xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem_gtt.h (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Please try to maintain the following order within this file unless it makes
24  * sense to do otherwise. From top to bottom:
25  * 1. typedefs
26  * 2. #defines, and macros
27  * 3. structure definitions
28  * 4. function prototypes
29  *
30  * Within each section, please try to order by generation in ascending order,
31  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32  */
33 
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36 
37 #include <linux/io-mapping.h>
38 #include <linux/mm.h>
39 #include <linux/pagevec.h>
40 
41 #include "i915_gem_timeline.h"
42 
43 #include "i915_request.h"
44 #include "i915_selftest.h"
45 
46 #define I915_GTT_PAGE_SIZE_4K BIT(12)
47 #define I915_GTT_PAGE_SIZE_64K BIT(16)
48 #define I915_GTT_PAGE_SIZE_2M BIT(21)
49 
50 #define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K
51 #define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M
52 
53 #define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE
54 
55 #define I915_FENCE_REG_NONE -1
56 #define I915_MAX_NUM_FENCES 32
57 /* 32 fences + sign bit for FENCE_REG_NONE */
58 #define I915_MAX_NUM_FENCE_BITS 6
59 
60 struct drm_i915_file_private;
61 struct drm_i915_fence_reg;
62 
63 typedef u32 gen6_pte_t;
64 typedef u64 gen8_pte_t;
65 typedef u64 gen8_pde_t;
66 typedef u64 gen8_ppgtt_pdpe_t;
67 typedef u64 gen8_ppgtt_pml4e_t;
68 
69 #define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
70 
71 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
72 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
73 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
74 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
75 #define GEN6_PTE_CACHE_LLC		(2 << 1)
76 #define GEN6_PTE_UNCACHED		(1 << 1)
77 #define GEN6_PTE_VALID			(1 << 0)
78 
79 #define I915_PTES(pte_len)		((unsigned int)(PAGE_SIZE / (pte_len)))
80 #define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
81 #define I915_PDES			512
82 #define I915_PDE_MASK			(I915_PDES - 1)
83 #define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
84 
85 #define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
86 #define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
87 #define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
88 #define GEN6_PDE_SHIFT			22
89 #define GEN6_PDE_VALID			(1 << 0)
90 
91 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
92 
93 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
94 #define BYT_PTE_WRITEABLE		(1 << 1)
95 
96 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
97  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
98  */
99 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
100 					 (((bits) & 0x8) << (11 - 3)))
101 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
102 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
103 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
104 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
105 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
106 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
107 #define HSW_PTE_UNCACHED		(0)
108 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
109 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
110 
111 /* GEN8 32b style address is defined as a 3 level page table:
112  * 31:30 | 29:21 | 20:12 |  11:0
113  * PDPE  |  PDE  |  PTE  | offset
114  * The difference as compared to normal x86 3 level page table is the PDPEs are
115  * programmed via register.
116  */
117 #define GEN8_3LVL_PDPES			4
118 #define GEN8_PDE_SHIFT			21
119 #define GEN8_PDE_MASK			0x1ff
120 #define GEN8_PTE_SHIFT			12
121 #define GEN8_PTE_MASK			0x1ff
122 #define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
123 
124 /* GEN8 48b style address is defined as a 4 level page table:
125  * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
126  * PML4E | PDPE  |  PDE  |  PTE  | offset
127  */
128 #define GEN8_PML4ES_PER_PML4		512
129 #define GEN8_PML4E_SHIFT		39
130 #define GEN8_PML4E_MASK			(GEN8_PML4ES_PER_PML4 - 1)
131 #define GEN8_PDPE_SHIFT			30
132 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
133  * tables */
134 #define GEN8_PDPE_MASK			0x1ff
135 
136 #define PPAT_UNCACHED			(_PAGE_PWT | _PAGE_PCD)
137 #define PPAT_CACHED_PDE			0 /* WB LLC */
138 #define PPAT_CACHED			_PAGE_PAT /* WB LLCeLLC */
139 #define PPAT_DISPLAY_ELLC		_PAGE_PCD /* WT eLLC */
140 
141 #define CHV_PPAT_SNOOP			(1<<6)
142 #define GEN8_PPAT_AGE(x)		((x)<<4)
143 #define GEN8_PPAT_LLCeLLC		(3<<2)
144 #define GEN8_PPAT_LLCELLC		(2<<2)
145 #define GEN8_PPAT_LLC			(1<<2)
146 #define GEN8_PPAT_WB			(3<<0)
147 #define GEN8_PPAT_WT			(2<<0)
148 #define GEN8_PPAT_WC			(1<<0)
149 #define GEN8_PPAT_UC			(0<<0)
150 #define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
151 #define GEN8_PPAT(i, x)			((u64)(x) << ((i) * 8))
152 
153 #define GEN8_PPAT_GET_CA(x) ((x) & 3)
154 #define GEN8_PPAT_GET_TC(x) ((x) & (3 << 2))
155 #define GEN8_PPAT_GET_AGE(x) ((x) & (3 << 4))
156 #define CHV_PPAT_GET_SNOOP(x) ((x) & (1 << 6))
157 
158 #define GEN8_PDE_IPS_64K BIT(11)
159 #define GEN8_PDE_PS_2M   BIT(7)
160 
161 struct sg_table;
162 
163 struct intel_rotation_info {
164 	struct intel_rotation_plane_info {
165 		/* tiles */
166 		unsigned int width, height, stride, offset;
167 	} plane[2];
168 } __packed;
169 
170 static inline void assert_intel_rotation_info_is_packed(void)
171 {
172 	BUILD_BUG_ON(sizeof(struct intel_rotation_info) != 8*sizeof(unsigned int));
173 }
174 
175 struct intel_partial_info {
176 	u64 offset;
177 	unsigned int size;
178 } __packed;
179 
180 static inline void assert_intel_partial_info_is_packed(void)
181 {
182 	BUILD_BUG_ON(sizeof(struct intel_partial_info) != sizeof(u64) + sizeof(unsigned int));
183 }
184 
185 enum i915_ggtt_view_type {
186 	I915_GGTT_VIEW_NORMAL = 0,
187 	I915_GGTT_VIEW_ROTATED = sizeof(struct intel_rotation_info),
188 	I915_GGTT_VIEW_PARTIAL = sizeof(struct intel_partial_info),
189 };
190 
191 static inline void assert_i915_ggtt_view_type_is_unique(void)
192 {
193 	/* As we encode the size of each branch inside the union into its type,
194 	 * we have to be careful that each branch has a unique size.
195 	 */
196 	switch ((enum i915_ggtt_view_type)0) {
197 	case I915_GGTT_VIEW_NORMAL:
198 	case I915_GGTT_VIEW_PARTIAL:
199 	case I915_GGTT_VIEW_ROTATED:
200 		/* gcc complains if these are identical cases */
201 		break;
202 	}
203 }
204 
205 struct i915_ggtt_view {
206 	enum i915_ggtt_view_type type;
207 	union {
208 		/* Members need to contain no holes/padding */
209 		struct intel_partial_info partial;
210 		struct intel_rotation_info rotated;
211 	};
212 };
213 
214 enum i915_cache_level;
215 
216 struct i915_vma;
217 
218 struct i915_page_dma {
219 	struct page *page;
220 	int order;
221 	union {
222 		dma_addr_t daddr;
223 
224 		/* For gen6/gen7 only. This is the offset in the GGTT
225 		 * where the page directory entries for PPGTT begin
226 		 */
227 		u32 ggtt_offset;
228 	};
229 };
230 
231 #define px_base(px) (&(px)->base)
232 #define px_page(px) (px_base(px)->page)
233 #define px_dma(px) (px_base(px)->daddr)
234 
235 struct i915_page_table {
236 	struct i915_page_dma base;
237 	unsigned int used_ptes;
238 };
239 
240 struct i915_page_directory {
241 	struct i915_page_dma base;
242 
243 	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
244 	unsigned int used_pdes;
245 };
246 
247 struct i915_page_directory_pointer {
248 	struct i915_page_dma base;
249 	struct i915_page_directory **page_directory;
250 	unsigned int used_pdpes;
251 };
252 
253 struct i915_pml4 {
254 	struct i915_page_dma base;
255 	struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
256 };
257 
258 struct i915_address_space {
259 	struct drm_mm mm;
260 	struct i915_gem_timeline timeline;
261 	struct drm_i915_private *i915;
262 	struct device *dma;
263 	/* Every address space belongs to a struct file - except for the global
264 	 * GTT that is owned by the driver (and so @file is set to NULL). In
265 	 * principle, no information should leak from one context to another
266 	 * (or between files/processes etc) unless explicitly shared by the
267 	 * owner. Tracking the owner is important in order to free up per-file
268 	 * objects along with the file, to aide resource tracking, and to
269 	 * assign blame.
270 	 */
271 	struct drm_i915_file_private *file;
272 	struct list_head global_link;
273 	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
274 	u64 reserved;		/* size addr space reserved */
275 
276 	bool closed;
277 
278 	struct i915_page_dma scratch_page;
279 	struct i915_page_table *scratch_pt;
280 	struct i915_page_directory *scratch_pd;
281 	struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
282 
283 	/**
284 	 * List of objects currently involved in rendering.
285 	 *
286 	 * Includes buffers having the contents of their GPU caches
287 	 * flushed, not necessarily primitives. last_read_req
288 	 * represents when the rendering involved will be completed.
289 	 *
290 	 * A reference is held on the buffer while on this list.
291 	 */
292 	struct list_head active_list;
293 
294 	/**
295 	 * LRU list of objects which are not in the ringbuffer and
296 	 * are ready to unbind, but are still in the GTT.
297 	 *
298 	 * last_read_req is NULL while an object is in this list.
299 	 *
300 	 * A reference is not held on the buffer while on this list,
301 	 * as merely being GTT-bound shouldn't prevent its being
302 	 * freed, and we'll pull it off the list in the free path.
303 	 */
304 	struct list_head inactive_list;
305 
306 	/**
307 	 * List of vma that have been unbound.
308 	 *
309 	 * A reference is not held on the buffer while on this list.
310 	 */
311 	struct list_head unbound_list;
312 
313 	struct pagevec free_pages;
314 	bool pt_kmap_wc;
315 
316 	/* FIXME: Need a more generic return type */
317 	gen6_pte_t (*pte_encode)(dma_addr_t addr,
318 				 enum i915_cache_level level,
319 				 u32 flags); /* Create a valid PTE */
320 	/* flags for pte_encode */
321 #define PTE_READ_ONLY	(1<<0)
322 	int (*allocate_va_range)(struct i915_address_space *vm,
323 				 u64 start, u64 length);
324 	void (*clear_range)(struct i915_address_space *vm,
325 			    u64 start, u64 length);
326 	void (*insert_page)(struct i915_address_space *vm,
327 			    dma_addr_t addr,
328 			    u64 offset,
329 			    enum i915_cache_level cache_level,
330 			    u32 flags);
331 	void (*insert_entries)(struct i915_address_space *vm,
332 			       struct i915_vma *vma,
333 			       enum i915_cache_level cache_level,
334 			       u32 flags);
335 	void (*cleanup)(struct i915_address_space *vm);
336 	/** Unmap an object from an address space. This usually consists of
337 	 * setting the valid PTE entries to a reserved scratch page. */
338 	void (*unbind_vma)(struct i915_vma *vma);
339 	/* Map an object into an address space with the given cache flags. */
340 	int (*bind_vma)(struct i915_vma *vma,
341 			enum i915_cache_level cache_level,
342 			u32 flags);
343 	int (*set_pages)(struct i915_vma *vma);
344 	void (*clear_pages)(struct i915_vma *vma);
345 
346 	I915_SELFTEST_DECLARE(struct fault_attr fault_attr);
347 };
348 
349 #define i915_is_ggtt(V) (!(V)->file)
350 
351 static inline bool
352 i915_vm_is_48bit(const struct i915_address_space *vm)
353 {
354 	return (vm->total - 1) >> 32;
355 }
356 
357 static inline bool
358 i915_vm_has_scratch_64K(struct i915_address_space *vm)
359 {
360 	return vm->scratch_page.order == get_order(I915_GTT_PAGE_SIZE_64K);
361 }
362 
363 /* The Graphics Translation Table is the way in which GEN hardware translates a
364  * Graphics Virtual Address into a Physical Address. In addition to the normal
365  * collateral associated with any va->pa translations GEN hardware also has a
366  * portion of the GTT which can be mapped by the CPU and remain both coherent
367  * and correct (in cases like swizzling). That region is referred to as GMADR in
368  * the spec.
369  */
370 struct i915_ggtt {
371 	struct i915_address_space base;
372 
373 	struct io_mapping iomap;	/* Mapping to our CPU mappable region */
374 	struct resource gmadr;          /* GMADR resource */
375 	resource_size_t mappable_end;	/* End offset that we can CPU map */
376 
377 	/** "Graphics Stolen Memory" holds the global PTEs */
378 	void __iomem *gsm;
379 	void (*invalidate)(struct drm_i915_private *dev_priv);
380 
381 	bool do_idle_maps;
382 
383 	int mtrr;
384 
385 	struct drm_mm_node error_capture;
386 };
387 
388 struct i915_hw_ppgtt {
389 	struct i915_address_space base;
390 	struct kref ref;
391 	struct drm_mm_node node;
392 	unsigned long pd_dirty_rings;
393 	union {
394 		struct i915_pml4 pml4;		/* GEN8+ & 48b PPGTT */
395 		struct i915_page_directory_pointer pdp;	/* GEN8+ */
396 		struct i915_page_directory pd;		/* GEN6-7 */
397 	};
398 
399 	gen6_pte_t __iomem *pd_addr;
400 
401 	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
402 			 struct i915_request *rq);
403 	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
404 };
405 
406 /*
407  * gen6_for_each_pde() iterates over every pde from start until start+length.
408  * If start and start+length are not perfectly divisible, the macro will round
409  * down and up as needed. Start=0 and length=2G effectively iterates over
410  * every PDE in the system. The macro modifies ALL its parameters except 'pd',
411  * so each of the other parameters should preferably be a simple variable, or
412  * at most an lvalue with no side-effects!
413  */
414 #define gen6_for_each_pde(pt, pd, start, length, iter)			\
415 	for (iter = gen6_pde_index(start);				\
416 	     length > 0 && iter < I915_PDES &&				\
417 		(pt = (pd)->page_table[iter], true);			\
418 	     ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT);		\
419 		    temp = min(temp - start, length);			\
420 		    start += temp, length -= temp; }), ++iter)
421 
422 #define gen6_for_all_pdes(pt, pd, iter)					\
423 	for (iter = 0;							\
424 	     iter < I915_PDES &&					\
425 		(pt = (pd)->page_table[iter], true);			\
426 	     ++iter)
427 
428 static inline u32 i915_pte_index(u64 address, unsigned int pde_shift)
429 {
430 	const u32 mask = NUM_PTE(pde_shift) - 1;
431 
432 	return (address >> PAGE_SHIFT) & mask;
433 }
434 
435 /* Helper to counts the number of PTEs within the given length. This count
436  * does not cross a page table boundary, so the max value would be
437  * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
438 */
439 static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift)
440 {
441 	const u64 mask = ~((1ULL << pde_shift) - 1);
442 	u64 end;
443 
444 	WARN_ON(length == 0);
445 	WARN_ON(offset_in_page(addr|length));
446 
447 	end = addr + length;
448 
449 	if ((addr & mask) != (end & mask))
450 		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
451 
452 	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
453 }
454 
455 static inline u32 i915_pde_index(u64 addr, u32 shift)
456 {
457 	return (addr >> shift) & I915_PDE_MASK;
458 }
459 
460 static inline u32 gen6_pte_index(u32 addr)
461 {
462 	return i915_pte_index(addr, GEN6_PDE_SHIFT);
463 }
464 
465 static inline u32 gen6_pte_count(u32 addr, u32 length)
466 {
467 	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
468 }
469 
470 static inline u32 gen6_pde_index(u32 addr)
471 {
472 	return i915_pde_index(addr, GEN6_PDE_SHIFT);
473 }
474 
475 static inline unsigned int
476 i915_pdpes_per_pdp(const struct i915_address_space *vm)
477 {
478 	if (i915_vm_is_48bit(vm))
479 		return GEN8_PML4ES_PER_PML4;
480 
481 	return GEN8_3LVL_PDPES;
482 }
483 
484 /* Equivalent to the gen6 version, For each pde iterates over every pde
485  * between from start until start + length. On gen8+ it simply iterates
486  * over every page directory entry in a page directory.
487  */
488 #define gen8_for_each_pde(pt, pd, start, length, iter)			\
489 	for (iter = gen8_pde_index(start);				\
490 	     length > 0 && iter < I915_PDES &&				\
491 		(pt = (pd)->page_table[iter], true);			\
492 	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);		\
493 		    temp = min(temp - start, length);			\
494 		    start += temp, length -= temp; }), ++iter)
495 
496 #define gen8_for_each_pdpe(pd, pdp, start, length, iter)		\
497 	for (iter = gen8_pdpe_index(start);				\
498 	     length > 0 && iter < i915_pdpes_per_pdp(vm) &&		\
499 		(pd = (pdp)->page_directory[iter], true);		\
500 	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);	\
501 		    temp = min(temp - start, length);			\
502 		    start += temp, length -= temp; }), ++iter)
503 
504 #define gen8_for_each_pml4e(pdp, pml4, start, length, iter)		\
505 	for (iter = gen8_pml4e_index(start);				\
506 	     length > 0 && iter < GEN8_PML4ES_PER_PML4 &&		\
507 		(pdp = (pml4)->pdps[iter], true);			\
508 	     ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);	\
509 		    temp = min(temp - start, length);			\
510 		    start += temp, length -= temp; }), ++iter)
511 
512 static inline u32 gen8_pte_index(u64 address)
513 {
514 	return i915_pte_index(address, GEN8_PDE_SHIFT);
515 }
516 
517 static inline u32 gen8_pde_index(u64 address)
518 {
519 	return i915_pde_index(address, GEN8_PDE_SHIFT);
520 }
521 
522 static inline u32 gen8_pdpe_index(u64 address)
523 {
524 	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
525 }
526 
527 static inline u32 gen8_pml4e_index(u64 address)
528 {
529 	return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
530 }
531 
532 static inline u64 gen8_pte_count(u64 address, u64 length)
533 {
534 	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
535 }
536 
537 static inline dma_addr_t
538 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
539 {
540 	return px_dma(ppgtt->pdp.page_directory[n]);
541 }
542 
543 static inline struct i915_ggtt *
544 i915_vm_to_ggtt(struct i915_address_space *vm)
545 {
546 	GEM_BUG_ON(!i915_is_ggtt(vm));
547 	return container_of(vm, struct i915_ggtt, base);
548 }
549 
550 #define INTEL_MAX_PPAT_ENTRIES 8
551 #define INTEL_PPAT_PERFECT_MATCH (~0U)
552 
553 struct intel_ppat;
554 
555 struct intel_ppat_entry {
556 	struct intel_ppat *ppat;
557 	struct kref ref;
558 	u8 value;
559 };
560 
561 struct intel_ppat {
562 	struct intel_ppat_entry entries[INTEL_MAX_PPAT_ENTRIES];
563 	DECLARE_BITMAP(used, INTEL_MAX_PPAT_ENTRIES);
564 	DECLARE_BITMAP(dirty, INTEL_MAX_PPAT_ENTRIES);
565 	unsigned int max_entries;
566 	u8 clear_value;
567 	/*
568 	 * Return a score to show how two PPAT values match,
569 	 * a INTEL_PPAT_PERFECT_MATCH indicates a perfect match
570 	 */
571 	unsigned int (*match)(u8 src, u8 dst);
572 	void (*update_hw)(struct drm_i915_private *i915);
573 
574 	struct drm_i915_private *i915;
575 };
576 
577 const struct intel_ppat_entry *
578 intel_ppat_get(struct drm_i915_private *i915, u8 value);
579 void intel_ppat_put(const struct intel_ppat_entry *entry);
580 
581 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915);
582 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915);
583 
584 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
585 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
586 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
587 void i915_ggtt_enable_guc(struct drm_i915_private *i915);
588 void i915_ggtt_disable_guc(struct drm_i915_private *i915);
589 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv);
590 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv);
591 
592 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv);
593 void i915_ppgtt_release(struct kref *kref);
594 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv,
595 					struct drm_i915_file_private *fpriv,
596 					const char *name);
597 void i915_ppgtt_close(struct i915_address_space *vm);
598 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
599 {
600 	if (ppgtt)
601 		kref_get(&ppgtt->ref);
602 }
603 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
604 {
605 	if (ppgtt)
606 		kref_put(&ppgtt->ref, i915_ppgtt_release);
607 }
608 
609 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
610 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv);
611 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv);
612 
613 int __must_check i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
614 					    struct sg_table *pages);
615 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
616 			       struct sg_table *pages);
617 
618 int i915_gem_gtt_reserve(struct i915_address_space *vm,
619 			 struct drm_mm_node *node,
620 			 u64 size, u64 offset, unsigned long color,
621 			 unsigned int flags);
622 
623 int i915_gem_gtt_insert(struct i915_address_space *vm,
624 			struct drm_mm_node *node,
625 			u64 size, u64 alignment, unsigned long color,
626 			u64 start, u64 end, unsigned int flags);
627 
628 /* Flags used by pin/bind&friends. */
629 #define PIN_NONBLOCK		BIT(0)
630 #define PIN_MAPPABLE		BIT(1)
631 #define PIN_ZONE_4G		BIT(2)
632 #define PIN_NONFAULT		BIT(3)
633 #define PIN_NOEVICT		BIT(4)
634 
635 #define PIN_MBZ			BIT(5) /* I915_VMA_PIN_OVERFLOW */
636 #define PIN_GLOBAL		BIT(6) /* I915_VMA_GLOBAL_BIND */
637 #define PIN_USER		BIT(7) /* I915_VMA_LOCAL_BIND */
638 #define PIN_UPDATE		BIT(8)
639 
640 #define PIN_HIGH		BIT(9)
641 #define PIN_OFFSET_BIAS		BIT(10)
642 #define PIN_OFFSET_FIXED	BIT(11)
643 #define PIN_OFFSET_MASK		(-I915_GTT_PAGE_SIZE)
644 
645 #endif
646