xref: /openbmc/linux/drivers/gpu/drm/i915/i915_irq.c (revision 002dff36)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34 
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37 
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43 
44 #include "gt/intel_gt.h"
45 #include "gt/intel_gt_irq.h"
46 #include "gt/intel_gt_pm_irq.h"
47 #include "gt/intel_rps.h"
48 
49 #include "i915_drv.h"
50 #include "i915_irq.h"
51 #include "i915_trace.h"
52 #include "intel_pm.h"
53 
54 /**
55  * DOC: interrupt handling
56  *
57  * These functions provide the basic support for enabling and disabling the
58  * interrupt handling support. There's a lot more functionality in i915_irq.c
59  * and related files, but that will be described in separate chapters.
60  */
61 
62 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
63 
64 static const u32 hpd_ilk[HPD_NUM_PINS] = {
65 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
66 };
67 
68 static const u32 hpd_ivb[HPD_NUM_PINS] = {
69 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
70 };
71 
72 static const u32 hpd_bdw[HPD_NUM_PINS] = {
73 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
74 };
75 
76 static const u32 hpd_ibx[HPD_NUM_PINS] = {
77 	[HPD_CRT] = SDE_CRT_HOTPLUG,
78 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
79 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
80 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
81 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
82 };
83 
84 static const u32 hpd_cpt[HPD_NUM_PINS] = {
85 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
86 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
87 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
88 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
89 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
90 };
91 
92 static const u32 hpd_spt[HPD_NUM_PINS] = {
93 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
94 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
95 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
96 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
97 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
98 };
99 
100 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
101 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
102 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
103 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
104 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
105 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
106 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
107 };
108 
109 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
110 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
111 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
112 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
113 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
114 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
115 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
116 };
117 
118 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
119 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
120 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
121 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
122 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
123 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
124 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
125 };
126 
127 static const u32 hpd_bxt[HPD_NUM_PINS] = {
128 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
129 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
130 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC,
131 };
132 
133 static const u32 hpd_gen11[HPD_NUM_PINS] = {
134 	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
135 	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
136 	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
137 	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
138 };
139 
140 static const u32 hpd_gen12[HPD_NUM_PINS] = {
141 	[HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
142 	[HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
143 	[HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
144 	[HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
145 	[HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
146 	[HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG,
147 };
148 
149 static const u32 hpd_icp[HPD_NUM_PINS] = {
150 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
151 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
152 	[HPD_PORT_C] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
153 	[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
154 	[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
155 	[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
156 };
157 
158 static const u32 hpd_tgp[HPD_NUM_PINS] = {
159 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
160 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
161 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
162 	[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
163 	[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
164 	[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
165 	[HPD_PORT_G] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
166 	[HPD_PORT_H] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
167 	[HPD_PORT_I] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
168 };
169 
170 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
171 {
172 	struct i915_hotplug *hpd = &dev_priv->hotplug;
173 
174 	if (HAS_GMCH(dev_priv)) {
175 		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
176 		    IS_CHERRYVIEW(dev_priv))
177 			hpd->hpd = hpd_status_g4x;
178 		else
179 			hpd->hpd = hpd_status_i915;
180 		return;
181 	}
182 
183 	if (INTEL_GEN(dev_priv) >= 12)
184 		hpd->hpd = hpd_gen12;
185 	else if (INTEL_GEN(dev_priv) >= 11)
186 		hpd->hpd = hpd_gen11;
187 	else if (IS_GEN9_LP(dev_priv))
188 		hpd->hpd = hpd_bxt;
189 	else if (INTEL_GEN(dev_priv) >= 8)
190 		hpd->hpd = hpd_bdw;
191 	else if (INTEL_GEN(dev_priv) >= 7)
192 		hpd->hpd = hpd_ivb;
193 	else
194 		hpd->hpd = hpd_ilk;
195 
196 	if (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv))
197 		return;
198 
199 	if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv))
200 		hpd->pch_hpd = hpd_tgp;
201 	else if (HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
202 		hpd->pch_hpd = hpd_icp;
203 	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
204 		hpd->pch_hpd = hpd_spt;
205 	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
206 		hpd->pch_hpd = hpd_cpt;
207 	else if (HAS_PCH_IBX(dev_priv))
208 		hpd->pch_hpd = hpd_ibx;
209 	else
210 		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
211 }
212 
213 static void
214 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
215 {
216 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
217 
218 	drm_crtc_handle_vblank(&crtc->base);
219 }
220 
221 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
222 		    i915_reg_t iir, i915_reg_t ier)
223 {
224 	intel_uncore_write(uncore, imr, 0xffffffff);
225 	intel_uncore_posting_read(uncore, imr);
226 
227 	intel_uncore_write(uncore, ier, 0);
228 
229 	/* IIR can theoretically queue up two events. Be paranoid. */
230 	intel_uncore_write(uncore, iir, 0xffffffff);
231 	intel_uncore_posting_read(uncore, iir);
232 	intel_uncore_write(uncore, iir, 0xffffffff);
233 	intel_uncore_posting_read(uncore, iir);
234 }
235 
236 void gen2_irq_reset(struct intel_uncore *uncore)
237 {
238 	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
239 	intel_uncore_posting_read16(uncore, GEN2_IMR);
240 
241 	intel_uncore_write16(uncore, GEN2_IER, 0);
242 
243 	/* IIR can theoretically queue up two events. Be paranoid. */
244 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
245 	intel_uncore_posting_read16(uncore, GEN2_IIR);
246 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
247 	intel_uncore_posting_read16(uncore, GEN2_IIR);
248 }
249 
250 /*
251  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
252  */
253 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
254 {
255 	u32 val = intel_uncore_read(uncore, reg);
256 
257 	if (val == 0)
258 		return;
259 
260 	drm_WARN(&uncore->i915->drm, 1,
261 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
262 		 i915_mmio_reg_offset(reg), val);
263 	intel_uncore_write(uncore, reg, 0xffffffff);
264 	intel_uncore_posting_read(uncore, reg);
265 	intel_uncore_write(uncore, reg, 0xffffffff);
266 	intel_uncore_posting_read(uncore, reg);
267 }
268 
269 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
270 {
271 	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
272 
273 	if (val == 0)
274 		return;
275 
276 	drm_WARN(&uncore->i915->drm, 1,
277 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
278 		 i915_mmio_reg_offset(GEN2_IIR), val);
279 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
280 	intel_uncore_posting_read16(uncore, GEN2_IIR);
281 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
282 	intel_uncore_posting_read16(uncore, GEN2_IIR);
283 }
284 
285 void gen3_irq_init(struct intel_uncore *uncore,
286 		   i915_reg_t imr, u32 imr_val,
287 		   i915_reg_t ier, u32 ier_val,
288 		   i915_reg_t iir)
289 {
290 	gen3_assert_iir_is_zero(uncore, iir);
291 
292 	intel_uncore_write(uncore, ier, ier_val);
293 	intel_uncore_write(uncore, imr, imr_val);
294 	intel_uncore_posting_read(uncore, imr);
295 }
296 
297 void gen2_irq_init(struct intel_uncore *uncore,
298 		   u32 imr_val, u32 ier_val)
299 {
300 	gen2_assert_iir_is_zero(uncore);
301 
302 	intel_uncore_write16(uncore, GEN2_IER, ier_val);
303 	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
304 	intel_uncore_posting_read16(uncore, GEN2_IMR);
305 }
306 
307 /* For display hotplug interrupt */
308 static inline void
309 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
310 				     u32 mask,
311 				     u32 bits)
312 {
313 	u32 val;
314 
315 	lockdep_assert_held(&dev_priv->irq_lock);
316 	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
317 
318 	val = I915_READ(PORT_HOTPLUG_EN);
319 	val &= ~mask;
320 	val |= bits;
321 	I915_WRITE(PORT_HOTPLUG_EN, val);
322 }
323 
324 /**
325  * i915_hotplug_interrupt_update - update hotplug interrupt enable
326  * @dev_priv: driver private
327  * @mask: bits to update
328  * @bits: bits to enable
329  * NOTE: the HPD enable bits are modified both inside and outside
330  * of an interrupt context. To avoid that read-modify-write cycles
331  * interfer, these bits are protected by a spinlock. Since this
332  * function is usually not called from a context where the lock is
333  * held already, this function acquires the lock itself. A non-locking
334  * version is also available.
335  */
336 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
337 				   u32 mask,
338 				   u32 bits)
339 {
340 	spin_lock_irq(&dev_priv->irq_lock);
341 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
342 	spin_unlock_irq(&dev_priv->irq_lock);
343 }
344 
345 /**
346  * ilk_update_display_irq - update DEIMR
347  * @dev_priv: driver private
348  * @interrupt_mask: mask of interrupt bits to update
349  * @enabled_irq_mask: mask of interrupt bits to enable
350  */
351 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
352 			    u32 interrupt_mask,
353 			    u32 enabled_irq_mask)
354 {
355 	u32 new_val;
356 
357 	lockdep_assert_held(&dev_priv->irq_lock);
358 
359 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
360 
361 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
362 		return;
363 
364 	new_val = dev_priv->irq_mask;
365 	new_val &= ~interrupt_mask;
366 	new_val |= (~enabled_irq_mask & interrupt_mask);
367 
368 	if (new_val != dev_priv->irq_mask) {
369 		dev_priv->irq_mask = new_val;
370 		I915_WRITE(DEIMR, dev_priv->irq_mask);
371 		POSTING_READ(DEIMR);
372 	}
373 }
374 
375 /**
376  * bdw_update_port_irq - update DE port interrupt
377  * @dev_priv: driver private
378  * @interrupt_mask: mask of interrupt bits to update
379  * @enabled_irq_mask: mask of interrupt bits to enable
380  */
381 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
382 				u32 interrupt_mask,
383 				u32 enabled_irq_mask)
384 {
385 	u32 new_val;
386 	u32 old_val;
387 
388 	lockdep_assert_held(&dev_priv->irq_lock);
389 
390 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
391 
392 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
393 		return;
394 
395 	old_val = I915_READ(GEN8_DE_PORT_IMR);
396 
397 	new_val = old_val;
398 	new_val &= ~interrupt_mask;
399 	new_val |= (~enabled_irq_mask & interrupt_mask);
400 
401 	if (new_val != old_val) {
402 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
403 		POSTING_READ(GEN8_DE_PORT_IMR);
404 	}
405 }
406 
407 /**
408  * bdw_update_pipe_irq - update DE pipe interrupt
409  * @dev_priv: driver private
410  * @pipe: pipe whose interrupt to update
411  * @interrupt_mask: mask of interrupt bits to update
412  * @enabled_irq_mask: mask of interrupt bits to enable
413  */
414 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
415 			 enum pipe pipe,
416 			 u32 interrupt_mask,
417 			 u32 enabled_irq_mask)
418 {
419 	u32 new_val;
420 
421 	lockdep_assert_held(&dev_priv->irq_lock);
422 
423 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
424 
425 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
426 		return;
427 
428 	new_val = dev_priv->de_irq_mask[pipe];
429 	new_val &= ~interrupt_mask;
430 	new_val |= (~enabled_irq_mask & interrupt_mask);
431 
432 	if (new_val != dev_priv->de_irq_mask[pipe]) {
433 		dev_priv->de_irq_mask[pipe] = new_val;
434 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
435 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
436 	}
437 }
438 
439 /**
440  * ibx_display_interrupt_update - update SDEIMR
441  * @dev_priv: driver private
442  * @interrupt_mask: mask of interrupt bits to update
443  * @enabled_irq_mask: mask of interrupt bits to enable
444  */
445 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
446 				  u32 interrupt_mask,
447 				  u32 enabled_irq_mask)
448 {
449 	u32 sdeimr = I915_READ(SDEIMR);
450 	sdeimr &= ~interrupt_mask;
451 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
452 
453 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
454 
455 	lockdep_assert_held(&dev_priv->irq_lock);
456 
457 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
458 		return;
459 
460 	I915_WRITE(SDEIMR, sdeimr);
461 	POSTING_READ(SDEIMR);
462 }
463 
464 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
465 			      enum pipe pipe)
466 {
467 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
468 	u32 enable_mask = status_mask << 16;
469 
470 	lockdep_assert_held(&dev_priv->irq_lock);
471 
472 	if (INTEL_GEN(dev_priv) < 5)
473 		goto out;
474 
475 	/*
476 	 * On pipe A we don't support the PSR interrupt yet,
477 	 * on pipe B and C the same bit MBZ.
478 	 */
479 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
480 			     status_mask & PIPE_A_PSR_STATUS_VLV))
481 		return 0;
482 	/*
483 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
484 	 * A the same bit is for perf counters which we don't use either.
485 	 */
486 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
487 			     status_mask & PIPE_B_PSR_STATUS_VLV))
488 		return 0;
489 
490 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
491 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
492 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
493 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
494 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
495 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
496 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
497 
498 out:
499 	drm_WARN_ONCE(&dev_priv->drm,
500 		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
501 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
502 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
503 		      pipe_name(pipe), enable_mask, status_mask);
504 
505 	return enable_mask;
506 }
507 
508 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
509 			  enum pipe pipe, u32 status_mask)
510 {
511 	i915_reg_t reg = PIPESTAT(pipe);
512 	u32 enable_mask;
513 
514 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
515 		      "pipe %c: status_mask=0x%x\n",
516 		      pipe_name(pipe), status_mask);
517 
518 	lockdep_assert_held(&dev_priv->irq_lock);
519 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
520 
521 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
522 		return;
523 
524 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
525 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
526 
527 	I915_WRITE(reg, enable_mask | status_mask);
528 	POSTING_READ(reg);
529 }
530 
531 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
532 			   enum pipe pipe, u32 status_mask)
533 {
534 	i915_reg_t reg = PIPESTAT(pipe);
535 	u32 enable_mask;
536 
537 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
538 		      "pipe %c: status_mask=0x%x\n",
539 		      pipe_name(pipe), status_mask);
540 
541 	lockdep_assert_held(&dev_priv->irq_lock);
542 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
543 
544 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
545 		return;
546 
547 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
548 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
549 
550 	I915_WRITE(reg, enable_mask | status_mask);
551 	POSTING_READ(reg);
552 }
553 
554 static bool i915_has_asle(struct drm_i915_private *dev_priv)
555 {
556 	if (!dev_priv->opregion.asle)
557 		return false;
558 
559 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
560 }
561 
562 /**
563  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
564  * @dev_priv: i915 device private
565  */
566 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
567 {
568 	if (!i915_has_asle(dev_priv))
569 		return;
570 
571 	spin_lock_irq(&dev_priv->irq_lock);
572 
573 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
574 	if (INTEL_GEN(dev_priv) >= 4)
575 		i915_enable_pipestat(dev_priv, PIPE_A,
576 				     PIPE_LEGACY_BLC_EVENT_STATUS);
577 
578 	spin_unlock_irq(&dev_priv->irq_lock);
579 }
580 
581 /*
582  * This timing diagram depicts the video signal in and
583  * around the vertical blanking period.
584  *
585  * Assumptions about the fictitious mode used in this example:
586  *  vblank_start >= 3
587  *  vsync_start = vblank_start + 1
588  *  vsync_end = vblank_start + 2
589  *  vtotal = vblank_start + 3
590  *
591  *           start of vblank:
592  *           latch double buffered registers
593  *           increment frame counter (ctg+)
594  *           generate start of vblank interrupt (gen4+)
595  *           |
596  *           |          frame start:
597  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
598  *           |          may be shifted forward 1-3 extra lines via PIPECONF
599  *           |          |
600  *           |          |  start of vsync:
601  *           |          |  generate vsync interrupt
602  *           |          |  |
603  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
604  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
605  * ----va---> <-----------------vb--------------------> <--------va-------------
606  *       |          |       <----vs----->                     |
607  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
608  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
609  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
610  *       |          |                                         |
611  *       last visible pixel                                   first visible pixel
612  *                  |                                         increment frame counter (gen3/4)
613  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
614  *
615  * x  = horizontal active
616  * _  = horizontal blanking
617  * hs = horizontal sync
618  * va = vertical active
619  * vb = vertical blanking
620  * vs = vertical sync
621  * vbs = vblank_start (number)
622  *
623  * Summary:
624  * - most events happen at the start of horizontal sync
625  * - frame start happens at the start of horizontal blank, 1-4 lines
626  *   (depending on PIPECONF settings) after the start of vblank
627  * - gen3/4 pixel and frame counter are synchronized with the start
628  *   of horizontal active on the first line of vertical active
629  */
630 
631 /* Called from drm generic code, passed a 'crtc', which
632  * we use as a pipe index
633  */
634 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
635 {
636 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
637 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
638 	const struct drm_display_mode *mode = &vblank->hwmode;
639 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
640 	i915_reg_t high_frame, low_frame;
641 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
642 	unsigned long irqflags;
643 
644 	/*
645 	 * On i965gm TV output the frame counter only works up to
646 	 * the point when we enable the TV encoder. After that the
647 	 * frame counter ceases to work and reads zero. We need a
648 	 * vblank wait before enabling the TV encoder and so we
649 	 * have to enable vblank interrupts while the frame counter
650 	 * is still in a working state. However the core vblank code
651 	 * does not like us returning non-zero frame counter values
652 	 * when we've told it that we don't have a working frame
653 	 * counter. Thus we must stop non-zero values leaking out.
654 	 */
655 	if (!vblank->max_vblank_count)
656 		return 0;
657 
658 	htotal = mode->crtc_htotal;
659 	hsync_start = mode->crtc_hsync_start;
660 	vbl_start = mode->crtc_vblank_start;
661 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
662 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
663 
664 	/* Convert to pixel count */
665 	vbl_start *= htotal;
666 
667 	/* Start of vblank event occurs at start of hsync */
668 	vbl_start -= htotal - hsync_start;
669 
670 	high_frame = PIPEFRAME(pipe);
671 	low_frame = PIPEFRAMEPIXEL(pipe);
672 
673 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
674 
675 	/*
676 	 * High & low register fields aren't synchronized, so make sure
677 	 * we get a low value that's stable across two reads of the high
678 	 * register.
679 	 */
680 	do {
681 		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
682 		low   = intel_de_read_fw(dev_priv, low_frame);
683 		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
684 	} while (high1 != high2);
685 
686 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
687 
688 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
689 	pixel = low & PIPE_PIXEL_MASK;
690 	low >>= PIPE_FRAME_LOW_SHIFT;
691 
692 	/*
693 	 * The frame counter increments at beginning of active.
694 	 * Cook up a vblank counter by also checking the pixel
695 	 * counter against vblank start.
696 	 */
697 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
698 }
699 
700 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
701 {
702 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
703 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
704 
705 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
706 }
707 
708 /*
709  * On certain encoders on certain platforms, pipe
710  * scanline register will not work to get the scanline,
711  * since the timings are driven from the PORT or issues
712  * with scanline register updates.
713  * This function will use Framestamp and current
714  * timestamp registers to calculate the scanline.
715  */
716 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
717 {
718 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
719 	struct drm_vblank_crtc *vblank =
720 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
721 	const struct drm_display_mode *mode = &vblank->hwmode;
722 	u32 vblank_start = mode->crtc_vblank_start;
723 	u32 vtotal = mode->crtc_vtotal;
724 	u32 htotal = mode->crtc_htotal;
725 	u32 clock = mode->crtc_clock;
726 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
727 
728 	/*
729 	 * To avoid the race condition where we might cross into the
730 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
731 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
732 	 * during the same frame.
733 	 */
734 	do {
735 		/*
736 		 * This field provides read back of the display
737 		 * pipe frame time stamp. The time stamp value
738 		 * is sampled at every start of vertical blank.
739 		 */
740 		scan_prev_time = intel_de_read_fw(dev_priv,
741 						  PIPE_FRMTMSTMP(crtc->pipe));
742 
743 		/*
744 		 * The TIMESTAMP_CTR register has the current
745 		 * time stamp value.
746 		 */
747 		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
748 
749 		scan_post_time = intel_de_read_fw(dev_priv,
750 						  PIPE_FRMTMSTMP(crtc->pipe));
751 	} while (scan_post_time != scan_prev_time);
752 
753 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
754 					clock), 1000 * htotal);
755 	scanline = min(scanline, vtotal - 1);
756 	scanline = (scanline + vblank_start) % vtotal;
757 
758 	return scanline;
759 }
760 
761 /*
762  * intel_de_read_fw(), only for fast reads of display block, no need for
763  * forcewake etc.
764  */
765 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
766 {
767 	struct drm_device *dev = crtc->base.dev;
768 	struct drm_i915_private *dev_priv = to_i915(dev);
769 	const struct drm_display_mode *mode;
770 	struct drm_vblank_crtc *vblank;
771 	enum pipe pipe = crtc->pipe;
772 	int position, vtotal;
773 
774 	if (!crtc->active)
775 		return -1;
776 
777 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
778 	mode = &vblank->hwmode;
779 
780 	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
781 		return __intel_get_crtc_scanline_from_timestamp(crtc);
782 
783 	vtotal = mode->crtc_vtotal;
784 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
785 		vtotal /= 2;
786 
787 	if (IS_GEN(dev_priv, 2))
788 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
789 	else
790 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
791 
792 	/*
793 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
794 	 * read it just before the start of vblank.  So try it again
795 	 * so we don't accidentally end up spanning a vblank frame
796 	 * increment, causing the pipe_update_end() code to squak at us.
797 	 *
798 	 * The nature of this problem means we can't simply check the ISR
799 	 * bit and return the vblank start value; nor can we use the scanline
800 	 * debug register in the transcoder as it appears to have the same
801 	 * problem.  We may need to extend this to include other platforms,
802 	 * but so far testing only shows the problem on HSW.
803 	 */
804 	if (HAS_DDI(dev_priv) && !position) {
805 		int i, temp;
806 
807 		for (i = 0; i < 100; i++) {
808 			udelay(1);
809 			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
810 			if (temp != position) {
811 				position = temp;
812 				break;
813 			}
814 		}
815 	}
816 
817 	/*
818 	 * See update_scanline_offset() for the details on the
819 	 * scanline_offset adjustment.
820 	 */
821 	return (position + crtc->scanline_offset) % vtotal;
822 }
823 
824 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
825 				     bool in_vblank_irq,
826 				     int *vpos, int *hpos,
827 				     ktime_t *stime, ktime_t *etime,
828 				     const struct drm_display_mode *mode)
829 {
830 	struct drm_device *dev = _crtc->dev;
831 	struct drm_i915_private *dev_priv = to_i915(dev);
832 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
833 	enum pipe pipe = crtc->pipe;
834 	int position;
835 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
836 	unsigned long irqflags;
837 	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
838 		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
839 		mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
840 
841 	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
842 		drm_dbg(&dev_priv->drm,
843 			"trying to get scanoutpos for disabled "
844 			"pipe %c\n", pipe_name(pipe));
845 		return false;
846 	}
847 
848 	htotal = mode->crtc_htotal;
849 	hsync_start = mode->crtc_hsync_start;
850 	vtotal = mode->crtc_vtotal;
851 	vbl_start = mode->crtc_vblank_start;
852 	vbl_end = mode->crtc_vblank_end;
853 
854 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
855 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
856 		vbl_end /= 2;
857 		vtotal /= 2;
858 	}
859 
860 	/*
861 	 * Lock uncore.lock, as we will do multiple timing critical raw
862 	 * register reads, potentially with preemption disabled, so the
863 	 * following code must not block on uncore.lock.
864 	 */
865 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
866 
867 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
868 
869 	/* Get optional system timestamp before query. */
870 	if (stime)
871 		*stime = ktime_get();
872 
873 	if (use_scanline_counter) {
874 		/* No obvious pixelcount register. Only query vertical
875 		 * scanout position from Display scan line register.
876 		 */
877 		position = __intel_get_crtc_scanline(crtc);
878 	} else {
879 		/* Have access to pixelcount since start of frame.
880 		 * We can split this into vertical and horizontal
881 		 * scanout position.
882 		 */
883 		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
884 
885 		/* convert to pixel counts */
886 		vbl_start *= htotal;
887 		vbl_end *= htotal;
888 		vtotal *= htotal;
889 
890 		/*
891 		 * In interlaced modes, the pixel counter counts all pixels,
892 		 * so one field will have htotal more pixels. In order to avoid
893 		 * the reported position from jumping backwards when the pixel
894 		 * counter is beyond the length of the shorter field, just
895 		 * clamp the position the length of the shorter field. This
896 		 * matches how the scanline counter based position works since
897 		 * the scanline counter doesn't count the two half lines.
898 		 */
899 		if (position >= vtotal)
900 			position = vtotal - 1;
901 
902 		/*
903 		 * Start of vblank interrupt is triggered at start of hsync,
904 		 * just prior to the first active line of vblank. However we
905 		 * consider lines to start at the leading edge of horizontal
906 		 * active. So, should we get here before we've crossed into
907 		 * the horizontal active of the first line in vblank, we would
908 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
909 		 * always add htotal-hsync_start to the current pixel position.
910 		 */
911 		position = (position + htotal - hsync_start) % vtotal;
912 	}
913 
914 	/* Get optional system timestamp after query. */
915 	if (etime)
916 		*etime = ktime_get();
917 
918 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
919 
920 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
921 
922 	/*
923 	 * While in vblank, position will be negative
924 	 * counting up towards 0 at vbl_end. And outside
925 	 * vblank, position will be positive counting
926 	 * up since vbl_end.
927 	 */
928 	if (position >= vbl_start)
929 		position -= vbl_end;
930 	else
931 		position += vtotal - vbl_end;
932 
933 	if (use_scanline_counter) {
934 		*vpos = position;
935 		*hpos = 0;
936 	} else {
937 		*vpos = position / htotal;
938 		*hpos = position - (*vpos * htotal);
939 	}
940 
941 	return true;
942 }
943 
944 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
945 				     ktime_t *vblank_time, bool in_vblank_irq)
946 {
947 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
948 		crtc, max_error, vblank_time, in_vblank_irq,
949 		i915_get_crtc_scanoutpos);
950 }
951 
952 int intel_get_crtc_scanline(struct intel_crtc *crtc)
953 {
954 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
955 	unsigned long irqflags;
956 	int position;
957 
958 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
959 	position = __intel_get_crtc_scanline(crtc);
960 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
961 
962 	return position;
963 }
964 
965 /**
966  * ivb_parity_work - Workqueue called when a parity error interrupt
967  * occurred.
968  * @work: workqueue struct
969  *
970  * Doesn't actually do anything except notify userspace. As a consequence of
971  * this event, userspace should try to remap the bad rows since statistically
972  * it is likely the same row is more likely to go bad again.
973  */
974 static void ivb_parity_work(struct work_struct *work)
975 {
976 	struct drm_i915_private *dev_priv =
977 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
978 	struct intel_gt *gt = &dev_priv->gt;
979 	u32 error_status, row, bank, subbank;
980 	char *parity_event[6];
981 	u32 misccpctl;
982 	u8 slice = 0;
983 
984 	/* We must turn off DOP level clock gating to access the L3 registers.
985 	 * In order to prevent a get/put style interface, acquire struct mutex
986 	 * any time we access those registers.
987 	 */
988 	mutex_lock(&dev_priv->drm.struct_mutex);
989 
990 	/* If we've screwed up tracking, just let the interrupt fire again */
991 	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
992 		goto out;
993 
994 	misccpctl = I915_READ(GEN7_MISCCPCTL);
995 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
996 	POSTING_READ(GEN7_MISCCPCTL);
997 
998 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
999 		i915_reg_t reg;
1000 
1001 		slice--;
1002 		if (drm_WARN_ON_ONCE(&dev_priv->drm,
1003 				     slice >= NUM_L3_SLICES(dev_priv)))
1004 			break;
1005 
1006 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1007 
1008 		reg = GEN7_L3CDERRST1(slice);
1009 
1010 		error_status = I915_READ(reg);
1011 		row = GEN7_PARITY_ERROR_ROW(error_status);
1012 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1013 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1014 
1015 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1016 		POSTING_READ(reg);
1017 
1018 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1019 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1020 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1021 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1022 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1023 		parity_event[5] = NULL;
1024 
1025 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1026 				   KOBJ_CHANGE, parity_event);
1027 
1028 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1029 			  slice, row, bank, subbank);
1030 
1031 		kfree(parity_event[4]);
1032 		kfree(parity_event[3]);
1033 		kfree(parity_event[2]);
1034 		kfree(parity_event[1]);
1035 	}
1036 
1037 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1038 
1039 out:
1040 	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1041 	spin_lock_irq(&gt->irq_lock);
1042 	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1043 	spin_unlock_irq(&gt->irq_lock);
1044 
1045 	mutex_unlock(&dev_priv->drm.struct_mutex);
1046 }
1047 
1048 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1049 {
1050 	switch (pin) {
1051 	case HPD_PORT_C:
1052 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1053 	case HPD_PORT_D:
1054 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1055 	case HPD_PORT_E:
1056 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1057 	case HPD_PORT_F:
1058 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1059 	default:
1060 		return false;
1061 	}
1062 }
1063 
1064 static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1065 {
1066 	switch (pin) {
1067 	case HPD_PORT_D:
1068 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1069 	case HPD_PORT_E:
1070 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1071 	case HPD_PORT_F:
1072 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1073 	case HPD_PORT_G:
1074 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1075 	case HPD_PORT_H:
1076 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1077 	case HPD_PORT_I:
1078 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1079 	default:
1080 		return false;
1081 	}
1082 }
1083 
1084 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1085 {
1086 	switch (pin) {
1087 	case HPD_PORT_A:
1088 		return val & PORTA_HOTPLUG_LONG_DETECT;
1089 	case HPD_PORT_B:
1090 		return val & PORTB_HOTPLUG_LONG_DETECT;
1091 	case HPD_PORT_C:
1092 		return val & PORTC_HOTPLUG_LONG_DETECT;
1093 	default:
1094 		return false;
1095 	}
1096 }
1097 
1098 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1099 {
1100 	switch (pin) {
1101 	case HPD_PORT_A:
1102 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
1103 	case HPD_PORT_B:
1104 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
1105 	case HPD_PORT_C:
1106 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
1107 	default:
1108 		return false;
1109 	}
1110 }
1111 
1112 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1113 {
1114 	switch (pin) {
1115 	case HPD_PORT_C:
1116 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1117 	case HPD_PORT_D:
1118 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1119 	case HPD_PORT_E:
1120 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1121 	case HPD_PORT_F:
1122 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1123 	default:
1124 		return false;
1125 	}
1126 }
1127 
1128 static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1129 {
1130 	switch (pin) {
1131 	case HPD_PORT_D:
1132 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1133 	case HPD_PORT_E:
1134 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1135 	case HPD_PORT_F:
1136 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1137 	case HPD_PORT_G:
1138 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1139 	case HPD_PORT_H:
1140 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1141 	case HPD_PORT_I:
1142 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1143 	default:
1144 		return false;
1145 	}
1146 }
1147 
1148 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1149 {
1150 	switch (pin) {
1151 	case HPD_PORT_E:
1152 		return val & PORTE_HOTPLUG_LONG_DETECT;
1153 	default:
1154 		return false;
1155 	}
1156 }
1157 
1158 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1159 {
1160 	switch (pin) {
1161 	case HPD_PORT_A:
1162 		return val & PORTA_HOTPLUG_LONG_DETECT;
1163 	case HPD_PORT_B:
1164 		return val & PORTB_HOTPLUG_LONG_DETECT;
1165 	case HPD_PORT_C:
1166 		return val & PORTC_HOTPLUG_LONG_DETECT;
1167 	case HPD_PORT_D:
1168 		return val & PORTD_HOTPLUG_LONG_DETECT;
1169 	default:
1170 		return false;
1171 	}
1172 }
1173 
1174 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1175 {
1176 	switch (pin) {
1177 	case HPD_PORT_A:
1178 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1179 	default:
1180 		return false;
1181 	}
1182 }
1183 
1184 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1185 {
1186 	switch (pin) {
1187 	case HPD_PORT_B:
1188 		return val & PORTB_HOTPLUG_LONG_DETECT;
1189 	case HPD_PORT_C:
1190 		return val & PORTC_HOTPLUG_LONG_DETECT;
1191 	case HPD_PORT_D:
1192 		return val & PORTD_HOTPLUG_LONG_DETECT;
1193 	default:
1194 		return false;
1195 	}
1196 }
1197 
1198 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1199 {
1200 	switch (pin) {
1201 	case HPD_PORT_B:
1202 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1203 	case HPD_PORT_C:
1204 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1205 	case HPD_PORT_D:
1206 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1207 	default:
1208 		return false;
1209 	}
1210 }
1211 
1212 /*
1213  * Get a bit mask of pins that have triggered, and which ones may be long.
1214  * This can be called multiple times with the same masks to accumulate
1215  * hotplug detection results from several registers.
1216  *
1217  * Note that the caller is expected to zero out the masks initially.
1218  */
1219 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1220 			       u32 *pin_mask, u32 *long_mask,
1221 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1222 			       const u32 hpd[HPD_NUM_PINS],
1223 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1224 {
1225 	enum hpd_pin pin;
1226 
1227 	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1228 
1229 	for_each_hpd_pin(pin) {
1230 		if ((hpd[pin] & hotplug_trigger) == 0)
1231 			continue;
1232 
1233 		*pin_mask |= BIT(pin);
1234 
1235 		if (long_pulse_detect(pin, dig_hotplug_reg))
1236 			*long_mask |= BIT(pin);
1237 	}
1238 
1239 	drm_dbg(&dev_priv->drm,
1240 		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1241 		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1242 
1243 }
1244 
1245 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1246 {
1247 	wake_up_all(&dev_priv->gmbus_wait_queue);
1248 }
1249 
1250 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1251 {
1252 	wake_up_all(&dev_priv->gmbus_wait_queue);
1253 }
1254 
1255 #if defined(CONFIG_DEBUG_FS)
1256 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1257 					 enum pipe pipe,
1258 					 u32 crc0, u32 crc1,
1259 					 u32 crc2, u32 crc3,
1260 					 u32 crc4)
1261 {
1262 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1263 	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1264 	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1265 
1266 	trace_intel_pipe_crc(crtc, crcs);
1267 
1268 	spin_lock(&pipe_crc->lock);
1269 	/*
1270 	 * For some not yet identified reason, the first CRC is
1271 	 * bonkers. So let's just wait for the next vblank and read
1272 	 * out the buggy result.
1273 	 *
1274 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1275 	 * don't trust that one either.
1276 	 */
1277 	if (pipe_crc->skipped <= 0 ||
1278 	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1279 		pipe_crc->skipped++;
1280 		spin_unlock(&pipe_crc->lock);
1281 		return;
1282 	}
1283 	spin_unlock(&pipe_crc->lock);
1284 
1285 	drm_crtc_add_crc_entry(&crtc->base, true,
1286 				drm_crtc_accurate_vblank_count(&crtc->base),
1287 				crcs);
1288 }
1289 #else
1290 static inline void
1291 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1292 			     enum pipe pipe,
1293 			     u32 crc0, u32 crc1,
1294 			     u32 crc2, u32 crc3,
1295 			     u32 crc4) {}
1296 #endif
1297 
1298 
1299 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1300 				     enum pipe pipe)
1301 {
1302 	display_pipe_crc_irq_handler(dev_priv, pipe,
1303 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1304 				     0, 0, 0, 0);
1305 }
1306 
1307 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1308 				     enum pipe pipe)
1309 {
1310 	display_pipe_crc_irq_handler(dev_priv, pipe,
1311 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1312 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1313 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1314 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1315 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1316 }
1317 
1318 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1319 				      enum pipe pipe)
1320 {
1321 	u32 res1, res2;
1322 
1323 	if (INTEL_GEN(dev_priv) >= 3)
1324 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1325 	else
1326 		res1 = 0;
1327 
1328 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1329 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1330 	else
1331 		res2 = 0;
1332 
1333 	display_pipe_crc_irq_handler(dev_priv, pipe,
1334 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1335 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1336 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1337 				     res1, res2);
1338 }
1339 
1340 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1341 {
1342 	enum pipe pipe;
1343 
1344 	for_each_pipe(dev_priv, pipe) {
1345 		I915_WRITE(PIPESTAT(pipe),
1346 			   PIPESTAT_INT_STATUS_MASK |
1347 			   PIPE_FIFO_UNDERRUN_STATUS);
1348 
1349 		dev_priv->pipestat_irq_mask[pipe] = 0;
1350 	}
1351 }
1352 
1353 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1354 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1355 {
1356 	enum pipe pipe;
1357 
1358 	spin_lock(&dev_priv->irq_lock);
1359 
1360 	if (!dev_priv->display_irqs_enabled) {
1361 		spin_unlock(&dev_priv->irq_lock);
1362 		return;
1363 	}
1364 
1365 	for_each_pipe(dev_priv, pipe) {
1366 		i915_reg_t reg;
1367 		u32 status_mask, enable_mask, iir_bit = 0;
1368 
1369 		/*
1370 		 * PIPESTAT bits get signalled even when the interrupt is
1371 		 * disabled with the mask bits, and some of the status bits do
1372 		 * not generate interrupts at all (like the underrun bit). Hence
1373 		 * we need to be careful that we only handle what we want to
1374 		 * handle.
1375 		 */
1376 
1377 		/* fifo underruns are filterered in the underrun handler. */
1378 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1379 
1380 		switch (pipe) {
1381 		default:
1382 		case PIPE_A:
1383 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1384 			break;
1385 		case PIPE_B:
1386 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1387 			break;
1388 		case PIPE_C:
1389 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1390 			break;
1391 		}
1392 		if (iir & iir_bit)
1393 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1394 
1395 		if (!status_mask)
1396 			continue;
1397 
1398 		reg = PIPESTAT(pipe);
1399 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1400 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1401 
1402 		/*
1403 		 * Clear the PIPE*STAT regs before the IIR
1404 		 *
1405 		 * Toggle the enable bits to make sure we get an
1406 		 * edge in the ISR pipe event bit if we don't clear
1407 		 * all the enabled status bits. Otherwise the edge
1408 		 * triggered IIR on i965/g4x wouldn't notice that
1409 		 * an interrupt is still pending.
1410 		 */
1411 		if (pipe_stats[pipe]) {
1412 			I915_WRITE(reg, pipe_stats[pipe]);
1413 			I915_WRITE(reg, enable_mask);
1414 		}
1415 	}
1416 	spin_unlock(&dev_priv->irq_lock);
1417 }
1418 
1419 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1420 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1421 {
1422 	enum pipe pipe;
1423 
1424 	for_each_pipe(dev_priv, pipe) {
1425 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1426 			intel_handle_vblank(dev_priv, pipe);
1427 
1428 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1429 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1430 
1431 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1432 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1433 	}
1434 }
1435 
1436 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1437 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1438 {
1439 	bool blc_event = false;
1440 	enum pipe pipe;
1441 
1442 	for_each_pipe(dev_priv, pipe) {
1443 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1444 			intel_handle_vblank(dev_priv, pipe);
1445 
1446 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1447 			blc_event = true;
1448 
1449 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1450 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1451 
1452 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1453 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1454 	}
1455 
1456 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1457 		intel_opregion_asle_intr(dev_priv);
1458 }
1459 
1460 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1461 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1462 {
1463 	bool blc_event = false;
1464 	enum pipe pipe;
1465 
1466 	for_each_pipe(dev_priv, pipe) {
1467 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1468 			intel_handle_vblank(dev_priv, pipe);
1469 
1470 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1471 			blc_event = true;
1472 
1473 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1474 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1475 
1476 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1477 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1478 	}
1479 
1480 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1481 		intel_opregion_asle_intr(dev_priv);
1482 
1483 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1484 		gmbus_irq_handler(dev_priv);
1485 }
1486 
1487 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1488 					    u32 pipe_stats[I915_MAX_PIPES])
1489 {
1490 	enum pipe pipe;
1491 
1492 	for_each_pipe(dev_priv, pipe) {
1493 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1494 			intel_handle_vblank(dev_priv, pipe);
1495 
1496 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1497 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1498 
1499 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1500 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1501 	}
1502 
1503 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1504 		gmbus_irq_handler(dev_priv);
1505 }
1506 
1507 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1508 {
1509 	u32 hotplug_status = 0, hotplug_status_mask;
1510 	int i;
1511 
1512 	if (IS_G4X(dev_priv) ||
1513 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1514 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1515 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1516 	else
1517 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1518 
1519 	/*
1520 	 * We absolutely have to clear all the pending interrupt
1521 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1522 	 * interrupt bit won't have an edge, and the i965/g4x
1523 	 * edge triggered IIR will not notice that an interrupt
1524 	 * is still pending. We can't use PORT_HOTPLUG_EN to
1525 	 * guarantee the edge as the act of toggling the enable
1526 	 * bits can itself generate a new hotplug interrupt :(
1527 	 */
1528 	for (i = 0; i < 10; i++) {
1529 		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1530 
1531 		if (tmp == 0)
1532 			return hotplug_status;
1533 
1534 		hotplug_status |= tmp;
1535 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1536 	}
1537 
1538 	drm_WARN_ONCE(&dev_priv->drm, 1,
1539 		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1540 		      I915_READ(PORT_HOTPLUG_STAT));
1541 
1542 	return hotplug_status;
1543 }
1544 
1545 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1546 				 u32 hotplug_status)
1547 {
1548 	u32 pin_mask = 0, long_mask = 0;
1549 	u32 hotplug_trigger;
1550 
1551 	if (IS_G4X(dev_priv) ||
1552 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1553 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1554 	else
1555 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1556 
1557 	if (hotplug_trigger) {
1558 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1559 				   hotplug_trigger, hotplug_trigger,
1560 				   dev_priv->hotplug.hpd,
1561 				   i9xx_port_hotplug_long_detect);
1562 
1563 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1564 	}
1565 
1566 	if ((IS_G4X(dev_priv) ||
1567 	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1568 	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1569 		dp_aux_irq_handler(dev_priv);
1570 }
1571 
1572 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1573 {
1574 	struct drm_i915_private *dev_priv = arg;
1575 	irqreturn_t ret = IRQ_NONE;
1576 
1577 	if (!intel_irqs_enabled(dev_priv))
1578 		return IRQ_NONE;
1579 
1580 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1581 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1582 
1583 	do {
1584 		u32 iir, gt_iir, pm_iir;
1585 		u32 pipe_stats[I915_MAX_PIPES] = {};
1586 		u32 hotplug_status = 0;
1587 		u32 ier = 0;
1588 
1589 		gt_iir = I915_READ(GTIIR);
1590 		pm_iir = I915_READ(GEN6_PMIIR);
1591 		iir = I915_READ(VLV_IIR);
1592 
1593 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1594 			break;
1595 
1596 		ret = IRQ_HANDLED;
1597 
1598 		/*
1599 		 * Theory on interrupt generation, based on empirical evidence:
1600 		 *
1601 		 * x = ((VLV_IIR & VLV_IER) ||
1602 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1603 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1604 		 *
1605 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1606 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1607 		 * guarantee the CPU interrupt will be raised again even if we
1608 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1609 		 * bits this time around.
1610 		 */
1611 		I915_WRITE(VLV_MASTER_IER, 0);
1612 		ier = I915_READ(VLV_IER);
1613 		I915_WRITE(VLV_IER, 0);
1614 
1615 		if (gt_iir)
1616 			I915_WRITE(GTIIR, gt_iir);
1617 		if (pm_iir)
1618 			I915_WRITE(GEN6_PMIIR, pm_iir);
1619 
1620 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1621 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1622 
1623 		/* Call regardless, as some status bits might not be
1624 		 * signalled in iir */
1625 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1626 
1627 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1628 			   I915_LPE_PIPE_B_INTERRUPT))
1629 			intel_lpe_audio_irq_handler(dev_priv);
1630 
1631 		/*
1632 		 * VLV_IIR is single buffered, and reflects the level
1633 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1634 		 */
1635 		if (iir)
1636 			I915_WRITE(VLV_IIR, iir);
1637 
1638 		I915_WRITE(VLV_IER, ier);
1639 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1640 
1641 		if (gt_iir)
1642 			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1643 		if (pm_iir)
1644 			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1645 
1646 		if (hotplug_status)
1647 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1648 
1649 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1650 	} while (0);
1651 
1652 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1653 
1654 	return ret;
1655 }
1656 
1657 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1658 {
1659 	struct drm_i915_private *dev_priv = arg;
1660 	irqreturn_t ret = IRQ_NONE;
1661 
1662 	if (!intel_irqs_enabled(dev_priv))
1663 		return IRQ_NONE;
1664 
1665 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1666 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1667 
1668 	do {
1669 		u32 master_ctl, iir;
1670 		u32 pipe_stats[I915_MAX_PIPES] = {};
1671 		u32 hotplug_status = 0;
1672 		u32 ier = 0;
1673 
1674 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1675 		iir = I915_READ(VLV_IIR);
1676 
1677 		if (master_ctl == 0 && iir == 0)
1678 			break;
1679 
1680 		ret = IRQ_HANDLED;
1681 
1682 		/*
1683 		 * Theory on interrupt generation, based on empirical evidence:
1684 		 *
1685 		 * x = ((VLV_IIR & VLV_IER) ||
1686 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1687 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1688 		 *
1689 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1690 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1691 		 * guarantee the CPU interrupt will be raised again even if we
1692 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1693 		 * bits this time around.
1694 		 */
1695 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1696 		ier = I915_READ(VLV_IER);
1697 		I915_WRITE(VLV_IER, 0);
1698 
1699 		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1700 
1701 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1702 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1703 
1704 		/* Call regardless, as some status bits might not be
1705 		 * signalled in iir */
1706 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1707 
1708 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1709 			   I915_LPE_PIPE_B_INTERRUPT |
1710 			   I915_LPE_PIPE_C_INTERRUPT))
1711 			intel_lpe_audio_irq_handler(dev_priv);
1712 
1713 		/*
1714 		 * VLV_IIR is single buffered, and reflects the level
1715 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1716 		 */
1717 		if (iir)
1718 			I915_WRITE(VLV_IIR, iir);
1719 
1720 		I915_WRITE(VLV_IER, ier);
1721 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1722 
1723 		if (hotplug_status)
1724 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1725 
1726 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1727 	} while (0);
1728 
1729 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1730 
1731 	return ret;
1732 }
1733 
1734 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1735 				u32 hotplug_trigger)
1736 {
1737 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1738 
1739 	/*
1740 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1741 	 * unless we touch the hotplug register, even if hotplug_trigger is
1742 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1743 	 * errors.
1744 	 */
1745 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1746 	if (!hotplug_trigger) {
1747 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1748 			PORTD_HOTPLUG_STATUS_MASK |
1749 			PORTC_HOTPLUG_STATUS_MASK |
1750 			PORTB_HOTPLUG_STATUS_MASK;
1751 		dig_hotplug_reg &= ~mask;
1752 	}
1753 
1754 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1755 	if (!hotplug_trigger)
1756 		return;
1757 
1758 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1759 			   hotplug_trigger, dig_hotplug_reg,
1760 			   dev_priv->hotplug.pch_hpd,
1761 			   pch_port_hotplug_long_detect);
1762 
1763 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1764 }
1765 
1766 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1767 {
1768 	enum pipe pipe;
1769 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1770 
1771 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1772 
1773 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1774 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1775 			       SDE_AUDIO_POWER_SHIFT);
1776 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1777 			port_name(port));
1778 	}
1779 
1780 	if (pch_iir & SDE_AUX_MASK)
1781 		dp_aux_irq_handler(dev_priv);
1782 
1783 	if (pch_iir & SDE_GMBUS)
1784 		gmbus_irq_handler(dev_priv);
1785 
1786 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1787 		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1788 
1789 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1790 		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1791 
1792 	if (pch_iir & SDE_POISON)
1793 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1794 
1795 	if (pch_iir & SDE_FDI_MASK) {
1796 		for_each_pipe(dev_priv, pipe)
1797 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1798 				pipe_name(pipe),
1799 				I915_READ(FDI_RX_IIR(pipe)));
1800 	}
1801 
1802 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1803 		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1804 
1805 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1806 		drm_dbg(&dev_priv->drm,
1807 			"PCH transcoder CRC error interrupt\n");
1808 
1809 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1810 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1811 
1812 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1813 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1814 }
1815 
1816 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1817 {
1818 	u32 err_int = I915_READ(GEN7_ERR_INT);
1819 	enum pipe pipe;
1820 
1821 	if (err_int & ERR_INT_POISON)
1822 		drm_err(&dev_priv->drm, "Poison interrupt\n");
1823 
1824 	for_each_pipe(dev_priv, pipe) {
1825 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1826 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1827 
1828 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1829 			if (IS_IVYBRIDGE(dev_priv))
1830 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1831 			else
1832 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1833 		}
1834 	}
1835 
1836 	I915_WRITE(GEN7_ERR_INT, err_int);
1837 }
1838 
1839 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1840 {
1841 	u32 serr_int = I915_READ(SERR_INT);
1842 	enum pipe pipe;
1843 
1844 	if (serr_int & SERR_INT_POISON)
1845 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1846 
1847 	for_each_pipe(dev_priv, pipe)
1848 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1849 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1850 
1851 	I915_WRITE(SERR_INT, serr_int);
1852 }
1853 
1854 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1855 {
1856 	enum pipe pipe;
1857 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1858 
1859 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1860 
1861 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1862 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1863 			       SDE_AUDIO_POWER_SHIFT_CPT);
1864 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1865 			port_name(port));
1866 	}
1867 
1868 	if (pch_iir & SDE_AUX_MASK_CPT)
1869 		dp_aux_irq_handler(dev_priv);
1870 
1871 	if (pch_iir & SDE_GMBUS_CPT)
1872 		gmbus_irq_handler(dev_priv);
1873 
1874 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1875 		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1876 
1877 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1878 		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1879 
1880 	if (pch_iir & SDE_FDI_MASK_CPT) {
1881 		for_each_pipe(dev_priv, pipe)
1882 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1883 				pipe_name(pipe),
1884 				I915_READ(FDI_RX_IIR(pipe)));
1885 	}
1886 
1887 	if (pch_iir & SDE_ERROR_CPT)
1888 		cpt_serr_int_handler(dev_priv);
1889 }
1890 
1891 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1892 {
1893 	u32 ddi_hotplug_trigger, tc_hotplug_trigger;
1894 	u32 pin_mask = 0, long_mask = 0;
1895 	bool (*tc_port_hotplug_long_detect)(enum hpd_pin pin, u32 val);
1896 
1897 	if (HAS_PCH_TGP(dev_priv)) {
1898 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1899 		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
1900 		tc_port_hotplug_long_detect = tgp_tc_port_hotplug_long_detect;
1901 	} else if (HAS_PCH_JSP(dev_priv)) {
1902 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1903 		tc_hotplug_trigger = 0;
1904 	} else if (HAS_PCH_MCC(dev_priv)) {
1905 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1906 		tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
1907 		tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1908 	} else {
1909 		drm_WARN(&dev_priv->drm, !HAS_PCH_ICP(dev_priv),
1910 			 "Unrecognized PCH type 0x%x\n",
1911 			 INTEL_PCH_TYPE(dev_priv));
1912 
1913 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1914 		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
1915 		tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1916 	}
1917 
1918 	if (ddi_hotplug_trigger) {
1919 		u32 dig_hotplug_reg;
1920 
1921 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1922 		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1923 
1924 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1925 				   ddi_hotplug_trigger, dig_hotplug_reg,
1926 				   dev_priv->hotplug.pch_hpd,
1927 				   icp_ddi_port_hotplug_long_detect);
1928 	}
1929 
1930 	if (tc_hotplug_trigger) {
1931 		u32 dig_hotplug_reg;
1932 
1933 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1934 		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1935 
1936 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1937 				   tc_hotplug_trigger, dig_hotplug_reg,
1938 				   dev_priv->hotplug.pch_hpd,
1939 				   tc_port_hotplug_long_detect);
1940 	}
1941 
1942 	if (pin_mask)
1943 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1944 
1945 	if (pch_iir & SDE_GMBUS_ICP)
1946 		gmbus_irq_handler(dev_priv);
1947 }
1948 
1949 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1950 {
1951 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1952 		~SDE_PORTE_HOTPLUG_SPT;
1953 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1954 	u32 pin_mask = 0, long_mask = 0;
1955 
1956 	if (hotplug_trigger) {
1957 		u32 dig_hotplug_reg;
1958 
1959 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1960 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1961 
1962 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1963 				   hotplug_trigger, dig_hotplug_reg,
1964 				   dev_priv->hotplug.pch_hpd,
1965 				   spt_port_hotplug_long_detect);
1966 	}
1967 
1968 	if (hotplug2_trigger) {
1969 		u32 dig_hotplug_reg;
1970 
1971 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1972 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1973 
1974 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1975 				   hotplug2_trigger, dig_hotplug_reg,
1976 				   dev_priv->hotplug.pch_hpd,
1977 				   spt_port_hotplug2_long_detect);
1978 	}
1979 
1980 	if (pin_mask)
1981 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1982 
1983 	if (pch_iir & SDE_GMBUS_CPT)
1984 		gmbus_irq_handler(dev_priv);
1985 }
1986 
1987 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1988 				u32 hotplug_trigger)
1989 {
1990 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1991 
1992 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1993 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1994 
1995 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1996 			   hotplug_trigger, dig_hotplug_reg,
1997 			   dev_priv->hotplug.hpd,
1998 			   ilk_port_hotplug_long_detect);
1999 
2000 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2001 }
2002 
2003 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2004 				    u32 de_iir)
2005 {
2006 	enum pipe pipe;
2007 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2008 
2009 	if (hotplug_trigger)
2010 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2011 
2012 	if (de_iir & DE_AUX_CHANNEL_A)
2013 		dp_aux_irq_handler(dev_priv);
2014 
2015 	if (de_iir & DE_GSE)
2016 		intel_opregion_asle_intr(dev_priv);
2017 
2018 	if (de_iir & DE_POISON)
2019 		drm_err(&dev_priv->drm, "Poison interrupt\n");
2020 
2021 	for_each_pipe(dev_priv, pipe) {
2022 		if (de_iir & DE_PIPE_VBLANK(pipe))
2023 			intel_handle_vblank(dev_priv, pipe);
2024 
2025 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2026 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2027 
2028 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2029 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2030 	}
2031 
2032 	/* check event from PCH */
2033 	if (de_iir & DE_PCH_EVENT) {
2034 		u32 pch_iir = I915_READ(SDEIIR);
2035 
2036 		if (HAS_PCH_CPT(dev_priv))
2037 			cpt_irq_handler(dev_priv, pch_iir);
2038 		else
2039 			ibx_irq_handler(dev_priv, pch_iir);
2040 
2041 		/* should clear PCH hotplug event before clear CPU irq */
2042 		I915_WRITE(SDEIIR, pch_iir);
2043 	}
2044 
2045 	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2046 		gen5_rps_irq_handler(&dev_priv->gt.rps);
2047 }
2048 
2049 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2050 				    u32 de_iir)
2051 {
2052 	enum pipe pipe;
2053 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2054 
2055 	if (hotplug_trigger)
2056 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2057 
2058 	if (de_iir & DE_ERR_INT_IVB)
2059 		ivb_err_int_handler(dev_priv);
2060 
2061 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2062 		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2063 
2064 		intel_psr_irq_handler(dev_priv, psr_iir);
2065 		I915_WRITE(EDP_PSR_IIR, psr_iir);
2066 	}
2067 
2068 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2069 		dp_aux_irq_handler(dev_priv);
2070 
2071 	if (de_iir & DE_GSE_IVB)
2072 		intel_opregion_asle_intr(dev_priv);
2073 
2074 	for_each_pipe(dev_priv, pipe) {
2075 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2076 			intel_handle_vblank(dev_priv, pipe);
2077 	}
2078 
2079 	/* check event from PCH */
2080 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2081 		u32 pch_iir = I915_READ(SDEIIR);
2082 
2083 		cpt_irq_handler(dev_priv, pch_iir);
2084 
2085 		/* clear PCH hotplug event before clear CPU irq */
2086 		I915_WRITE(SDEIIR, pch_iir);
2087 	}
2088 }
2089 
2090 /*
2091  * To handle irqs with the minimum potential races with fresh interrupts, we:
2092  * 1 - Disable Master Interrupt Control.
2093  * 2 - Find the source(s) of the interrupt.
2094  * 3 - Clear the Interrupt Identity bits (IIR).
2095  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2096  * 5 - Re-enable Master Interrupt Control.
2097  */
2098 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2099 {
2100 	struct drm_i915_private *dev_priv = arg;
2101 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2102 	irqreturn_t ret = IRQ_NONE;
2103 
2104 	if (!intel_irqs_enabled(dev_priv))
2105 		return IRQ_NONE;
2106 
2107 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2108 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2109 
2110 	/* disable master interrupt before clearing iir  */
2111 	de_ier = I915_READ(DEIER);
2112 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2113 
2114 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2115 	 * interrupts will will be stored on its back queue, and then we'll be
2116 	 * able to process them after we restore SDEIER (as soon as we restore
2117 	 * it, we'll get an interrupt if SDEIIR still has something to process
2118 	 * due to its back queue). */
2119 	if (!HAS_PCH_NOP(dev_priv)) {
2120 		sde_ier = I915_READ(SDEIER);
2121 		I915_WRITE(SDEIER, 0);
2122 	}
2123 
2124 	/* Find, clear, then process each source of interrupt */
2125 
2126 	gt_iir = I915_READ(GTIIR);
2127 	if (gt_iir) {
2128 		I915_WRITE(GTIIR, gt_iir);
2129 		ret = IRQ_HANDLED;
2130 		if (INTEL_GEN(dev_priv) >= 6)
2131 			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2132 		else
2133 			gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2134 	}
2135 
2136 	de_iir = I915_READ(DEIIR);
2137 	if (de_iir) {
2138 		I915_WRITE(DEIIR, de_iir);
2139 		ret = IRQ_HANDLED;
2140 		if (INTEL_GEN(dev_priv) >= 7)
2141 			ivb_display_irq_handler(dev_priv, de_iir);
2142 		else
2143 			ilk_display_irq_handler(dev_priv, de_iir);
2144 	}
2145 
2146 	if (INTEL_GEN(dev_priv) >= 6) {
2147 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2148 		if (pm_iir) {
2149 			I915_WRITE(GEN6_PMIIR, pm_iir);
2150 			ret = IRQ_HANDLED;
2151 			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
2152 		}
2153 	}
2154 
2155 	I915_WRITE(DEIER, de_ier);
2156 	if (!HAS_PCH_NOP(dev_priv))
2157 		I915_WRITE(SDEIER, sde_ier);
2158 
2159 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2160 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2161 
2162 	return ret;
2163 }
2164 
2165 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2166 				u32 hotplug_trigger)
2167 {
2168 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2169 
2170 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2171 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2172 
2173 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2174 			   hotplug_trigger, dig_hotplug_reg,
2175 			   dev_priv->hotplug.hpd,
2176 			   bxt_port_hotplug_long_detect);
2177 
2178 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2179 }
2180 
2181 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2182 {
2183 	u32 pin_mask = 0, long_mask = 0;
2184 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2185 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2186 	long_pulse_detect_func long_pulse_detect;
2187 
2188 	if (INTEL_GEN(dev_priv) >= 12)
2189 		long_pulse_detect = gen12_port_hotplug_long_detect;
2190 	else
2191 		long_pulse_detect = gen11_port_hotplug_long_detect;
2192 
2193 	if (trigger_tc) {
2194 		u32 dig_hotplug_reg;
2195 
2196 		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2197 		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2198 
2199 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2200 				   trigger_tc, dig_hotplug_reg,
2201 				   dev_priv->hotplug.hpd,
2202 				   long_pulse_detect);
2203 	}
2204 
2205 	if (trigger_tbt) {
2206 		u32 dig_hotplug_reg;
2207 
2208 		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2209 		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2210 
2211 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2212 				   trigger_tbt, dig_hotplug_reg,
2213 				   dev_priv->hotplug.hpd,
2214 				   long_pulse_detect);
2215 	}
2216 
2217 	if (pin_mask)
2218 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2219 	else
2220 		drm_err(&dev_priv->drm,
2221 			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2222 }
2223 
2224 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2225 {
2226 	u32 mask;
2227 
2228 	if (INTEL_GEN(dev_priv) >= 12)
2229 		return TGL_DE_PORT_AUX_DDIA |
2230 			TGL_DE_PORT_AUX_DDIB |
2231 			TGL_DE_PORT_AUX_DDIC |
2232 			TGL_DE_PORT_AUX_USBC1 |
2233 			TGL_DE_PORT_AUX_USBC2 |
2234 			TGL_DE_PORT_AUX_USBC3 |
2235 			TGL_DE_PORT_AUX_USBC4 |
2236 			TGL_DE_PORT_AUX_USBC5 |
2237 			TGL_DE_PORT_AUX_USBC6;
2238 
2239 
2240 	mask = GEN8_AUX_CHANNEL_A;
2241 	if (INTEL_GEN(dev_priv) >= 9)
2242 		mask |= GEN9_AUX_CHANNEL_B |
2243 			GEN9_AUX_CHANNEL_C |
2244 			GEN9_AUX_CHANNEL_D;
2245 
2246 	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2247 		mask |= CNL_AUX_CHANNEL_F;
2248 
2249 	if (IS_GEN(dev_priv, 11))
2250 		mask |= ICL_AUX_CHANNEL_E;
2251 
2252 	return mask;
2253 }
2254 
2255 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2256 {
2257 	if (INTEL_GEN(dev_priv) >= 11)
2258 		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2259 	else if (INTEL_GEN(dev_priv) >= 9)
2260 		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2261 	else
2262 		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2263 }
2264 
2265 static void
2266 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2267 {
2268 	bool found = false;
2269 
2270 	if (iir & GEN8_DE_MISC_GSE) {
2271 		intel_opregion_asle_intr(dev_priv);
2272 		found = true;
2273 	}
2274 
2275 	if (iir & GEN8_DE_EDP_PSR) {
2276 		u32 psr_iir;
2277 		i915_reg_t iir_reg;
2278 
2279 		if (INTEL_GEN(dev_priv) >= 12)
2280 			iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2281 		else
2282 			iir_reg = EDP_PSR_IIR;
2283 
2284 		psr_iir = I915_READ(iir_reg);
2285 		I915_WRITE(iir_reg, psr_iir);
2286 
2287 		if (psr_iir)
2288 			found = true;
2289 
2290 		intel_psr_irq_handler(dev_priv, psr_iir);
2291 	}
2292 
2293 	if (!found)
2294 		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2295 }
2296 
2297 static irqreturn_t
2298 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2299 {
2300 	irqreturn_t ret = IRQ_NONE;
2301 	u32 iir;
2302 	enum pipe pipe;
2303 
2304 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2305 		iir = I915_READ(GEN8_DE_MISC_IIR);
2306 		if (iir) {
2307 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2308 			ret = IRQ_HANDLED;
2309 			gen8_de_misc_irq_handler(dev_priv, iir);
2310 		} else {
2311 			drm_err(&dev_priv->drm,
2312 				"The master control interrupt lied (DE MISC)!\n");
2313 		}
2314 	}
2315 
2316 	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2317 		iir = I915_READ(GEN11_DE_HPD_IIR);
2318 		if (iir) {
2319 			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2320 			ret = IRQ_HANDLED;
2321 			gen11_hpd_irq_handler(dev_priv, iir);
2322 		} else {
2323 			drm_err(&dev_priv->drm,
2324 				"The master control interrupt lied, (DE HPD)!\n");
2325 		}
2326 	}
2327 
2328 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2329 		iir = I915_READ(GEN8_DE_PORT_IIR);
2330 		if (iir) {
2331 			u32 tmp_mask;
2332 			bool found = false;
2333 
2334 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2335 			ret = IRQ_HANDLED;
2336 
2337 			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2338 				dp_aux_irq_handler(dev_priv);
2339 				found = true;
2340 			}
2341 
2342 			if (IS_GEN9_LP(dev_priv)) {
2343 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2344 				if (tmp_mask) {
2345 					bxt_hpd_irq_handler(dev_priv, tmp_mask);
2346 					found = true;
2347 				}
2348 			} else if (IS_BROADWELL(dev_priv)) {
2349 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2350 				if (tmp_mask) {
2351 					ilk_hpd_irq_handler(dev_priv, tmp_mask);
2352 					found = true;
2353 				}
2354 			}
2355 
2356 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2357 				gmbus_irq_handler(dev_priv);
2358 				found = true;
2359 			}
2360 
2361 			if (!found)
2362 				drm_err(&dev_priv->drm,
2363 					"Unexpected DE Port interrupt\n");
2364 		}
2365 		else
2366 			drm_err(&dev_priv->drm,
2367 				"The master control interrupt lied (DE PORT)!\n");
2368 	}
2369 
2370 	for_each_pipe(dev_priv, pipe) {
2371 		u32 fault_errors;
2372 
2373 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2374 			continue;
2375 
2376 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2377 		if (!iir) {
2378 			drm_err(&dev_priv->drm,
2379 				"The master control interrupt lied (DE PIPE)!\n");
2380 			continue;
2381 		}
2382 
2383 		ret = IRQ_HANDLED;
2384 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2385 
2386 		if (iir & GEN8_PIPE_VBLANK)
2387 			intel_handle_vblank(dev_priv, pipe);
2388 
2389 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2390 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2391 
2392 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2393 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2394 
2395 		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2396 		if (fault_errors)
2397 			drm_err(&dev_priv->drm,
2398 				"Fault errors on pipe %c: 0x%08x\n",
2399 				pipe_name(pipe),
2400 				fault_errors);
2401 	}
2402 
2403 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2404 	    master_ctl & GEN8_DE_PCH_IRQ) {
2405 		/*
2406 		 * FIXME(BDW): Assume for now that the new interrupt handling
2407 		 * scheme also closed the SDE interrupt handling race we've seen
2408 		 * on older pch-split platforms. But this needs testing.
2409 		 */
2410 		iir = I915_READ(SDEIIR);
2411 		if (iir) {
2412 			I915_WRITE(SDEIIR, iir);
2413 			ret = IRQ_HANDLED;
2414 
2415 			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2416 				icp_irq_handler(dev_priv, iir);
2417 			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2418 				spt_irq_handler(dev_priv, iir);
2419 			else
2420 				cpt_irq_handler(dev_priv, iir);
2421 		} else {
2422 			/*
2423 			 * Like on previous PCH there seems to be something
2424 			 * fishy going on with forwarding PCH interrupts.
2425 			 */
2426 			drm_dbg(&dev_priv->drm,
2427 				"The master control interrupt lied (SDE)!\n");
2428 		}
2429 	}
2430 
2431 	return ret;
2432 }
2433 
2434 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2435 {
2436 	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2437 
2438 	/*
2439 	 * Now with master disabled, get a sample of level indications
2440 	 * for this interrupt. Indications will be cleared on related acks.
2441 	 * New indications can and will light up during processing,
2442 	 * and will generate new interrupt after enabling master.
2443 	 */
2444 	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2445 }
2446 
2447 static inline void gen8_master_intr_enable(void __iomem * const regs)
2448 {
2449 	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2450 }
2451 
2452 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2453 {
2454 	struct drm_i915_private *dev_priv = arg;
2455 	void __iomem * const regs = dev_priv->uncore.regs;
2456 	u32 master_ctl;
2457 
2458 	if (!intel_irqs_enabled(dev_priv))
2459 		return IRQ_NONE;
2460 
2461 	master_ctl = gen8_master_intr_disable(regs);
2462 	if (!master_ctl) {
2463 		gen8_master_intr_enable(regs);
2464 		return IRQ_NONE;
2465 	}
2466 
2467 	/* Find, queue (onto bottom-halves), then clear each source */
2468 	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2469 
2470 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2471 	if (master_ctl & ~GEN8_GT_IRQS) {
2472 		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2473 		gen8_de_irq_handler(dev_priv, master_ctl);
2474 		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2475 	}
2476 
2477 	gen8_master_intr_enable(regs);
2478 
2479 	return IRQ_HANDLED;
2480 }
2481 
2482 static u32
2483 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2484 {
2485 	void __iomem * const regs = gt->uncore->regs;
2486 	u32 iir;
2487 
2488 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2489 		return 0;
2490 
2491 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2492 	if (likely(iir))
2493 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2494 
2495 	return iir;
2496 }
2497 
2498 static void
2499 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2500 {
2501 	if (iir & GEN11_GU_MISC_GSE)
2502 		intel_opregion_asle_intr(gt->i915);
2503 }
2504 
2505 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2506 {
2507 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2508 
2509 	/*
2510 	 * Now with master disabled, get a sample of level indications
2511 	 * for this interrupt. Indications will be cleared on related acks.
2512 	 * New indications can and will light up during processing,
2513 	 * and will generate new interrupt after enabling master.
2514 	 */
2515 	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2516 }
2517 
2518 static inline void gen11_master_intr_enable(void __iomem * const regs)
2519 {
2520 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2521 }
2522 
2523 static void
2524 gen11_display_irq_handler(struct drm_i915_private *i915)
2525 {
2526 	void __iomem * const regs = i915->uncore.regs;
2527 	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2528 
2529 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2530 	/*
2531 	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2532 	 * for the display related bits.
2533 	 */
2534 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2535 	gen8_de_irq_handler(i915, disp_ctl);
2536 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2537 		      GEN11_DISPLAY_IRQ_ENABLE);
2538 
2539 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2540 }
2541 
2542 static __always_inline irqreturn_t
2543 __gen11_irq_handler(struct drm_i915_private * const i915,
2544 		    u32 (*intr_disable)(void __iomem * const regs),
2545 		    void (*intr_enable)(void __iomem * const regs))
2546 {
2547 	void __iomem * const regs = i915->uncore.regs;
2548 	struct intel_gt *gt = &i915->gt;
2549 	u32 master_ctl;
2550 	u32 gu_misc_iir;
2551 
2552 	if (!intel_irqs_enabled(i915))
2553 		return IRQ_NONE;
2554 
2555 	master_ctl = intr_disable(regs);
2556 	if (!master_ctl) {
2557 		intr_enable(regs);
2558 		return IRQ_NONE;
2559 	}
2560 
2561 	/* Find, queue (onto bottom-halves), then clear each source */
2562 	gen11_gt_irq_handler(gt, master_ctl);
2563 
2564 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2565 	if (master_ctl & GEN11_DISPLAY_IRQ)
2566 		gen11_display_irq_handler(i915);
2567 
2568 	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2569 
2570 	intr_enable(regs);
2571 
2572 	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2573 
2574 	return IRQ_HANDLED;
2575 }
2576 
2577 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2578 {
2579 	return __gen11_irq_handler(arg,
2580 				   gen11_master_intr_disable,
2581 				   gen11_master_intr_enable);
2582 }
2583 
2584 /* Called from drm generic code, passed 'crtc' which
2585  * we use as a pipe index
2586  */
2587 int i8xx_enable_vblank(struct drm_crtc *crtc)
2588 {
2589 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2590 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2591 	unsigned long irqflags;
2592 
2593 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2594 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2595 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2596 
2597 	return 0;
2598 }
2599 
2600 int i915gm_enable_vblank(struct drm_crtc *crtc)
2601 {
2602 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2603 
2604 	/*
2605 	 * Vblank interrupts fail to wake the device up from C2+.
2606 	 * Disabling render clock gating during C-states avoids
2607 	 * the problem. There is a small power cost so we do this
2608 	 * only when vblank interrupts are actually enabled.
2609 	 */
2610 	if (dev_priv->vblank_enabled++ == 0)
2611 		I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2612 
2613 	return i8xx_enable_vblank(crtc);
2614 }
2615 
2616 int i965_enable_vblank(struct drm_crtc *crtc)
2617 {
2618 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2619 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2620 	unsigned long irqflags;
2621 
2622 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2623 	i915_enable_pipestat(dev_priv, pipe,
2624 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2625 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2626 
2627 	return 0;
2628 }
2629 
2630 int ilk_enable_vblank(struct drm_crtc *crtc)
2631 {
2632 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2633 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2634 	unsigned long irqflags;
2635 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2636 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2637 
2638 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2639 	ilk_enable_display_irq(dev_priv, bit);
2640 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2641 
2642 	/* Even though there is no DMC, frame counter can get stuck when
2643 	 * PSR is active as no frames are generated.
2644 	 */
2645 	if (HAS_PSR(dev_priv))
2646 		drm_crtc_vblank_restore(crtc);
2647 
2648 	return 0;
2649 }
2650 
2651 int bdw_enable_vblank(struct drm_crtc *crtc)
2652 {
2653 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2654 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2655 	unsigned long irqflags;
2656 
2657 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2658 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2659 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2660 
2661 	/* Even if there is no DMC, frame counter can get stuck when
2662 	 * PSR is active as no frames are generated, so check only for PSR.
2663 	 */
2664 	if (HAS_PSR(dev_priv))
2665 		drm_crtc_vblank_restore(crtc);
2666 
2667 	return 0;
2668 }
2669 
2670 /* Called from drm generic code, passed 'crtc' which
2671  * we use as a pipe index
2672  */
2673 void i8xx_disable_vblank(struct drm_crtc *crtc)
2674 {
2675 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2676 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2677 	unsigned long irqflags;
2678 
2679 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2680 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2681 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2682 }
2683 
2684 void i915gm_disable_vblank(struct drm_crtc *crtc)
2685 {
2686 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2687 
2688 	i8xx_disable_vblank(crtc);
2689 
2690 	if (--dev_priv->vblank_enabled == 0)
2691 		I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2692 }
2693 
2694 void i965_disable_vblank(struct drm_crtc *crtc)
2695 {
2696 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2697 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2698 	unsigned long irqflags;
2699 
2700 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2701 	i915_disable_pipestat(dev_priv, pipe,
2702 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2703 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2704 }
2705 
2706 void ilk_disable_vblank(struct drm_crtc *crtc)
2707 {
2708 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2709 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2710 	unsigned long irqflags;
2711 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2712 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2713 
2714 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2715 	ilk_disable_display_irq(dev_priv, bit);
2716 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2717 }
2718 
2719 void bdw_disable_vblank(struct drm_crtc *crtc)
2720 {
2721 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2722 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2723 	unsigned long irqflags;
2724 
2725 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2726 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2727 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2728 }
2729 
2730 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2731 {
2732 	struct intel_uncore *uncore = &dev_priv->uncore;
2733 
2734 	if (HAS_PCH_NOP(dev_priv))
2735 		return;
2736 
2737 	GEN3_IRQ_RESET(uncore, SDE);
2738 
2739 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2740 		I915_WRITE(SERR_INT, 0xffffffff);
2741 }
2742 
2743 /*
2744  * SDEIER is also touched by the interrupt handler to work around missed PCH
2745  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2746  * instead we unconditionally enable all PCH interrupt sources here, but then
2747  * only unmask them as needed with SDEIMR.
2748  *
2749  * This function needs to be called before interrupts are enabled.
2750  */
2751 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
2752 {
2753 	if (HAS_PCH_NOP(dev_priv))
2754 		return;
2755 
2756 	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
2757 	I915_WRITE(SDEIER, 0xffffffff);
2758 	POSTING_READ(SDEIER);
2759 }
2760 
2761 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2762 {
2763 	struct intel_uncore *uncore = &dev_priv->uncore;
2764 
2765 	if (IS_CHERRYVIEW(dev_priv))
2766 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2767 	else
2768 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2769 
2770 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2771 	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2772 
2773 	i9xx_pipestat_irq_reset(dev_priv);
2774 
2775 	GEN3_IRQ_RESET(uncore, VLV_);
2776 	dev_priv->irq_mask = ~0u;
2777 }
2778 
2779 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2780 {
2781 	struct intel_uncore *uncore = &dev_priv->uncore;
2782 
2783 	u32 pipestat_mask;
2784 	u32 enable_mask;
2785 	enum pipe pipe;
2786 
2787 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2788 
2789 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2790 	for_each_pipe(dev_priv, pipe)
2791 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2792 
2793 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2794 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2795 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2796 		I915_LPE_PIPE_A_INTERRUPT |
2797 		I915_LPE_PIPE_B_INTERRUPT;
2798 
2799 	if (IS_CHERRYVIEW(dev_priv))
2800 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2801 			I915_LPE_PIPE_C_INTERRUPT;
2802 
2803 	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2804 
2805 	dev_priv->irq_mask = ~enable_mask;
2806 
2807 	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2808 }
2809 
2810 /* drm_dma.h hooks
2811 */
2812 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2813 {
2814 	struct intel_uncore *uncore = &dev_priv->uncore;
2815 
2816 	GEN3_IRQ_RESET(uncore, DE);
2817 	if (IS_GEN(dev_priv, 7))
2818 		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2819 
2820 	if (IS_HASWELL(dev_priv)) {
2821 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2822 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2823 	}
2824 
2825 	gen5_gt_irq_reset(&dev_priv->gt);
2826 
2827 	ibx_irq_reset(dev_priv);
2828 }
2829 
2830 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2831 {
2832 	I915_WRITE(VLV_MASTER_IER, 0);
2833 	POSTING_READ(VLV_MASTER_IER);
2834 
2835 	gen5_gt_irq_reset(&dev_priv->gt);
2836 
2837 	spin_lock_irq(&dev_priv->irq_lock);
2838 	if (dev_priv->display_irqs_enabled)
2839 		vlv_display_irq_reset(dev_priv);
2840 	spin_unlock_irq(&dev_priv->irq_lock);
2841 }
2842 
2843 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2844 {
2845 	struct intel_uncore *uncore = &dev_priv->uncore;
2846 	enum pipe pipe;
2847 
2848 	gen8_master_intr_disable(dev_priv->uncore.regs);
2849 
2850 	gen8_gt_irq_reset(&dev_priv->gt);
2851 
2852 	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2853 	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2854 
2855 	for_each_pipe(dev_priv, pipe)
2856 		if (intel_display_power_is_enabled(dev_priv,
2857 						   POWER_DOMAIN_PIPE(pipe)))
2858 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2859 
2860 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2861 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2862 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2863 
2864 	if (HAS_PCH_SPLIT(dev_priv))
2865 		ibx_irq_reset(dev_priv);
2866 }
2867 
2868 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
2869 {
2870 	struct intel_uncore *uncore = &dev_priv->uncore;
2871 	enum pipe pipe;
2872 
2873 	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
2874 
2875 	if (INTEL_GEN(dev_priv) >= 12) {
2876 		enum transcoder trans;
2877 
2878 		for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
2879 			enum intel_display_power_domain domain;
2880 
2881 			domain = POWER_DOMAIN_TRANSCODER(trans);
2882 			if (!intel_display_power_is_enabled(dev_priv, domain))
2883 				continue;
2884 
2885 			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
2886 			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
2887 		}
2888 	} else {
2889 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2890 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2891 	}
2892 
2893 	for_each_pipe(dev_priv, pipe)
2894 		if (intel_display_power_is_enabled(dev_priv,
2895 						   POWER_DOMAIN_PIPE(pipe)))
2896 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2897 
2898 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2899 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2900 	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
2901 
2902 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2903 		GEN3_IRQ_RESET(uncore, SDE);
2904 
2905 	/* Wa_14010685332:icl */
2906 	if (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) {
2907 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2908 				 SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2909 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2910 				 SBCLK_RUN_REFCLK_DIS, 0);
2911 	}
2912 }
2913 
2914 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
2915 {
2916 	struct intel_uncore *uncore = &dev_priv->uncore;
2917 
2918 	gen11_master_intr_disable(dev_priv->uncore.regs);
2919 
2920 	gen11_gt_irq_reset(&dev_priv->gt);
2921 	gen11_display_irq_reset(dev_priv);
2922 
2923 	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
2924 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2925 }
2926 
2927 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2928 				     u8 pipe_mask)
2929 {
2930 	struct intel_uncore *uncore = &dev_priv->uncore;
2931 
2932 	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2933 	enum pipe pipe;
2934 
2935 	spin_lock_irq(&dev_priv->irq_lock);
2936 
2937 	if (!intel_irqs_enabled(dev_priv)) {
2938 		spin_unlock_irq(&dev_priv->irq_lock);
2939 		return;
2940 	}
2941 
2942 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2943 		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
2944 				  dev_priv->de_irq_mask[pipe],
2945 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
2946 
2947 	spin_unlock_irq(&dev_priv->irq_lock);
2948 }
2949 
2950 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2951 				     u8 pipe_mask)
2952 {
2953 	struct intel_uncore *uncore = &dev_priv->uncore;
2954 	enum pipe pipe;
2955 
2956 	spin_lock_irq(&dev_priv->irq_lock);
2957 
2958 	if (!intel_irqs_enabled(dev_priv)) {
2959 		spin_unlock_irq(&dev_priv->irq_lock);
2960 		return;
2961 	}
2962 
2963 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2964 		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2965 
2966 	spin_unlock_irq(&dev_priv->irq_lock);
2967 
2968 	/* make sure we're done processing display irqs */
2969 	intel_synchronize_irq(dev_priv);
2970 }
2971 
2972 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
2973 {
2974 	struct intel_uncore *uncore = &dev_priv->uncore;
2975 
2976 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2977 	POSTING_READ(GEN8_MASTER_IRQ);
2978 
2979 	gen8_gt_irq_reset(&dev_priv->gt);
2980 
2981 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2982 
2983 	spin_lock_irq(&dev_priv->irq_lock);
2984 	if (dev_priv->display_irqs_enabled)
2985 		vlv_display_irq_reset(dev_priv);
2986 	spin_unlock_irq(&dev_priv->irq_lock);
2987 }
2988 
2989 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
2990 				  const u32 hpd[HPD_NUM_PINS])
2991 {
2992 	struct intel_encoder *encoder;
2993 	u32 enabled_irqs = 0;
2994 
2995 	for_each_intel_encoder(&dev_priv->drm, encoder)
2996 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
2997 			enabled_irqs |= hpd[encoder->hpd_pin];
2998 
2999 	return enabled_irqs;
3000 }
3001 
3002 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3003 {
3004 	u32 hotplug;
3005 
3006 	/*
3007 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3008 	 * duration to 2ms (which is the minimum in the Display Port spec).
3009 	 * The pulse duration bits are reserved on LPT+.
3010 	 */
3011 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3012 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3013 		     PORTC_PULSE_DURATION_MASK |
3014 		     PORTD_PULSE_DURATION_MASK);
3015 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3016 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3017 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3018 	/*
3019 	 * When CPU and PCH are on the same package, port A
3020 	 * HPD must be enabled in both north and south.
3021 	 */
3022 	if (HAS_PCH_LPT_LP(dev_priv))
3023 		hotplug |= PORTA_HOTPLUG_ENABLE;
3024 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3025 }
3026 
3027 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3028 {
3029 	u32 hotplug_irqs, enabled_irqs;
3030 
3031 	if (HAS_PCH_IBX(dev_priv))
3032 		hotplug_irqs = SDE_HOTPLUG_MASK;
3033 	else
3034 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3035 
3036 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3037 
3038 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3039 
3040 	ibx_hpd_detection_setup(dev_priv);
3041 }
3042 
3043 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3044 				    u32 ddi_hotplug_enable_mask,
3045 				    u32 tc_hotplug_enable_mask)
3046 {
3047 	u32 hotplug;
3048 
3049 	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3050 	hotplug |= ddi_hotplug_enable_mask;
3051 	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3052 
3053 	if (tc_hotplug_enable_mask) {
3054 		hotplug = I915_READ(SHOTPLUG_CTL_TC);
3055 		hotplug |= tc_hotplug_enable_mask;
3056 		I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3057 	}
3058 }
3059 
3060 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
3061 			      u32 sde_ddi_mask, u32 sde_tc_mask,
3062 			      u32 ddi_enable_mask, u32 tc_enable_mask)
3063 {
3064 	u32 hotplug_irqs, enabled_irqs;
3065 
3066 	hotplug_irqs = sde_ddi_mask | sde_tc_mask;
3067 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3068 
3069 	I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3070 
3071 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3072 
3073 	icp_hpd_detection_setup(dev_priv, ddi_enable_mask, tc_enable_mask);
3074 }
3075 
3076 /*
3077  * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
3078  * equivalent of SDE.
3079  */
3080 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3081 {
3082 	icp_hpd_irq_setup(dev_priv,
3083 			  SDE_DDI_MASK_ICP, SDE_TC_HOTPLUG_ICP(PORT_TC1),
3084 			  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1));
3085 }
3086 
3087 /*
3088  * JSP behaves exactly the same as MCC above except that port C is mapped to
3089  * the DDI-C pins instead of the TC1 pins.  This means we should follow TGP's
3090  * masks & tables rather than ICP's masks & tables.
3091  */
3092 static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3093 {
3094 	icp_hpd_irq_setup(dev_priv,
3095 			  SDE_DDI_MASK_TGP, 0,
3096 			  TGP_DDI_HPD_ENABLE_MASK, 0);
3097 }
3098 
3099 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3100 {
3101 	u32 hotplug;
3102 
3103 	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3104 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3105 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3106 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3107 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3108 	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3109 
3110 	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3111 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3112 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3113 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3114 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3115 	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3116 }
3117 
3118 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3119 {
3120 	u32 hotplug_irqs, enabled_irqs;
3121 	u32 val;
3122 
3123 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3124 	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3125 
3126 	val = I915_READ(GEN11_DE_HPD_IMR);
3127 	val &= ~hotplug_irqs;
3128 	val |= ~enabled_irqs & hotplug_irqs;
3129 	I915_WRITE(GEN11_DE_HPD_IMR, val);
3130 	POSTING_READ(GEN11_DE_HPD_IMR);
3131 
3132 	gen11_hpd_detection_setup(dev_priv);
3133 
3134 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3135 		icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_TGP, SDE_TC_MASK_TGP,
3136 				  TGP_DDI_HPD_ENABLE_MASK, TGP_TC_HPD_ENABLE_MASK);
3137 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3138 		icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_ICP, SDE_TC_MASK_ICP,
3139 				  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE_MASK);
3140 }
3141 
3142 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3143 {
3144 	u32 val, hotplug;
3145 
3146 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3147 	if (HAS_PCH_CNP(dev_priv)) {
3148 		val = I915_READ(SOUTH_CHICKEN1);
3149 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3150 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3151 		I915_WRITE(SOUTH_CHICKEN1, val);
3152 	}
3153 
3154 	/* Enable digital hotplug on the PCH */
3155 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3156 	hotplug |= PORTA_HOTPLUG_ENABLE |
3157 		   PORTB_HOTPLUG_ENABLE |
3158 		   PORTC_HOTPLUG_ENABLE |
3159 		   PORTD_HOTPLUG_ENABLE;
3160 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3161 
3162 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3163 	hotplug |= PORTE_HOTPLUG_ENABLE;
3164 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3165 }
3166 
3167 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3168 {
3169 	u32 hotplug_irqs, enabled_irqs;
3170 
3171 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3172 		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3173 
3174 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3175 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3176 
3177 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3178 
3179 	spt_hpd_detection_setup(dev_priv);
3180 }
3181 
3182 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3183 {
3184 	u32 hotplug;
3185 
3186 	/*
3187 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3188 	 * duration to 2ms (which is the minimum in the Display Port spec)
3189 	 * The pulse duration bits are reserved on HSW+.
3190 	 */
3191 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3192 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3193 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3194 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3195 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3196 }
3197 
3198 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3199 {
3200 	u32 hotplug_irqs, enabled_irqs;
3201 
3202 	if (INTEL_GEN(dev_priv) >= 8) {
3203 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3204 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3205 
3206 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3207 	} else if (INTEL_GEN(dev_priv) >= 7) {
3208 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3209 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3210 
3211 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3212 	} else {
3213 		hotplug_irqs = DE_DP_A_HOTPLUG;
3214 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3215 
3216 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3217 	}
3218 
3219 	ilk_hpd_detection_setup(dev_priv);
3220 
3221 	ibx_hpd_irq_setup(dev_priv);
3222 }
3223 
3224 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3225 				      u32 enabled_irqs)
3226 {
3227 	u32 hotplug;
3228 
3229 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3230 	hotplug |= PORTA_HOTPLUG_ENABLE |
3231 		   PORTB_HOTPLUG_ENABLE |
3232 		   PORTC_HOTPLUG_ENABLE;
3233 
3234 	drm_dbg_kms(&dev_priv->drm,
3235 		    "Invert bit setting: hp_ctl:%x hp_port:%x\n",
3236 		    hotplug, enabled_irqs);
3237 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3238 
3239 	/*
3240 	 * For BXT invert bit has to be set based on AOB design
3241 	 * for HPD detection logic, update it based on VBT fields.
3242 	 */
3243 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3244 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3245 		hotplug |= BXT_DDIA_HPD_INVERT;
3246 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3247 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3248 		hotplug |= BXT_DDIB_HPD_INVERT;
3249 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3250 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3251 		hotplug |= BXT_DDIC_HPD_INVERT;
3252 
3253 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3254 }
3255 
3256 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3257 {
3258 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3259 }
3260 
3261 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3262 {
3263 	u32 hotplug_irqs, enabled_irqs;
3264 
3265 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3266 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3267 
3268 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3269 
3270 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3271 }
3272 
3273 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3274 {
3275 	u32 mask;
3276 
3277 	if (HAS_PCH_NOP(dev_priv))
3278 		return;
3279 
3280 	if (HAS_PCH_IBX(dev_priv))
3281 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3282 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3283 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3284 	else
3285 		mask = SDE_GMBUS_CPT;
3286 
3287 	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3288 	I915_WRITE(SDEIMR, ~mask);
3289 
3290 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3291 	    HAS_PCH_LPT(dev_priv))
3292 		ibx_hpd_detection_setup(dev_priv);
3293 	else
3294 		spt_hpd_detection_setup(dev_priv);
3295 }
3296 
3297 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3298 {
3299 	struct intel_uncore *uncore = &dev_priv->uncore;
3300 	u32 display_mask, extra_mask;
3301 
3302 	if (INTEL_GEN(dev_priv) >= 7) {
3303 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3304 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3305 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3306 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3307 			      DE_DP_A_HOTPLUG_IVB);
3308 	} else {
3309 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3310 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3311 				DE_PIPEA_CRC_DONE | DE_POISON);
3312 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3313 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3314 			      DE_DP_A_HOTPLUG);
3315 	}
3316 
3317 	if (IS_HASWELL(dev_priv)) {
3318 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3319 		display_mask |= DE_EDP_PSR_INT_HSW;
3320 	}
3321 
3322 	dev_priv->irq_mask = ~display_mask;
3323 
3324 	ibx_irq_pre_postinstall(dev_priv);
3325 
3326 	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3327 		      display_mask | extra_mask);
3328 
3329 	gen5_gt_irq_postinstall(&dev_priv->gt);
3330 
3331 	ilk_hpd_detection_setup(dev_priv);
3332 
3333 	ibx_irq_postinstall(dev_priv);
3334 
3335 	if (IS_IRONLAKE_M(dev_priv)) {
3336 		/* Enable PCU event interrupts
3337 		 *
3338 		 * spinlocking not required here for correctness since interrupt
3339 		 * setup is guaranteed to run in single-threaded context. But we
3340 		 * need it to make the assert_spin_locked happy. */
3341 		spin_lock_irq(&dev_priv->irq_lock);
3342 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3343 		spin_unlock_irq(&dev_priv->irq_lock);
3344 	}
3345 }
3346 
3347 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3348 {
3349 	lockdep_assert_held(&dev_priv->irq_lock);
3350 
3351 	if (dev_priv->display_irqs_enabled)
3352 		return;
3353 
3354 	dev_priv->display_irqs_enabled = true;
3355 
3356 	if (intel_irqs_enabled(dev_priv)) {
3357 		vlv_display_irq_reset(dev_priv);
3358 		vlv_display_irq_postinstall(dev_priv);
3359 	}
3360 }
3361 
3362 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3363 {
3364 	lockdep_assert_held(&dev_priv->irq_lock);
3365 
3366 	if (!dev_priv->display_irqs_enabled)
3367 		return;
3368 
3369 	dev_priv->display_irqs_enabled = false;
3370 
3371 	if (intel_irqs_enabled(dev_priv))
3372 		vlv_display_irq_reset(dev_priv);
3373 }
3374 
3375 
3376 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3377 {
3378 	gen5_gt_irq_postinstall(&dev_priv->gt);
3379 
3380 	spin_lock_irq(&dev_priv->irq_lock);
3381 	if (dev_priv->display_irqs_enabled)
3382 		vlv_display_irq_postinstall(dev_priv);
3383 	spin_unlock_irq(&dev_priv->irq_lock);
3384 
3385 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3386 	POSTING_READ(VLV_MASTER_IER);
3387 }
3388 
3389 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3390 {
3391 	struct intel_uncore *uncore = &dev_priv->uncore;
3392 
3393 	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3394 		GEN8_PIPE_CDCLK_CRC_DONE;
3395 	u32 de_pipe_enables;
3396 	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3397 	u32 de_port_enables;
3398 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3399 	enum pipe pipe;
3400 
3401 	if (INTEL_GEN(dev_priv) <= 10)
3402 		de_misc_masked |= GEN8_DE_MISC_GSE;
3403 
3404 	if (IS_GEN9_LP(dev_priv))
3405 		de_port_masked |= BXT_DE_PORT_GMBUS;
3406 
3407 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3408 					   GEN8_PIPE_FIFO_UNDERRUN;
3409 
3410 	de_port_enables = de_port_masked;
3411 	if (IS_GEN9_LP(dev_priv))
3412 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3413 	else if (IS_BROADWELL(dev_priv))
3414 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3415 
3416 	if (INTEL_GEN(dev_priv) >= 12) {
3417 		enum transcoder trans;
3418 
3419 		for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
3420 			enum intel_display_power_domain domain;
3421 
3422 			domain = POWER_DOMAIN_TRANSCODER(trans);
3423 			if (!intel_display_power_is_enabled(dev_priv, domain))
3424 				continue;
3425 
3426 			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3427 		}
3428 	} else {
3429 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3430 	}
3431 
3432 	for_each_pipe(dev_priv, pipe) {
3433 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3434 
3435 		if (intel_display_power_is_enabled(dev_priv,
3436 				POWER_DOMAIN_PIPE(pipe)))
3437 			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3438 					  dev_priv->de_irq_mask[pipe],
3439 					  de_pipe_enables);
3440 	}
3441 
3442 	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3443 	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3444 
3445 	if (INTEL_GEN(dev_priv) >= 11) {
3446 		u32 de_hpd_masked = 0;
3447 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3448 				     GEN11_DE_TBT_HOTPLUG_MASK;
3449 
3450 		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3451 			      de_hpd_enables);
3452 		gen11_hpd_detection_setup(dev_priv);
3453 	} else if (IS_GEN9_LP(dev_priv)) {
3454 		bxt_hpd_detection_setup(dev_priv);
3455 	} else if (IS_BROADWELL(dev_priv)) {
3456 		ilk_hpd_detection_setup(dev_priv);
3457 	}
3458 }
3459 
3460 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3461 {
3462 	if (HAS_PCH_SPLIT(dev_priv))
3463 		ibx_irq_pre_postinstall(dev_priv);
3464 
3465 	gen8_gt_irq_postinstall(&dev_priv->gt);
3466 	gen8_de_irq_postinstall(dev_priv);
3467 
3468 	if (HAS_PCH_SPLIT(dev_priv))
3469 		ibx_irq_postinstall(dev_priv);
3470 
3471 	gen8_master_intr_enable(dev_priv->uncore.regs);
3472 }
3473 
3474 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3475 {
3476 	u32 mask = SDE_GMBUS_ICP;
3477 
3478 	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
3479 	I915_WRITE(SDEIER, 0xffffffff);
3480 	POSTING_READ(SDEIER);
3481 
3482 	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3483 	I915_WRITE(SDEIMR, ~mask);
3484 
3485 	if (HAS_PCH_TGP(dev_priv))
3486 		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3487 					TGP_TC_HPD_ENABLE_MASK);
3488 	else if (HAS_PCH_JSP(dev_priv))
3489 		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3490 	else if (HAS_PCH_MCC(dev_priv))
3491 		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3492 					ICP_TC_HPD_ENABLE(PORT_TC1));
3493 	else
3494 		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3495 					ICP_TC_HPD_ENABLE_MASK);
3496 }
3497 
3498 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3499 {
3500 	struct intel_uncore *uncore = &dev_priv->uncore;
3501 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3502 
3503 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3504 		icp_irq_postinstall(dev_priv);
3505 
3506 	gen11_gt_irq_postinstall(&dev_priv->gt);
3507 	gen8_de_irq_postinstall(dev_priv);
3508 
3509 	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3510 
3511 	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3512 
3513 	gen11_master_intr_enable(uncore->regs);
3514 	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3515 }
3516 
3517 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3518 {
3519 	gen8_gt_irq_postinstall(&dev_priv->gt);
3520 
3521 	spin_lock_irq(&dev_priv->irq_lock);
3522 	if (dev_priv->display_irqs_enabled)
3523 		vlv_display_irq_postinstall(dev_priv);
3524 	spin_unlock_irq(&dev_priv->irq_lock);
3525 
3526 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3527 	POSTING_READ(GEN8_MASTER_IRQ);
3528 }
3529 
3530 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3531 {
3532 	struct intel_uncore *uncore = &dev_priv->uncore;
3533 
3534 	i9xx_pipestat_irq_reset(dev_priv);
3535 
3536 	GEN2_IRQ_RESET(uncore);
3537 }
3538 
3539 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3540 {
3541 	struct intel_uncore *uncore = &dev_priv->uncore;
3542 	u16 enable_mask;
3543 
3544 	intel_uncore_write16(uncore,
3545 			     EMR,
3546 			     ~(I915_ERROR_PAGE_TABLE |
3547 			       I915_ERROR_MEMORY_REFRESH));
3548 
3549 	/* Unmask the interrupts that we always want on. */
3550 	dev_priv->irq_mask =
3551 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3552 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3553 		  I915_MASTER_ERROR_INTERRUPT);
3554 
3555 	enable_mask =
3556 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3557 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3558 		I915_MASTER_ERROR_INTERRUPT |
3559 		I915_USER_INTERRUPT;
3560 
3561 	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3562 
3563 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3564 	 * just to make the assert_spin_locked check happy. */
3565 	spin_lock_irq(&dev_priv->irq_lock);
3566 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3567 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3568 	spin_unlock_irq(&dev_priv->irq_lock);
3569 }
3570 
3571 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3572 			       u16 *eir, u16 *eir_stuck)
3573 {
3574 	struct intel_uncore *uncore = &i915->uncore;
3575 	u16 emr;
3576 
3577 	*eir = intel_uncore_read16(uncore, EIR);
3578 
3579 	if (*eir)
3580 		intel_uncore_write16(uncore, EIR, *eir);
3581 
3582 	*eir_stuck = intel_uncore_read16(uncore, EIR);
3583 	if (*eir_stuck == 0)
3584 		return;
3585 
3586 	/*
3587 	 * Toggle all EMR bits to make sure we get an edge
3588 	 * in the ISR master error bit if we don't clear
3589 	 * all the EIR bits. Otherwise the edge triggered
3590 	 * IIR on i965/g4x wouldn't notice that an interrupt
3591 	 * is still pending. Also some EIR bits can't be
3592 	 * cleared except by handling the underlying error
3593 	 * (or by a GPU reset) so we mask any bit that
3594 	 * remains set.
3595 	 */
3596 	emr = intel_uncore_read16(uncore, EMR);
3597 	intel_uncore_write16(uncore, EMR, 0xffff);
3598 	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3599 }
3600 
3601 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3602 				   u16 eir, u16 eir_stuck)
3603 {
3604 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3605 
3606 	if (eir_stuck)
3607 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3608 			eir_stuck);
3609 }
3610 
3611 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3612 			       u32 *eir, u32 *eir_stuck)
3613 {
3614 	u32 emr;
3615 
3616 	*eir = I915_READ(EIR);
3617 
3618 	I915_WRITE(EIR, *eir);
3619 
3620 	*eir_stuck = I915_READ(EIR);
3621 	if (*eir_stuck == 0)
3622 		return;
3623 
3624 	/*
3625 	 * Toggle all EMR bits to make sure we get an edge
3626 	 * in the ISR master error bit if we don't clear
3627 	 * all the EIR bits. Otherwise the edge triggered
3628 	 * IIR on i965/g4x wouldn't notice that an interrupt
3629 	 * is still pending. Also some EIR bits can't be
3630 	 * cleared except by handling the underlying error
3631 	 * (or by a GPU reset) so we mask any bit that
3632 	 * remains set.
3633 	 */
3634 	emr = I915_READ(EMR);
3635 	I915_WRITE(EMR, 0xffffffff);
3636 	I915_WRITE(EMR, emr | *eir_stuck);
3637 }
3638 
3639 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3640 				   u32 eir, u32 eir_stuck)
3641 {
3642 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3643 
3644 	if (eir_stuck)
3645 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3646 			eir_stuck);
3647 }
3648 
3649 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3650 {
3651 	struct drm_i915_private *dev_priv = arg;
3652 	irqreturn_t ret = IRQ_NONE;
3653 
3654 	if (!intel_irqs_enabled(dev_priv))
3655 		return IRQ_NONE;
3656 
3657 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3658 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3659 
3660 	do {
3661 		u32 pipe_stats[I915_MAX_PIPES] = {};
3662 		u16 eir = 0, eir_stuck = 0;
3663 		u16 iir;
3664 
3665 		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3666 		if (iir == 0)
3667 			break;
3668 
3669 		ret = IRQ_HANDLED;
3670 
3671 		/* Call regardless, as some status bits might not be
3672 		 * signalled in iir */
3673 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3674 
3675 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3676 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3677 
3678 		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3679 
3680 		if (iir & I915_USER_INTERRUPT)
3681 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3682 
3683 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3684 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3685 
3686 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3687 	} while (0);
3688 
3689 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3690 
3691 	return ret;
3692 }
3693 
3694 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3695 {
3696 	struct intel_uncore *uncore = &dev_priv->uncore;
3697 
3698 	if (I915_HAS_HOTPLUG(dev_priv)) {
3699 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3700 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3701 	}
3702 
3703 	i9xx_pipestat_irq_reset(dev_priv);
3704 
3705 	GEN3_IRQ_RESET(uncore, GEN2_);
3706 }
3707 
3708 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3709 {
3710 	struct intel_uncore *uncore = &dev_priv->uncore;
3711 	u32 enable_mask;
3712 
3713 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3714 			  I915_ERROR_MEMORY_REFRESH));
3715 
3716 	/* Unmask the interrupts that we always want on. */
3717 	dev_priv->irq_mask =
3718 		~(I915_ASLE_INTERRUPT |
3719 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3720 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3721 		  I915_MASTER_ERROR_INTERRUPT);
3722 
3723 	enable_mask =
3724 		I915_ASLE_INTERRUPT |
3725 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3726 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3727 		I915_MASTER_ERROR_INTERRUPT |
3728 		I915_USER_INTERRUPT;
3729 
3730 	if (I915_HAS_HOTPLUG(dev_priv)) {
3731 		/* Enable in IER... */
3732 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3733 		/* and unmask in IMR */
3734 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3735 	}
3736 
3737 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3738 
3739 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3740 	 * just to make the assert_spin_locked check happy. */
3741 	spin_lock_irq(&dev_priv->irq_lock);
3742 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3743 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3744 	spin_unlock_irq(&dev_priv->irq_lock);
3745 
3746 	i915_enable_asle_pipestat(dev_priv);
3747 }
3748 
3749 static irqreturn_t i915_irq_handler(int irq, void *arg)
3750 {
3751 	struct drm_i915_private *dev_priv = arg;
3752 	irqreturn_t ret = IRQ_NONE;
3753 
3754 	if (!intel_irqs_enabled(dev_priv))
3755 		return IRQ_NONE;
3756 
3757 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3758 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3759 
3760 	do {
3761 		u32 pipe_stats[I915_MAX_PIPES] = {};
3762 		u32 eir = 0, eir_stuck = 0;
3763 		u32 hotplug_status = 0;
3764 		u32 iir;
3765 
3766 		iir = I915_READ(GEN2_IIR);
3767 		if (iir == 0)
3768 			break;
3769 
3770 		ret = IRQ_HANDLED;
3771 
3772 		if (I915_HAS_HOTPLUG(dev_priv) &&
3773 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3774 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3775 
3776 		/* Call regardless, as some status bits might not be
3777 		 * signalled in iir */
3778 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3779 
3780 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3781 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3782 
3783 		I915_WRITE(GEN2_IIR, iir);
3784 
3785 		if (iir & I915_USER_INTERRUPT)
3786 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3787 
3788 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3789 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3790 
3791 		if (hotplug_status)
3792 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3793 
3794 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3795 	} while (0);
3796 
3797 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3798 
3799 	return ret;
3800 }
3801 
3802 static void i965_irq_reset(struct drm_i915_private *dev_priv)
3803 {
3804 	struct intel_uncore *uncore = &dev_priv->uncore;
3805 
3806 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3807 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3808 
3809 	i9xx_pipestat_irq_reset(dev_priv);
3810 
3811 	GEN3_IRQ_RESET(uncore, GEN2_);
3812 }
3813 
3814 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
3815 {
3816 	struct intel_uncore *uncore = &dev_priv->uncore;
3817 	u32 enable_mask;
3818 	u32 error_mask;
3819 
3820 	/*
3821 	 * Enable some error detection, note the instruction error mask
3822 	 * bit is reserved, so we leave it masked.
3823 	 */
3824 	if (IS_G4X(dev_priv)) {
3825 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3826 			       GM45_ERROR_MEM_PRIV |
3827 			       GM45_ERROR_CP_PRIV |
3828 			       I915_ERROR_MEMORY_REFRESH);
3829 	} else {
3830 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3831 			       I915_ERROR_MEMORY_REFRESH);
3832 	}
3833 	I915_WRITE(EMR, error_mask);
3834 
3835 	/* Unmask the interrupts that we always want on. */
3836 	dev_priv->irq_mask =
3837 		~(I915_ASLE_INTERRUPT |
3838 		  I915_DISPLAY_PORT_INTERRUPT |
3839 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3840 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3841 		  I915_MASTER_ERROR_INTERRUPT);
3842 
3843 	enable_mask =
3844 		I915_ASLE_INTERRUPT |
3845 		I915_DISPLAY_PORT_INTERRUPT |
3846 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3847 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3848 		I915_MASTER_ERROR_INTERRUPT |
3849 		I915_USER_INTERRUPT;
3850 
3851 	if (IS_G4X(dev_priv))
3852 		enable_mask |= I915_BSD_USER_INTERRUPT;
3853 
3854 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3855 
3856 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3857 	 * just to make the assert_spin_locked check happy. */
3858 	spin_lock_irq(&dev_priv->irq_lock);
3859 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3860 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3861 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3862 	spin_unlock_irq(&dev_priv->irq_lock);
3863 
3864 	i915_enable_asle_pipestat(dev_priv);
3865 }
3866 
3867 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3868 {
3869 	u32 hotplug_en;
3870 
3871 	lockdep_assert_held(&dev_priv->irq_lock);
3872 
3873 	/* Note HDMI and DP share hotplug bits */
3874 	/* enable bits are the same for all generations */
3875 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3876 	/* Programming the CRT detection parameters tends
3877 	   to generate a spurious hotplug event about three
3878 	   seconds later.  So just do it once.
3879 	*/
3880 	if (IS_G4X(dev_priv))
3881 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3882 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3883 
3884 	/* Ignore TV since it's buggy */
3885 	i915_hotplug_interrupt_update_locked(dev_priv,
3886 					     HOTPLUG_INT_EN_MASK |
3887 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3888 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3889 					     hotplug_en);
3890 }
3891 
3892 static irqreturn_t i965_irq_handler(int irq, void *arg)
3893 {
3894 	struct drm_i915_private *dev_priv = arg;
3895 	irqreturn_t ret = IRQ_NONE;
3896 
3897 	if (!intel_irqs_enabled(dev_priv))
3898 		return IRQ_NONE;
3899 
3900 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3901 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3902 
3903 	do {
3904 		u32 pipe_stats[I915_MAX_PIPES] = {};
3905 		u32 eir = 0, eir_stuck = 0;
3906 		u32 hotplug_status = 0;
3907 		u32 iir;
3908 
3909 		iir = I915_READ(GEN2_IIR);
3910 		if (iir == 0)
3911 			break;
3912 
3913 		ret = IRQ_HANDLED;
3914 
3915 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
3916 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3917 
3918 		/* Call regardless, as some status bits might not be
3919 		 * signalled in iir */
3920 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3921 
3922 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3923 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3924 
3925 		I915_WRITE(GEN2_IIR, iir);
3926 
3927 		if (iir & I915_USER_INTERRUPT)
3928 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3929 
3930 		if (iir & I915_BSD_USER_INTERRUPT)
3931 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
3932 
3933 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3934 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3935 
3936 		if (hotplug_status)
3937 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3938 
3939 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3940 	} while (0);
3941 
3942 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3943 
3944 	return ret;
3945 }
3946 
3947 /**
3948  * intel_irq_init - initializes irq support
3949  * @dev_priv: i915 device instance
3950  *
3951  * This function initializes all the irq support including work items, timers
3952  * and all the vtables. It does not setup the interrupt itself though.
3953  */
3954 void intel_irq_init(struct drm_i915_private *dev_priv)
3955 {
3956 	struct drm_device *dev = &dev_priv->drm;
3957 	int i;
3958 
3959 	intel_hpd_init_pins(dev_priv);
3960 
3961 	intel_hpd_init_work(dev_priv);
3962 
3963 	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
3964 	for (i = 0; i < MAX_L3_SLICES; ++i)
3965 		dev_priv->l3_parity.remap_info[i] = NULL;
3966 
3967 	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
3968 	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
3969 		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
3970 
3971 	dev->vblank_disable_immediate = true;
3972 
3973 	/* Most platforms treat the display irq block as an always-on
3974 	 * power domain. vlv/chv can disable it at runtime and need
3975 	 * special care to avoid writing any of the display block registers
3976 	 * outside of the power domain. We defer setting up the display irqs
3977 	 * in this case to the runtime pm.
3978 	 */
3979 	dev_priv->display_irqs_enabled = true;
3980 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3981 		dev_priv->display_irqs_enabled = false;
3982 
3983 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
3984 	/* If we have MST support, we want to avoid doing short HPD IRQ storm
3985 	 * detection, as short HPD storms will occur as a natural part of
3986 	 * sideband messaging with MST.
3987 	 * On older platforms however, IRQ storms can occur with both long and
3988 	 * short pulses, as seen on some G4x systems.
3989 	 */
3990 	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
3991 
3992 	if (HAS_GMCH(dev_priv)) {
3993 		if (I915_HAS_HOTPLUG(dev_priv))
3994 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3995 	} else {
3996 		if (HAS_PCH_JSP(dev_priv))
3997 			dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
3998 		else if (HAS_PCH_MCC(dev_priv))
3999 			dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4000 		else if (INTEL_GEN(dev_priv) >= 11)
4001 			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4002 		else if (IS_GEN9_LP(dev_priv))
4003 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4004 		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4005 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4006 		else
4007 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4008 	}
4009 }
4010 
4011 /**
4012  * intel_irq_fini - deinitializes IRQ support
4013  * @i915: i915 device instance
4014  *
4015  * This function deinitializes all the IRQ support.
4016  */
4017 void intel_irq_fini(struct drm_i915_private *i915)
4018 {
4019 	int i;
4020 
4021 	for (i = 0; i < MAX_L3_SLICES; ++i)
4022 		kfree(i915->l3_parity.remap_info[i]);
4023 }
4024 
4025 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4026 {
4027 	if (HAS_GMCH(dev_priv)) {
4028 		if (IS_CHERRYVIEW(dev_priv))
4029 			return cherryview_irq_handler;
4030 		else if (IS_VALLEYVIEW(dev_priv))
4031 			return valleyview_irq_handler;
4032 		else if (IS_GEN(dev_priv, 4))
4033 			return i965_irq_handler;
4034 		else if (IS_GEN(dev_priv, 3))
4035 			return i915_irq_handler;
4036 		else
4037 			return i8xx_irq_handler;
4038 	} else {
4039 		if (INTEL_GEN(dev_priv) >= 11)
4040 			return gen11_irq_handler;
4041 		else if (INTEL_GEN(dev_priv) >= 8)
4042 			return gen8_irq_handler;
4043 		else
4044 			return ilk_irq_handler;
4045 	}
4046 }
4047 
4048 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4049 {
4050 	if (HAS_GMCH(dev_priv)) {
4051 		if (IS_CHERRYVIEW(dev_priv))
4052 			cherryview_irq_reset(dev_priv);
4053 		else if (IS_VALLEYVIEW(dev_priv))
4054 			valleyview_irq_reset(dev_priv);
4055 		else if (IS_GEN(dev_priv, 4))
4056 			i965_irq_reset(dev_priv);
4057 		else if (IS_GEN(dev_priv, 3))
4058 			i915_irq_reset(dev_priv);
4059 		else
4060 			i8xx_irq_reset(dev_priv);
4061 	} else {
4062 		if (INTEL_GEN(dev_priv) >= 11)
4063 			gen11_irq_reset(dev_priv);
4064 		else if (INTEL_GEN(dev_priv) >= 8)
4065 			gen8_irq_reset(dev_priv);
4066 		else
4067 			ilk_irq_reset(dev_priv);
4068 	}
4069 }
4070 
4071 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4072 {
4073 	if (HAS_GMCH(dev_priv)) {
4074 		if (IS_CHERRYVIEW(dev_priv))
4075 			cherryview_irq_postinstall(dev_priv);
4076 		else if (IS_VALLEYVIEW(dev_priv))
4077 			valleyview_irq_postinstall(dev_priv);
4078 		else if (IS_GEN(dev_priv, 4))
4079 			i965_irq_postinstall(dev_priv);
4080 		else if (IS_GEN(dev_priv, 3))
4081 			i915_irq_postinstall(dev_priv);
4082 		else
4083 			i8xx_irq_postinstall(dev_priv);
4084 	} else {
4085 		if (INTEL_GEN(dev_priv) >= 11)
4086 			gen11_irq_postinstall(dev_priv);
4087 		else if (INTEL_GEN(dev_priv) >= 8)
4088 			gen8_irq_postinstall(dev_priv);
4089 		else
4090 			ilk_irq_postinstall(dev_priv);
4091 	}
4092 }
4093 
4094 /**
4095  * intel_irq_install - enables the hardware interrupt
4096  * @dev_priv: i915 device instance
4097  *
4098  * This function enables the hardware interrupt handling, but leaves the hotplug
4099  * handling still disabled. It is called after intel_irq_init().
4100  *
4101  * In the driver load and resume code we need working interrupts in a few places
4102  * but don't want to deal with the hassle of concurrent probe and hotplug
4103  * workers. Hence the split into this two-stage approach.
4104  */
4105 int intel_irq_install(struct drm_i915_private *dev_priv)
4106 {
4107 	int irq = dev_priv->drm.pdev->irq;
4108 	int ret;
4109 
4110 	/*
4111 	 * We enable some interrupt sources in our postinstall hooks, so mark
4112 	 * interrupts as enabled _before_ actually enabling them to avoid
4113 	 * special cases in our ordering checks.
4114 	 */
4115 	dev_priv->runtime_pm.irqs_enabled = true;
4116 
4117 	dev_priv->drm.irq_enabled = true;
4118 
4119 	intel_irq_reset(dev_priv);
4120 
4121 	ret = request_irq(irq, intel_irq_handler(dev_priv),
4122 			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4123 	if (ret < 0) {
4124 		dev_priv->drm.irq_enabled = false;
4125 		return ret;
4126 	}
4127 
4128 	intel_irq_postinstall(dev_priv);
4129 
4130 	return ret;
4131 }
4132 
4133 /**
4134  * intel_irq_uninstall - finilizes all irq handling
4135  * @dev_priv: i915 device instance
4136  *
4137  * This stops interrupt and hotplug handling and unregisters and frees all
4138  * resources acquired in the init functions.
4139  */
4140 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4141 {
4142 	int irq = dev_priv->drm.pdev->irq;
4143 
4144 	/*
4145 	 * FIXME we can get called twice during driver probe
4146 	 * error handling as well as during driver remove due to
4147 	 * intel_modeset_driver_remove() calling us out of sequence.
4148 	 * Would be nice if it didn't do that...
4149 	 */
4150 	if (!dev_priv->drm.irq_enabled)
4151 		return;
4152 
4153 	dev_priv->drm.irq_enabled = false;
4154 
4155 	intel_irq_reset(dev_priv);
4156 
4157 	free_irq(irq, dev_priv);
4158 
4159 	intel_hpd_cancel_work(dev_priv);
4160 	dev_priv->runtime_pm.irqs_enabled = false;
4161 }
4162 
4163 /**
4164  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4165  * @dev_priv: i915 device instance
4166  *
4167  * This function is used to disable interrupts at runtime, both in the runtime
4168  * pm and the system suspend/resume code.
4169  */
4170 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4171 {
4172 	intel_irq_reset(dev_priv);
4173 	dev_priv->runtime_pm.irqs_enabled = false;
4174 	intel_synchronize_irq(dev_priv);
4175 }
4176 
4177 /**
4178  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4179  * @dev_priv: i915 device instance
4180  *
4181  * This function is used to enable interrupts at runtime, both in the runtime
4182  * pm and the system suspend/resume code.
4183  */
4184 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4185 {
4186 	dev_priv->runtime_pm.irqs_enabled = true;
4187 	intel_irq_reset(dev_priv);
4188 	intel_irq_postinstall(dev_priv);
4189 }
4190 
4191 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4192 {
4193 	/*
4194 	 * We only use drm_irq_uninstall() at unload and VT switch, so
4195 	 * this is the only thing we need to check.
4196 	 */
4197 	return dev_priv->runtime_pm.irqs_enabled;
4198 }
4199 
4200 void intel_synchronize_irq(struct drm_i915_private *i915)
4201 {
4202 	synchronize_irq(i915->drm.pdev->irq);
4203 }
4204