xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drm_irq.h>
35 #include <drm/drm_drv.h>
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38 #include "i915_trace.h"
39 #include "intel_drv.h"
40 
41 /**
42  * DOC: interrupt handling
43  *
44  * These functions provide the basic support for enabling and disabling the
45  * interrupt handling support. There's a lot more functionality in i915_irq.c
46  * and related files, but that will be described in separate chapters.
47  */
48 
49 static const u32 hpd_ilk[HPD_NUM_PINS] = {
50 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
51 };
52 
53 static const u32 hpd_ivb[HPD_NUM_PINS] = {
54 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
55 };
56 
57 static const u32 hpd_bdw[HPD_NUM_PINS] = {
58 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
59 };
60 
61 static const u32 hpd_ibx[HPD_NUM_PINS] = {
62 	[HPD_CRT] = SDE_CRT_HOTPLUG,
63 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
64 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
65 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
66 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
67 };
68 
69 static const u32 hpd_cpt[HPD_NUM_PINS] = {
70 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
71 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
72 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
73 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
74 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
75 };
76 
77 static const u32 hpd_spt[HPD_NUM_PINS] = {
78 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
79 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
80 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
81 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
82 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
83 };
84 
85 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
86 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
87 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
88 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
89 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
90 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
91 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
92 };
93 
94 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
95 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
96 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
98 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
100 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
101 };
102 
103 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
104 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
105 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
106 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
107 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
109 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
110 };
111 
112 /* BXT hpd list */
113 static const u32 hpd_bxt[HPD_NUM_PINS] = {
114 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
115 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
116 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
117 };
118 
119 static const u32 hpd_gen11[HPD_NUM_PINS] = {
120 	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
121 	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
122 	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
123 	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
124 };
125 
126 static const u32 hpd_icp[HPD_NUM_PINS] = {
127 	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
128 	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
129 	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
130 	[HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
131 	[HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
132 	[HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
133 };
134 
135 /* IIR can theoretically queue up two events. Be paranoid. */
136 #define GEN8_IRQ_RESET_NDX(type, which) do { \
137 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
138 	POSTING_READ(GEN8_##type##_IMR(which)); \
139 	I915_WRITE(GEN8_##type##_IER(which), 0); \
140 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
141 	POSTING_READ(GEN8_##type##_IIR(which)); \
142 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
143 	POSTING_READ(GEN8_##type##_IIR(which)); \
144 } while (0)
145 
146 #define GEN3_IRQ_RESET(type) do { \
147 	I915_WRITE(type##IMR, 0xffffffff); \
148 	POSTING_READ(type##IMR); \
149 	I915_WRITE(type##IER, 0); \
150 	I915_WRITE(type##IIR, 0xffffffff); \
151 	POSTING_READ(type##IIR); \
152 	I915_WRITE(type##IIR, 0xffffffff); \
153 	POSTING_READ(type##IIR); \
154 } while (0)
155 
156 #define GEN2_IRQ_RESET(type) do { \
157 	I915_WRITE16(type##IMR, 0xffff); \
158 	POSTING_READ16(type##IMR); \
159 	I915_WRITE16(type##IER, 0); \
160 	I915_WRITE16(type##IIR, 0xffff); \
161 	POSTING_READ16(type##IIR); \
162 	I915_WRITE16(type##IIR, 0xffff); \
163 	POSTING_READ16(type##IIR); \
164 } while (0)
165 
166 /*
167  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
168  */
169 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
170 				    i915_reg_t reg)
171 {
172 	u32 val = I915_READ(reg);
173 
174 	if (val == 0)
175 		return;
176 
177 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
178 	     i915_mmio_reg_offset(reg), val);
179 	I915_WRITE(reg, 0xffffffff);
180 	POSTING_READ(reg);
181 	I915_WRITE(reg, 0xffffffff);
182 	POSTING_READ(reg);
183 }
184 
185 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
186 				    i915_reg_t reg)
187 {
188 	u16 val = I915_READ16(reg);
189 
190 	if (val == 0)
191 		return;
192 
193 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
194 	     i915_mmio_reg_offset(reg), val);
195 	I915_WRITE16(reg, 0xffff);
196 	POSTING_READ16(reg);
197 	I915_WRITE16(reg, 0xffff);
198 	POSTING_READ16(reg);
199 }
200 
201 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
202 	gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
203 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
204 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
205 	POSTING_READ(GEN8_##type##_IMR(which)); \
206 } while (0)
207 
208 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
209 	gen3_assert_iir_is_zero(dev_priv, type##IIR); \
210 	I915_WRITE(type##IER, (ier_val)); \
211 	I915_WRITE(type##IMR, (imr_val)); \
212 	POSTING_READ(type##IMR); \
213 } while (0)
214 
215 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
216 	gen2_assert_iir_is_zero(dev_priv, type##IIR); \
217 	I915_WRITE16(type##IER, (ier_val)); \
218 	I915_WRITE16(type##IMR, (imr_val)); \
219 	POSTING_READ16(type##IMR); \
220 } while (0)
221 
222 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
223 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
224 
225 /* For display hotplug interrupt */
226 static inline void
227 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
228 				     u32 mask,
229 				     u32 bits)
230 {
231 	u32 val;
232 
233 	lockdep_assert_held(&dev_priv->irq_lock);
234 	WARN_ON(bits & ~mask);
235 
236 	val = I915_READ(PORT_HOTPLUG_EN);
237 	val &= ~mask;
238 	val |= bits;
239 	I915_WRITE(PORT_HOTPLUG_EN, val);
240 }
241 
242 /**
243  * i915_hotplug_interrupt_update - update hotplug interrupt enable
244  * @dev_priv: driver private
245  * @mask: bits to update
246  * @bits: bits to enable
247  * NOTE: the HPD enable bits are modified both inside and outside
248  * of an interrupt context. To avoid that read-modify-write cycles
249  * interfer, these bits are protected by a spinlock. Since this
250  * function is usually not called from a context where the lock is
251  * held already, this function acquires the lock itself. A non-locking
252  * version is also available.
253  */
254 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
255 				   u32 mask,
256 				   u32 bits)
257 {
258 	spin_lock_irq(&dev_priv->irq_lock);
259 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
260 	spin_unlock_irq(&dev_priv->irq_lock);
261 }
262 
263 static u32
264 gen11_gt_engine_identity(struct drm_i915_private * const i915,
265 			 const unsigned int bank, const unsigned int bit);
266 
267 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
268 				const unsigned int bank,
269 				const unsigned int bit)
270 {
271 	void __iomem * const regs = i915->regs;
272 	u32 dw;
273 
274 	lockdep_assert_held(&i915->irq_lock);
275 
276 	dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
277 	if (dw & BIT(bit)) {
278 		/*
279 		 * According to the BSpec, DW_IIR bits cannot be cleared without
280 		 * first servicing the Selector & Shared IIR registers.
281 		 */
282 		gen11_gt_engine_identity(i915, bank, bit);
283 
284 		/*
285 		 * We locked GT INT DW by reading it. If we want to (try
286 		 * to) recover from this succesfully, we need to clear
287 		 * our bit, otherwise we are locking the register for
288 		 * everybody.
289 		 */
290 		raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
291 
292 		return true;
293 	}
294 
295 	return false;
296 }
297 
298 /**
299  * ilk_update_display_irq - update DEIMR
300  * @dev_priv: driver private
301  * @interrupt_mask: mask of interrupt bits to update
302  * @enabled_irq_mask: mask of interrupt bits to enable
303  */
304 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
305 			    u32 interrupt_mask,
306 			    u32 enabled_irq_mask)
307 {
308 	u32 new_val;
309 
310 	lockdep_assert_held(&dev_priv->irq_lock);
311 
312 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
313 
314 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
315 		return;
316 
317 	new_val = dev_priv->irq_mask;
318 	new_val &= ~interrupt_mask;
319 	new_val |= (~enabled_irq_mask & interrupt_mask);
320 
321 	if (new_val != dev_priv->irq_mask) {
322 		dev_priv->irq_mask = new_val;
323 		I915_WRITE(DEIMR, dev_priv->irq_mask);
324 		POSTING_READ(DEIMR);
325 	}
326 }
327 
328 /**
329  * ilk_update_gt_irq - update GTIMR
330  * @dev_priv: driver private
331  * @interrupt_mask: mask of interrupt bits to update
332  * @enabled_irq_mask: mask of interrupt bits to enable
333  */
334 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
335 			      u32 interrupt_mask,
336 			      u32 enabled_irq_mask)
337 {
338 	lockdep_assert_held(&dev_priv->irq_lock);
339 
340 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
341 
342 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
343 		return;
344 
345 	dev_priv->gt_irq_mask &= ~interrupt_mask;
346 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
347 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
348 }
349 
350 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, u32 mask)
351 {
352 	ilk_update_gt_irq(dev_priv, mask, mask);
353 	POSTING_READ_FW(GTIMR);
354 }
355 
356 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, u32 mask)
357 {
358 	ilk_update_gt_irq(dev_priv, mask, 0);
359 }
360 
361 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
362 {
363 	WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
364 
365 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
366 }
367 
368 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
369 {
370 	if (INTEL_GEN(dev_priv) >= 11)
371 		return GEN11_GPM_WGBOXPERF_INTR_MASK;
372 	else if (INTEL_GEN(dev_priv) >= 8)
373 		return GEN8_GT_IMR(2);
374 	else
375 		return GEN6_PMIMR;
376 }
377 
378 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
379 {
380 	if (INTEL_GEN(dev_priv) >= 11)
381 		return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
382 	else if (INTEL_GEN(dev_priv) >= 8)
383 		return GEN8_GT_IER(2);
384 	else
385 		return GEN6_PMIER;
386 }
387 
388 /**
389  * snb_update_pm_irq - update GEN6_PMIMR
390  * @dev_priv: driver private
391  * @interrupt_mask: mask of interrupt bits to update
392  * @enabled_irq_mask: mask of interrupt bits to enable
393  */
394 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
395 			      u32 interrupt_mask,
396 			      u32 enabled_irq_mask)
397 {
398 	u32 new_val;
399 
400 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
401 
402 	lockdep_assert_held(&dev_priv->irq_lock);
403 
404 	new_val = dev_priv->pm_imr;
405 	new_val &= ~interrupt_mask;
406 	new_val |= (~enabled_irq_mask & interrupt_mask);
407 
408 	if (new_val != dev_priv->pm_imr) {
409 		dev_priv->pm_imr = new_val;
410 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
411 		POSTING_READ(gen6_pm_imr(dev_priv));
412 	}
413 }
414 
415 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
416 {
417 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
418 		return;
419 
420 	snb_update_pm_irq(dev_priv, mask, mask);
421 }
422 
423 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
424 {
425 	snb_update_pm_irq(dev_priv, mask, 0);
426 }
427 
428 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
429 {
430 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
431 		return;
432 
433 	__gen6_mask_pm_irq(dev_priv, mask);
434 }
435 
436 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
437 {
438 	i915_reg_t reg = gen6_pm_iir(dev_priv);
439 
440 	lockdep_assert_held(&dev_priv->irq_lock);
441 
442 	I915_WRITE(reg, reset_mask);
443 	I915_WRITE(reg, reset_mask);
444 	POSTING_READ(reg);
445 }
446 
447 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
448 {
449 	lockdep_assert_held(&dev_priv->irq_lock);
450 
451 	dev_priv->pm_ier |= enable_mask;
452 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
453 	gen6_unmask_pm_irq(dev_priv, enable_mask);
454 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
455 }
456 
457 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
458 {
459 	lockdep_assert_held(&dev_priv->irq_lock);
460 
461 	dev_priv->pm_ier &= ~disable_mask;
462 	__gen6_mask_pm_irq(dev_priv, disable_mask);
463 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
464 	/* though a barrier is missing here, but don't really need a one */
465 }
466 
467 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
468 {
469 	spin_lock_irq(&dev_priv->irq_lock);
470 
471 	while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
472 		;
473 
474 	dev_priv->gt_pm.rps.pm_iir = 0;
475 
476 	spin_unlock_irq(&dev_priv->irq_lock);
477 }
478 
479 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
480 {
481 	spin_lock_irq(&dev_priv->irq_lock);
482 	gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS);
483 	dev_priv->gt_pm.rps.pm_iir = 0;
484 	spin_unlock_irq(&dev_priv->irq_lock);
485 }
486 
487 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
488 {
489 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
490 
491 	if (READ_ONCE(rps->interrupts_enabled))
492 		return;
493 
494 	spin_lock_irq(&dev_priv->irq_lock);
495 	WARN_ON_ONCE(rps->pm_iir);
496 
497 	if (INTEL_GEN(dev_priv) >= 11)
498 		WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
499 	else
500 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
501 
502 	rps->interrupts_enabled = true;
503 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
504 
505 	spin_unlock_irq(&dev_priv->irq_lock);
506 }
507 
508 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
509 {
510 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
511 
512 	if (!READ_ONCE(rps->interrupts_enabled))
513 		return;
514 
515 	spin_lock_irq(&dev_priv->irq_lock);
516 	rps->interrupts_enabled = false;
517 
518 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
519 
520 	gen6_disable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
521 
522 	spin_unlock_irq(&dev_priv->irq_lock);
523 	synchronize_irq(dev_priv->drm.irq);
524 
525 	/* Now that we will not be generating any more work, flush any
526 	 * outstanding tasks. As we are called on the RPS idle path,
527 	 * we will reset the GPU to minimum frequencies, so the current
528 	 * state of the worker can be discarded.
529 	 */
530 	cancel_work_sync(&rps->work);
531 	if (INTEL_GEN(dev_priv) >= 11)
532 		gen11_reset_rps_interrupts(dev_priv);
533 	else
534 		gen6_reset_rps_interrupts(dev_priv);
535 }
536 
537 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
538 {
539 	assert_rpm_wakelock_held(dev_priv);
540 
541 	spin_lock_irq(&dev_priv->irq_lock);
542 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
543 	spin_unlock_irq(&dev_priv->irq_lock);
544 }
545 
546 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
547 {
548 	assert_rpm_wakelock_held(dev_priv);
549 
550 	spin_lock_irq(&dev_priv->irq_lock);
551 	if (!dev_priv->guc.interrupts_enabled) {
552 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
553 				       dev_priv->pm_guc_events);
554 		dev_priv->guc.interrupts_enabled = true;
555 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
556 	}
557 	spin_unlock_irq(&dev_priv->irq_lock);
558 }
559 
560 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
561 {
562 	assert_rpm_wakelock_held(dev_priv);
563 
564 	spin_lock_irq(&dev_priv->irq_lock);
565 	dev_priv->guc.interrupts_enabled = false;
566 
567 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
568 
569 	spin_unlock_irq(&dev_priv->irq_lock);
570 	synchronize_irq(dev_priv->drm.irq);
571 
572 	gen9_reset_guc_interrupts(dev_priv);
573 }
574 
575 /**
576  * bdw_update_port_irq - update DE port interrupt
577  * @dev_priv: driver private
578  * @interrupt_mask: mask of interrupt bits to update
579  * @enabled_irq_mask: mask of interrupt bits to enable
580  */
581 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
582 				u32 interrupt_mask,
583 				u32 enabled_irq_mask)
584 {
585 	u32 new_val;
586 	u32 old_val;
587 
588 	lockdep_assert_held(&dev_priv->irq_lock);
589 
590 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
591 
592 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
593 		return;
594 
595 	old_val = I915_READ(GEN8_DE_PORT_IMR);
596 
597 	new_val = old_val;
598 	new_val &= ~interrupt_mask;
599 	new_val |= (~enabled_irq_mask & interrupt_mask);
600 
601 	if (new_val != old_val) {
602 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
603 		POSTING_READ(GEN8_DE_PORT_IMR);
604 	}
605 }
606 
607 /**
608  * bdw_update_pipe_irq - update DE pipe interrupt
609  * @dev_priv: driver private
610  * @pipe: pipe whose interrupt to update
611  * @interrupt_mask: mask of interrupt bits to update
612  * @enabled_irq_mask: mask of interrupt bits to enable
613  */
614 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
615 			 enum pipe pipe,
616 			 u32 interrupt_mask,
617 			 u32 enabled_irq_mask)
618 {
619 	u32 new_val;
620 
621 	lockdep_assert_held(&dev_priv->irq_lock);
622 
623 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
624 
625 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
626 		return;
627 
628 	new_val = dev_priv->de_irq_mask[pipe];
629 	new_val &= ~interrupt_mask;
630 	new_val |= (~enabled_irq_mask & interrupt_mask);
631 
632 	if (new_val != dev_priv->de_irq_mask[pipe]) {
633 		dev_priv->de_irq_mask[pipe] = new_val;
634 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
635 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
636 	}
637 }
638 
639 /**
640  * ibx_display_interrupt_update - update SDEIMR
641  * @dev_priv: driver private
642  * @interrupt_mask: mask of interrupt bits to update
643  * @enabled_irq_mask: mask of interrupt bits to enable
644  */
645 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
646 				  u32 interrupt_mask,
647 				  u32 enabled_irq_mask)
648 {
649 	u32 sdeimr = I915_READ(SDEIMR);
650 	sdeimr &= ~interrupt_mask;
651 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
652 
653 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
654 
655 	lockdep_assert_held(&dev_priv->irq_lock);
656 
657 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
658 		return;
659 
660 	I915_WRITE(SDEIMR, sdeimr);
661 	POSTING_READ(SDEIMR);
662 }
663 
664 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
665 			      enum pipe pipe)
666 {
667 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
668 	u32 enable_mask = status_mask << 16;
669 
670 	lockdep_assert_held(&dev_priv->irq_lock);
671 
672 	if (INTEL_GEN(dev_priv) < 5)
673 		goto out;
674 
675 	/*
676 	 * On pipe A we don't support the PSR interrupt yet,
677 	 * on pipe B and C the same bit MBZ.
678 	 */
679 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
680 		return 0;
681 	/*
682 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
683 	 * A the same bit is for perf counters which we don't use either.
684 	 */
685 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
686 		return 0;
687 
688 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
689 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
690 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
691 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
692 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
693 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
694 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
695 
696 out:
697 	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
698 		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
699 		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
700 		  pipe_name(pipe), enable_mask, status_mask);
701 
702 	return enable_mask;
703 }
704 
705 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
706 			  enum pipe pipe, u32 status_mask)
707 {
708 	i915_reg_t reg = PIPESTAT(pipe);
709 	u32 enable_mask;
710 
711 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
712 		  "pipe %c: status_mask=0x%x\n",
713 		  pipe_name(pipe), status_mask);
714 
715 	lockdep_assert_held(&dev_priv->irq_lock);
716 	WARN_ON(!intel_irqs_enabled(dev_priv));
717 
718 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
719 		return;
720 
721 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
722 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
723 
724 	I915_WRITE(reg, enable_mask | status_mask);
725 	POSTING_READ(reg);
726 }
727 
728 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
729 			   enum pipe pipe, u32 status_mask)
730 {
731 	i915_reg_t reg = PIPESTAT(pipe);
732 	u32 enable_mask;
733 
734 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
735 		  "pipe %c: status_mask=0x%x\n",
736 		  pipe_name(pipe), status_mask);
737 
738 	lockdep_assert_held(&dev_priv->irq_lock);
739 	WARN_ON(!intel_irqs_enabled(dev_priv));
740 
741 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
742 		return;
743 
744 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
745 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
746 
747 	I915_WRITE(reg, enable_mask | status_mask);
748 	POSTING_READ(reg);
749 }
750 
751 /**
752  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
753  * @dev_priv: i915 device private
754  */
755 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
756 {
757 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
758 		return;
759 
760 	spin_lock_irq(&dev_priv->irq_lock);
761 
762 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
763 	if (INTEL_GEN(dev_priv) >= 4)
764 		i915_enable_pipestat(dev_priv, PIPE_A,
765 				     PIPE_LEGACY_BLC_EVENT_STATUS);
766 
767 	spin_unlock_irq(&dev_priv->irq_lock);
768 }
769 
770 /*
771  * This timing diagram depicts the video signal in and
772  * around the vertical blanking period.
773  *
774  * Assumptions about the fictitious mode used in this example:
775  *  vblank_start >= 3
776  *  vsync_start = vblank_start + 1
777  *  vsync_end = vblank_start + 2
778  *  vtotal = vblank_start + 3
779  *
780  *           start of vblank:
781  *           latch double buffered registers
782  *           increment frame counter (ctg+)
783  *           generate start of vblank interrupt (gen4+)
784  *           |
785  *           |          frame start:
786  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
787  *           |          may be shifted forward 1-3 extra lines via PIPECONF
788  *           |          |
789  *           |          |  start of vsync:
790  *           |          |  generate vsync interrupt
791  *           |          |  |
792  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
793  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
794  * ----va---> <-----------------vb--------------------> <--------va-------------
795  *       |          |       <----vs----->                     |
796  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
797  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
798  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
799  *       |          |                                         |
800  *       last visible pixel                                   first visible pixel
801  *                  |                                         increment frame counter (gen3/4)
802  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
803  *
804  * x  = horizontal active
805  * _  = horizontal blanking
806  * hs = horizontal sync
807  * va = vertical active
808  * vb = vertical blanking
809  * vs = vertical sync
810  * vbs = vblank_start (number)
811  *
812  * Summary:
813  * - most events happen at the start of horizontal sync
814  * - frame start happens at the start of horizontal blank, 1-4 lines
815  *   (depending on PIPECONF settings) after the start of vblank
816  * - gen3/4 pixel and frame counter are synchronized with the start
817  *   of horizontal active on the first line of vertical active
818  */
819 
820 /* Called from drm generic code, passed a 'crtc', which
821  * we use as a pipe index
822  */
823 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
824 {
825 	struct drm_i915_private *dev_priv = to_i915(dev);
826 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
827 	const struct drm_display_mode *mode = &vblank->hwmode;
828 	i915_reg_t high_frame, low_frame;
829 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
830 	unsigned long irqflags;
831 
832 	/*
833 	 * On i965gm TV output the frame counter only works up to
834 	 * the point when we enable the TV encoder. After that the
835 	 * frame counter ceases to work and reads zero. We need a
836 	 * vblank wait before enabling the TV encoder and so we
837 	 * have to enable vblank interrupts while the frame counter
838 	 * is still in a working state. However the core vblank code
839 	 * does not like us returning non-zero frame counter values
840 	 * when we've told it that we don't have a working frame
841 	 * counter. Thus we must stop non-zero values leaking out.
842 	 */
843 	if (!vblank->max_vblank_count)
844 		return 0;
845 
846 	htotal = mode->crtc_htotal;
847 	hsync_start = mode->crtc_hsync_start;
848 	vbl_start = mode->crtc_vblank_start;
849 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
850 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
851 
852 	/* Convert to pixel count */
853 	vbl_start *= htotal;
854 
855 	/* Start of vblank event occurs at start of hsync */
856 	vbl_start -= htotal - hsync_start;
857 
858 	high_frame = PIPEFRAME(pipe);
859 	low_frame = PIPEFRAMEPIXEL(pipe);
860 
861 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
862 
863 	/*
864 	 * High & low register fields aren't synchronized, so make sure
865 	 * we get a low value that's stable across two reads of the high
866 	 * register.
867 	 */
868 	do {
869 		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
870 		low   = I915_READ_FW(low_frame);
871 		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
872 	} while (high1 != high2);
873 
874 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
875 
876 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
877 	pixel = low & PIPE_PIXEL_MASK;
878 	low >>= PIPE_FRAME_LOW_SHIFT;
879 
880 	/*
881 	 * The frame counter increments at beginning of active.
882 	 * Cook up a vblank counter by also checking the pixel
883 	 * counter against vblank start.
884 	 */
885 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
886 }
887 
888 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
889 {
890 	struct drm_i915_private *dev_priv = to_i915(dev);
891 
892 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
893 }
894 
895 /*
896  * On certain encoders on certain platforms, pipe
897  * scanline register will not work to get the scanline,
898  * since the timings are driven from the PORT or issues
899  * with scanline register updates.
900  * This function will use Framestamp and current
901  * timestamp registers to calculate the scanline.
902  */
903 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
904 {
905 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
906 	struct drm_vblank_crtc *vblank =
907 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
908 	const struct drm_display_mode *mode = &vblank->hwmode;
909 	u32 vblank_start = mode->crtc_vblank_start;
910 	u32 vtotal = mode->crtc_vtotal;
911 	u32 htotal = mode->crtc_htotal;
912 	u32 clock = mode->crtc_clock;
913 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
914 
915 	/*
916 	 * To avoid the race condition where we might cross into the
917 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
918 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
919 	 * during the same frame.
920 	 */
921 	do {
922 		/*
923 		 * This field provides read back of the display
924 		 * pipe frame time stamp. The time stamp value
925 		 * is sampled at every start of vertical blank.
926 		 */
927 		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
928 
929 		/*
930 		 * The TIMESTAMP_CTR register has the current
931 		 * time stamp value.
932 		 */
933 		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
934 
935 		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
936 	} while (scan_post_time != scan_prev_time);
937 
938 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
939 					clock), 1000 * htotal);
940 	scanline = min(scanline, vtotal - 1);
941 	scanline = (scanline + vblank_start) % vtotal;
942 
943 	return scanline;
944 }
945 
946 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
947 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
948 {
949 	struct drm_device *dev = crtc->base.dev;
950 	struct drm_i915_private *dev_priv = to_i915(dev);
951 	const struct drm_display_mode *mode;
952 	struct drm_vblank_crtc *vblank;
953 	enum pipe pipe = crtc->pipe;
954 	int position, vtotal;
955 
956 	if (!crtc->active)
957 		return -1;
958 
959 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
960 	mode = &vblank->hwmode;
961 
962 	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
963 		return __intel_get_crtc_scanline_from_timestamp(crtc);
964 
965 	vtotal = mode->crtc_vtotal;
966 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
967 		vtotal /= 2;
968 
969 	if (IS_GEN(dev_priv, 2))
970 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
971 	else
972 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
973 
974 	/*
975 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
976 	 * read it just before the start of vblank.  So try it again
977 	 * so we don't accidentally end up spanning a vblank frame
978 	 * increment, causing the pipe_update_end() code to squak at us.
979 	 *
980 	 * The nature of this problem means we can't simply check the ISR
981 	 * bit and return the vblank start value; nor can we use the scanline
982 	 * debug register in the transcoder as it appears to have the same
983 	 * problem.  We may need to extend this to include other platforms,
984 	 * but so far testing only shows the problem on HSW.
985 	 */
986 	if (HAS_DDI(dev_priv) && !position) {
987 		int i, temp;
988 
989 		for (i = 0; i < 100; i++) {
990 			udelay(1);
991 			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
992 			if (temp != position) {
993 				position = temp;
994 				break;
995 			}
996 		}
997 	}
998 
999 	/*
1000 	 * See update_scanline_offset() for the details on the
1001 	 * scanline_offset adjustment.
1002 	 */
1003 	return (position + crtc->scanline_offset) % vtotal;
1004 }
1005 
1006 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
1007 				     bool in_vblank_irq, int *vpos, int *hpos,
1008 				     ktime_t *stime, ktime_t *etime,
1009 				     const struct drm_display_mode *mode)
1010 {
1011 	struct drm_i915_private *dev_priv = to_i915(dev);
1012 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1013 								pipe);
1014 	int position;
1015 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1016 	unsigned long irqflags;
1017 	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
1018 		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
1019 		mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
1020 
1021 	if (WARN_ON(!mode->crtc_clock)) {
1022 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1023 				 "pipe %c\n", pipe_name(pipe));
1024 		return false;
1025 	}
1026 
1027 	htotal = mode->crtc_htotal;
1028 	hsync_start = mode->crtc_hsync_start;
1029 	vtotal = mode->crtc_vtotal;
1030 	vbl_start = mode->crtc_vblank_start;
1031 	vbl_end = mode->crtc_vblank_end;
1032 
1033 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1034 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
1035 		vbl_end /= 2;
1036 		vtotal /= 2;
1037 	}
1038 
1039 	/*
1040 	 * Lock uncore.lock, as we will do multiple timing critical raw
1041 	 * register reads, potentially with preemption disabled, so the
1042 	 * following code must not block on uncore.lock.
1043 	 */
1044 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1045 
1046 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1047 
1048 	/* Get optional system timestamp before query. */
1049 	if (stime)
1050 		*stime = ktime_get();
1051 
1052 	if (use_scanline_counter) {
1053 		/* No obvious pixelcount register. Only query vertical
1054 		 * scanout position from Display scan line register.
1055 		 */
1056 		position = __intel_get_crtc_scanline(intel_crtc);
1057 	} else {
1058 		/* Have access to pixelcount since start of frame.
1059 		 * We can split this into vertical and horizontal
1060 		 * scanout position.
1061 		 */
1062 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1063 
1064 		/* convert to pixel counts */
1065 		vbl_start *= htotal;
1066 		vbl_end *= htotal;
1067 		vtotal *= htotal;
1068 
1069 		/*
1070 		 * In interlaced modes, the pixel counter counts all pixels,
1071 		 * so one field will have htotal more pixels. In order to avoid
1072 		 * the reported position from jumping backwards when the pixel
1073 		 * counter is beyond the length of the shorter field, just
1074 		 * clamp the position the length of the shorter field. This
1075 		 * matches how the scanline counter based position works since
1076 		 * the scanline counter doesn't count the two half lines.
1077 		 */
1078 		if (position >= vtotal)
1079 			position = vtotal - 1;
1080 
1081 		/*
1082 		 * Start of vblank interrupt is triggered at start of hsync,
1083 		 * just prior to the first active line of vblank. However we
1084 		 * consider lines to start at the leading edge of horizontal
1085 		 * active. So, should we get here before we've crossed into
1086 		 * the horizontal active of the first line in vblank, we would
1087 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1088 		 * always add htotal-hsync_start to the current pixel position.
1089 		 */
1090 		position = (position + htotal - hsync_start) % vtotal;
1091 	}
1092 
1093 	/* Get optional system timestamp after query. */
1094 	if (etime)
1095 		*etime = ktime_get();
1096 
1097 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1098 
1099 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1100 
1101 	/*
1102 	 * While in vblank, position will be negative
1103 	 * counting up towards 0 at vbl_end. And outside
1104 	 * vblank, position will be positive counting
1105 	 * up since vbl_end.
1106 	 */
1107 	if (position >= vbl_start)
1108 		position -= vbl_end;
1109 	else
1110 		position += vtotal - vbl_end;
1111 
1112 	if (use_scanline_counter) {
1113 		*vpos = position;
1114 		*hpos = 0;
1115 	} else {
1116 		*vpos = position / htotal;
1117 		*hpos = position - (*vpos * htotal);
1118 	}
1119 
1120 	return true;
1121 }
1122 
1123 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1124 {
1125 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1126 	unsigned long irqflags;
1127 	int position;
1128 
1129 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1130 	position = __intel_get_crtc_scanline(crtc);
1131 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1132 
1133 	return position;
1134 }
1135 
1136 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1137 {
1138 	u32 busy_up, busy_down, max_avg, min_avg;
1139 	u8 new_delay;
1140 
1141 	spin_lock(&mchdev_lock);
1142 
1143 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1144 
1145 	new_delay = dev_priv->ips.cur_delay;
1146 
1147 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1148 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1149 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1150 	max_avg = I915_READ(RCBMAXAVG);
1151 	min_avg = I915_READ(RCBMINAVG);
1152 
1153 	/* Handle RCS change request from hw */
1154 	if (busy_up > max_avg) {
1155 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1156 			new_delay = dev_priv->ips.cur_delay - 1;
1157 		if (new_delay < dev_priv->ips.max_delay)
1158 			new_delay = dev_priv->ips.max_delay;
1159 	} else if (busy_down < min_avg) {
1160 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1161 			new_delay = dev_priv->ips.cur_delay + 1;
1162 		if (new_delay > dev_priv->ips.min_delay)
1163 			new_delay = dev_priv->ips.min_delay;
1164 	}
1165 
1166 	if (ironlake_set_drps(dev_priv, new_delay))
1167 		dev_priv->ips.cur_delay = new_delay;
1168 
1169 	spin_unlock(&mchdev_lock);
1170 
1171 	return;
1172 }
1173 
1174 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1175 			struct intel_rps_ei *ei)
1176 {
1177 	ei->ktime = ktime_get_raw();
1178 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1179 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1180 }
1181 
1182 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1183 {
1184 	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1185 }
1186 
1187 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1188 {
1189 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1190 	const struct intel_rps_ei *prev = &rps->ei;
1191 	struct intel_rps_ei now;
1192 	u32 events = 0;
1193 
1194 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1195 		return 0;
1196 
1197 	vlv_c0_read(dev_priv, &now);
1198 
1199 	if (prev->ktime) {
1200 		u64 time, c0;
1201 		u32 render, media;
1202 
1203 		time = ktime_us_delta(now.ktime, prev->ktime);
1204 
1205 		time *= dev_priv->czclk_freq;
1206 
1207 		/* Workload can be split between render + media,
1208 		 * e.g. SwapBuffers being blitted in X after being rendered in
1209 		 * mesa. To account for this we need to combine both engines
1210 		 * into our activity counter.
1211 		 */
1212 		render = now.render_c0 - prev->render_c0;
1213 		media = now.media_c0 - prev->media_c0;
1214 		c0 = max(render, media);
1215 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1216 
1217 		if (c0 > time * rps->power.up_threshold)
1218 			events = GEN6_PM_RP_UP_THRESHOLD;
1219 		else if (c0 < time * rps->power.down_threshold)
1220 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1221 	}
1222 
1223 	rps->ei = now;
1224 	return events;
1225 }
1226 
1227 static void gen6_pm_rps_work(struct work_struct *work)
1228 {
1229 	struct drm_i915_private *dev_priv =
1230 		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1231 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1232 	bool client_boost = false;
1233 	int new_delay, adj, min, max;
1234 	u32 pm_iir = 0;
1235 
1236 	spin_lock_irq(&dev_priv->irq_lock);
1237 	if (rps->interrupts_enabled) {
1238 		pm_iir = fetch_and_zero(&rps->pm_iir);
1239 		client_boost = atomic_read(&rps->num_waiters);
1240 	}
1241 	spin_unlock_irq(&dev_priv->irq_lock);
1242 
1243 	/* Make sure we didn't queue anything we're not going to process. */
1244 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1245 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1246 		goto out;
1247 
1248 	mutex_lock(&dev_priv->pcu_lock);
1249 
1250 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1251 
1252 	adj = rps->last_adj;
1253 	new_delay = rps->cur_freq;
1254 	min = rps->min_freq_softlimit;
1255 	max = rps->max_freq_softlimit;
1256 	if (client_boost)
1257 		max = rps->max_freq;
1258 	if (client_boost && new_delay < rps->boost_freq) {
1259 		new_delay = rps->boost_freq;
1260 		adj = 0;
1261 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1262 		if (adj > 0)
1263 			adj *= 2;
1264 		else /* CHV needs even encode values */
1265 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1266 
1267 		if (new_delay >= rps->max_freq_softlimit)
1268 			adj = 0;
1269 	} else if (client_boost) {
1270 		adj = 0;
1271 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1272 		if (rps->cur_freq > rps->efficient_freq)
1273 			new_delay = rps->efficient_freq;
1274 		else if (rps->cur_freq > rps->min_freq_softlimit)
1275 			new_delay = rps->min_freq_softlimit;
1276 		adj = 0;
1277 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1278 		if (adj < 0)
1279 			adj *= 2;
1280 		else /* CHV needs even encode values */
1281 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1282 
1283 		if (new_delay <= rps->min_freq_softlimit)
1284 			adj = 0;
1285 	} else { /* unknown event */
1286 		adj = 0;
1287 	}
1288 
1289 	rps->last_adj = adj;
1290 
1291 	/* sysfs frequency interfaces may have snuck in while servicing the
1292 	 * interrupt
1293 	 */
1294 	new_delay += adj;
1295 	new_delay = clamp_t(int, new_delay, min, max);
1296 
1297 	if (intel_set_rps(dev_priv, new_delay)) {
1298 		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1299 		rps->last_adj = 0;
1300 	}
1301 
1302 	mutex_unlock(&dev_priv->pcu_lock);
1303 
1304 out:
1305 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1306 	spin_lock_irq(&dev_priv->irq_lock);
1307 	if (rps->interrupts_enabled)
1308 		gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1309 	spin_unlock_irq(&dev_priv->irq_lock);
1310 }
1311 
1312 
1313 /**
1314  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1315  * occurred.
1316  * @work: workqueue struct
1317  *
1318  * Doesn't actually do anything except notify userspace. As a consequence of
1319  * this event, userspace should try to remap the bad rows since statistically
1320  * it is likely the same row is more likely to go bad again.
1321  */
1322 static void ivybridge_parity_work(struct work_struct *work)
1323 {
1324 	struct drm_i915_private *dev_priv =
1325 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1326 	u32 error_status, row, bank, subbank;
1327 	char *parity_event[6];
1328 	u32 misccpctl;
1329 	u8 slice = 0;
1330 
1331 	/* We must turn off DOP level clock gating to access the L3 registers.
1332 	 * In order to prevent a get/put style interface, acquire struct mutex
1333 	 * any time we access those registers.
1334 	 */
1335 	mutex_lock(&dev_priv->drm.struct_mutex);
1336 
1337 	/* If we've screwed up tracking, just let the interrupt fire again */
1338 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1339 		goto out;
1340 
1341 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1342 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1343 	POSTING_READ(GEN7_MISCCPCTL);
1344 
1345 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1346 		i915_reg_t reg;
1347 
1348 		slice--;
1349 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1350 			break;
1351 
1352 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1353 
1354 		reg = GEN7_L3CDERRST1(slice);
1355 
1356 		error_status = I915_READ(reg);
1357 		row = GEN7_PARITY_ERROR_ROW(error_status);
1358 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1359 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1360 
1361 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1362 		POSTING_READ(reg);
1363 
1364 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1365 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1366 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1367 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1368 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1369 		parity_event[5] = NULL;
1370 
1371 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1372 				   KOBJ_CHANGE, parity_event);
1373 
1374 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1375 			  slice, row, bank, subbank);
1376 
1377 		kfree(parity_event[4]);
1378 		kfree(parity_event[3]);
1379 		kfree(parity_event[2]);
1380 		kfree(parity_event[1]);
1381 	}
1382 
1383 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1384 
1385 out:
1386 	WARN_ON(dev_priv->l3_parity.which_slice);
1387 	spin_lock_irq(&dev_priv->irq_lock);
1388 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1389 	spin_unlock_irq(&dev_priv->irq_lock);
1390 
1391 	mutex_unlock(&dev_priv->drm.struct_mutex);
1392 }
1393 
1394 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1395 					       u32 iir)
1396 {
1397 	if (!HAS_L3_DPF(dev_priv))
1398 		return;
1399 
1400 	spin_lock(&dev_priv->irq_lock);
1401 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1402 	spin_unlock(&dev_priv->irq_lock);
1403 
1404 	iir &= GT_PARITY_ERROR(dev_priv);
1405 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1406 		dev_priv->l3_parity.which_slice |= 1 << 1;
1407 
1408 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1409 		dev_priv->l3_parity.which_slice |= 1 << 0;
1410 
1411 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1412 }
1413 
1414 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1415 			       u32 gt_iir)
1416 {
1417 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1418 		intel_engine_breadcrumbs_irq(dev_priv->engine[RCS]);
1419 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1420 		intel_engine_breadcrumbs_irq(dev_priv->engine[VCS]);
1421 }
1422 
1423 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1424 			       u32 gt_iir)
1425 {
1426 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1427 		intel_engine_breadcrumbs_irq(dev_priv->engine[RCS]);
1428 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1429 		intel_engine_breadcrumbs_irq(dev_priv->engine[VCS]);
1430 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1431 		intel_engine_breadcrumbs_irq(dev_priv->engine[BCS]);
1432 
1433 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1434 		      GT_BSD_CS_ERROR_INTERRUPT |
1435 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1436 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1437 
1438 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1439 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1440 }
1441 
1442 static void
1443 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1444 {
1445 	bool tasklet = false;
1446 
1447 	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1448 		tasklet = true;
1449 
1450 	if (iir & GT_RENDER_USER_INTERRUPT) {
1451 		intel_engine_breadcrumbs_irq(engine);
1452 		tasklet |= USES_GUC_SUBMISSION(engine->i915);
1453 	}
1454 
1455 	if (tasklet)
1456 		tasklet_hi_schedule(&engine->execlists.tasklet);
1457 }
1458 
1459 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1460 			    u32 master_ctl, u32 gt_iir[4])
1461 {
1462 	void __iomem * const regs = i915->regs;
1463 
1464 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1465 		      GEN8_GT_BCS_IRQ | \
1466 		      GEN8_GT_VCS1_IRQ | \
1467 		      GEN8_GT_VCS2_IRQ | \
1468 		      GEN8_GT_VECS_IRQ | \
1469 		      GEN8_GT_PM_IRQ | \
1470 		      GEN8_GT_GUC_IRQ)
1471 
1472 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1473 		gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1474 		if (likely(gt_iir[0]))
1475 			raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1476 	}
1477 
1478 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1479 		gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1480 		if (likely(gt_iir[1]))
1481 			raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1482 	}
1483 
1484 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1485 		gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1486 		if (likely(gt_iir[2]))
1487 			raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]);
1488 	}
1489 
1490 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1491 		gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1492 		if (likely(gt_iir[3]))
1493 			raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1494 	}
1495 }
1496 
1497 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1498 				u32 master_ctl, u32 gt_iir[4])
1499 {
1500 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1501 		gen8_cs_irq_handler(i915->engine[RCS],
1502 				    gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1503 		gen8_cs_irq_handler(i915->engine[BCS],
1504 				    gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1505 	}
1506 
1507 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1508 		gen8_cs_irq_handler(i915->engine[VCS],
1509 				    gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1510 		gen8_cs_irq_handler(i915->engine[VCS2],
1511 				    gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1512 	}
1513 
1514 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1515 		gen8_cs_irq_handler(i915->engine[VECS],
1516 				    gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1517 	}
1518 
1519 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1520 		gen6_rps_irq_handler(i915, gt_iir[2]);
1521 		gen9_guc_irq_handler(i915, gt_iir[2]);
1522 	}
1523 }
1524 
1525 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1526 {
1527 	switch (pin) {
1528 	case HPD_PORT_C:
1529 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1530 	case HPD_PORT_D:
1531 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1532 	case HPD_PORT_E:
1533 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1534 	case HPD_PORT_F:
1535 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1536 	default:
1537 		return false;
1538 	}
1539 }
1540 
1541 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1542 {
1543 	switch (pin) {
1544 	case HPD_PORT_A:
1545 		return val & PORTA_HOTPLUG_LONG_DETECT;
1546 	case HPD_PORT_B:
1547 		return val & PORTB_HOTPLUG_LONG_DETECT;
1548 	case HPD_PORT_C:
1549 		return val & PORTC_HOTPLUG_LONG_DETECT;
1550 	default:
1551 		return false;
1552 	}
1553 }
1554 
1555 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1556 {
1557 	switch (pin) {
1558 	case HPD_PORT_A:
1559 		return val & ICP_DDIA_HPD_LONG_DETECT;
1560 	case HPD_PORT_B:
1561 		return val & ICP_DDIB_HPD_LONG_DETECT;
1562 	default:
1563 		return false;
1564 	}
1565 }
1566 
1567 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1568 {
1569 	switch (pin) {
1570 	case HPD_PORT_C:
1571 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1572 	case HPD_PORT_D:
1573 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1574 	case HPD_PORT_E:
1575 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1576 	case HPD_PORT_F:
1577 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1578 	default:
1579 		return false;
1580 	}
1581 }
1582 
1583 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1584 {
1585 	switch (pin) {
1586 	case HPD_PORT_E:
1587 		return val & PORTE_HOTPLUG_LONG_DETECT;
1588 	default:
1589 		return false;
1590 	}
1591 }
1592 
1593 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1594 {
1595 	switch (pin) {
1596 	case HPD_PORT_A:
1597 		return val & PORTA_HOTPLUG_LONG_DETECT;
1598 	case HPD_PORT_B:
1599 		return val & PORTB_HOTPLUG_LONG_DETECT;
1600 	case HPD_PORT_C:
1601 		return val & PORTC_HOTPLUG_LONG_DETECT;
1602 	case HPD_PORT_D:
1603 		return val & PORTD_HOTPLUG_LONG_DETECT;
1604 	default:
1605 		return false;
1606 	}
1607 }
1608 
1609 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1610 {
1611 	switch (pin) {
1612 	case HPD_PORT_A:
1613 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1614 	default:
1615 		return false;
1616 	}
1617 }
1618 
1619 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1620 {
1621 	switch (pin) {
1622 	case HPD_PORT_B:
1623 		return val & PORTB_HOTPLUG_LONG_DETECT;
1624 	case HPD_PORT_C:
1625 		return val & PORTC_HOTPLUG_LONG_DETECT;
1626 	case HPD_PORT_D:
1627 		return val & PORTD_HOTPLUG_LONG_DETECT;
1628 	default:
1629 		return false;
1630 	}
1631 }
1632 
1633 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1634 {
1635 	switch (pin) {
1636 	case HPD_PORT_B:
1637 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1638 	case HPD_PORT_C:
1639 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1640 	case HPD_PORT_D:
1641 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1642 	default:
1643 		return false;
1644 	}
1645 }
1646 
1647 /*
1648  * Get a bit mask of pins that have triggered, and which ones may be long.
1649  * This can be called multiple times with the same masks to accumulate
1650  * hotplug detection results from several registers.
1651  *
1652  * Note that the caller is expected to zero out the masks initially.
1653  */
1654 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1655 			       u32 *pin_mask, u32 *long_mask,
1656 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1657 			       const u32 hpd[HPD_NUM_PINS],
1658 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1659 {
1660 	enum hpd_pin pin;
1661 
1662 	for_each_hpd_pin(pin) {
1663 		if ((hpd[pin] & hotplug_trigger) == 0)
1664 			continue;
1665 
1666 		*pin_mask |= BIT(pin);
1667 
1668 		if (long_pulse_detect(pin, dig_hotplug_reg))
1669 			*long_mask |= BIT(pin);
1670 	}
1671 
1672 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1673 			 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1674 
1675 }
1676 
1677 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1678 {
1679 	wake_up_all(&dev_priv->gmbus_wait_queue);
1680 }
1681 
1682 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1683 {
1684 	wake_up_all(&dev_priv->gmbus_wait_queue);
1685 }
1686 
1687 #if defined(CONFIG_DEBUG_FS)
1688 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1689 					 enum pipe pipe,
1690 					 u32 crc0, u32 crc1,
1691 					 u32 crc2, u32 crc3,
1692 					 u32 crc4)
1693 {
1694 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1695 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1696 	u32 crcs[5];
1697 
1698 	spin_lock(&pipe_crc->lock);
1699 	/*
1700 	 * For some not yet identified reason, the first CRC is
1701 	 * bonkers. So let's just wait for the next vblank and read
1702 	 * out the buggy result.
1703 	 *
1704 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1705 	 * don't trust that one either.
1706 	 */
1707 	if (pipe_crc->skipped <= 0 ||
1708 	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1709 		pipe_crc->skipped++;
1710 		spin_unlock(&pipe_crc->lock);
1711 		return;
1712 	}
1713 	spin_unlock(&pipe_crc->lock);
1714 
1715 	crcs[0] = crc0;
1716 	crcs[1] = crc1;
1717 	crcs[2] = crc2;
1718 	crcs[3] = crc3;
1719 	crcs[4] = crc4;
1720 	drm_crtc_add_crc_entry(&crtc->base, true,
1721 				drm_crtc_accurate_vblank_count(&crtc->base),
1722 				crcs);
1723 }
1724 #else
1725 static inline void
1726 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1727 			     enum pipe pipe,
1728 			     u32 crc0, u32 crc1,
1729 			     u32 crc2, u32 crc3,
1730 			     u32 crc4) {}
1731 #endif
1732 
1733 
1734 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1735 				     enum pipe pipe)
1736 {
1737 	display_pipe_crc_irq_handler(dev_priv, pipe,
1738 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1739 				     0, 0, 0, 0);
1740 }
1741 
1742 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1743 				     enum pipe pipe)
1744 {
1745 	display_pipe_crc_irq_handler(dev_priv, pipe,
1746 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1747 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1748 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1749 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1750 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1751 }
1752 
1753 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1754 				      enum pipe pipe)
1755 {
1756 	u32 res1, res2;
1757 
1758 	if (INTEL_GEN(dev_priv) >= 3)
1759 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1760 	else
1761 		res1 = 0;
1762 
1763 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1764 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1765 	else
1766 		res2 = 0;
1767 
1768 	display_pipe_crc_irq_handler(dev_priv, pipe,
1769 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1770 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1771 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1772 				     res1, res2);
1773 }
1774 
1775 /* The RPS events need forcewake, so we add them to a work queue and mask their
1776  * IMR bits until the work is done. Other interrupts can be processed without
1777  * the work queue. */
1778 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1779 {
1780 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1781 
1782 	if (pm_iir & dev_priv->pm_rps_events) {
1783 		spin_lock(&dev_priv->irq_lock);
1784 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1785 		if (rps->interrupts_enabled) {
1786 			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1787 			schedule_work(&rps->work);
1788 		}
1789 		spin_unlock(&dev_priv->irq_lock);
1790 	}
1791 
1792 	if (INTEL_GEN(dev_priv) >= 8)
1793 		return;
1794 
1795 	if (HAS_VEBOX(dev_priv)) {
1796 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1797 			intel_engine_breadcrumbs_irq(dev_priv->engine[VECS]);
1798 
1799 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1800 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1801 	}
1802 }
1803 
1804 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1805 {
1806 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1807 		intel_guc_to_host_event_handler(&dev_priv->guc);
1808 }
1809 
1810 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1811 {
1812 	enum pipe pipe;
1813 
1814 	for_each_pipe(dev_priv, pipe) {
1815 		I915_WRITE(PIPESTAT(pipe),
1816 			   PIPESTAT_INT_STATUS_MASK |
1817 			   PIPE_FIFO_UNDERRUN_STATUS);
1818 
1819 		dev_priv->pipestat_irq_mask[pipe] = 0;
1820 	}
1821 }
1822 
1823 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1824 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1825 {
1826 	int pipe;
1827 
1828 	spin_lock(&dev_priv->irq_lock);
1829 
1830 	if (!dev_priv->display_irqs_enabled) {
1831 		spin_unlock(&dev_priv->irq_lock);
1832 		return;
1833 	}
1834 
1835 	for_each_pipe(dev_priv, pipe) {
1836 		i915_reg_t reg;
1837 		u32 status_mask, enable_mask, iir_bit = 0;
1838 
1839 		/*
1840 		 * PIPESTAT bits get signalled even when the interrupt is
1841 		 * disabled with the mask bits, and some of the status bits do
1842 		 * not generate interrupts at all (like the underrun bit). Hence
1843 		 * we need to be careful that we only handle what we want to
1844 		 * handle.
1845 		 */
1846 
1847 		/* fifo underruns are filterered in the underrun handler. */
1848 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1849 
1850 		switch (pipe) {
1851 		case PIPE_A:
1852 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1853 			break;
1854 		case PIPE_B:
1855 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1856 			break;
1857 		case PIPE_C:
1858 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1859 			break;
1860 		}
1861 		if (iir & iir_bit)
1862 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1863 
1864 		if (!status_mask)
1865 			continue;
1866 
1867 		reg = PIPESTAT(pipe);
1868 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1869 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1870 
1871 		/*
1872 		 * Clear the PIPE*STAT regs before the IIR
1873 		 *
1874 		 * Toggle the enable bits to make sure we get an
1875 		 * edge in the ISR pipe event bit if we don't clear
1876 		 * all the enabled status bits. Otherwise the edge
1877 		 * triggered IIR on i965/g4x wouldn't notice that
1878 		 * an interrupt is still pending.
1879 		 */
1880 		if (pipe_stats[pipe]) {
1881 			I915_WRITE(reg, pipe_stats[pipe]);
1882 			I915_WRITE(reg, enable_mask);
1883 		}
1884 	}
1885 	spin_unlock(&dev_priv->irq_lock);
1886 }
1887 
1888 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1889 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1890 {
1891 	enum pipe pipe;
1892 
1893 	for_each_pipe(dev_priv, pipe) {
1894 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1895 			drm_handle_vblank(&dev_priv->drm, pipe);
1896 
1897 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1898 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1899 
1900 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1901 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1902 	}
1903 }
1904 
1905 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1906 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1907 {
1908 	bool blc_event = false;
1909 	enum pipe pipe;
1910 
1911 	for_each_pipe(dev_priv, pipe) {
1912 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1913 			drm_handle_vblank(&dev_priv->drm, pipe);
1914 
1915 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1916 			blc_event = true;
1917 
1918 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1919 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1920 
1921 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1922 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1923 	}
1924 
1925 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1926 		intel_opregion_asle_intr(dev_priv);
1927 }
1928 
1929 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1930 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1931 {
1932 	bool blc_event = false;
1933 	enum pipe pipe;
1934 
1935 	for_each_pipe(dev_priv, pipe) {
1936 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1937 			drm_handle_vblank(&dev_priv->drm, pipe);
1938 
1939 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1940 			blc_event = true;
1941 
1942 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1943 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1944 
1945 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1946 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1947 	}
1948 
1949 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1950 		intel_opregion_asle_intr(dev_priv);
1951 
1952 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1953 		gmbus_irq_handler(dev_priv);
1954 }
1955 
1956 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1957 					    u32 pipe_stats[I915_MAX_PIPES])
1958 {
1959 	enum pipe pipe;
1960 
1961 	for_each_pipe(dev_priv, pipe) {
1962 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1963 			drm_handle_vblank(&dev_priv->drm, pipe);
1964 
1965 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1966 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1967 
1968 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1969 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1970 	}
1971 
1972 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1973 		gmbus_irq_handler(dev_priv);
1974 }
1975 
1976 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1977 {
1978 	u32 hotplug_status = 0, hotplug_status_mask;
1979 	int i;
1980 
1981 	if (IS_G4X(dev_priv) ||
1982 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1983 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1984 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1985 	else
1986 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1987 
1988 	/*
1989 	 * We absolutely have to clear all the pending interrupt
1990 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1991 	 * interrupt bit won't have an edge, and the i965/g4x
1992 	 * edge triggered IIR will not notice that an interrupt
1993 	 * is still pending. We can't use PORT_HOTPLUG_EN to
1994 	 * guarantee the edge as the act of toggling the enable
1995 	 * bits can itself generate a new hotplug interrupt :(
1996 	 */
1997 	for (i = 0; i < 10; i++) {
1998 		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1999 
2000 		if (tmp == 0)
2001 			return hotplug_status;
2002 
2003 		hotplug_status |= tmp;
2004 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2005 	}
2006 
2007 	WARN_ONCE(1,
2008 		  "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2009 		  I915_READ(PORT_HOTPLUG_STAT));
2010 
2011 	return hotplug_status;
2012 }
2013 
2014 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2015 				 u32 hotplug_status)
2016 {
2017 	u32 pin_mask = 0, long_mask = 0;
2018 
2019 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2020 	    IS_CHERRYVIEW(dev_priv)) {
2021 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2022 
2023 		if (hotplug_trigger) {
2024 			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2025 					   hotplug_trigger, hotplug_trigger,
2026 					   hpd_status_g4x,
2027 					   i9xx_port_hotplug_long_detect);
2028 
2029 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2030 		}
2031 
2032 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2033 			dp_aux_irq_handler(dev_priv);
2034 	} else {
2035 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2036 
2037 		if (hotplug_trigger) {
2038 			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2039 					   hotplug_trigger, hotplug_trigger,
2040 					   hpd_status_i915,
2041 					   i9xx_port_hotplug_long_detect);
2042 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2043 		}
2044 	}
2045 }
2046 
2047 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2048 {
2049 	struct drm_device *dev = arg;
2050 	struct drm_i915_private *dev_priv = to_i915(dev);
2051 	irqreturn_t ret = IRQ_NONE;
2052 
2053 	if (!intel_irqs_enabled(dev_priv))
2054 		return IRQ_NONE;
2055 
2056 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2057 	disable_rpm_wakeref_asserts(dev_priv);
2058 
2059 	do {
2060 		u32 iir, gt_iir, pm_iir;
2061 		u32 pipe_stats[I915_MAX_PIPES] = {};
2062 		u32 hotplug_status = 0;
2063 		u32 ier = 0;
2064 
2065 		gt_iir = I915_READ(GTIIR);
2066 		pm_iir = I915_READ(GEN6_PMIIR);
2067 		iir = I915_READ(VLV_IIR);
2068 
2069 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2070 			break;
2071 
2072 		ret = IRQ_HANDLED;
2073 
2074 		/*
2075 		 * Theory on interrupt generation, based on empirical evidence:
2076 		 *
2077 		 * x = ((VLV_IIR & VLV_IER) ||
2078 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2079 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2080 		 *
2081 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2082 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2083 		 * guarantee the CPU interrupt will be raised again even if we
2084 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2085 		 * bits this time around.
2086 		 */
2087 		I915_WRITE(VLV_MASTER_IER, 0);
2088 		ier = I915_READ(VLV_IER);
2089 		I915_WRITE(VLV_IER, 0);
2090 
2091 		if (gt_iir)
2092 			I915_WRITE(GTIIR, gt_iir);
2093 		if (pm_iir)
2094 			I915_WRITE(GEN6_PMIIR, pm_iir);
2095 
2096 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2097 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2098 
2099 		/* Call regardless, as some status bits might not be
2100 		 * signalled in iir */
2101 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2102 
2103 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2104 			   I915_LPE_PIPE_B_INTERRUPT))
2105 			intel_lpe_audio_irq_handler(dev_priv);
2106 
2107 		/*
2108 		 * VLV_IIR is single buffered, and reflects the level
2109 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2110 		 */
2111 		if (iir)
2112 			I915_WRITE(VLV_IIR, iir);
2113 
2114 		I915_WRITE(VLV_IER, ier);
2115 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2116 
2117 		if (gt_iir)
2118 			snb_gt_irq_handler(dev_priv, gt_iir);
2119 		if (pm_iir)
2120 			gen6_rps_irq_handler(dev_priv, pm_iir);
2121 
2122 		if (hotplug_status)
2123 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2124 
2125 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2126 	} while (0);
2127 
2128 	enable_rpm_wakeref_asserts(dev_priv);
2129 
2130 	return ret;
2131 }
2132 
2133 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2134 {
2135 	struct drm_device *dev = arg;
2136 	struct drm_i915_private *dev_priv = to_i915(dev);
2137 	irqreturn_t ret = IRQ_NONE;
2138 
2139 	if (!intel_irqs_enabled(dev_priv))
2140 		return IRQ_NONE;
2141 
2142 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2143 	disable_rpm_wakeref_asserts(dev_priv);
2144 
2145 	do {
2146 		u32 master_ctl, iir;
2147 		u32 pipe_stats[I915_MAX_PIPES] = {};
2148 		u32 hotplug_status = 0;
2149 		u32 gt_iir[4];
2150 		u32 ier = 0;
2151 
2152 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2153 		iir = I915_READ(VLV_IIR);
2154 
2155 		if (master_ctl == 0 && iir == 0)
2156 			break;
2157 
2158 		ret = IRQ_HANDLED;
2159 
2160 		/*
2161 		 * Theory on interrupt generation, based on empirical evidence:
2162 		 *
2163 		 * x = ((VLV_IIR & VLV_IER) ||
2164 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2165 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2166 		 *
2167 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2168 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2169 		 * guarantee the CPU interrupt will be raised again even if we
2170 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2171 		 * bits this time around.
2172 		 */
2173 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2174 		ier = I915_READ(VLV_IER);
2175 		I915_WRITE(VLV_IER, 0);
2176 
2177 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2178 
2179 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2180 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2181 
2182 		/* Call regardless, as some status bits might not be
2183 		 * signalled in iir */
2184 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2185 
2186 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2187 			   I915_LPE_PIPE_B_INTERRUPT |
2188 			   I915_LPE_PIPE_C_INTERRUPT))
2189 			intel_lpe_audio_irq_handler(dev_priv);
2190 
2191 		/*
2192 		 * VLV_IIR is single buffered, and reflects the level
2193 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2194 		 */
2195 		if (iir)
2196 			I915_WRITE(VLV_IIR, iir);
2197 
2198 		I915_WRITE(VLV_IER, ier);
2199 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2200 
2201 		gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2202 
2203 		if (hotplug_status)
2204 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2205 
2206 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2207 	} while (0);
2208 
2209 	enable_rpm_wakeref_asserts(dev_priv);
2210 
2211 	return ret;
2212 }
2213 
2214 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2215 				u32 hotplug_trigger,
2216 				const u32 hpd[HPD_NUM_PINS])
2217 {
2218 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2219 
2220 	/*
2221 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2222 	 * unless we touch the hotplug register, even if hotplug_trigger is
2223 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2224 	 * errors.
2225 	 */
2226 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2227 	if (!hotplug_trigger) {
2228 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2229 			PORTD_HOTPLUG_STATUS_MASK |
2230 			PORTC_HOTPLUG_STATUS_MASK |
2231 			PORTB_HOTPLUG_STATUS_MASK;
2232 		dig_hotplug_reg &= ~mask;
2233 	}
2234 
2235 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2236 	if (!hotplug_trigger)
2237 		return;
2238 
2239 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2240 			   dig_hotplug_reg, hpd,
2241 			   pch_port_hotplug_long_detect);
2242 
2243 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2244 }
2245 
2246 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2247 {
2248 	int pipe;
2249 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2250 
2251 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2252 
2253 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2254 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2255 			       SDE_AUDIO_POWER_SHIFT);
2256 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2257 				 port_name(port));
2258 	}
2259 
2260 	if (pch_iir & SDE_AUX_MASK)
2261 		dp_aux_irq_handler(dev_priv);
2262 
2263 	if (pch_iir & SDE_GMBUS)
2264 		gmbus_irq_handler(dev_priv);
2265 
2266 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2267 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2268 
2269 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2270 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2271 
2272 	if (pch_iir & SDE_POISON)
2273 		DRM_ERROR("PCH poison interrupt\n");
2274 
2275 	if (pch_iir & SDE_FDI_MASK)
2276 		for_each_pipe(dev_priv, pipe)
2277 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2278 					 pipe_name(pipe),
2279 					 I915_READ(FDI_RX_IIR(pipe)));
2280 
2281 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2282 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2283 
2284 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2285 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2286 
2287 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2288 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2289 
2290 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2291 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2292 }
2293 
2294 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2295 {
2296 	u32 err_int = I915_READ(GEN7_ERR_INT);
2297 	enum pipe pipe;
2298 
2299 	if (err_int & ERR_INT_POISON)
2300 		DRM_ERROR("Poison interrupt\n");
2301 
2302 	for_each_pipe(dev_priv, pipe) {
2303 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2304 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2305 
2306 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2307 			if (IS_IVYBRIDGE(dev_priv))
2308 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2309 			else
2310 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2311 		}
2312 	}
2313 
2314 	I915_WRITE(GEN7_ERR_INT, err_int);
2315 }
2316 
2317 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2318 {
2319 	u32 serr_int = I915_READ(SERR_INT);
2320 	enum pipe pipe;
2321 
2322 	if (serr_int & SERR_INT_POISON)
2323 		DRM_ERROR("PCH poison interrupt\n");
2324 
2325 	for_each_pipe(dev_priv, pipe)
2326 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2327 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2328 
2329 	I915_WRITE(SERR_INT, serr_int);
2330 }
2331 
2332 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2333 {
2334 	int pipe;
2335 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2336 
2337 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2338 
2339 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2340 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2341 			       SDE_AUDIO_POWER_SHIFT_CPT);
2342 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2343 				 port_name(port));
2344 	}
2345 
2346 	if (pch_iir & SDE_AUX_MASK_CPT)
2347 		dp_aux_irq_handler(dev_priv);
2348 
2349 	if (pch_iir & SDE_GMBUS_CPT)
2350 		gmbus_irq_handler(dev_priv);
2351 
2352 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2353 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2354 
2355 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2356 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2357 
2358 	if (pch_iir & SDE_FDI_MASK_CPT)
2359 		for_each_pipe(dev_priv, pipe)
2360 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2361 					 pipe_name(pipe),
2362 					 I915_READ(FDI_RX_IIR(pipe)));
2363 
2364 	if (pch_iir & SDE_ERROR_CPT)
2365 		cpt_serr_int_handler(dev_priv);
2366 }
2367 
2368 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2369 {
2370 	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2371 	u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2372 	u32 pin_mask = 0, long_mask = 0;
2373 
2374 	if (ddi_hotplug_trigger) {
2375 		u32 dig_hotplug_reg;
2376 
2377 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2378 		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2379 
2380 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2381 				   ddi_hotplug_trigger,
2382 				   dig_hotplug_reg, hpd_icp,
2383 				   icp_ddi_port_hotplug_long_detect);
2384 	}
2385 
2386 	if (tc_hotplug_trigger) {
2387 		u32 dig_hotplug_reg;
2388 
2389 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2390 		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2391 
2392 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2393 				   tc_hotplug_trigger,
2394 				   dig_hotplug_reg, hpd_icp,
2395 				   icp_tc_port_hotplug_long_detect);
2396 	}
2397 
2398 	if (pin_mask)
2399 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2400 
2401 	if (pch_iir & SDE_GMBUS_ICP)
2402 		gmbus_irq_handler(dev_priv);
2403 }
2404 
2405 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2406 {
2407 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2408 		~SDE_PORTE_HOTPLUG_SPT;
2409 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2410 	u32 pin_mask = 0, long_mask = 0;
2411 
2412 	if (hotplug_trigger) {
2413 		u32 dig_hotplug_reg;
2414 
2415 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2416 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2417 
2418 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2419 				   hotplug_trigger, dig_hotplug_reg, hpd_spt,
2420 				   spt_port_hotplug_long_detect);
2421 	}
2422 
2423 	if (hotplug2_trigger) {
2424 		u32 dig_hotplug_reg;
2425 
2426 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2427 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2428 
2429 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2430 				   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2431 				   spt_port_hotplug2_long_detect);
2432 	}
2433 
2434 	if (pin_mask)
2435 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2436 
2437 	if (pch_iir & SDE_GMBUS_CPT)
2438 		gmbus_irq_handler(dev_priv);
2439 }
2440 
2441 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2442 				u32 hotplug_trigger,
2443 				const u32 hpd[HPD_NUM_PINS])
2444 {
2445 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2446 
2447 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2448 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2449 
2450 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2451 			   dig_hotplug_reg, hpd,
2452 			   ilk_port_hotplug_long_detect);
2453 
2454 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2455 }
2456 
2457 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2458 				    u32 de_iir)
2459 {
2460 	enum pipe pipe;
2461 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2462 
2463 	if (hotplug_trigger)
2464 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2465 
2466 	if (de_iir & DE_AUX_CHANNEL_A)
2467 		dp_aux_irq_handler(dev_priv);
2468 
2469 	if (de_iir & DE_GSE)
2470 		intel_opregion_asle_intr(dev_priv);
2471 
2472 	if (de_iir & DE_POISON)
2473 		DRM_ERROR("Poison interrupt\n");
2474 
2475 	for_each_pipe(dev_priv, pipe) {
2476 		if (de_iir & DE_PIPE_VBLANK(pipe))
2477 			drm_handle_vblank(&dev_priv->drm, pipe);
2478 
2479 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2480 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2481 
2482 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2483 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2484 	}
2485 
2486 	/* check event from PCH */
2487 	if (de_iir & DE_PCH_EVENT) {
2488 		u32 pch_iir = I915_READ(SDEIIR);
2489 
2490 		if (HAS_PCH_CPT(dev_priv))
2491 			cpt_irq_handler(dev_priv, pch_iir);
2492 		else
2493 			ibx_irq_handler(dev_priv, pch_iir);
2494 
2495 		/* should clear PCH hotplug event before clear CPU irq */
2496 		I915_WRITE(SDEIIR, pch_iir);
2497 	}
2498 
2499 	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2500 		ironlake_rps_change_irq_handler(dev_priv);
2501 }
2502 
2503 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2504 				    u32 de_iir)
2505 {
2506 	enum pipe pipe;
2507 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2508 
2509 	if (hotplug_trigger)
2510 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2511 
2512 	if (de_iir & DE_ERR_INT_IVB)
2513 		ivb_err_int_handler(dev_priv);
2514 
2515 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2516 		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2517 
2518 		intel_psr_irq_handler(dev_priv, psr_iir);
2519 		I915_WRITE(EDP_PSR_IIR, psr_iir);
2520 	}
2521 
2522 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2523 		dp_aux_irq_handler(dev_priv);
2524 
2525 	if (de_iir & DE_GSE_IVB)
2526 		intel_opregion_asle_intr(dev_priv);
2527 
2528 	for_each_pipe(dev_priv, pipe) {
2529 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2530 			drm_handle_vblank(&dev_priv->drm, pipe);
2531 	}
2532 
2533 	/* check event from PCH */
2534 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2535 		u32 pch_iir = I915_READ(SDEIIR);
2536 
2537 		cpt_irq_handler(dev_priv, pch_iir);
2538 
2539 		/* clear PCH hotplug event before clear CPU irq */
2540 		I915_WRITE(SDEIIR, pch_iir);
2541 	}
2542 }
2543 
2544 /*
2545  * To handle irqs with the minimum potential races with fresh interrupts, we:
2546  * 1 - Disable Master Interrupt Control.
2547  * 2 - Find the source(s) of the interrupt.
2548  * 3 - Clear the Interrupt Identity bits (IIR).
2549  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2550  * 5 - Re-enable Master Interrupt Control.
2551  */
2552 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2553 {
2554 	struct drm_device *dev = arg;
2555 	struct drm_i915_private *dev_priv = to_i915(dev);
2556 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2557 	irqreturn_t ret = IRQ_NONE;
2558 
2559 	if (!intel_irqs_enabled(dev_priv))
2560 		return IRQ_NONE;
2561 
2562 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2563 	disable_rpm_wakeref_asserts(dev_priv);
2564 
2565 	/* disable master interrupt before clearing iir  */
2566 	de_ier = I915_READ(DEIER);
2567 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2568 
2569 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2570 	 * interrupts will will be stored on its back queue, and then we'll be
2571 	 * able to process them after we restore SDEIER (as soon as we restore
2572 	 * it, we'll get an interrupt if SDEIIR still has something to process
2573 	 * due to its back queue). */
2574 	if (!HAS_PCH_NOP(dev_priv)) {
2575 		sde_ier = I915_READ(SDEIER);
2576 		I915_WRITE(SDEIER, 0);
2577 	}
2578 
2579 	/* Find, clear, then process each source of interrupt */
2580 
2581 	gt_iir = I915_READ(GTIIR);
2582 	if (gt_iir) {
2583 		I915_WRITE(GTIIR, gt_iir);
2584 		ret = IRQ_HANDLED;
2585 		if (INTEL_GEN(dev_priv) >= 6)
2586 			snb_gt_irq_handler(dev_priv, gt_iir);
2587 		else
2588 			ilk_gt_irq_handler(dev_priv, gt_iir);
2589 	}
2590 
2591 	de_iir = I915_READ(DEIIR);
2592 	if (de_iir) {
2593 		I915_WRITE(DEIIR, de_iir);
2594 		ret = IRQ_HANDLED;
2595 		if (INTEL_GEN(dev_priv) >= 7)
2596 			ivb_display_irq_handler(dev_priv, de_iir);
2597 		else
2598 			ilk_display_irq_handler(dev_priv, de_iir);
2599 	}
2600 
2601 	if (INTEL_GEN(dev_priv) >= 6) {
2602 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2603 		if (pm_iir) {
2604 			I915_WRITE(GEN6_PMIIR, pm_iir);
2605 			ret = IRQ_HANDLED;
2606 			gen6_rps_irq_handler(dev_priv, pm_iir);
2607 		}
2608 	}
2609 
2610 	I915_WRITE(DEIER, de_ier);
2611 	if (!HAS_PCH_NOP(dev_priv))
2612 		I915_WRITE(SDEIER, sde_ier);
2613 
2614 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2615 	enable_rpm_wakeref_asserts(dev_priv);
2616 
2617 	return ret;
2618 }
2619 
2620 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2621 				u32 hotplug_trigger,
2622 				const u32 hpd[HPD_NUM_PINS])
2623 {
2624 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2625 
2626 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2627 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2628 
2629 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2630 			   dig_hotplug_reg, hpd,
2631 			   bxt_port_hotplug_long_detect);
2632 
2633 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2634 }
2635 
2636 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2637 {
2638 	u32 pin_mask = 0, long_mask = 0;
2639 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2640 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2641 
2642 	if (trigger_tc) {
2643 		u32 dig_hotplug_reg;
2644 
2645 		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2646 		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2647 
2648 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2649 				   dig_hotplug_reg, hpd_gen11,
2650 				   gen11_port_hotplug_long_detect);
2651 	}
2652 
2653 	if (trigger_tbt) {
2654 		u32 dig_hotplug_reg;
2655 
2656 		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2657 		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2658 
2659 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2660 				   dig_hotplug_reg, hpd_gen11,
2661 				   gen11_port_hotplug_long_detect);
2662 	}
2663 
2664 	if (pin_mask)
2665 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2666 	else
2667 		DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2668 }
2669 
2670 static irqreturn_t
2671 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2672 {
2673 	irqreturn_t ret = IRQ_NONE;
2674 	u32 iir;
2675 	enum pipe pipe;
2676 
2677 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2678 		iir = I915_READ(GEN8_DE_MISC_IIR);
2679 		if (iir) {
2680 			bool found = false;
2681 
2682 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2683 			ret = IRQ_HANDLED;
2684 
2685 			if (iir & GEN8_DE_MISC_GSE) {
2686 				intel_opregion_asle_intr(dev_priv);
2687 				found = true;
2688 			}
2689 
2690 			if (iir & GEN8_DE_EDP_PSR) {
2691 				u32 psr_iir = I915_READ(EDP_PSR_IIR);
2692 
2693 				intel_psr_irq_handler(dev_priv, psr_iir);
2694 				I915_WRITE(EDP_PSR_IIR, psr_iir);
2695 				found = true;
2696 			}
2697 
2698 			if (!found)
2699 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2700 		}
2701 		else
2702 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2703 	}
2704 
2705 	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2706 		iir = I915_READ(GEN11_DE_HPD_IIR);
2707 		if (iir) {
2708 			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2709 			ret = IRQ_HANDLED;
2710 			gen11_hpd_irq_handler(dev_priv, iir);
2711 		} else {
2712 			DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2713 		}
2714 	}
2715 
2716 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2717 		iir = I915_READ(GEN8_DE_PORT_IIR);
2718 		if (iir) {
2719 			u32 tmp_mask;
2720 			bool found = false;
2721 
2722 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2723 			ret = IRQ_HANDLED;
2724 
2725 			tmp_mask = GEN8_AUX_CHANNEL_A;
2726 			if (INTEL_GEN(dev_priv) >= 9)
2727 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2728 					    GEN9_AUX_CHANNEL_C |
2729 					    GEN9_AUX_CHANNEL_D;
2730 
2731 			if (INTEL_GEN(dev_priv) >= 11)
2732 				tmp_mask |= ICL_AUX_CHANNEL_E;
2733 
2734 			if (IS_CNL_WITH_PORT_F(dev_priv) ||
2735 			    INTEL_GEN(dev_priv) >= 11)
2736 				tmp_mask |= CNL_AUX_CHANNEL_F;
2737 
2738 			if (iir & tmp_mask) {
2739 				dp_aux_irq_handler(dev_priv);
2740 				found = true;
2741 			}
2742 
2743 			if (IS_GEN9_LP(dev_priv)) {
2744 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2745 				if (tmp_mask) {
2746 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2747 							    hpd_bxt);
2748 					found = true;
2749 				}
2750 			} else if (IS_BROADWELL(dev_priv)) {
2751 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2752 				if (tmp_mask) {
2753 					ilk_hpd_irq_handler(dev_priv,
2754 							    tmp_mask, hpd_bdw);
2755 					found = true;
2756 				}
2757 			}
2758 
2759 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2760 				gmbus_irq_handler(dev_priv);
2761 				found = true;
2762 			}
2763 
2764 			if (!found)
2765 				DRM_ERROR("Unexpected DE Port interrupt\n");
2766 		}
2767 		else
2768 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2769 	}
2770 
2771 	for_each_pipe(dev_priv, pipe) {
2772 		u32 fault_errors;
2773 
2774 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2775 			continue;
2776 
2777 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2778 		if (!iir) {
2779 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2780 			continue;
2781 		}
2782 
2783 		ret = IRQ_HANDLED;
2784 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2785 
2786 		if (iir & GEN8_PIPE_VBLANK)
2787 			drm_handle_vblank(&dev_priv->drm, pipe);
2788 
2789 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2790 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2791 
2792 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2793 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2794 
2795 		fault_errors = iir;
2796 		if (INTEL_GEN(dev_priv) >= 9)
2797 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2798 		else
2799 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2800 
2801 		if (fault_errors)
2802 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2803 				  pipe_name(pipe),
2804 				  fault_errors);
2805 	}
2806 
2807 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2808 	    master_ctl & GEN8_DE_PCH_IRQ) {
2809 		/*
2810 		 * FIXME(BDW): Assume for now that the new interrupt handling
2811 		 * scheme also closed the SDE interrupt handling race we've seen
2812 		 * on older pch-split platforms. But this needs testing.
2813 		 */
2814 		iir = I915_READ(SDEIIR);
2815 		if (iir) {
2816 			I915_WRITE(SDEIIR, iir);
2817 			ret = IRQ_HANDLED;
2818 
2819 			if (HAS_PCH_ICP(dev_priv))
2820 				icp_irq_handler(dev_priv, iir);
2821 			else if (HAS_PCH_SPT(dev_priv) ||
2822 				 HAS_PCH_KBP(dev_priv) ||
2823 				 HAS_PCH_CNP(dev_priv))
2824 				spt_irq_handler(dev_priv, iir);
2825 			else
2826 				cpt_irq_handler(dev_priv, iir);
2827 		} else {
2828 			/*
2829 			 * Like on previous PCH there seems to be something
2830 			 * fishy going on with forwarding PCH interrupts.
2831 			 */
2832 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2833 		}
2834 	}
2835 
2836 	return ret;
2837 }
2838 
2839 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2840 {
2841 	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2842 
2843 	/*
2844 	 * Now with master disabled, get a sample of level indications
2845 	 * for this interrupt. Indications will be cleared on related acks.
2846 	 * New indications can and will light up during processing,
2847 	 * and will generate new interrupt after enabling master.
2848 	 */
2849 	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2850 }
2851 
2852 static inline void gen8_master_intr_enable(void __iomem * const regs)
2853 {
2854 	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2855 }
2856 
2857 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2858 {
2859 	struct drm_i915_private *dev_priv = to_i915(arg);
2860 	void __iomem * const regs = dev_priv->regs;
2861 	u32 master_ctl;
2862 	u32 gt_iir[4];
2863 
2864 	if (!intel_irqs_enabled(dev_priv))
2865 		return IRQ_NONE;
2866 
2867 	master_ctl = gen8_master_intr_disable(regs);
2868 	if (!master_ctl) {
2869 		gen8_master_intr_enable(regs);
2870 		return IRQ_NONE;
2871 	}
2872 
2873 	/* Find, clear, then process each source of interrupt */
2874 	gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2875 
2876 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2877 	if (master_ctl & ~GEN8_GT_IRQS) {
2878 		disable_rpm_wakeref_asserts(dev_priv);
2879 		gen8_de_irq_handler(dev_priv, master_ctl);
2880 		enable_rpm_wakeref_asserts(dev_priv);
2881 	}
2882 
2883 	gen8_master_intr_enable(regs);
2884 
2885 	gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2886 
2887 	return IRQ_HANDLED;
2888 }
2889 
2890 static u32
2891 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2892 			 const unsigned int bank, const unsigned int bit)
2893 {
2894 	void __iomem * const regs = i915->regs;
2895 	u32 timeout_ts;
2896 	u32 ident;
2897 
2898 	lockdep_assert_held(&i915->irq_lock);
2899 
2900 	raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2901 
2902 	/*
2903 	 * NB: Specs do not specify how long to spin wait,
2904 	 * so we do ~100us as an educated guess.
2905 	 */
2906 	timeout_ts = (local_clock() >> 10) + 100;
2907 	do {
2908 		ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2909 	} while (!(ident & GEN11_INTR_DATA_VALID) &&
2910 		 !time_after32(local_clock() >> 10, timeout_ts));
2911 
2912 	if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2913 		DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2914 			  bank, bit, ident);
2915 		return 0;
2916 	}
2917 
2918 	raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
2919 		      GEN11_INTR_DATA_VALID);
2920 
2921 	return ident;
2922 }
2923 
2924 static void
2925 gen11_other_irq_handler(struct drm_i915_private * const i915,
2926 			const u8 instance, const u16 iir)
2927 {
2928 	if (instance == OTHER_GTPM_INSTANCE)
2929 		return gen6_rps_irq_handler(i915, iir);
2930 
2931 	WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
2932 		  instance, iir);
2933 }
2934 
2935 static void
2936 gen11_engine_irq_handler(struct drm_i915_private * const i915,
2937 			 const u8 class, const u8 instance, const u16 iir)
2938 {
2939 	struct intel_engine_cs *engine;
2940 
2941 	if (instance <= MAX_ENGINE_INSTANCE)
2942 		engine = i915->engine_class[class][instance];
2943 	else
2944 		engine = NULL;
2945 
2946 	if (likely(engine))
2947 		return gen8_cs_irq_handler(engine, iir);
2948 
2949 	WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
2950 		  class, instance);
2951 }
2952 
2953 static void
2954 gen11_gt_identity_handler(struct drm_i915_private * const i915,
2955 			  const u32 identity)
2956 {
2957 	const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
2958 	const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
2959 	const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
2960 
2961 	if (unlikely(!intr))
2962 		return;
2963 
2964 	if (class <= COPY_ENGINE_CLASS)
2965 		return gen11_engine_irq_handler(i915, class, instance, intr);
2966 
2967 	if (class == OTHER_CLASS)
2968 		return gen11_other_irq_handler(i915, instance, intr);
2969 
2970 	WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
2971 		  class, instance, intr);
2972 }
2973 
2974 static void
2975 gen11_gt_bank_handler(struct drm_i915_private * const i915,
2976 		      const unsigned int bank)
2977 {
2978 	void __iomem * const regs = i915->regs;
2979 	unsigned long intr_dw;
2980 	unsigned int bit;
2981 
2982 	lockdep_assert_held(&i915->irq_lock);
2983 
2984 	intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
2985 
2986 	if (unlikely(!intr_dw)) {
2987 		DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
2988 		return;
2989 	}
2990 
2991 	for_each_set_bit(bit, &intr_dw, 32) {
2992 		const u32 ident = gen11_gt_engine_identity(i915,
2993 							   bank, bit);
2994 
2995 		gen11_gt_identity_handler(i915, ident);
2996 	}
2997 
2998 	/* Clear must be after shared has been served for engine */
2999 	raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3000 }
3001 
3002 static void
3003 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3004 		     const u32 master_ctl)
3005 {
3006 	unsigned int bank;
3007 
3008 	spin_lock(&i915->irq_lock);
3009 
3010 	for (bank = 0; bank < 2; bank++) {
3011 		if (master_ctl & GEN11_GT_DW_IRQ(bank))
3012 			gen11_gt_bank_handler(i915, bank);
3013 	}
3014 
3015 	spin_unlock(&i915->irq_lock);
3016 }
3017 
3018 static u32
3019 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3020 {
3021 	void __iomem * const regs = dev_priv->regs;
3022 	u32 iir;
3023 
3024 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
3025 		return 0;
3026 
3027 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3028 	if (likely(iir))
3029 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3030 
3031 	return iir;
3032 }
3033 
3034 static void
3035 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3036 {
3037 	if (iir & GEN11_GU_MISC_GSE)
3038 		intel_opregion_asle_intr(dev_priv);
3039 }
3040 
3041 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
3042 {
3043 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3044 
3045 	/*
3046 	 * Now with master disabled, get a sample of level indications
3047 	 * for this interrupt. Indications will be cleared on related acks.
3048 	 * New indications can and will light up during processing,
3049 	 * and will generate new interrupt after enabling master.
3050 	 */
3051 	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3052 }
3053 
3054 static inline void gen11_master_intr_enable(void __iomem * const regs)
3055 {
3056 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
3057 }
3058 
3059 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3060 {
3061 	struct drm_i915_private * const i915 = to_i915(arg);
3062 	void __iomem * const regs = i915->regs;
3063 	u32 master_ctl;
3064 	u32 gu_misc_iir;
3065 
3066 	if (!intel_irqs_enabled(i915))
3067 		return IRQ_NONE;
3068 
3069 	master_ctl = gen11_master_intr_disable(regs);
3070 	if (!master_ctl) {
3071 		gen11_master_intr_enable(regs);
3072 		return IRQ_NONE;
3073 	}
3074 
3075 	/* Find, clear, then process each source of interrupt. */
3076 	gen11_gt_irq_handler(i915, master_ctl);
3077 
3078 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3079 	if (master_ctl & GEN11_DISPLAY_IRQ) {
3080 		const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3081 
3082 		disable_rpm_wakeref_asserts(i915);
3083 		/*
3084 		 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3085 		 * for the display related bits.
3086 		 */
3087 		gen8_de_irq_handler(i915, disp_ctl);
3088 		enable_rpm_wakeref_asserts(i915);
3089 	}
3090 
3091 	gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3092 
3093 	gen11_master_intr_enable(regs);
3094 
3095 	gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3096 
3097 	return IRQ_HANDLED;
3098 }
3099 
3100 /* Called from drm generic code, passed 'crtc' which
3101  * we use as a pipe index
3102  */
3103 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3104 {
3105 	struct drm_i915_private *dev_priv = to_i915(dev);
3106 	unsigned long irqflags;
3107 
3108 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3109 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3110 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3111 
3112 	return 0;
3113 }
3114 
3115 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3116 {
3117 	struct drm_i915_private *dev_priv = to_i915(dev);
3118 	unsigned long irqflags;
3119 
3120 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3121 	i915_enable_pipestat(dev_priv, pipe,
3122 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
3123 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3124 
3125 	return 0;
3126 }
3127 
3128 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3129 {
3130 	struct drm_i915_private *dev_priv = to_i915(dev);
3131 	unsigned long irqflags;
3132 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3133 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3134 
3135 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3136 	ilk_enable_display_irq(dev_priv, bit);
3137 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3138 
3139 	/* Even though there is no DMC, frame counter can get stuck when
3140 	 * PSR is active as no frames are generated.
3141 	 */
3142 	if (HAS_PSR(dev_priv))
3143 		drm_vblank_restore(dev, pipe);
3144 
3145 	return 0;
3146 }
3147 
3148 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3149 {
3150 	struct drm_i915_private *dev_priv = to_i915(dev);
3151 	unsigned long irqflags;
3152 
3153 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3154 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3155 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3156 
3157 	/* Even if there is no DMC, frame counter can get stuck when
3158 	 * PSR is active as no frames are generated, so check only for PSR.
3159 	 */
3160 	if (HAS_PSR(dev_priv))
3161 		drm_vblank_restore(dev, pipe);
3162 
3163 	return 0;
3164 }
3165 
3166 /* Called from drm generic code, passed 'crtc' which
3167  * we use as a pipe index
3168  */
3169 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3170 {
3171 	struct drm_i915_private *dev_priv = to_i915(dev);
3172 	unsigned long irqflags;
3173 
3174 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3175 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3176 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3177 }
3178 
3179 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3180 {
3181 	struct drm_i915_private *dev_priv = to_i915(dev);
3182 	unsigned long irqflags;
3183 
3184 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3185 	i915_disable_pipestat(dev_priv, pipe,
3186 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3187 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3188 }
3189 
3190 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3191 {
3192 	struct drm_i915_private *dev_priv = to_i915(dev);
3193 	unsigned long irqflags;
3194 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3195 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3196 
3197 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3198 	ilk_disable_display_irq(dev_priv, bit);
3199 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3200 }
3201 
3202 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3203 {
3204 	struct drm_i915_private *dev_priv = to_i915(dev);
3205 	unsigned long irqflags;
3206 
3207 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3208 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3209 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3210 }
3211 
3212 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3213 {
3214 	if (HAS_PCH_NOP(dev_priv))
3215 		return;
3216 
3217 	GEN3_IRQ_RESET(SDE);
3218 
3219 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3220 		I915_WRITE(SERR_INT, 0xffffffff);
3221 }
3222 
3223 /*
3224  * SDEIER is also touched by the interrupt handler to work around missed PCH
3225  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3226  * instead we unconditionally enable all PCH interrupt sources here, but then
3227  * only unmask them as needed with SDEIMR.
3228  *
3229  * This function needs to be called before interrupts are enabled.
3230  */
3231 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3232 {
3233 	struct drm_i915_private *dev_priv = to_i915(dev);
3234 
3235 	if (HAS_PCH_NOP(dev_priv))
3236 		return;
3237 
3238 	WARN_ON(I915_READ(SDEIER) != 0);
3239 	I915_WRITE(SDEIER, 0xffffffff);
3240 	POSTING_READ(SDEIER);
3241 }
3242 
3243 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3244 {
3245 	GEN3_IRQ_RESET(GT);
3246 	if (INTEL_GEN(dev_priv) >= 6)
3247 		GEN3_IRQ_RESET(GEN6_PM);
3248 }
3249 
3250 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3251 {
3252 	if (IS_CHERRYVIEW(dev_priv))
3253 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3254 	else
3255 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3256 
3257 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3258 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3259 
3260 	i9xx_pipestat_irq_reset(dev_priv);
3261 
3262 	GEN3_IRQ_RESET(VLV_);
3263 	dev_priv->irq_mask = ~0u;
3264 }
3265 
3266 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3267 {
3268 	u32 pipestat_mask;
3269 	u32 enable_mask;
3270 	enum pipe pipe;
3271 
3272 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3273 
3274 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3275 	for_each_pipe(dev_priv, pipe)
3276 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3277 
3278 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3279 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3280 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3281 		I915_LPE_PIPE_A_INTERRUPT |
3282 		I915_LPE_PIPE_B_INTERRUPT;
3283 
3284 	if (IS_CHERRYVIEW(dev_priv))
3285 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3286 			I915_LPE_PIPE_C_INTERRUPT;
3287 
3288 	WARN_ON(dev_priv->irq_mask != ~0u);
3289 
3290 	dev_priv->irq_mask = ~enable_mask;
3291 
3292 	GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3293 }
3294 
3295 /* drm_dma.h hooks
3296 */
3297 static void ironlake_irq_reset(struct drm_device *dev)
3298 {
3299 	struct drm_i915_private *dev_priv = to_i915(dev);
3300 
3301 	GEN3_IRQ_RESET(DE);
3302 	if (IS_GEN(dev_priv, 7))
3303 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3304 
3305 	if (IS_HASWELL(dev_priv)) {
3306 		I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3307 		I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3308 	}
3309 
3310 	gen5_gt_irq_reset(dev_priv);
3311 
3312 	ibx_irq_reset(dev_priv);
3313 }
3314 
3315 static void valleyview_irq_reset(struct drm_device *dev)
3316 {
3317 	struct drm_i915_private *dev_priv = to_i915(dev);
3318 
3319 	I915_WRITE(VLV_MASTER_IER, 0);
3320 	POSTING_READ(VLV_MASTER_IER);
3321 
3322 	gen5_gt_irq_reset(dev_priv);
3323 
3324 	spin_lock_irq(&dev_priv->irq_lock);
3325 	if (dev_priv->display_irqs_enabled)
3326 		vlv_display_irq_reset(dev_priv);
3327 	spin_unlock_irq(&dev_priv->irq_lock);
3328 }
3329 
3330 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3331 {
3332 	GEN8_IRQ_RESET_NDX(GT, 0);
3333 	GEN8_IRQ_RESET_NDX(GT, 1);
3334 	GEN8_IRQ_RESET_NDX(GT, 2);
3335 	GEN8_IRQ_RESET_NDX(GT, 3);
3336 }
3337 
3338 static void gen8_irq_reset(struct drm_device *dev)
3339 {
3340 	struct drm_i915_private *dev_priv = to_i915(dev);
3341 	int pipe;
3342 
3343 	gen8_master_intr_disable(dev_priv->regs);
3344 
3345 	gen8_gt_irq_reset(dev_priv);
3346 
3347 	I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3348 	I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3349 
3350 	for_each_pipe(dev_priv, pipe)
3351 		if (intel_display_power_is_enabled(dev_priv,
3352 						   POWER_DOMAIN_PIPE(pipe)))
3353 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3354 
3355 	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3356 	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3357 	GEN3_IRQ_RESET(GEN8_PCU_);
3358 
3359 	if (HAS_PCH_SPLIT(dev_priv))
3360 		ibx_irq_reset(dev_priv);
3361 }
3362 
3363 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3364 {
3365 	/* Disable RCS, BCS, VCS and VECS class engines. */
3366 	I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3367 	I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,	  0);
3368 
3369 	/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3370 	I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,	~0);
3371 	I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,	~0);
3372 	I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,	~0);
3373 	I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,	~0);
3374 	I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK,	~0);
3375 
3376 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3377 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3378 }
3379 
3380 static void gen11_irq_reset(struct drm_device *dev)
3381 {
3382 	struct drm_i915_private *dev_priv = dev->dev_private;
3383 	int pipe;
3384 
3385 	gen11_master_intr_disable(dev_priv->regs);
3386 
3387 	gen11_gt_irq_reset(dev_priv);
3388 
3389 	I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3390 
3391 	I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3392 	I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3393 
3394 	for_each_pipe(dev_priv, pipe)
3395 		if (intel_display_power_is_enabled(dev_priv,
3396 						   POWER_DOMAIN_PIPE(pipe)))
3397 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3398 
3399 	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3400 	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3401 	GEN3_IRQ_RESET(GEN11_DE_HPD_);
3402 	GEN3_IRQ_RESET(GEN11_GU_MISC_);
3403 	GEN3_IRQ_RESET(GEN8_PCU_);
3404 
3405 	if (HAS_PCH_ICP(dev_priv))
3406 		GEN3_IRQ_RESET(SDE);
3407 }
3408 
3409 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3410 				     u8 pipe_mask)
3411 {
3412 	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3413 	enum pipe pipe;
3414 
3415 	spin_lock_irq(&dev_priv->irq_lock);
3416 
3417 	if (!intel_irqs_enabled(dev_priv)) {
3418 		spin_unlock_irq(&dev_priv->irq_lock);
3419 		return;
3420 	}
3421 
3422 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3423 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3424 				  dev_priv->de_irq_mask[pipe],
3425 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3426 
3427 	spin_unlock_irq(&dev_priv->irq_lock);
3428 }
3429 
3430 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3431 				     u8 pipe_mask)
3432 {
3433 	enum pipe pipe;
3434 
3435 	spin_lock_irq(&dev_priv->irq_lock);
3436 
3437 	if (!intel_irqs_enabled(dev_priv)) {
3438 		spin_unlock_irq(&dev_priv->irq_lock);
3439 		return;
3440 	}
3441 
3442 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3443 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3444 
3445 	spin_unlock_irq(&dev_priv->irq_lock);
3446 
3447 	/* make sure we're done processing display irqs */
3448 	synchronize_irq(dev_priv->drm.irq);
3449 }
3450 
3451 static void cherryview_irq_reset(struct drm_device *dev)
3452 {
3453 	struct drm_i915_private *dev_priv = to_i915(dev);
3454 
3455 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3456 	POSTING_READ(GEN8_MASTER_IRQ);
3457 
3458 	gen8_gt_irq_reset(dev_priv);
3459 
3460 	GEN3_IRQ_RESET(GEN8_PCU_);
3461 
3462 	spin_lock_irq(&dev_priv->irq_lock);
3463 	if (dev_priv->display_irqs_enabled)
3464 		vlv_display_irq_reset(dev_priv);
3465 	spin_unlock_irq(&dev_priv->irq_lock);
3466 }
3467 
3468 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3469 				  const u32 hpd[HPD_NUM_PINS])
3470 {
3471 	struct intel_encoder *encoder;
3472 	u32 enabled_irqs = 0;
3473 
3474 	for_each_intel_encoder(&dev_priv->drm, encoder)
3475 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3476 			enabled_irqs |= hpd[encoder->hpd_pin];
3477 
3478 	return enabled_irqs;
3479 }
3480 
3481 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3482 {
3483 	u32 hotplug;
3484 
3485 	/*
3486 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3487 	 * duration to 2ms (which is the minimum in the Display Port spec).
3488 	 * The pulse duration bits are reserved on LPT+.
3489 	 */
3490 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3491 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3492 		     PORTC_PULSE_DURATION_MASK |
3493 		     PORTD_PULSE_DURATION_MASK);
3494 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3495 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3496 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3497 	/*
3498 	 * When CPU and PCH are on the same package, port A
3499 	 * HPD must be enabled in both north and south.
3500 	 */
3501 	if (HAS_PCH_LPT_LP(dev_priv))
3502 		hotplug |= PORTA_HOTPLUG_ENABLE;
3503 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3504 }
3505 
3506 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3507 {
3508 	u32 hotplug_irqs, enabled_irqs;
3509 
3510 	if (HAS_PCH_IBX(dev_priv)) {
3511 		hotplug_irqs = SDE_HOTPLUG_MASK;
3512 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3513 	} else {
3514 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3515 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3516 	}
3517 
3518 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3519 
3520 	ibx_hpd_detection_setup(dev_priv);
3521 }
3522 
3523 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3524 {
3525 	u32 hotplug;
3526 
3527 	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3528 	hotplug |= ICP_DDIA_HPD_ENABLE |
3529 		   ICP_DDIB_HPD_ENABLE;
3530 	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3531 
3532 	hotplug = I915_READ(SHOTPLUG_CTL_TC);
3533 	hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3534 		   ICP_TC_HPD_ENABLE(PORT_TC2) |
3535 		   ICP_TC_HPD_ENABLE(PORT_TC3) |
3536 		   ICP_TC_HPD_ENABLE(PORT_TC4);
3537 	I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3538 }
3539 
3540 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3541 {
3542 	u32 hotplug_irqs, enabled_irqs;
3543 
3544 	hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3545 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3546 
3547 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3548 
3549 	icp_hpd_detection_setup(dev_priv);
3550 }
3551 
3552 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3553 {
3554 	u32 hotplug;
3555 
3556 	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3557 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3558 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3559 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3560 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3561 	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3562 
3563 	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3564 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3565 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3566 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3567 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3568 	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3569 }
3570 
3571 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3572 {
3573 	u32 hotplug_irqs, enabled_irqs;
3574 	u32 val;
3575 
3576 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3577 	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3578 
3579 	val = I915_READ(GEN11_DE_HPD_IMR);
3580 	val &= ~hotplug_irqs;
3581 	I915_WRITE(GEN11_DE_HPD_IMR, val);
3582 	POSTING_READ(GEN11_DE_HPD_IMR);
3583 
3584 	gen11_hpd_detection_setup(dev_priv);
3585 
3586 	if (HAS_PCH_ICP(dev_priv))
3587 		icp_hpd_irq_setup(dev_priv);
3588 }
3589 
3590 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3591 {
3592 	u32 val, hotplug;
3593 
3594 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3595 	if (HAS_PCH_CNP(dev_priv)) {
3596 		val = I915_READ(SOUTH_CHICKEN1);
3597 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3598 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3599 		I915_WRITE(SOUTH_CHICKEN1, val);
3600 	}
3601 
3602 	/* Enable digital hotplug on the PCH */
3603 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3604 	hotplug |= PORTA_HOTPLUG_ENABLE |
3605 		   PORTB_HOTPLUG_ENABLE |
3606 		   PORTC_HOTPLUG_ENABLE |
3607 		   PORTD_HOTPLUG_ENABLE;
3608 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3609 
3610 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3611 	hotplug |= PORTE_HOTPLUG_ENABLE;
3612 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3613 }
3614 
3615 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3616 {
3617 	u32 hotplug_irqs, enabled_irqs;
3618 
3619 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3620 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3621 
3622 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3623 
3624 	spt_hpd_detection_setup(dev_priv);
3625 }
3626 
3627 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3628 {
3629 	u32 hotplug;
3630 
3631 	/*
3632 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3633 	 * duration to 2ms (which is the minimum in the Display Port spec)
3634 	 * The pulse duration bits are reserved on HSW+.
3635 	 */
3636 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3637 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3638 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3639 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3640 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3641 }
3642 
3643 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3644 {
3645 	u32 hotplug_irqs, enabled_irqs;
3646 
3647 	if (INTEL_GEN(dev_priv) >= 8) {
3648 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3649 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3650 
3651 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3652 	} else if (INTEL_GEN(dev_priv) >= 7) {
3653 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3654 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3655 
3656 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3657 	} else {
3658 		hotplug_irqs = DE_DP_A_HOTPLUG;
3659 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3660 
3661 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3662 	}
3663 
3664 	ilk_hpd_detection_setup(dev_priv);
3665 
3666 	ibx_hpd_irq_setup(dev_priv);
3667 }
3668 
3669 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3670 				      u32 enabled_irqs)
3671 {
3672 	u32 hotplug;
3673 
3674 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3675 	hotplug |= PORTA_HOTPLUG_ENABLE |
3676 		   PORTB_HOTPLUG_ENABLE |
3677 		   PORTC_HOTPLUG_ENABLE;
3678 
3679 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3680 		      hotplug, enabled_irqs);
3681 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3682 
3683 	/*
3684 	 * For BXT invert bit has to be set based on AOB design
3685 	 * for HPD detection logic, update it based on VBT fields.
3686 	 */
3687 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3688 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3689 		hotplug |= BXT_DDIA_HPD_INVERT;
3690 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3691 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3692 		hotplug |= BXT_DDIB_HPD_INVERT;
3693 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3694 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3695 		hotplug |= BXT_DDIC_HPD_INVERT;
3696 
3697 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3698 }
3699 
3700 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3701 {
3702 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3703 }
3704 
3705 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3706 {
3707 	u32 hotplug_irqs, enabled_irqs;
3708 
3709 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3710 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3711 
3712 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3713 
3714 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3715 }
3716 
3717 static void ibx_irq_postinstall(struct drm_device *dev)
3718 {
3719 	struct drm_i915_private *dev_priv = to_i915(dev);
3720 	u32 mask;
3721 
3722 	if (HAS_PCH_NOP(dev_priv))
3723 		return;
3724 
3725 	if (HAS_PCH_IBX(dev_priv))
3726 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3727 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3728 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3729 	else
3730 		mask = SDE_GMBUS_CPT;
3731 
3732 	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3733 	I915_WRITE(SDEIMR, ~mask);
3734 
3735 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3736 	    HAS_PCH_LPT(dev_priv))
3737 		ibx_hpd_detection_setup(dev_priv);
3738 	else
3739 		spt_hpd_detection_setup(dev_priv);
3740 }
3741 
3742 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3743 {
3744 	struct drm_i915_private *dev_priv = to_i915(dev);
3745 	u32 pm_irqs, gt_irqs;
3746 
3747 	pm_irqs = gt_irqs = 0;
3748 
3749 	dev_priv->gt_irq_mask = ~0;
3750 	if (HAS_L3_DPF(dev_priv)) {
3751 		/* L3 parity interrupt is always unmasked. */
3752 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3753 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3754 	}
3755 
3756 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3757 	if (IS_GEN(dev_priv, 5)) {
3758 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3759 	} else {
3760 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3761 	}
3762 
3763 	GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3764 
3765 	if (INTEL_GEN(dev_priv) >= 6) {
3766 		/*
3767 		 * RPS interrupts will get enabled/disabled on demand when RPS
3768 		 * itself is enabled/disabled.
3769 		 */
3770 		if (HAS_VEBOX(dev_priv)) {
3771 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3772 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3773 		}
3774 
3775 		dev_priv->pm_imr = 0xffffffff;
3776 		GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3777 	}
3778 }
3779 
3780 static int ironlake_irq_postinstall(struct drm_device *dev)
3781 {
3782 	struct drm_i915_private *dev_priv = to_i915(dev);
3783 	u32 display_mask, extra_mask;
3784 
3785 	if (INTEL_GEN(dev_priv) >= 7) {
3786 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3787 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3788 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3789 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3790 			      DE_DP_A_HOTPLUG_IVB);
3791 	} else {
3792 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3793 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3794 				DE_PIPEA_CRC_DONE | DE_POISON);
3795 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3796 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3797 			      DE_DP_A_HOTPLUG);
3798 	}
3799 
3800 	if (IS_HASWELL(dev_priv)) {
3801 		gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
3802 		intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3803 		display_mask |= DE_EDP_PSR_INT_HSW;
3804 	}
3805 
3806 	dev_priv->irq_mask = ~display_mask;
3807 
3808 	ibx_irq_pre_postinstall(dev);
3809 
3810 	GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3811 
3812 	gen5_gt_irq_postinstall(dev);
3813 
3814 	ilk_hpd_detection_setup(dev_priv);
3815 
3816 	ibx_irq_postinstall(dev);
3817 
3818 	if (IS_IRONLAKE_M(dev_priv)) {
3819 		/* Enable PCU event interrupts
3820 		 *
3821 		 * spinlocking not required here for correctness since interrupt
3822 		 * setup is guaranteed to run in single-threaded context. But we
3823 		 * need it to make the assert_spin_locked happy. */
3824 		spin_lock_irq(&dev_priv->irq_lock);
3825 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3826 		spin_unlock_irq(&dev_priv->irq_lock);
3827 	}
3828 
3829 	return 0;
3830 }
3831 
3832 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3833 {
3834 	lockdep_assert_held(&dev_priv->irq_lock);
3835 
3836 	if (dev_priv->display_irqs_enabled)
3837 		return;
3838 
3839 	dev_priv->display_irqs_enabled = true;
3840 
3841 	if (intel_irqs_enabled(dev_priv)) {
3842 		vlv_display_irq_reset(dev_priv);
3843 		vlv_display_irq_postinstall(dev_priv);
3844 	}
3845 }
3846 
3847 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3848 {
3849 	lockdep_assert_held(&dev_priv->irq_lock);
3850 
3851 	if (!dev_priv->display_irqs_enabled)
3852 		return;
3853 
3854 	dev_priv->display_irqs_enabled = false;
3855 
3856 	if (intel_irqs_enabled(dev_priv))
3857 		vlv_display_irq_reset(dev_priv);
3858 }
3859 
3860 
3861 static int valleyview_irq_postinstall(struct drm_device *dev)
3862 {
3863 	struct drm_i915_private *dev_priv = to_i915(dev);
3864 
3865 	gen5_gt_irq_postinstall(dev);
3866 
3867 	spin_lock_irq(&dev_priv->irq_lock);
3868 	if (dev_priv->display_irqs_enabled)
3869 		vlv_display_irq_postinstall(dev_priv);
3870 	spin_unlock_irq(&dev_priv->irq_lock);
3871 
3872 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3873 	POSTING_READ(VLV_MASTER_IER);
3874 
3875 	return 0;
3876 }
3877 
3878 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3879 {
3880 	/* These are interrupts we'll toggle with the ring mask register */
3881 	u32 gt_interrupts[] = {
3882 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3883 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3884 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3885 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3886 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3887 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3888 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3889 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3890 		0,
3891 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3892 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3893 		};
3894 
3895 	dev_priv->pm_ier = 0x0;
3896 	dev_priv->pm_imr = ~dev_priv->pm_ier;
3897 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3898 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3899 	/*
3900 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3901 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
3902 	 */
3903 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3904 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3905 }
3906 
3907 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3908 {
3909 	u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3910 	u32 de_pipe_enables;
3911 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3912 	u32 de_port_enables;
3913 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3914 	enum pipe pipe;
3915 
3916 	if (INTEL_GEN(dev_priv) <= 10)
3917 		de_misc_masked |= GEN8_DE_MISC_GSE;
3918 
3919 	if (INTEL_GEN(dev_priv) >= 9) {
3920 		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3921 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3922 				  GEN9_AUX_CHANNEL_D;
3923 		if (IS_GEN9_LP(dev_priv))
3924 			de_port_masked |= BXT_DE_PORT_GMBUS;
3925 	} else {
3926 		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3927 	}
3928 
3929 	if (INTEL_GEN(dev_priv) >= 11)
3930 		de_port_masked |= ICL_AUX_CHANNEL_E;
3931 
3932 	if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3933 		de_port_masked |= CNL_AUX_CHANNEL_F;
3934 
3935 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3936 					   GEN8_PIPE_FIFO_UNDERRUN;
3937 
3938 	de_port_enables = de_port_masked;
3939 	if (IS_GEN9_LP(dev_priv))
3940 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3941 	else if (IS_BROADWELL(dev_priv))
3942 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3943 
3944 	gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
3945 	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3946 
3947 	for_each_pipe(dev_priv, pipe) {
3948 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3949 
3950 		if (intel_display_power_is_enabled(dev_priv,
3951 				POWER_DOMAIN_PIPE(pipe)))
3952 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3953 					  dev_priv->de_irq_mask[pipe],
3954 					  de_pipe_enables);
3955 	}
3956 
3957 	GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3958 	GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3959 
3960 	if (INTEL_GEN(dev_priv) >= 11) {
3961 		u32 de_hpd_masked = 0;
3962 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3963 				     GEN11_DE_TBT_HOTPLUG_MASK;
3964 
3965 		GEN3_IRQ_INIT(GEN11_DE_HPD_, ~de_hpd_masked, de_hpd_enables);
3966 		gen11_hpd_detection_setup(dev_priv);
3967 	} else if (IS_GEN9_LP(dev_priv)) {
3968 		bxt_hpd_detection_setup(dev_priv);
3969 	} else if (IS_BROADWELL(dev_priv)) {
3970 		ilk_hpd_detection_setup(dev_priv);
3971 	}
3972 }
3973 
3974 static int gen8_irq_postinstall(struct drm_device *dev)
3975 {
3976 	struct drm_i915_private *dev_priv = to_i915(dev);
3977 
3978 	if (HAS_PCH_SPLIT(dev_priv))
3979 		ibx_irq_pre_postinstall(dev);
3980 
3981 	gen8_gt_irq_postinstall(dev_priv);
3982 	gen8_de_irq_postinstall(dev_priv);
3983 
3984 	if (HAS_PCH_SPLIT(dev_priv))
3985 		ibx_irq_postinstall(dev);
3986 
3987 	gen8_master_intr_enable(dev_priv->regs);
3988 
3989 	return 0;
3990 }
3991 
3992 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3993 {
3994 	const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
3995 
3996 	BUILD_BUG_ON(irqs & 0xffff0000);
3997 
3998 	/* Enable RCS, BCS, VCS and VECS class interrupts. */
3999 	I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4000 	I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,	  irqs << 16 | irqs);
4001 
4002 	/* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4003 	I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,	~(irqs << 16));
4004 	I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,	~(irqs << 16));
4005 	I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,	~(irqs | irqs << 16));
4006 	I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,	~(irqs | irqs << 16));
4007 	I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK,	~(irqs | irqs << 16));
4008 
4009 	/*
4010 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
4011 	 * is enabled/disabled.
4012 	 */
4013 	dev_priv->pm_ier = 0x0;
4014 	dev_priv->pm_imr = ~dev_priv->pm_ier;
4015 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4016 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4017 }
4018 
4019 static void icp_irq_postinstall(struct drm_device *dev)
4020 {
4021 	struct drm_i915_private *dev_priv = to_i915(dev);
4022 	u32 mask = SDE_GMBUS_ICP;
4023 
4024 	WARN_ON(I915_READ(SDEIER) != 0);
4025 	I915_WRITE(SDEIER, 0xffffffff);
4026 	POSTING_READ(SDEIER);
4027 
4028 	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4029 	I915_WRITE(SDEIMR, ~mask);
4030 
4031 	icp_hpd_detection_setup(dev_priv);
4032 }
4033 
4034 static int gen11_irq_postinstall(struct drm_device *dev)
4035 {
4036 	struct drm_i915_private *dev_priv = dev->dev_private;
4037 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4038 
4039 	if (HAS_PCH_ICP(dev_priv))
4040 		icp_irq_postinstall(dev);
4041 
4042 	gen11_gt_irq_postinstall(dev_priv);
4043 	gen8_de_irq_postinstall(dev_priv);
4044 
4045 	GEN3_IRQ_INIT(GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4046 
4047 	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4048 
4049 	gen11_master_intr_enable(dev_priv->regs);
4050 	POSTING_READ(GEN11_GFX_MSTR_IRQ);
4051 
4052 	return 0;
4053 }
4054 
4055 static int cherryview_irq_postinstall(struct drm_device *dev)
4056 {
4057 	struct drm_i915_private *dev_priv = to_i915(dev);
4058 
4059 	gen8_gt_irq_postinstall(dev_priv);
4060 
4061 	spin_lock_irq(&dev_priv->irq_lock);
4062 	if (dev_priv->display_irqs_enabled)
4063 		vlv_display_irq_postinstall(dev_priv);
4064 	spin_unlock_irq(&dev_priv->irq_lock);
4065 
4066 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4067 	POSTING_READ(GEN8_MASTER_IRQ);
4068 
4069 	return 0;
4070 }
4071 
4072 static void i8xx_irq_reset(struct drm_device *dev)
4073 {
4074 	struct drm_i915_private *dev_priv = to_i915(dev);
4075 
4076 	i9xx_pipestat_irq_reset(dev_priv);
4077 
4078 	GEN2_IRQ_RESET();
4079 }
4080 
4081 static int i8xx_irq_postinstall(struct drm_device *dev)
4082 {
4083 	struct drm_i915_private *dev_priv = to_i915(dev);
4084 	u16 enable_mask;
4085 
4086 	I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4087 			    I915_ERROR_MEMORY_REFRESH));
4088 
4089 	/* Unmask the interrupts that we always want on. */
4090 	dev_priv->irq_mask =
4091 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4092 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4093 		  I915_MASTER_ERROR_INTERRUPT);
4094 
4095 	enable_mask =
4096 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4097 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4098 		I915_MASTER_ERROR_INTERRUPT |
4099 		I915_USER_INTERRUPT;
4100 
4101 	GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4102 
4103 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4104 	 * just to make the assert_spin_locked check happy. */
4105 	spin_lock_irq(&dev_priv->irq_lock);
4106 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4108 	spin_unlock_irq(&dev_priv->irq_lock);
4109 
4110 	return 0;
4111 }
4112 
4113 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4114 			       u16 *eir, u16 *eir_stuck)
4115 {
4116 	u16 emr;
4117 
4118 	*eir = I915_READ16(EIR);
4119 
4120 	if (*eir)
4121 		I915_WRITE16(EIR, *eir);
4122 
4123 	*eir_stuck = I915_READ16(EIR);
4124 	if (*eir_stuck == 0)
4125 		return;
4126 
4127 	/*
4128 	 * Toggle all EMR bits to make sure we get an edge
4129 	 * in the ISR master error bit if we don't clear
4130 	 * all the EIR bits. Otherwise the edge triggered
4131 	 * IIR on i965/g4x wouldn't notice that an interrupt
4132 	 * is still pending. Also some EIR bits can't be
4133 	 * cleared except by handling the underlying error
4134 	 * (or by a GPU reset) so we mask any bit that
4135 	 * remains set.
4136 	 */
4137 	emr = I915_READ16(EMR);
4138 	I915_WRITE16(EMR, 0xffff);
4139 	I915_WRITE16(EMR, emr | *eir_stuck);
4140 }
4141 
4142 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4143 				   u16 eir, u16 eir_stuck)
4144 {
4145 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4146 
4147 	if (eir_stuck)
4148 		DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4149 }
4150 
4151 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4152 			       u32 *eir, u32 *eir_stuck)
4153 {
4154 	u32 emr;
4155 
4156 	*eir = I915_READ(EIR);
4157 
4158 	I915_WRITE(EIR, *eir);
4159 
4160 	*eir_stuck = I915_READ(EIR);
4161 	if (*eir_stuck == 0)
4162 		return;
4163 
4164 	/*
4165 	 * Toggle all EMR bits to make sure we get an edge
4166 	 * in the ISR master error bit if we don't clear
4167 	 * all the EIR bits. Otherwise the edge triggered
4168 	 * IIR on i965/g4x wouldn't notice that an interrupt
4169 	 * is still pending. Also some EIR bits can't be
4170 	 * cleared except by handling the underlying error
4171 	 * (or by a GPU reset) so we mask any bit that
4172 	 * remains set.
4173 	 */
4174 	emr = I915_READ(EMR);
4175 	I915_WRITE(EMR, 0xffffffff);
4176 	I915_WRITE(EMR, emr | *eir_stuck);
4177 }
4178 
4179 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4180 				   u32 eir, u32 eir_stuck)
4181 {
4182 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4183 
4184 	if (eir_stuck)
4185 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4186 }
4187 
4188 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4189 {
4190 	struct drm_device *dev = arg;
4191 	struct drm_i915_private *dev_priv = to_i915(dev);
4192 	irqreturn_t ret = IRQ_NONE;
4193 
4194 	if (!intel_irqs_enabled(dev_priv))
4195 		return IRQ_NONE;
4196 
4197 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4198 	disable_rpm_wakeref_asserts(dev_priv);
4199 
4200 	do {
4201 		u32 pipe_stats[I915_MAX_PIPES] = {};
4202 		u16 eir = 0, eir_stuck = 0;
4203 		u16 iir;
4204 
4205 		iir = I915_READ16(IIR);
4206 		if (iir == 0)
4207 			break;
4208 
4209 		ret = IRQ_HANDLED;
4210 
4211 		/* Call regardless, as some status bits might not be
4212 		 * signalled in iir */
4213 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4214 
4215 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4216 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4217 
4218 		I915_WRITE16(IIR, iir);
4219 
4220 		if (iir & I915_USER_INTERRUPT)
4221 			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS]);
4222 
4223 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4224 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4225 
4226 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4227 	} while (0);
4228 
4229 	enable_rpm_wakeref_asserts(dev_priv);
4230 
4231 	return ret;
4232 }
4233 
4234 static void i915_irq_reset(struct drm_device *dev)
4235 {
4236 	struct drm_i915_private *dev_priv = to_i915(dev);
4237 
4238 	if (I915_HAS_HOTPLUG(dev_priv)) {
4239 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4240 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4241 	}
4242 
4243 	i9xx_pipestat_irq_reset(dev_priv);
4244 
4245 	GEN3_IRQ_RESET();
4246 }
4247 
4248 static int i915_irq_postinstall(struct drm_device *dev)
4249 {
4250 	struct drm_i915_private *dev_priv = to_i915(dev);
4251 	u32 enable_mask;
4252 
4253 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4254 			  I915_ERROR_MEMORY_REFRESH));
4255 
4256 	/* Unmask the interrupts that we always want on. */
4257 	dev_priv->irq_mask =
4258 		~(I915_ASLE_INTERRUPT |
4259 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4260 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4261 		  I915_MASTER_ERROR_INTERRUPT);
4262 
4263 	enable_mask =
4264 		I915_ASLE_INTERRUPT |
4265 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4266 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4267 		I915_MASTER_ERROR_INTERRUPT |
4268 		I915_USER_INTERRUPT;
4269 
4270 	if (I915_HAS_HOTPLUG(dev_priv)) {
4271 		/* Enable in IER... */
4272 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4273 		/* and unmask in IMR */
4274 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4275 	}
4276 
4277 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4278 
4279 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4280 	 * just to make the assert_spin_locked check happy. */
4281 	spin_lock_irq(&dev_priv->irq_lock);
4282 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4283 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4284 	spin_unlock_irq(&dev_priv->irq_lock);
4285 
4286 	i915_enable_asle_pipestat(dev_priv);
4287 
4288 	return 0;
4289 }
4290 
4291 static irqreturn_t i915_irq_handler(int irq, void *arg)
4292 {
4293 	struct drm_device *dev = arg;
4294 	struct drm_i915_private *dev_priv = to_i915(dev);
4295 	irqreturn_t ret = IRQ_NONE;
4296 
4297 	if (!intel_irqs_enabled(dev_priv))
4298 		return IRQ_NONE;
4299 
4300 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4301 	disable_rpm_wakeref_asserts(dev_priv);
4302 
4303 	do {
4304 		u32 pipe_stats[I915_MAX_PIPES] = {};
4305 		u32 eir = 0, eir_stuck = 0;
4306 		u32 hotplug_status = 0;
4307 		u32 iir;
4308 
4309 		iir = I915_READ(IIR);
4310 		if (iir == 0)
4311 			break;
4312 
4313 		ret = IRQ_HANDLED;
4314 
4315 		if (I915_HAS_HOTPLUG(dev_priv) &&
4316 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4317 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4318 
4319 		/* Call regardless, as some status bits might not be
4320 		 * signalled in iir */
4321 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4322 
4323 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4324 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4325 
4326 		I915_WRITE(IIR, iir);
4327 
4328 		if (iir & I915_USER_INTERRUPT)
4329 			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS]);
4330 
4331 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4332 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4333 
4334 		if (hotplug_status)
4335 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4336 
4337 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4338 	} while (0);
4339 
4340 	enable_rpm_wakeref_asserts(dev_priv);
4341 
4342 	return ret;
4343 }
4344 
4345 static void i965_irq_reset(struct drm_device *dev)
4346 {
4347 	struct drm_i915_private *dev_priv = to_i915(dev);
4348 
4349 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4350 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4351 
4352 	i9xx_pipestat_irq_reset(dev_priv);
4353 
4354 	GEN3_IRQ_RESET();
4355 }
4356 
4357 static int i965_irq_postinstall(struct drm_device *dev)
4358 {
4359 	struct drm_i915_private *dev_priv = to_i915(dev);
4360 	u32 enable_mask;
4361 	u32 error_mask;
4362 
4363 	/*
4364 	 * Enable some error detection, note the instruction error mask
4365 	 * bit is reserved, so we leave it masked.
4366 	 */
4367 	if (IS_G4X(dev_priv)) {
4368 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4369 			       GM45_ERROR_MEM_PRIV |
4370 			       GM45_ERROR_CP_PRIV |
4371 			       I915_ERROR_MEMORY_REFRESH);
4372 	} else {
4373 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4374 			       I915_ERROR_MEMORY_REFRESH);
4375 	}
4376 	I915_WRITE(EMR, error_mask);
4377 
4378 	/* Unmask the interrupts that we always want on. */
4379 	dev_priv->irq_mask =
4380 		~(I915_ASLE_INTERRUPT |
4381 		  I915_DISPLAY_PORT_INTERRUPT |
4382 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4383 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4384 		  I915_MASTER_ERROR_INTERRUPT);
4385 
4386 	enable_mask =
4387 		I915_ASLE_INTERRUPT |
4388 		I915_DISPLAY_PORT_INTERRUPT |
4389 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4390 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4391 		I915_MASTER_ERROR_INTERRUPT |
4392 		I915_USER_INTERRUPT;
4393 
4394 	if (IS_G4X(dev_priv))
4395 		enable_mask |= I915_BSD_USER_INTERRUPT;
4396 
4397 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4398 
4399 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4400 	 * just to make the assert_spin_locked check happy. */
4401 	spin_lock_irq(&dev_priv->irq_lock);
4402 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4403 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4404 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4405 	spin_unlock_irq(&dev_priv->irq_lock);
4406 
4407 	i915_enable_asle_pipestat(dev_priv);
4408 
4409 	return 0;
4410 }
4411 
4412 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4413 {
4414 	u32 hotplug_en;
4415 
4416 	lockdep_assert_held(&dev_priv->irq_lock);
4417 
4418 	/* Note HDMI and DP share hotplug bits */
4419 	/* enable bits are the same for all generations */
4420 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4421 	/* Programming the CRT detection parameters tends
4422 	   to generate a spurious hotplug event about three
4423 	   seconds later.  So just do it once.
4424 	*/
4425 	if (IS_G4X(dev_priv))
4426 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4427 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4428 
4429 	/* Ignore TV since it's buggy */
4430 	i915_hotplug_interrupt_update_locked(dev_priv,
4431 					     HOTPLUG_INT_EN_MASK |
4432 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4433 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4434 					     hotplug_en);
4435 }
4436 
4437 static irqreturn_t i965_irq_handler(int irq, void *arg)
4438 {
4439 	struct drm_device *dev = arg;
4440 	struct drm_i915_private *dev_priv = to_i915(dev);
4441 	irqreturn_t ret = IRQ_NONE;
4442 
4443 	if (!intel_irqs_enabled(dev_priv))
4444 		return IRQ_NONE;
4445 
4446 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4447 	disable_rpm_wakeref_asserts(dev_priv);
4448 
4449 	do {
4450 		u32 pipe_stats[I915_MAX_PIPES] = {};
4451 		u32 eir = 0, eir_stuck = 0;
4452 		u32 hotplug_status = 0;
4453 		u32 iir;
4454 
4455 		iir = I915_READ(IIR);
4456 		if (iir == 0)
4457 			break;
4458 
4459 		ret = IRQ_HANDLED;
4460 
4461 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4462 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4463 
4464 		/* Call regardless, as some status bits might not be
4465 		 * signalled in iir */
4466 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4467 
4468 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4469 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4470 
4471 		I915_WRITE(IIR, iir);
4472 
4473 		if (iir & I915_USER_INTERRUPT)
4474 			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS]);
4475 
4476 		if (iir & I915_BSD_USER_INTERRUPT)
4477 			intel_engine_breadcrumbs_irq(dev_priv->engine[VCS]);
4478 
4479 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4480 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4481 
4482 		if (hotplug_status)
4483 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4484 
4485 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4486 	} while (0);
4487 
4488 	enable_rpm_wakeref_asserts(dev_priv);
4489 
4490 	return ret;
4491 }
4492 
4493 /**
4494  * intel_irq_init - initializes irq support
4495  * @dev_priv: i915 device instance
4496  *
4497  * This function initializes all the irq support including work items, timers
4498  * and all the vtables. It does not setup the interrupt itself though.
4499  */
4500 void intel_irq_init(struct drm_i915_private *dev_priv)
4501 {
4502 	struct drm_device *dev = &dev_priv->drm;
4503 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4504 	int i;
4505 
4506 	intel_hpd_init_work(dev_priv);
4507 
4508 	INIT_WORK(&rps->work, gen6_pm_rps_work);
4509 
4510 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4511 	for (i = 0; i < MAX_L3_SLICES; ++i)
4512 		dev_priv->l3_parity.remap_info[i] = NULL;
4513 
4514 	if (HAS_GUC_SCHED(dev_priv))
4515 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4516 
4517 	/* Let's track the enabled rps events */
4518 	if (IS_VALLEYVIEW(dev_priv))
4519 		/* WaGsvRC0ResidencyMethod:vlv */
4520 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4521 	else
4522 		dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4523 					   GEN6_PM_RP_DOWN_THRESHOLD |
4524 					   GEN6_PM_RP_DOWN_TIMEOUT);
4525 
4526 	rps->pm_intrmsk_mbz = 0;
4527 
4528 	/*
4529 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4530 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4531 	 *
4532 	 * TODO: verify if this can be reproduced on VLV,CHV.
4533 	 */
4534 	if (INTEL_GEN(dev_priv) <= 7)
4535 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4536 
4537 	if (INTEL_GEN(dev_priv) >= 8)
4538 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4539 
4540 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4541 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4542 	else if (INTEL_GEN(dev_priv) >= 3)
4543 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4544 
4545 	/*
4546 	 * Opt out of the vblank disable timer on everything except gen2.
4547 	 * Gen2 doesn't have a hardware frame counter and so depends on
4548 	 * vblank interrupts to produce sane vblank seuquence numbers.
4549 	 */
4550 	if (!IS_GEN(dev_priv, 2))
4551 		dev->vblank_disable_immediate = true;
4552 
4553 	/* Most platforms treat the display irq block as an always-on
4554 	 * power domain. vlv/chv can disable it at runtime and need
4555 	 * special care to avoid writing any of the display block registers
4556 	 * outside of the power domain. We defer setting up the display irqs
4557 	 * in this case to the runtime pm.
4558 	 */
4559 	dev_priv->display_irqs_enabled = true;
4560 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4561 		dev_priv->display_irqs_enabled = false;
4562 
4563 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4564 	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4565 	 * detection, as short HPD storms will occur as a natural part of
4566 	 * sideband messaging with MST.
4567 	 * On older platforms however, IRQ storms can occur with both long and
4568 	 * short pulses, as seen on some G4x systems.
4569 	 */
4570 	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4571 
4572 	dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4573 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4574 
4575 	if (IS_CHERRYVIEW(dev_priv)) {
4576 		dev->driver->irq_handler = cherryview_irq_handler;
4577 		dev->driver->irq_preinstall = cherryview_irq_reset;
4578 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4579 		dev->driver->irq_uninstall = cherryview_irq_reset;
4580 		dev->driver->enable_vblank = i965_enable_vblank;
4581 		dev->driver->disable_vblank = i965_disable_vblank;
4582 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4583 	} else if (IS_VALLEYVIEW(dev_priv)) {
4584 		dev->driver->irq_handler = valleyview_irq_handler;
4585 		dev->driver->irq_preinstall = valleyview_irq_reset;
4586 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4587 		dev->driver->irq_uninstall = valleyview_irq_reset;
4588 		dev->driver->enable_vblank = i965_enable_vblank;
4589 		dev->driver->disable_vblank = i965_disable_vblank;
4590 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4591 	} else if (INTEL_GEN(dev_priv) >= 11) {
4592 		dev->driver->irq_handler = gen11_irq_handler;
4593 		dev->driver->irq_preinstall = gen11_irq_reset;
4594 		dev->driver->irq_postinstall = gen11_irq_postinstall;
4595 		dev->driver->irq_uninstall = gen11_irq_reset;
4596 		dev->driver->enable_vblank = gen8_enable_vblank;
4597 		dev->driver->disable_vblank = gen8_disable_vblank;
4598 		dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4599 	} else if (INTEL_GEN(dev_priv) >= 8) {
4600 		dev->driver->irq_handler = gen8_irq_handler;
4601 		dev->driver->irq_preinstall = gen8_irq_reset;
4602 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4603 		dev->driver->irq_uninstall = gen8_irq_reset;
4604 		dev->driver->enable_vblank = gen8_enable_vblank;
4605 		dev->driver->disable_vblank = gen8_disable_vblank;
4606 		if (IS_GEN9_LP(dev_priv))
4607 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4608 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4609 			 HAS_PCH_CNP(dev_priv))
4610 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4611 		else
4612 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4613 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4614 		dev->driver->irq_handler = ironlake_irq_handler;
4615 		dev->driver->irq_preinstall = ironlake_irq_reset;
4616 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4617 		dev->driver->irq_uninstall = ironlake_irq_reset;
4618 		dev->driver->enable_vblank = ironlake_enable_vblank;
4619 		dev->driver->disable_vblank = ironlake_disable_vblank;
4620 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4621 	} else {
4622 		if (IS_GEN(dev_priv, 2)) {
4623 			dev->driver->irq_preinstall = i8xx_irq_reset;
4624 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4625 			dev->driver->irq_handler = i8xx_irq_handler;
4626 			dev->driver->irq_uninstall = i8xx_irq_reset;
4627 			dev->driver->enable_vblank = i8xx_enable_vblank;
4628 			dev->driver->disable_vblank = i8xx_disable_vblank;
4629 		} else if (IS_GEN(dev_priv, 3)) {
4630 			dev->driver->irq_preinstall = i915_irq_reset;
4631 			dev->driver->irq_postinstall = i915_irq_postinstall;
4632 			dev->driver->irq_uninstall = i915_irq_reset;
4633 			dev->driver->irq_handler = i915_irq_handler;
4634 			dev->driver->enable_vblank = i8xx_enable_vblank;
4635 			dev->driver->disable_vblank = i8xx_disable_vblank;
4636 		} else {
4637 			dev->driver->irq_preinstall = i965_irq_reset;
4638 			dev->driver->irq_postinstall = i965_irq_postinstall;
4639 			dev->driver->irq_uninstall = i965_irq_reset;
4640 			dev->driver->irq_handler = i965_irq_handler;
4641 			dev->driver->enable_vblank = i965_enable_vblank;
4642 			dev->driver->disable_vblank = i965_disable_vblank;
4643 		}
4644 		if (I915_HAS_HOTPLUG(dev_priv))
4645 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4646 	}
4647 }
4648 
4649 /**
4650  * intel_irq_fini - deinitializes IRQ support
4651  * @i915: i915 device instance
4652  *
4653  * This function deinitializes all the IRQ support.
4654  */
4655 void intel_irq_fini(struct drm_i915_private *i915)
4656 {
4657 	int i;
4658 
4659 	for (i = 0; i < MAX_L3_SLICES; ++i)
4660 		kfree(i915->l3_parity.remap_info[i]);
4661 }
4662 
4663 /**
4664  * intel_irq_install - enables the hardware interrupt
4665  * @dev_priv: i915 device instance
4666  *
4667  * This function enables the hardware interrupt handling, but leaves the hotplug
4668  * handling still disabled. It is called after intel_irq_init().
4669  *
4670  * In the driver load and resume code we need working interrupts in a few places
4671  * but don't want to deal with the hassle of concurrent probe and hotplug
4672  * workers. Hence the split into this two-stage approach.
4673  */
4674 int intel_irq_install(struct drm_i915_private *dev_priv)
4675 {
4676 	/*
4677 	 * We enable some interrupt sources in our postinstall hooks, so mark
4678 	 * interrupts as enabled _before_ actually enabling them to avoid
4679 	 * special cases in our ordering checks.
4680 	 */
4681 	dev_priv->runtime_pm.irqs_enabled = true;
4682 
4683 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4684 }
4685 
4686 /**
4687  * intel_irq_uninstall - finilizes all irq handling
4688  * @dev_priv: i915 device instance
4689  *
4690  * This stops interrupt and hotplug handling and unregisters and frees all
4691  * resources acquired in the init functions.
4692  */
4693 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4694 {
4695 	drm_irq_uninstall(&dev_priv->drm);
4696 	intel_hpd_cancel_work(dev_priv);
4697 	dev_priv->runtime_pm.irqs_enabled = false;
4698 }
4699 
4700 /**
4701  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4702  * @dev_priv: i915 device instance
4703  *
4704  * This function is used to disable interrupts at runtime, both in the runtime
4705  * pm and the system suspend/resume code.
4706  */
4707 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4708 {
4709 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4710 	dev_priv->runtime_pm.irqs_enabled = false;
4711 	synchronize_irq(dev_priv->drm.irq);
4712 }
4713 
4714 /**
4715  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4716  * @dev_priv: i915 device instance
4717  *
4718  * This function is used to enable interrupts at runtime, both in the runtime
4719  * pm and the system suspend/resume code.
4720  */
4721 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4722 {
4723 	dev_priv->runtime_pm.irqs_enabled = true;
4724 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4725 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4726 }
4727