1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Please try to maintain the following order within this file unless it makes
24  * sense to do otherwise. From top to bottom:
25  * 1. typedefs
26  * 2. #defines, and macros
27  * 3. structure definitions
28  * 4. function prototypes
29  *
30  * Within each section, please try to order by generation in ascending order,
31  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32  */
33 
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36 
37 #include <linux/io-mapping.h>
38 
39 #include "i915_gem_request.h"
40 
41 struct drm_i915_file_private;
42 
43 typedef uint32_t gen6_pte_t;
44 typedef uint64_t gen8_pte_t;
45 typedef uint64_t gen8_pde_t;
46 typedef uint64_t gen8_ppgtt_pdpe_t;
47 typedef uint64_t gen8_ppgtt_pml4e_t;
48 
49 #define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
50 
51 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
52 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
53 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
54 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
55 #define GEN6_PTE_CACHE_LLC		(2 << 1)
56 #define GEN6_PTE_UNCACHED		(1 << 1)
57 #define GEN6_PTE_VALID			(1 << 0)
58 
59 #define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
60 #define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
61 #define I915_PDES			512
62 #define I915_PDE_MASK			(I915_PDES - 1)
63 #define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
64 
65 #define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
66 #define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
67 #define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
68 #define GEN6_PDE_SHIFT			22
69 #define GEN6_PDE_VALID			(1 << 0)
70 
71 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
72 
73 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
74 #define BYT_PTE_WRITEABLE		(1 << 1)
75 
76 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
77  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
78  */
79 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
80 					 (((bits) & 0x8) << (11 - 3)))
81 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
82 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
83 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
84 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
85 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
86 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
87 #define HSW_PTE_UNCACHED		(0)
88 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
89 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
90 
91 /* GEN8 legacy style address is defined as a 3 level page table:
92  * 31:30 | 29:21 | 20:12 |  11:0
93  * PDPE  |  PDE  |  PTE  | offset
94  * The difference as compared to normal x86 3 level page table is the PDPEs are
95  * programmed via register.
96  *
97  * GEN8 48b legacy style address is defined as a 4 level page table:
98  * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
99  * PML4E | PDPE  |  PDE  |  PTE  | offset
100  */
101 #define GEN8_PML4ES_PER_PML4		512
102 #define GEN8_PML4E_SHIFT		39
103 #define GEN8_PML4E_MASK			(GEN8_PML4ES_PER_PML4 - 1)
104 #define GEN8_PDPE_SHIFT			30
105 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
106  * tables */
107 #define GEN8_PDPE_MASK			0x1ff
108 #define GEN8_PDE_SHIFT			21
109 #define GEN8_PDE_MASK			0x1ff
110 #define GEN8_PTE_SHIFT			12
111 #define GEN8_PTE_MASK			0x1ff
112 #define GEN8_LEGACY_PDPES		4
113 #define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
114 
115 #define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
116 				 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
117 
118 #define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
119 #define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
120 #define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
121 #define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
122 
123 #define CHV_PPAT_SNOOP			(1<<6)
124 #define GEN8_PPAT_AGE(x)		(x<<4)
125 #define GEN8_PPAT_LLCeLLC		(3<<2)
126 #define GEN8_PPAT_LLCELLC		(2<<2)
127 #define GEN8_PPAT_LLC			(1<<2)
128 #define GEN8_PPAT_WB			(3<<0)
129 #define GEN8_PPAT_WT			(2<<0)
130 #define GEN8_PPAT_WC			(1<<0)
131 #define GEN8_PPAT_UC			(0<<0)
132 #define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
133 #define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
134 
135 enum i915_ggtt_view_type {
136 	I915_GGTT_VIEW_NORMAL = 0,
137 	I915_GGTT_VIEW_ROTATED,
138 	I915_GGTT_VIEW_PARTIAL,
139 };
140 
141 struct intel_rotation_info {
142 	unsigned int uv_offset;
143 	uint32_t pixel_format;
144 	unsigned int uv_start_page;
145 	struct {
146 		/* tiles */
147 		unsigned int width, height;
148 	} plane[2];
149 };
150 
151 struct i915_ggtt_view {
152 	enum i915_ggtt_view_type type;
153 
154 	union {
155 		struct {
156 			u64 offset;
157 			unsigned int size;
158 		} partial;
159 		struct intel_rotation_info rotated;
160 	} params;
161 
162 	struct sg_table *pages;
163 };
164 
165 extern const struct i915_ggtt_view i915_ggtt_view_normal;
166 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
167 
168 enum i915_cache_level;
169 
170 /**
171  * A VMA represents a GEM BO that is bound into an address space. Therefore, a
172  * VMA's presence cannot be guaranteed before binding, or after unbinding the
173  * object into/from the address space.
174  *
175  * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
176  * will always be <= an objects lifetime. So object refcounting should cover us.
177  */
178 struct i915_vma {
179 	struct drm_mm_node node;
180 	struct drm_i915_gem_object *obj;
181 	struct i915_address_space *vm;
182 	void __iomem *iomap;
183 	u64 size;
184 
185 	unsigned int active;
186 	struct i915_gem_active last_read[I915_NUM_ENGINES];
187 
188 	/** Flags and address space this VMA is bound to */
189 #define GLOBAL_BIND	(1<<0)
190 #define LOCAL_BIND	(1<<1)
191 	unsigned int bound : 4;
192 	bool is_ggtt : 1;
193 	bool closed : 1;
194 
195 	/**
196 	 * Support different GGTT views into the same object.
197 	 * This means there can be multiple VMA mappings per object and per VM.
198 	 * i915_ggtt_view_type is used to distinguish between those entries.
199 	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
200 	 * assumed in GEM functions which take no ggtt view parameter.
201 	 */
202 	struct i915_ggtt_view ggtt_view;
203 
204 	/** This object's place on the active/inactive lists */
205 	struct list_head vm_link;
206 
207 	struct list_head obj_link; /* Link in the object's VMA list */
208 
209 	/** This vma's place in the batchbuffer or on the eviction list */
210 	struct list_head exec_list;
211 
212 	/**
213 	 * Used for performing relocations during execbuffer insertion.
214 	 */
215 	struct hlist_node exec_node;
216 	unsigned long exec_handle;
217 	struct drm_i915_gem_exec_object2 *exec_entry;
218 
219 	/**
220 	 * How many users have pinned this object in GTT space. The following
221 	 * users can each hold at most one reference: pwrite/pread, execbuffer
222 	 * (objects are not allowed multiple times for the same batchbuffer),
223 	 * and the framebuffer code. When switching/pageflipping, the
224 	 * framebuffer code has at most two buffers pinned per crtc.
225 	 *
226 	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
227 	 * bits with absolutely no headroom. So use 4 bits. */
228 	unsigned int pin_count:4;
229 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
230 };
231 
232 static inline unsigned int i915_vma_get_active(const struct i915_vma *vma)
233 {
234 	return vma->active;
235 }
236 
237 static inline bool i915_vma_is_active(const struct i915_vma *vma)
238 {
239 	return i915_vma_get_active(vma);
240 }
241 
242 static inline void i915_vma_set_active(struct i915_vma *vma,
243 				       unsigned int engine)
244 {
245 	vma->active |= BIT(engine);
246 }
247 
248 static inline void i915_vma_clear_active(struct i915_vma *vma,
249 					 unsigned int engine)
250 {
251 	vma->active &= ~BIT(engine);
252 }
253 
254 static inline bool i915_vma_has_active_engine(const struct i915_vma *vma,
255 					      unsigned int engine)
256 {
257 	return vma->active & BIT(engine);
258 }
259 
260 struct i915_page_dma {
261 	struct page *page;
262 	union {
263 		dma_addr_t daddr;
264 
265 		/* For gen6/gen7 only. This is the offset in the GGTT
266 		 * where the page directory entries for PPGTT begin
267 		 */
268 		uint32_t ggtt_offset;
269 	};
270 };
271 
272 #define px_base(px) (&(px)->base)
273 #define px_page(px) (px_base(px)->page)
274 #define px_dma(px) (px_base(px)->daddr)
275 
276 struct i915_page_scratch {
277 	struct i915_page_dma base;
278 };
279 
280 struct i915_page_table {
281 	struct i915_page_dma base;
282 
283 	unsigned long *used_ptes;
284 };
285 
286 struct i915_page_directory {
287 	struct i915_page_dma base;
288 
289 	unsigned long *used_pdes;
290 	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
291 };
292 
293 struct i915_page_directory_pointer {
294 	struct i915_page_dma base;
295 
296 	unsigned long *used_pdpes;
297 	struct i915_page_directory **page_directory;
298 };
299 
300 struct i915_pml4 {
301 	struct i915_page_dma base;
302 
303 	DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
304 	struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
305 };
306 
307 struct i915_address_space {
308 	struct drm_mm mm;
309 	struct drm_device *dev;
310 	/* Every address space belongs to a struct file - except for the global
311 	 * GTT that is owned by the driver (and so @file is set to NULL). In
312 	 * principle, no information should leak from one context to another
313 	 * (or between files/processes etc) unless explicitly shared by the
314 	 * owner. Tracking the owner is important in order to free up per-file
315 	 * objects along with the file, to aide resource tracking, and to
316 	 * assign blame.
317 	 */
318 	struct drm_i915_file_private *file;
319 	struct list_head global_link;
320 	u64 start;		/* Start offset always 0 for dri2 */
321 	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
322 
323 	bool closed;
324 
325 	struct i915_page_scratch *scratch_page;
326 	struct i915_page_table *scratch_pt;
327 	struct i915_page_directory *scratch_pd;
328 	struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
329 
330 	/**
331 	 * List of objects currently involved in rendering.
332 	 *
333 	 * Includes buffers having the contents of their GPU caches
334 	 * flushed, not necessarily primitives. last_read_req
335 	 * represents when the rendering involved will be completed.
336 	 *
337 	 * A reference is held on the buffer while on this list.
338 	 */
339 	struct list_head active_list;
340 
341 	/**
342 	 * LRU list of objects which are not in the ringbuffer and
343 	 * are ready to unbind, but are still in the GTT.
344 	 *
345 	 * last_read_req is NULL while an object is in this list.
346 	 *
347 	 * A reference is not held on the buffer while on this list,
348 	 * as merely being GTT-bound shouldn't prevent its being
349 	 * freed, and we'll pull it off the list in the free path.
350 	 */
351 	struct list_head inactive_list;
352 
353 	/**
354 	 * List of vma that have been unbound.
355 	 *
356 	 * A reference is not held on the buffer while on this list.
357 	 */
358 	struct list_head unbound_list;
359 
360 	/* FIXME: Need a more generic return type */
361 	gen6_pte_t (*pte_encode)(dma_addr_t addr,
362 				 enum i915_cache_level level,
363 				 bool valid, u32 flags); /* Create a valid PTE */
364 	/* flags for pte_encode */
365 #define PTE_READ_ONLY	(1<<0)
366 	int (*allocate_va_range)(struct i915_address_space *vm,
367 				 uint64_t start,
368 				 uint64_t length);
369 	void (*clear_range)(struct i915_address_space *vm,
370 			    uint64_t start,
371 			    uint64_t length,
372 			    bool use_scratch);
373 	void (*insert_page)(struct i915_address_space *vm,
374 			    dma_addr_t addr,
375 			    uint64_t offset,
376 			    enum i915_cache_level cache_level,
377 			    u32 flags);
378 	void (*insert_entries)(struct i915_address_space *vm,
379 			       struct sg_table *st,
380 			       uint64_t start,
381 			       enum i915_cache_level cache_level, u32 flags);
382 	void (*cleanup)(struct i915_address_space *vm);
383 	/** Unmap an object from an address space. This usually consists of
384 	 * setting the valid PTE entries to a reserved scratch page. */
385 	void (*unbind_vma)(struct i915_vma *vma);
386 	/* Map an object into an address space with the given cache flags. */
387 	int (*bind_vma)(struct i915_vma *vma,
388 			enum i915_cache_level cache_level,
389 			u32 flags);
390 };
391 
392 #define i915_is_ggtt(V) (!(V)->file)
393 
394 /* The Graphics Translation Table is the way in which GEN hardware translates a
395  * Graphics Virtual Address into a Physical Address. In addition to the normal
396  * collateral associated with any va->pa translations GEN hardware also has a
397  * portion of the GTT which can be mapped by the CPU and remain both coherent
398  * and correct (in cases like swizzling). That region is referred to as GMADR in
399  * the spec.
400  */
401 struct i915_ggtt {
402 	struct i915_address_space base;
403 
404 	size_t stolen_size;		/* Total size of stolen memory */
405 	size_t stolen_usable_size;	/* Total size minus BIOS reserved */
406 	size_t stolen_reserved_base;
407 	size_t stolen_reserved_size;
408 	u64 mappable_end;		/* End offset that we can CPU map */
409 	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
410 	phys_addr_t mappable_base;	/* PA of our GMADR */
411 
412 	/** "Graphics Stolen Memory" holds the global PTEs */
413 	void __iomem *gsm;
414 
415 	bool do_idle_maps;
416 
417 	int mtrr;
418 };
419 
420 struct i915_hw_ppgtt {
421 	struct i915_address_space base;
422 	struct kref ref;
423 	struct drm_mm_node node;
424 	unsigned long pd_dirty_rings;
425 	union {
426 		struct i915_pml4 pml4;		/* GEN8+ & 48b PPGTT */
427 		struct i915_page_directory_pointer pdp;	/* GEN8+ */
428 		struct i915_page_directory pd;		/* GEN6-7 */
429 	};
430 
431 	gen6_pte_t __iomem *pd_addr;
432 
433 	int (*enable)(struct i915_hw_ppgtt *ppgtt);
434 	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
435 			 struct drm_i915_gem_request *req);
436 	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
437 };
438 
439 /*
440  * gen6_for_each_pde() iterates over every pde from start until start+length.
441  * If start and start+length are not perfectly divisible, the macro will round
442  * down and up as needed. Start=0 and length=2G effectively iterates over
443  * every PDE in the system. The macro modifies ALL its parameters except 'pd',
444  * so each of the other parameters should preferably be a simple variable, or
445  * at most an lvalue with no side-effects!
446  */
447 #define gen6_for_each_pde(pt, pd, start, length, iter)			\
448 	for (iter = gen6_pde_index(start);				\
449 	     length > 0 && iter < I915_PDES &&				\
450 		(pt = (pd)->page_table[iter], true);			\
451 	     ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT);		\
452 		    temp = min(temp - start, length);			\
453 		    start += temp, length -= temp; }), ++iter)
454 
455 #define gen6_for_all_pdes(pt, pd, iter)					\
456 	for (iter = 0;							\
457 	     iter < I915_PDES &&					\
458 		(pt = (pd)->page_table[iter], true);			\
459 	     ++iter)
460 
461 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
462 {
463 	const uint32_t mask = NUM_PTE(pde_shift) - 1;
464 
465 	return (address >> PAGE_SHIFT) & mask;
466 }
467 
468 /* Helper to counts the number of PTEs within the given length. This count
469  * does not cross a page table boundary, so the max value would be
470  * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
471 */
472 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
473 				      uint32_t pde_shift)
474 {
475 	const uint64_t mask = ~((1ULL << pde_shift) - 1);
476 	uint64_t end;
477 
478 	WARN_ON(length == 0);
479 	WARN_ON(offset_in_page(addr|length));
480 
481 	end = addr + length;
482 
483 	if ((addr & mask) != (end & mask))
484 		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
485 
486 	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
487 }
488 
489 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
490 {
491 	return (addr >> shift) & I915_PDE_MASK;
492 }
493 
494 static inline uint32_t gen6_pte_index(uint32_t addr)
495 {
496 	return i915_pte_index(addr, GEN6_PDE_SHIFT);
497 }
498 
499 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
500 {
501 	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
502 }
503 
504 static inline uint32_t gen6_pde_index(uint32_t addr)
505 {
506 	return i915_pde_index(addr, GEN6_PDE_SHIFT);
507 }
508 
509 /* Equivalent to the gen6 version, For each pde iterates over every pde
510  * between from start until start + length. On gen8+ it simply iterates
511  * over every page directory entry in a page directory.
512  */
513 #define gen8_for_each_pde(pt, pd, start, length, iter)			\
514 	for (iter = gen8_pde_index(start);				\
515 	     length > 0 && iter < I915_PDES &&				\
516 		(pt = (pd)->page_table[iter], true);			\
517 	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);		\
518 		    temp = min(temp - start, length);			\
519 		    start += temp, length -= temp; }), ++iter)
520 
521 #define gen8_for_each_pdpe(pd, pdp, start, length, iter)		\
522 	for (iter = gen8_pdpe_index(start);				\
523 	     length > 0 && iter < I915_PDPES_PER_PDP(dev) &&		\
524 		(pd = (pdp)->page_directory[iter], true);		\
525 	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);	\
526 		    temp = min(temp - start, length);			\
527 		    start += temp, length -= temp; }), ++iter)
528 
529 #define gen8_for_each_pml4e(pdp, pml4, start, length, iter)		\
530 	for (iter = gen8_pml4e_index(start);				\
531 	     length > 0 && iter < GEN8_PML4ES_PER_PML4 &&		\
532 		(pdp = (pml4)->pdps[iter], true);			\
533 	     ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);	\
534 		    temp = min(temp - start, length);			\
535 		    start += temp, length -= temp; }), ++iter)
536 
537 static inline uint32_t gen8_pte_index(uint64_t address)
538 {
539 	return i915_pte_index(address, GEN8_PDE_SHIFT);
540 }
541 
542 static inline uint32_t gen8_pde_index(uint64_t address)
543 {
544 	return i915_pde_index(address, GEN8_PDE_SHIFT);
545 }
546 
547 static inline uint32_t gen8_pdpe_index(uint64_t address)
548 {
549 	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
550 }
551 
552 static inline uint32_t gen8_pml4e_index(uint64_t address)
553 {
554 	return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
555 }
556 
557 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
558 {
559 	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
560 }
561 
562 static inline dma_addr_t
563 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
564 {
565 	return test_bit(n, ppgtt->pdp.used_pdpes) ?
566 		px_dma(ppgtt->pdp.page_directory[n]) :
567 		px_dma(ppgtt->base.scratch_pd);
568 }
569 
570 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
571 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
572 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
573 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv);
574 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv);
575 
576 int i915_ppgtt_init_hw(struct drm_device *dev);
577 void i915_ppgtt_release(struct kref *kref);
578 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv,
579 					struct drm_i915_file_private *fpriv);
580 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
581 {
582 	if (ppgtt)
583 		kref_get(&ppgtt->ref);
584 }
585 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
586 {
587 	if (ppgtt)
588 		kref_put(&ppgtt->ref, i915_ppgtt_release);
589 }
590 
591 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
592 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
593 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
594 
595 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
596 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
597 
598 static inline bool
599 i915_ggtt_view_equal(const struct i915_ggtt_view *a,
600                      const struct i915_ggtt_view *b)
601 {
602 	if (WARN_ON(!a || !b))
603 		return false;
604 
605 	if (a->type != b->type)
606 		return false;
607 	if (a->type != I915_GGTT_VIEW_NORMAL)
608 		return !memcmp(&a->params, &b->params, sizeof(a->params));
609 	return true;
610 }
611 
612 static inline int i915_vma_pin_count(const struct i915_vma *vma)
613 {
614 	return vma->pin_count;
615 }
616 
617 static inline bool i915_vma_is_pinned(const struct i915_vma *vma)
618 {
619 	return i915_vma_pin_count(vma);
620 }
621 
622 static inline void __i915_vma_pin(struct i915_vma *vma)
623 {
624 	vma->pin_count++;
625 	GEM_BUG_ON(!i915_vma_is_pinned(vma));
626 }
627 
628 static inline void __i915_vma_unpin(struct i915_vma *vma)
629 {
630 	GEM_BUG_ON(!i915_vma_is_pinned(vma));
631 	vma->pin_count--;
632 }
633 
634 static inline void i915_vma_unpin(struct i915_vma *vma)
635 {
636 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
637 	__i915_vma_unpin(vma);
638 }
639 
640 /**
641  * i915_vma_pin_iomap - calls ioremap_wc to map the GGTT VMA via the aperture
642  * @vma: VMA to iomap
643  *
644  * The passed in VMA has to be pinned in the global GTT mappable region.
645  * An extra pinning of the VMA is acquired for the return iomapping,
646  * the caller must call i915_vma_unpin_iomap to relinquish the pinning
647  * after the iomapping is no longer required.
648  *
649  * Callers must hold the struct_mutex.
650  *
651  * Returns a valid iomapped pointer or ERR_PTR.
652  */
653 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma);
654 #define IO_ERR_PTR(x) ((void __iomem *)ERR_PTR(x))
655 
656 /**
657  * i915_vma_unpin_iomap - unpins the mapping returned from i915_vma_iomap
658  * @vma: VMA to unpin
659  *
660  * Unpins the previously iomapped VMA from i915_vma_pin_iomap().
661  *
662  * Callers must hold the struct_mutex. This function is only valid to be
663  * called on a VMA previously iomapped by the caller with i915_vma_pin_iomap().
664  */
665 static inline void i915_vma_unpin_iomap(struct i915_vma *vma)
666 {
667 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
668 	GEM_BUG_ON(vma->iomap == NULL);
669 	i915_vma_unpin(vma);
670 }
671 
672 #endif
673