPE_VBLANK(pipe)) 1969 intel_handle_vblank(dev_priv, pipe); 1970 1971 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) 1972 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1973 1974 if (de_iir & DE_PIPE_CRC_DONE(pipe)) 1975 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1976 } 1977 1978 /* check event from PCH */ 1979 if (de_iir & DE_PCH_EVENT) { 1980 u32 pch_iir = I915_READ(SDEIIR); 1981 1982 if (HAS_PCH_CPT(dev_priv)) 1983 cpt_irq_handler(dev_priv, pch_iir); 1984 else 1985 ibx_irq_handler(dev_priv, pch_iir); 1986 1987 /* should clear PCH hotplug event before clear CPU irq */ 1988 I915_WRITE(SDEIIR, pch_iir); 1989 } 1990 1991 if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT) 1992 gen5_rps_irq_handler(&dev_priv->gt.rps); 1993 } 1994 1995 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, 1996 u32 de_iir) 1997 { 1998 enum pipe pipe; 1999 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; 2000 2001 if (hotplug_trigger) 2002 ilk_hpd_irq_handler(dev_priv, hotplug_trigger); 2003 2004 if (de_iir & DE_ERR_INT_IVB) 2005 ivb_err_int_handler(dev_priv); 2006 2007 if (de_iir & DE_EDP_PSR_INT_HSW) { 2008 u32 psr_iir = I915_READ(EDP_PSR_IIR); 2009 2010 intel_psr_irq_handler(dev_priv, psr_iir); 2011 I915_WRITE(EDP_PSR_IIR, psr_iir); 2012 } 2013 2014 if (de_iir & DE_AUX_CHANNEL_A_IVB) 2015 dp_aux_irq_handler(dev_priv); 2016 2017 if (de_iir & DE_GSE_IVB) 2018 intel_opregion_asle_intr(dev_priv); 2019 2020 for_each_pipe(dev_priv, pipe) { 2021 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe))) 2022 intel_handle_vblank(dev_priv, pipe); 2023 } 2024 2025 /* check event from PCH */ 2026 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { 2027 u32 pch_iir = I915_READ(SDEIIR); 2028 2029 cpt_irq_handler(dev_priv, pch_iir); 2030 2031 /* clear PCH hotplug event before clear CPU irq */ 2032 I915_WRITE(SDEIIR, pch_iir); 2033 } 2034 } 2035 2036 /* 2037 * To handle irqs with the minimum potential races with fresh interrupts, we: 2038 * 1 - Disable Master Interrupt Control. 2039 * 2 - Find the source(s) of the interrupt. 2040 * 3 - Clear the Interrupt Identity bits (IIR). 2041 * 4 - Process the interrupt(s) that had bits set in the IIRs. 2042 * 5 - Re-enable Master Interrupt Control. 2043 */ 2044 static irqreturn_t ilk_irq_handler(int irq, void *arg) 2045 { 2046 struct drm_i915_private *i915 = arg; 2047 void __iomem * const regs = i915->uncore.regs; 2048 u32 de_iir, gt_iir, de_ier, sde_ier = 0; 2049 irqreturn_t ret = IRQ_NONE; 2050 2051 if (unlikely(!intel_irqs_enabled(i915))) 2052 return IRQ_NONE; 2053 2054 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2055 disable_rpm_wakeref_asserts(&i915->runtime_pm); 2056 2057 /* disable master interrupt before clearing iir */ 2058 de_ier = raw_reg_read(regs, DEIER); 2059 raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); 2060 2061 /* Disable south interrupts. We'll only write to SDEIIR once, so further 2062 * interrupts will will be stored on its back queue, and then we'll be 2063 * able to process them after we restore SDEIER (as soon as we restore 2064 * it, we'll get an interrupt if SDEIIR still has something to process 2065 * due to its back queue). */ 2066 if (!HAS_PCH_NOP(i915)) { 2067 sde_ier = raw_reg_read(regs, SDEIER); 2068 raw_reg_write(regs, SDEIER, 0); 2069 } 2070 2071 /* Find, clear, then process each source of interrupt */ 2072 2073 gt_iir = raw_reg_read(regs, GTIIR); 2074 if (gt_iir) { 2075 raw_reg_write(regs, GTIIR, gt_iir); 2076 if (INTEL_GEN(i915) >= 6) 2077 gen6_gt_irq_handler(&i915->gt, gt_iir); 2078 else 2079 gen5_gt_irq_handler(&i915->gt, gt_iir); 2080 ret = IRQ_HANDLED; 2081 } 2082 2083 de_iir = raw_reg_read(regs, DEIIR); 2084 if (de_iir) { 2085 raw_reg_write(regs, DEIIR, de_iir); 2086 if (INTEL_GEN(i915) >= 7) 2087 ivb_display_irq_handler(i915, de_iir); 2088 else 2089 ilk_display_irq_handler(i915, de_iir); 2090 ret = IRQ_HANDLED; 2091 } 2092 2093 if (INTEL_GEN(i915) >= 6) { 2094 u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR); 2095 if (pm_iir) { 2096 raw_reg_write(regs, GEN6_PMIIR, pm_iir); 2097 gen6_rps_irq_handler(&i915->gt.rps, pm_iir); 2098 ret = IRQ_HANDLED; 2099 } 2100 } 2101 2102 raw_reg_write(regs, DEIER, de_ier); 2103 if (sde_ier) 2104 raw_reg_write(regs, SDEIER, sde_ier); 2105 2106 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2107 enable_rpm_wakeref_asserts(&i915->runtime_pm); 2108 2109 return ret; 2110 } 2111 2112 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, 2113 u32 hotplug_trigger) 2114 { 2115 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2116 2117 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2118 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2119 2120 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2121 hotplug_trigger, dig_hotplug_reg, 2122 dev_priv->hotplug.hpd, 2123 bxt_port_hotplug_long_detect); 2124 2125 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2126 } 2127 2128 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir) 2129 { 2130 u32 pin_mask = 0, long_mask = 0; 2131 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK; 2132 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK; 2133 2134 if (trigger_tc) { 2135 u32 dig_hotplug_reg; 2136 2137 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL); 2138 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg); 2139 2140 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2141 trigger_tc, dig_hotplug_reg, 2142 dev_priv->hotplug.hpd, 2143 gen11_port_hotplug_long_detect); 2144 } 2145 2146 if (trigger_tbt) { 2147 u32 dig_hotplug_reg; 2148 2149 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL); 2150 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg); 2151 2152 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2153 trigger_tbt, dig_hotplug_reg, 2154 dev_priv->hotplug.hpd, 2155 gen11_port_hotplug_long_detect); 2156 } 2157 2158 if (pin_mask) 2159 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2160 else 2161 drm_err(&dev_priv->drm, 2162 "Unexpected DE HPD interrupt 0x%08x\n", iir); 2163 } 2164 2165 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv) 2166 { 2167 u32 mask; 2168 2169 if (INTEL_GEN(dev_priv) >= 12) 2170 return TGL_DE_PORT_AUX_DDIA | 2171 TGL_DE_PORT_AUX_DDIB | 2172 TGL_DE_PORT_AUX_DDIC | 2173 TGL_DE_PORT_AUX_USBC1 | 2174 TGL_DE_PORT_AUX_USBC2 | 2175 TGL_DE_PORT_AUX_USBC3 | 2176 TGL_DE_PORT_AUX_USBC4 | 2177 TGL_DE_PORT_AUX_USBC5 | 2178 TGL_DE_PORT_AUX_USBC6; 2179 2180 2181 mask = GEN8_AUX_CHANNEL_A; 2182 if (INTEL_GEN(dev_priv) >= 9) 2183 mask |= GEN9_AUX_CHANNEL_B | 2184 GEN9_AUX_CHANNEL_C | 2185 GEN9_AUX_CHANNEL_D; 2186 2187 if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11)) 2188 mask |= CNL_AUX_CHANNEL_F; 2189 2190 if (IS_GEN(dev_priv, 11)) 2191 mask |= ICL_AUX_CHANNEL_E; 2192 2193 return mask; 2194 } 2195 2196 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv) 2197 { 2198 if (IS_ROCKETLAKE(dev_priv)) 2199 return RKL_DE_PIPE_IRQ_FAULT_ERRORS; 2200 else if (INTEL_GEN(dev_priv) >= 11) 2201 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS; 2202 else if (INTEL_GEN(dev_priv) >= 9) 2203 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 2204 else 2205 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 2206 } 2207 2208 static void 2209 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir) 2210 { 2211 bool found = false; 2212 2213 if (iir & GEN8_DE_MISC_GSE) { 2214 intel_opregion_asle_intr(dev_priv); 2215 found = true; 2216 } 2217 2218 if (iir & GEN8_DE_EDP_PSR) { 2219 u32 psr_iir; 2220 i915_reg_t iir_reg; 2221 2222 if (INTEL_GEN(dev_priv) >= 12) 2223 iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder); 2224 else 2225 iir_reg = EDP_PSR_IIR; 2226 2227 psr_iir = I915_READ(iir_reg); 2228 I915_WRITE(iir_reg, psr_iir); 2229 2230 if (psr_iir) 2231 found = true; 2232 2233 intel_psr_irq_handler(dev_priv, psr_iir); 2234 } 2235 2236 if (!found) 2237 drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n"); 2238 } 2239 2240 static irqreturn_t 2241 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) 2242 { 2243 irqreturn_t ret = IRQ_NONE; 2244 u32 iir; 2245 enum pipe pipe; 2246 2247 if (master_ctl & GEN8_DE_MISC_IRQ) { 2248 iir = I915_READ(GEN8_DE_MISC_IIR); 2249 if (iir) { 2250 I915_WRITE(GEN8_DE_MISC_IIR, iir); 2251 ret = IRQ_HANDLED; 2252 gen8_de_misc_irq_handler(dev_priv, iir); 2253 } else { 2254 drm_err(&dev_priv->drm, 2255 "The master control interrupt lied (DE MISC)!\n"); 2256 } 2257 } 2258 2259 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) { 2260 iir = I915_READ(GEN11_DE_HPD_IIR); 2261 if (iir) { 2262 I915_WRITE(GEN11_DE_HPD_IIR, iir); 2263 ret = IRQ_HANDLED; 2264 gen11_hpd_irq_handler(dev_priv, iir); 2265 } else { 2266 drm_err(&dev_priv->drm, 2267 "The master control interrupt lied, (DE HPD)!\n"); 2268 } 2269 } 2270 2271 if (master_ctl & GEN8_DE_PORT_IRQ) { 2272 iir = I915_READ(GEN8_DE_PORT_IIR); 2273 if (iir) { 2274 u32 tmp_mask; 2275 bool found = false; 2276 2277 I915_WRITE(GEN8_DE_PORT_IIR, iir); 2278 ret = IRQ_HANDLED; 2279 2280 if (iir & gen8_de_port_aux_mask(dev_priv)) { 2281 dp_aux_irq_handler(dev_priv); 2282 found = true; 2283 } 2284 2285 if (IS_GEN9_LP(dev_priv)) { 2286 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK; 2287 if (tmp_mask) { 2288 bxt_hpd_irq_handler(dev_priv, tmp_mask); 2289 found = true; 2290 } 2291 } else if (IS_BROADWELL(dev_priv)) { 2292 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG; 2293 if (tmp_mask) { 2294 ilk_hpd_irq_handler(dev_priv, tmp_mask); 2295 found = true; 2296 } 2297 } 2298 2299 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) { 2300 gmbus_irq_handler(dev_priv); 2301 found = true; 2302 } 2303 2304 if (!found) 2305 drm_err(&dev_priv->drm, 2306 "Unexpected DE Port interrupt\n"); 2307 } 2308 else 2309 drm_err(&dev_priv->drm, 2310 "The master control interrupt lied (DE PORT)!\n"); 2311 } 2312 2313 for_each_pipe(dev_priv, pipe) { 2314 u32 fault_errors; 2315 2316 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) 2317 continue; 2318 2319 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); 2320 if (!iir) { 2321 drm_err(&dev_priv->drm, 2322 "The master control interrupt lied (DE PIPE)!\n"); 2323 continue; 2324 } 2325 2326 ret = IRQ_HANDLED; 2327 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir); 2328 2329 if (iir & GEN8_PIPE_VBLANK) 2330 intel_handle_vblank(dev_priv, pipe); 2331 2332 if (iir & GEN8_PIPE_CDCLK_CRC_DONE) 2333 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2334 2335 if (iir & GEN8_PIPE_FIFO_UNDERRUN) 2336 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2337 2338 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv); 2339 if (fault_errors) 2340 drm_err(&dev_priv->drm, 2341 "Fault errors on pipe %c: 0x%08x\n", 2342 pipe_name(pipe), 2343 fault_errors); 2344 } 2345 2346 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && 2347 master_ctl & GEN8_DE_PCH_IRQ) { 2348 /* 2349 * FIXME(BDW): Assume for now that the new interrupt handling 2350 * scheme also closed the SDE interrupt handling race we've seen 2351 * on older pch-split platforms. But this needs testing. 2352 */ 2353 iir = I915_READ(SDEIIR); 2354 if (iir) { 2355 I915_WRITE(SDEIIR, iir); 2356 ret = IRQ_HANDLED; 2357 2358 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2359 icp_irq_handler(dev_priv, iir); 2360 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 2361 spt_irq_handler(dev_priv, iir); 2362 else 2363 cpt_irq_handler(dev_priv, iir); 2364 } else { 2365 /* 2366 * Like on previous PCH there seems to be something 2367 * fishy going on with forwarding PCH interrupts. 2368 */ 2369 drm_dbg(&dev_priv->drm, 2370 "The master control interrupt lied (SDE)!\n"); 2371 } 2372 } 2373 2374 return ret; 2375 } 2376 2377 static inline u32 gen8_master_intr_disable(void __iomem * const regs) 2378 { 2379 raw_reg_write(regs, GEN8_MASTER_IRQ, 0); 2380 2381 /* 2382 * Now with master disabled, get a sample of level indications 2383 * for this interrupt. Indications will be cleared on related acks. 2384 * New indications can and will light up during processing, 2385 * and will generate new interrupt after enabling master. 2386 */ 2387 return raw_reg_read(regs, GEN8_MASTER_IRQ); 2388 } 2389 2390 static inline void gen8_master_intr_enable(void __iomem * const regs) 2391 { 2392 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2393 } 2394 2395 static irqreturn_t gen8_irq_handler(int irq, void *arg) 2396 { 2397 struct drm_i915_private *dev_priv = arg; 2398 void __iomem * const regs = dev_priv->uncore.regs; 2399 u32 master_ctl; 2400 2401 if (!intel_irqs_enabled(dev_priv)) 2402 return IRQ_NONE; 2403 2404 master_ctl = gen8_master_intr_disable(regs); 2405 if (!master_ctl) { 2406 gen8_master_intr_enable(regs); 2407 return IRQ_NONE; 2408 } 2409 2410 /* Find, queue (onto bottom-halves), then clear each source */ 2411 gen8_gt_irq_handler(&dev_priv->gt, master_ctl); 2412 2413 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2414 if (master_ctl & ~GEN8_GT_IRQS) { 2415 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2416 gen8_de_irq_handler(dev_priv, master_ctl); 2417 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2418 } 2419 2420 gen8_master_intr_enable(regs); 2421 2422 return IRQ_HANDLED; 2423 } 2424 2425 static u32 2426 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl) 2427 { 2428 void __iomem * const regs = gt->uncore->regs; 2429 u32 iir; 2430 2431 if (!(master_ctl & GEN11_GU_MISC_IRQ)) 2432 return 0; 2433 2434 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR); 2435 if (likely(iir)) 2436 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir); 2437 2438 return iir; 2439 } 2440 2441 static void 2442 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir) 2443 { 2444 if (iir & GEN11_GU_MISC_GSE) 2445 intel_opregion_asle_intr(gt->i915); 2446 } 2447 2448 static inline u32 gen11_master_intr_disable(void __iomem * const regs) 2449 { 2450 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0); 2451 2452 /* 2453 * Now with master disabled, get a sample of level indications 2454 * for this interrupt. Indications will be cleared on related acks. 2455 * New indications can and will light up during processing, 2456 * and will generate new interrupt after enabling master. 2457 */ 2458 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); 2459 } 2460 2461 static inline void gen11_master_intr_enable(void __iomem * const regs) 2462 { 2463 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ); 2464 } 2465 2466 static void 2467 gen11_display_irq_handler(struct drm_i915_private *i915) 2468 { 2469 void __iomem * const regs = i915->uncore.regs; 2470 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL); 2471 2472 disable_rpm_wakeref_asserts(&i915->runtime_pm); 2473 /* 2474 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ 2475 * for the display related bits. 2476 */ 2477 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0); 2478 gen8_de_irq_handler(i915, disp_ctl); 2479 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 2480 GEN11_DISPLAY_IRQ_ENABLE); 2481 2482 enable_rpm_wakeref_asserts(&i915->runtime_pm); 2483 } 2484 2485 static __always_inline irqreturn_t 2486 __gen11_irq_handler(struct drm_i915_private * const i915, 2487 u32 (*intr_disable)(void __iomem * const regs), 2488 void (*intr_enable)(void __iomem * const regs)) 2489 { 2490 void __iomem * const regs = i915->uncore.regs; 2491 struct intel_gt *gt = &i915->gt; 2492 u32 master_ctl; 2493 u32 gu_misc_iir; 2494 2495 if (!intel_irqs_enabled(i915)) 2496 return IRQ_NONE; 2497 2498 master_ctl = intr_disable(regs); 2499 if (!master_ctl) { 2500 intr_enable(regs); 2501 return IRQ_NONE; 2502 } 2503 2504 /* Find, queue (onto bottom-halves), then clear each source */ 2505 gen11_gt_irq_handler(gt, master_ctl); 2506 2507 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2508 if (master_ctl & GEN11_DISPLAY_IRQ) 2509 gen11_display_irq_handler(i915); 2510 2511 gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl); 2512 2513 intr_enable(regs); 2514 2515 gen11_gu_misc_irq_handler(gt, gu_misc_iir); 2516 2517 return IRQ_HANDLED; 2518 } 2519 2520 static irqreturn_t gen11_irq_handler(int irq, void *arg) 2521 { 2522 return __gen11_irq_handler(arg, 2523 gen11_master_intr_disable, 2524 gen11_master_intr_enable); 2525 } 2526 2527 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs) 2528 { 2529 u32 val; 2530 2531 /* First disable interrupts */ 2532 raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0); 2533 2534 /* Get the indication levels and ack the master unit */ 2535 val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR); 2536 if (unlikely(!val)) 2537 return 0; 2538 2539 raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val); 2540 2541 /* 2542 * Now with master disabled, get a sample of level indications 2543 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ 2544 * out as this bit doesn't exist anymore for DG1 2545 */ 2546 val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ; 2547 if (unlikely(!val)) 2548 return 0; 2549 2550 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val); 2551 2552 return val; 2553 } 2554 2555 static inline void dg1_master_intr_enable(void __iomem * const regs) 2556 { 2557 raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ); 2558 } 2559 2560 static irqreturn_t dg1_irq_handler(int irq, void *arg) 2561 { 2562 return __gen11_irq_handler(arg, 2563 dg1_master_intr_disable_and_ack, 2564 dg1_master_intr_enable); 2565 } 2566 2567 /* Called from drm generic code, passed 'crtc' which 2568 * we use as a pipe index 2569 */ 2570 int i8xx_enable_vblank(struct drm_crtc *crtc) 2571 { 2572 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2573 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2574 unsigned long irqflags; 2575 2576 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2577 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2578 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2579 2580 return 0; 2581 } 2582 2583 int i915gm_enable_vblank(struct drm_crtc *crtc) 2584 { 2585 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2586 2587 /* 2588 * Vblank interrupts fail to wake the device up from C2+. 2589 * Disabling render clock gating during C-states avoids 2590 * the problem. There is a small power cost so we do this 2591 * only when vblank interrupts are actually enabled. 2592 */ 2593 if (dev_priv->vblank_enabled++ == 0) 2594 I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE)); 2595 2596 return i8xx_enable_vblank(crtc); 2597 } 2598 2599 int i965_enable_vblank(struct drm_crtc *crtc) 2600 { 2601 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2602 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2603 unsigned long irqflags; 2604 2605 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2606 i915_enable_pipestat(dev_priv, pipe, 2607 PIPE_START_VBLANK_INTERRUPT_STATUS); 2608 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2609 2610 return 0; 2611 } 2612 2613 int ilk_enable_vblank(struct drm_crtc *crtc) 2614 { 2615 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2616 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2617 unsigned long irqflags; 2618 u32 bit = INTEL_GEN(dev_priv) >= 7 ? 2619 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2620 2621 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2622 ilk_enable_display_irq(dev_priv, bit); 2623 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2624 2625 /* Even though there is no DMC, frame counter can get stuck when 2626 * PSR is active as no frames are generated. 2627 */ 2628 if (HAS_PSR(dev_priv)) 2629 drm_crtc_vblank_restore(crtc); 2630 2631 return 0; 2632 } 2633 2634 int bdw_enable_vblank(struct drm_crtc *crtc) 2635 { 2636 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2637 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2638 unsigned long irqflags; 2639 2640 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2641 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2642 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2643 2644 /* Even if there is no DMC, frame counter can get stuck when 2645 * PSR is active as no frames are generated, so check only for PSR. 2646 */ 2647 if (HAS_PSR(dev_priv)) 2648 drm_crtc_vblank_restore(crtc); 2649 2650 return 0; 2651 } 2652 2653 /* Called from drm generic code, passed 'crtc' which 2654 * we use as a pipe index 2655 */ 2656 void i8xx_disable_vblank(struct drm_crtc *crtc) 2657 { 2658 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2659 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2660 unsigned long irqflags; 2661 2662 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2663 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2664 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2665 } 2666 2667 void i915gm_disable_vblank(struct drm_crtc *crtc) 2668 { 2669 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2670 2671 i8xx_disable_vblank(crtc); 2672 2673 if (--dev_priv->vblank_enabled == 0) 2674 I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE)); 2675 } 2676 2677 void i965_disable_vblank(struct drm_crtc *crtc) 2678 { 2679 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2680 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2681 unsigned long irqflags; 2682 2683 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2684 i915_disable_pipestat(dev_priv, pipe, 2685 PIPE_START_VBLANK_INTERRUPT_STATUS); 2686 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2687 } 2688 2689 void ilk_disable_vblank(struct drm_crtc *crtc) 2690 { 2691 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2692 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2693 unsigned long irqflags; 2694 u32 bit = INTEL_GEN(dev_priv) >= 7 ? 2695 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2696 2697 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2698 ilk_disable_display_irq(dev_priv, bit); 2699 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2700 } 2701 2702 void bdw_disable_vblank(struct drm_crtc *crtc) 2703 { 2704 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2705 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2706 unsigned long irqflags; 2707 2708 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2709 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2710 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2711 } 2712 2713 static void ibx_irq_reset(struct drm_i915_private *dev_priv) 2714 { 2715 struct intel_uncore *uncore = &dev_priv->uncore; 2716 2717 if (HAS_PCH_NOP(dev_priv)) 2718 return; 2719 2720 GEN3_IRQ_RESET(uncore, SDE); 2721 2722 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 2723 I915_WRITE(SERR_INT, 0xffffffff); 2724 } 2725 2726 /* 2727 * SDEIER is also touched by the interrupt handler to work around missed PCH 2728 * interrupts. Hence we can't update it after the interrupt handler is enabled - 2729 * instead we unconditionally enable all PCH interrupt sources here, but then 2730 * only unmask them as needed with SDEIMR. 2731 * 2732 * This function needs to be called before interrupts are enabled. 2733 */ 2734 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv) 2735 { 2736 if (HAS_PCH_NOP(dev_priv)) 2737 return; 2738 2739 drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0); 2740 I915_WRITE(SDEIER, 0xffffffff); 2741 POSTING_READ(SDEIER); 2742 } 2743 2744 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) 2745 { 2746 struct intel_uncore *uncore = &dev_priv->uncore; 2747 2748 if (IS_CHERRYVIEW(dev_priv)) 2749 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV); 2750 else 2751 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK); 2752 2753 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); 2754 intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 2755 2756 i9xx_pipestat_irq_reset(dev_priv); 2757 2758 GEN3_IRQ_RESET(uncore, VLV_); 2759 dev_priv->irq_mask = ~0u; 2760 } 2761 2762 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) 2763 { 2764 struct intel_uncore *uncore = &dev_priv->uncore; 2765 2766 u32 pipestat_mask; 2767 u32 enable_mask; 2768 enum pipe pipe; 2769 2770 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS; 2771 2772 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 2773 for_each_pipe(dev_priv, pipe) 2774 i915_enable_pipestat(dev_priv, pipe, pipestat_mask); 2775 2776 enable_mask = I915_DISPLAY_PORT_INTERRUPT | 2777 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 2778 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 2779 I915_LPE_PIPE_A_INTERRUPT | 2780 I915_LPE_PIPE_B_INTERRUPT; 2781 2782 if (IS_CHERRYVIEW(dev_priv)) 2783 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT | 2784 I915_LPE_PIPE_C_INTERRUPT; 2785 2786 drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u); 2787 2788 dev_priv->irq_mask = ~enable_mask; 2789 2790 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask); 2791 } 2792 2793 /* drm_dma.h hooks 2794 */ 2795 static void ilk_irq_reset(struct drm_i915_private *dev_priv) 2796 { 2797 struct intel_uncore *uncore = &dev_priv->uncore; 2798 2799 GEN3_IRQ_RESET(uncore, DE); 2800 if (IS_GEN(dev_priv, 7)) 2801 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff); 2802 2803 if (IS_HASWELL(dev_priv)) { 2804 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 2805 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 2806 } 2807 2808 gen5_gt_irq_reset(&dev_priv->gt); 2809 2810 ibx_irq_reset(dev_priv); 2811 } 2812 2813 static void valleyview_irq_reset(struct drm_i915_private *dev_priv) 2814 { 2815 I915_WRITE(VLV_MASTER_IER, 0); 2816 POSTING_READ(VLV_MASTER_IER); 2817 2818 gen5_gt_irq_reset(&dev_priv->gt); 2819 2820 spin_lock_irq(&dev_priv->irq_lock); 2821 if (dev_priv->display_irqs_enabled) 2822 vlv_display_irq_reset(dev_priv); 2823 spin_unlock_irq(&dev_priv->irq_lock); 2824 } 2825 2826 static void gen8_irq_reset(struct drm_i915_private *dev_priv) 2827 { 2828 struct intel_uncore *uncore = &dev_priv->uncore; 2829 enum pipe pipe; 2830 2831 gen8_master_intr_disable(dev_priv->uncore.regs); 2832 2833 gen8_gt_irq_reset(&dev_priv->gt); 2834 2835 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 2836 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 2837 2838 for_each_pipe(dev_priv, pipe) 2839 if (intel_display_power_is_enabled(dev_priv, 2840 POWER_DOMAIN_PIPE(pipe))) 2841 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 2842 2843 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 2844 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 2845 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 2846 2847 if (HAS_PCH_SPLIT(dev_priv)) 2848 ibx_irq_reset(dev_priv); 2849 } 2850 2851 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv) 2852 { 2853 struct intel_uncore *uncore = &dev_priv->uncore; 2854 enum pipe pipe; 2855 u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) | 2856 BIT(TRANSCODER_C) | BIT(TRANSCODER_D); 2857 2858 intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0); 2859 2860 if (INTEL_GEN(dev_priv) >= 12) { 2861 enum transcoder trans; 2862 2863 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) { 2864 enum intel_display_power_domain domain; 2865 2866 domain = POWER_DOMAIN_TRANSCODER(trans); 2867 if (!intel_display_power_is_enabled(dev_priv, domain)) 2868 continue; 2869 2870 intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff); 2871 intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff); 2872 } 2873 } else { 2874 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 2875 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 2876 } 2877 2878 for_each_pipe(dev_priv, pipe) 2879 if (intel_display_power_is_enabled(dev_priv, 2880 POWER_DOMAIN_PIPE(pipe))) 2881 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 2882 2883 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 2884 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 2885 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_); 2886 2887 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2888 GEN3_IRQ_RESET(uncore, SDE); 2889 2890 /* Wa_14010685332:icl,jsl,ehl,tgl,rkl */ 2891 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) { 2892 intel_uncore_rmw(uncore, SOUTH_CHICKEN1, 2893 SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS); 2894 intel_uncore_rmw(uncore, SOUTH_CHICKEN1, 2895 SBCLK_RUN_REFCLK_DIS, 0); 2896 } 2897 } 2898 2899 static void gen11_irq_reset(struct drm_i915_private *dev_priv) 2900 { 2901 struct intel_uncore *uncore = &dev_priv->uncore; 2902 2903 if (HAS_MASTER_UNIT_IRQ(dev_priv)) 2904 dg1_master_intr_disable_and_ack(dev_priv->uncore.regs); 2905 else 2906 gen11_master_intr_disable(dev_priv->uncore.regs); 2907 2908 gen11_gt_irq_reset(&dev_priv->gt); 2909 gen11_display_irq_reset(dev_priv); 2910 2911 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_); 2912 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 2913 } 2914 2915 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, 2916 u8 pipe_mask) 2917 { 2918 struct intel_uncore *uncore = &dev_priv->uncore; 2919 2920 u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; 2921 enum pipe pipe; 2922 2923 spin_lock_irq(&dev_priv->irq_lock); 2924 2925 if (!intel_irqs_enabled(dev_priv)) { 2926 spin_unlock_irq(&dev_priv->irq_lock); 2927 return; 2928 } 2929 2930 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 2931 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 2932 dev_priv->de_irq_mask[pipe], 2933 ~dev_priv->de_irq_mask[pipe] | extra_ier); 2934 2935 spin_unlock_irq(&dev_priv->irq_lock); 2936 } 2937 2938 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, 2939 u8 pipe_mask) 2940 { 2941 struct intel_uncore *uncore = &dev_priv->uncore; 2942 enum pipe pipe; 2943 2944 spin_lock_irq(&dev_priv->irq_lock); 2945 2946 if (!intel_irqs_enabled(dev_priv)) { 2947 spin_unlock_irq(&dev_priv->irq_lock); 2948 return; 2949 } 2950 2951 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 2952 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 2953 2954 spin_unlock_irq(&dev_priv->irq_lock); 2955 2956 /* make sure we're done processing display irqs */ 2957 intel_synchronize_irq(dev_priv); 2958 } 2959 2960 static void cherryview_irq_reset(struct drm_i915_private *dev_priv) 2961 { 2962 struct intel_uncore *uncore = &dev_priv->uncore; 2963 2964 I915_WRITE(GEN8_MASTER_IRQ, 0); 2965 POSTING_READ(GEN8_MASTER_IRQ); 2966 2967 gen8_gt_irq_reset(&dev_priv->gt); 2968 2969 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 2970 2971 spin_lock_irq(&dev_priv->irq_lock); 2972 if (dev_priv->display_irqs_enabled) 2973 vlv_display_irq_reset(dev_priv); 2974 spin_unlock_irq(&dev_priv->irq_lock); 2975 } 2976 2977 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, 2978 const u32 hpd[HPD_NUM_PINS]) 2979 { 2980 struct intel_encoder *encoder; 2981 u32 enabled_irqs = 0; 2982 2983 for_each_intel_encoder(&dev_priv->drm, encoder) 2984 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) 2985 enabled_irqs |= hpd[encoder->hpd_pin]; 2986 2987 return enabled_irqs; 2988 } 2989 2990 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv, 2991 const u32 hpd[HPD_NUM_PINS]) 2992 { 2993 struct intel_encoder *encoder; 2994 u32 hotplug_irqs = 0; 2995 2996 for_each_intel_encoder(&dev_priv->drm, encoder) 2997 hotplug_irqs |= hpd[encoder->hpd_pin]; 2998 2999 return hotplug_irqs; 3000 } 3001 3002 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv) 3003 { 3004 u32 hotplug; 3005 3006 /* 3007 * Enable digital hotplug on the PCH, and configure the DP short pulse 3008 * duration to 2ms (which is the minimum in the Display Port spec). 3009 * The pulse duration bits are reserved on LPT+. 3010 */ 3011 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3012 hotplug &= ~(PORTB_PULSE_DURATION_MASK | 3013 PORTC_PULSE_DURATION_MASK | 3014 PORTD_PULSE_DURATION_MASK); 3015 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; 3016 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; 3017 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; 3018 /* 3019 * When CPU and PCH are on the same package, port A 3020 * HPD must be enabled in both north and south. 3021 */ 3022 if (HAS_PCH_LPT_LP(dev_priv)) 3023 hotplug |= PORTA_HOTPLUG_ENABLE; 3024 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3025 } 3026 3027 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) 3028 { 3029 u32 hotplug_irqs, enabled_irqs; 3030 3031 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3032 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3033 3034 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3035 3036 ibx_hpd_detection_setup(dev_priv); 3037 } 3038 3039 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv, 3040 u32 enable_mask) 3041 { 3042 u32 hotplug; 3043 3044 hotplug = I915_READ(SHOTPLUG_CTL_DDI); 3045 hotplug |= enable_mask; 3046 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug); 3047 } 3048 3049 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv, 3050 u32 enable_mask) 3051 { 3052 u32 hotplug; 3053 3054 hotplug = I915_READ(SHOTPLUG_CTL_TC); 3055 hotplug |= enable_mask; 3056 I915_WRITE(SHOTPLUG_CTL_TC, hotplug); 3057 } 3058 3059 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv, 3060 u32 ddi_enable_mask, u32 tc_enable_mask) 3061 { 3062 u32 hotplug_irqs, enabled_irqs; 3063 3064 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3065 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3066 3067 if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP) 3068 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ); 3069 3070 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3071 3072 icp_ddi_hpd_detection_setup(dev_priv, ddi_enable_mask); 3073 if (tc_enable_mask) 3074 icp_tc_hpd_detection_setup(dev_priv, tc_enable_mask); 3075 } 3076 3077 /* 3078 * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the 3079 * equivalent of SDE. 3080 */ 3081 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv) 3082 { 3083 icp_hpd_irq_setup(dev_priv, 3084 ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1)); 3085 } 3086 3087 /* 3088 * JSP behaves exactly the same as MCC above except that port C is mapped to 3089 * the DDI-C pins instead of the TC1 pins. This means we should follow TGP's 3090 * masks & tables rather than ICP's masks & tables. 3091 */ 3092 static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv) 3093 { 3094 icp_hpd_irq_setup(dev_priv, 3095 TGP_DDI_HPD_ENABLE_MASK, 0); 3096 } 3097 3098 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv) 3099 { 3100 u32 hotplug; 3101 3102 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL); 3103 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) | 3104 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) | 3105 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) | 3106 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4) | 3107 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC5) | 3108 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC6); 3109 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug); 3110 3111 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL); 3112 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) | 3113 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) | 3114 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) | 3115 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4) | 3116 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC5) | 3117 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC6); 3118 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug); 3119 } 3120 3121 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv) 3122 { 3123 u32 hotplug_irqs, enabled_irqs; 3124 u32 val; 3125 3126 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd); 3127 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd); 3128 3129 val = I915_READ(GEN11_DE_HPD_IMR); 3130 val &= ~hotplug_irqs; 3131 val |= ~enabled_irqs & hotplug_irqs; 3132 I915_WRITE(GEN11_DE_HPD_IMR, val); 3133 POSTING_READ(GEN11_DE_HPD_IMR); 3134 3135 gen11_hpd_detection_setup(dev_priv); 3136 3137 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP) 3138 icp_hpd_irq_setup(dev_priv, 3139 TGP_DDI_HPD_ENABLE_MASK, TGP_TC_HPD_ENABLE_MASK); 3140 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3141 icp_hpd_irq_setup(dev_priv, 3142 ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE_MASK); 3143 } 3144 3145 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3146 { 3147 u32 val, hotplug; 3148 3149 /* Display WA #1179 WaHardHangonHotPlug: cnp */ 3150 if (HAS_PCH_CNP(dev_priv)) { 3151 val = I915_READ(SOUTH_CHICKEN1); 3152 val &= ~CHASSIS_CLK_REQ_DURATION_MASK; 3153 val |= CHASSIS_CLK_REQ_DURATION(0xf); 3154 I915_WRITE(SOUTH_CHICKEN1, val); 3155 } 3156 3157 /* Enable digital hotplug on the PCH */ 3158 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3159 hotplug |= PORTA_HOTPLUG_ENABLE | 3160 PORTB_HOTPLUG_ENABLE | 3161 PORTC_HOTPLUG_ENABLE | 3162 PORTD_HOTPLUG_ENABLE; 3163 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3164 3165 hotplug = I915_READ(PCH_PORT_HOTPLUG2); 3166 hotplug |= PORTE_HOTPLUG_ENABLE; 3167 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug); 3168 } 3169 3170 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3171 { 3172 u32 hotplug_irqs, enabled_irqs; 3173 3174 if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 3175 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ); 3176 3177 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3178 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd); 3179 3180 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3181 3182 spt_hpd_detection_setup(dev_priv); 3183 } 3184 3185 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv) 3186 { 3187 u32 hotplug; 3188 3189 /* 3190 * Enable digital hotplug on the CPU, and configure the DP short pulse 3191 * duration to 2ms (which is the minimum in the Display Port spec) 3192 * The pulse duration bits are reserved on HSW+. 3193 */ 3194 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 3195 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK; 3196 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | 3197 DIGITAL_PORTA_PULSE_DURATION_2ms; 3198 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug); 3199 } 3200 3201 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) 3202 { 3203 u32 hotplug_irqs, enabled_irqs; 3204 3205 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd); 3206 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd); 3207 3208 if (INTEL_GEN(dev_priv) >= 8) 3209 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3210 else 3211 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3212 3213 ilk_hpd_detection_setup(dev_priv); 3214 3215 ibx_hpd_irq_setup(dev_priv); 3216 } 3217 3218 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv, 3219 u32 enabled_irqs) 3220 { 3221 u32 hotplug; 3222 3223 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3224 hotplug |= PORTA_HOTPLUG_ENABLE | 3225 PORTB_HOTPLUG_ENABLE | 3226 PORTC_HOTPLUG_ENABLE; 3227 3228 drm_dbg_kms(&dev_priv->drm, 3229 "Invert bit setting: hp_ctl:%x hp_port:%x\n", 3230 hotplug, enabled_irqs); 3231 hotplug &= ~BXT_DDI_HPD_INVERT_MASK; 3232 3233 /* 3234 * For BXT invert bit has to be set based on AOB design 3235 * for HPD detection logic, update it based on VBT fields. 3236 */ 3237 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) && 3238 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A)) 3239 hotplug |= BXT_DDIA_HPD_INVERT; 3240 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) && 3241 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B)) 3242 hotplug |= BXT_DDIB_HPD_INVERT; 3243 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) && 3244 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C)) 3245 hotplug |= BXT_DDIC_HPD_INVERT; 3246 3247 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3248 } 3249 3250 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3251 { 3252 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK); 3253 } 3254 3255 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3256 { 3257 u32 hotplug_irqs, enabled_irqs; 3258 3259 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd); 3260 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd); 3261 3262 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3263 3264 __bxt_hpd_detection_setup(dev_priv, enabled_irqs); 3265 } 3266 3267 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv) 3268 { 3269 u32 mask; 3270 3271 if (HAS_PCH_NOP(dev_priv)) 3272 return; 3273 3274 if (HAS_PCH_IBX(dev_priv)) 3275 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; 3276 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3277 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; 3278 else 3279 mask = SDE_GMBUS_CPT; 3280 3281 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR); 3282 I915_WRITE(SDEIMR, ~mask); 3283 3284 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 3285 HAS_PCH_LPT(dev_priv)) 3286 ibx_hpd_detection_setup(dev_priv); 3287 else 3288 spt_hpd_detection_setup(dev_priv); 3289 } 3290 3291 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv) 3292 { 3293 struct intel_uncore *uncore = &dev_priv->uncore; 3294 u32 display_mask, extra_mask; 3295 3296 if (INTEL_GEN(dev_priv) >= 7) { 3297 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | 3298 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB); 3299 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | 3300 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | 3301 DE_DP_A_HOTPLUG_IVB); 3302 } else { 3303 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | 3304 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE | 3305 DE_PIPEA_CRC_DONE | DE_POISON); 3306 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT | 3307 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | 3308 DE_DP_A_HOTPLUG); 3309 } 3310 3311 if (IS_HASWELL(dev_priv)) { 3312 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 3313 display_mask |= DE_EDP_PSR_INT_HSW; 3314 } 3315 3316 dev_priv->irq_mask = ~display_mask; 3317 3318 ibx_irq_pre_postinstall(dev_priv); 3319 3320 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask, 3321 display_mask | extra_mask); 3322 3323 gen5_gt_irq_postinstall(&dev_priv->gt); 3324 3325 ilk_hpd_detection_setup(dev_priv); 3326 3327 ibx_irq_postinstall(dev_priv); 3328 3329 if (IS_IRONLAKE_M(dev_priv)) { 3330 /* Enable PCU event interrupts 3331 * 3332 * spinlocking not required here for correctness since interrupt 3333 * setup is guaranteed to run in single-threaded context. But we 3334 * need it to make the assert_spin_locked happy. */ 3335 spin_lock_irq(&dev_priv->irq_lock); 3336 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT); 3337 spin_unlock_irq(&dev_priv->irq_lock); 3338 } 3339 } 3340 3341 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) 3342 { 3343 lockdep_assert_held(&dev_priv->irq_lock); 3344 3345 if (dev_priv->display_irqs_enabled) 3346 return; 3347 3348 dev_priv->display_irqs_enabled = true; 3349 3350 if (intel_irqs_enabled(dev_priv)) { 3351 vlv_display_irq_reset(dev_priv); 3352 vlv_display_irq_postinstall(dev_priv); 3353 } 3354 } 3355 3356 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) 3357 { 3358 lockdep_assert_held(&dev_priv->irq_lock); 3359 3360 if (!dev_priv->display_irqs_enabled) 3361 return; 3362 3363 dev_priv->display_irqs_enabled = false; 3364 3365 if (intel_irqs_enabled(dev_priv)) 3366 vlv_display_irq_reset(dev_priv); 3367 } 3368 3369 3370 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv) 3371 { 3372 gen5_gt_irq_postinstall(&dev_priv->gt); 3373 3374 spin_lock_irq(&dev_priv->irq_lock); 3375 if (dev_priv->display_irqs_enabled) 3376 vlv_display_irq_postinstall(dev_priv); 3377 spin_unlock_irq(&dev_priv->irq_lock); 3378 3379 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 3380 POSTING_READ(VLV_MASTER_IER); 3381 } 3382 3383 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) 3384 { 3385 struct intel_uncore *uncore = &dev_priv->uncore; 3386 3387 u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) | 3388 GEN8_PIPE_CDCLK_CRC_DONE; 3389 u32 de_pipe_enables; 3390 u32 de_port_masked = gen8_de_port_aux_mask(dev_priv); 3391 u32 de_port_enables; 3392 u32 de_misc_masked = GEN8_DE_EDP_PSR; 3393 u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) | 3394 BIT(TRANSCODER_C) | BIT(TRANSCODER_D); 3395 enum pipe pipe; 3396 3397 if (INTEL_GEN(dev_priv) <= 10) 3398 de_misc_masked |= GEN8_DE_MISC_GSE; 3399 3400 if (IS_GEN9_LP(dev_priv)) 3401 de_port_masked |= BXT_DE_PORT_GMBUS; 3402 3403 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | 3404 GEN8_PIPE_FIFO_UNDERRUN; 3405 3406 de_port_enables = de_port_masked; 3407 if (IS_GEN9_LP(dev_priv)) 3408 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; 3409 else if (IS_BROADWELL(dev_priv)) 3410 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG; 3411 3412 if (INTEL_GEN(dev_priv) >= 12) { 3413 enum transcoder trans; 3414 3415 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) { 3416 enum intel_display_power_domain domain; 3417 3418 domain = POWER_DOMAIN_TRANSCODER(trans); 3419 if (!intel_display_power_is_enabled(dev_priv, domain)) 3420 continue; 3421 3422 gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans)); 3423 } 3424 } else { 3425 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 3426 } 3427 3428 for_each_pipe(dev_priv, pipe) { 3429 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked; 3430 3431 if (intel_display_power_is_enabled(dev_priv, 3432 POWER_DOMAIN_PIPE(pipe))) 3433 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 3434 dev_priv->de_irq_mask[pipe], 3435 de_pipe_enables); 3436 } 3437 3438 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables); 3439 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); 3440 3441 if (INTEL_GEN(dev_priv) >= 11) { 3442 u32 de_hpd_masked = 0; 3443 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK | 3444 GEN11_DE_TBT_HOTPLUG_MASK; 3445 3446 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked, 3447 de_hpd_enables); 3448 gen11_hpd_detection_setup(dev_priv); 3449 } else if (IS_GEN9_LP(dev_priv)) { 3450 bxt_hpd_detection_setup(dev_priv); 3451 } else if (IS_BROADWELL(dev_priv)) { 3452 ilk_hpd_detection_setup(dev_priv); 3453 } 3454 } 3455 3456 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv) 3457 { 3458 if (HAS_PCH_SPLIT(dev_priv)) 3459 ibx_irq_pre_postinstall(dev_priv); 3460 3461 gen8_gt_irq_postinstall(&dev_priv->gt); 3462 gen8_de_irq_postinstall(dev_priv); 3463 3464 if (HAS_PCH_SPLIT(dev_priv)) 3465 ibx_irq_postinstall(dev_priv); 3466 3467 gen8_master_intr_enable(dev_priv->uncore.regs); 3468 } 3469 3470 static void icp_irq_postinstall(struct drm_i915_private *dev_priv) 3471 { 3472 u32 mask = SDE_GMBUS_ICP; 3473 3474 drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0); 3475 I915_WRITE(SDEIER, 0xffffffff); 3476 POSTING_READ(SDEIER); 3477 3478 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR); 3479 I915_WRITE(SDEIMR, ~mask); 3480 3481 if (HAS_PCH_TGP(dev_priv)) { 3482 icp_ddi_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK); 3483 icp_tc_hpd_detection_setup(dev_priv, TGP_TC_HPD_ENABLE_MASK); 3484 } else if (HAS_PCH_JSP(dev_priv)) { 3485 icp_ddi_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK); 3486 } else if (HAS_PCH_MCC(dev_priv)) { 3487 icp_ddi_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK); 3488 icp_tc_hpd_detection_setup(dev_priv, ICP_TC_HPD_ENABLE(PORT_TC1)); 3489 } else { 3490 icp_ddi_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK); 3491 icp_tc_hpd_detection_setup(dev_priv, ICP_TC_HPD_ENABLE_MASK); 3492 } 3493 } 3494 3495 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv) 3496 { 3497 struct intel_uncore *uncore = &dev_priv->uncore; 3498 u32 gu_misc_masked = GEN11_GU_MISC_GSE; 3499 3500 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3501 icp_irq_postinstall(dev_priv); 3502 3503 gen11_gt_irq_postinstall(&dev_priv->gt); 3504 gen8_de_irq_postinstall(dev_priv); 3505 3506 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked); 3507 3508 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE); 3509 3510 if (HAS_MASTER_UNIT_IRQ(dev_priv)) { 3511 dg1_master_intr_enable(uncore->regs); 3512 POSTING_READ(DG1_MSTR_UNIT_INTR); 3513 } else { 3514 gen11_master_intr_enable(uncore->regs); 3515 POSTING_READ(GEN11_GFX_MSTR_IRQ); 3516 } 3517 } 3518 3519 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv) 3520 { 3521 gen8_gt_irq_postinstall(&dev_priv->gt); 3522 3523 spin_lock_irq(&dev_priv->irq_lock); 3524 if (dev_priv->display_irqs_enabled) 3525 vlv_display_irq_postinstall(dev_priv); 3526 spin_unlock_irq(&dev_priv->irq_lock); 3527 3528 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 3529 POSTING_READ(GEN8_MASTER_IRQ); 3530 } 3531 3532 static void i8xx_irq_reset(struct drm_i915_private *dev_priv) 3533 { 3534 struct intel_uncore *uncore = &dev_priv->uncore; 3535 3536 i9xx_pipestat_irq_reset(dev_priv); 3537 3538 GEN2_IRQ_RESET(uncore); 3539 } 3540 3541 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv) 3542 { 3543 struct intel_uncore *uncore = &dev_priv->uncore; 3544 u16 enable_mask; 3545 3546 intel_uncore_write16(uncore, 3547 EMR, 3548 ~(I915_ERROR_PAGE_TABLE | 3549 I915_ERROR_MEMORY_REFRESH)); 3550 3551 /* Unmask the interrupts that we always want on. */ 3552 dev_priv->irq_mask = 3553 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3554 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3555 I915_MASTER_ERROR_INTERRUPT); 3556 3557 enable_mask = 3558 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3559 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3560 I915_MASTER_ERROR_INTERRUPT | 3561 I915_USER_INTERRUPT; 3562 3563 GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask); 3564 3565 /* Interrupt setup is already guaranteed to be single-threaded, this is 3566 * just to make the assert_spin_locked check happy. */ 3567 spin_lock_irq(&dev_priv->irq_lock); 3568 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3569 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3570 spin_unlock_irq(&dev_priv->irq_lock); 3571 } 3572 3573 static void i8xx_error_irq_ack(struct drm_i915_private *i915, 3574 u16 *eir, u16 *eir_stuck) 3575 { 3576 struct intel_uncore *uncore = &i915->uncore; 3577 u16 emr; 3578 3579 *eir = intel_uncore_read16(uncore, EIR); 3580 3581 if (*eir) 3582 intel_uncore_write16(uncore, EIR, *eir); 3583 3584 *eir_stuck = intel_uncore_read16(uncore, EIR); 3585 if (*eir_stuck == 0) 3586 return; 3587 3588 /* 3589 * Toggle all EMR bits to make sure we get an edge 3590 * in the ISR master error bit if we don't clear 3591 * all the EIR bits. Otherwise the edge triggered 3592 * IIR on i965/g4x wouldn't notice that an interrupt 3593 * is still pending. Also some EIR bits can't be 3594 * cleared except by handling the underlying error 3595 * (or by a GPU reset) so we mask any bit that 3596 * remains set. 3597 */ 3598 emr = intel_uncore_read16(uncore, EMR); 3599 intel_uncore_write16(uncore, EMR, 0xffff); 3600 intel_uncore_write16(uncore, EMR, emr | *eir_stuck); 3601 } 3602 3603 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv, 3604 u16 eir, u16 eir_stuck) 3605 { 3606 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir); 3607 3608 if (eir_stuck) 3609 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n", 3610 eir_stuck); 3611 } 3612 3613 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv, 3614 u32 *eir, u32 *eir_stuck) 3615 { 3616 u32 emr; 3617 3618 *eir = I915_READ(EIR); 3619 3620 I915_WRITE(EIR, *eir); 3621 3622 *eir_stuck = I915_READ(EIR); 3623 if (*eir_stuck == 0) 3624 return; 3625 3626 /* 3627 * Toggle all EMR bits to make sure we get an edge 3628 * in the ISR master error bit if we don't clear 3629 * all the EIR bits. Otherwise the edge triggered 3630 * IIR on i965/g4x wouldn't notice that an interrupt 3631 * is still pending. Also some EIR bits can't be 3632 * cleared except by handling the underlying error 3633 * (or by a GPU reset) so we mask any bit that 3634 * remains set. 3635 */ 3636 emr = I915_READ(EMR); 3637 I915_WRITE(EMR, 0xffffffff); 3638 I915_WRITE(EMR, emr | *eir_stuck); 3639 } 3640 3641 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv, 3642 u32 eir, u32 eir_stuck) 3643 { 3644 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir); 3645 3646 if (eir_stuck) 3647 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n", 3648 eir_stuck); 3649 } 3650 3651 static irqreturn_t i8xx_irq_handler(int irq, void *arg) 3652 { 3653 struct drm_i915_private *dev_priv = arg; 3654 irqreturn_t ret = IRQ_NONE; 3655 3656 if (!intel_irqs_enabled(dev_priv)) 3657 return IRQ_NONE; 3658 3659 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3660 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3661 3662 do { 3663 u32 pipe_stats[I915_MAX_PIPES] = {}; 3664 u16 eir = 0, eir_stuck = 0; 3665 u16 iir; 3666 3667 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR); 3668 if (iir == 0) 3669 break; 3670 3671 ret = IRQ_HANDLED; 3672 3673 /* Call regardless, as some status bits might not be 3674 * signalled in iir */ 3675 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 3676 3677 if (iir & I915_MASTER_ERROR_INTERRUPT) 3678 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 3679 3680 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir); 3681 3682 if (iir & I915_USER_INTERRUPT) 3683 intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]); 3684 3685 if (iir & I915_MASTER_ERROR_INTERRUPT) 3686 i8xx_error_irq_handler(dev_priv, eir, eir_stuck); 3687 3688 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats); 3689 } while (0); 3690 3691 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3692 3693 return ret; 3694 } 3695 3696 static void i915_irq_reset(struct drm_i915_private *dev_priv) 3697 { 3698 struct intel_uncore *uncore = &dev_priv->uncore; 3699 3700 if (I915_HAS_HOTPLUG(dev_priv)) { 3701 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3702 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3703 } 3704 3705 i9xx_pipestat_irq_reset(dev_priv); 3706 3707 GEN3_IRQ_RESET(uncore, GEN2_); 3708 } 3709 3710 static void i915_irq_postinstall(struct drm_i915_private *dev_priv) 3711 { 3712 struct intel_uncore *uncore = &dev_priv->uncore; 3713 u32 enable_mask; 3714 3715 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | 3716 I915_ERROR_MEMORY_REFRESH)); 3717 3718 /* Unmask the interrupts that we always want on. */ 3719 dev_priv->irq_mask = 3720 ~(I915_ASLE_INTERRUPT | 3721 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3722 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3723 I915_MASTER_ERROR_INTERRUPT); 3724 3725 enable_mask = 3726 I915_ASLE_INTERRUPT | 3727 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3728 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3729 I915_MASTER_ERROR_INTERRUPT | 3730 I915_USER_INTERRUPT; 3731 3732 if (I915_HAS_HOTPLUG(dev_priv)) { 3733 /* Enable in IER... */ 3734 enable_mask |= I915_DISPLAY_PORT_INTERRUPT; 3735 /* and unmask in IMR */ 3736 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; 3737 } 3738 3739 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 3740 3741 /* Interrupt setup is already guaranteed to be single-threaded, this is 3742 * just to make the assert_spin_locked check happy. */ 3743 spin_lock_irq(&dev_priv->irq_lock); 3744 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3745 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3746 spin_unlock_irq(&dev_priv->irq_lock); 3747 3748 i915_enable_asle_pipestat(dev_priv); 3749 } 3750 3751 static irqreturn_t i915_irq_handler(int irq, void *arg) 3752 { 3753 struct drm_i915_private *dev_priv = arg; 3754 irqreturn_t ret = IRQ_NONE; 3755 3756 if (!intel_irqs_enabled(dev_priv)) 3757 return IRQ_NONE; 3758 3759 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3760 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3761 3762 do { 3763 u32 pipe_stats[I915_MAX_PIPES] = {}; 3764 u32 eir = 0, eir_stuck = 0; 3765 u32 hotplug_status = 0; 3766 u32 iir; 3767 3768 iir = I915_READ(GEN2_IIR); 3769 if (iir == 0) 3770 break; 3771 3772 ret = IRQ_HANDLED; 3773 3774 if (I915_HAS_HOTPLUG(dev_priv) && 3775 iir & I915_DISPLAY_PORT_INTERRUPT) 3776 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 3777 3778 /* Call regardless, as some status bits might not be 3779 * signalled in iir */ 3780 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 3781 3782 if (iir & I915_MASTER_ERROR_INTERRUPT) 3783 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 3784 3785 I915_WRITE(GEN2_IIR, iir); 3786 3787 if (iir & I915_USER_INTERRUPT) 3788 intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]); 3789 3790 if (iir & I915_MASTER_ERROR_INTERRUPT) 3791 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 3792 3793 if (hotplug_status) 3794 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 3795 3796 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats); 3797 } while (0); 3798 3799 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3800 3801 return ret; 3802 } 3803 3804 static void i965_irq_reset(struct drm_i915_private *dev_priv) 3805 { 3806 struct intel_uncore *uncore = &dev_priv->uncore; 3807 3808 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3809 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3810 3811 i9xx_pipestat_irq_reset(dev_priv); 3812 3813 GEN3_IRQ_RESET(uncore, GEN2_); 3814 } 3815 3816 static void i965_irq_postinstall(struct drm_i915_private *dev_priv) 3817 { 3818 struct intel_uncore *uncore = &dev_priv->uncore; 3819 u32 enable_mask; 3820 u32 error_mask; 3821 3822 /* 3823 * Enable some error detection, note the instruction error mask 3824 * bit is reserved, so we leave it masked. 3825 */ 3826 if (IS_G4X(dev_priv)) { 3827 error_mask = ~(GM45_ERROR_PAGE_TABLE | 3828 GM45_ERROR_MEM_PRIV | 3829 GM45_ERROR_CP_PRIV | 3830 I915_ERROR_MEMORY_REFRESH); 3831 } else { 3832 error_mask = ~(I915_ERROR_PAGE_TABLE | 3833 I915_ERROR_MEMORY_REFRESH); 3834 } 3835 I915_WRITE(EMR, error_mask); 3836 3837 /* Unmask the interrupts that we always want on. */ 3838 dev_priv->irq_mask = 3839 ~(I915_ASLE_INTERRUPT | 3840 I915_DISPLAY_PORT_INTERRUPT | 3841 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3842 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3843 I915_MASTER_ERROR_INTERRUPT); 3844 3845 enable_mask = 3846 I915_ASLE_INTERRUPT | 3847 I915_DISPLAY_PORT_INTERRUPT | 3848 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3849 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3850 I915_MASTER_ERROR_INTERRUPT | 3851 I915_USER_INTERRUPT; 3852 3853 if (IS_G4X(dev_priv)) 3854 enable_mask |= I915_BSD_USER_INTERRUPT; 3855 3856 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 3857 3858 /* Interrupt setup is already guaranteed to be single-threaded, this is 3859 * just to make the assert_spin_locked check happy. */ 3860 spin_lock_irq(&dev_priv->irq_lock); 3861 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 3862 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3863 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3864 spin_unlock_irq(&dev_priv->irq_lock); 3865 3866 i915_enable_asle_pipestat(dev_priv); 3867 } 3868 3869 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) 3870 { 3871 u32 hotplug_en; 3872 3873 lockdep_assert_held(&dev_priv->irq_lock); 3874 3875 /* Note HDMI and DP share hotplug bits */ 3876 /* enable bits are the same for all generations */ 3877 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); 3878 /* Programming the CRT detection parameters tends 3879 to generate a spurious hotplug event about three 3880 seconds later. So just do it once. 3881 */ 3882 if (IS_G4X(dev_priv)) 3883 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; 3884 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; 3885 3886 /* Ignore TV since it's buggy */ 3887 i915_hotplug_interrupt_update_locked(dev_priv, 3888 HOTPLUG_INT_EN_MASK | 3889 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | 3890 CRT_HOTPLUG_ACTIVATION_PERIOD_64, 3891 hotplug_en); 3892 } 3893 3894 static irqreturn_t i965_irq_handler(int irq, void *arg) 3895 { 3896 struct drm_i915_private *dev_priv = arg; 3897 irqreturn_t ret = IRQ_NONE; 3898 3899 if (!intel_irqs_enabled(dev_priv)) 3900 return IRQ_NONE; 3901 3902 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3903 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3904 3905 do { 3906 u32 pipe_stats[I915_MAX_PIPES] = {}; 3907 u32 eir = 0, eir_stuck = 0; 3908 u32 hotplug_status = 0; 3909 u32 iir; 3910 3911 iir = I915_READ(GEN2_IIR); 3912 if (iir == 0) 3913 break; 3914 3915 ret = IRQ_HANDLED; 3916 3917 if (iir & I915_DISPLAY_PORT_INTERRUPT) 3918 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 3919 3920 /* Call regardless, as some status bits might not be 3921 * signalled in iir */ 3922 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 3923 3924 if (iir & I915_MASTER_ERROR_INTERRUPT) 3925 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 3926 3927 I915_WRITE(GEN2_IIR, iir); 3928 3929 if (iir & I915_USER_INTERRUPT) 3930 intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]); 3931 3932 if (iir & I915_BSD_USER_INTERRUPT) 3933 intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]); 3934 3935 if (iir & I915_MASTER_ERROR_INTERRUPT) 3936 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 3937 3938 if (hotplug_status) 3939 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 3940 3941 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats); 3942 } while (0); 3943 3944 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3945 3946 return ret; 3947 } 3948 3949 /** 3950 * intel_irq_init - initializes irq support 3951 * @dev_priv: i915 device instance 3952 * 3953 * This function initializes all the irq support including work items, timers 3954 * and all the vtables. It does not setup the interrupt itself though. 3955 */ 3956 void intel_irq_init(struct drm_i915_private *dev_priv) 3957 { 3958 struct drm_device *dev = &dev_priv->drm; 3959 int i; 3960 3961 intel_hpd_init_pins(dev_priv); 3962 3963 intel_hpd_init_work(dev_priv); 3964 3965 INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work); 3966 for (i = 0; i < MAX_L3_SLICES; ++i) 3967 dev_priv->l3_parity.remap_info[i] = NULL; 3968 3969 /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */ 3970 if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11) 3971 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16; 3972 3973 dev->vblank_disable_immediate = true; 3974 3975 /* Most platforms treat the display irq block as an always-on 3976 * power domain. vlv/chv can disable it at runtime and need 3977 * special care to avoid writing any of the display block registers 3978 * outside of the power domain. We defer setting up the display irqs 3979 * in this case to the runtime pm. 3980 */ 3981 dev_priv->display_irqs_enabled = true; 3982 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3983 dev_priv->display_irqs_enabled = false; 3984 3985 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD; 3986 /* If we have MST support, we want to avoid doing short HPD IRQ storm 3987 * detection, as short HPD storms will occur as a natural part of 3988 * sideband messaging with MST. 3989 * On older platforms however, IRQ storms can occur with both long and 3990 * short pulses, as seen on some G4x systems. 3991 */ 3992 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv); 3993 3994 if (HAS_GMCH(dev_priv)) { 3995 if (I915_HAS_HOTPLUG(dev_priv)) 3996 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 3997 } else { 3998 if (HAS_PCH_JSP(dev_priv)) 3999 dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup; 4000 else if (HAS_PCH_MCC(dev_priv)) 4001 dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup; 4002 else if (INTEL_GEN(dev_priv) >= 11) 4003 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup; 4004 else if (IS_GEN9_LP(dev_priv)) 4005 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup; 4006 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 4007 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; 4008 else 4009 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4010 } 4011 } 4012 4013 /** 4014 * intel_irq_fini - deinitializes IRQ support 4015 * @i915: i915 device instance 4016 * 4017 * This function deinitializes all the IRQ support. 4018 */ 4019 void intel_irq_fini(struct drm_i915_private *i915) 4020 { 4021 int i; 4022 4023 for (i = 0; i < MAX_L3_SLICES; ++i) 4024 kfree(i915->l3_parity.remap_info[i]); 4025 } 4026 4027 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv) 4028 { 4029 if (HAS_GMCH(dev_priv)) { 4030 if (IS_CHERRYVIEW(dev_priv)) 4031 return cherryview_irq_handler; 4032 else if (IS_VALLEYVIEW(dev_priv)) 4033 return valleyview_irq_handler; 4034 else if (IS_GEN(dev_priv, 4)) 4035 return i965_irq_handler; 4036 else if (IS_GEN(dev_priv, 3)) 4037 return i915_irq_handler; 4038 else 4039 return i8xx_irq_handler; 4040 } else { 4041 if (HAS_MASTER_UNIT_IRQ(dev_priv)) 4042 return dg1_irq_handler; 4043 if (INTEL_GEN(dev_priv) >= 11) 4044 return gen11_irq_handler; 4045 else if (INTEL_GEN(dev_priv) >= 8) 4046 return gen8_irq_handler; 4047 else 4048 return ilk_irq_handler; 4049 } 4050 } 4051 4052 static void intel_irq_reset(struct drm_i915_private *dev_priv) 4053 { 4054 if (HAS_GMCH(dev_priv)) { 4055 if (IS_CHERRYVIEW(dev_priv)) 4056 cherryview_irq_reset(dev_priv); 4057 else if (IS_VALLEYVIEW(dev_priv)) 4058 valleyview_irq_reset(dev_priv); 4059 else if (IS_GEN(dev_priv, 4)) 4060 i965_irq_reset(dev_priv); 4061 else if (IS_GEN(dev_priv, 3)) 4062 i915_irq_reset(dev_priv); 4063 else 4064 i8xx_irq_reset(dev_priv); 4065 } else { 4066 if (INTEL_GEN(dev_priv) >= 11) 4067 gen11_irq_reset(dev_priv); 4068 else if (INTEL_GEN(dev_priv) >= 8) 4069 gen8_irq_reset(dev_priv); 4070 else 4071 ilk_irq_reset(dev_priv); 4072 } 4073 } 4074 4075 static void intel_irq_postinstall(struct drm_i915_private *dev_priv) 4076 { 4077 if (HAS_GMCH(dev_priv)) { 4078 if (IS_CHERRYVIEW(dev_priv)) 4079 cherryview_irq_postinstall(dev_priv); 4080 else if (IS_VALLEYVIEW(dev_priv)) 4081 valleyview_irq_postinstall(dev_priv); 4082 else if (IS_GEN(dev_priv, 4)) 4083 i965_irq_postinstall(dev_priv); 4084 else if (IS_GEN(dev_priv, 3)) 4085 i915_irq_postinstall(dev_priv); 4086 else 4087 i8xx_irq_postinstall(dev_priv); 4088 } else { 4089 if (INTEL_GEN(dev_priv) >= 11) 4090 gen11_irq_postinstall(dev_priv); 4091 else if (INTEL_GEN(dev_priv) >= 8) 4092 gen8_irq_postinstall(dev_priv); 4093 else 4094 ilk_irq_postinstall(dev_priv); 4095 } 4096 } 4097 4098 /** 4099 * intel_irq_install - enables the hardware interrupt 4100 * @dev_priv: i915 device instance 4101 * 4102 * This function enables the hardware interrupt handling, but leaves the hotplug 4103 * handling still disabled. It is called after intel_irq_init(). 4104 * 4105 * In the driver load and resume code we need working interrupts in a few places 4106 * but don't want to deal with the hassle of concurrent probe and hotplug 4107 * workers. Hence the split into this two-stage approach. 4108 */ 4109 int intel_irq_install(struct drm_i915_private *dev_priv) 4110 { 4111 int irq = dev_priv->drm.pdev->irq; 4112 int ret; 4113 4114 /* 4115 * We enable some interrupt sources in our postinstall hooks, so mark 4116 * interrupts as enabled _before_ actually enabling them to avoid 4117 * special cases in our ordering checks. 4118 */ 4119 dev_priv->runtime_pm.irqs_enabled = true; 4120 4121 dev_priv->drm.irq_enabled = true; 4122 4123 intel_irq_reset(dev_priv); 4124 4125 ret = request_irq(irq, intel_irq_handler(dev_priv), 4126 IRQF_SHARED, DRIVER_NAME, dev_priv); 4127 if (ret < 0) { 4128 dev_priv->drm.irq_enabled = false; 4129 return ret; 4130 } 4131 4132 intel_irq_postinstall(dev_priv); 4133 4134 return ret; 4135 } 4136 4137 /** 4138 * intel_irq_uninstall - finilizes all irq handling 4139 * @dev_priv: i915 device instance 4140 * 4141 * This stops interrupt and hotplug handling and unregisters and frees all 4142 * resources acquired in the init functions. 4143 */ 4144 void intel_irq_uninstall(struct drm_i915_private *dev_priv) 4145 { 4146 int irq = dev_priv->drm.pdev->irq; 4147 4148 /* 4149 * FIXME we can get called twice during driver probe 4150 * error handling as well as during driver remove due to 4151 * intel_modeset_driver_remove() calling us out of sequence. 4152 * Would be nice if it didn't do that... 4153 */ 4154 if (!dev_priv->drm.irq_enabled) 4155 return; 4156 4157 dev_priv->drm.irq_enabled = false; 4158 4159 intel_irq_reset(dev_priv); 4160 4161 free_irq(irq, dev_priv); 4162 4163 intel_hpd_cancel_work(dev_priv); 4164 dev_priv->runtime_pm.irqs_enabled = false; 4165 } 4166 4167 /** 4168 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling 4169 * @dev_priv: i915 device instance 4170 * 4171 * This function is used to disable interrupts at runtime, both in the runtime 4172 * pm and the system suspend/resume code. 4173 */ 4174 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) 4175 { 4176 intel_irq_reset(dev_priv); 4177 dev_priv->runtime_pm.irqs_enabled = false; 4178 intel_synchronize_irq(dev_priv); 4179 } 4180 4181 /** 4182 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling 4183 * @dev_priv: i915 device instance 4184 * 4185 * This function is used to enable interrupts at runtime, both in the runtime 4186 * pm and the system suspend/resume code. 4187 */ 4188 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) 4189 { 4190 dev_priv->runtime_pm.irqs_enabled = true; 4191 intel_irq_reset(dev_priv); 4192 intel_irq_postinstall(dev_priv); 4193 } 4194 4195 bool intel_irqs_enabled(struct drm_i915_private *dev_priv) 4196 { 4197 /* 4198 * We only use drm_irq_uninstall() at unload and VT switch, so 4199 * this is the only thing we need to check. 4200 */ 4201 return dev_priv->runtime_pm.irqs_enabled; 4202 } 4203 4204 void intel_synchronize_irq(struct drm_i915_private *i915) 4205 { 4206 synchronize_irq(i915->drm.pdev->irq); 4207 } 4208