1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Please try to maintain the following order within this file unless it makes
24  * sense to do otherwise. From top to bottom:
25  * 1. typedefs
26  * 2. #defines, and macros
27  * 3. structure definitions
28  * 4. function prototypes
29  *
30  * Within each section, please try to order by generation in ascending order,
31  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32  */
33 
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36 
37 struct drm_i915_file_private;
38 
39 typedef uint32_t gen6_pte_t;
40 typedef uint64_t gen8_pte_t;
41 typedef uint64_t gen8_pde_t;
42 typedef uint64_t gen8_ppgtt_pdpe_t;
43 typedef uint64_t gen8_ppgtt_pml4e_t;
44 
45 #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
46 
47 
48 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
49 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
50 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
51 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
52 #define GEN6_PTE_CACHE_LLC		(2 << 1)
53 #define GEN6_PTE_UNCACHED		(1 << 1)
54 #define GEN6_PTE_VALID			(1 << 0)
55 
56 #define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
57 #define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
58 #define I915_PDES			512
59 #define I915_PDE_MASK			(I915_PDES - 1)
60 #define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
61 
62 #define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
63 #define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
64 #define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
65 #define GEN6_PDE_SHIFT			22
66 #define GEN6_PDE_VALID			(1 << 0)
67 
68 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
69 
70 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
71 #define BYT_PTE_WRITEABLE		(1 << 1)
72 
73 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
74  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
75  */
76 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
77 					 (((bits) & 0x8) << (11 - 3)))
78 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
79 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
80 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
81 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
82 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
83 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
84 #define HSW_PTE_UNCACHED		(0)
85 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
86 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
87 
88 /* GEN8 legacy style address is defined as a 3 level page table:
89  * 31:30 | 29:21 | 20:12 |  11:0
90  * PDPE  |  PDE  |  PTE  | offset
91  * The difference as compared to normal x86 3 level page table is the PDPEs are
92  * programmed via register.
93  *
94  * GEN8 48b legacy style address is defined as a 4 level page table:
95  * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
96  * PML4E | PDPE  |  PDE  |  PTE  | offset
97  */
98 #define GEN8_PML4ES_PER_PML4		512
99 #define GEN8_PML4E_SHIFT		39
100 #define GEN8_PML4E_MASK			(GEN8_PML4ES_PER_PML4 - 1)
101 #define GEN8_PDPE_SHIFT			30
102 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
103  * tables */
104 #define GEN8_PDPE_MASK			0x1ff
105 #define GEN8_PDE_SHIFT			21
106 #define GEN8_PDE_MASK			0x1ff
107 #define GEN8_PTE_SHIFT			12
108 #define GEN8_PTE_MASK			0x1ff
109 #define GEN8_LEGACY_PDPES		4
110 #define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
111 
112 #define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
113 				 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
114 
115 #define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
116 #define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
117 #define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
118 #define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
119 
120 #define CHV_PPAT_SNOOP			(1<<6)
121 #define GEN8_PPAT_AGE(x)		(x<<4)
122 #define GEN8_PPAT_LLCeLLC		(3<<2)
123 #define GEN8_PPAT_LLCELLC		(2<<2)
124 #define GEN8_PPAT_LLC			(1<<2)
125 #define GEN8_PPAT_WB			(3<<0)
126 #define GEN8_PPAT_WT			(2<<0)
127 #define GEN8_PPAT_WC			(1<<0)
128 #define GEN8_PPAT_UC			(0<<0)
129 #define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
130 #define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
131 
132 enum i915_ggtt_view_type {
133 	I915_GGTT_VIEW_NORMAL = 0,
134 	I915_GGTT_VIEW_ROTATED,
135 	I915_GGTT_VIEW_PARTIAL,
136 };
137 
138 struct intel_rotation_info {
139 	unsigned int height;
140 	unsigned int pitch;
141 	uint32_t pixel_format;
142 	uint64_t fb_modifier;
143 	unsigned int width_pages, height_pages;
144 	uint64_t size;
145 };
146 
147 struct i915_ggtt_view {
148 	enum i915_ggtt_view_type type;
149 
150 	union {
151 		struct {
152 			u64 offset;
153 			unsigned int size;
154 		} partial;
155 	} params;
156 
157 	struct sg_table *pages;
158 
159 	union {
160 		struct intel_rotation_info rotation_info;
161 	};
162 };
163 
164 extern const struct i915_ggtt_view i915_ggtt_view_normal;
165 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
166 
167 enum i915_cache_level;
168 
169 /**
170  * A VMA represents a GEM BO that is bound into an address space. Therefore, a
171  * VMA's presence cannot be guaranteed before binding, or after unbinding the
172  * object into/from the address space.
173  *
174  * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
175  * will always be <= an objects lifetime. So object refcounting should cover us.
176  */
177 struct i915_vma {
178 	struct drm_mm_node node;
179 	struct drm_i915_gem_object *obj;
180 	struct i915_address_space *vm;
181 
182 	/** Flags and address space this VMA is bound to */
183 #define GLOBAL_BIND	(1<<0)
184 #define LOCAL_BIND	(1<<1)
185 	unsigned int bound : 4;
186 
187 	/**
188 	 * Support different GGTT views into the same object.
189 	 * This means there can be multiple VMA mappings per object and per VM.
190 	 * i915_ggtt_view_type is used to distinguish between those entries.
191 	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
192 	 * assumed in GEM functions which take no ggtt view parameter.
193 	 */
194 	struct i915_ggtt_view ggtt_view;
195 
196 	/** This object's place on the active/inactive lists */
197 	struct list_head mm_list;
198 
199 	struct list_head vma_link; /* Link in the object's VMA list */
200 
201 	/** This vma's place in the batchbuffer or on the eviction list */
202 	struct list_head exec_list;
203 
204 	/**
205 	 * Used for performing relocations during execbuffer insertion.
206 	 */
207 	struct hlist_node exec_node;
208 	unsigned long exec_handle;
209 	struct drm_i915_gem_exec_object2 *exec_entry;
210 
211 	/**
212 	 * How many users have pinned this object in GTT space. The following
213 	 * users can each hold at most one reference: pwrite/pread, execbuffer
214 	 * (objects are not allowed multiple times for the same batchbuffer),
215 	 * and the framebuffer code. When switching/pageflipping, the
216 	 * framebuffer code has at most two buffers pinned per crtc.
217 	 *
218 	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
219 	 * bits with absolutely no headroom. So use 4 bits. */
220 	unsigned int pin_count:4;
221 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
222 };
223 
224 struct i915_page_dma {
225 	struct page *page;
226 	union {
227 		dma_addr_t daddr;
228 
229 		/* For gen6/gen7 only. This is the offset in the GGTT
230 		 * where the page directory entries for PPGTT begin
231 		 */
232 		uint32_t ggtt_offset;
233 	};
234 };
235 
236 #define px_base(px) (&(px)->base)
237 #define px_page(px) (px_base(px)->page)
238 #define px_dma(px) (px_base(px)->daddr)
239 
240 struct i915_page_scratch {
241 	struct i915_page_dma base;
242 };
243 
244 struct i915_page_table {
245 	struct i915_page_dma base;
246 
247 	unsigned long *used_ptes;
248 };
249 
250 struct i915_page_directory {
251 	struct i915_page_dma base;
252 
253 	unsigned long *used_pdes;
254 	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
255 };
256 
257 struct i915_page_directory_pointer {
258 	struct i915_page_dma base;
259 
260 	unsigned long *used_pdpes;
261 	struct i915_page_directory **page_directory;
262 };
263 
264 struct i915_pml4 {
265 	struct i915_page_dma base;
266 
267 	DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
268 	struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
269 };
270 
271 struct i915_address_space {
272 	struct drm_mm mm;
273 	struct drm_device *dev;
274 	struct list_head global_link;
275 	u64 start;		/* Start offset always 0 for dri2 */
276 	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
277 
278 	struct i915_page_scratch *scratch_page;
279 	struct i915_page_table *scratch_pt;
280 	struct i915_page_directory *scratch_pd;
281 	struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
282 
283 	/**
284 	 * List of objects currently involved in rendering.
285 	 *
286 	 * Includes buffers having the contents of their GPU caches
287 	 * flushed, not necessarily primitives. last_read_req
288 	 * represents when the rendering involved will be completed.
289 	 *
290 	 * A reference is held on the buffer while on this list.
291 	 */
292 	struct list_head active_list;
293 
294 	/**
295 	 * LRU list of objects which are not in the ringbuffer and
296 	 * are ready to unbind, but are still in the GTT.
297 	 *
298 	 * last_read_req is NULL while an object is in this list.
299 	 *
300 	 * A reference is not held on the buffer while on this list,
301 	 * as merely being GTT-bound shouldn't prevent its being
302 	 * freed, and we'll pull it off the list in the free path.
303 	 */
304 	struct list_head inactive_list;
305 
306 	/* FIXME: Need a more generic return type */
307 	gen6_pte_t (*pte_encode)(dma_addr_t addr,
308 				 enum i915_cache_level level,
309 				 bool valid, u32 flags); /* Create a valid PTE */
310 	/* flags for pte_encode */
311 #define PTE_READ_ONLY	(1<<0)
312 	int (*allocate_va_range)(struct i915_address_space *vm,
313 				 uint64_t start,
314 				 uint64_t length);
315 	void (*clear_range)(struct i915_address_space *vm,
316 			    uint64_t start,
317 			    uint64_t length,
318 			    bool use_scratch);
319 	void (*insert_entries)(struct i915_address_space *vm,
320 			       struct sg_table *st,
321 			       uint64_t start,
322 			       enum i915_cache_level cache_level, u32 flags);
323 	void (*cleanup)(struct i915_address_space *vm);
324 	/** Unmap an object from an address space. This usually consists of
325 	 * setting the valid PTE entries to a reserved scratch page. */
326 	void (*unbind_vma)(struct i915_vma *vma);
327 	/* Map an object into an address space with the given cache flags. */
328 	int (*bind_vma)(struct i915_vma *vma,
329 			enum i915_cache_level cache_level,
330 			u32 flags);
331 };
332 
333 /* The Graphics Translation Table is the way in which GEN hardware translates a
334  * Graphics Virtual Address into a Physical Address. In addition to the normal
335  * collateral associated with any va->pa translations GEN hardware also has a
336  * portion of the GTT which can be mapped by the CPU and remain both coherent
337  * and correct (in cases like swizzling). That region is referred to as GMADR in
338  * the spec.
339  */
340 struct i915_gtt {
341 	struct i915_address_space base;
342 
343 	size_t stolen_size;		/* Total size of stolen memory */
344 	size_t stolen_usable_size;	/* Total size minus BIOS reserved */
345 	u64 mappable_end;		/* End offset that we can CPU map */
346 	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
347 	phys_addr_t mappable_base;	/* PA of our GMADR */
348 
349 	/** "Graphics Stolen Memory" holds the global PTEs */
350 	void __iomem *gsm;
351 
352 	bool do_idle_maps;
353 
354 	int mtrr;
355 
356 	/* global gtt ops */
357 	int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
358 			  size_t *stolen, phys_addr_t *mappable_base,
359 			  u64 *mappable_end);
360 };
361 
362 struct i915_hw_ppgtt {
363 	struct i915_address_space base;
364 	struct kref ref;
365 	struct drm_mm_node node;
366 	unsigned long pd_dirty_rings;
367 	union {
368 		struct i915_pml4 pml4;		/* GEN8+ & 48b PPGTT */
369 		struct i915_page_directory_pointer pdp;	/* GEN8+ */
370 		struct i915_page_directory pd;		/* GEN6-7 */
371 	};
372 
373 	struct drm_i915_file_private *file_priv;
374 
375 	gen6_pte_t __iomem *pd_addr;
376 
377 	int (*enable)(struct i915_hw_ppgtt *ppgtt);
378 	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
379 			 struct drm_i915_gem_request *req);
380 	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
381 };
382 
383 /* For each pde iterates over every pde between from start until start + length.
384  * If start, and start+length are not perfectly divisible, the macro will round
385  * down, and up as needed. The macro modifies pde, start, and length. Dev is
386  * only used to differentiate shift values. Temp is temp.  On gen6/7, start = 0,
387  * and length = 2G effectively iterates over every PDE in the system.
388  *
389  * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
390  */
391 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
392 	for (iter = gen6_pde_index(start); \
393 	     pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
394 	     iter++, \
395 	     temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
396 	     temp = min_t(unsigned, temp, length), \
397 	     start += temp, length -= temp)
398 
399 #define gen6_for_all_pdes(pt, ppgtt, iter)  \
400 	for (iter = 0;		\
401 	     pt = ppgtt->pd.page_table[iter], iter < I915_PDES;	\
402 	     iter++)
403 
404 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
405 {
406 	const uint32_t mask = NUM_PTE(pde_shift) - 1;
407 
408 	return (address >> PAGE_SHIFT) & mask;
409 }
410 
411 /* Helper to counts the number of PTEs within the given length. This count
412  * does not cross a page table boundary, so the max value would be
413  * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
414 */
415 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
416 				      uint32_t pde_shift)
417 {
418 	const uint64_t mask = ~((1 << pde_shift) - 1);
419 	uint64_t end;
420 
421 	WARN_ON(length == 0);
422 	WARN_ON(offset_in_page(addr|length));
423 
424 	end = addr + length;
425 
426 	if ((addr & mask) != (end & mask))
427 		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
428 
429 	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
430 }
431 
432 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
433 {
434 	return (addr >> shift) & I915_PDE_MASK;
435 }
436 
437 static inline uint32_t gen6_pte_index(uint32_t addr)
438 {
439 	return i915_pte_index(addr, GEN6_PDE_SHIFT);
440 }
441 
442 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
443 {
444 	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
445 }
446 
447 static inline uint32_t gen6_pde_index(uint32_t addr)
448 {
449 	return i915_pde_index(addr, GEN6_PDE_SHIFT);
450 }
451 
452 /* Equivalent to the gen6 version, For each pde iterates over every pde
453  * between from start until start + length. On gen8+ it simply iterates
454  * over every page directory entry in a page directory.
455  */
456 #define gen8_for_each_pde(pt, pd, start, length, temp, iter)		\
457 	for (iter = gen8_pde_index(start); \
458 	     pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES;	\
459 	     iter++,				\
460 	     temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start,	\
461 	     temp = min(temp, length),					\
462 	     start += temp, length -= temp)
463 
464 #define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter)	\
465 	for (iter = gen8_pdpe_index(start); \
466 	     pd = (pdp)->page_directory[iter], \
467 	     length > 0 && (iter < I915_PDPES_PER_PDP(dev)); \
468 	     iter++,				\
469 	     temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start,	\
470 	     temp = min(temp, length),					\
471 	     start += temp, length -= temp)
472 
473 #define gen8_for_each_pml4e(pdp, pml4, start, length, temp, iter)	\
474 	for (iter = gen8_pml4e_index(start);	\
475 	     pdp = (pml4)->pdps[iter], \
476 	     length > 0 && iter < GEN8_PML4ES_PER_PML4; \
477 	     iter++,				\
478 	     temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT) - start,	\
479 	     temp = min(temp, length),					\
480 	     start += temp, length -= temp)
481 
482 static inline uint32_t gen8_pte_index(uint64_t address)
483 {
484 	return i915_pte_index(address, GEN8_PDE_SHIFT);
485 }
486 
487 static inline uint32_t gen8_pde_index(uint64_t address)
488 {
489 	return i915_pde_index(address, GEN8_PDE_SHIFT);
490 }
491 
492 static inline uint32_t gen8_pdpe_index(uint64_t address)
493 {
494 	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
495 }
496 
497 static inline uint32_t gen8_pml4e_index(uint64_t address)
498 {
499 	return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
500 }
501 
502 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
503 {
504 	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
505 }
506 
507 static inline dma_addr_t
508 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
509 {
510 	return test_bit(n, ppgtt->pdp.used_pdpes) ?
511 		px_dma(ppgtt->pdp.page_directory[n]) :
512 		px_dma(ppgtt->base.scratch_pd);
513 }
514 
515 int i915_gem_gtt_init(struct drm_device *dev);
516 void i915_gem_init_global_gtt(struct drm_device *dev);
517 void i915_global_gtt_cleanup(struct drm_device *dev);
518 
519 
520 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
521 int i915_ppgtt_init_hw(struct drm_device *dev);
522 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
523 void i915_ppgtt_release(struct kref *kref);
524 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
525 					struct drm_i915_file_private *fpriv);
526 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
527 {
528 	if (ppgtt)
529 		kref_get(&ppgtt->ref);
530 }
531 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
532 {
533 	if (ppgtt)
534 		kref_put(&ppgtt->ref, i915_ppgtt_release);
535 }
536 
537 void i915_check_and_clear_faults(struct drm_device *dev);
538 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
539 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
540 
541 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
542 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
543 
544 static inline bool
545 i915_ggtt_view_equal(const struct i915_ggtt_view *a,
546                      const struct i915_ggtt_view *b)
547 {
548 	if (WARN_ON(!a || !b))
549 		return false;
550 
551 	if (a->type != b->type)
552 		return false;
553 	if (a->type == I915_GGTT_VIEW_PARTIAL)
554 		return !memcmp(&a->params, &b->params, sizeof(a->params));
555 	return true;
556 }
557 
558 size_t
559 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
560 		    const struct i915_ggtt_view *view);
561 
562 #endif
563