1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Please try to maintain the following order within this file unless it makes
24  * sense to do otherwise. From top to bottom:
25  * 1. typedefs
26  * 2. #defines, and macros
27  * 3. structure definitions
28  * 4. function prototypes
29  *
30  * Within each section, please try to order by generation in ascending order,
31  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32  */
33 
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36 
37 struct drm_i915_file_private;
38 
39 typedef uint32_t gen6_gtt_pte_t;
40 typedef uint64_t gen8_gtt_pte_t;
41 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
42 
43 #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44 
45 #define I915_PPGTT_PT_ENTRIES		(PAGE_SIZE / sizeof(gen6_gtt_pte_t))
46 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
48 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
49 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
50 #define GEN6_PTE_CACHE_LLC		(2 << 1)
51 #define GEN6_PTE_UNCACHED		(1 << 1)
52 #define GEN6_PTE_VALID			(1 << 0)
53 
54 #define GEN6_PPGTT_PD_ENTRIES		512
55 #define GEN6_PD_SIZE			(GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
56 #define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
57 #define GEN6_PDE_VALID			(1 << 0)
58 
59 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
60 
61 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
62 #define BYT_PTE_WRITEABLE		(1 << 1)
63 
64 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
65  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
66  */
67 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
68 					 (((bits) & 0x8) << (11 - 3)))
69 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
70 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
71 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
72 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
73 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
74 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
75 #define HSW_PTE_UNCACHED		(0)
76 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
77 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
78 
79 /* GEN8 legacy style address is defined as a 3 level page table:
80  * 31:30 | 29:21 | 20:12 |  11:0
81  * PDPE  |  PDE  |  PTE  | offset
82  * The difference as compared to normal x86 3 level page table is the PDPEs are
83  * programmed via register.
84  */
85 #define GEN8_PDPE_SHIFT			30
86 #define GEN8_PDPE_MASK			0x3
87 #define GEN8_PDE_SHIFT			21
88 #define GEN8_PDE_MASK			0x1ff
89 #define GEN8_PTE_SHIFT			12
90 #define GEN8_PTE_MASK			0x1ff
91 #define GEN8_LEGACY_PDPES		4
92 #define GEN8_PTES_PER_PAGE		(PAGE_SIZE / sizeof(gen8_gtt_pte_t))
93 #define GEN8_PDES_PER_PAGE		(PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
94 
95 #define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
96 #define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
97 #define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
98 #define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
99 
100 #define CHV_PPAT_SNOOP			(1<<6)
101 #define GEN8_PPAT_AGE(x)		(x<<4)
102 #define GEN8_PPAT_LLCeLLC		(3<<2)
103 #define GEN8_PPAT_LLCELLC		(2<<2)
104 #define GEN8_PPAT_LLC			(1<<2)
105 #define GEN8_PPAT_WB			(3<<0)
106 #define GEN8_PPAT_WT			(2<<0)
107 #define GEN8_PPAT_WC			(1<<0)
108 #define GEN8_PPAT_UC			(0<<0)
109 #define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
110 #define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
111 
112 enum i915_ggtt_view_type {
113 	I915_GGTT_VIEW_NORMAL = 0,
114 };
115 
116 struct i915_ggtt_view {
117 	enum i915_ggtt_view_type type;
118 
119 	struct sg_table *pages;
120 };
121 
122 extern const struct i915_ggtt_view i915_ggtt_view_normal;
123 
124 enum i915_cache_level;
125 
126 /**
127  * A VMA represents a GEM BO that is bound into an address space. Therefore, a
128  * VMA's presence cannot be guaranteed before binding, or after unbinding the
129  * object into/from the address space.
130  *
131  * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
132  * will always be <= an objects lifetime. So object refcounting should cover us.
133  */
134 struct i915_vma {
135 	struct drm_mm_node node;
136 	struct drm_i915_gem_object *obj;
137 	struct i915_address_space *vm;
138 
139 	/** Flags and address space this VMA is bound to */
140 #define GLOBAL_BIND	(1<<0)
141 #define LOCAL_BIND	(1<<1)
142 #define PTE_READ_ONLY	(1<<2)
143 	unsigned int bound : 4;
144 
145 	/**
146 	 * Support different GGTT views into the same object.
147 	 * This means there can be multiple VMA mappings per object and per VM.
148 	 * i915_ggtt_view_type is used to distinguish between those entries.
149 	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
150 	 * assumed in GEM functions which take no ggtt view parameter.
151 	 */
152 	struct i915_ggtt_view ggtt_view;
153 
154 	/** This object's place on the active/inactive lists */
155 	struct list_head mm_list;
156 
157 	struct list_head vma_link; /* Link in the object's VMA list */
158 
159 	/** This vma's place in the batchbuffer or on the eviction list */
160 	struct list_head exec_list;
161 
162 	/**
163 	 * Used for performing relocations during execbuffer insertion.
164 	 */
165 	struct hlist_node exec_node;
166 	unsigned long exec_handle;
167 	struct drm_i915_gem_exec_object2 *exec_entry;
168 
169 	/**
170 	 * How many users have pinned this object in GTT space. The following
171 	 * users can each hold at most one reference: pwrite/pread, execbuffer
172 	 * (objects are not allowed multiple times for the same batchbuffer),
173 	 * and the framebuffer code. When switching/pageflipping, the
174 	 * framebuffer code has at most two buffers pinned per crtc.
175 	 *
176 	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
177 	 * bits with absolutely no headroom. So use 4 bits. */
178 	unsigned int pin_count:4;
179 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
180 
181 	/** Unmap an object from an address space. This usually consists of
182 	 * setting the valid PTE entries to a reserved scratch page. */
183 	void (*unbind_vma)(struct i915_vma *vma);
184 	/* Map an object into an address space with the given cache flags. */
185 	void (*bind_vma)(struct i915_vma *vma,
186 			 enum i915_cache_level cache_level,
187 			 u32 flags);
188 };
189 
190 struct i915_page_table_entry {
191 	struct page *page;
192 	dma_addr_t daddr;
193 };
194 
195 struct i915_page_directory_entry {
196 	struct page *page; /* NULL for GEN6-GEN7 */
197 	union {
198 		uint32_t pd_offset;
199 		dma_addr_t daddr;
200 	};
201 
202 	struct i915_page_table_entry *page_table[GEN6_PPGTT_PD_ENTRIES]; /* PDEs */
203 };
204 
205 struct i915_page_directory_pointer_entry {
206 	/* struct page *page; */
207 	struct i915_page_directory_entry *page_directory[GEN8_LEGACY_PDPES];
208 };
209 
210 struct i915_address_space {
211 	struct drm_mm mm;
212 	struct drm_device *dev;
213 	struct list_head global_link;
214 	unsigned long start;		/* Start offset always 0 for dri2 */
215 	size_t total;		/* size addr space maps (ex. 2GB for ggtt) */
216 
217 	struct {
218 		dma_addr_t addr;
219 		struct page *page;
220 	} scratch;
221 
222 	/**
223 	 * List of objects currently involved in rendering.
224 	 *
225 	 * Includes buffers having the contents of their GPU caches
226 	 * flushed, not necessarily primitives. last_read_req
227 	 * represents when the rendering involved will be completed.
228 	 *
229 	 * A reference is held on the buffer while on this list.
230 	 */
231 	struct list_head active_list;
232 
233 	/**
234 	 * LRU list of objects which are not in the ringbuffer and
235 	 * are ready to unbind, but are still in the GTT.
236 	 *
237 	 * last_read_req is NULL while an object is in this list.
238 	 *
239 	 * A reference is not held on the buffer while on this list,
240 	 * as merely being GTT-bound shouldn't prevent its being
241 	 * freed, and we'll pull it off the list in the free path.
242 	 */
243 	struct list_head inactive_list;
244 
245 	/* FIXME: Need a more generic return type */
246 	gen6_gtt_pte_t (*pte_encode)(dma_addr_t addr,
247 				     enum i915_cache_level level,
248 				     bool valid, u32 flags); /* Create a valid PTE */
249 	void (*clear_range)(struct i915_address_space *vm,
250 			    uint64_t start,
251 			    uint64_t length,
252 			    bool use_scratch);
253 	void (*insert_entries)(struct i915_address_space *vm,
254 			       struct sg_table *st,
255 			       uint64_t start,
256 			       enum i915_cache_level cache_level, u32 flags);
257 	void (*cleanup)(struct i915_address_space *vm);
258 };
259 
260 /* The Graphics Translation Table is the way in which GEN hardware translates a
261  * Graphics Virtual Address into a Physical Address. In addition to the normal
262  * collateral associated with any va->pa translations GEN hardware also has a
263  * portion of the GTT which can be mapped by the CPU and remain both coherent
264  * and correct (in cases like swizzling). That region is referred to as GMADR in
265  * the spec.
266  */
267 struct i915_gtt {
268 	struct i915_address_space base;
269 	size_t stolen_size;		/* Total size of stolen memory */
270 
271 	unsigned long mappable_end;	/* End offset that we can CPU map */
272 	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
273 	phys_addr_t mappable_base;	/* PA of our GMADR */
274 
275 	/** "Graphics Stolen Memory" holds the global PTEs */
276 	void __iomem *gsm;
277 
278 	bool do_idle_maps;
279 
280 	int mtrr;
281 
282 	/* global gtt ops */
283 	int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
284 			  size_t *stolen, phys_addr_t *mappable_base,
285 			  unsigned long *mappable_end);
286 };
287 
288 struct i915_hw_ppgtt {
289 	struct i915_address_space base;
290 	struct kref ref;
291 	struct drm_mm_node node;
292 	unsigned num_pd_entries;
293 	unsigned num_pd_pages; /* gen8+ */
294 	union {
295 		struct i915_page_directory_pointer_entry pdp;
296 		struct i915_page_directory_entry pd;
297 	};
298 
299 	struct drm_i915_file_private *file_priv;
300 
301 	int (*enable)(struct i915_hw_ppgtt *ppgtt);
302 	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
303 			 struct intel_engine_cs *ring);
304 	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
305 };
306 
307 int i915_gem_gtt_init(struct drm_device *dev);
308 void i915_gem_init_global_gtt(struct drm_device *dev);
309 void i915_global_gtt_cleanup(struct drm_device *dev);
310 
311 
312 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
313 int i915_ppgtt_init_hw(struct drm_device *dev);
314 void i915_ppgtt_release(struct kref *kref);
315 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
316 					struct drm_i915_file_private *fpriv);
317 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
318 {
319 	if (ppgtt)
320 		kref_get(&ppgtt->ref);
321 }
322 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
323 {
324 	if (ppgtt)
325 		kref_put(&ppgtt->ref, i915_ppgtt_release);
326 }
327 
328 void i915_check_and_clear_faults(struct drm_device *dev);
329 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
330 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
331 
332 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
333 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
334 
335 #endif
336