xref: /openbmc/linux/drivers/gpu/drm/i915/i915_hwmon.c (revision 08d34f12)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/types.h>
9 
10 #include "i915_drv.h"
11 #include "i915_hwmon.h"
12 #include "i915_reg.h"
13 #include "intel_mchbar_regs.h"
14 #include "intel_pcode.h"
15 #include "gt/intel_gt.h"
16 #include "gt/intel_gt_regs.h"
17 
18 /*
19  * SF_* - scale factors for particular quantities according to hwmon spec.
20  * - voltage  - millivolts
21  * - power  - microwatts
22  * - curr   - milliamperes
23  * - energy - microjoules
24  * - time   - milliseconds
25  */
26 #define SF_VOLTAGE	1000
27 #define SF_POWER	1000000
28 #define SF_CURR		1000
29 #define SF_ENERGY	1000000
30 #define SF_TIME		1000
31 
32 struct hwm_reg {
33 	i915_reg_t gt_perf_status;
34 	i915_reg_t pkg_power_sku_unit;
35 	i915_reg_t pkg_power_sku;
36 	i915_reg_t pkg_rapl_limit;
37 	i915_reg_t energy_status_all;
38 	i915_reg_t energy_status_tile;
39 };
40 
41 struct hwm_energy_info {
42 	u32 reg_val_prev;
43 	long accum_energy;			/* Accumulated energy for energy1_input */
44 };
45 
46 struct hwm_drvdata {
47 	struct i915_hwmon *hwmon;
48 	struct intel_uncore *uncore;
49 	struct device *hwmon_dev;
50 	struct hwm_energy_info ei;		/*  Energy info for energy1_input */
51 	char name[12];
52 	int gt_n;
53 };
54 
55 struct i915_hwmon {
56 	struct hwm_drvdata ddat;
57 	struct hwm_drvdata ddat_gt[I915_MAX_GT];
58 	struct mutex hwmon_lock;		/* counter overflow logic and rmw */
59 	struct hwm_reg rg;
60 	int scl_shift_power;
61 	int scl_shift_energy;
62 	int scl_shift_time;
63 };
64 
65 static void
66 hwm_locked_with_pm_intel_uncore_rmw(struct hwm_drvdata *ddat,
67 				    i915_reg_t reg, u32 clear, u32 set)
68 {
69 	struct i915_hwmon *hwmon = ddat->hwmon;
70 	struct intel_uncore *uncore = ddat->uncore;
71 	intel_wakeref_t wakeref;
72 
73 	mutex_lock(&hwmon->hwmon_lock);
74 
75 	with_intel_runtime_pm(uncore->rpm, wakeref)
76 		intel_uncore_rmw(uncore, reg, clear, set);
77 
78 	mutex_unlock(&hwmon->hwmon_lock);
79 }
80 
81 /*
82  * This function's return type of u64 allows for the case where the scaling
83  * of the field taken from the 32-bit register value might cause a result to
84  * exceed 32 bits.
85  */
86 static u64
87 hwm_field_read_and_scale(struct hwm_drvdata *ddat, i915_reg_t rgadr,
88 			 u32 field_msk, int nshift, u32 scale_factor)
89 {
90 	struct intel_uncore *uncore = ddat->uncore;
91 	intel_wakeref_t wakeref;
92 	u32 reg_value;
93 
94 	with_intel_runtime_pm(uncore->rpm, wakeref)
95 		reg_value = intel_uncore_read(uncore, rgadr);
96 
97 	reg_value = REG_FIELD_GET(field_msk, reg_value);
98 
99 	return mul_u64_u32_shr(reg_value, scale_factor, nshift);
100 }
101 
102 static void
103 hwm_field_scale_and_write(struct hwm_drvdata *ddat, i915_reg_t rgadr,
104 			  int nshift, unsigned int scale_factor, long lval)
105 {
106 	u32 nval;
107 
108 	/* Computation in 64-bits to avoid overflow. Round to nearest. */
109 	nval = DIV_ROUND_CLOSEST_ULL((u64)lval << nshift, scale_factor);
110 
111 	hwm_locked_with_pm_intel_uncore_rmw(ddat, rgadr,
112 					    PKG_PWR_LIM_1,
113 					    REG_FIELD_PREP(PKG_PWR_LIM_1, nval));
114 }
115 
116 /*
117  * hwm_energy - Obtain energy value
118  *
119  * The underlying energy hardware register is 32-bits and is subject to
120  * overflow. How long before overflow? For example, with an example
121  * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
122  * a power draw of 1000 watts, the 32-bit counter will overflow in
123  * approximately 4.36 minutes.
124  *
125  * Examples:
126  *    1 watt:  (2^32 >> 14) /    1 W / (60 * 60 * 24) secs/day -> 3 days
127  * 1000 watts: (2^32 >> 14) / 1000 W / 60             secs/min -> 4.36 minutes
128  *
129  * The function significantly increases overflow duration (from 4.36
130  * minutes) by accumulating the energy register into a 'long' as allowed by
131  * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
132  * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
133  * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
134  * energy1_input overflows. This at 1000 W is an overflow duration of 278 years.
135  */
136 static void
137 hwm_energy(struct hwm_drvdata *ddat, long *energy)
138 {
139 	struct intel_uncore *uncore = ddat->uncore;
140 	struct i915_hwmon *hwmon = ddat->hwmon;
141 	struct hwm_energy_info *ei = &ddat->ei;
142 	intel_wakeref_t wakeref;
143 	i915_reg_t rgaddr;
144 	u32 reg_val;
145 
146 	if (ddat->gt_n >= 0)
147 		rgaddr = hwmon->rg.energy_status_tile;
148 	else
149 		rgaddr = hwmon->rg.energy_status_all;
150 
151 	mutex_lock(&hwmon->hwmon_lock);
152 
153 	with_intel_runtime_pm(uncore->rpm, wakeref)
154 		reg_val = intel_uncore_read(uncore, rgaddr);
155 
156 	if (reg_val >= ei->reg_val_prev)
157 		ei->accum_energy += reg_val - ei->reg_val_prev;
158 	else
159 		ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
160 	ei->reg_val_prev = reg_val;
161 
162 	*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
163 				  hwmon->scl_shift_energy);
164 	mutex_unlock(&hwmon->hwmon_lock);
165 }
166 
167 static ssize_t
168 hwm_power1_max_interval_show(struct device *dev, struct device_attribute *attr,
169 			     char *buf)
170 {
171 	struct hwm_drvdata *ddat = dev_get_drvdata(dev);
172 	struct i915_hwmon *hwmon = ddat->hwmon;
173 	intel_wakeref_t wakeref;
174 	u32 r, x, y, x_w = 2; /* 2 bits */
175 	u64 tau4, out;
176 
177 	with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
178 		r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
179 
180 	x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r);
181 	y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r);
182 	/*
183 	 * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17)
184 	 *     = (4 | x) << (y - 2)
185 	 * where (y - 2) ensures a 1.x fixed point representation of 1.x
186 	 * However because y can be < 2, we compute
187 	 *     tau4 = (4 | x) << y
188 	 * but add 2 when doing the final right shift to account for units
189 	 */
190 	tau4 = ((1 << x_w) | x) << y;
191 	/* val in hwmon interface units (millisec) */
192 	out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
193 
194 	return sysfs_emit(buf, "%llu\n", out);
195 }
196 
197 static ssize_t
198 hwm_power1_max_interval_store(struct device *dev,
199 			      struct device_attribute *attr,
200 			      const char *buf, size_t count)
201 {
202 	struct hwm_drvdata *ddat = dev_get_drvdata(dev);
203 	struct i915_hwmon *hwmon = ddat->hwmon;
204 	u32 x, y, rxy, x_w = 2; /* 2 bits */
205 	u64 tau4, r, max_win;
206 	unsigned long val;
207 	int ret;
208 
209 	ret = kstrtoul(buf, 0, &val);
210 	if (ret)
211 		return ret;
212 
213 	/*
214 	 * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12
215 	 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds
216 	 */
217 #define PKG_MAX_WIN_DEFAULT 0x12ull
218 
219 	/*
220 	 * val must be < max in hwmon interface units. The steps below are
221 	 * explained in i915_power1_max_interval_show()
222 	 */
223 	r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
224 	x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
225 	y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
226 	tau4 = ((1 << x_w) | x) << y;
227 	max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
228 
229 	if (val > max_win)
230 		return -EINVAL;
231 
232 	/* val in hw units */
233 	val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME);
234 	/* Convert to 1.x * power(2,y) */
235 	if (!val)
236 		return -EINVAL;
237 	y = ilog2(val);
238 	/* x = (val - (1 << y)) >> (y - 2); */
239 	x = (val - (1ul << y)) << x_w >> y;
240 
241 	rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y);
242 
243 	hwm_locked_with_pm_intel_uncore_rmw(ddat, hwmon->rg.pkg_rapl_limit,
244 					    PKG_PWR_LIM_1_TIME, rxy);
245 	return count;
246 }
247 
248 static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
249 			  hwm_power1_max_interval_show,
250 			  hwm_power1_max_interval_store, 0);
251 
252 static struct attribute *hwm_attributes[] = {
253 	&sensor_dev_attr_power1_max_interval.dev_attr.attr,
254 	NULL
255 };
256 
257 static umode_t hwm_attributes_visible(struct kobject *kobj,
258 				      struct attribute *attr, int index)
259 {
260 	struct device *dev = kobj_to_dev(kobj);
261 	struct hwm_drvdata *ddat = dev_get_drvdata(dev);
262 	struct i915_hwmon *hwmon = ddat->hwmon;
263 
264 	if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr)
265 		return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? attr->mode : 0;
266 
267 	return 0;
268 }
269 
270 static const struct attribute_group hwm_attrgroup = {
271 	.attrs = hwm_attributes,
272 	.is_visible = hwm_attributes_visible,
273 };
274 
275 static const struct attribute_group *hwm_groups[] = {
276 	&hwm_attrgroup,
277 	NULL
278 };
279 
280 static const struct hwmon_channel_info *hwm_info[] = {
281 	HWMON_CHANNEL_INFO(in, HWMON_I_INPUT),
282 	HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT),
283 	HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
284 	HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT),
285 	NULL
286 };
287 
288 static const struct hwmon_channel_info *hwm_gt_info[] = {
289 	HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
290 	NULL
291 };
292 
293 /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
294 static int hwm_pcode_read_i1(struct drm_i915_private *i915, u32 *uval)
295 {
296 	/* Avoid ILLEGAL_SUBCOMMAND "mailbox access failed" warning in snb_pcode_read */
297 	if (IS_DG1(i915) || IS_DG2(i915))
298 		return -ENXIO;
299 
300 	return snb_pcode_read_p(&i915->uncore, PCODE_POWER_SETUP,
301 				POWER_SETUP_SUBCOMMAND_READ_I1, 0, uval);
302 }
303 
304 static int hwm_pcode_write_i1(struct drm_i915_private *i915, u32 uval)
305 {
306 	return  snb_pcode_write_p(&i915->uncore, PCODE_POWER_SETUP,
307 				  POWER_SETUP_SUBCOMMAND_WRITE_I1, 0, uval);
308 }
309 
310 static umode_t
311 hwm_in_is_visible(const struct hwm_drvdata *ddat, u32 attr)
312 {
313 	struct drm_i915_private *i915 = ddat->uncore->i915;
314 
315 	switch (attr) {
316 	case hwmon_in_input:
317 		return IS_DG1(i915) || IS_DG2(i915) ? 0444 : 0;
318 	default:
319 		return 0;
320 	}
321 }
322 
323 static int
324 hwm_in_read(struct hwm_drvdata *ddat, u32 attr, long *val)
325 {
326 	struct i915_hwmon *hwmon = ddat->hwmon;
327 	intel_wakeref_t wakeref;
328 	u32 reg_value;
329 
330 	switch (attr) {
331 	case hwmon_in_input:
332 		with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
333 			reg_value = intel_uncore_read(ddat->uncore, hwmon->rg.gt_perf_status);
334 		/* HW register value in units of 2.5 millivolt */
335 		*val = DIV_ROUND_CLOSEST(REG_FIELD_GET(GEN12_VOLTAGE_MASK, reg_value) * 25, 10);
336 		return 0;
337 	default:
338 		return -EOPNOTSUPP;
339 	}
340 }
341 
342 static umode_t
343 hwm_power_is_visible(const struct hwm_drvdata *ddat, u32 attr, int chan)
344 {
345 	struct drm_i915_private *i915 = ddat->uncore->i915;
346 	struct i915_hwmon *hwmon = ddat->hwmon;
347 	u32 uval;
348 
349 	switch (attr) {
350 	case hwmon_power_max:
351 		return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? 0664 : 0;
352 	case hwmon_power_rated_max:
353 		return i915_mmio_reg_valid(hwmon->rg.pkg_power_sku) ? 0444 : 0;
354 	case hwmon_power_crit:
355 		return (hwm_pcode_read_i1(i915, &uval) ||
356 			!(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
357 	default:
358 		return 0;
359 	}
360 }
361 
362 static int
363 hwm_power_read(struct hwm_drvdata *ddat, u32 attr, int chan, long *val)
364 {
365 	struct i915_hwmon *hwmon = ddat->hwmon;
366 	int ret;
367 	u32 uval;
368 
369 	switch (attr) {
370 	case hwmon_power_max:
371 		*val = hwm_field_read_and_scale(ddat,
372 						hwmon->rg.pkg_rapl_limit,
373 						PKG_PWR_LIM_1,
374 						hwmon->scl_shift_power,
375 						SF_POWER);
376 		return 0;
377 	case hwmon_power_rated_max:
378 		*val = hwm_field_read_and_scale(ddat,
379 						hwmon->rg.pkg_power_sku,
380 						PKG_PKG_TDP,
381 						hwmon->scl_shift_power,
382 						SF_POWER);
383 		return 0;
384 	case hwmon_power_crit:
385 		ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
386 		if (ret)
387 			return ret;
388 		if (!(uval & POWER_SETUP_I1_WATTS))
389 			return -ENODEV;
390 		*val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
391 				       SF_POWER, POWER_SETUP_I1_SHIFT);
392 		return 0;
393 	default:
394 		return -EOPNOTSUPP;
395 	}
396 }
397 
398 static int
399 hwm_power_write(struct hwm_drvdata *ddat, u32 attr, int chan, long val)
400 {
401 	struct i915_hwmon *hwmon = ddat->hwmon;
402 	u32 uval;
403 
404 	switch (attr) {
405 	case hwmon_power_max:
406 		hwm_field_scale_and_write(ddat,
407 					  hwmon->rg.pkg_rapl_limit,
408 					  hwmon->scl_shift_power,
409 					  SF_POWER, val);
410 		return 0;
411 	case hwmon_power_crit:
412 		uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_POWER);
413 		return hwm_pcode_write_i1(ddat->uncore->i915, uval);
414 	default:
415 		return -EOPNOTSUPP;
416 	}
417 }
418 
419 static umode_t
420 hwm_energy_is_visible(const struct hwm_drvdata *ddat, u32 attr)
421 {
422 	struct i915_hwmon *hwmon = ddat->hwmon;
423 	i915_reg_t rgaddr;
424 
425 	switch (attr) {
426 	case hwmon_energy_input:
427 		if (ddat->gt_n >= 0)
428 			rgaddr = hwmon->rg.energy_status_tile;
429 		else
430 			rgaddr = hwmon->rg.energy_status_all;
431 		return i915_mmio_reg_valid(rgaddr) ? 0444 : 0;
432 	default:
433 		return 0;
434 	}
435 }
436 
437 static int
438 hwm_energy_read(struct hwm_drvdata *ddat, u32 attr, long *val)
439 {
440 	switch (attr) {
441 	case hwmon_energy_input:
442 		hwm_energy(ddat, val);
443 		return 0;
444 	default:
445 		return -EOPNOTSUPP;
446 	}
447 }
448 
449 static umode_t
450 hwm_curr_is_visible(const struct hwm_drvdata *ddat, u32 attr)
451 {
452 	struct drm_i915_private *i915 = ddat->uncore->i915;
453 	u32 uval;
454 
455 	switch (attr) {
456 	case hwmon_curr_crit:
457 		return (hwm_pcode_read_i1(i915, &uval) ||
458 			(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
459 	default:
460 		return 0;
461 	}
462 }
463 
464 static int
465 hwm_curr_read(struct hwm_drvdata *ddat, u32 attr, long *val)
466 {
467 	int ret;
468 	u32 uval;
469 
470 	switch (attr) {
471 	case hwmon_curr_crit:
472 		ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
473 		if (ret)
474 			return ret;
475 		if (uval & POWER_SETUP_I1_WATTS)
476 			return -ENODEV;
477 		*val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
478 				       SF_CURR, POWER_SETUP_I1_SHIFT);
479 		return 0;
480 	default:
481 		return -EOPNOTSUPP;
482 	}
483 }
484 
485 static int
486 hwm_curr_write(struct hwm_drvdata *ddat, u32 attr, long val)
487 {
488 	u32 uval;
489 
490 	switch (attr) {
491 	case hwmon_curr_crit:
492 		uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_CURR);
493 		return hwm_pcode_write_i1(ddat->uncore->i915, uval);
494 	default:
495 		return -EOPNOTSUPP;
496 	}
497 }
498 
499 static umode_t
500 hwm_is_visible(const void *drvdata, enum hwmon_sensor_types type,
501 	       u32 attr, int channel)
502 {
503 	struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
504 
505 	switch (type) {
506 	case hwmon_in:
507 		return hwm_in_is_visible(ddat, attr);
508 	case hwmon_power:
509 		return hwm_power_is_visible(ddat, attr, channel);
510 	case hwmon_energy:
511 		return hwm_energy_is_visible(ddat, attr);
512 	case hwmon_curr:
513 		return hwm_curr_is_visible(ddat, attr);
514 	default:
515 		return 0;
516 	}
517 }
518 
519 static int
520 hwm_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
521 	 int channel, long *val)
522 {
523 	struct hwm_drvdata *ddat = dev_get_drvdata(dev);
524 
525 	switch (type) {
526 	case hwmon_in:
527 		return hwm_in_read(ddat, attr, val);
528 	case hwmon_power:
529 		return hwm_power_read(ddat, attr, channel, val);
530 	case hwmon_energy:
531 		return hwm_energy_read(ddat, attr, val);
532 	case hwmon_curr:
533 		return hwm_curr_read(ddat, attr, val);
534 	default:
535 		return -EOPNOTSUPP;
536 	}
537 }
538 
539 static int
540 hwm_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
541 	  int channel, long val)
542 {
543 	struct hwm_drvdata *ddat = dev_get_drvdata(dev);
544 
545 	switch (type) {
546 	case hwmon_power:
547 		return hwm_power_write(ddat, attr, channel, val);
548 	case hwmon_curr:
549 		return hwm_curr_write(ddat, attr, val);
550 	default:
551 		return -EOPNOTSUPP;
552 	}
553 }
554 
555 static const struct hwmon_ops hwm_ops = {
556 	.is_visible = hwm_is_visible,
557 	.read = hwm_read,
558 	.write = hwm_write,
559 };
560 
561 static const struct hwmon_chip_info hwm_chip_info = {
562 	.ops = &hwm_ops,
563 	.info = hwm_info,
564 };
565 
566 static umode_t
567 hwm_gt_is_visible(const void *drvdata, enum hwmon_sensor_types type,
568 		  u32 attr, int channel)
569 {
570 	struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
571 
572 	switch (type) {
573 	case hwmon_energy:
574 		return hwm_energy_is_visible(ddat, attr);
575 	default:
576 		return 0;
577 	}
578 }
579 
580 static int
581 hwm_gt_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
582 	    int channel, long *val)
583 {
584 	struct hwm_drvdata *ddat = dev_get_drvdata(dev);
585 
586 	switch (type) {
587 	case hwmon_energy:
588 		return hwm_energy_read(ddat, attr, val);
589 	default:
590 		return -EOPNOTSUPP;
591 	}
592 }
593 
594 static const struct hwmon_ops hwm_gt_ops = {
595 	.is_visible = hwm_gt_is_visible,
596 	.read = hwm_gt_read,
597 };
598 
599 static const struct hwmon_chip_info hwm_gt_chip_info = {
600 	.ops = &hwm_gt_ops,
601 	.info = hwm_gt_info,
602 };
603 
604 static void
605 hwm_get_preregistration_info(struct drm_i915_private *i915)
606 {
607 	struct i915_hwmon *hwmon = i915->hwmon;
608 	struct intel_uncore *uncore = &i915->uncore;
609 	struct hwm_drvdata *ddat = &hwmon->ddat;
610 	intel_wakeref_t wakeref;
611 	u32 val_sku_unit = 0;
612 	struct intel_gt *gt;
613 	long energy;
614 	int i;
615 
616 	/* Available for all Gen12+/dGfx */
617 	hwmon->rg.gt_perf_status = GEN12_RPSTAT1;
618 
619 	if (IS_DG1(i915) || IS_DG2(i915)) {
620 		hwmon->rg.pkg_power_sku_unit = PCU_PACKAGE_POWER_SKU_UNIT;
621 		hwmon->rg.pkg_power_sku = PCU_PACKAGE_POWER_SKU;
622 		hwmon->rg.pkg_rapl_limit = PCU_PACKAGE_RAPL_LIMIT;
623 		hwmon->rg.energy_status_all = PCU_PACKAGE_ENERGY_STATUS;
624 		hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
625 	} else if (IS_XEHPSDV(i915)) {
626 		hwmon->rg.pkg_power_sku_unit = GT0_PACKAGE_POWER_SKU_UNIT;
627 		hwmon->rg.pkg_power_sku = INVALID_MMIO_REG;
628 		hwmon->rg.pkg_rapl_limit = GT0_PACKAGE_RAPL_LIMIT;
629 		hwmon->rg.energy_status_all = GT0_PLATFORM_ENERGY_STATUS;
630 		hwmon->rg.energy_status_tile = GT0_PACKAGE_ENERGY_STATUS;
631 	} else {
632 		hwmon->rg.pkg_power_sku_unit = INVALID_MMIO_REG;
633 		hwmon->rg.pkg_power_sku = INVALID_MMIO_REG;
634 		hwmon->rg.pkg_rapl_limit = INVALID_MMIO_REG;
635 		hwmon->rg.energy_status_all = INVALID_MMIO_REG;
636 		hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
637 	}
638 
639 	with_intel_runtime_pm(uncore->rpm, wakeref) {
640 		/*
641 		 * The contents of register hwmon->rg.pkg_power_sku_unit do not change,
642 		 * so read it once and store the shift values.
643 		 */
644 		if (i915_mmio_reg_valid(hwmon->rg.pkg_power_sku_unit))
645 			val_sku_unit = intel_uncore_read(uncore,
646 							 hwmon->rg.pkg_power_sku_unit);
647 	}
648 
649 	hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
650 	hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
651 	hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
652 
653 	/*
654 	 * Initialize 'struct hwm_energy_info', i.e. set fields to the
655 	 * first value of the energy register read
656 	 */
657 	if (i915_mmio_reg_valid(hwmon->rg.energy_status_all))
658 		hwm_energy(ddat, &energy);
659 	if (i915_mmio_reg_valid(hwmon->rg.energy_status_tile)) {
660 		for_each_gt(gt, i915, i)
661 			hwm_energy(&hwmon->ddat_gt[i], &energy);
662 	}
663 }
664 
665 void i915_hwmon_register(struct drm_i915_private *i915)
666 {
667 	struct device *dev = i915->drm.dev;
668 	struct i915_hwmon *hwmon;
669 	struct device *hwmon_dev;
670 	struct hwm_drvdata *ddat;
671 	struct hwm_drvdata *ddat_gt;
672 	struct intel_gt *gt;
673 	int i;
674 
675 	/* hwmon is available only for dGfx */
676 	if (!IS_DGFX(i915))
677 		return;
678 
679 	hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
680 	if (!hwmon)
681 		return;
682 
683 	i915->hwmon = hwmon;
684 	mutex_init(&hwmon->hwmon_lock);
685 	ddat = &hwmon->ddat;
686 
687 	ddat->hwmon = hwmon;
688 	ddat->uncore = &i915->uncore;
689 	snprintf(ddat->name, sizeof(ddat->name), "i915");
690 	ddat->gt_n = -1;
691 
692 	for_each_gt(gt, i915, i) {
693 		ddat_gt = hwmon->ddat_gt + i;
694 
695 		ddat_gt->hwmon = hwmon;
696 		ddat_gt->uncore = gt->uncore;
697 		snprintf(ddat_gt->name, sizeof(ddat_gt->name), "i915_gt%u", i);
698 		ddat_gt->gt_n = i;
699 	}
700 
701 	hwm_get_preregistration_info(i915);
702 
703 	/*  hwmon_dev points to device hwmon<i> */
704 	hwmon_dev = devm_hwmon_device_register_with_info(dev, ddat->name,
705 							 ddat,
706 							 &hwm_chip_info,
707 							 hwm_groups);
708 	if (IS_ERR(hwmon_dev)) {
709 		i915->hwmon = NULL;
710 		return;
711 	}
712 
713 	ddat->hwmon_dev = hwmon_dev;
714 
715 	for_each_gt(gt, i915, i) {
716 		ddat_gt = hwmon->ddat_gt + i;
717 		/*
718 		 * Create per-gt directories only if a per-gt attribute is
719 		 * visible. Currently this is only energy
720 		 */
721 		if (!hwm_gt_is_visible(ddat_gt, hwmon_energy, hwmon_energy_input, 0))
722 			continue;
723 
724 		hwmon_dev = devm_hwmon_device_register_with_info(dev, ddat_gt->name,
725 								 ddat_gt,
726 								 &hwm_gt_chip_info,
727 								 NULL);
728 		if (!IS_ERR(hwmon_dev))
729 			ddat_gt->hwmon_dev = hwmon_dev;
730 	}
731 }
732 
733 void i915_hwmon_unregister(struct drm_i915_private *i915)
734 {
735 	fetch_and_zero(&i915->hwmon);
736 }
737