xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem_gtt.h (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Please try to maintain the following order within this file unless it makes
24  * sense to do otherwise. From top to bottom:
25  * 1. typedefs
26  * 2. #defines, and macros
27  * 3. structure definitions
28  * 4. function prototypes
29  *
30  * Within each section, please try to order by generation in ascending order,
31  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32  */
33 
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36 
37 struct drm_i915_file_private;
38 
39 typedef uint32_t gen6_pte_t;
40 typedef uint64_t gen8_pte_t;
41 typedef uint64_t gen8_pde_t;
42 
43 #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44 
45 
46 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
48 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
49 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
50 #define GEN6_PTE_CACHE_LLC		(2 << 1)
51 #define GEN6_PTE_UNCACHED		(1 << 1)
52 #define GEN6_PTE_VALID			(1 << 0)
53 
54 #define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
55 #define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
56 #define I915_PDES			512
57 #define I915_PDE_MASK			(I915_PDES - 1)
58 #define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
59 
60 #define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
61 #define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
62 #define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
63 #define GEN6_PDE_SHIFT			22
64 #define GEN6_PDE_VALID			(1 << 0)
65 
66 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
67 
68 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
69 #define BYT_PTE_WRITEABLE		(1 << 1)
70 
71 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
72  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
73  */
74 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
75 					 (((bits) & 0x8) << (11 - 3)))
76 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
77 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
78 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
79 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
80 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
81 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
82 #define HSW_PTE_UNCACHED		(0)
83 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
84 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
85 
86 /* GEN8 legacy style address is defined as a 3 level page table:
87  * 31:30 | 29:21 | 20:12 |  11:0
88  * PDPE  |  PDE  |  PTE  | offset
89  * The difference as compared to normal x86 3 level page table is the PDPEs are
90  * programmed via register.
91  */
92 #define GEN8_PDPE_SHIFT			30
93 #define GEN8_PDPE_MASK			0x3
94 #define GEN8_PDE_SHIFT			21
95 #define GEN8_PDE_MASK			0x1ff
96 #define GEN8_PTE_SHIFT			12
97 #define GEN8_PTE_MASK			0x1ff
98 #define GEN8_LEGACY_PDPES		4
99 #define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
100 
101 #define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
102 #define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
103 #define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
104 #define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
105 
106 #define CHV_PPAT_SNOOP			(1<<6)
107 #define GEN8_PPAT_AGE(x)		(x<<4)
108 #define GEN8_PPAT_LLCeLLC		(3<<2)
109 #define GEN8_PPAT_LLCELLC		(2<<2)
110 #define GEN8_PPAT_LLC			(1<<2)
111 #define GEN8_PPAT_WB			(3<<0)
112 #define GEN8_PPAT_WT			(2<<0)
113 #define GEN8_PPAT_WC			(1<<0)
114 #define GEN8_PPAT_UC			(0<<0)
115 #define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
116 #define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
117 
118 enum i915_ggtt_view_type {
119 	I915_GGTT_VIEW_NORMAL = 0,
120 	I915_GGTT_VIEW_ROTATED,
121 	I915_GGTT_VIEW_PARTIAL,
122 };
123 
124 struct intel_rotation_info {
125 	unsigned int height;
126 	unsigned int pitch;
127 	uint32_t pixel_format;
128 	uint64_t fb_modifier;
129 	unsigned int width_pages, height_pages;
130 	uint64_t size;
131 };
132 
133 struct i915_ggtt_view {
134 	enum i915_ggtt_view_type type;
135 
136 	union {
137 		struct {
138 			unsigned long offset;
139 			unsigned int size;
140 		} partial;
141 	} params;
142 
143 	struct sg_table *pages;
144 
145 	union {
146 		struct intel_rotation_info rotation_info;
147 	};
148 };
149 
150 extern const struct i915_ggtt_view i915_ggtt_view_normal;
151 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
152 
153 enum i915_cache_level;
154 
155 /**
156  * A VMA represents a GEM BO that is bound into an address space. Therefore, a
157  * VMA's presence cannot be guaranteed before binding, or after unbinding the
158  * object into/from the address space.
159  *
160  * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
161  * will always be <= an objects lifetime. So object refcounting should cover us.
162  */
163 struct i915_vma {
164 	struct drm_mm_node node;
165 	struct drm_i915_gem_object *obj;
166 	struct i915_address_space *vm;
167 
168 	/** Flags and address space this VMA is bound to */
169 #define GLOBAL_BIND	(1<<0)
170 #define LOCAL_BIND	(1<<1)
171 	unsigned int bound : 4;
172 
173 	/**
174 	 * Support different GGTT views into the same object.
175 	 * This means there can be multiple VMA mappings per object and per VM.
176 	 * i915_ggtt_view_type is used to distinguish between those entries.
177 	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
178 	 * assumed in GEM functions which take no ggtt view parameter.
179 	 */
180 	struct i915_ggtt_view ggtt_view;
181 
182 	/** This object's place on the active/inactive lists */
183 	struct list_head mm_list;
184 
185 	struct list_head vma_link; /* Link in the object's VMA list */
186 
187 	/** This vma's place in the batchbuffer or on the eviction list */
188 	struct list_head exec_list;
189 
190 	/**
191 	 * Used for performing relocations during execbuffer insertion.
192 	 */
193 	struct hlist_node exec_node;
194 	unsigned long exec_handle;
195 	struct drm_i915_gem_exec_object2 *exec_entry;
196 
197 	/**
198 	 * How many users have pinned this object in GTT space. The following
199 	 * users can each hold at most one reference: pwrite/pread, execbuffer
200 	 * (objects are not allowed multiple times for the same batchbuffer),
201 	 * and the framebuffer code. When switching/pageflipping, the
202 	 * framebuffer code has at most two buffers pinned per crtc.
203 	 *
204 	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
205 	 * bits with absolutely no headroom. So use 4 bits. */
206 	unsigned int pin_count:4;
207 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
208 };
209 
210 struct i915_page_dma {
211 	struct page *page;
212 	union {
213 		dma_addr_t daddr;
214 
215 		/* For gen6/gen7 only. This is the offset in the GGTT
216 		 * where the page directory entries for PPGTT begin
217 		 */
218 		uint32_t ggtt_offset;
219 	};
220 };
221 
222 #define px_base(px) (&(px)->base)
223 #define px_page(px) (px_base(px)->page)
224 #define px_dma(px) (px_base(px)->daddr)
225 
226 struct i915_page_scratch {
227 	struct i915_page_dma base;
228 };
229 
230 struct i915_page_table {
231 	struct i915_page_dma base;
232 
233 	unsigned long *used_ptes;
234 };
235 
236 struct i915_page_directory {
237 	struct i915_page_dma base;
238 
239 	unsigned long *used_pdes;
240 	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
241 };
242 
243 struct i915_page_directory_pointer {
244 	/* struct page *page; */
245 	DECLARE_BITMAP(used_pdpes, GEN8_LEGACY_PDPES);
246 	struct i915_page_directory *page_directory[GEN8_LEGACY_PDPES];
247 };
248 
249 struct i915_address_space {
250 	struct drm_mm mm;
251 	struct drm_device *dev;
252 	struct list_head global_link;
253 	u64 start;		/* Start offset always 0 for dri2 */
254 	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
255 
256 	struct i915_page_scratch *scratch_page;
257 	struct i915_page_table *scratch_pt;
258 	struct i915_page_directory *scratch_pd;
259 
260 	/**
261 	 * List of objects currently involved in rendering.
262 	 *
263 	 * Includes buffers having the contents of their GPU caches
264 	 * flushed, not necessarily primitives. last_read_req
265 	 * represents when the rendering involved will be completed.
266 	 *
267 	 * A reference is held on the buffer while on this list.
268 	 */
269 	struct list_head active_list;
270 
271 	/**
272 	 * LRU list of objects which are not in the ringbuffer and
273 	 * are ready to unbind, but are still in the GTT.
274 	 *
275 	 * last_read_req is NULL while an object is in this list.
276 	 *
277 	 * A reference is not held on the buffer while on this list,
278 	 * as merely being GTT-bound shouldn't prevent its being
279 	 * freed, and we'll pull it off the list in the free path.
280 	 */
281 	struct list_head inactive_list;
282 
283 	/* FIXME: Need a more generic return type */
284 	gen6_pte_t (*pte_encode)(dma_addr_t addr,
285 				 enum i915_cache_level level,
286 				 bool valid, u32 flags); /* Create a valid PTE */
287 	/* flags for pte_encode */
288 #define PTE_READ_ONLY	(1<<0)
289 	int (*allocate_va_range)(struct i915_address_space *vm,
290 				 uint64_t start,
291 				 uint64_t length);
292 	void (*clear_range)(struct i915_address_space *vm,
293 			    uint64_t start,
294 			    uint64_t length,
295 			    bool use_scratch);
296 	void (*insert_entries)(struct i915_address_space *vm,
297 			       struct sg_table *st,
298 			       uint64_t start,
299 			       enum i915_cache_level cache_level, u32 flags);
300 	void (*cleanup)(struct i915_address_space *vm);
301 	/** Unmap an object from an address space. This usually consists of
302 	 * setting the valid PTE entries to a reserved scratch page. */
303 	void (*unbind_vma)(struct i915_vma *vma);
304 	/* Map an object into an address space with the given cache flags. */
305 	int (*bind_vma)(struct i915_vma *vma,
306 			enum i915_cache_level cache_level,
307 			u32 flags);
308 };
309 
310 /* The Graphics Translation Table is the way in which GEN hardware translates a
311  * Graphics Virtual Address into a Physical Address. In addition to the normal
312  * collateral associated with any va->pa translations GEN hardware also has a
313  * portion of the GTT which can be mapped by the CPU and remain both coherent
314  * and correct (in cases like swizzling). That region is referred to as GMADR in
315  * the spec.
316  */
317 struct i915_gtt {
318 	struct i915_address_space base;
319 
320 	size_t stolen_size;		/* Total size of stolen memory */
321 	u64 mappable_end;		/* End offset that we can CPU map */
322 	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
323 	phys_addr_t mappable_base;	/* PA of our GMADR */
324 
325 	/** "Graphics Stolen Memory" holds the global PTEs */
326 	void __iomem *gsm;
327 
328 	bool do_idle_maps;
329 
330 	int mtrr;
331 
332 	/* global gtt ops */
333 	int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
334 			  size_t *stolen, phys_addr_t *mappable_base,
335 			  u64 *mappable_end);
336 };
337 
338 struct i915_hw_ppgtt {
339 	struct i915_address_space base;
340 	struct kref ref;
341 	struct drm_mm_node node;
342 	unsigned long pd_dirty_rings;
343 	union {
344 		struct i915_page_directory_pointer pdp;
345 		struct i915_page_directory pd;
346 	};
347 
348 	struct drm_i915_file_private *file_priv;
349 
350 	gen6_pte_t __iomem *pd_addr;
351 
352 	int (*enable)(struct i915_hw_ppgtt *ppgtt);
353 	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
354 			 struct drm_i915_gem_request *req);
355 	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
356 };
357 
358 /* For each pde iterates over every pde between from start until start + length.
359  * If start, and start+length are not perfectly divisible, the macro will round
360  * down, and up as needed. The macro modifies pde, start, and length. Dev is
361  * only used to differentiate shift values. Temp is temp.  On gen6/7, start = 0,
362  * and length = 2G effectively iterates over every PDE in the system.
363  *
364  * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
365  */
366 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
367 	for (iter = gen6_pde_index(start); \
368 	     pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
369 	     iter++, \
370 	     temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
371 	     temp = min_t(unsigned, temp, length), \
372 	     start += temp, length -= temp)
373 
374 #define gen6_for_all_pdes(pt, ppgtt, iter)  \
375 	for (iter = 0;		\
376 	     pt = ppgtt->pd.page_table[iter], iter < I915_PDES;	\
377 	     iter++)
378 
379 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
380 {
381 	const uint32_t mask = NUM_PTE(pde_shift) - 1;
382 
383 	return (address >> PAGE_SHIFT) & mask;
384 }
385 
386 /* Helper to counts the number of PTEs within the given length. This count
387  * does not cross a page table boundary, so the max value would be
388  * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
389 */
390 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
391 				      uint32_t pde_shift)
392 {
393 	const uint64_t mask = ~((1 << pde_shift) - 1);
394 	uint64_t end;
395 
396 	WARN_ON(length == 0);
397 	WARN_ON(offset_in_page(addr|length));
398 
399 	end = addr + length;
400 
401 	if ((addr & mask) != (end & mask))
402 		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
403 
404 	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
405 }
406 
407 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
408 {
409 	return (addr >> shift) & I915_PDE_MASK;
410 }
411 
412 static inline uint32_t gen6_pte_index(uint32_t addr)
413 {
414 	return i915_pte_index(addr, GEN6_PDE_SHIFT);
415 }
416 
417 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
418 {
419 	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
420 }
421 
422 static inline uint32_t gen6_pde_index(uint32_t addr)
423 {
424 	return i915_pde_index(addr, GEN6_PDE_SHIFT);
425 }
426 
427 /* Equivalent to the gen6 version, For each pde iterates over every pde
428  * between from start until start + length. On gen8+ it simply iterates
429  * over every page directory entry in a page directory.
430  */
431 #define gen8_for_each_pde(pt, pd, start, length, temp, iter)		\
432 	for (iter = gen8_pde_index(start); \
433 	     pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES;	\
434 	     iter++,				\
435 	     temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start,	\
436 	     temp = min(temp, length),					\
437 	     start += temp, length -= temp)
438 
439 #define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter)		\
440 	for (iter = gen8_pdpe_index(start);	\
441 	     pd = (pdp)->page_directory[iter], length > 0 && iter < GEN8_LEGACY_PDPES;	\
442 	     iter++,				\
443 	     temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start,	\
444 	     temp = min(temp, length),					\
445 	     start += temp, length -= temp)
446 
447 /* Clamp length to the next page_directory boundary */
448 static inline uint64_t gen8_clamp_pd(uint64_t start, uint64_t length)
449 {
450 	uint64_t next_pd = ALIGN(start + 1, 1 << GEN8_PDPE_SHIFT);
451 
452 	if (next_pd > (start + length))
453 		return length;
454 
455 	return next_pd - start;
456 }
457 
458 static inline uint32_t gen8_pte_index(uint64_t address)
459 {
460 	return i915_pte_index(address, GEN8_PDE_SHIFT);
461 }
462 
463 static inline uint32_t gen8_pde_index(uint64_t address)
464 {
465 	return i915_pde_index(address, GEN8_PDE_SHIFT);
466 }
467 
468 static inline uint32_t gen8_pdpe_index(uint64_t address)
469 {
470 	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
471 }
472 
473 static inline uint32_t gen8_pml4e_index(uint64_t address)
474 {
475 	WARN_ON(1); /* For 64B */
476 	return 0;
477 }
478 
479 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
480 {
481 	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
482 }
483 
484 static inline dma_addr_t
485 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
486 {
487 	return test_bit(n, ppgtt->pdp.used_pdpes) ?
488 		px_dma(ppgtt->pdp.page_directory[n]) :
489 		px_dma(ppgtt->base.scratch_pd);
490 }
491 
492 int i915_gem_gtt_init(struct drm_device *dev);
493 void i915_gem_init_global_gtt(struct drm_device *dev);
494 void i915_global_gtt_cleanup(struct drm_device *dev);
495 
496 
497 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
498 int i915_ppgtt_init_hw(struct drm_device *dev);
499 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
500 void i915_ppgtt_release(struct kref *kref);
501 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
502 					struct drm_i915_file_private *fpriv);
503 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
504 {
505 	if (ppgtt)
506 		kref_get(&ppgtt->ref);
507 }
508 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
509 {
510 	if (ppgtt)
511 		kref_put(&ppgtt->ref, i915_ppgtt_release);
512 }
513 
514 void i915_check_and_clear_faults(struct drm_device *dev);
515 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
516 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
517 
518 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
519 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
520 
521 static inline bool
522 i915_ggtt_view_equal(const struct i915_ggtt_view *a,
523                      const struct i915_ggtt_view *b)
524 {
525 	if (WARN_ON(!a || !b))
526 		return false;
527 
528 	if (a->type != b->type)
529 		return false;
530 	if (a->type == I915_GGTT_VIEW_PARTIAL)
531 		return !memcmp(&a->params, &b->params, sizeof(a->params));
532 	return true;
533 }
534 
535 size_t
536 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
537 		    const struct i915_ggtt_view *view);
538 
539 #endif
540