1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Please try to maintain the following order within this file unless it makes
24  * sense to do otherwise. From top to bottom:
25  * 1. typedefs
26  * 2. #defines, and macros
27  * 3. structure definitions
28  * 4. function prototypes
29  *
30  * Within each section, please try to order by generation in ascending order,
31  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32  */
33 
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36 
37 #include <linux/io-mapping.h>
38 
39 struct drm_i915_file_private;
40 
41 typedef uint32_t gen6_pte_t;
42 typedef uint64_t gen8_pte_t;
43 typedef uint64_t gen8_pde_t;
44 typedef uint64_t gen8_ppgtt_pdpe_t;
45 typedef uint64_t gen8_ppgtt_pml4e_t;
46 
47 #define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
48 
49 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
50 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
51 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
52 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
53 #define GEN6_PTE_CACHE_LLC		(2 << 1)
54 #define GEN6_PTE_UNCACHED		(1 << 1)
55 #define GEN6_PTE_VALID			(1 << 0)
56 
57 #define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
58 #define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
59 #define I915_PDES			512
60 #define I915_PDE_MASK			(I915_PDES - 1)
61 #define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
62 
63 #define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
64 #define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
65 #define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
66 #define GEN6_PDE_SHIFT			22
67 #define GEN6_PDE_VALID			(1 << 0)
68 
69 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
70 
71 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
72 #define BYT_PTE_WRITEABLE		(1 << 1)
73 
74 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
75  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
76  */
77 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
78 					 (((bits) & 0x8) << (11 - 3)))
79 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
80 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
81 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
82 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
83 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
84 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
85 #define HSW_PTE_UNCACHED		(0)
86 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
87 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
88 
89 /* GEN8 legacy style address is defined as a 3 level page table:
90  * 31:30 | 29:21 | 20:12 |  11:0
91  * PDPE  |  PDE  |  PTE  | offset
92  * The difference as compared to normal x86 3 level page table is the PDPEs are
93  * programmed via register.
94  *
95  * GEN8 48b legacy style address is defined as a 4 level page table:
96  * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
97  * PML4E | PDPE  |  PDE  |  PTE  | offset
98  */
99 #define GEN8_PML4ES_PER_PML4		512
100 #define GEN8_PML4E_SHIFT		39
101 #define GEN8_PML4E_MASK			(GEN8_PML4ES_PER_PML4 - 1)
102 #define GEN8_PDPE_SHIFT			30
103 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
104  * tables */
105 #define GEN8_PDPE_MASK			0x1ff
106 #define GEN8_PDE_SHIFT			21
107 #define GEN8_PDE_MASK			0x1ff
108 #define GEN8_PTE_SHIFT			12
109 #define GEN8_PTE_MASK			0x1ff
110 #define GEN8_LEGACY_PDPES		4
111 #define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
112 
113 #define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
114 				 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
115 
116 #define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
117 #define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
118 #define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
119 #define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
120 
121 #define CHV_PPAT_SNOOP			(1<<6)
122 #define GEN8_PPAT_AGE(x)		(x<<4)
123 #define GEN8_PPAT_LLCeLLC		(3<<2)
124 #define GEN8_PPAT_LLCELLC		(2<<2)
125 #define GEN8_PPAT_LLC			(1<<2)
126 #define GEN8_PPAT_WB			(3<<0)
127 #define GEN8_PPAT_WT			(2<<0)
128 #define GEN8_PPAT_WC			(1<<0)
129 #define GEN8_PPAT_UC			(0<<0)
130 #define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
131 #define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
132 
133 enum i915_ggtt_view_type {
134 	I915_GGTT_VIEW_NORMAL = 0,
135 	I915_GGTT_VIEW_ROTATED,
136 	I915_GGTT_VIEW_PARTIAL,
137 };
138 
139 struct intel_rotation_info {
140 	unsigned int uv_offset;
141 	uint32_t pixel_format;
142 	unsigned int uv_start_page;
143 	struct {
144 		/* tiles */
145 		unsigned int width, height;
146 	} plane[2];
147 };
148 
149 struct i915_ggtt_view {
150 	enum i915_ggtt_view_type type;
151 
152 	union {
153 		struct {
154 			u64 offset;
155 			unsigned int size;
156 		} partial;
157 		struct intel_rotation_info rotated;
158 	} params;
159 
160 	struct sg_table *pages;
161 };
162 
163 extern const struct i915_ggtt_view i915_ggtt_view_normal;
164 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
165 
166 enum i915_cache_level;
167 
168 /**
169  * A VMA represents a GEM BO that is bound into an address space. Therefore, a
170  * VMA's presence cannot be guaranteed before binding, or after unbinding the
171  * object into/from the address space.
172  *
173  * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
174  * will always be <= an objects lifetime. So object refcounting should cover us.
175  */
176 struct i915_vma {
177 	struct drm_mm_node node;
178 	struct drm_i915_gem_object *obj;
179 	struct i915_address_space *vm;
180 	void __iomem *iomap;
181 
182 	/** Flags and address space this VMA is bound to */
183 #define GLOBAL_BIND	(1<<0)
184 #define LOCAL_BIND	(1<<1)
185 	unsigned int bound : 4;
186 	bool is_ggtt : 1;
187 
188 	/**
189 	 * Support different GGTT views into the same object.
190 	 * This means there can be multiple VMA mappings per object and per VM.
191 	 * i915_ggtt_view_type is used to distinguish between those entries.
192 	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
193 	 * assumed in GEM functions which take no ggtt view parameter.
194 	 */
195 	struct i915_ggtt_view ggtt_view;
196 
197 	/** This object's place on the active/inactive lists */
198 	struct list_head vm_link;
199 
200 	struct list_head obj_link; /* Link in the object's VMA list */
201 
202 	/** This vma's place in the batchbuffer or on the eviction list */
203 	struct list_head exec_list;
204 
205 	/**
206 	 * Used for performing relocations during execbuffer insertion.
207 	 */
208 	struct hlist_node exec_node;
209 	unsigned long exec_handle;
210 	struct drm_i915_gem_exec_object2 *exec_entry;
211 
212 	/**
213 	 * How many users have pinned this object in GTT space. The following
214 	 * users can each hold at most one reference: pwrite/pread, execbuffer
215 	 * (objects are not allowed multiple times for the same batchbuffer),
216 	 * and the framebuffer code. When switching/pageflipping, the
217 	 * framebuffer code has at most two buffers pinned per crtc.
218 	 *
219 	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
220 	 * bits with absolutely no headroom. So use 4 bits. */
221 	unsigned int pin_count:4;
222 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
223 };
224 
225 struct i915_page_dma {
226 	struct page *page;
227 	union {
228 		dma_addr_t daddr;
229 
230 		/* For gen6/gen7 only. This is the offset in the GGTT
231 		 * where the page directory entries for PPGTT begin
232 		 */
233 		uint32_t ggtt_offset;
234 	};
235 };
236 
237 #define px_base(px) (&(px)->base)
238 #define px_page(px) (px_base(px)->page)
239 #define px_dma(px) (px_base(px)->daddr)
240 
241 struct i915_page_scratch {
242 	struct i915_page_dma base;
243 };
244 
245 struct i915_page_table {
246 	struct i915_page_dma base;
247 
248 	unsigned long *used_ptes;
249 };
250 
251 struct i915_page_directory {
252 	struct i915_page_dma base;
253 
254 	unsigned long *used_pdes;
255 	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
256 };
257 
258 struct i915_page_directory_pointer {
259 	struct i915_page_dma base;
260 
261 	unsigned long *used_pdpes;
262 	struct i915_page_directory **page_directory;
263 };
264 
265 struct i915_pml4 {
266 	struct i915_page_dma base;
267 
268 	DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
269 	struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
270 };
271 
272 struct i915_address_space {
273 	struct drm_mm mm;
274 	struct drm_device *dev;
275 	struct list_head global_link;
276 	u64 start;		/* Start offset always 0 for dri2 */
277 	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
278 
279 	bool is_ggtt;
280 
281 	struct i915_page_scratch *scratch_page;
282 	struct i915_page_table *scratch_pt;
283 	struct i915_page_directory *scratch_pd;
284 	struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
285 
286 	/**
287 	 * List of objects currently involved in rendering.
288 	 *
289 	 * Includes buffers having the contents of their GPU caches
290 	 * flushed, not necessarily primitives. last_read_req
291 	 * represents when the rendering involved will be completed.
292 	 *
293 	 * A reference is held on the buffer while on this list.
294 	 */
295 	struct list_head active_list;
296 
297 	/**
298 	 * LRU list of objects which are not in the ringbuffer and
299 	 * are ready to unbind, but are still in the GTT.
300 	 *
301 	 * last_read_req is NULL while an object is in this list.
302 	 *
303 	 * A reference is not held on the buffer while on this list,
304 	 * as merely being GTT-bound shouldn't prevent its being
305 	 * freed, and we'll pull it off the list in the free path.
306 	 */
307 	struct list_head inactive_list;
308 
309 	/* FIXME: Need a more generic return type */
310 	gen6_pte_t (*pte_encode)(dma_addr_t addr,
311 				 enum i915_cache_level level,
312 				 bool valid, u32 flags); /* Create a valid PTE */
313 	/* flags for pte_encode */
314 #define PTE_READ_ONLY	(1<<0)
315 	int (*allocate_va_range)(struct i915_address_space *vm,
316 				 uint64_t start,
317 				 uint64_t length);
318 	void (*clear_range)(struct i915_address_space *vm,
319 			    uint64_t start,
320 			    uint64_t length,
321 			    bool use_scratch);
322 	void (*insert_page)(struct i915_address_space *vm,
323 			    dma_addr_t addr,
324 			    uint64_t offset,
325 			    enum i915_cache_level cache_level,
326 			    u32 flags);
327 	void (*insert_entries)(struct i915_address_space *vm,
328 			       struct sg_table *st,
329 			       uint64_t start,
330 			       enum i915_cache_level cache_level, u32 flags);
331 	void (*cleanup)(struct i915_address_space *vm);
332 	/** Unmap an object from an address space. This usually consists of
333 	 * setting the valid PTE entries to a reserved scratch page. */
334 	void (*unbind_vma)(struct i915_vma *vma);
335 	/* Map an object into an address space with the given cache flags. */
336 	int (*bind_vma)(struct i915_vma *vma,
337 			enum i915_cache_level cache_level,
338 			u32 flags);
339 };
340 
341 #define i915_is_ggtt(V) ((V)->is_ggtt)
342 
343 /* The Graphics Translation Table is the way in which GEN hardware translates a
344  * Graphics Virtual Address into a Physical Address. In addition to the normal
345  * collateral associated with any va->pa translations GEN hardware also has a
346  * portion of the GTT which can be mapped by the CPU and remain both coherent
347  * and correct (in cases like swizzling). That region is referred to as GMADR in
348  * the spec.
349  */
350 struct i915_ggtt {
351 	struct i915_address_space base;
352 
353 	size_t stolen_size;		/* Total size of stolen memory */
354 	size_t stolen_usable_size;	/* Total size minus BIOS reserved */
355 	size_t stolen_reserved_base;
356 	size_t stolen_reserved_size;
357 	size_t size;			/* Total size of Global GTT */
358 	u64 mappable_end;		/* End offset that we can CPU map */
359 	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
360 	phys_addr_t mappable_base;	/* PA of our GMADR */
361 
362 	/** "Graphics Stolen Memory" holds the global PTEs */
363 	void __iomem *gsm;
364 
365 	bool do_idle_maps;
366 
367 	int mtrr;
368 
369 	int (*probe)(struct i915_ggtt *ggtt);
370 };
371 
372 struct i915_hw_ppgtt {
373 	struct i915_address_space base;
374 	struct kref ref;
375 	struct drm_mm_node node;
376 	unsigned long pd_dirty_rings;
377 	union {
378 		struct i915_pml4 pml4;		/* GEN8+ & 48b PPGTT */
379 		struct i915_page_directory_pointer pdp;	/* GEN8+ */
380 		struct i915_page_directory pd;		/* GEN6-7 */
381 	};
382 
383 	struct drm_i915_file_private *file_priv;
384 
385 	gen6_pte_t __iomem *pd_addr;
386 
387 	int (*enable)(struct i915_hw_ppgtt *ppgtt);
388 	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
389 			 struct drm_i915_gem_request *req);
390 	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
391 };
392 
393 /*
394  * gen6_for_each_pde() iterates over every pde from start until start+length.
395  * If start and start+length are not perfectly divisible, the macro will round
396  * down and up as needed. Start=0 and length=2G effectively iterates over
397  * every PDE in the system. The macro modifies ALL its parameters except 'pd',
398  * so each of the other parameters should preferably be a simple variable, or
399  * at most an lvalue with no side-effects!
400  */
401 #define gen6_for_each_pde(pt, pd, start, length, iter)			\
402 	for (iter = gen6_pde_index(start);				\
403 	     length > 0 && iter < I915_PDES &&				\
404 		(pt = (pd)->page_table[iter], true);			\
405 	     ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT);		\
406 		    temp = min(temp - start, length);			\
407 		    start += temp, length -= temp; }), ++iter)
408 
409 #define gen6_for_all_pdes(pt, pd, iter)					\
410 	for (iter = 0;							\
411 	     iter < I915_PDES &&					\
412 		(pt = (pd)->page_table[iter], true);			\
413 	     ++iter)
414 
415 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
416 {
417 	const uint32_t mask = NUM_PTE(pde_shift) - 1;
418 
419 	return (address >> PAGE_SHIFT) & mask;
420 }
421 
422 /* Helper to counts the number of PTEs within the given length. This count
423  * does not cross a page table boundary, so the max value would be
424  * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
425 */
426 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
427 				      uint32_t pde_shift)
428 {
429 	const uint64_t mask = ~((1ULL << pde_shift) - 1);
430 	uint64_t end;
431 
432 	WARN_ON(length == 0);
433 	WARN_ON(offset_in_page(addr|length));
434 
435 	end = addr + length;
436 
437 	if ((addr & mask) != (end & mask))
438 		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
439 
440 	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
441 }
442 
443 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
444 {
445 	return (addr >> shift) & I915_PDE_MASK;
446 }
447 
448 static inline uint32_t gen6_pte_index(uint32_t addr)
449 {
450 	return i915_pte_index(addr, GEN6_PDE_SHIFT);
451 }
452 
453 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
454 {
455 	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
456 }
457 
458 static inline uint32_t gen6_pde_index(uint32_t addr)
459 {
460 	return i915_pde_index(addr, GEN6_PDE_SHIFT);
461 }
462 
463 /* Equivalent to the gen6 version, For each pde iterates over every pde
464  * between from start until start + length. On gen8+ it simply iterates
465  * over every page directory entry in a page directory.
466  */
467 #define gen8_for_each_pde(pt, pd, start, length, iter)			\
468 	for (iter = gen8_pde_index(start);				\
469 	     length > 0 && iter < I915_PDES &&				\
470 		(pt = (pd)->page_table[iter], true);			\
471 	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);		\
472 		    temp = min(temp - start, length);			\
473 		    start += temp, length -= temp; }), ++iter)
474 
475 #define gen8_for_each_pdpe(pd, pdp, start, length, iter)		\
476 	for (iter = gen8_pdpe_index(start);				\
477 	     length > 0 && iter < I915_PDPES_PER_PDP(dev) &&		\
478 		(pd = (pdp)->page_directory[iter], true);		\
479 	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);	\
480 		    temp = min(temp - start, length);			\
481 		    start += temp, length -= temp; }), ++iter)
482 
483 #define gen8_for_each_pml4e(pdp, pml4, start, length, iter)		\
484 	for (iter = gen8_pml4e_index(start);				\
485 	     length > 0 && iter < GEN8_PML4ES_PER_PML4 &&		\
486 		(pdp = (pml4)->pdps[iter], true);			\
487 	     ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);	\
488 		    temp = min(temp - start, length);			\
489 		    start += temp, length -= temp; }), ++iter)
490 
491 static inline uint32_t gen8_pte_index(uint64_t address)
492 {
493 	return i915_pte_index(address, GEN8_PDE_SHIFT);
494 }
495 
496 static inline uint32_t gen8_pde_index(uint64_t address)
497 {
498 	return i915_pde_index(address, GEN8_PDE_SHIFT);
499 }
500 
501 static inline uint32_t gen8_pdpe_index(uint64_t address)
502 {
503 	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
504 }
505 
506 static inline uint32_t gen8_pml4e_index(uint64_t address)
507 {
508 	return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
509 }
510 
511 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
512 {
513 	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
514 }
515 
516 static inline dma_addr_t
517 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
518 {
519 	return test_bit(n, ppgtt->pdp.used_pdpes) ?
520 		px_dma(ppgtt->pdp.page_directory[n]) :
521 		px_dma(ppgtt->base.scratch_pd);
522 }
523 
524 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
525 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
526 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
527 void i915_gem_init_ggtt(struct drm_i915_private *dev_priv);
528 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv);
529 
530 int i915_ppgtt_init_hw(struct drm_device *dev);
531 void i915_ppgtt_release(struct kref *kref);
532 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
533 					struct drm_i915_file_private *fpriv);
534 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
535 {
536 	if (ppgtt)
537 		kref_get(&ppgtt->ref);
538 }
539 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
540 {
541 	if (ppgtt)
542 		kref_put(&ppgtt->ref, i915_ppgtt_release);
543 }
544 
545 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
546 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
547 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
548 
549 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
550 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
551 
552 static inline bool
553 i915_ggtt_view_equal(const struct i915_ggtt_view *a,
554                      const struct i915_ggtt_view *b)
555 {
556 	if (WARN_ON(!a || !b))
557 		return false;
558 
559 	if (a->type != b->type)
560 		return false;
561 	if (a->type != I915_GGTT_VIEW_NORMAL)
562 		return !memcmp(&a->params, &b->params, sizeof(a->params));
563 	return true;
564 }
565 
566 size_t
567 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
568 		    const struct i915_ggtt_view *view);
569 
570 /**
571  * i915_vma_pin_iomap - calls ioremap_wc to map the GGTT VMA via the aperture
572  * @vma: VMA to iomap
573  *
574  * The passed in VMA has to be pinned in the global GTT mappable region.
575  * An extra pinning of the VMA is acquired for the return iomapping,
576  * the caller must call i915_vma_unpin_iomap to relinquish the pinning
577  * after the iomapping is no longer required.
578  *
579  * Callers must hold the struct_mutex.
580  *
581  * Returns a valid iomapped pointer or ERR_PTR.
582  */
583 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma);
584 #define IO_ERR_PTR(x) ((void __iomem *)ERR_PTR(x))
585 
586 /**
587  * i915_vma_unpin_iomap - unpins the mapping returned from i915_vma_iomap
588  * @vma: VMA to unpin
589  *
590  * Unpins the previously iomapped VMA from i915_vma_pin_iomap().
591  *
592  * Callers must hold the struct_mutex. This function is only valid to be
593  * called on a VMA previously iomapped by the caller with i915_vma_pin_iomap().
594  */
595 static inline void i915_vma_unpin_iomap(struct i915_vma *vma)
596 {
597 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
598 	GEM_BUG_ON(vma->pin_count == 0);
599 	GEM_BUG_ON(vma->iomap == NULL);
600 	vma->pin_count--;
601 }
602 
603 #endif
604