1 /* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Please try to maintain the following order within this file unless it makes 24 * sense to do otherwise. From top to bottom: 25 * 1. typedefs 26 * 2. #defines, and macros 27 * 3. structure definitions 28 * 4. function prototypes 29 * 30 * Within each section, please try to order by generation in ascending order, 31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom). 32 */ 33 34 #ifndef __I915_GEM_GTT_H__ 35 #define __I915_GEM_GTT_H__ 36 37 struct drm_i915_file_private; 38 39 typedef uint32_t gen6_pte_t; 40 typedef uint64_t gen8_pte_t; 41 typedef uint64_t gen8_pde_t; 42 43 #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT) 44 45 46 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */ 47 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0)) 48 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) 49 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) 50 #define GEN6_PTE_CACHE_LLC (2 << 1) 51 #define GEN6_PTE_UNCACHED (1 << 1) 52 #define GEN6_PTE_VALID (1 << 0) 53 54 #define I915_PTES(pte_len) (PAGE_SIZE / (pte_len)) 55 #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1) 56 #define I915_PDES 512 57 #define I915_PDE_MASK (I915_PDES - 1) 58 #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT)) 59 60 #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t)) 61 #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE) 62 #define GEN6_PD_ALIGN (PAGE_SIZE * 16) 63 #define GEN6_PDE_SHIFT 22 64 #define GEN6_PDE_VALID (1 << 0) 65 66 #define GEN7_PTE_CACHE_L3_LLC (3 << 1) 67 68 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2) 69 #define BYT_PTE_WRITEABLE (1 << 1) 70 71 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits 72 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE. 73 */ 74 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \ 75 (((bits) & 0x8) << (11 - 3))) 76 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2) 77 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3) 78 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8) 79 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb) 80 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7) 81 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6) 82 #define HSW_PTE_UNCACHED (0) 83 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0)) 84 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr) 85 86 /* GEN8 legacy style address is defined as a 3 level page table: 87 * 31:30 | 29:21 | 20:12 | 11:0 88 * PDPE | PDE | PTE | offset 89 * The difference as compared to normal x86 3 level page table is the PDPEs are 90 * programmed via register. 91 */ 92 #define GEN8_PDPE_SHIFT 30 93 #define GEN8_PDPE_MASK 0x3 94 #define GEN8_PDE_SHIFT 21 95 #define GEN8_PDE_MASK 0x1ff 96 #define GEN8_PTE_SHIFT 12 97 #define GEN8_PTE_MASK 0x1ff 98 #define GEN8_LEGACY_PDPES 4 99 #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t)) 100 101 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD) 102 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */ 103 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */ 104 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */ 105 106 #define CHV_PPAT_SNOOP (1<<6) 107 #define GEN8_PPAT_AGE(x) (x<<4) 108 #define GEN8_PPAT_LLCeLLC (3<<2) 109 #define GEN8_PPAT_LLCELLC (2<<2) 110 #define GEN8_PPAT_LLC (1<<2) 111 #define GEN8_PPAT_WB (3<<0) 112 #define GEN8_PPAT_WT (2<<0) 113 #define GEN8_PPAT_WC (1<<0) 114 #define GEN8_PPAT_UC (0<<0) 115 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2) 116 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8)) 117 118 enum i915_ggtt_view_type { 119 I915_GGTT_VIEW_NORMAL = 0, 120 I915_GGTT_VIEW_ROTATED 121 }; 122 123 struct intel_rotation_info { 124 unsigned int height; 125 unsigned int pitch; 126 uint32_t pixel_format; 127 uint64_t fb_modifier; 128 }; 129 130 struct i915_ggtt_view { 131 enum i915_ggtt_view_type type; 132 133 struct sg_table *pages; 134 135 union { 136 struct intel_rotation_info rotation_info; 137 }; 138 }; 139 140 extern const struct i915_ggtt_view i915_ggtt_view_normal; 141 extern const struct i915_ggtt_view i915_ggtt_view_rotated; 142 143 enum i915_cache_level; 144 145 /** 146 * A VMA represents a GEM BO that is bound into an address space. Therefore, a 147 * VMA's presence cannot be guaranteed before binding, or after unbinding the 148 * object into/from the address space. 149 * 150 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime 151 * will always be <= an objects lifetime. So object refcounting should cover us. 152 */ 153 struct i915_vma { 154 struct drm_mm_node node; 155 struct drm_i915_gem_object *obj; 156 struct i915_address_space *vm; 157 158 /** Flags and address space this VMA is bound to */ 159 #define GLOBAL_BIND (1<<0) 160 #define LOCAL_BIND (1<<1) 161 #define PTE_READ_ONLY (1<<2) 162 unsigned int bound : 4; 163 164 /** 165 * Support different GGTT views into the same object. 166 * This means there can be multiple VMA mappings per object and per VM. 167 * i915_ggtt_view_type is used to distinguish between those entries. 168 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also 169 * assumed in GEM functions which take no ggtt view parameter. 170 */ 171 struct i915_ggtt_view ggtt_view; 172 173 /** This object's place on the active/inactive lists */ 174 struct list_head mm_list; 175 176 struct list_head vma_link; /* Link in the object's VMA list */ 177 178 /** This vma's place in the batchbuffer or on the eviction list */ 179 struct list_head exec_list; 180 181 /** 182 * Used for performing relocations during execbuffer insertion. 183 */ 184 struct hlist_node exec_node; 185 unsigned long exec_handle; 186 struct drm_i915_gem_exec_object2 *exec_entry; 187 188 /** 189 * How many users have pinned this object in GTT space. The following 190 * users can each hold at most one reference: pwrite/pread, execbuffer 191 * (objects are not allowed multiple times for the same batchbuffer), 192 * and the framebuffer code. When switching/pageflipping, the 193 * framebuffer code has at most two buffers pinned per crtc. 194 * 195 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3 196 * bits with absolutely no headroom. So use 4 bits. */ 197 unsigned int pin_count:4; 198 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf 199 200 /** Unmap an object from an address space. This usually consists of 201 * setting the valid PTE entries to a reserved scratch page. */ 202 void (*unbind_vma)(struct i915_vma *vma); 203 /* Map an object into an address space with the given cache flags. */ 204 void (*bind_vma)(struct i915_vma *vma, 205 enum i915_cache_level cache_level, 206 u32 flags); 207 }; 208 209 struct i915_page_table_entry { 210 struct page *page; 211 dma_addr_t daddr; 212 213 unsigned long *used_ptes; 214 }; 215 216 struct i915_page_directory_entry { 217 struct page *page; /* NULL for GEN6-GEN7 */ 218 union { 219 uint32_t pd_offset; 220 dma_addr_t daddr; 221 }; 222 223 struct i915_page_table_entry *page_table[I915_PDES]; /* PDEs */ 224 }; 225 226 struct i915_page_directory_pointer_entry { 227 /* struct page *page; */ 228 struct i915_page_directory_entry *page_directory[GEN8_LEGACY_PDPES]; 229 }; 230 231 struct i915_address_space { 232 struct drm_mm mm; 233 struct drm_device *dev; 234 struct list_head global_link; 235 unsigned long start; /* Start offset always 0 for dri2 */ 236 size_t total; /* size addr space maps (ex. 2GB for ggtt) */ 237 238 struct { 239 dma_addr_t addr; 240 struct page *page; 241 } scratch; 242 243 /** 244 * List of objects currently involved in rendering. 245 * 246 * Includes buffers having the contents of their GPU caches 247 * flushed, not necessarily primitives. last_read_req 248 * represents when the rendering involved will be completed. 249 * 250 * A reference is held on the buffer while on this list. 251 */ 252 struct list_head active_list; 253 254 /** 255 * LRU list of objects which are not in the ringbuffer and 256 * are ready to unbind, but are still in the GTT. 257 * 258 * last_read_req is NULL while an object is in this list. 259 * 260 * A reference is not held on the buffer while on this list, 261 * as merely being GTT-bound shouldn't prevent its being 262 * freed, and we'll pull it off the list in the free path. 263 */ 264 struct list_head inactive_list; 265 266 /* FIXME: Need a more generic return type */ 267 gen6_pte_t (*pte_encode)(dma_addr_t addr, 268 enum i915_cache_level level, 269 bool valid, u32 flags); /* Create a valid PTE */ 270 int (*allocate_va_range)(struct i915_address_space *vm, 271 uint64_t start, 272 uint64_t length); 273 void (*clear_range)(struct i915_address_space *vm, 274 uint64_t start, 275 uint64_t length, 276 bool use_scratch); 277 void (*insert_entries)(struct i915_address_space *vm, 278 struct sg_table *st, 279 uint64_t start, 280 enum i915_cache_level cache_level, u32 flags); 281 void (*cleanup)(struct i915_address_space *vm); 282 }; 283 284 /* The Graphics Translation Table is the way in which GEN hardware translates a 285 * Graphics Virtual Address into a Physical Address. In addition to the normal 286 * collateral associated with any va->pa translations GEN hardware also has a 287 * portion of the GTT which can be mapped by the CPU and remain both coherent 288 * and correct (in cases like swizzling). That region is referred to as GMADR in 289 * the spec. 290 */ 291 struct i915_gtt { 292 struct i915_address_space base; 293 size_t stolen_size; /* Total size of stolen memory */ 294 295 unsigned long mappable_end; /* End offset that we can CPU map */ 296 struct io_mapping *mappable; /* Mapping to our CPU mappable region */ 297 phys_addr_t mappable_base; /* PA of our GMADR */ 298 299 /** "Graphics Stolen Memory" holds the global PTEs */ 300 void __iomem *gsm; 301 302 bool do_idle_maps; 303 304 int mtrr; 305 306 /* global gtt ops */ 307 int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total, 308 size_t *stolen, phys_addr_t *mappable_base, 309 unsigned long *mappable_end); 310 }; 311 312 struct i915_hw_ppgtt { 313 struct i915_address_space base; 314 struct kref ref; 315 struct drm_mm_node node; 316 unsigned long pd_dirty_rings; 317 unsigned num_pd_entries; 318 unsigned num_pd_pages; /* gen8+ */ 319 union { 320 struct i915_page_directory_pointer_entry pdp; 321 struct i915_page_directory_entry pd; 322 }; 323 324 struct i915_page_table_entry *scratch_pt; 325 326 struct drm_i915_file_private *file_priv; 327 328 gen6_pte_t __iomem *pd_addr; 329 330 int (*enable)(struct i915_hw_ppgtt *ppgtt); 331 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt, 332 struct intel_engine_cs *ring); 333 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m); 334 }; 335 336 /* For each pde iterates over every pde between from start until start + length. 337 * If start, and start+length are not perfectly divisible, the macro will round 338 * down, and up as needed. The macro modifies pde, start, and length. Dev is 339 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0, 340 * and length = 2G effectively iterates over every PDE in the system. 341 * 342 * XXX: temp is not actually needed, but it saves doing the ALIGN operation. 343 */ 344 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \ 345 for (iter = gen6_pde_index(start); \ 346 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \ 347 iter++, \ 348 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \ 349 temp = min_t(unsigned, temp, length), \ 350 start += temp, length -= temp) 351 352 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift) 353 { 354 const uint32_t mask = NUM_PTE(pde_shift) - 1; 355 356 return (address >> PAGE_SHIFT) & mask; 357 } 358 359 /* Helper to counts the number of PTEs within the given length. This count 360 * does not cross a page table boundary, so the max value would be 361 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8. 362 */ 363 static inline uint32_t i915_pte_count(uint64_t addr, size_t length, 364 uint32_t pde_shift) 365 { 366 const uint64_t mask = ~((1 << pde_shift) - 1); 367 uint64_t end; 368 369 WARN_ON(length == 0); 370 WARN_ON(offset_in_page(addr|length)); 371 372 end = addr + length; 373 374 if ((addr & mask) != (end & mask)) 375 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift); 376 377 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift); 378 } 379 380 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift) 381 { 382 return (addr >> shift) & I915_PDE_MASK; 383 } 384 385 static inline uint32_t gen6_pte_index(uint32_t addr) 386 { 387 return i915_pte_index(addr, GEN6_PDE_SHIFT); 388 } 389 390 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length) 391 { 392 return i915_pte_count(addr, length, GEN6_PDE_SHIFT); 393 } 394 395 static inline uint32_t gen6_pde_index(uint32_t addr) 396 { 397 return i915_pde_index(addr, GEN6_PDE_SHIFT); 398 } 399 400 int i915_gem_gtt_init(struct drm_device *dev); 401 void i915_gem_init_global_gtt(struct drm_device *dev); 402 void i915_global_gtt_cleanup(struct drm_device *dev); 403 404 405 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt); 406 int i915_ppgtt_init_hw(struct drm_device *dev); 407 void i915_ppgtt_release(struct kref *kref); 408 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev, 409 struct drm_i915_file_private *fpriv); 410 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt) 411 { 412 if (ppgtt) 413 kref_get(&ppgtt->ref); 414 } 415 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt) 416 { 417 if (ppgtt) 418 kref_put(&ppgtt->ref, i915_ppgtt_release); 419 } 420 421 void i915_check_and_clear_faults(struct drm_device *dev); 422 void i915_gem_suspend_gtt_mappings(struct drm_device *dev); 423 void i915_gem_restore_gtt_mappings(struct drm_device *dev); 424 425 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj); 426 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj); 427 428 static inline bool 429 i915_ggtt_view_equal(const struct i915_ggtt_view *a, 430 const struct i915_ggtt_view *b) 431 { 432 if (WARN_ON(!a || !b)) 433 return false; 434 435 return a->type == b->type; 436 } 437 438 #endif 439