1 /* 2 * Copyright (c) 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * Keith Packard <keithp@keithp.com> 26 * Mika Kuoppala <mika.kuoppala@intel.com> 27 * 28 */ 29 30 #include <linux/ascii85.h> 31 #include <linux/nmi.h> 32 #include <linux/pagevec.h> 33 #include <linux/scatterlist.h> 34 #include <linux/utsname.h> 35 #include <linux/zlib.h> 36 37 #include <drm/drm_print.h> 38 39 #include "display/intel_atomic.h" 40 #include "display/intel_csr.h" 41 #include "display/intel_overlay.h" 42 43 #include "gem/i915_gem_context.h" 44 #include "gem/i915_gem_lmem.h" 45 #include "gt/intel_gt.h" 46 #include "gt/intel_gt_pm.h" 47 48 #include "i915_drv.h" 49 #include "i915_gpu_error.h" 50 #include "i915_memcpy.h" 51 #include "i915_scatterlist.h" 52 53 #define ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) 54 #define ATOMIC_MAYFAIL (GFP_ATOMIC | __GFP_NOWARN) 55 56 static void __sg_set_buf(struct scatterlist *sg, 57 void *addr, unsigned int len, loff_t it) 58 { 59 sg->page_link = (unsigned long)virt_to_page(addr); 60 sg->offset = offset_in_page(addr); 61 sg->length = len; 62 sg->dma_address = it; 63 } 64 65 static bool __i915_error_grow(struct drm_i915_error_state_buf *e, size_t len) 66 { 67 if (!len) 68 return false; 69 70 if (e->bytes + len + 1 <= e->size) 71 return true; 72 73 if (e->bytes) { 74 __sg_set_buf(e->cur++, e->buf, e->bytes, e->iter); 75 e->iter += e->bytes; 76 e->buf = NULL; 77 e->bytes = 0; 78 } 79 80 if (e->cur == e->end) { 81 struct scatterlist *sgl; 82 83 sgl = (typeof(sgl))__get_free_page(ALLOW_FAIL); 84 if (!sgl) { 85 e->err = -ENOMEM; 86 return false; 87 } 88 89 if (e->cur) { 90 e->cur->offset = 0; 91 e->cur->length = 0; 92 e->cur->page_link = 93 (unsigned long)sgl | SG_CHAIN; 94 } else { 95 e->sgl = sgl; 96 } 97 98 e->cur = sgl; 99 e->end = sgl + SG_MAX_SINGLE_ALLOC - 1; 100 } 101 102 e->size = ALIGN(len + 1, SZ_64K); 103 e->buf = kmalloc(e->size, ALLOW_FAIL); 104 if (!e->buf) { 105 e->size = PAGE_ALIGN(len + 1); 106 e->buf = kmalloc(e->size, GFP_KERNEL); 107 } 108 if (!e->buf) { 109 e->err = -ENOMEM; 110 return false; 111 } 112 113 return true; 114 } 115 116 __printf(2, 0) 117 static void i915_error_vprintf(struct drm_i915_error_state_buf *e, 118 const char *fmt, va_list args) 119 { 120 va_list ap; 121 int len; 122 123 if (e->err) 124 return; 125 126 va_copy(ap, args); 127 len = vsnprintf(NULL, 0, fmt, ap); 128 va_end(ap); 129 if (len <= 0) { 130 e->err = len; 131 return; 132 } 133 134 if (!__i915_error_grow(e, len)) 135 return; 136 137 GEM_BUG_ON(e->bytes >= e->size); 138 len = vscnprintf(e->buf + e->bytes, e->size - e->bytes, fmt, args); 139 if (len < 0) { 140 e->err = len; 141 return; 142 } 143 e->bytes += len; 144 } 145 146 static void i915_error_puts(struct drm_i915_error_state_buf *e, const char *str) 147 { 148 unsigned len; 149 150 if (e->err || !str) 151 return; 152 153 len = strlen(str); 154 if (!__i915_error_grow(e, len)) 155 return; 156 157 GEM_BUG_ON(e->bytes + len > e->size); 158 memcpy(e->buf + e->bytes, str, len); 159 e->bytes += len; 160 } 161 162 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 163 #define err_puts(e, s) i915_error_puts(e, s) 164 165 static void __i915_printfn_error(struct drm_printer *p, struct va_format *vaf) 166 { 167 i915_error_vprintf(p->arg, vaf->fmt, *vaf->va); 168 } 169 170 static inline struct drm_printer 171 i915_error_printer(struct drm_i915_error_state_buf *e) 172 { 173 struct drm_printer p = { 174 .printfn = __i915_printfn_error, 175 .arg = e, 176 }; 177 return p; 178 } 179 180 /* single threaded page allocator with a reserved stash for emergencies */ 181 static void pool_fini(struct pagevec *pv) 182 { 183 pagevec_release(pv); 184 } 185 186 static int pool_refill(struct pagevec *pv, gfp_t gfp) 187 { 188 while (pagevec_space(pv)) { 189 struct page *p; 190 191 p = alloc_page(gfp); 192 if (!p) 193 return -ENOMEM; 194 195 pagevec_add(pv, p); 196 } 197 198 return 0; 199 } 200 201 static int pool_init(struct pagevec *pv, gfp_t gfp) 202 { 203 int err; 204 205 pagevec_init(pv); 206 207 err = pool_refill(pv, gfp); 208 if (err) 209 pool_fini(pv); 210 211 return err; 212 } 213 214 static void *pool_alloc(struct pagevec *pv, gfp_t gfp) 215 { 216 struct page *p; 217 218 p = alloc_page(gfp); 219 if (!p && pagevec_count(pv)) 220 p = pv->pages[--pv->nr]; 221 222 return p ? page_address(p) : NULL; 223 } 224 225 static void pool_free(struct pagevec *pv, void *addr) 226 { 227 struct page *p = virt_to_page(addr); 228 229 if (pagevec_space(pv)) 230 pagevec_add(pv, p); 231 else 232 __free_page(p); 233 } 234 235 #ifdef CONFIG_DRM_I915_COMPRESS_ERROR 236 237 struct i915_vma_compress { 238 struct pagevec pool; 239 struct z_stream_s zstream; 240 void *tmp; 241 }; 242 243 static bool compress_init(struct i915_vma_compress *c) 244 { 245 struct z_stream_s *zstream = &c->zstream; 246 247 if (pool_init(&c->pool, ALLOW_FAIL)) 248 return false; 249 250 zstream->workspace = 251 kmalloc(zlib_deflate_workspacesize(MAX_WBITS, MAX_MEM_LEVEL), 252 ALLOW_FAIL); 253 if (!zstream->workspace) { 254 pool_fini(&c->pool); 255 return false; 256 } 257 258 c->tmp = NULL; 259 if (i915_has_memcpy_from_wc()) 260 c->tmp = pool_alloc(&c->pool, ALLOW_FAIL); 261 262 return true; 263 } 264 265 static bool compress_start(struct i915_vma_compress *c) 266 { 267 struct z_stream_s *zstream = &c->zstream; 268 void *workspace = zstream->workspace; 269 270 memset(zstream, 0, sizeof(*zstream)); 271 zstream->workspace = workspace; 272 273 return zlib_deflateInit(zstream, Z_DEFAULT_COMPRESSION) == Z_OK; 274 } 275 276 static void *compress_next_page(struct i915_vma_compress *c, 277 struct i915_vma_coredump *dst) 278 { 279 void *page; 280 281 if (dst->page_count >= dst->num_pages) 282 return ERR_PTR(-ENOSPC); 283 284 page = pool_alloc(&c->pool, ALLOW_FAIL); 285 if (!page) 286 return ERR_PTR(-ENOMEM); 287 288 return dst->pages[dst->page_count++] = page; 289 } 290 291 static int compress_page(struct i915_vma_compress *c, 292 void *src, 293 struct i915_vma_coredump *dst, 294 bool wc) 295 { 296 struct z_stream_s *zstream = &c->zstream; 297 298 zstream->next_in = src; 299 if (wc && c->tmp && i915_memcpy_from_wc(c->tmp, src, PAGE_SIZE)) 300 zstream->next_in = c->tmp; 301 zstream->avail_in = PAGE_SIZE; 302 303 do { 304 if (zstream->avail_out == 0) { 305 zstream->next_out = compress_next_page(c, dst); 306 if (IS_ERR(zstream->next_out)) 307 return PTR_ERR(zstream->next_out); 308 309 zstream->avail_out = PAGE_SIZE; 310 } 311 312 if (zlib_deflate(zstream, Z_NO_FLUSH) != Z_OK) 313 return -EIO; 314 315 cond_resched(); 316 } while (zstream->avail_in); 317 318 /* Fallback to uncompressed if we increase size? */ 319 if (0 && zstream->total_out > zstream->total_in) 320 return -E2BIG; 321 322 return 0; 323 } 324 325 static int compress_flush(struct i915_vma_compress *c, 326 struct i915_vma_coredump *dst) 327 { 328 struct z_stream_s *zstream = &c->zstream; 329 330 do { 331 switch (zlib_deflate(zstream, Z_FINISH)) { 332 case Z_OK: /* more space requested */ 333 zstream->next_out = compress_next_page(c, dst); 334 if (IS_ERR(zstream->next_out)) 335 return PTR_ERR(zstream->next_out); 336 337 zstream->avail_out = PAGE_SIZE; 338 break; 339 340 case Z_STREAM_END: 341 goto end; 342 343 default: /* any error */ 344 return -EIO; 345 } 346 } while (1); 347 348 end: 349 memset(zstream->next_out, 0, zstream->avail_out); 350 dst->unused = zstream->avail_out; 351 return 0; 352 } 353 354 static void compress_finish(struct i915_vma_compress *c) 355 { 356 zlib_deflateEnd(&c->zstream); 357 } 358 359 static void compress_fini(struct i915_vma_compress *c) 360 { 361 kfree(c->zstream.workspace); 362 if (c->tmp) 363 pool_free(&c->pool, c->tmp); 364 pool_fini(&c->pool); 365 } 366 367 static void err_compression_marker(struct drm_i915_error_state_buf *m) 368 { 369 err_puts(m, ":"); 370 } 371 372 #else 373 374 struct i915_vma_compress { 375 struct pagevec pool; 376 }; 377 378 static bool compress_init(struct i915_vma_compress *c) 379 { 380 return pool_init(&c->pool, ALLOW_FAIL) == 0; 381 } 382 383 static bool compress_start(struct i915_vma_compress *c) 384 { 385 return true; 386 } 387 388 static int compress_page(struct i915_vma_compress *c, 389 void *src, 390 struct i915_vma_coredump *dst, 391 bool wc) 392 { 393 void *ptr; 394 395 ptr = pool_alloc(&c->pool, ALLOW_FAIL); 396 if (!ptr) 397 return -ENOMEM; 398 399 if (!(wc && i915_memcpy_from_wc(ptr, src, PAGE_SIZE))) 400 memcpy(ptr, src, PAGE_SIZE); 401 dst->pages[dst->page_count++] = ptr; 402 cond_resched(); 403 404 return 0; 405 } 406 407 static int compress_flush(struct i915_vma_compress *c, 408 struct i915_vma_coredump *dst) 409 { 410 return 0; 411 } 412 413 static void compress_finish(struct i915_vma_compress *c) 414 { 415 } 416 417 static void compress_fini(struct i915_vma_compress *c) 418 { 419 pool_fini(&c->pool); 420 } 421 422 static void err_compression_marker(struct drm_i915_error_state_buf *m) 423 { 424 err_puts(m, "~"); 425 } 426 427 #endif 428 429 static void error_print_instdone(struct drm_i915_error_state_buf *m, 430 const struct intel_engine_coredump *ee) 431 { 432 const struct sseu_dev_info *sseu = &ee->engine->gt->info.sseu; 433 int slice; 434 int subslice; 435 436 err_printf(m, " INSTDONE: 0x%08x\n", 437 ee->instdone.instdone); 438 439 if (ee->engine->class != RENDER_CLASS || INTEL_GEN(m->i915) <= 3) 440 return; 441 442 err_printf(m, " SC_INSTDONE: 0x%08x\n", 443 ee->instdone.slice_common); 444 445 if (INTEL_GEN(m->i915) <= 6) 446 return; 447 448 for_each_instdone_slice_subslice(m->i915, sseu, slice, subslice) 449 err_printf(m, " SAMPLER_INSTDONE[%d][%d]: 0x%08x\n", 450 slice, subslice, 451 ee->instdone.sampler[slice][subslice]); 452 453 for_each_instdone_slice_subslice(m->i915, sseu, slice, subslice) 454 err_printf(m, " ROW_INSTDONE[%d][%d]: 0x%08x\n", 455 slice, subslice, 456 ee->instdone.row[slice][subslice]); 457 458 if (INTEL_GEN(m->i915) < 12) 459 return; 460 461 err_printf(m, " SC_INSTDONE_EXTRA: 0x%08x\n", 462 ee->instdone.slice_common_extra[0]); 463 err_printf(m, " SC_INSTDONE_EXTRA2: 0x%08x\n", 464 ee->instdone.slice_common_extra[1]); 465 } 466 467 static void error_print_request(struct drm_i915_error_state_buf *m, 468 const char *prefix, 469 const struct i915_request_coredump *erq) 470 { 471 if (!erq->seqno) 472 return; 473 474 err_printf(m, "%s pid %d, seqno %8x:%08x%s%s, prio %d, head %08x, tail %08x\n", 475 prefix, erq->pid, erq->context, erq->seqno, 476 test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 477 &erq->flags) ? "!" : "", 478 test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 479 &erq->flags) ? "+" : "", 480 erq->sched_attr.priority, 481 erq->head, erq->tail); 482 } 483 484 static void error_print_context(struct drm_i915_error_state_buf *m, 485 const char *header, 486 const struct i915_gem_context_coredump *ctx) 487 { 488 const u32 period = RUNTIME_INFO(m->i915)->cs_timestamp_period_ns; 489 490 err_printf(m, "%s%s[%d] prio %d, guilty %d active %d, runtime total %lluns, avg %lluns\n", 491 header, ctx->comm, ctx->pid, ctx->sched_attr.priority, 492 ctx->guilty, ctx->active, 493 ctx->total_runtime * period, 494 mul_u32_u32(ctx->avg_runtime, period)); 495 } 496 497 static struct i915_vma_coredump * 498 __find_vma(struct i915_vma_coredump *vma, const char *name) 499 { 500 while (vma) { 501 if (strcmp(vma->name, name) == 0) 502 return vma; 503 vma = vma->next; 504 } 505 506 return NULL; 507 } 508 509 static struct i915_vma_coredump * 510 find_batch(const struct intel_engine_coredump *ee) 511 { 512 return __find_vma(ee->vma, "batch"); 513 } 514 515 static void error_print_engine(struct drm_i915_error_state_buf *m, 516 const struct intel_engine_coredump *ee) 517 { 518 struct i915_vma_coredump *batch; 519 int n; 520 521 err_printf(m, "%s command stream:\n", ee->engine->name); 522 err_printf(m, " CCID: 0x%08x\n", ee->ccid); 523 err_printf(m, " START: 0x%08x\n", ee->start); 524 err_printf(m, " HEAD: 0x%08x [0x%08x]\n", ee->head, ee->rq_head); 525 err_printf(m, " TAIL: 0x%08x [0x%08x, 0x%08x]\n", 526 ee->tail, ee->rq_post, ee->rq_tail); 527 err_printf(m, " CTL: 0x%08x\n", ee->ctl); 528 err_printf(m, " MODE: 0x%08x\n", ee->mode); 529 err_printf(m, " HWS: 0x%08x\n", ee->hws); 530 err_printf(m, " ACTHD: 0x%08x %08x\n", 531 (u32)(ee->acthd>>32), (u32)ee->acthd); 532 err_printf(m, " IPEIR: 0x%08x\n", ee->ipeir); 533 err_printf(m, " IPEHR: 0x%08x\n", ee->ipehr); 534 err_printf(m, " ESR: 0x%08x\n", ee->esr); 535 536 error_print_instdone(m, ee); 537 538 batch = find_batch(ee); 539 if (batch) { 540 u64 start = batch->gtt_offset; 541 u64 end = start + batch->gtt_size; 542 543 err_printf(m, " batch: [0x%08x_%08x, 0x%08x_%08x]\n", 544 upper_32_bits(start), lower_32_bits(start), 545 upper_32_bits(end), lower_32_bits(end)); 546 } 547 if (INTEL_GEN(m->i915) >= 4) { 548 err_printf(m, " BBADDR: 0x%08x_%08x\n", 549 (u32)(ee->bbaddr>>32), (u32)ee->bbaddr); 550 err_printf(m, " BB_STATE: 0x%08x\n", ee->bbstate); 551 err_printf(m, " INSTPS: 0x%08x\n", ee->instps); 552 } 553 err_printf(m, " INSTPM: 0x%08x\n", ee->instpm); 554 err_printf(m, " FADDR: 0x%08x %08x\n", upper_32_bits(ee->faddr), 555 lower_32_bits(ee->faddr)); 556 if (INTEL_GEN(m->i915) >= 6) { 557 err_printf(m, " RC PSMI: 0x%08x\n", ee->rc_psmi); 558 err_printf(m, " FAULT_REG: 0x%08x\n", ee->fault_reg); 559 } 560 if (HAS_PPGTT(m->i915)) { 561 err_printf(m, " GFX_MODE: 0x%08x\n", ee->vm_info.gfx_mode); 562 563 if (INTEL_GEN(m->i915) >= 8) { 564 int i; 565 for (i = 0; i < 4; i++) 566 err_printf(m, " PDP%d: 0x%016llx\n", 567 i, ee->vm_info.pdp[i]); 568 } else { 569 err_printf(m, " PP_DIR_BASE: 0x%08x\n", 570 ee->vm_info.pp_dir_base); 571 } 572 } 573 err_printf(m, " hung: %u\n", ee->hung); 574 err_printf(m, " engine reset count: %u\n", ee->reset_count); 575 576 for (n = 0; n < ee->num_ports; n++) { 577 err_printf(m, " ELSP[%d]:", n); 578 error_print_request(m, " ", &ee->execlist[n]); 579 } 580 581 error_print_context(m, " Active context: ", &ee->context); 582 } 583 584 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...) 585 { 586 va_list args; 587 588 va_start(args, f); 589 i915_error_vprintf(e, f, args); 590 va_end(args); 591 } 592 593 static void print_error_vma(struct drm_i915_error_state_buf *m, 594 const struct intel_engine_cs *engine, 595 const struct i915_vma_coredump *vma) 596 { 597 char out[ASCII85_BUFSZ]; 598 int page; 599 600 if (!vma) 601 return; 602 603 err_printf(m, "%s --- %s = 0x%08x %08x\n", 604 engine ? engine->name : "global", vma->name, 605 upper_32_bits(vma->gtt_offset), 606 lower_32_bits(vma->gtt_offset)); 607 608 if (vma->gtt_page_sizes > I915_GTT_PAGE_SIZE_4K) 609 err_printf(m, "gtt_page_sizes = 0x%08x\n", vma->gtt_page_sizes); 610 611 err_compression_marker(m); 612 for (page = 0; page < vma->page_count; page++) { 613 int i, len; 614 615 len = PAGE_SIZE; 616 if (page == vma->page_count - 1) 617 len -= vma->unused; 618 len = ascii85_encode_len(len); 619 620 for (i = 0; i < len; i++) 621 err_puts(m, ascii85_encode(vma->pages[page][i], out)); 622 } 623 err_puts(m, "\n"); 624 } 625 626 static void err_print_capabilities(struct drm_i915_error_state_buf *m, 627 struct i915_gpu_coredump *error) 628 { 629 struct drm_printer p = i915_error_printer(m); 630 631 intel_device_info_print_static(&error->device_info, &p); 632 intel_device_info_print_runtime(&error->runtime_info, &p); 633 intel_driver_caps_print(&error->driver_caps, &p); 634 } 635 636 static void err_print_params(struct drm_i915_error_state_buf *m, 637 const struct i915_params *params) 638 { 639 struct drm_printer p = i915_error_printer(m); 640 641 i915_params_dump(params, &p); 642 } 643 644 static void err_print_pciid(struct drm_i915_error_state_buf *m, 645 struct drm_i915_private *i915) 646 { 647 struct pci_dev *pdev = i915->drm.pdev; 648 649 err_printf(m, "PCI ID: 0x%04x\n", pdev->device); 650 err_printf(m, "PCI Revision: 0x%02x\n", pdev->revision); 651 err_printf(m, "PCI Subsystem: %04x:%04x\n", 652 pdev->subsystem_vendor, 653 pdev->subsystem_device); 654 } 655 656 static void err_print_uc(struct drm_i915_error_state_buf *m, 657 const struct intel_uc_coredump *error_uc) 658 { 659 struct drm_printer p = i915_error_printer(m); 660 661 intel_uc_fw_dump(&error_uc->guc_fw, &p); 662 intel_uc_fw_dump(&error_uc->huc_fw, &p); 663 print_error_vma(m, NULL, error_uc->guc_log); 664 } 665 666 static void err_free_sgl(struct scatterlist *sgl) 667 { 668 while (sgl) { 669 struct scatterlist *sg; 670 671 for (sg = sgl; !sg_is_chain(sg); sg++) { 672 kfree(sg_virt(sg)); 673 if (sg_is_last(sg)) 674 break; 675 } 676 677 sg = sg_is_last(sg) ? NULL : sg_chain_ptr(sg); 678 free_page((unsigned long)sgl); 679 sgl = sg; 680 } 681 } 682 683 static void err_print_gt_info(struct drm_i915_error_state_buf *m, 684 struct intel_gt_coredump *gt) 685 { 686 struct drm_printer p = i915_error_printer(m); 687 688 intel_gt_info_print(>->info, &p); 689 intel_sseu_print_topology(>->info.sseu, &p); 690 } 691 692 static void err_print_gt(struct drm_i915_error_state_buf *m, 693 struct intel_gt_coredump *gt) 694 { 695 const struct intel_engine_coredump *ee; 696 int i; 697 698 err_printf(m, "GT awake: %s\n", yesno(gt->awake)); 699 err_printf(m, "EIR: 0x%08x\n", gt->eir); 700 err_printf(m, "IER: 0x%08x\n", gt->ier); 701 for (i = 0; i < gt->ngtier; i++) 702 err_printf(m, "GTIER[%d]: 0x%08x\n", i, gt->gtier[i]); 703 err_printf(m, "PGTBL_ER: 0x%08x\n", gt->pgtbl_er); 704 err_printf(m, "FORCEWAKE: 0x%08x\n", gt->forcewake); 705 err_printf(m, "DERRMR: 0x%08x\n", gt->derrmr); 706 707 for (i = 0; i < gt->nfence; i++) 708 err_printf(m, " fence[%d] = %08llx\n", i, gt->fence[i]); 709 710 if (IS_GEN_RANGE(m->i915, 6, 11)) { 711 err_printf(m, "ERROR: 0x%08x\n", gt->error); 712 err_printf(m, "DONE_REG: 0x%08x\n", gt->done_reg); 713 } 714 715 if (INTEL_GEN(m->i915) >= 8) 716 err_printf(m, "FAULT_TLB_DATA: 0x%08x 0x%08x\n", 717 gt->fault_data1, gt->fault_data0); 718 719 if (IS_GEN(m->i915, 7)) 720 err_printf(m, "ERR_INT: 0x%08x\n", gt->err_int); 721 722 if (IS_GEN_RANGE(m->i915, 8, 11)) 723 err_printf(m, "GTT_CACHE_EN: 0x%08x\n", gt->gtt_cache); 724 725 if (IS_GEN(m->i915, 12)) 726 err_printf(m, "AUX_ERR_DBG: 0x%08x\n", gt->aux_err); 727 728 if (INTEL_GEN(m->i915) >= 12) { 729 int i; 730 731 for (i = 0; i < GEN12_SFC_DONE_MAX; i++) 732 err_printf(m, " SFC_DONE[%d]: 0x%08x\n", i, 733 gt->sfc_done[i]); 734 735 err_printf(m, " GAM_DONE: 0x%08x\n", gt->gam_done); 736 } 737 738 for (ee = gt->engine; ee; ee = ee->next) { 739 const struct i915_vma_coredump *vma; 740 741 error_print_engine(m, ee); 742 for (vma = ee->vma; vma; vma = vma->next) 743 print_error_vma(m, ee->engine, vma); 744 } 745 746 if (gt->uc) 747 err_print_uc(m, gt->uc); 748 749 err_print_gt_info(m, gt); 750 } 751 752 static void __err_print_to_sgl(struct drm_i915_error_state_buf *m, 753 struct i915_gpu_coredump *error) 754 { 755 const struct intel_engine_coredump *ee; 756 struct timespec64 ts; 757 758 if (*error->error_msg) 759 err_printf(m, "%s\n", error->error_msg); 760 err_printf(m, "Kernel: %s %s\n", 761 init_utsname()->release, 762 init_utsname()->machine); 763 err_printf(m, "Driver: %s\n", DRIVER_DATE); 764 ts = ktime_to_timespec64(error->time); 765 err_printf(m, "Time: %lld s %ld us\n", 766 (s64)ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC); 767 ts = ktime_to_timespec64(error->boottime); 768 err_printf(m, "Boottime: %lld s %ld us\n", 769 (s64)ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC); 770 ts = ktime_to_timespec64(error->uptime); 771 err_printf(m, "Uptime: %lld s %ld us\n", 772 (s64)ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC); 773 err_printf(m, "Capture: %lu jiffies; %d ms ago\n", 774 error->capture, jiffies_to_msecs(jiffies - error->capture)); 775 776 for (ee = error->gt ? error->gt->engine : NULL; ee; ee = ee->next) 777 err_printf(m, "Active process (on ring %s): %s [%d]\n", 778 ee->engine->name, 779 ee->context.comm, 780 ee->context.pid); 781 782 err_printf(m, "Reset count: %u\n", error->reset_count); 783 err_printf(m, "Suspend count: %u\n", error->suspend_count); 784 err_printf(m, "Platform: %s\n", intel_platform_name(error->device_info.platform)); 785 err_printf(m, "Subplatform: 0x%x\n", 786 intel_subplatform(&error->runtime_info, 787 error->device_info.platform)); 788 err_print_pciid(m, m->i915); 789 790 err_printf(m, "IOMMU enabled?: %d\n", error->iommu); 791 792 if (HAS_CSR(m->i915)) { 793 struct intel_csr *csr = &m->i915->csr; 794 795 err_printf(m, "DMC loaded: %s\n", 796 yesno(csr->dmc_payload != NULL)); 797 err_printf(m, "DMC fw version: %d.%d\n", 798 CSR_VERSION_MAJOR(csr->version), 799 CSR_VERSION_MINOR(csr->version)); 800 } 801 802 err_printf(m, "RPM wakelock: %s\n", yesno(error->wakelock)); 803 err_printf(m, "PM suspended: %s\n", yesno(error->suspended)); 804 805 if (error->gt) 806 err_print_gt(m, error->gt); 807 808 if (error->overlay) 809 intel_overlay_print_error_state(m, error->overlay); 810 811 if (error->display) 812 intel_display_print_error_state(m, error->display); 813 814 err_print_capabilities(m, error); 815 err_print_params(m, &error->params); 816 } 817 818 static int err_print_to_sgl(struct i915_gpu_coredump *error) 819 { 820 struct drm_i915_error_state_buf m; 821 822 if (IS_ERR(error)) 823 return PTR_ERR(error); 824 825 if (READ_ONCE(error->sgl)) 826 return 0; 827 828 memset(&m, 0, sizeof(m)); 829 m.i915 = error->i915; 830 831 __err_print_to_sgl(&m, error); 832 833 if (m.buf) { 834 __sg_set_buf(m.cur++, m.buf, m.bytes, m.iter); 835 m.bytes = 0; 836 m.buf = NULL; 837 } 838 if (m.cur) { 839 GEM_BUG_ON(m.end < m.cur); 840 sg_mark_end(m.cur - 1); 841 } 842 GEM_BUG_ON(m.sgl && !m.cur); 843 844 if (m.err) { 845 err_free_sgl(m.sgl); 846 return m.err; 847 } 848 849 if (cmpxchg(&error->sgl, NULL, m.sgl)) 850 err_free_sgl(m.sgl); 851 852 return 0; 853 } 854 855 ssize_t i915_gpu_coredump_copy_to_buffer(struct i915_gpu_coredump *error, 856 char *buf, loff_t off, size_t rem) 857 { 858 struct scatterlist *sg; 859 size_t count; 860 loff_t pos; 861 int err; 862 863 if (!error || !rem) 864 return 0; 865 866 err = err_print_to_sgl(error); 867 if (err) 868 return err; 869 870 sg = READ_ONCE(error->fit); 871 if (!sg || off < sg->dma_address) 872 sg = error->sgl; 873 if (!sg) 874 return 0; 875 876 pos = sg->dma_address; 877 count = 0; 878 do { 879 size_t len, start; 880 881 if (sg_is_chain(sg)) { 882 sg = sg_chain_ptr(sg); 883 GEM_BUG_ON(sg_is_chain(sg)); 884 } 885 886 len = sg->length; 887 if (pos + len <= off) { 888 pos += len; 889 continue; 890 } 891 892 start = sg->offset; 893 if (pos < off) { 894 GEM_BUG_ON(off - pos > len); 895 len -= off - pos; 896 start += off - pos; 897 pos = off; 898 } 899 900 len = min(len, rem); 901 GEM_BUG_ON(!len || len > sg->length); 902 903 memcpy(buf, page_address(sg_page(sg)) + start, len); 904 905 count += len; 906 pos += len; 907 908 buf += len; 909 rem -= len; 910 if (!rem) { 911 WRITE_ONCE(error->fit, sg); 912 break; 913 } 914 } while (!sg_is_last(sg++)); 915 916 return count; 917 } 918 919 static void i915_vma_coredump_free(struct i915_vma_coredump *vma) 920 { 921 while (vma) { 922 struct i915_vma_coredump *next = vma->next; 923 int page; 924 925 for (page = 0; page < vma->page_count; page++) 926 free_page((unsigned long)vma->pages[page]); 927 928 kfree(vma); 929 vma = next; 930 } 931 } 932 933 static void cleanup_params(struct i915_gpu_coredump *error) 934 { 935 i915_params_free(&error->params); 936 } 937 938 static void cleanup_uc(struct intel_uc_coredump *uc) 939 { 940 kfree(uc->guc_fw.path); 941 kfree(uc->huc_fw.path); 942 i915_vma_coredump_free(uc->guc_log); 943 944 kfree(uc); 945 } 946 947 static void cleanup_gt(struct intel_gt_coredump *gt) 948 { 949 while (gt->engine) { 950 struct intel_engine_coredump *ee = gt->engine; 951 952 gt->engine = ee->next; 953 954 i915_vma_coredump_free(ee->vma); 955 kfree(ee); 956 } 957 958 if (gt->uc) 959 cleanup_uc(gt->uc); 960 961 kfree(gt); 962 } 963 964 void __i915_gpu_coredump_free(struct kref *error_ref) 965 { 966 struct i915_gpu_coredump *error = 967 container_of(error_ref, typeof(*error), ref); 968 969 while (error->gt) { 970 struct intel_gt_coredump *gt = error->gt; 971 972 error->gt = gt->next; 973 cleanup_gt(gt); 974 } 975 976 kfree(error->overlay); 977 kfree(error->display); 978 979 cleanup_params(error); 980 981 err_free_sgl(error->sgl); 982 kfree(error); 983 } 984 985 static struct i915_vma_coredump * 986 i915_vma_coredump_create(const struct intel_gt *gt, 987 const struct i915_vma *vma, 988 const char *name, 989 struct i915_vma_compress *compress) 990 { 991 struct i915_ggtt *ggtt = gt->ggtt; 992 const u64 slot = ggtt->error_capture.start; 993 struct i915_vma_coredump *dst; 994 unsigned long num_pages; 995 struct sgt_iter iter; 996 int ret; 997 998 might_sleep(); 999 1000 if (!vma || !vma->pages || !compress) 1001 return NULL; 1002 1003 num_pages = min_t(u64, vma->size, vma->obj->base.size) >> PAGE_SHIFT; 1004 num_pages = DIV_ROUND_UP(10 * num_pages, 8); /* worstcase zlib growth */ 1005 dst = kmalloc(sizeof(*dst) + num_pages * sizeof(u32 *), ALLOW_FAIL); 1006 if (!dst) 1007 return NULL; 1008 1009 if (!compress_start(compress)) { 1010 kfree(dst); 1011 return NULL; 1012 } 1013 1014 strcpy(dst->name, name); 1015 dst->next = NULL; 1016 1017 dst->gtt_offset = vma->node.start; 1018 dst->gtt_size = vma->node.size; 1019 dst->gtt_page_sizes = vma->page_sizes.gtt; 1020 dst->num_pages = num_pages; 1021 dst->page_count = 0; 1022 dst->unused = 0; 1023 1024 ret = -EINVAL; 1025 if (drm_mm_node_allocated(&ggtt->error_capture)) { 1026 void __iomem *s; 1027 dma_addr_t dma; 1028 1029 for_each_sgt_daddr(dma, iter, vma->pages) { 1030 mutex_lock(&ggtt->error_mutex); 1031 ggtt->vm.insert_page(&ggtt->vm, dma, slot, 1032 I915_CACHE_NONE, 0); 1033 mb(); 1034 1035 s = io_mapping_map_wc(&ggtt->iomap, slot, PAGE_SIZE); 1036 ret = compress_page(compress, 1037 (void __force *)s, dst, 1038 true); 1039 io_mapping_unmap(s); 1040 1041 mb(); 1042 ggtt->vm.clear_range(&ggtt->vm, slot, PAGE_SIZE); 1043 mutex_unlock(&ggtt->error_mutex); 1044 if (ret) 1045 break; 1046 } 1047 } else if (i915_gem_object_is_lmem(vma->obj)) { 1048 struct intel_memory_region *mem = vma->obj->mm.region; 1049 dma_addr_t dma; 1050 1051 for_each_sgt_daddr(dma, iter, vma->pages) { 1052 void __iomem *s; 1053 1054 s = io_mapping_map_wc(&mem->iomap, dma, PAGE_SIZE); 1055 ret = compress_page(compress, 1056 (void __force *)s, dst, 1057 true); 1058 io_mapping_unmap(s); 1059 if (ret) 1060 break; 1061 } 1062 } else { 1063 struct page *page; 1064 1065 for_each_sgt_page(page, iter, vma->pages) { 1066 void *s; 1067 1068 drm_clflush_pages(&page, 1); 1069 1070 s = kmap(page); 1071 ret = compress_page(compress, s, dst, false); 1072 kunmap(page); 1073 1074 drm_clflush_pages(&page, 1); 1075 1076 if (ret) 1077 break; 1078 } 1079 } 1080 1081 if (ret || compress_flush(compress, dst)) { 1082 while (dst->page_count--) 1083 pool_free(&compress->pool, dst->pages[dst->page_count]); 1084 kfree(dst); 1085 dst = NULL; 1086 } 1087 compress_finish(compress); 1088 1089 return dst; 1090 } 1091 1092 static void gt_record_fences(struct intel_gt_coredump *gt) 1093 { 1094 struct i915_ggtt *ggtt = gt->_gt->ggtt; 1095 struct intel_uncore *uncore = gt->_gt->uncore; 1096 int i; 1097 1098 if (INTEL_GEN(uncore->i915) >= 6) { 1099 for (i = 0; i < ggtt->num_fences; i++) 1100 gt->fence[i] = 1101 intel_uncore_read64(uncore, 1102 FENCE_REG_GEN6_LO(i)); 1103 } else if (INTEL_GEN(uncore->i915) >= 4) { 1104 for (i = 0; i < ggtt->num_fences; i++) 1105 gt->fence[i] = 1106 intel_uncore_read64(uncore, 1107 FENCE_REG_965_LO(i)); 1108 } else { 1109 for (i = 0; i < ggtt->num_fences; i++) 1110 gt->fence[i] = 1111 intel_uncore_read(uncore, FENCE_REG(i)); 1112 } 1113 gt->nfence = i; 1114 } 1115 1116 static void engine_record_registers(struct intel_engine_coredump *ee) 1117 { 1118 const struct intel_engine_cs *engine = ee->engine; 1119 struct drm_i915_private *i915 = engine->i915; 1120 1121 if (INTEL_GEN(i915) >= 6) { 1122 ee->rc_psmi = ENGINE_READ(engine, RING_PSMI_CTL); 1123 1124 if (INTEL_GEN(i915) >= 12) 1125 ee->fault_reg = intel_uncore_read(engine->uncore, 1126 GEN12_RING_FAULT_REG); 1127 else if (INTEL_GEN(i915) >= 8) 1128 ee->fault_reg = intel_uncore_read(engine->uncore, 1129 GEN8_RING_FAULT_REG); 1130 else 1131 ee->fault_reg = GEN6_RING_FAULT_REG_READ(engine); 1132 } 1133 1134 if (INTEL_GEN(i915) >= 4) { 1135 ee->esr = ENGINE_READ(engine, RING_ESR); 1136 ee->faddr = ENGINE_READ(engine, RING_DMA_FADD); 1137 ee->ipeir = ENGINE_READ(engine, RING_IPEIR); 1138 ee->ipehr = ENGINE_READ(engine, RING_IPEHR); 1139 ee->instps = ENGINE_READ(engine, RING_INSTPS); 1140 ee->bbaddr = ENGINE_READ(engine, RING_BBADDR); 1141 ee->ccid = ENGINE_READ(engine, CCID); 1142 if (INTEL_GEN(i915) >= 8) { 1143 ee->faddr |= (u64)ENGINE_READ(engine, RING_DMA_FADD_UDW) << 32; 1144 ee->bbaddr |= (u64)ENGINE_READ(engine, RING_BBADDR_UDW) << 32; 1145 } 1146 ee->bbstate = ENGINE_READ(engine, RING_BBSTATE); 1147 } else { 1148 ee->faddr = ENGINE_READ(engine, DMA_FADD_I8XX); 1149 ee->ipeir = ENGINE_READ(engine, IPEIR); 1150 ee->ipehr = ENGINE_READ(engine, IPEHR); 1151 } 1152 1153 intel_engine_get_instdone(engine, &ee->instdone); 1154 1155 ee->instpm = ENGINE_READ(engine, RING_INSTPM); 1156 ee->acthd = intel_engine_get_active_head(engine); 1157 ee->start = ENGINE_READ(engine, RING_START); 1158 ee->head = ENGINE_READ(engine, RING_HEAD); 1159 ee->tail = ENGINE_READ(engine, RING_TAIL); 1160 ee->ctl = ENGINE_READ(engine, RING_CTL); 1161 if (INTEL_GEN(i915) > 2) 1162 ee->mode = ENGINE_READ(engine, RING_MI_MODE); 1163 1164 if (!HWS_NEEDS_PHYSICAL(i915)) { 1165 i915_reg_t mmio; 1166 1167 if (IS_GEN(i915, 7)) { 1168 switch (engine->id) { 1169 default: 1170 MISSING_CASE(engine->id); 1171 fallthrough; 1172 case RCS0: 1173 mmio = RENDER_HWS_PGA_GEN7; 1174 break; 1175 case BCS0: 1176 mmio = BLT_HWS_PGA_GEN7; 1177 break; 1178 case VCS0: 1179 mmio = BSD_HWS_PGA_GEN7; 1180 break; 1181 case VECS0: 1182 mmio = VEBOX_HWS_PGA_GEN7; 1183 break; 1184 } 1185 } else if (IS_GEN(engine->i915, 6)) { 1186 mmio = RING_HWS_PGA_GEN6(engine->mmio_base); 1187 } else { 1188 /* XXX: gen8 returns to sanity */ 1189 mmio = RING_HWS_PGA(engine->mmio_base); 1190 } 1191 1192 ee->hws = intel_uncore_read(engine->uncore, mmio); 1193 } 1194 1195 ee->reset_count = i915_reset_engine_count(&i915->gpu_error, engine); 1196 1197 if (HAS_PPGTT(i915)) { 1198 int i; 1199 1200 ee->vm_info.gfx_mode = ENGINE_READ(engine, RING_MODE_GEN7); 1201 1202 if (IS_GEN(i915, 6)) { 1203 ee->vm_info.pp_dir_base = 1204 ENGINE_READ(engine, RING_PP_DIR_BASE_READ); 1205 } else if (IS_GEN(i915, 7)) { 1206 ee->vm_info.pp_dir_base = 1207 ENGINE_READ(engine, RING_PP_DIR_BASE); 1208 } else if (INTEL_GEN(i915) >= 8) { 1209 u32 base = engine->mmio_base; 1210 1211 for (i = 0; i < 4; i++) { 1212 ee->vm_info.pdp[i] = 1213 intel_uncore_read(engine->uncore, 1214 GEN8_RING_PDP_UDW(base, i)); 1215 ee->vm_info.pdp[i] <<= 32; 1216 ee->vm_info.pdp[i] |= 1217 intel_uncore_read(engine->uncore, 1218 GEN8_RING_PDP_LDW(base, i)); 1219 } 1220 } 1221 } 1222 } 1223 1224 static void record_request(const struct i915_request *request, 1225 struct i915_request_coredump *erq) 1226 { 1227 erq->flags = request->fence.flags; 1228 erq->context = request->fence.context; 1229 erq->seqno = request->fence.seqno; 1230 erq->sched_attr = request->sched.attr; 1231 erq->head = request->head; 1232 erq->tail = request->tail; 1233 1234 erq->pid = 0; 1235 rcu_read_lock(); 1236 if (!intel_context_is_closed(request->context)) { 1237 const struct i915_gem_context *ctx; 1238 1239 ctx = rcu_dereference(request->context->gem_context); 1240 if (ctx) 1241 erq->pid = pid_nr(ctx->pid); 1242 } 1243 rcu_read_unlock(); 1244 } 1245 1246 static void engine_record_execlists(struct intel_engine_coredump *ee) 1247 { 1248 const struct intel_engine_execlists * const el = &ee->engine->execlists; 1249 struct i915_request * const *port = el->active; 1250 unsigned int n = 0; 1251 1252 while (*port) 1253 record_request(*port++, &ee->execlist[n++]); 1254 1255 ee->num_ports = n; 1256 } 1257 1258 static bool record_context(struct i915_gem_context_coredump *e, 1259 const struct i915_request *rq) 1260 { 1261 struct i915_gem_context *ctx; 1262 struct task_struct *task; 1263 bool simulated; 1264 1265 rcu_read_lock(); 1266 ctx = rcu_dereference(rq->context->gem_context); 1267 if (ctx && !kref_get_unless_zero(&ctx->ref)) 1268 ctx = NULL; 1269 rcu_read_unlock(); 1270 if (!ctx) 1271 return true; 1272 1273 rcu_read_lock(); 1274 task = pid_task(ctx->pid, PIDTYPE_PID); 1275 if (task) { 1276 strcpy(e->comm, task->comm); 1277 e->pid = task->pid; 1278 } 1279 rcu_read_unlock(); 1280 1281 e->sched_attr = ctx->sched; 1282 e->guilty = atomic_read(&ctx->guilty_count); 1283 e->active = atomic_read(&ctx->active_count); 1284 1285 e->total_runtime = rq->context->runtime.total; 1286 e->avg_runtime = ewma_runtime_read(&rq->context->runtime.avg); 1287 1288 simulated = i915_gem_context_no_error_capture(ctx); 1289 1290 i915_gem_context_put(ctx); 1291 return simulated; 1292 } 1293 1294 struct intel_engine_capture_vma { 1295 struct intel_engine_capture_vma *next; 1296 struct i915_vma *vma; 1297 char name[16]; 1298 }; 1299 1300 static struct intel_engine_capture_vma * 1301 capture_vma(struct intel_engine_capture_vma *next, 1302 struct i915_vma *vma, 1303 const char *name, 1304 gfp_t gfp) 1305 { 1306 struct intel_engine_capture_vma *c; 1307 1308 if (!vma) 1309 return next; 1310 1311 c = kmalloc(sizeof(*c), gfp); 1312 if (!c) 1313 return next; 1314 1315 if (!i915_active_acquire_if_busy(&vma->active)) { 1316 kfree(c); 1317 return next; 1318 } 1319 1320 strcpy(c->name, name); 1321 c->vma = vma; /* reference held while active */ 1322 1323 c->next = next; 1324 return c; 1325 } 1326 1327 static struct intel_engine_capture_vma * 1328 capture_user(struct intel_engine_capture_vma *capture, 1329 const struct i915_request *rq, 1330 gfp_t gfp) 1331 { 1332 struct i915_capture_list *c; 1333 1334 for (c = rq->capture_list; c; c = c->next) 1335 capture = capture_vma(capture, c->vma, "user", gfp); 1336 1337 return capture; 1338 } 1339 1340 static void add_vma(struct intel_engine_coredump *ee, 1341 struct i915_vma_coredump *vma) 1342 { 1343 if (vma) { 1344 vma->next = ee->vma; 1345 ee->vma = vma; 1346 } 1347 } 1348 1349 struct intel_engine_coredump * 1350 intel_engine_coredump_alloc(struct intel_engine_cs *engine, gfp_t gfp) 1351 { 1352 struct intel_engine_coredump *ee; 1353 1354 ee = kzalloc(sizeof(*ee), gfp); 1355 if (!ee) 1356 return NULL; 1357 1358 ee->engine = engine; 1359 1360 engine_record_registers(ee); 1361 engine_record_execlists(ee); 1362 1363 return ee; 1364 } 1365 1366 struct intel_engine_capture_vma * 1367 intel_engine_coredump_add_request(struct intel_engine_coredump *ee, 1368 struct i915_request *rq, 1369 gfp_t gfp) 1370 { 1371 struct intel_engine_capture_vma *vma = NULL; 1372 1373 ee->simulated |= record_context(&ee->context, rq); 1374 if (ee->simulated) 1375 return NULL; 1376 1377 /* 1378 * We need to copy these to an anonymous buffer 1379 * as the simplest method to avoid being overwritten 1380 * by userspace. 1381 */ 1382 vma = capture_vma(vma, rq->batch, "batch", gfp); 1383 vma = capture_user(vma, rq, gfp); 1384 vma = capture_vma(vma, rq->ring->vma, "ring", gfp); 1385 vma = capture_vma(vma, rq->context->state, "HW context", gfp); 1386 1387 ee->rq_head = rq->head; 1388 ee->rq_post = rq->postfix; 1389 ee->rq_tail = rq->tail; 1390 1391 return vma; 1392 } 1393 1394 void 1395 intel_engine_coredump_add_vma(struct intel_engine_coredump *ee, 1396 struct intel_engine_capture_vma *capture, 1397 struct i915_vma_compress *compress) 1398 { 1399 const struct intel_engine_cs *engine = ee->engine; 1400 1401 while (capture) { 1402 struct intel_engine_capture_vma *this = capture; 1403 struct i915_vma *vma = this->vma; 1404 1405 add_vma(ee, 1406 i915_vma_coredump_create(engine->gt, 1407 vma, this->name, 1408 compress)); 1409 1410 i915_active_release(&vma->active); 1411 1412 capture = this->next; 1413 kfree(this); 1414 } 1415 1416 add_vma(ee, 1417 i915_vma_coredump_create(engine->gt, 1418 engine->status_page.vma, 1419 "HW Status", 1420 compress)); 1421 1422 add_vma(ee, 1423 i915_vma_coredump_create(engine->gt, 1424 engine->wa_ctx.vma, 1425 "WA context", 1426 compress)); 1427 } 1428 1429 static struct intel_engine_coredump * 1430 capture_engine(struct intel_engine_cs *engine, 1431 struct i915_vma_compress *compress) 1432 { 1433 struct intel_engine_capture_vma *capture = NULL; 1434 struct intel_engine_coredump *ee; 1435 struct i915_request *rq; 1436 unsigned long flags; 1437 1438 ee = intel_engine_coredump_alloc(engine, GFP_KERNEL); 1439 if (!ee) 1440 return NULL; 1441 1442 spin_lock_irqsave(&engine->active.lock, flags); 1443 rq = intel_engine_find_active_request(engine); 1444 if (rq) 1445 capture = intel_engine_coredump_add_request(ee, rq, 1446 ATOMIC_MAYFAIL); 1447 spin_unlock_irqrestore(&engine->active.lock, flags); 1448 if (!capture) { 1449 kfree(ee); 1450 return NULL; 1451 } 1452 1453 intel_engine_coredump_add_vma(ee, capture, compress); 1454 1455 return ee; 1456 } 1457 1458 static void 1459 gt_record_engines(struct intel_gt_coredump *gt, 1460 intel_engine_mask_t engine_mask, 1461 struct i915_vma_compress *compress) 1462 { 1463 struct intel_engine_cs *engine; 1464 enum intel_engine_id id; 1465 1466 for_each_engine(engine, gt->_gt, id) { 1467 struct intel_engine_coredump *ee; 1468 1469 /* Refill our page pool before entering atomic section */ 1470 pool_refill(&compress->pool, ALLOW_FAIL); 1471 1472 ee = capture_engine(engine, compress); 1473 if (!ee) 1474 continue; 1475 1476 ee->hung = engine->mask & engine_mask; 1477 1478 gt->simulated |= ee->simulated; 1479 if (ee->simulated) { 1480 kfree(ee); 1481 continue; 1482 } 1483 1484 ee->next = gt->engine; 1485 gt->engine = ee; 1486 } 1487 } 1488 1489 static struct intel_uc_coredump * 1490 gt_record_uc(struct intel_gt_coredump *gt, 1491 struct i915_vma_compress *compress) 1492 { 1493 const struct intel_uc *uc = >->_gt->uc; 1494 struct intel_uc_coredump *error_uc; 1495 1496 error_uc = kzalloc(sizeof(*error_uc), ALLOW_FAIL); 1497 if (!error_uc) 1498 return NULL; 1499 1500 memcpy(&error_uc->guc_fw, &uc->guc.fw, sizeof(uc->guc.fw)); 1501 memcpy(&error_uc->huc_fw, &uc->huc.fw, sizeof(uc->huc.fw)); 1502 1503 /* Non-default firmware paths will be specified by the modparam. 1504 * As modparams are generally accesible from the userspace make 1505 * explicit copies of the firmware paths. 1506 */ 1507 error_uc->guc_fw.path = kstrdup(uc->guc.fw.path, ALLOW_FAIL); 1508 error_uc->huc_fw.path = kstrdup(uc->huc.fw.path, ALLOW_FAIL); 1509 error_uc->guc_log = 1510 i915_vma_coredump_create(gt->_gt, 1511 uc->guc.log.vma, "GuC log buffer", 1512 compress); 1513 1514 return error_uc; 1515 } 1516 1517 /* Capture all registers which don't fit into another category. */ 1518 static void gt_record_regs(struct intel_gt_coredump *gt) 1519 { 1520 struct intel_uncore *uncore = gt->_gt->uncore; 1521 struct drm_i915_private *i915 = uncore->i915; 1522 int i; 1523 1524 /* 1525 * General organization 1526 * 1. Registers specific to a single generation 1527 * 2. Registers which belong to multiple generations 1528 * 3. Feature specific registers. 1529 * 4. Everything else 1530 * Please try to follow the order. 1531 */ 1532 1533 /* 1: Registers specific to a single generation */ 1534 if (IS_VALLEYVIEW(i915)) { 1535 gt->gtier[0] = intel_uncore_read(uncore, GTIER); 1536 gt->ier = intel_uncore_read(uncore, VLV_IER); 1537 gt->forcewake = intel_uncore_read_fw(uncore, FORCEWAKE_VLV); 1538 } 1539 1540 if (IS_GEN(i915, 7)) 1541 gt->err_int = intel_uncore_read(uncore, GEN7_ERR_INT); 1542 1543 if (INTEL_GEN(i915) >= 12) { 1544 gt->fault_data0 = intel_uncore_read(uncore, 1545 GEN12_FAULT_TLB_DATA0); 1546 gt->fault_data1 = intel_uncore_read(uncore, 1547 GEN12_FAULT_TLB_DATA1); 1548 } else if (INTEL_GEN(i915) >= 8) { 1549 gt->fault_data0 = intel_uncore_read(uncore, 1550 GEN8_FAULT_TLB_DATA0); 1551 gt->fault_data1 = intel_uncore_read(uncore, 1552 GEN8_FAULT_TLB_DATA1); 1553 } 1554 1555 if (IS_GEN(i915, 6)) { 1556 gt->forcewake = intel_uncore_read_fw(uncore, FORCEWAKE); 1557 gt->gab_ctl = intel_uncore_read(uncore, GAB_CTL); 1558 gt->gfx_mode = intel_uncore_read(uncore, GFX_MODE); 1559 } 1560 1561 /* 2: Registers which belong to multiple generations */ 1562 if (INTEL_GEN(i915) >= 7) 1563 gt->forcewake = intel_uncore_read_fw(uncore, FORCEWAKE_MT); 1564 1565 if (INTEL_GEN(i915) >= 6) { 1566 gt->derrmr = intel_uncore_read(uncore, DERRMR); 1567 if (INTEL_GEN(i915) < 12) { 1568 gt->error = intel_uncore_read(uncore, ERROR_GEN6); 1569 gt->done_reg = intel_uncore_read(uncore, DONE_REG); 1570 } 1571 } 1572 1573 /* 3: Feature specific registers */ 1574 if (IS_GEN_RANGE(i915, 6, 7)) { 1575 gt->gam_ecochk = intel_uncore_read(uncore, GAM_ECOCHK); 1576 gt->gac_eco = intel_uncore_read(uncore, GAC_ECO_BITS); 1577 } 1578 1579 if (IS_GEN_RANGE(i915, 8, 11)) 1580 gt->gtt_cache = intel_uncore_read(uncore, HSW_GTT_CACHE_EN); 1581 1582 if (IS_GEN(i915, 12)) 1583 gt->aux_err = intel_uncore_read(uncore, GEN12_AUX_ERR_DBG); 1584 1585 if (INTEL_GEN(i915) >= 12) { 1586 for (i = 0; i < GEN12_SFC_DONE_MAX; i++) { 1587 gt->sfc_done[i] = 1588 intel_uncore_read(uncore, GEN12_SFC_DONE(i)); 1589 } 1590 1591 gt->gam_done = intel_uncore_read(uncore, GEN12_GAM_DONE); 1592 } 1593 1594 /* 4: Everything else */ 1595 if (INTEL_GEN(i915) >= 11) { 1596 gt->ier = intel_uncore_read(uncore, GEN8_DE_MISC_IER); 1597 gt->gtier[0] = 1598 intel_uncore_read(uncore, 1599 GEN11_RENDER_COPY_INTR_ENABLE); 1600 gt->gtier[1] = 1601 intel_uncore_read(uncore, GEN11_VCS_VECS_INTR_ENABLE); 1602 gt->gtier[2] = 1603 intel_uncore_read(uncore, GEN11_GUC_SG_INTR_ENABLE); 1604 gt->gtier[3] = 1605 intel_uncore_read(uncore, 1606 GEN11_GPM_WGBOXPERF_INTR_ENABLE); 1607 gt->gtier[4] = 1608 intel_uncore_read(uncore, 1609 GEN11_CRYPTO_RSVD_INTR_ENABLE); 1610 gt->gtier[5] = 1611 intel_uncore_read(uncore, 1612 GEN11_GUNIT_CSME_INTR_ENABLE); 1613 gt->ngtier = 6; 1614 } else if (INTEL_GEN(i915) >= 8) { 1615 gt->ier = intel_uncore_read(uncore, GEN8_DE_MISC_IER); 1616 for (i = 0; i < 4; i++) 1617 gt->gtier[i] = 1618 intel_uncore_read(uncore, GEN8_GT_IER(i)); 1619 gt->ngtier = 4; 1620 } else if (HAS_PCH_SPLIT(i915)) { 1621 gt->ier = intel_uncore_read(uncore, DEIER); 1622 gt->gtier[0] = intel_uncore_read(uncore, GTIER); 1623 gt->ngtier = 1; 1624 } else if (IS_GEN(i915, 2)) { 1625 gt->ier = intel_uncore_read16(uncore, GEN2_IER); 1626 } else if (!IS_VALLEYVIEW(i915)) { 1627 gt->ier = intel_uncore_read(uncore, GEN2_IER); 1628 } 1629 gt->eir = intel_uncore_read(uncore, EIR); 1630 gt->pgtbl_er = intel_uncore_read(uncore, PGTBL_ER); 1631 } 1632 1633 static void gt_record_info(struct intel_gt_coredump *gt) 1634 { 1635 memcpy(>->info, >->_gt->info, sizeof(struct intel_gt_info)); 1636 } 1637 1638 /* 1639 * Generate a semi-unique error code. The code is not meant to have meaning, The 1640 * code's only purpose is to try to prevent false duplicated bug reports by 1641 * grossly estimating a GPU error state. 1642 * 1643 * TODO Ideally, hashing the batchbuffer would be a very nice way to determine 1644 * the hang if we could strip the GTT offset information from it. 1645 * 1646 * It's only a small step better than a random number in its current form. 1647 */ 1648 static u32 generate_ecode(const struct intel_engine_coredump *ee) 1649 { 1650 /* 1651 * IPEHR would be an ideal way to detect errors, as it's the gross 1652 * measure of "the command that hung." However, has some very common 1653 * synchronization commands which almost always appear in the case 1654 * strictly a client bug. Use instdone to differentiate those some. 1655 */ 1656 return ee ? ee->ipehr ^ ee->instdone.instdone : 0; 1657 } 1658 1659 static const char *error_msg(struct i915_gpu_coredump *error) 1660 { 1661 struct intel_engine_coredump *first = NULL; 1662 unsigned int hung_classes = 0; 1663 struct intel_gt_coredump *gt; 1664 int len; 1665 1666 for (gt = error->gt; gt; gt = gt->next) { 1667 struct intel_engine_coredump *cs; 1668 1669 for (cs = gt->engine; cs; cs = cs->next) { 1670 if (cs->hung) { 1671 hung_classes |= BIT(cs->engine->uabi_class); 1672 if (!first) 1673 first = cs; 1674 } 1675 } 1676 } 1677 1678 len = scnprintf(error->error_msg, sizeof(error->error_msg), 1679 "GPU HANG: ecode %d:%x:%08x", 1680 INTEL_GEN(error->i915), hung_classes, 1681 generate_ecode(first)); 1682 if (first && first->context.pid) { 1683 /* Just show the first executing process, more is confusing */ 1684 len += scnprintf(error->error_msg + len, 1685 sizeof(error->error_msg) - len, 1686 ", in %s [%d]", 1687 first->context.comm, first->context.pid); 1688 } 1689 1690 return error->error_msg; 1691 } 1692 1693 static void capture_gen(struct i915_gpu_coredump *error) 1694 { 1695 struct drm_i915_private *i915 = error->i915; 1696 1697 error->wakelock = atomic_read(&i915->runtime_pm.wakeref_count); 1698 error->suspended = i915->runtime_pm.suspended; 1699 1700 error->iommu = -1; 1701 #ifdef CONFIG_INTEL_IOMMU 1702 error->iommu = intel_iommu_gfx_mapped; 1703 #endif 1704 error->reset_count = i915_reset_count(&i915->gpu_error); 1705 error->suspend_count = i915->suspend_count; 1706 1707 i915_params_copy(&error->params, &i915->params); 1708 memcpy(&error->device_info, 1709 INTEL_INFO(i915), 1710 sizeof(error->device_info)); 1711 memcpy(&error->runtime_info, 1712 RUNTIME_INFO(i915), 1713 sizeof(error->runtime_info)); 1714 error->driver_caps = i915->caps; 1715 } 1716 1717 struct i915_gpu_coredump * 1718 i915_gpu_coredump_alloc(struct drm_i915_private *i915, gfp_t gfp) 1719 { 1720 struct i915_gpu_coredump *error; 1721 1722 if (!i915->params.error_capture) 1723 return NULL; 1724 1725 error = kzalloc(sizeof(*error), gfp); 1726 if (!error) 1727 return NULL; 1728 1729 kref_init(&error->ref); 1730 error->i915 = i915; 1731 1732 error->time = ktime_get_real(); 1733 error->boottime = ktime_get_boottime(); 1734 error->uptime = ktime_sub(ktime_get(), i915->gt.last_init_time); 1735 error->capture = jiffies; 1736 1737 capture_gen(error); 1738 1739 return error; 1740 } 1741 1742 #define DAY_AS_SECONDS(x) (24 * 60 * 60 * (x)) 1743 1744 struct intel_gt_coredump * 1745 intel_gt_coredump_alloc(struct intel_gt *gt, gfp_t gfp) 1746 { 1747 struct intel_gt_coredump *gc; 1748 1749 gc = kzalloc(sizeof(*gc), gfp); 1750 if (!gc) 1751 return NULL; 1752 1753 gc->_gt = gt; 1754 gc->awake = intel_gt_pm_is_awake(gt); 1755 1756 gt_record_regs(gc); 1757 gt_record_fences(gc); 1758 1759 return gc; 1760 } 1761 1762 struct i915_vma_compress * 1763 i915_vma_capture_prepare(struct intel_gt_coredump *gt) 1764 { 1765 struct i915_vma_compress *compress; 1766 1767 compress = kmalloc(sizeof(*compress), ALLOW_FAIL); 1768 if (!compress) 1769 return NULL; 1770 1771 if (!compress_init(compress)) { 1772 kfree(compress); 1773 return NULL; 1774 } 1775 1776 return compress; 1777 } 1778 1779 void i915_vma_capture_finish(struct intel_gt_coredump *gt, 1780 struct i915_vma_compress *compress) 1781 { 1782 if (!compress) 1783 return; 1784 1785 compress_fini(compress); 1786 kfree(compress); 1787 } 1788 1789 struct i915_gpu_coredump * 1790 i915_gpu_coredump(struct intel_gt *gt, intel_engine_mask_t engine_mask) 1791 { 1792 struct drm_i915_private *i915 = gt->i915; 1793 struct i915_gpu_coredump *error; 1794 1795 /* Check if GPU capture has been disabled */ 1796 error = READ_ONCE(i915->gpu_error.first_error); 1797 if (IS_ERR(error)) 1798 return error; 1799 1800 error = i915_gpu_coredump_alloc(i915, ALLOW_FAIL); 1801 if (!error) 1802 return ERR_PTR(-ENOMEM); 1803 1804 error->gt = intel_gt_coredump_alloc(gt, ALLOW_FAIL); 1805 if (error->gt) { 1806 struct i915_vma_compress *compress; 1807 1808 compress = i915_vma_capture_prepare(error->gt); 1809 if (!compress) { 1810 kfree(error->gt); 1811 kfree(error); 1812 return ERR_PTR(-ENOMEM); 1813 } 1814 1815 gt_record_info(error->gt); 1816 gt_record_engines(error->gt, engine_mask, compress); 1817 1818 if (INTEL_INFO(i915)->has_gt_uc) 1819 error->gt->uc = gt_record_uc(error->gt, compress); 1820 1821 i915_vma_capture_finish(error->gt, compress); 1822 1823 error->simulated |= error->gt->simulated; 1824 } 1825 1826 error->overlay = intel_overlay_capture_error_state(i915); 1827 error->display = intel_display_capture_error_state(i915); 1828 1829 return error; 1830 } 1831 1832 void i915_error_state_store(struct i915_gpu_coredump *error) 1833 { 1834 struct drm_i915_private *i915; 1835 static bool warned; 1836 1837 if (IS_ERR_OR_NULL(error)) 1838 return; 1839 1840 i915 = error->i915; 1841 drm_info(&i915->drm, "%s\n", error_msg(error)); 1842 1843 if (error->simulated || 1844 cmpxchg(&i915->gpu_error.first_error, NULL, error)) 1845 return; 1846 1847 i915_gpu_coredump_get(error); 1848 1849 if (!xchg(&warned, true) && 1850 ktime_get_real_seconds() - DRIVER_TIMESTAMP < DAY_AS_SECONDS(180)) { 1851 pr_info("GPU hangs can indicate a bug anywhere in the entire gfx stack, including userspace.\n"); 1852 pr_info("Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/intel/issues/new.\n"); 1853 pr_info("Please see https://gitlab.freedesktop.org/drm/intel/-/wikis/How-to-file-i915-bugs for details.\n"); 1854 pr_info("drm/i915 developers can then reassign to the right component if it's not a kernel issue.\n"); 1855 pr_info("The GPU crash dump is required to analyze GPU hangs, so please always attach it.\n"); 1856 pr_info("GPU crash dump saved to /sys/class/drm/card%d/error\n", 1857 i915->drm.primary->index); 1858 } 1859 } 1860 1861 /** 1862 * i915_capture_error_state - capture an error record for later analysis 1863 * @gt: intel_gt which originated the hang 1864 * @engine_mask: hung engines 1865 * 1866 * 1867 * Should be called when an error is detected (either a hang or an error 1868 * interrupt) to capture error state from the time of the error. Fills 1869 * out a structure which becomes available in debugfs for user level tools 1870 * to pick up. 1871 */ 1872 void i915_capture_error_state(struct intel_gt *gt, 1873 intel_engine_mask_t engine_mask) 1874 { 1875 struct i915_gpu_coredump *error; 1876 1877 error = i915_gpu_coredump(gt, engine_mask); 1878 if (IS_ERR(error)) { 1879 cmpxchg(>->i915->gpu_error.first_error, NULL, error); 1880 return; 1881 } 1882 1883 i915_error_state_store(error); 1884 i915_gpu_coredump_put(error); 1885 } 1886 1887 struct i915_gpu_coredump * 1888 i915_first_error_state(struct drm_i915_private *i915) 1889 { 1890 struct i915_gpu_coredump *error; 1891 1892 spin_lock_irq(&i915->gpu_error.lock); 1893 error = i915->gpu_error.first_error; 1894 if (!IS_ERR_OR_NULL(error)) 1895 i915_gpu_coredump_get(error); 1896 spin_unlock_irq(&i915->gpu_error.lock); 1897 1898 return error; 1899 } 1900 1901 void i915_reset_error_state(struct drm_i915_private *i915) 1902 { 1903 struct i915_gpu_coredump *error; 1904 1905 spin_lock_irq(&i915->gpu_error.lock); 1906 error = i915->gpu_error.first_error; 1907 if (error != ERR_PTR(-ENODEV)) /* if disabled, always disabled */ 1908 i915->gpu_error.first_error = NULL; 1909 spin_unlock_irq(&i915->gpu_error.lock); 1910 1911 if (!IS_ERR_OR_NULL(error)) 1912 i915_gpu_coredump_put(error); 1913 } 1914 1915 void i915_disable_error_state(struct drm_i915_private *i915, int err) 1916 { 1917 spin_lock_irq(&i915->gpu_error.lock); 1918 if (!i915->gpu_error.first_error) 1919 i915->gpu_error.first_error = ERR_PTR(err); 1920 spin_unlock_irq(&i915->gpu_error.lock); 1921 } 1922