1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Please try to maintain the following order within this file unless it makes
24  * sense to do otherwise. From top to bottom:
25  * 1. typedefs
26  * 2. #defines, and macros
27  * 3. structure definitions
28  * 4. function prototypes
29  *
30  * Within each section, please try to order by generation in ascending order,
31  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32  */
33 
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36 
37 #include <linux/io-mapping.h>
38 
39 #include "i915_gem_request.h"
40 
41 #define I915_FENCE_REG_NONE -1
42 #define I915_MAX_NUM_FENCES 32
43 /* 32 fences + sign bit for FENCE_REG_NONE */
44 #define I915_MAX_NUM_FENCE_BITS 6
45 
46 struct drm_i915_file_private;
47 struct drm_i915_fence_reg;
48 
49 typedef uint32_t gen6_pte_t;
50 typedef uint64_t gen8_pte_t;
51 typedef uint64_t gen8_pde_t;
52 typedef uint64_t gen8_ppgtt_pdpe_t;
53 typedef uint64_t gen8_ppgtt_pml4e_t;
54 
55 #define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
56 
57 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
58 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
59 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
60 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
61 #define GEN6_PTE_CACHE_LLC		(2 << 1)
62 #define GEN6_PTE_UNCACHED		(1 << 1)
63 #define GEN6_PTE_VALID			(1 << 0)
64 
65 #define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
66 #define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
67 #define I915_PDES			512
68 #define I915_PDE_MASK			(I915_PDES - 1)
69 #define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
70 
71 #define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
72 #define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
73 #define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
74 #define GEN6_PDE_SHIFT			22
75 #define GEN6_PDE_VALID			(1 << 0)
76 
77 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
78 
79 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
80 #define BYT_PTE_WRITEABLE		(1 << 1)
81 
82 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
83  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
84  */
85 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
86 					 (((bits) & 0x8) << (11 - 3)))
87 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
88 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
89 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
90 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
91 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
92 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
93 #define HSW_PTE_UNCACHED		(0)
94 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
95 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
96 
97 /* GEN8 legacy style address is defined as a 3 level page table:
98  * 31:30 | 29:21 | 20:12 |  11:0
99  * PDPE  |  PDE  |  PTE  | offset
100  * The difference as compared to normal x86 3 level page table is the PDPEs are
101  * programmed via register.
102  *
103  * GEN8 48b legacy style address is defined as a 4 level page table:
104  * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
105  * PML4E | PDPE  |  PDE  |  PTE  | offset
106  */
107 #define GEN8_PML4ES_PER_PML4		512
108 #define GEN8_PML4E_SHIFT		39
109 #define GEN8_PML4E_MASK			(GEN8_PML4ES_PER_PML4 - 1)
110 #define GEN8_PDPE_SHIFT			30
111 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
112  * tables */
113 #define GEN8_PDPE_MASK			0x1ff
114 #define GEN8_PDE_SHIFT			21
115 #define GEN8_PDE_MASK			0x1ff
116 #define GEN8_PTE_SHIFT			12
117 #define GEN8_PTE_MASK			0x1ff
118 #define GEN8_LEGACY_PDPES		4
119 #define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
120 
121 #define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
122 				 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
123 
124 #define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
125 #define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
126 #define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
127 #define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
128 
129 #define CHV_PPAT_SNOOP			(1<<6)
130 #define GEN8_PPAT_AGE(x)		(x<<4)
131 #define GEN8_PPAT_LLCeLLC		(3<<2)
132 #define GEN8_PPAT_LLCELLC		(2<<2)
133 #define GEN8_PPAT_LLC			(1<<2)
134 #define GEN8_PPAT_WB			(3<<0)
135 #define GEN8_PPAT_WT			(2<<0)
136 #define GEN8_PPAT_WC			(1<<0)
137 #define GEN8_PPAT_UC			(0<<0)
138 #define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
139 #define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
140 
141 enum i915_ggtt_view_type {
142 	I915_GGTT_VIEW_NORMAL = 0,
143 	I915_GGTT_VIEW_ROTATED,
144 	I915_GGTT_VIEW_PARTIAL,
145 };
146 
147 struct intel_rotation_info {
148 	struct {
149 		/* tiles */
150 		unsigned int width, height, stride, offset;
151 	} plane[2];
152 };
153 
154 struct i915_ggtt_view {
155 	enum i915_ggtt_view_type type;
156 
157 	union {
158 		struct {
159 			u64 offset;
160 			unsigned int size;
161 		} partial;
162 		struct intel_rotation_info rotated;
163 	} params;
164 };
165 
166 extern const struct i915_ggtt_view i915_ggtt_view_normal;
167 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
168 
169 enum i915_cache_level;
170 
171 /**
172  * A VMA represents a GEM BO that is bound into an address space. Therefore, a
173  * VMA's presence cannot be guaranteed before binding, or after unbinding the
174  * object into/from the address space.
175  *
176  * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
177  * will always be <= an objects lifetime. So object refcounting should cover us.
178  */
179 struct i915_vma {
180 	struct drm_mm_node node;
181 	struct drm_i915_gem_object *obj;
182 	struct i915_address_space *vm;
183 	struct drm_i915_fence_reg *fence;
184 	struct sg_table *pages;
185 	void __iomem *iomap;
186 	u64 size;
187 	u64 display_alignment;
188 
189 	unsigned int flags;
190 	/**
191 	 * How many users have pinned this object in GTT space. The following
192 	 * users can each hold at most one reference: pwrite/pread, execbuffer
193 	 * (objects are not allowed multiple times for the same batchbuffer),
194 	 * and the framebuffer code. When switching/pageflipping, the
195 	 * framebuffer code has at most two buffers pinned per crtc.
196 	 *
197 	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
198 	 * bits with absolutely no headroom. So use 4 bits.
199 	 */
200 #define I915_VMA_PIN_MASK 0xf
201 #define I915_VMA_PIN_OVERFLOW	BIT(5)
202 
203 	/** Flags and address space this VMA is bound to */
204 #define I915_VMA_GLOBAL_BIND	BIT(6)
205 #define I915_VMA_LOCAL_BIND	BIT(7)
206 #define I915_VMA_BIND_MASK (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND | I915_VMA_PIN_OVERFLOW)
207 
208 #define I915_VMA_GGTT		BIT(8)
209 #define I915_VMA_CAN_FENCE	BIT(9)
210 #define I915_VMA_CLOSED		BIT(10)
211 
212 	unsigned int active;
213 	struct i915_gem_active last_read[I915_NUM_ENGINES];
214 	struct i915_gem_active last_fence;
215 
216 	/**
217 	 * Support different GGTT views into the same object.
218 	 * This means there can be multiple VMA mappings per object and per VM.
219 	 * i915_ggtt_view_type is used to distinguish between those entries.
220 	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
221 	 * assumed in GEM functions which take no ggtt view parameter.
222 	 */
223 	struct i915_ggtt_view ggtt_view;
224 
225 	/** This object's place on the active/inactive lists */
226 	struct list_head vm_link;
227 
228 	struct list_head obj_link; /* Link in the object's VMA list */
229 
230 	/** This vma's place in the batchbuffer or on the eviction list */
231 	struct list_head exec_list;
232 
233 	/**
234 	 * Used for performing relocations during execbuffer insertion.
235 	 */
236 	struct hlist_node exec_node;
237 	unsigned long exec_handle;
238 	struct drm_i915_gem_exec_object2 *exec_entry;
239 };
240 
241 struct i915_vma *
242 i915_vma_create(struct drm_i915_gem_object *obj,
243 		struct i915_address_space *vm,
244 		const struct i915_ggtt_view *view);
245 void i915_vma_unpin_and_release(struct i915_vma **p_vma);
246 
247 static inline bool i915_vma_is_ggtt(const struct i915_vma *vma)
248 {
249 	return vma->flags & I915_VMA_GGTT;
250 }
251 
252 static inline bool i915_vma_is_map_and_fenceable(const struct i915_vma *vma)
253 {
254 	return vma->flags & I915_VMA_CAN_FENCE;
255 }
256 
257 static inline bool i915_vma_is_closed(const struct i915_vma *vma)
258 {
259 	return vma->flags & I915_VMA_CLOSED;
260 }
261 
262 static inline unsigned int i915_vma_get_active(const struct i915_vma *vma)
263 {
264 	return vma->active;
265 }
266 
267 static inline bool i915_vma_is_active(const struct i915_vma *vma)
268 {
269 	return i915_vma_get_active(vma);
270 }
271 
272 static inline void i915_vma_set_active(struct i915_vma *vma,
273 				       unsigned int engine)
274 {
275 	vma->active |= BIT(engine);
276 }
277 
278 static inline void i915_vma_clear_active(struct i915_vma *vma,
279 					 unsigned int engine)
280 {
281 	vma->active &= ~BIT(engine);
282 }
283 
284 static inline bool i915_vma_has_active_engine(const struct i915_vma *vma,
285 					      unsigned int engine)
286 {
287 	return vma->active & BIT(engine);
288 }
289 
290 static inline u32 i915_ggtt_offset(const struct i915_vma *vma)
291 {
292 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
293 	GEM_BUG_ON(!vma->node.allocated);
294 	GEM_BUG_ON(upper_32_bits(vma->node.start));
295 	GEM_BUG_ON(upper_32_bits(vma->node.start + vma->node.size - 1));
296 	return lower_32_bits(vma->node.start);
297 }
298 
299 struct i915_page_dma {
300 	struct page *page;
301 	union {
302 		dma_addr_t daddr;
303 
304 		/* For gen6/gen7 only. This is the offset in the GGTT
305 		 * where the page directory entries for PPGTT begin
306 		 */
307 		uint32_t ggtt_offset;
308 	};
309 };
310 
311 #define px_base(px) (&(px)->base)
312 #define px_page(px) (px_base(px)->page)
313 #define px_dma(px) (px_base(px)->daddr)
314 
315 struct i915_page_table {
316 	struct i915_page_dma base;
317 
318 	unsigned long *used_ptes;
319 };
320 
321 struct i915_page_directory {
322 	struct i915_page_dma base;
323 
324 	unsigned long *used_pdes;
325 	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
326 };
327 
328 struct i915_page_directory_pointer {
329 	struct i915_page_dma base;
330 
331 	unsigned long *used_pdpes;
332 	struct i915_page_directory **page_directory;
333 };
334 
335 struct i915_pml4 {
336 	struct i915_page_dma base;
337 
338 	DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
339 	struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
340 };
341 
342 struct i915_address_space {
343 	struct drm_mm mm;
344 	struct drm_device *dev;
345 	/* Every address space belongs to a struct file - except for the global
346 	 * GTT that is owned by the driver (and so @file is set to NULL). In
347 	 * principle, no information should leak from one context to another
348 	 * (or between files/processes etc) unless explicitly shared by the
349 	 * owner. Tracking the owner is important in order to free up per-file
350 	 * objects along with the file, to aide resource tracking, and to
351 	 * assign blame.
352 	 */
353 	struct drm_i915_file_private *file;
354 	struct list_head global_link;
355 	u64 start;		/* Start offset always 0 for dri2 */
356 	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
357 
358 	bool closed;
359 
360 	struct i915_page_dma scratch_page;
361 	struct i915_page_table *scratch_pt;
362 	struct i915_page_directory *scratch_pd;
363 	struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
364 
365 	/**
366 	 * List of objects currently involved in rendering.
367 	 *
368 	 * Includes buffers having the contents of their GPU caches
369 	 * flushed, not necessarily primitives. last_read_req
370 	 * represents when the rendering involved will be completed.
371 	 *
372 	 * A reference is held on the buffer while on this list.
373 	 */
374 	struct list_head active_list;
375 
376 	/**
377 	 * LRU list of objects which are not in the ringbuffer and
378 	 * are ready to unbind, but are still in the GTT.
379 	 *
380 	 * last_read_req is NULL while an object is in this list.
381 	 *
382 	 * A reference is not held on the buffer while on this list,
383 	 * as merely being GTT-bound shouldn't prevent its being
384 	 * freed, and we'll pull it off the list in the free path.
385 	 */
386 	struct list_head inactive_list;
387 
388 	/**
389 	 * List of vma that have been unbound.
390 	 *
391 	 * A reference is not held on the buffer while on this list.
392 	 */
393 	struct list_head unbound_list;
394 
395 	/* FIXME: Need a more generic return type */
396 	gen6_pte_t (*pte_encode)(dma_addr_t addr,
397 				 enum i915_cache_level level,
398 				 u32 flags); /* Create a valid PTE */
399 	/* flags for pte_encode */
400 #define PTE_READ_ONLY	(1<<0)
401 	int (*allocate_va_range)(struct i915_address_space *vm,
402 				 uint64_t start,
403 				 uint64_t length);
404 	void (*clear_range)(struct i915_address_space *vm,
405 			    uint64_t start,
406 			    uint64_t length);
407 	void (*insert_page)(struct i915_address_space *vm,
408 			    dma_addr_t addr,
409 			    uint64_t offset,
410 			    enum i915_cache_level cache_level,
411 			    u32 flags);
412 	void (*insert_entries)(struct i915_address_space *vm,
413 			       struct sg_table *st,
414 			       uint64_t start,
415 			       enum i915_cache_level cache_level, u32 flags);
416 	void (*cleanup)(struct i915_address_space *vm);
417 	/** Unmap an object from an address space. This usually consists of
418 	 * setting the valid PTE entries to a reserved scratch page. */
419 	void (*unbind_vma)(struct i915_vma *vma);
420 	/* Map an object into an address space with the given cache flags. */
421 	int (*bind_vma)(struct i915_vma *vma,
422 			enum i915_cache_level cache_level,
423 			u32 flags);
424 };
425 
426 #define i915_is_ggtt(V) (!(V)->file)
427 
428 /* The Graphics Translation Table is the way in which GEN hardware translates a
429  * Graphics Virtual Address into a Physical Address. In addition to the normal
430  * collateral associated with any va->pa translations GEN hardware also has a
431  * portion of the GTT which can be mapped by the CPU and remain both coherent
432  * and correct (in cases like swizzling). That region is referred to as GMADR in
433  * the spec.
434  */
435 struct i915_ggtt {
436 	struct i915_address_space base;
437 	struct io_mapping mappable;	/* Mapping to our CPU mappable region */
438 
439 	size_t stolen_size;		/* Total size of stolen memory */
440 	size_t stolen_usable_size;	/* Total size minus BIOS reserved */
441 	size_t stolen_reserved_base;
442 	size_t stolen_reserved_size;
443 	u64 mappable_end;		/* End offset that we can CPU map */
444 	phys_addr_t mappable_base;	/* PA of our GMADR */
445 
446 	/** "Graphics Stolen Memory" holds the global PTEs */
447 	void __iomem *gsm;
448 
449 	bool do_idle_maps;
450 
451 	int mtrr;
452 
453 	struct drm_mm_node error_capture;
454 };
455 
456 struct i915_hw_ppgtt {
457 	struct i915_address_space base;
458 	struct kref ref;
459 	struct drm_mm_node node;
460 	unsigned long pd_dirty_rings;
461 	union {
462 		struct i915_pml4 pml4;		/* GEN8+ & 48b PPGTT */
463 		struct i915_page_directory_pointer pdp;	/* GEN8+ */
464 		struct i915_page_directory pd;		/* GEN6-7 */
465 	};
466 
467 	gen6_pte_t __iomem *pd_addr;
468 
469 	int (*enable)(struct i915_hw_ppgtt *ppgtt);
470 	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
471 			 struct drm_i915_gem_request *req);
472 	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
473 };
474 
475 /*
476  * gen6_for_each_pde() iterates over every pde from start until start+length.
477  * If start and start+length are not perfectly divisible, the macro will round
478  * down and up as needed. Start=0 and length=2G effectively iterates over
479  * every PDE in the system. The macro modifies ALL its parameters except 'pd',
480  * so each of the other parameters should preferably be a simple variable, or
481  * at most an lvalue with no side-effects!
482  */
483 #define gen6_for_each_pde(pt, pd, start, length, iter)			\
484 	for (iter = gen6_pde_index(start);				\
485 	     length > 0 && iter < I915_PDES &&				\
486 		(pt = (pd)->page_table[iter], true);			\
487 	     ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT);		\
488 		    temp = min(temp - start, length);			\
489 		    start += temp, length -= temp; }), ++iter)
490 
491 #define gen6_for_all_pdes(pt, pd, iter)					\
492 	for (iter = 0;							\
493 	     iter < I915_PDES &&					\
494 		(pt = (pd)->page_table[iter], true);			\
495 	     ++iter)
496 
497 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
498 {
499 	const uint32_t mask = NUM_PTE(pde_shift) - 1;
500 
501 	return (address >> PAGE_SHIFT) & mask;
502 }
503 
504 /* Helper to counts the number of PTEs within the given length. This count
505  * does not cross a page table boundary, so the max value would be
506  * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
507 */
508 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
509 				      uint32_t pde_shift)
510 {
511 	const uint64_t mask = ~((1ULL << pde_shift) - 1);
512 	uint64_t end;
513 
514 	WARN_ON(length == 0);
515 	WARN_ON(offset_in_page(addr|length));
516 
517 	end = addr + length;
518 
519 	if ((addr & mask) != (end & mask))
520 		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
521 
522 	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
523 }
524 
525 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
526 {
527 	return (addr >> shift) & I915_PDE_MASK;
528 }
529 
530 static inline uint32_t gen6_pte_index(uint32_t addr)
531 {
532 	return i915_pte_index(addr, GEN6_PDE_SHIFT);
533 }
534 
535 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
536 {
537 	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
538 }
539 
540 static inline uint32_t gen6_pde_index(uint32_t addr)
541 {
542 	return i915_pde_index(addr, GEN6_PDE_SHIFT);
543 }
544 
545 /* Equivalent to the gen6 version, For each pde iterates over every pde
546  * between from start until start + length. On gen8+ it simply iterates
547  * over every page directory entry in a page directory.
548  */
549 #define gen8_for_each_pde(pt, pd, start, length, iter)			\
550 	for (iter = gen8_pde_index(start);				\
551 	     length > 0 && iter < I915_PDES &&				\
552 		(pt = (pd)->page_table[iter], true);			\
553 	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);		\
554 		    temp = min(temp - start, length);			\
555 		    start += temp, length -= temp; }), ++iter)
556 
557 #define gen8_for_each_pdpe(pd, pdp, start, length, iter)		\
558 	for (iter = gen8_pdpe_index(start);				\
559 	     length > 0 && iter < I915_PDPES_PER_PDP(dev) &&		\
560 		(pd = (pdp)->page_directory[iter], true);		\
561 	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);	\
562 		    temp = min(temp - start, length);			\
563 		    start += temp, length -= temp; }), ++iter)
564 
565 #define gen8_for_each_pml4e(pdp, pml4, start, length, iter)		\
566 	for (iter = gen8_pml4e_index(start);				\
567 	     length > 0 && iter < GEN8_PML4ES_PER_PML4 &&		\
568 		(pdp = (pml4)->pdps[iter], true);			\
569 	     ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);	\
570 		    temp = min(temp - start, length);			\
571 		    start += temp, length -= temp; }), ++iter)
572 
573 static inline uint32_t gen8_pte_index(uint64_t address)
574 {
575 	return i915_pte_index(address, GEN8_PDE_SHIFT);
576 }
577 
578 static inline uint32_t gen8_pde_index(uint64_t address)
579 {
580 	return i915_pde_index(address, GEN8_PDE_SHIFT);
581 }
582 
583 static inline uint32_t gen8_pdpe_index(uint64_t address)
584 {
585 	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
586 }
587 
588 static inline uint32_t gen8_pml4e_index(uint64_t address)
589 {
590 	return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
591 }
592 
593 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
594 {
595 	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
596 }
597 
598 static inline dma_addr_t
599 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
600 {
601 	return test_bit(n, ppgtt->pdp.used_pdpes) ?
602 		px_dma(ppgtt->pdp.page_directory[n]) :
603 		px_dma(ppgtt->base.scratch_pd);
604 }
605 
606 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
607 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
608 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
609 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv);
610 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv);
611 
612 int i915_ppgtt_init_hw(struct drm_device *dev);
613 void i915_ppgtt_release(struct kref *kref);
614 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv,
615 					struct drm_i915_file_private *fpriv);
616 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
617 {
618 	if (ppgtt)
619 		kref_get(&ppgtt->ref);
620 }
621 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
622 {
623 	if (ppgtt)
624 		kref_put(&ppgtt->ref, i915_ppgtt_release);
625 }
626 
627 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
628 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
629 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
630 
631 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
632 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
633 
634 /* Flags used by pin/bind&friends. */
635 #define PIN_NONBLOCK		BIT(0)
636 #define PIN_MAPPABLE		BIT(1)
637 #define PIN_ZONE_4G		BIT(2)
638 #define PIN_NONFAULT		BIT(3)
639 
640 #define PIN_MBZ			BIT(5) /* I915_VMA_PIN_OVERFLOW */
641 #define PIN_GLOBAL		BIT(6) /* I915_VMA_GLOBAL_BIND */
642 #define PIN_USER		BIT(7) /* I915_VMA_LOCAL_BIND */
643 #define PIN_UPDATE		BIT(8)
644 
645 #define PIN_HIGH		BIT(9)
646 #define PIN_OFFSET_BIAS		BIT(10)
647 #define PIN_OFFSET_FIXED	BIT(11)
648 #define PIN_OFFSET_MASK		(~4095)
649 
650 int __i915_vma_do_pin(struct i915_vma *vma,
651 		      u64 size, u64 alignment, u64 flags);
652 static inline int __must_check
653 i915_vma_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
654 {
655 	BUILD_BUG_ON(PIN_MBZ != I915_VMA_PIN_OVERFLOW);
656 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
657 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
658 
659 	/* Pin early to prevent the shrinker/eviction logic from destroying
660 	 * our vma as we insert and bind.
661 	 */
662 	if (likely(((++vma->flags ^ flags) & I915_VMA_BIND_MASK) == 0))
663 		return 0;
664 
665 	return __i915_vma_do_pin(vma, size, alignment, flags);
666 }
667 
668 static inline int i915_vma_pin_count(const struct i915_vma *vma)
669 {
670 	return vma->flags & I915_VMA_PIN_MASK;
671 }
672 
673 static inline bool i915_vma_is_pinned(const struct i915_vma *vma)
674 {
675 	return i915_vma_pin_count(vma);
676 }
677 
678 static inline void __i915_vma_pin(struct i915_vma *vma)
679 {
680 	vma->flags++;
681 	GEM_BUG_ON(vma->flags & I915_VMA_PIN_OVERFLOW);
682 }
683 
684 static inline void __i915_vma_unpin(struct i915_vma *vma)
685 {
686 	GEM_BUG_ON(!i915_vma_is_pinned(vma));
687 	vma->flags--;
688 }
689 
690 static inline void i915_vma_unpin(struct i915_vma *vma)
691 {
692 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
693 	__i915_vma_unpin(vma);
694 }
695 
696 /**
697  * i915_vma_pin_iomap - calls ioremap_wc to map the GGTT VMA via the aperture
698  * @vma: VMA to iomap
699  *
700  * The passed in VMA has to be pinned in the global GTT mappable region.
701  * An extra pinning of the VMA is acquired for the return iomapping,
702  * the caller must call i915_vma_unpin_iomap to relinquish the pinning
703  * after the iomapping is no longer required.
704  *
705  * Callers must hold the struct_mutex.
706  *
707  * Returns a valid iomapped pointer or ERR_PTR.
708  */
709 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma);
710 #define IO_ERR_PTR(x) ((void __iomem *)ERR_PTR(x))
711 
712 /**
713  * i915_vma_unpin_iomap - unpins the mapping returned from i915_vma_iomap
714  * @vma: VMA to unpin
715  *
716  * Unpins the previously iomapped VMA from i915_vma_pin_iomap().
717  *
718  * Callers must hold the struct_mutex. This function is only valid to be
719  * called on a VMA previously iomapped by the caller with i915_vma_pin_iomap().
720  */
721 static inline void i915_vma_unpin_iomap(struct i915_vma *vma)
722 {
723 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
724 	GEM_BUG_ON(vma->iomap == NULL);
725 	i915_vma_unpin(vma);
726 }
727 
728 static inline struct page *i915_vma_first_page(struct i915_vma *vma)
729 {
730 	GEM_BUG_ON(!vma->pages);
731 	return sg_page(vma->pages->sgl);
732 }
733 
734 #endif
735