1 /* 2 * Copyright © 2010 Daniel Vetter 3 * Copyright © 2011-2014 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 27 28 #include <linux/fault-inject.h> 29 #include <linux/log2.h> 30 #include <linux/random.h> 31 #include <linux/seq_file.h> 32 #include <linux/stop_machine.h> 33 34 #include <asm/set_memory.h> 35 36 #include <drm/drmP.h> 37 #include <drm/i915_drm.h> 38 39 #include "i915_drv.h" 40 #include "i915_vgpu.h" 41 #include "i915_trace.h" 42 #include "intel_drv.h" 43 #include "intel_frontbuffer.h" 44 45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM) 46 47 /** 48 * DOC: Global GTT views 49 * 50 * Background and previous state 51 * 52 * Historically objects could exists (be bound) in global GTT space only as 53 * singular instances with a view representing all of the object's backing pages 54 * in a linear fashion. This view will be called a normal view. 55 * 56 * To support multiple views of the same object, where the number of mapped 57 * pages is not equal to the backing store, or where the layout of the pages 58 * is not linear, concept of a GGTT view was added. 59 * 60 * One example of an alternative view is a stereo display driven by a single 61 * image. In this case we would have a framebuffer looking like this 62 * (2x2 pages): 63 * 64 * 12 65 * 34 66 * 67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU 68 * rendering. In contrast, fed to the display engine would be an alternative 69 * view which could look something like this: 70 * 71 * 1212 72 * 3434 73 * 74 * In this example both the size and layout of pages in the alternative view is 75 * different from the normal view. 76 * 77 * Implementation and usage 78 * 79 * GGTT views are implemented using VMAs and are distinguished via enum 80 * i915_ggtt_view_type and struct i915_ggtt_view. 81 * 82 * A new flavour of core GEM functions which work with GGTT bound objects were 83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid 84 * renaming in large amounts of code. They take the struct i915_ggtt_view 85 * parameter encapsulating all metadata required to implement a view. 86 * 87 * As a helper for callers which are only interested in the normal view, 88 * globally const i915_ggtt_view_normal singleton instance exists. All old core 89 * GEM API functions, the ones not taking the view parameter, are operating on, 90 * or with the normal GGTT view. 91 * 92 * Code wanting to add or use a new GGTT view needs to: 93 * 94 * 1. Add a new enum with a suitable name. 95 * 2. Extend the metadata in the i915_ggtt_view structure if required. 96 * 3. Add support to i915_get_vma_pages(). 97 * 98 * New views are required to build a scatter-gather table from within the 99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and 100 * exists for the lifetime of an VMA. 101 * 102 * Core API is designed to have copy semantics which means that passed in 103 * struct i915_ggtt_view does not need to be persistent (left around after 104 * calling the core API functions). 105 * 106 */ 107 108 static int 109 i915_get_ggtt_vma_pages(struct i915_vma *vma); 110 111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv) 112 { 113 /* Note that as an uncached mmio write, this should flush the 114 * WCB of the writes into the GGTT before it triggers the invalidate. 115 */ 116 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 117 } 118 119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv) 120 { 121 gen6_ggtt_invalidate(dev_priv); 122 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); 123 } 124 125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv) 126 { 127 intel_gtt_chipset_flush(); 128 } 129 130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915) 131 { 132 i915->ggtt.invalidate(i915); 133 } 134 135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 136 int enable_ppgtt) 137 { 138 bool has_full_ppgtt; 139 bool has_full_48bit_ppgtt; 140 141 if (!dev_priv->info.has_aliasing_ppgtt) 142 return 0; 143 144 has_full_ppgtt = dev_priv->info.has_full_ppgtt; 145 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt; 146 147 if (intel_vgpu_active(dev_priv)) { 148 /* GVT-g has no support for 32bit ppgtt */ 149 has_full_ppgtt = false; 150 has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv); 151 } 152 153 /* 154 * We don't allow disabling PPGTT for gen9+ as it's a requirement for 155 * execlists, the sole mechanism available to submit work. 156 */ 157 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9) 158 return 0; 159 160 if (enable_ppgtt == 1) 161 return 1; 162 163 if (enable_ppgtt == 2 && has_full_ppgtt) 164 return 2; 165 166 if (enable_ppgtt == 3 && has_full_48bit_ppgtt) 167 return 3; 168 169 /* Disable ppgtt on SNB if VT-d is on. */ 170 if (IS_GEN6(dev_priv) && intel_vtd_active()) { 171 DRM_INFO("Disabling PPGTT because VT-d is on\n"); 172 return 0; 173 } 174 175 /* Early VLV doesn't have this */ 176 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) { 177 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); 178 return 0; 179 } 180 181 if (INTEL_GEN(dev_priv) >= 8 && i915_modparams.enable_execlists) { 182 if (has_full_48bit_ppgtt) 183 return 3; 184 185 if (has_full_ppgtt) 186 return 2; 187 } 188 189 return 1; 190 } 191 192 static int ppgtt_bind_vma(struct i915_vma *vma, 193 enum i915_cache_level cache_level, 194 u32 unused) 195 { 196 u32 pte_flags; 197 int ret; 198 199 if (!(vma->flags & I915_VMA_LOCAL_BIND)) { 200 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start, 201 vma->size); 202 if (ret) 203 return ret; 204 } 205 206 /* Currently applicable only to VLV */ 207 pte_flags = 0; 208 if (vma->obj->gt_ro) 209 pte_flags |= PTE_READ_ONLY; 210 211 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 212 213 return 0; 214 } 215 216 static void ppgtt_unbind_vma(struct i915_vma *vma) 217 { 218 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 219 } 220 221 static int ppgtt_set_pages(struct i915_vma *vma) 222 { 223 GEM_BUG_ON(vma->pages); 224 225 vma->pages = vma->obj->mm.pages; 226 227 vma->page_sizes = vma->obj->mm.page_sizes; 228 229 return 0; 230 } 231 232 static void clear_pages(struct i915_vma *vma) 233 { 234 GEM_BUG_ON(!vma->pages); 235 236 if (vma->pages != vma->obj->mm.pages) { 237 sg_free_table(vma->pages); 238 kfree(vma->pages); 239 } 240 vma->pages = NULL; 241 242 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); 243 } 244 245 static gen8_pte_t gen8_pte_encode(dma_addr_t addr, 246 enum i915_cache_level level) 247 { 248 gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW; 249 pte |= addr; 250 251 switch (level) { 252 case I915_CACHE_NONE: 253 pte |= PPAT_UNCACHED; 254 break; 255 case I915_CACHE_WT: 256 pte |= PPAT_DISPLAY_ELLC; 257 break; 258 default: 259 pte |= PPAT_CACHED; 260 break; 261 } 262 263 return pte; 264 } 265 266 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, 267 const enum i915_cache_level level) 268 { 269 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; 270 pde |= addr; 271 if (level != I915_CACHE_NONE) 272 pde |= PPAT_CACHED_PDE; 273 else 274 pde |= PPAT_UNCACHED; 275 return pde; 276 } 277 278 #define gen8_pdpe_encode gen8_pde_encode 279 #define gen8_pml4e_encode gen8_pde_encode 280 281 static gen6_pte_t snb_pte_encode(dma_addr_t addr, 282 enum i915_cache_level level, 283 u32 unused) 284 { 285 gen6_pte_t pte = GEN6_PTE_VALID; 286 pte |= GEN6_PTE_ADDR_ENCODE(addr); 287 288 switch (level) { 289 case I915_CACHE_L3_LLC: 290 case I915_CACHE_LLC: 291 pte |= GEN6_PTE_CACHE_LLC; 292 break; 293 case I915_CACHE_NONE: 294 pte |= GEN6_PTE_UNCACHED; 295 break; 296 default: 297 MISSING_CASE(level); 298 } 299 300 return pte; 301 } 302 303 static gen6_pte_t ivb_pte_encode(dma_addr_t addr, 304 enum i915_cache_level level, 305 u32 unused) 306 { 307 gen6_pte_t pte = GEN6_PTE_VALID; 308 pte |= GEN6_PTE_ADDR_ENCODE(addr); 309 310 switch (level) { 311 case I915_CACHE_L3_LLC: 312 pte |= GEN7_PTE_CACHE_L3_LLC; 313 break; 314 case I915_CACHE_LLC: 315 pte |= GEN6_PTE_CACHE_LLC; 316 break; 317 case I915_CACHE_NONE: 318 pte |= GEN6_PTE_UNCACHED; 319 break; 320 default: 321 MISSING_CASE(level); 322 } 323 324 return pte; 325 } 326 327 static gen6_pte_t byt_pte_encode(dma_addr_t addr, 328 enum i915_cache_level level, 329 u32 flags) 330 { 331 gen6_pte_t pte = GEN6_PTE_VALID; 332 pte |= GEN6_PTE_ADDR_ENCODE(addr); 333 334 if (!(flags & PTE_READ_ONLY)) 335 pte |= BYT_PTE_WRITEABLE; 336 337 if (level != I915_CACHE_NONE) 338 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 339 340 return pte; 341 } 342 343 static gen6_pte_t hsw_pte_encode(dma_addr_t addr, 344 enum i915_cache_level level, 345 u32 unused) 346 { 347 gen6_pte_t pte = GEN6_PTE_VALID; 348 pte |= HSW_PTE_ADDR_ENCODE(addr); 349 350 if (level != I915_CACHE_NONE) 351 pte |= HSW_WB_LLC_AGE3; 352 353 return pte; 354 } 355 356 static gen6_pte_t iris_pte_encode(dma_addr_t addr, 357 enum i915_cache_level level, 358 u32 unused) 359 { 360 gen6_pte_t pte = GEN6_PTE_VALID; 361 pte |= HSW_PTE_ADDR_ENCODE(addr); 362 363 switch (level) { 364 case I915_CACHE_NONE: 365 break; 366 case I915_CACHE_WT: 367 pte |= HSW_WT_ELLC_LLC_AGE3; 368 break; 369 default: 370 pte |= HSW_WB_ELLC_LLC_AGE3; 371 break; 372 } 373 374 return pte; 375 } 376 377 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp) 378 { 379 struct pagevec *pvec = &vm->free_pages; 380 381 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 382 i915_gem_shrink_all(vm->i915); 383 384 if (likely(pvec->nr)) 385 return pvec->pages[--pvec->nr]; 386 387 if (!vm->pt_kmap_wc) 388 return alloc_page(gfp); 389 390 /* A placeholder for a specific mutex to guard the WC stash */ 391 lockdep_assert_held(&vm->i915->drm.struct_mutex); 392 393 /* Look in our global stash of WC pages... */ 394 pvec = &vm->i915->mm.wc_stash; 395 if (likely(pvec->nr)) 396 return pvec->pages[--pvec->nr]; 397 398 /* Otherwise batch allocate pages to amoritize cost of set_pages_wc. */ 399 do { 400 struct page *page; 401 402 page = alloc_page(gfp); 403 if (unlikely(!page)) 404 break; 405 406 pvec->pages[pvec->nr++] = page; 407 } while (pagevec_space(pvec)); 408 409 if (unlikely(!pvec->nr)) 410 return NULL; 411 412 set_pages_array_wc(pvec->pages, pvec->nr); 413 414 return pvec->pages[--pvec->nr]; 415 } 416 417 static void vm_free_pages_release(struct i915_address_space *vm, 418 bool immediate) 419 { 420 struct pagevec *pvec = &vm->free_pages; 421 422 GEM_BUG_ON(!pagevec_count(pvec)); 423 424 if (vm->pt_kmap_wc) { 425 struct pagevec *stash = &vm->i915->mm.wc_stash; 426 427 /* When we use WC, first fill up the global stash and then 428 * only if full immediately free the overflow. 429 */ 430 431 lockdep_assert_held(&vm->i915->drm.struct_mutex); 432 if (pagevec_space(stash)) { 433 do { 434 stash->pages[stash->nr++] = 435 pvec->pages[--pvec->nr]; 436 if (!pvec->nr) 437 return; 438 } while (pagevec_space(stash)); 439 440 /* As we have made some room in the VM's free_pages, 441 * we can wait for it to fill again. Unless we are 442 * inside i915_address_space_fini() and must 443 * immediately release the pages! 444 */ 445 if (!immediate) 446 return; 447 } 448 449 set_pages_array_wb(pvec->pages, pvec->nr); 450 } 451 452 __pagevec_release(pvec); 453 } 454 455 static void vm_free_page(struct i915_address_space *vm, struct page *page) 456 { 457 /* 458 * On !llc, we need to change the pages back to WB. We only do so 459 * in bulk, so we rarely need to change the page attributes here, 460 * but doing so requires a stop_machine() from deep inside arch/x86/mm. 461 * To make detection of the possible sleep more likely, use an 462 * unconditional might_sleep() for everybody. 463 */ 464 might_sleep(); 465 if (!pagevec_add(&vm->free_pages, page)) 466 vm_free_pages_release(vm, false); 467 } 468 469 static int __setup_page_dma(struct i915_address_space *vm, 470 struct i915_page_dma *p, 471 gfp_t gfp) 472 { 473 p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY); 474 if (unlikely(!p->page)) 475 return -ENOMEM; 476 477 p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE, 478 PCI_DMA_BIDIRECTIONAL); 479 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) { 480 vm_free_page(vm, p->page); 481 return -ENOMEM; 482 } 483 484 return 0; 485 } 486 487 static int setup_page_dma(struct i915_address_space *vm, 488 struct i915_page_dma *p) 489 { 490 return __setup_page_dma(vm, p, I915_GFP_DMA); 491 } 492 493 static void cleanup_page_dma(struct i915_address_space *vm, 494 struct i915_page_dma *p) 495 { 496 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 497 vm_free_page(vm, p->page); 498 } 499 500 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page) 501 502 #define setup_px(vm, px) setup_page_dma((vm), px_base(px)) 503 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px)) 504 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v)) 505 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v)) 506 507 static void fill_page_dma(struct i915_address_space *vm, 508 struct i915_page_dma *p, 509 const u64 val) 510 { 511 u64 * const vaddr = kmap_atomic(p->page); 512 513 memset64(vaddr, val, PAGE_SIZE / sizeof(val)); 514 515 kunmap_atomic(vaddr); 516 } 517 518 static void fill_page_dma_32(struct i915_address_space *vm, 519 struct i915_page_dma *p, 520 const u32 v) 521 { 522 fill_page_dma(vm, p, (u64)v << 32 | v); 523 } 524 525 static int 526 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp) 527 { 528 struct page *page = NULL; 529 dma_addr_t addr; 530 int order; 531 532 /* 533 * In order to utilize 64K pages for an object with a size < 2M, we will 534 * need to support a 64K scratch page, given that every 16th entry for a 535 * page-table operating in 64K mode must point to a properly aligned 64K 536 * region, including any PTEs which happen to point to scratch. 537 * 538 * This is only relevant for the 48b PPGTT where we support 539 * huge-gtt-pages, see also i915_vma_insert(). 540 * 541 * TODO: we should really consider write-protecting the scratch-page and 542 * sharing between ppgtt 543 */ 544 if (i915_vm_is_48bit(vm) && 545 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) { 546 order = get_order(I915_GTT_PAGE_SIZE_64K); 547 page = alloc_pages(gfp | __GFP_ZERO | __GFP_NOWARN, order); 548 if (page) { 549 addr = dma_map_page(vm->dma, page, 0, 550 I915_GTT_PAGE_SIZE_64K, 551 PCI_DMA_BIDIRECTIONAL); 552 if (unlikely(dma_mapping_error(vm->dma, addr))) { 553 __free_pages(page, order); 554 page = NULL; 555 } 556 557 if (!IS_ALIGNED(addr, I915_GTT_PAGE_SIZE_64K)) { 558 dma_unmap_page(vm->dma, addr, 559 I915_GTT_PAGE_SIZE_64K, 560 PCI_DMA_BIDIRECTIONAL); 561 __free_pages(page, order); 562 page = NULL; 563 } 564 } 565 } 566 567 if (!page) { 568 order = 0; 569 page = alloc_page(gfp | __GFP_ZERO); 570 if (unlikely(!page)) 571 return -ENOMEM; 572 573 addr = dma_map_page(vm->dma, page, 0, PAGE_SIZE, 574 PCI_DMA_BIDIRECTIONAL); 575 if (unlikely(dma_mapping_error(vm->dma, addr))) { 576 __free_page(page); 577 return -ENOMEM; 578 } 579 } 580 581 vm->scratch_page.page = page; 582 vm->scratch_page.daddr = addr; 583 vm->scratch_page.order = order; 584 585 return 0; 586 } 587 588 static void cleanup_scratch_page(struct i915_address_space *vm) 589 { 590 struct i915_page_dma *p = &vm->scratch_page; 591 592 dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT, 593 PCI_DMA_BIDIRECTIONAL); 594 __free_pages(p->page, p->order); 595 } 596 597 static struct i915_page_table *alloc_pt(struct i915_address_space *vm) 598 { 599 struct i915_page_table *pt; 600 601 pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN); 602 if (unlikely(!pt)) 603 return ERR_PTR(-ENOMEM); 604 605 if (unlikely(setup_px(vm, pt))) { 606 kfree(pt); 607 return ERR_PTR(-ENOMEM); 608 } 609 610 pt->used_ptes = 0; 611 return pt; 612 } 613 614 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt) 615 { 616 cleanup_px(vm, pt); 617 kfree(pt); 618 } 619 620 static void gen8_initialize_pt(struct i915_address_space *vm, 621 struct i915_page_table *pt) 622 { 623 fill_px(vm, pt, 624 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC)); 625 } 626 627 static void gen6_initialize_pt(struct i915_address_space *vm, 628 struct i915_page_table *pt) 629 { 630 fill32_px(vm, pt, 631 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0)); 632 } 633 634 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm) 635 { 636 struct i915_page_directory *pd; 637 638 pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN); 639 if (unlikely(!pd)) 640 return ERR_PTR(-ENOMEM); 641 642 if (unlikely(setup_px(vm, pd))) { 643 kfree(pd); 644 return ERR_PTR(-ENOMEM); 645 } 646 647 pd->used_pdes = 0; 648 return pd; 649 } 650 651 static void free_pd(struct i915_address_space *vm, 652 struct i915_page_directory *pd) 653 { 654 cleanup_px(vm, pd); 655 kfree(pd); 656 } 657 658 static void gen8_initialize_pd(struct i915_address_space *vm, 659 struct i915_page_directory *pd) 660 { 661 unsigned int i; 662 663 fill_px(vm, pd, 664 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC)); 665 for (i = 0; i < I915_PDES; i++) 666 pd->page_table[i] = vm->scratch_pt; 667 } 668 669 static int __pdp_init(struct i915_address_space *vm, 670 struct i915_page_directory_pointer *pdp) 671 { 672 const unsigned int pdpes = i915_pdpes_per_pdp(vm); 673 unsigned int i; 674 675 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory), 676 GFP_KERNEL | __GFP_NOWARN); 677 if (unlikely(!pdp->page_directory)) 678 return -ENOMEM; 679 680 for (i = 0; i < pdpes; i++) 681 pdp->page_directory[i] = vm->scratch_pd; 682 683 return 0; 684 } 685 686 static void __pdp_fini(struct i915_page_directory_pointer *pdp) 687 { 688 kfree(pdp->page_directory); 689 pdp->page_directory = NULL; 690 } 691 692 static inline bool use_4lvl(const struct i915_address_space *vm) 693 { 694 return i915_vm_is_48bit(vm); 695 } 696 697 static struct i915_page_directory_pointer * 698 alloc_pdp(struct i915_address_space *vm) 699 { 700 struct i915_page_directory_pointer *pdp; 701 int ret = -ENOMEM; 702 703 WARN_ON(!use_4lvl(vm)); 704 705 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL); 706 if (!pdp) 707 return ERR_PTR(-ENOMEM); 708 709 ret = __pdp_init(vm, pdp); 710 if (ret) 711 goto fail_bitmap; 712 713 ret = setup_px(vm, pdp); 714 if (ret) 715 goto fail_page_m; 716 717 return pdp; 718 719 fail_page_m: 720 __pdp_fini(pdp); 721 fail_bitmap: 722 kfree(pdp); 723 724 return ERR_PTR(ret); 725 } 726 727 static void free_pdp(struct i915_address_space *vm, 728 struct i915_page_directory_pointer *pdp) 729 { 730 __pdp_fini(pdp); 731 732 if (!use_4lvl(vm)) 733 return; 734 735 cleanup_px(vm, pdp); 736 kfree(pdp); 737 } 738 739 static void gen8_initialize_pdp(struct i915_address_space *vm, 740 struct i915_page_directory_pointer *pdp) 741 { 742 gen8_ppgtt_pdpe_t scratch_pdpe; 743 744 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC); 745 746 fill_px(vm, pdp, scratch_pdpe); 747 } 748 749 static void gen8_initialize_pml4(struct i915_address_space *vm, 750 struct i915_pml4 *pml4) 751 { 752 unsigned int i; 753 754 fill_px(vm, pml4, 755 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC)); 756 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) 757 pml4->pdps[i] = vm->scratch_pdp; 758 } 759 760 /* Broadwell Page Directory Pointer Descriptors */ 761 static int gen8_write_pdp(struct drm_i915_gem_request *req, 762 unsigned entry, 763 dma_addr_t addr) 764 { 765 struct intel_engine_cs *engine = req->engine; 766 u32 *cs; 767 768 BUG_ON(entry >= 4); 769 770 cs = intel_ring_begin(req, 6); 771 if (IS_ERR(cs)) 772 return PTR_ERR(cs); 773 774 *cs++ = MI_LOAD_REGISTER_IMM(1); 775 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry)); 776 *cs++ = upper_32_bits(addr); 777 *cs++ = MI_LOAD_REGISTER_IMM(1); 778 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry)); 779 *cs++ = lower_32_bits(addr); 780 intel_ring_advance(req, cs); 781 782 return 0; 783 } 784 785 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt, 786 struct drm_i915_gem_request *req) 787 { 788 int i, ret; 789 790 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) { 791 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); 792 793 ret = gen8_write_pdp(req, i, pd_daddr); 794 if (ret) 795 return ret; 796 } 797 798 return 0; 799 } 800 801 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt, 802 struct drm_i915_gem_request *req) 803 { 804 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4)); 805 } 806 807 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify 808 * the page table structures, we mark them dirty so that 809 * context switching/execlist queuing code takes extra steps 810 * to ensure that tlbs are flushed. 811 */ 812 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) 813 { 814 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask; 815 } 816 817 /* Removes entries from a single page table, releasing it if it's empty. 818 * Caller can use the return value to update higher-level entries. 819 */ 820 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm, 821 struct i915_page_table *pt, 822 u64 start, u64 length) 823 { 824 unsigned int num_entries = gen8_pte_count(start, length); 825 unsigned int pte = gen8_pte_index(start); 826 unsigned int pte_end = pte + num_entries; 827 const gen8_pte_t scratch_pte = 828 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); 829 gen8_pte_t *vaddr; 830 831 GEM_BUG_ON(num_entries > pt->used_ptes); 832 833 pt->used_ptes -= num_entries; 834 if (!pt->used_ptes) 835 return true; 836 837 vaddr = kmap_atomic_px(pt); 838 while (pte < pte_end) 839 vaddr[pte++] = scratch_pte; 840 kunmap_atomic(vaddr); 841 842 return false; 843 } 844 845 static void gen8_ppgtt_set_pde(struct i915_address_space *vm, 846 struct i915_page_directory *pd, 847 struct i915_page_table *pt, 848 unsigned int pde) 849 { 850 gen8_pde_t *vaddr; 851 852 pd->page_table[pde] = pt; 853 854 vaddr = kmap_atomic_px(pd); 855 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC); 856 kunmap_atomic(vaddr); 857 } 858 859 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm, 860 struct i915_page_directory *pd, 861 u64 start, u64 length) 862 { 863 struct i915_page_table *pt; 864 u32 pde; 865 866 gen8_for_each_pde(pt, pd, start, length, pde) { 867 GEM_BUG_ON(pt == vm->scratch_pt); 868 869 if (!gen8_ppgtt_clear_pt(vm, pt, start, length)) 870 continue; 871 872 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde); 873 GEM_BUG_ON(!pd->used_pdes); 874 pd->used_pdes--; 875 876 free_pt(vm, pt); 877 } 878 879 return !pd->used_pdes; 880 } 881 882 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm, 883 struct i915_page_directory_pointer *pdp, 884 struct i915_page_directory *pd, 885 unsigned int pdpe) 886 { 887 gen8_ppgtt_pdpe_t *vaddr; 888 889 pdp->page_directory[pdpe] = pd; 890 if (!use_4lvl(vm)) 891 return; 892 893 vaddr = kmap_atomic_px(pdp); 894 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); 895 kunmap_atomic(vaddr); 896 } 897 898 /* Removes entries from a single page dir pointer, releasing it if it's empty. 899 * Caller can use the return value to update higher-level entries 900 */ 901 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm, 902 struct i915_page_directory_pointer *pdp, 903 u64 start, u64 length) 904 { 905 struct i915_page_directory *pd; 906 unsigned int pdpe; 907 908 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 909 GEM_BUG_ON(pd == vm->scratch_pd); 910 911 if (!gen8_ppgtt_clear_pd(vm, pd, start, length)) 912 continue; 913 914 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 915 GEM_BUG_ON(!pdp->used_pdpes); 916 pdp->used_pdpes--; 917 918 free_pd(vm, pd); 919 } 920 921 return !pdp->used_pdpes; 922 } 923 924 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm, 925 u64 start, u64 length) 926 { 927 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length); 928 } 929 930 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4, 931 struct i915_page_directory_pointer *pdp, 932 unsigned int pml4e) 933 { 934 gen8_ppgtt_pml4e_t *vaddr; 935 936 pml4->pdps[pml4e] = pdp; 937 938 vaddr = kmap_atomic_px(pml4); 939 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); 940 kunmap_atomic(vaddr); 941 } 942 943 /* Removes entries from a single pml4. 944 * This is the top-level structure in 4-level page tables used on gen8+. 945 * Empty entries are always scratch pml4e. 946 */ 947 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm, 948 u64 start, u64 length) 949 { 950 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 951 struct i915_pml4 *pml4 = &ppgtt->pml4; 952 struct i915_page_directory_pointer *pdp; 953 unsigned int pml4e; 954 955 GEM_BUG_ON(!use_4lvl(vm)); 956 957 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 958 GEM_BUG_ON(pdp == vm->scratch_pdp); 959 960 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length)) 961 continue; 962 963 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); 964 965 free_pdp(vm, pdp); 966 } 967 } 968 969 static inline struct sgt_dma { 970 struct scatterlist *sg; 971 dma_addr_t dma, max; 972 } sgt_dma(struct i915_vma *vma) { 973 struct scatterlist *sg = vma->pages->sgl; 974 dma_addr_t addr = sg_dma_address(sg); 975 return (struct sgt_dma) { sg, addr, addr + sg->length }; 976 } 977 978 struct gen8_insert_pte { 979 u16 pml4e; 980 u16 pdpe; 981 u16 pde; 982 u16 pte; 983 }; 984 985 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start) 986 { 987 return (struct gen8_insert_pte) { 988 gen8_pml4e_index(start), 989 gen8_pdpe_index(start), 990 gen8_pde_index(start), 991 gen8_pte_index(start), 992 }; 993 } 994 995 static __always_inline bool 996 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt, 997 struct i915_page_directory_pointer *pdp, 998 struct sgt_dma *iter, 999 struct gen8_insert_pte *idx, 1000 enum i915_cache_level cache_level) 1001 { 1002 struct i915_page_directory *pd; 1003 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level); 1004 gen8_pte_t *vaddr; 1005 bool ret; 1006 1007 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base)); 1008 pd = pdp->page_directory[idx->pdpe]; 1009 vaddr = kmap_atomic_px(pd->page_table[idx->pde]); 1010 do { 1011 vaddr[idx->pte] = pte_encode | iter->dma; 1012 1013 iter->dma += PAGE_SIZE; 1014 if (iter->dma >= iter->max) { 1015 iter->sg = __sg_next(iter->sg); 1016 if (!iter->sg) { 1017 ret = false; 1018 break; 1019 } 1020 1021 iter->dma = sg_dma_address(iter->sg); 1022 iter->max = iter->dma + iter->sg->length; 1023 } 1024 1025 if (++idx->pte == GEN8_PTES) { 1026 idx->pte = 0; 1027 1028 if (++idx->pde == I915_PDES) { 1029 idx->pde = 0; 1030 1031 /* Limited by sg length for 3lvl */ 1032 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) { 1033 idx->pdpe = 0; 1034 ret = true; 1035 break; 1036 } 1037 1038 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base)); 1039 pd = pdp->page_directory[idx->pdpe]; 1040 } 1041 1042 kunmap_atomic(vaddr); 1043 vaddr = kmap_atomic_px(pd->page_table[idx->pde]); 1044 } 1045 } while (1); 1046 kunmap_atomic(vaddr); 1047 1048 return ret; 1049 } 1050 1051 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm, 1052 struct i915_vma *vma, 1053 enum i915_cache_level cache_level, 1054 u32 unused) 1055 { 1056 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1057 struct sgt_dma iter = sgt_dma(vma); 1058 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); 1059 1060 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx, 1061 cache_level); 1062 1063 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 1064 } 1065 1066 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma, 1067 struct i915_page_directory_pointer **pdps, 1068 struct sgt_dma *iter, 1069 enum i915_cache_level cache_level) 1070 { 1071 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level); 1072 u64 start = vma->node.start; 1073 dma_addr_t rem = iter->sg->length; 1074 1075 do { 1076 struct gen8_insert_pte idx = gen8_insert_pte(start); 1077 struct i915_page_directory_pointer *pdp = pdps[idx.pml4e]; 1078 struct i915_page_directory *pd = pdp->page_directory[idx.pdpe]; 1079 unsigned int page_size; 1080 bool maybe_64K = false; 1081 gen8_pte_t encode = pte_encode; 1082 gen8_pte_t *vaddr; 1083 u16 index, max; 1084 1085 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M && 1086 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) && 1087 rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) { 1088 index = idx.pde; 1089 max = I915_PDES; 1090 page_size = I915_GTT_PAGE_SIZE_2M; 1091 1092 encode |= GEN8_PDE_PS_2M; 1093 1094 vaddr = kmap_atomic_px(pd); 1095 } else { 1096 struct i915_page_table *pt = pd->page_table[idx.pde]; 1097 1098 index = idx.pte; 1099 max = GEN8_PTES; 1100 page_size = I915_GTT_PAGE_SIZE; 1101 1102 if (!index && 1103 vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K && 1104 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && 1105 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || 1106 rem >= (max - index) << PAGE_SHIFT)) 1107 maybe_64K = true; 1108 1109 vaddr = kmap_atomic_px(pt); 1110 } 1111 1112 do { 1113 GEM_BUG_ON(iter->sg->length < page_size); 1114 vaddr[index++] = encode | iter->dma; 1115 1116 start += page_size; 1117 iter->dma += page_size; 1118 rem -= page_size; 1119 if (iter->dma >= iter->max) { 1120 iter->sg = __sg_next(iter->sg); 1121 if (!iter->sg) 1122 break; 1123 1124 rem = iter->sg->length; 1125 iter->dma = sg_dma_address(iter->sg); 1126 iter->max = iter->dma + rem; 1127 1128 if (maybe_64K && index < max && 1129 !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && 1130 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || 1131 rem >= (max - index) << PAGE_SHIFT))) 1132 maybe_64K = false; 1133 1134 if (unlikely(!IS_ALIGNED(iter->dma, page_size))) 1135 break; 1136 } 1137 } while (rem >= page_size && index < max); 1138 1139 kunmap_atomic(vaddr); 1140 1141 /* 1142 * Is it safe to mark the 2M block as 64K? -- Either we have 1143 * filled whole page-table with 64K entries, or filled part of 1144 * it and have reached the end of the sg table and we have 1145 * enough padding. 1146 */ 1147 if (maybe_64K && 1148 (index == max || 1149 (i915_vm_has_scratch_64K(vma->vm) && 1150 !iter->sg && IS_ALIGNED(vma->node.start + 1151 vma->node.size, 1152 I915_GTT_PAGE_SIZE_2M)))) { 1153 vaddr = kmap_atomic_px(pd); 1154 vaddr[idx.pde] |= GEN8_PDE_IPS_64K; 1155 kunmap_atomic(vaddr); 1156 page_size = I915_GTT_PAGE_SIZE_64K; 1157 } 1158 1159 vma->page_sizes.gtt |= page_size; 1160 } while (iter->sg); 1161 } 1162 1163 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm, 1164 struct i915_vma *vma, 1165 enum i915_cache_level cache_level, 1166 u32 unused) 1167 { 1168 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1169 struct sgt_dma iter = sgt_dma(vma); 1170 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps; 1171 1172 if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { 1173 gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level); 1174 } else { 1175 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); 1176 1177 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], 1178 &iter, &idx, cache_level)) 1179 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4); 1180 1181 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 1182 } 1183 } 1184 1185 static void gen8_free_page_tables(struct i915_address_space *vm, 1186 struct i915_page_directory *pd) 1187 { 1188 int i; 1189 1190 if (!px_page(pd)) 1191 return; 1192 1193 for (i = 0; i < I915_PDES; i++) { 1194 if (pd->page_table[i] != vm->scratch_pt) 1195 free_pt(vm, pd->page_table[i]); 1196 } 1197 } 1198 1199 static int gen8_init_scratch(struct i915_address_space *vm) 1200 { 1201 int ret; 1202 1203 ret = setup_scratch_page(vm, I915_GFP_DMA); 1204 if (ret) 1205 return ret; 1206 1207 vm->scratch_pt = alloc_pt(vm); 1208 if (IS_ERR(vm->scratch_pt)) { 1209 ret = PTR_ERR(vm->scratch_pt); 1210 goto free_scratch_page; 1211 } 1212 1213 vm->scratch_pd = alloc_pd(vm); 1214 if (IS_ERR(vm->scratch_pd)) { 1215 ret = PTR_ERR(vm->scratch_pd); 1216 goto free_pt; 1217 } 1218 1219 if (use_4lvl(vm)) { 1220 vm->scratch_pdp = alloc_pdp(vm); 1221 if (IS_ERR(vm->scratch_pdp)) { 1222 ret = PTR_ERR(vm->scratch_pdp); 1223 goto free_pd; 1224 } 1225 } 1226 1227 gen8_initialize_pt(vm, vm->scratch_pt); 1228 gen8_initialize_pd(vm, vm->scratch_pd); 1229 if (use_4lvl(vm)) 1230 gen8_initialize_pdp(vm, vm->scratch_pdp); 1231 1232 return 0; 1233 1234 free_pd: 1235 free_pd(vm, vm->scratch_pd); 1236 free_pt: 1237 free_pt(vm, vm->scratch_pt); 1238 free_scratch_page: 1239 cleanup_scratch_page(vm); 1240 1241 return ret; 1242 } 1243 1244 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create) 1245 { 1246 struct i915_address_space *vm = &ppgtt->base; 1247 struct drm_i915_private *dev_priv = vm->i915; 1248 enum vgt_g2v_type msg; 1249 int i; 1250 1251 if (use_4lvl(vm)) { 1252 const u64 daddr = px_dma(&ppgtt->pml4); 1253 1254 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); 1255 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); 1256 1257 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : 1258 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); 1259 } else { 1260 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1261 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i); 1262 1263 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); 1264 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); 1265 } 1266 1267 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : 1268 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); 1269 } 1270 1271 I915_WRITE(vgtif_reg(g2v_notify), msg); 1272 1273 return 0; 1274 } 1275 1276 static void gen8_free_scratch(struct i915_address_space *vm) 1277 { 1278 if (use_4lvl(vm)) 1279 free_pdp(vm, vm->scratch_pdp); 1280 free_pd(vm, vm->scratch_pd); 1281 free_pt(vm, vm->scratch_pt); 1282 cleanup_scratch_page(vm); 1283 } 1284 1285 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm, 1286 struct i915_page_directory_pointer *pdp) 1287 { 1288 const unsigned int pdpes = i915_pdpes_per_pdp(vm); 1289 int i; 1290 1291 for (i = 0; i < pdpes; i++) { 1292 if (pdp->page_directory[i] == vm->scratch_pd) 1293 continue; 1294 1295 gen8_free_page_tables(vm, pdp->page_directory[i]); 1296 free_pd(vm, pdp->page_directory[i]); 1297 } 1298 1299 free_pdp(vm, pdp); 1300 } 1301 1302 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt) 1303 { 1304 int i; 1305 1306 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) { 1307 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp) 1308 continue; 1309 1310 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]); 1311 } 1312 1313 cleanup_px(&ppgtt->base, &ppgtt->pml4); 1314 } 1315 1316 static void gen8_ppgtt_cleanup(struct i915_address_space *vm) 1317 { 1318 struct drm_i915_private *dev_priv = vm->i915; 1319 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1320 1321 if (intel_vgpu_active(dev_priv)) 1322 gen8_ppgtt_notify_vgt(ppgtt, false); 1323 1324 if (use_4lvl(vm)) 1325 gen8_ppgtt_cleanup_4lvl(ppgtt); 1326 else 1327 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp); 1328 1329 gen8_free_scratch(vm); 1330 } 1331 1332 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm, 1333 struct i915_page_directory *pd, 1334 u64 start, u64 length) 1335 { 1336 struct i915_page_table *pt; 1337 u64 from = start; 1338 unsigned int pde; 1339 1340 gen8_for_each_pde(pt, pd, start, length, pde) { 1341 int count = gen8_pte_count(start, length); 1342 1343 if (pt == vm->scratch_pt) { 1344 pt = alloc_pt(vm); 1345 if (IS_ERR(pt)) 1346 goto unwind; 1347 1348 if (count < GEN8_PTES || intel_vgpu_active(vm->i915)) 1349 gen8_initialize_pt(vm, pt); 1350 1351 gen8_ppgtt_set_pde(vm, pd, pt, pde); 1352 pd->used_pdes++; 1353 GEM_BUG_ON(pd->used_pdes > I915_PDES); 1354 } 1355 1356 pt->used_ptes += count; 1357 } 1358 return 0; 1359 1360 unwind: 1361 gen8_ppgtt_clear_pd(vm, pd, from, start - from); 1362 return -ENOMEM; 1363 } 1364 1365 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm, 1366 struct i915_page_directory_pointer *pdp, 1367 u64 start, u64 length) 1368 { 1369 struct i915_page_directory *pd; 1370 u64 from = start; 1371 unsigned int pdpe; 1372 int ret; 1373 1374 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1375 if (pd == vm->scratch_pd) { 1376 pd = alloc_pd(vm); 1377 if (IS_ERR(pd)) 1378 goto unwind; 1379 1380 gen8_initialize_pd(vm, pd); 1381 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); 1382 pdp->used_pdpes++; 1383 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm)); 1384 1385 mark_tlbs_dirty(i915_vm_to_ppgtt(vm)); 1386 } 1387 1388 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length); 1389 if (unlikely(ret)) 1390 goto unwind_pd; 1391 } 1392 1393 return 0; 1394 1395 unwind_pd: 1396 if (!pd->used_pdes) { 1397 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 1398 GEM_BUG_ON(!pdp->used_pdpes); 1399 pdp->used_pdpes--; 1400 free_pd(vm, pd); 1401 } 1402 unwind: 1403 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from); 1404 return -ENOMEM; 1405 } 1406 1407 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm, 1408 u64 start, u64 length) 1409 { 1410 return gen8_ppgtt_alloc_pdp(vm, 1411 &i915_vm_to_ppgtt(vm)->pdp, start, length); 1412 } 1413 1414 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm, 1415 u64 start, u64 length) 1416 { 1417 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1418 struct i915_pml4 *pml4 = &ppgtt->pml4; 1419 struct i915_page_directory_pointer *pdp; 1420 u64 from = start; 1421 u32 pml4e; 1422 int ret; 1423 1424 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 1425 if (pml4->pdps[pml4e] == vm->scratch_pdp) { 1426 pdp = alloc_pdp(vm); 1427 if (IS_ERR(pdp)) 1428 goto unwind; 1429 1430 gen8_initialize_pdp(vm, pdp); 1431 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e); 1432 } 1433 1434 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length); 1435 if (unlikely(ret)) 1436 goto unwind_pdp; 1437 } 1438 1439 return 0; 1440 1441 unwind_pdp: 1442 if (!pdp->used_pdpes) { 1443 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); 1444 free_pdp(vm, pdp); 1445 } 1446 unwind: 1447 gen8_ppgtt_clear_4lvl(vm, from, start - from); 1448 return -ENOMEM; 1449 } 1450 1451 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt, 1452 struct i915_page_directory_pointer *pdp, 1453 u64 start, u64 length, 1454 gen8_pte_t scratch_pte, 1455 struct seq_file *m) 1456 { 1457 struct i915_address_space *vm = &ppgtt->base; 1458 struct i915_page_directory *pd; 1459 u32 pdpe; 1460 1461 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1462 struct i915_page_table *pt; 1463 u64 pd_len = length; 1464 u64 pd_start = start; 1465 u32 pde; 1466 1467 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd) 1468 continue; 1469 1470 seq_printf(m, "\tPDPE #%d\n", pdpe); 1471 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { 1472 u32 pte; 1473 gen8_pte_t *pt_vaddr; 1474 1475 if (pd->page_table[pde] == ppgtt->base.scratch_pt) 1476 continue; 1477 1478 pt_vaddr = kmap_atomic_px(pt); 1479 for (pte = 0; pte < GEN8_PTES; pte += 4) { 1480 u64 va = (pdpe << GEN8_PDPE_SHIFT | 1481 pde << GEN8_PDE_SHIFT | 1482 pte << GEN8_PTE_SHIFT); 1483 int i; 1484 bool found = false; 1485 1486 for (i = 0; i < 4; i++) 1487 if (pt_vaddr[pte + i] != scratch_pte) 1488 found = true; 1489 if (!found) 1490 continue; 1491 1492 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte); 1493 for (i = 0; i < 4; i++) { 1494 if (pt_vaddr[pte + i] != scratch_pte) 1495 seq_printf(m, " %llx", pt_vaddr[pte + i]); 1496 else 1497 seq_puts(m, " SCRATCH "); 1498 } 1499 seq_puts(m, "\n"); 1500 } 1501 kunmap_atomic(pt_vaddr); 1502 } 1503 } 1504 } 1505 1506 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) 1507 { 1508 struct i915_address_space *vm = &ppgtt->base; 1509 const gen8_pte_t scratch_pte = 1510 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); 1511 u64 start = 0, length = ppgtt->base.total; 1512 1513 if (use_4lvl(vm)) { 1514 u64 pml4e; 1515 struct i915_pml4 *pml4 = &ppgtt->pml4; 1516 struct i915_page_directory_pointer *pdp; 1517 1518 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 1519 if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp) 1520 continue; 1521 1522 seq_printf(m, " PML4E #%llu\n", pml4e); 1523 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m); 1524 } 1525 } else { 1526 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m); 1527 } 1528 } 1529 1530 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt) 1531 { 1532 struct i915_address_space *vm = &ppgtt->base; 1533 struct i915_page_directory_pointer *pdp = &ppgtt->pdp; 1534 struct i915_page_directory *pd; 1535 u64 start = 0, length = ppgtt->base.total; 1536 u64 from = start; 1537 unsigned int pdpe; 1538 1539 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1540 pd = alloc_pd(vm); 1541 if (IS_ERR(pd)) 1542 goto unwind; 1543 1544 gen8_initialize_pd(vm, pd); 1545 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); 1546 pdp->used_pdpes++; 1547 } 1548 1549 pdp->used_pdpes++; /* never remove */ 1550 return 0; 1551 1552 unwind: 1553 start -= from; 1554 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) { 1555 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 1556 free_pd(vm, pd); 1557 } 1558 pdp->used_pdpes = 0; 1559 return -ENOMEM; 1560 } 1561 1562 /* 1563 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers 1564 * with a net effect resembling a 2-level page table in normal x86 terms. Each 1565 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address 1566 * space. 1567 * 1568 */ 1569 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt) 1570 { 1571 struct i915_address_space *vm = &ppgtt->base; 1572 struct drm_i915_private *dev_priv = vm->i915; 1573 int ret; 1574 1575 ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ? 1576 1ULL << 48 : 1577 1ULL << 32; 1578 1579 /* There are only few exceptions for gen >=6. chv and bxt. 1580 * And we are not sure about the latter so play safe for now. 1581 */ 1582 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv)) 1583 ppgtt->base.pt_kmap_wc = true; 1584 1585 ret = gen8_init_scratch(&ppgtt->base); 1586 if (ret) { 1587 ppgtt->base.total = 0; 1588 return ret; 1589 } 1590 1591 if (use_4lvl(vm)) { 1592 ret = setup_px(&ppgtt->base, &ppgtt->pml4); 1593 if (ret) 1594 goto free_scratch; 1595 1596 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4); 1597 1598 ppgtt->switch_mm = gen8_mm_switch_4lvl; 1599 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl; 1600 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl; 1601 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl; 1602 } else { 1603 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp); 1604 if (ret) 1605 goto free_scratch; 1606 1607 if (intel_vgpu_active(dev_priv)) { 1608 ret = gen8_preallocate_top_level_pdp(ppgtt); 1609 if (ret) { 1610 __pdp_fini(&ppgtt->pdp); 1611 goto free_scratch; 1612 } 1613 } 1614 1615 ppgtt->switch_mm = gen8_mm_switch_3lvl; 1616 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl; 1617 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl; 1618 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl; 1619 } 1620 1621 if (intel_vgpu_active(dev_priv)) 1622 gen8_ppgtt_notify_vgt(ppgtt, true); 1623 1624 ppgtt->base.cleanup = gen8_ppgtt_cleanup; 1625 ppgtt->base.unbind_vma = ppgtt_unbind_vma; 1626 ppgtt->base.bind_vma = ppgtt_bind_vma; 1627 ppgtt->base.set_pages = ppgtt_set_pages; 1628 ppgtt->base.clear_pages = clear_pages; 1629 ppgtt->debug_dump = gen8_dump_ppgtt; 1630 1631 return 0; 1632 1633 free_scratch: 1634 gen8_free_scratch(&ppgtt->base); 1635 return ret; 1636 } 1637 1638 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) 1639 { 1640 struct i915_address_space *vm = &ppgtt->base; 1641 struct i915_page_table *unused; 1642 gen6_pte_t scratch_pte; 1643 u32 pd_entry, pte, pde; 1644 u32 start = 0, length = ppgtt->base.total; 1645 1646 scratch_pte = vm->pte_encode(vm->scratch_page.daddr, 1647 I915_CACHE_LLC, 0); 1648 1649 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) { 1650 u32 expected; 1651 gen6_pte_t *pt_vaddr; 1652 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]); 1653 pd_entry = readl(ppgtt->pd_addr + pde); 1654 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID); 1655 1656 if (pd_entry != expected) 1657 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", 1658 pde, 1659 pd_entry, 1660 expected); 1661 seq_printf(m, "\tPDE: %x\n", pd_entry); 1662 1663 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]); 1664 1665 for (pte = 0; pte < GEN6_PTES; pte+=4) { 1666 unsigned long va = 1667 (pde * PAGE_SIZE * GEN6_PTES) + 1668 (pte * PAGE_SIZE); 1669 int i; 1670 bool found = false; 1671 for (i = 0; i < 4; i++) 1672 if (pt_vaddr[pte + i] != scratch_pte) 1673 found = true; 1674 if (!found) 1675 continue; 1676 1677 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte); 1678 for (i = 0; i < 4; i++) { 1679 if (pt_vaddr[pte + i] != scratch_pte) 1680 seq_printf(m, " %08x", pt_vaddr[pte + i]); 1681 else 1682 seq_puts(m, " SCRATCH "); 1683 } 1684 seq_puts(m, "\n"); 1685 } 1686 kunmap_atomic(pt_vaddr); 1687 } 1688 } 1689 1690 /* Write pde (index) from the page directory @pd to the page table @pt */ 1691 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt, 1692 const unsigned int pde, 1693 const struct i915_page_table *pt) 1694 { 1695 /* Caller needs to make sure the write completes if necessary */ 1696 writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID, 1697 ppgtt->pd_addr + pde); 1698 } 1699 1700 /* Write all the page tables found in the ppgtt structure to incrementing page 1701 * directories. */ 1702 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt, 1703 u32 start, u32 length) 1704 { 1705 struct i915_page_table *pt; 1706 unsigned int pde; 1707 1708 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) 1709 gen6_write_pde(ppgtt, pde, pt); 1710 1711 mark_tlbs_dirty(ppgtt); 1712 wmb(); 1713 } 1714 1715 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt) 1716 { 1717 GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f); 1718 return ppgtt->pd.base.ggtt_offset << 10; 1719 } 1720 1721 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt, 1722 struct drm_i915_gem_request *req) 1723 { 1724 struct intel_engine_cs *engine = req->engine; 1725 u32 *cs; 1726 1727 /* NB: TLBs must be flushed and invalidated before a switch */ 1728 cs = intel_ring_begin(req, 6); 1729 if (IS_ERR(cs)) 1730 return PTR_ERR(cs); 1731 1732 *cs++ = MI_LOAD_REGISTER_IMM(2); 1733 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine)); 1734 *cs++ = PP_DIR_DCLV_2G; 1735 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine)); 1736 *cs++ = get_pd_offset(ppgtt); 1737 *cs++ = MI_NOOP; 1738 intel_ring_advance(req, cs); 1739 1740 return 0; 1741 } 1742 1743 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt, 1744 struct drm_i915_gem_request *req) 1745 { 1746 struct intel_engine_cs *engine = req->engine; 1747 u32 *cs; 1748 1749 /* NB: TLBs must be flushed and invalidated before a switch */ 1750 cs = intel_ring_begin(req, 6); 1751 if (IS_ERR(cs)) 1752 return PTR_ERR(cs); 1753 1754 *cs++ = MI_LOAD_REGISTER_IMM(2); 1755 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine)); 1756 *cs++ = PP_DIR_DCLV_2G; 1757 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine)); 1758 *cs++ = get_pd_offset(ppgtt); 1759 *cs++ = MI_NOOP; 1760 intel_ring_advance(req, cs); 1761 1762 return 0; 1763 } 1764 1765 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt, 1766 struct drm_i915_gem_request *req) 1767 { 1768 struct intel_engine_cs *engine = req->engine; 1769 struct drm_i915_private *dev_priv = req->i915; 1770 1771 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G); 1772 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt)); 1773 return 0; 1774 } 1775 1776 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv) 1777 { 1778 struct intel_engine_cs *engine; 1779 enum intel_engine_id id; 1780 1781 for_each_engine(engine, dev_priv, id) { 1782 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ? 1783 GEN8_GFX_PPGTT_48B : 0; 1784 I915_WRITE(RING_MODE_GEN7(engine), 1785 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level)); 1786 } 1787 } 1788 1789 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv) 1790 { 1791 struct intel_engine_cs *engine; 1792 u32 ecochk, ecobits; 1793 enum intel_engine_id id; 1794 1795 ecobits = I915_READ(GAC_ECO_BITS); 1796 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); 1797 1798 ecochk = I915_READ(GAM_ECOCHK); 1799 if (IS_HASWELL(dev_priv)) { 1800 ecochk |= ECOCHK_PPGTT_WB_HSW; 1801 } else { 1802 ecochk |= ECOCHK_PPGTT_LLC_IVB; 1803 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; 1804 } 1805 I915_WRITE(GAM_ECOCHK, ecochk); 1806 1807 for_each_engine(engine, dev_priv, id) { 1808 /* GFX_MODE is per-ring on gen7+ */ 1809 I915_WRITE(RING_MODE_GEN7(engine), 1810 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1811 } 1812 } 1813 1814 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv) 1815 { 1816 u32 ecochk, gab_ctl, ecobits; 1817 1818 ecobits = I915_READ(GAC_ECO_BITS); 1819 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | 1820 ECOBITS_PPGTT_CACHE64B); 1821 1822 gab_ctl = I915_READ(GAB_CTL); 1823 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); 1824 1825 ecochk = I915_READ(GAM_ECOCHK); 1826 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); 1827 1828 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1829 } 1830 1831 /* PPGTT support for Sandybdrige/Gen6 and later */ 1832 static void gen6_ppgtt_clear_range(struct i915_address_space *vm, 1833 u64 start, u64 length) 1834 { 1835 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1836 unsigned int first_entry = start >> PAGE_SHIFT; 1837 unsigned int pde = first_entry / GEN6_PTES; 1838 unsigned int pte = first_entry % GEN6_PTES; 1839 unsigned int num_entries = length >> PAGE_SHIFT; 1840 gen6_pte_t scratch_pte = 1841 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); 1842 1843 while (num_entries) { 1844 struct i915_page_table *pt = ppgtt->pd.page_table[pde++]; 1845 unsigned int end = min(pte + num_entries, GEN6_PTES); 1846 gen6_pte_t *vaddr; 1847 1848 num_entries -= end - pte; 1849 1850 /* Note that the hw doesn't support removing PDE on the fly 1851 * (they are cached inside the context with no means to 1852 * invalidate the cache), so we can only reset the PTE 1853 * entries back to scratch. 1854 */ 1855 1856 vaddr = kmap_atomic_px(pt); 1857 do { 1858 vaddr[pte++] = scratch_pte; 1859 } while (pte < end); 1860 kunmap_atomic(vaddr); 1861 1862 pte = 0; 1863 } 1864 } 1865 1866 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, 1867 struct i915_vma *vma, 1868 enum i915_cache_level cache_level, 1869 u32 flags) 1870 { 1871 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1872 unsigned first_entry = vma->node.start >> PAGE_SHIFT; 1873 unsigned act_pt = first_entry / GEN6_PTES; 1874 unsigned act_pte = first_entry % GEN6_PTES; 1875 const u32 pte_encode = vm->pte_encode(0, cache_level, flags); 1876 struct sgt_dma iter = sgt_dma(vma); 1877 gen6_pte_t *vaddr; 1878 1879 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]); 1880 do { 1881 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma); 1882 1883 iter.dma += PAGE_SIZE; 1884 if (iter.dma == iter.max) { 1885 iter.sg = __sg_next(iter.sg); 1886 if (!iter.sg) 1887 break; 1888 1889 iter.dma = sg_dma_address(iter.sg); 1890 iter.max = iter.dma + iter.sg->length; 1891 } 1892 1893 if (++act_pte == GEN6_PTES) { 1894 kunmap_atomic(vaddr); 1895 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]); 1896 act_pte = 0; 1897 } 1898 } while (1); 1899 kunmap_atomic(vaddr); 1900 1901 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 1902 } 1903 1904 static int gen6_alloc_va_range(struct i915_address_space *vm, 1905 u64 start, u64 length) 1906 { 1907 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1908 struct i915_page_table *pt; 1909 u64 from = start; 1910 unsigned int pde; 1911 bool flush = false; 1912 1913 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) { 1914 if (pt == vm->scratch_pt) { 1915 pt = alloc_pt(vm); 1916 if (IS_ERR(pt)) 1917 goto unwind_out; 1918 1919 gen6_initialize_pt(vm, pt); 1920 ppgtt->pd.page_table[pde] = pt; 1921 gen6_write_pde(ppgtt, pde, pt); 1922 flush = true; 1923 } 1924 } 1925 1926 if (flush) { 1927 mark_tlbs_dirty(ppgtt); 1928 wmb(); 1929 } 1930 1931 return 0; 1932 1933 unwind_out: 1934 gen6_ppgtt_clear_range(vm, from, start); 1935 return -ENOMEM; 1936 } 1937 1938 static int gen6_init_scratch(struct i915_address_space *vm) 1939 { 1940 int ret; 1941 1942 ret = setup_scratch_page(vm, I915_GFP_DMA); 1943 if (ret) 1944 return ret; 1945 1946 vm->scratch_pt = alloc_pt(vm); 1947 if (IS_ERR(vm->scratch_pt)) { 1948 cleanup_scratch_page(vm); 1949 return PTR_ERR(vm->scratch_pt); 1950 } 1951 1952 gen6_initialize_pt(vm, vm->scratch_pt); 1953 1954 return 0; 1955 } 1956 1957 static void gen6_free_scratch(struct i915_address_space *vm) 1958 { 1959 free_pt(vm, vm->scratch_pt); 1960 cleanup_scratch_page(vm); 1961 } 1962 1963 static void gen6_ppgtt_cleanup(struct i915_address_space *vm) 1964 { 1965 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1966 struct i915_page_directory *pd = &ppgtt->pd; 1967 struct i915_page_table *pt; 1968 u32 pde; 1969 1970 drm_mm_remove_node(&ppgtt->node); 1971 1972 gen6_for_all_pdes(pt, pd, pde) 1973 if (pt != vm->scratch_pt) 1974 free_pt(vm, pt); 1975 1976 gen6_free_scratch(vm); 1977 } 1978 1979 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt) 1980 { 1981 struct i915_address_space *vm = &ppgtt->base; 1982 struct drm_i915_private *dev_priv = ppgtt->base.i915; 1983 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1984 int ret; 1985 1986 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The 1987 * allocator works in address space sizes, so it's multiplied by page 1988 * size. We allocate at the top of the GTT to avoid fragmentation. 1989 */ 1990 BUG_ON(!drm_mm_initialized(&ggtt->base.mm)); 1991 1992 ret = gen6_init_scratch(vm); 1993 if (ret) 1994 return ret; 1995 1996 ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node, 1997 GEN6_PD_SIZE, GEN6_PD_ALIGN, 1998 I915_COLOR_UNEVICTABLE, 1999 0, ggtt->base.total, 2000 PIN_HIGH); 2001 if (ret) 2002 goto err_out; 2003 2004 if (ppgtt->node.start < ggtt->mappable_end) 2005 DRM_DEBUG("Forced to use aperture for PDEs\n"); 2006 2007 ppgtt->pd.base.ggtt_offset = 2008 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t); 2009 2010 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + 2011 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t); 2012 2013 return 0; 2014 2015 err_out: 2016 gen6_free_scratch(vm); 2017 return ret; 2018 } 2019 2020 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt) 2021 { 2022 return gen6_ppgtt_allocate_page_directories(ppgtt); 2023 } 2024 2025 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt, 2026 u64 start, u64 length) 2027 { 2028 struct i915_page_table *unused; 2029 u32 pde; 2030 2031 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) 2032 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt; 2033 } 2034 2035 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) 2036 { 2037 struct drm_i915_private *dev_priv = ppgtt->base.i915; 2038 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2039 int ret; 2040 2041 ppgtt->base.pte_encode = ggtt->base.pte_encode; 2042 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv)) 2043 ppgtt->switch_mm = gen6_mm_switch; 2044 else if (IS_HASWELL(dev_priv)) 2045 ppgtt->switch_mm = hsw_mm_switch; 2046 else if (IS_GEN7(dev_priv)) 2047 ppgtt->switch_mm = gen7_mm_switch; 2048 else 2049 BUG(); 2050 2051 ret = gen6_ppgtt_alloc(ppgtt); 2052 if (ret) 2053 return ret; 2054 2055 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE; 2056 2057 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total); 2058 gen6_write_page_range(ppgtt, 0, ppgtt->base.total); 2059 2060 ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total); 2061 if (ret) { 2062 gen6_ppgtt_cleanup(&ppgtt->base); 2063 return ret; 2064 } 2065 2066 ppgtt->base.clear_range = gen6_ppgtt_clear_range; 2067 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; 2068 ppgtt->base.unbind_vma = ppgtt_unbind_vma; 2069 ppgtt->base.bind_vma = ppgtt_bind_vma; 2070 ppgtt->base.set_pages = ppgtt_set_pages; 2071 ppgtt->base.clear_pages = clear_pages; 2072 ppgtt->base.cleanup = gen6_ppgtt_cleanup; 2073 ppgtt->debug_dump = gen6_dump_ppgtt; 2074 2075 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n", 2076 ppgtt->node.size >> 20, 2077 ppgtt->node.start / PAGE_SIZE); 2078 2079 DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n", 2080 ppgtt->pd.base.ggtt_offset << 10); 2081 2082 return 0; 2083 } 2084 2085 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt, 2086 struct drm_i915_private *dev_priv) 2087 { 2088 ppgtt->base.i915 = dev_priv; 2089 ppgtt->base.dma = &dev_priv->drm.pdev->dev; 2090 2091 if (INTEL_INFO(dev_priv)->gen < 8) 2092 return gen6_ppgtt_init(ppgtt); 2093 else 2094 return gen8_ppgtt_init(ppgtt); 2095 } 2096 2097 static void i915_address_space_init(struct i915_address_space *vm, 2098 struct drm_i915_private *dev_priv, 2099 const char *name) 2100 { 2101 i915_gem_timeline_init(dev_priv, &vm->timeline, name); 2102 2103 drm_mm_init(&vm->mm, 0, vm->total); 2104 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 2105 2106 INIT_LIST_HEAD(&vm->active_list); 2107 INIT_LIST_HEAD(&vm->inactive_list); 2108 INIT_LIST_HEAD(&vm->unbound_list); 2109 2110 list_add_tail(&vm->global_link, &dev_priv->vm_list); 2111 pagevec_init(&vm->free_pages); 2112 } 2113 2114 static void i915_address_space_fini(struct i915_address_space *vm) 2115 { 2116 if (pagevec_count(&vm->free_pages)) 2117 vm_free_pages_release(vm, true); 2118 2119 i915_gem_timeline_fini(&vm->timeline); 2120 drm_mm_takedown(&vm->mm); 2121 list_del(&vm->global_link); 2122 } 2123 2124 static void gtt_write_workarounds(struct drm_i915_private *dev_priv) 2125 { 2126 /* This function is for gtt related workarounds. This function is 2127 * called on driver load and after a GPU reset, so you can place 2128 * workarounds here even if they get overwritten by GPU reset. 2129 */ 2130 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl */ 2131 if (IS_BROADWELL(dev_priv)) 2132 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 2133 else if (IS_CHERRYVIEW(dev_priv)) 2134 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 2135 else if (IS_GEN9_BC(dev_priv) || IS_GEN10(dev_priv)) 2136 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 2137 else if (IS_GEN9_LP(dev_priv)) 2138 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 2139 2140 /* 2141 * To support 64K PTEs we need to first enable the use of the 2142 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical 2143 * mmio, otherwise the page-walker will simply ignore the IPS bit. This 2144 * shouldn't be needed after GEN10. 2145 * 2146 * 64K pages were first introduced from BDW+, although technically they 2147 * only *work* from gen9+. For pre-BDW we instead have the option for 2148 * 32K pages, but we don't currently have any support for it in our 2149 * driver. 2150 */ 2151 if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) && 2152 INTEL_GEN(dev_priv) <= 10) 2153 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA, 2154 I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) | 2155 GAMW_ECO_ENABLE_64K_IPS_FIELD); 2156 } 2157 2158 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv) 2159 { 2160 gtt_write_workarounds(dev_priv); 2161 2162 /* In the case of execlists, PPGTT is enabled by the context descriptor 2163 * and the PDPs are contained within the context itself. We don't 2164 * need to do anything here. */ 2165 if (i915_modparams.enable_execlists) 2166 return 0; 2167 2168 if (!USES_PPGTT(dev_priv)) 2169 return 0; 2170 2171 if (IS_GEN6(dev_priv)) 2172 gen6_ppgtt_enable(dev_priv); 2173 else if (IS_GEN7(dev_priv)) 2174 gen7_ppgtt_enable(dev_priv); 2175 else if (INTEL_GEN(dev_priv) >= 8) 2176 gen8_ppgtt_enable(dev_priv); 2177 else 2178 MISSING_CASE(INTEL_GEN(dev_priv)); 2179 2180 return 0; 2181 } 2182 2183 struct i915_hw_ppgtt * 2184 i915_ppgtt_create(struct drm_i915_private *dev_priv, 2185 struct drm_i915_file_private *fpriv, 2186 const char *name) 2187 { 2188 struct i915_hw_ppgtt *ppgtt; 2189 int ret; 2190 2191 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); 2192 if (!ppgtt) 2193 return ERR_PTR(-ENOMEM); 2194 2195 ret = __hw_ppgtt_init(ppgtt, dev_priv); 2196 if (ret) { 2197 kfree(ppgtt); 2198 return ERR_PTR(ret); 2199 } 2200 2201 kref_init(&ppgtt->ref); 2202 i915_address_space_init(&ppgtt->base, dev_priv, name); 2203 ppgtt->base.file = fpriv; 2204 2205 trace_i915_ppgtt_create(&ppgtt->base); 2206 2207 return ppgtt; 2208 } 2209 2210 void i915_ppgtt_close(struct i915_address_space *vm) 2211 { 2212 struct list_head *phases[] = { 2213 &vm->active_list, 2214 &vm->inactive_list, 2215 &vm->unbound_list, 2216 NULL, 2217 }, **phase; 2218 2219 GEM_BUG_ON(vm->closed); 2220 vm->closed = true; 2221 2222 for (phase = phases; *phase; phase++) { 2223 struct i915_vma *vma, *vn; 2224 2225 list_for_each_entry_safe(vma, vn, *phase, vm_link) 2226 if (!i915_vma_is_closed(vma)) 2227 i915_vma_close(vma); 2228 } 2229 } 2230 2231 void i915_ppgtt_release(struct kref *kref) 2232 { 2233 struct i915_hw_ppgtt *ppgtt = 2234 container_of(kref, struct i915_hw_ppgtt, ref); 2235 2236 trace_i915_ppgtt_release(&ppgtt->base); 2237 2238 /* vmas should already be unbound and destroyed */ 2239 WARN_ON(!list_empty(&ppgtt->base.active_list)); 2240 WARN_ON(!list_empty(&ppgtt->base.inactive_list)); 2241 WARN_ON(!list_empty(&ppgtt->base.unbound_list)); 2242 2243 ppgtt->base.cleanup(&ppgtt->base); 2244 i915_address_space_fini(&ppgtt->base); 2245 kfree(ppgtt); 2246 } 2247 2248 /* Certain Gen5 chipsets require require idling the GPU before 2249 * unmapping anything from the GTT when VT-d is enabled. 2250 */ 2251 static bool needs_idle_maps(struct drm_i915_private *dev_priv) 2252 { 2253 /* Query intel_iommu to see if we need the workaround. Presumably that 2254 * was loaded first. 2255 */ 2256 return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active(); 2257 } 2258 2259 static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv) 2260 { 2261 struct intel_engine_cs *engine; 2262 enum intel_engine_id id; 2263 u32 fault; 2264 2265 for_each_engine(engine, dev_priv, id) { 2266 fault = I915_READ(RING_FAULT_REG(engine)); 2267 if (fault & RING_FAULT_VALID) { 2268 DRM_DEBUG_DRIVER("Unexpected fault\n" 2269 "\tAddr: 0x%08lx\n" 2270 "\tAddress space: %s\n" 2271 "\tSource ID: %d\n" 2272 "\tType: %d\n", 2273 fault & PAGE_MASK, 2274 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", 2275 RING_FAULT_SRCID(fault), 2276 RING_FAULT_FAULT_TYPE(fault)); 2277 I915_WRITE(RING_FAULT_REG(engine), 2278 fault & ~RING_FAULT_VALID); 2279 } 2280 } 2281 2282 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS])); 2283 } 2284 2285 static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv) 2286 { 2287 u32 fault = I915_READ(GEN8_RING_FAULT_REG); 2288 2289 if (fault & RING_FAULT_VALID) { 2290 DRM_DEBUG_DRIVER("Unexpected fault\n" 2291 "\tAddr: 0x%08lx\n" 2292 "\tEngine ID: %d\n" 2293 "\tSource ID: %d\n" 2294 "\tType: %d\n", 2295 fault & PAGE_MASK, 2296 GEN8_RING_FAULT_ENGINE_ID(fault), 2297 RING_FAULT_SRCID(fault), 2298 RING_FAULT_FAULT_TYPE(fault)); 2299 I915_WRITE(GEN8_RING_FAULT_REG, 2300 fault & ~RING_FAULT_VALID); 2301 } 2302 2303 POSTING_READ(GEN8_RING_FAULT_REG); 2304 } 2305 2306 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv) 2307 { 2308 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 2309 if (INTEL_GEN(dev_priv) >= 8) 2310 gen8_check_and_clear_faults(dev_priv); 2311 else if (INTEL_GEN(dev_priv) >= 6) 2312 gen6_check_and_clear_faults(dev_priv); 2313 else 2314 return; 2315 } 2316 2317 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv) 2318 { 2319 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2320 2321 /* Don't bother messing with faults pre GEN6 as we have little 2322 * documentation supporting that it's a good idea. 2323 */ 2324 if (INTEL_GEN(dev_priv) < 6) 2325 return; 2326 2327 i915_check_and_clear_faults(dev_priv); 2328 2329 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total); 2330 2331 i915_ggtt_invalidate(dev_priv); 2332 } 2333 2334 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, 2335 struct sg_table *pages) 2336 { 2337 do { 2338 if (dma_map_sg(&obj->base.dev->pdev->dev, 2339 pages->sgl, pages->nents, 2340 PCI_DMA_BIDIRECTIONAL)) 2341 return 0; 2342 2343 /* If the DMA remap fails, one cause can be that we have 2344 * too many objects pinned in a small remapping table, 2345 * such as swiotlb. Incrementally purge all other objects and 2346 * try again - if there are no more pages to remove from 2347 * the DMA remapper, i915_gem_shrink will return 0. 2348 */ 2349 GEM_BUG_ON(obj->mm.pages == pages); 2350 } while (i915_gem_shrink(to_i915(obj->base.dev), 2351 obj->base.size >> PAGE_SHIFT, NULL, 2352 I915_SHRINK_BOUND | 2353 I915_SHRINK_UNBOUND | 2354 I915_SHRINK_ACTIVE)); 2355 2356 return -ENOSPC; 2357 } 2358 2359 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 2360 { 2361 writeq(pte, addr); 2362 } 2363 2364 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 2365 dma_addr_t addr, 2366 u64 offset, 2367 enum i915_cache_level level, 2368 u32 unused) 2369 { 2370 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2371 gen8_pte_t __iomem *pte = 2372 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); 2373 2374 gen8_set_pte(pte, gen8_pte_encode(addr, level)); 2375 2376 ggtt->invalidate(vm->i915); 2377 } 2378 2379 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 2380 struct i915_vma *vma, 2381 enum i915_cache_level level, 2382 u32 unused) 2383 { 2384 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2385 struct sgt_iter sgt_iter; 2386 gen8_pte_t __iomem *gtt_entries; 2387 const gen8_pte_t pte_encode = gen8_pte_encode(0, level); 2388 dma_addr_t addr; 2389 2390 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm; 2391 gtt_entries += vma->node.start >> PAGE_SHIFT; 2392 for_each_sgt_dma(addr, sgt_iter, vma->pages) 2393 gen8_set_pte(gtt_entries++, pte_encode | addr); 2394 2395 wmb(); 2396 2397 /* This next bit makes the above posting read even more important. We 2398 * want to flush the TLBs only after we're certain all the PTE updates 2399 * have finished. 2400 */ 2401 ggtt->invalidate(vm->i915); 2402 } 2403 2404 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 2405 dma_addr_t addr, 2406 u64 offset, 2407 enum i915_cache_level level, 2408 u32 flags) 2409 { 2410 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2411 gen6_pte_t __iomem *pte = 2412 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); 2413 2414 iowrite32(vm->pte_encode(addr, level, flags), pte); 2415 2416 ggtt->invalidate(vm->i915); 2417 } 2418 2419 /* 2420 * Binds an object into the global gtt with the specified cache level. The object 2421 * will be accessible to the GPU via commands whose operands reference offsets 2422 * within the global GTT as well as accessible by the GPU through the GMADR 2423 * mapped BAR (dev_priv->mm.gtt->gtt). 2424 */ 2425 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 2426 struct i915_vma *vma, 2427 enum i915_cache_level level, 2428 u32 flags) 2429 { 2430 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2431 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm; 2432 unsigned int i = vma->node.start >> PAGE_SHIFT; 2433 struct sgt_iter iter; 2434 dma_addr_t addr; 2435 for_each_sgt_dma(addr, iter, vma->pages) 2436 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]); 2437 wmb(); 2438 2439 /* This next bit makes the above posting read even more important. We 2440 * want to flush the TLBs only after we're certain all the PTE updates 2441 * have finished. 2442 */ 2443 ggtt->invalidate(vm->i915); 2444 } 2445 2446 static void nop_clear_range(struct i915_address_space *vm, 2447 u64 start, u64 length) 2448 { 2449 } 2450 2451 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 2452 u64 start, u64 length) 2453 { 2454 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2455 unsigned first_entry = start >> PAGE_SHIFT; 2456 unsigned num_entries = length >> PAGE_SHIFT; 2457 const gen8_pte_t scratch_pte = 2458 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); 2459 gen8_pte_t __iomem *gtt_base = 2460 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 2461 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 2462 int i; 2463 2464 if (WARN(num_entries > max_entries, 2465 "First entry = %d; Num entries = %d (max=%d)\n", 2466 first_entry, num_entries, max_entries)) 2467 num_entries = max_entries; 2468 2469 for (i = 0; i < num_entries; i++) 2470 gen8_set_pte(>t_base[i], scratch_pte); 2471 } 2472 2473 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 2474 { 2475 struct drm_i915_private *dev_priv = vm->i915; 2476 2477 /* 2478 * Make sure the internal GAM fifo has been cleared of all GTT 2479 * writes before exiting stop_machine(). This guarantees that 2480 * any aperture accesses waiting to start in another process 2481 * cannot back up behind the GTT writes causing a hang. 2482 * The register can be any arbitrary GAM register. 2483 */ 2484 POSTING_READ(GFX_FLSH_CNTL_GEN6); 2485 } 2486 2487 struct insert_page { 2488 struct i915_address_space *vm; 2489 dma_addr_t addr; 2490 u64 offset; 2491 enum i915_cache_level level; 2492 }; 2493 2494 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 2495 { 2496 struct insert_page *arg = _arg; 2497 2498 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 2499 bxt_vtd_ggtt_wa(arg->vm); 2500 2501 return 0; 2502 } 2503 2504 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 2505 dma_addr_t addr, 2506 u64 offset, 2507 enum i915_cache_level level, 2508 u32 unused) 2509 { 2510 struct insert_page arg = { vm, addr, offset, level }; 2511 2512 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 2513 } 2514 2515 struct insert_entries { 2516 struct i915_address_space *vm; 2517 struct i915_vma *vma; 2518 enum i915_cache_level level; 2519 }; 2520 2521 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 2522 { 2523 struct insert_entries *arg = _arg; 2524 2525 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0); 2526 bxt_vtd_ggtt_wa(arg->vm); 2527 2528 return 0; 2529 } 2530 2531 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 2532 struct i915_vma *vma, 2533 enum i915_cache_level level, 2534 u32 unused) 2535 { 2536 struct insert_entries arg = { vm, vma, level }; 2537 2538 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 2539 } 2540 2541 struct clear_range { 2542 struct i915_address_space *vm; 2543 u64 start; 2544 u64 length; 2545 }; 2546 2547 static int bxt_vtd_ggtt_clear_range__cb(void *_arg) 2548 { 2549 struct clear_range *arg = _arg; 2550 2551 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length); 2552 bxt_vtd_ggtt_wa(arg->vm); 2553 2554 return 0; 2555 } 2556 2557 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm, 2558 u64 start, 2559 u64 length) 2560 { 2561 struct clear_range arg = { vm, start, length }; 2562 2563 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL); 2564 } 2565 2566 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 2567 u64 start, u64 length) 2568 { 2569 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2570 unsigned first_entry = start >> PAGE_SHIFT; 2571 unsigned num_entries = length >> PAGE_SHIFT; 2572 gen6_pte_t scratch_pte, __iomem *gtt_base = 2573 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 2574 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 2575 int i; 2576 2577 if (WARN(num_entries > max_entries, 2578 "First entry = %d; Num entries = %d (max=%d)\n", 2579 first_entry, num_entries, max_entries)) 2580 num_entries = max_entries; 2581 2582 scratch_pte = vm->pte_encode(vm->scratch_page.daddr, 2583 I915_CACHE_LLC, 0); 2584 2585 for (i = 0; i < num_entries; i++) 2586 iowrite32(scratch_pte, >t_base[i]); 2587 } 2588 2589 static void i915_ggtt_insert_page(struct i915_address_space *vm, 2590 dma_addr_t addr, 2591 u64 offset, 2592 enum i915_cache_level cache_level, 2593 u32 unused) 2594 { 2595 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 2596 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 2597 2598 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); 2599 } 2600 2601 static void i915_ggtt_insert_entries(struct i915_address_space *vm, 2602 struct i915_vma *vma, 2603 enum i915_cache_level cache_level, 2604 u32 unused) 2605 { 2606 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 2607 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 2608 2609 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT, 2610 flags); 2611 } 2612 2613 static void i915_ggtt_clear_range(struct i915_address_space *vm, 2614 u64 start, u64 length) 2615 { 2616 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); 2617 } 2618 2619 static int ggtt_bind_vma(struct i915_vma *vma, 2620 enum i915_cache_level cache_level, 2621 u32 flags) 2622 { 2623 struct drm_i915_private *i915 = vma->vm->i915; 2624 struct drm_i915_gem_object *obj = vma->obj; 2625 u32 pte_flags; 2626 2627 /* Currently applicable only to VLV */ 2628 pte_flags = 0; 2629 if (obj->gt_ro) 2630 pte_flags |= PTE_READ_ONLY; 2631 2632 intel_runtime_pm_get(i915); 2633 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 2634 intel_runtime_pm_put(i915); 2635 2636 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 2637 2638 /* 2639 * Without aliasing PPGTT there's no difference between 2640 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally 2641 * upgrade to both bound if we bind either to avoid double-binding. 2642 */ 2643 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 2644 2645 return 0; 2646 } 2647 2648 static void ggtt_unbind_vma(struct i915_vma *vma) 2649 { 2650 struct drm_i915_private *i915 = vma->vm->i915; 2651 2652 intel_runtime_pm_get(i915); 2653 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 2654 intel_runtime_pm_put(i915); 2655 } 2656 2657 static int aliasing_gtt_bind_vma(struct i915_vma *vma, 2658 enum i915_cache_level cache_level, 2659 u32 flags) 2660 { 2661 struct drm_i915_private *i915 = vma->vm->i915; 2662 u32 pte_flags; 2663 int ret; 2664 2665 /* Currently applicable only to VLV */ 2666 pte_flags = 0; 2667 if (vma->obj->gt_ro) 2668 pte_flags |= PTE_READ_ONLY; 2669 2670 if (flags & I915_VMA_LOCAL_BIND) { 2671 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt; 2672 2673 if (!(vma->flags & I915_VMA_LOCAL_BIND) && 2674 appgtt->base.allocate_va_range) { 2675 ret = appgtt->base.allocate_va_range(&appgtt->base, 2676 vma->node.start, 2677 vma->size); 2678 if (ret) 2679 return ret; 2680 } 2681 2682 appgtt->base.insert_entries(&appgtt->base, vma, cache_level, 2683 pte_flags); 2684 } 2685 2686 if (flags & I915_VMA_GLOBAL_BIND) { 2687 intel_runtime_pm_get(i915); 2688 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 2689 intel_runtime_pm_put(i915); 2690 } 2691 2692 return 0; 2693 } 2694 2695 static void aliasing_gtt_unbind_vma(struct i915_vma *vma) 2696 { 2697 struct drm_i915_private *i915 = vma->vm->i915; 2698 2699 if (vma->flags & I915_VMA_GLOBAL_BIND) { 2700 intel_runtime_pm_get(i915); 2701 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 2702 intel_runtime_pm_put(i915); 2703 } 2704 2705 if (vma->flags & I915_VMA_LOCAL_BIND) { 2706 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base; 2707 2708 vm->clear_range(vm, vma->node.start, vma->size); 2709 } 2710 } 2711 2712 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, 2713 struct sg_table *pages) 2714 { 2715 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2716 struct device *kdev = &dev_priv->drm.pdev->dev; 2717 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2718 2719 if (unlikely(ggtt->do_idle_maps)) { 2720 if (i915_gem_wait_for_idle(dev_priv, 0)) { 2721 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); 2722 /* Wait a bit, in hopes it avoids the hang */ 2723 udelay(10); 2724 } 2725 } 2726 2727 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL); 2728 } 2729 2730 static int ggtt_set_pages(struct i915_vma *vma) 2731 { 2732 int ret; 2733 2734 GEM_BUG_ON(vma->pages); 2735 2736 ret = i915_get_ggtt_vma_pages(vma); 2737 if (ret) 2738 return ret; 2739 2740 vma->page_sizes = vma->obj->mm.page_sizes; 2741 2742 return 0; 2743 } 2744 2745 static void i915_gtt_color_adjust(const struct drm_mm_node *node, 2746 unsigned long color, 2747 u64 *start, 2748 u64 *end) 2749 { 2750 if (node->allocated && node->color != color) 2751 *start += I915_GTT_PAGE_SIZE; 2752 2753 /* Also leave a space between the unallocated reserved node after the 2754 * GTT and any objects within the GTT, i.e. we use the color adjustment 2755 * to insert a guard page to prevent prefetches crossing over the 2756 * GTT boundary. 2757 */ 2758 node = list_next_entry(node, node_list); 2759 if (node->color != color) 2760 *end -= I915_GTT_PAGE_SIZE; 2761 } 2762 2763 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915) 2764 { 2765 struct i915_ggtt *ggtt = &i915->ggtt; 2766 struct i915_hw_ppgtt *ppgtt; 2767 int err; 2768 2769 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]"); 2770 if (IS_ERR(ppgtt)) 2771 return PTR_ERR(ppgtt); 2772 2773 if (WARN_ON(ppgtt->base.total < ggtt->base.total)) { 2774 err = -ENODEV; 2775 goto err_ppgtt; 2776 } 2777 2778 if (ppgtt->base.allocate_va_range) { 2779 /* Note we only pre-allocate as far as the end of the global 2780 * GTT. On 48b / 4-level page-tables, the difference is very, 2781 * very significant! We have to preallocate as GVT/vgpu does 2782 * not like the page directory disappearing. 2783 */ 2784 err = ppgtt->base.allocate_va_range(&ppgtt->base, 2785 0, ggtt->base.total); 2786 if (err) 2787 goto err_ppgtt; 2788 } 2789 2790 i915->mm.aliasing_ppgtt = ppgtt; 2791 2792 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma); 2793 ggtt->base.bind_vma = aliasing_gtt_bind_vma; 2794 2795 WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma); 2796 ggtt->base.unbind_vma = aliasing_gtt_unbind_vma; 2797 2798 return 0; 2799 2800 err_ppgtt: 2801 i915_ppgtt_put(ppgtt); 2802 return err; 2803 } 2804 2805 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915) 2806 { 2807 struct i915_ggtt *ggtt = &i915->ggtt; 2808 struct i915_hw_ppgtt *ppgtt; 2809 2810 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt); 2811 if (!ppgtt) 2812 return; 2813 2814 i915_ppgtt_put(ppgtt); 2815 2816 ggtt->base.bind_vma = ggtt_bind_vma; 2817 ggtt->base.unbind_vma = ggtt_unbind_vma; 2818 } 2819 2820 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) 2821 { 2822 /* Let GEM Manage all of the aperture. 2823 * 2824 * However, leave one page at the end still bound to the scratch page. 2825 * There are a number of places where the hardware apparently prefetches 2826 * past the end of the object, and we've seen multiple hangs with the 2827 * GPU head pointer stuck in a batchbuffer bound at the last page of the 2828 * aperture. One page should be enough to keep any prefetching inside 2829 * of the aperture. 2830 */ 2831 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2832 unsigned long hole_start, hole_end; 2833 struct drm_mm_node *entry; 2834 int ret; 2835 2836 ret = intel_vgt_balloon(dev_priv); 2837 if (ret) 2838 return ret; 2839 2840 /* Reserve a mappable slot for our lockless error capture */ 2841 ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture, 2842 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 2843 0, ggtt->mappable_end, 2844 DRM_MM_INSERT_LOW); 2845 if (ret) 2846 return ret; 2847 2848 /* Clear any non-preallocated blocks */ 2849 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) { 2850 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", 2851 hole_start, hole_end); 2852 ggtt->base.clear_range(&ggtt->base, hole_start, 2853 hole_end - hole_start); 2854 } 2855 2856 /* And finally clear the reserved guard page */ 2857 ggtt->base.clear_range(&ggtt->base, 2858 ggtt->base.total - PAGE_SIZE, PAGE_SIZE); 2859 2860 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) { 2861 ret = i915_gem_init_aliasing_ppgtt(dev_priv); 2862 if (ret) 2863 goto err; 2864 } 2865 2866 return 0; 2867 2868 err: 2869 drm_mm_remove_node(&ggtt->error_capture); 2870 return ret; 2871 } 2872 2873 /** 2874 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization 2875 * @dev_priv: i915 device 2876 */ 2877 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) 2878 { 2879 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2880 struct i915_vma *vma, *vn; 2881 struct pagevec *pvec; 2882 2883 ggtt->base.closed = true; 2884 2885 mutex_lock(&dev_priv->drm.struct_mutex); 2886 WARN_ON(!list_empty(&ggtt->base.active_list)); 2887 list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link) 2888 WARN_ON(i915_vma_unbind(vma)); 2889 mutex_unlock(&dev_priv->drm.struct_mutex); 2890 2891 i915_gem_cleanup_stolen(&dev_priv->drm); 2892 2893 mutex_lock(&dev_priv->drm.struct_mutex); 2894 i915_gem_fini_aliasing_ppgtt(dev_priv); 2895 2896 if (drm_mm_node_allocated(&ggtt->error_capture)) 2897 drm_mm_remove_node(&ggtt->error_capture); 2898 2899 if (drm_mm_initialized(&ggtt->base.mm)) { 2900 intel_vgt_deballoon(dev_priv); 2901 i915_address_space_fini(&ggtt->base); 2902 } 2903 2904 ggtt->base.cleanup(&ggtt->base); 2905 2906 pvec = &dev_priv->mm.wc_stash; 2907 if (pvec->nr) { 2908 set_pages_array_wb(pvec->pages, pvec->nr); 2909 __pagevec_release(pvec); 2910 } 2911 2912 mutex_unlock(&dev_priv->drm.struct_mutex); 2913 2914 arch_phys_wc_del(ggtt->mtrr); 2915 io_mapping_fini(&ggtt->mappable); 2916 } 2917 2918 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 2919 { 2920 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 2921 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 2922 return snb_gmch_ctl << 20; 2923 } 2924 2925 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 2926 { 2927 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 2928 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 2929 if (bdw_gmch_ctl) 2930 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 2931 2932 #ifdef CONFIG_X86_32 2933 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */ 2934 if (bdw_gmch_ctl > 4) 2935 bdw_gmch_ctl = 4; 2936 #endif 2937 2938 return bdw_gmch_ctl << 20; 2939 } 2940 2941 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 2942 { 2943 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 2944 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 2945 2946 if (gmch_ctrl) 2947 return 1 << (20 + gmch_ctrl); 2948 2949 return 0; 2950 } 2951 2952 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl) 2953 { 2954 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; 2955 snb_gmch_ctl &= SNB_GMCH_GMS_MASK; 2956 return (size_t)snb_gmch_ctl << 25; /* 32 MB units */ 2957 } 2958 2959 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) 2960 { 2961 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; 2962 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; 2963 return (size_t)bdw_gmch_ctl << 25; /* 32 MB units */ 2964 } 2965 2966 static size_t chv_get_stolen_size(u16 gmch_ctrl) 2967 { 2968 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT; 2969 gmch_ctrl &= SNB_GMCH_GMS_MASK; 2970 2971 /* 2972 * 0x0 to 0x10: 32MB increments starting at 0MB 2973 * 0x11 to 0x16: 4MB increments starting at 8MB 2974 * 0x17 to 0x1d: 4MB increments start at 36MB 2975 */ 2976 if (gmch_ctrl < 0x11) 2977 return (size_t)gmch_ctrl << 25; 2978 else if (gmch_ctrl < 0x17) 2979 return (size_t)(gmch_ctrl - 0x11 + 2) << 22; 2980 else 2981 return (size_t)(gmch_ctrl - 0x17 + 9) << 22; 2982 } 2983 2984 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl) 2985 { 2986 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; 2987 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK; 2988 2989 if (gen9_gmch_ctl < 0xf0) 2990 return (size_t)gen9_gmch_ctl << 25; /* 32 MB units */ 2991 else 2992 /* 4MB increments starting at 0xf0 for 4MB */ 2993 return (size_t)(gen9_gmch_ctl - 0xf0 + 1) << 22; 2994 } 2995 2996 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 2997 { 2998 struct drm_i915_private *dev_priv = ggtt->base.i915; 2999 struct pci_dev *pdev = dev_priv->drm.pdev; 3000 phys_addr_t phys_addr; 3001 int ret; 3002 3003 /* For Modern GENs the PTEs and register space are split in the BAR */ 3004 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; 3005 3006 /* 3007 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range 3008 * will be dropped. For WC mappings in general we have 64 byte burst 3009 * writes when the WC buffer is flushed, so we can't use it, but have to 3010 * resort to an uncached mapping. The WC issue is easily caught by the 3011 * readback check when writing GTT PTE entries. 3012 */ 3013 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) 3014 ggtt->gsm = ioremap_nocache(phys_addr, size); 3015 else 3016 ggtt->gsm = ioremap_wc(phys_addr, size); 3017 if (!ggtt->gsm) { 3018 DRM_ERROR("Failed to map the ggtt page table\n"); 3019 return -ENOMEM; 3020 } 3021 3022 ret = setup_scratch_page(&ggtt->base, GFP_DMA32); 3023 if (ret) { 3024 DRM_ERROR("Scratch setup failed\n"); 3025 /* iounmap will also get called at remove, but meh */ 3026 iounmap(ggtt->gsm); 3027 return ret; 3028 } 3029 3030 return 0; 3031 } 3032 3033 static struct intel_ppat_entry * 3034 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value) 3035 { 3036 struct intel_ppat_entry *entry = &ppat->entries[index]; 3037 3038 GEM_BUG_ON(index >= ppat->max_entries); 3039 GEM_BUG_ON(test_bit(index, ppat->used)); 3040 3041 entry->ppat = ppat; 3042 entry->value = value; 3043 kref_init(&entry->ref); 3044 set_bit(index, ppat->used); 3045 set_bit(index, ppat->dirty); 3046 3047 return entry; 3048 } 3049 3050 static void __free_ppat_entry(struct intel_ppat_entry *entry) 3051 { 3052 struct intel_ppat *ppat = entry->ppat; 3053 unsigned int index = entry - ppat->entries; 3054 3055 GEM_BUG_ON(index >= ppat->max_entries); 3056 GEM_BUG_ON(!test_bit(index, ppat->used)); 3057 3058 entry->value = ppat->clear_value; 3059 clear_bit(index, ppat->used); 3060 set_bit(index, ppat->dirty); 3061 } 3062 3063 /** 3064 * intel_ppat_get - get a usable PPAT entry 3065 * @i915: i915 device instance 3066 * @value: the PPAT value required by the caller 3067 * 3068 * The function tries to search if there is an existing PPAT entry which 3069 * matches with the required value. If perfectly matched, the existing PPAT 3070 * entry will be used. If only partially matched, it will try to check if 3071 * there is any available PPAT index. If yes, it will allocate a new PPAT 3072 * index for the required entry and update the HW. If not, the partially 3073 * matched entry will be used. 3074 */ 3075 const struct intel_ppat_entry * 3076 intel_ppat_get(struct drm_i915_private *i915, u8 value) 3077 { 3078 struct intel_ppat *ppat = &i915->ppat; 3079 struct intel_ppat_entry *entry = NULL; 3080 unsigned int scanned, best_score; 3081 int i; 3082 3083 GEM_BUG_ON(!ppat->max_entries); 3084 3085 scanned = best_score = 0; 3086 for_each_set_bit(i, ppat->used, ppat->max_entries) { 3087 unsigned int score; 3088 3089 score = ppat->match(ppat->entries[i].value, value); 3090 if (score > best_score) { 3091 entry = &ppat->entries[i]; 3092 if (score == INTEL_PPAT_PERFECT_MATCH) { 3093 kref_get(&entry->ref); 3094 return entry; 3095 } 3096 best_score = score; 3097 } 3098 scanned++; 3099 } 3100 3101 if (scanned == ppat->max_entries) { 3102 if (!entry) 3103 return ERR_PTR(-ENOSPC); 3104 3105 kref_get(&entry->ref); 3106 return entry; 3107 } 3108 3109 i = find_first_zero_bit(ppat->used, ppat->max_entries); 3110 entry = __alloc_ppat_entry(ppat, i, value); 3111 ppat->update_hw(i915); 3112 return entry; 3113 } 3114 3115 static void release_ppat(struct kref *kref) 3116 { 3117 struct intel_ppat_entry *entry = 3118 container_of(kref, struct intel_ppat_entry, ref); 3119 struct drm_i915_private *i915 = entry->ppat->i915; 3120 3121 __free_ppat_entry(entry); 3122 entry->ppat->update_hw(i915); 3123 } 3124 3125 /** 3126 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get() 3127 * @entry: an intel PPAT entry 3128 * 3129 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the 3130 * entry is dynamically allocated, its reference count will be decreased. Once 3131 * the reference count becomes into zero, the PPAT index becomes free again. 3132 */ 3133 void intel_ppat_put(const struct intel_ppat_entry *entry) 3134 { 3135 struct intel_ppat *ppat = entry->ppat; 3136 unsigned int index = entry - ppat->entries; 3137 3138 GEM_BUG_ON(!ppat->max_entries); 3139 3140 kref_put(&ppat->entries[index].ref, release_ppat); 3141 } 3142 3143 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv) 3144 { 3145 struct intel_ppat *ppat = &dev_priv->ppat; 3146 int i; 3147 3148 for_each_set_bit(i, ppat->dirty, ppat->max_entries) { 3149 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value); 3150 clear_bit(i, ppat->dirty); 3151 } 3152 } 3153 3154 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv) 3155 { 3156 struct intel_ppat *ppat = &dev_priv->ppat; 3157 u64 pat = 0; 3158 int i; 3159 3160 for (i = 0; i < ppat->max_entries; i++) 3161 pat |= GEN8_PPAT(i, ppat->entries[i].value); 3162 3163 bitmap_clear(ppat->dirty, 0, ppat->max_entries); 3164 3165 I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 3166 I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 3167 } 3168 3169 static unsigned int bdw_private_pat_match(u8 src, u8 dst) 3170 { 3171 unsigned int score = 0; 3172 enum { 3173 AGE_MATCH = BIT(0), 3174 TC_MATCH = BIT(1), 3175 CA_MATCH = BIT(2), 3176 }; 3177 3178 /* Cache attribute has to be matched. */ 3179 if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst)) 3180 return 0; 3181 3182 score |= CA_MATCH; 3183 3184 if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst)) 3185 score |= TC_MATCH; 3186 3187 if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst)) 3188 score |= AGE_MATCH; 3189 3190 if (score == (AGE_MATCH | TC_MATCH | CA_MATCH)) 3191 return INTEL_PPAT_PERFECT_MATCH; 3192 3193 return score; 3194 } 3195 3196 static unsigned int chv_private_pat_match(u8 src, u8 dst) 3197 { 3198 return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ? 3199 INTEL_PPAT_PERFECT_MATCH : 0; 3200 } 3201 3202 static void cnl_setup_private_ppat(struct intel_ppat *ppat) 3203 { 3204 ppat->max_entries = 8; 3205 ppat->update_hw = cnl_private_pat_update_hw; 3206 ppat->match = bdw_private_pat_match; 3207 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); 3208 3209 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); 3210 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); 3211 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); 3212 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); 3213 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 3214 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 3215 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 3216 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 3217 } 3218 3219 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 3220 * bits. When using advanced contexts each context stores its own PAT, but 3221 * writing this data shouldn't be harmful even in those cases. */ 3222 static void bdw_setup_private_ppat(struct intel_ppat *ppat) 3223 { 3224 ppat->max_entries = 8; 3225 ppat->update_hw = bdw_private_pat_update_hw; 3226 ppat->match = bdw_private_pat_match; 3227 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); 3228 3229 if (!USES_PPGTT(ppat->i915)) { 3230 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, 3231 * so RTL will always use the value corresponding to 3232 * pat_sel = 000". 3233 * So let's disable cache for GGTT to avoid screen corruptions. 3234 * MOCS still can be used though. 3235 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work 3236 * before this patch, i.e. the same uncached + snooping access 3237 * like on gen6/7 seems to be in effect. 3238 * - So this just fixes blitter/render access. Again it looks 3239 * like it's not just uncached access, but uncached + snooping. 3240 * So we can still hold onto all our assumptions wrt cpu 3241 * clflushing on LLC machines. 3242 */ 3243 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC); 3244 return; 3245 } 3246 3247 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */ 3248 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */ 3249 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */ 3250 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */ 3251 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 3252 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 3253 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 3254 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 3255 } 3256 3257 static void chv_setup_private_ppat(struct intel_ppat *ppat) 3258 { 3259 ppat->max_entries = 8; 3260 ppat->update_hw = bdw_private_pat_update_hw; 3261 ppat->match = chv_private_pat_match; 3262 ppat->clear_value = CHV_PPAT_SNOOP; 3263 3264 /* 3265 * Map WB on BDW to snooped on CHV. 3266 * 3267 * Only the snoop bit has meaning for CHV, the rest is 3268 * ignored. 3269 * 3270 * The hardware will never snoop for certain types of accesses: 3271 * - CPU GTT (GMADR->GGTT->no snoop->memory) 3272 * - PPGTT page tables 3273 * - some other special cycles 3274 * 3275 * As with BDW, we also need to consider the following for GT accesses: 3276 * "For GGTT, there is NO pat_sel[2:0] from the entry, 3277 * so RTL will always use the value corresponding to 3278 * pat_sel = 000". 3279 * Which means we must set the snoop bit in PAT entry 0 3280 * in order to keep the global status page working. 3281 */ 3282 3283 __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP); 3284 __alloc_ppat_entry(ppat, 1, 0); 3285 __alloc_ppat_entry(ppat, 2, 0); 3286 __alloc_ppat_entry(ppat, 3, 0); 3287 __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP); 3288 __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP); 3289 __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP); 3290 __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP); 3291 } 3292 3293 static void gen6_gmch_remove(struct i915_address_space *vm) 3294 { 3295 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 3296 3297 iounmap(ggtt->gsm); 3298 cleanup_scratch_page(vm); 3299 } 3300 3301 static void setup_private_pat(struct drm_i915_private *dev_priv) 3302 { 3303 struct intel_ppat *ppat = &dev_priv->ppat; 3304 int i; 3305 3306 ppat->i915 = dev_priv; 3307 3308 if (INTEL_GEN(dev_priv) >= 10) 3309 cnl_setup_private_ppat(ppat); 3310 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) 3311 chv_setup_private_ppat(ppat); 3312 else 3313 bdw_setup_private_ppat(ppat); 3314 3315 GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES); 3316 3317 for_each_clear_bit(i, ppat->used, ppat->max_entries) { 3318 ppat->entries[i].value = ppat->clear_value; 3319 ppat->entries[i].ppat = ppat; 3320 set_bit(i, ppat->dirty); 3321 } 3322 3323 ppat->update_hw(dev_priv); 3324 } 3325 3326 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 3327 { 3328 struct drm_i915_private *dev_priv = ggtt->base.i915; 3329 struct pci_dev *pdev = dev_priv->drm.pdev; 3330 unsigned int size; 3331 u16 snb_gmch_ctl; 3332 int err; 3333 3334 /* TODO: We're not aware of mappable constraints on gen8 yet */ 3335 ggtt->mappable_base = pci_resource_start(pdev, 2); 3336 ggtt->mappable_end = pci_resource_len(pdev, 2); 3337 3338 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39)); 3339 if (!err) 3340 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); 3341 if (err) 3342 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); 3343 3344 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 3345 3346 if (INTEL_GEN(dev_priv) >= 9) { 3347 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl); 3348 size = gen8_get_total_gtt_size(snb_gmch_ctl); 3349 } else if (IS_CHERRYVIEW(dev_priv)) { 3350 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl); 3351 size = chv_get_total_gtt_size(snb_gmch_ctl); 3352 } else { 3353 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl); 3354 size = gen8_get_total_gtt_size(snb_gmch_ctl); 3355 } 3356 3357 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT; 3358 ggtt->base.cleanup = gen6_gmch_remove; 3359 ggtt->base.bind_vma = ggtt_bind_vma; 3360 ggtt->base.unbind_vma = ggtt_unbind_vma; 3361 ggtt->base.set_pages = ggtt_set_pages; 3362 ggtt->base.clear_pages = clear_pages; 3363 ggtt->base.insert_page = gen8_ggtt_insert_page; 3364 ggtt->base.clear_range = nop_clear_range; 3365 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv)) 3366 ggtt->base.clear_range = gen8_ggtt_clear_range; 3367 3368 ggtt->base.insert_entries = gen8_ggtt_insert_entries; 3369 3370 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */ 3371 if (intel_ggtt_update_needs_vtd_wa(dev_priv)) { 3372 ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 3373 ggtt->base.insert_page = bxt_vtd_ggtt_insert_page__BKL; 3374 if (ggtt->base.clear_range != nop_clear_range) 3375 ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL; 3376 } 3377 3378 ggtt->invalidate = gen6_ggtt_invalidate; 3379 3380 setup_private_pat(dev_priv); 3381 3382 return ggtt_probe_common(ggtt, size); 3383 } 3384 3385 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 3386 { 3387 struct drm_i915_private *dev_priv = ggtt->base.i915; 3388 struct pci_dev *pdev = dev_priv->drm.pdev; 3389 unsigned int size; 3390 u16 snb_gmch_ctl; 3391 int err; 3392 3393 ggtt->mappable_base = pci_resource_start(pdev, 2); 3394 ggtt->mappable_end = pci_resource_len(pdev, 2); 3395 3396 /* 64/512MB is the current min/max we actually know of, but this is just 3397 * a coarse sanity check. 3398 */ 3399 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { 3400 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end); 3401 return -ENXIO; 3402 } 3403 3404 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); 3405 if (!err) 3406 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); 3407 if (err) 3408 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); 3409 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 3410 3411 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl); 3412 3413 size = gen6_get_total_gtt_size(snb_gmch_ctl); 3414 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT; 3415 3416 ggtt->base.clear_range = gen6_ggtt_clear_range; 3417 ggtt->base.insert_page = gen6_ggtt_insert_page; 3418 ggtt->base.insert_entries = gen6_ggtt_insert_entries; 3419 ggtt->base.bind_vma = ggtt_bind_vma; 3420 ggtt->base.unbind_vma = ggtt_unbind_vma; 3421 ggtt->base.set_pages = ggtt_set_pages; 3422 ggtt->base.clear_pages = clear_pages; 3423 ggtt->base.cleanup = gen6_gmch_remove; 3424 3425 ggtt->invalidate = gen6_ggtt_invalidate; 3426 3427 if (HAS_EDRAM(dev_priv)) 3428 ggtt->base.pte_encode = iris_pte_encode; 3429 else if (IS_HASWELL(dev_priv)) 3430 ggtt->base.pte_encode = hsw_pte_encode; 3431 else if (IS_VALLEYVIEW(dev_priv)) 3432 ggtt->base.pte_encode = byt_pte_encode; 3433 else if (INTEL_GEN(dev_priv) >= 7) 3434 ggtt->base.pte_encode = ivb_pte_encode; 3435 else 3436 ggtt->base.pte_encode = snb_pte_encode; 3437 3438 return ggtt_probe_common(ggtt, size); 3439 } 3440 3441 static void i915_gmch_remove(struct i915_address_space *vm) 3442 { 3443 intel_gmch_remove(); 3444 } 3445 3446 static int i915_gmch_probe(struct i915_ggtt *ggtt) 3447 { 3448 struct drm_i915_private *dev_priv = ggtt->base.i915; 3449 int ret; 3450 3451 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); 3452 if (!ret) { 3453 DRM_ERROR("failed to set up gmch\n"); 3454 return -EIO; 3455 } 3456 3457 intel_gtt_get(&ggtt->base.total, 3458 &ggtt->stolen_size, 3459 &ggtt->mappable_base, 3460 &ggtt->mappable_end); 3461 3462 ggtt->do_idle_maps = needs_idle_maps(dev_priv); 3463 ggtt->base.insert_page = i915_ggtt_insert_page; 3464 ggtt->base.insert_entries = i915_ggtt_insert_entries; 3465 ggtt->base.clear_range = i915_ggtt_clear_range; 3466 ggtt->base.bind_vma = ggtt_bind_vma; 3467 ggtt->base.unbind_vma = ggtt_unbind_vma; 3468 ggtt->base.set_pages = ggtt_set_pages; 3469 ggtt->base.clear_pages = clear_pages; 3470 ggtt->base.cleanup = i915_gmch_remove; 3471 3472 ggtt->invalidate = gmch_ggtt_invalidate; 3473 3474 if (unlikely(ggtt->do_idle_maps)) 3475 DRM_INFO("applying Ironlake quirks for intel_iommu\n"); 3476 3477 return 0; 3478 } 3479 3480 /** 3481 * i915_ggtt_probe_hw - Probe GGTT hardware location 3482 * @dev_priv: i915 device 3483 */ 3484 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) 3485 { 3486 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3487 int ret; 3488 3489 ggtt->base.i915 = dev_priv; 3490 ggtt->base.dma = &dev_priv->drm.pdev->dev; 3491 3492 if (INTEL_GEN(dev_priv) <= 5) 3493 ret = i915_gmch_probe(ggtt); 3494 else if (INTEL_GEN(dev_priv) < 8) 3495 ret = gen6_gmch_probe(ggtt); 3496 else 3497 ret = gen8_gmch_probe(ggtt); 3498 if (ret) 3499 return ret; 3500 3501 /* Trim the GGTT to fit the GuC mappable upper range (when enabled). 3502 * This is easier than doing range restriction on the fly, as we 3503 * currently don't have any bits spare to pass in this upper 3504 * restriction! 3505 */ 3506 if (HAS_GUC(dev_priv) && i915_modparams.enable_guc_loading) { 3507 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP); 3508 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total); 3509 } 3510 3511 if ((ggtt->base.total - 1) >> 32) { 3512 DRM_ERROR("We never expected a Global GTT with more than 32bits" 3513 " of address space! Found %lldM!\n", 3514 ggtt->base.total >> 20); 3515 ggtt->base.total = 1ULL << 32; 3516 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total); 3517 } 3518 3519 if (ggtt->mappable_end > ggtt->base.total) { 3520 DRM_ERROR("mappable aperture extends past end of GGTT," 3521 " aperture=%llx, total=%llx\n", 3522 ggtt->mappable_end, ggtt->base.total); 3523 ggtt->mappable_end = ggtt->base.total; 3524 } 3525 3526 /* GMADR is the PCI mmio aperture into the global GTT. */ 3527 DRM_INFO("Memory usable by graphics device = %lluM\n", 3528 ggtt->base.total >> 20); 3529 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20); 3530 DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20); 3531 if (intel_vtd_active()) 3532 DRM_INFO("VT-d active for gfx access\n"); 3533 3534 return 0; 3535 } 3536 3537 /** 3538 * i915_ggtt_init_hw - Initialize GGTT hardware 3539 * @dev_priv: i915 device 3540 */ 3541 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) 3542 { 3543 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3544 int ret; 3545 3546 INIT_LIST_HEAD(&dev_priv->vm_list); 3547 3548 /* Note that we use page colouring to enforce a guard page at the 3549 * end of the address space. This is required as the CS may prefetch 3550 * beyond the end of the batch buffer, across the page boundary, 3551 * and beyond the end of the GTT if we do not provide a guard. 3552 */ 3553 mutex_lock(&dev_priv->drm.struct_mutex); 3554 i915_address_space_init(&ggtt->base, dev_priv, "[global]"); 3555 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv)) 3556 ggtt->base.mm.color_adjust = i915_gtt_color_adjust; 3557 mutex_unlock(&dev_priv->drm.struct_mutex); 3558 3559 if (!io_mapping_init_wc(&dev_priv->ggtt.mappable, 3560 dev_priv->ggtt.mappable_base, 3561 dev_priv->ggtt.mappable_end)) { 3562 ret = -EIO; 3563 goto out_gtt_cleanup; 3564 } 3565 3566 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end); 3567 3568 /* 3569 * Initialise stolen early so that we may reserve preallocated 3570 * objects for the BIOS to KMS transition. 3571 */ 3572 ret = i915_gem_init_stolen(dev_priv); 3573 if (ret) 3574 goto out_gtt_cleanup; 3575 3576 return 0; 3577 3578 out_gtt_cleanup: 3579 ggtt->base.cleanup(&ggtt->base); 3580 return ret; 3581 } 3582 3583 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) 3584 { 3585 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) 3586 return -EIO; 3587 3588 return 0; 3589 } 3590 3591 void i915_ggtt_enable_guc(struct drm_i915_private *i915) 3592 { 3593 GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate); 3594 3595 i915->ggtt.invalidate = guc_ggtt_invalidate; 3596 } 3597 3598 void i915_ggtt_disable_guc(struct drm_i915_private *i915) 3599 { 3600 /* We should only be called after i915_ggtt_enable_guc() */ 3601 GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate); 3602 3603 i915->ggtt.invalidate = gen6_ggtt_invalidate; 3604 } 3605 3606 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv) 3607 { 3608 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3609 struct drm_i915_gem_object *obj, *on; 3610 3611 i915_check_and_clear_faults(dev_priv); 3612 3613 /* First fill our portion of the GTT with scratch pages */ 3614 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total); 3615 3616 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */ 3617 3618 /* clflush objects bound into the GGTT and rebind them. */ 3619 list_for_each_entry_safe(obj, on, &dev_priv->mm.bound_list, mm.link) { 3620 bool ggtt_bound = false; 3621 struct i915_vma *vma; 3622 3623 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3624 if (vma->vm != &ggtt->base) 3625 continue; 3626 3627 if (!i915_vma_unbind(vma)) 3628 continue; 3629 3630 WARN_ON(i915_vma_bind(vma, obj->cache_level, 3631 PIN_UPDATE)); 3632 ggtt_bound = true; 3633 } 3634 3635 if (ggtt_bound) 3636 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); 3637 } 3638 3639 ggtt->base.closed = false; 3640 3641 if (INTEL_GEN(dev_priv) >= 8) { 3642 struct intel_ppat *ppat = &dev_priv->ppat; 3643 3644 bitmap_set(ppat->dirty, 0, ppat->max_entries); 3645 dev_priv->ppat.update_hw(dev_priv); 3646 return; 3647 } 3648 3649 if (USES_PPGTT(dev_priv)) { 3650 struct i915_address_space *vm; 3651 3652 list_for_each_entry(vm, &dev_priv->vm_list, global_link) { 3653 struct i915_hw_ppgtt *ppgtt; 3654 3655 if (i915_is_ggtt(vm)) 3656 ppgtt = dev_priv->mm.aliasing_ppgtt; 3657 else 3658 ppgtt = i915_vm_to_ppgtt(vm); 3659 3660 gen6_write_page_range(ppgtt, 0, ppgtt->base.total); 3661 } 3662 } 3663 3664 i915_ggtt_invalidate(dev_priv); 3665 } 3666 3667 static struct scatterlist * 3668 rotate_pages(const dma_addr_t *in, unsigned int offset, 3669 unsigned int width, unsigned int height, 3670 unsigned int stride, 3671 struct sg_table *st, struct scatterlist *sg) 3672 { 3673 unsigned int column, row; 3674 unsigned int src_idx; 3675 3676 for (column = 0; column < width; column++) { 3677 src_idx = stride * (height - 1) + column; 3678 for (row = 0; row < height; row++) { 3679 st->nents++; 3680 /* We don't need the pages, but need to initialize 3681 * the entries so the sg list can be happily traversed. 3682 * The only thing we need are DMA addresses. 3683 */ 3684 sg_set_page(sg, NULL, PAGE_SIZE, 0); 3685 sg_dma_address(sg) = in[offset + src_idx]; 3686 sg_dma_len(sg) = PAGE_SIZE; 3687 sg = sg_next(sg); 3688 src_idx -= stride; 3689 } 3690 } 3691 3692 return sg; 3693 } 3694 3695 static noinline struct sg_table * 3696 intel_rotate_pages(struct intel_rotation_info *rot_info, 3697 struct drm_i915_gem_object *obj) 3698 { 3699 const unsigned long n_pages = obj->base.size / PAGE_SIZE; 3700 unsigned int size = intel_rotation_info_size(rot_info); 3701 struct sgt_iter sgt_iter; 3702 dma_addr_t dma_addr; 3703 unsigned long i; 3704 dma_addr_t *page_addr_list; 3705 struct sg_table *st; 3706 struct scatterlist *sg; 3707 int ret = -ENOMEM; 3708 3709 /* Allocate a temporary list of source pages for random access. */ 3710 page_addr_list = kvmalloc_array(n_pages, 3711 sizeof(dma_addr_t), 3712 GFP_KERNEL); 3713 if (!page_addr_list) 3714 return ERR_PTR(ret); 3715 3716 /* Allocate target SG list. */ 3717 st = kmalloc(sizeof(*st), GFP_KERNEL); 3718 if (!st) 3719 goto err_st_alloc; 3720 3721 ret = sg_alloc_table(st, size, GFP_KERNEL); 3722 if (ret) 3723 goto err_sg_alloc; 3724 3725 /* Populate source page list from the object. */ 3726 i = 0; 3727 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages) 3728 page_addr_list[i++] = dma_addr; 3729 3730 GEM_BUG_ON(i != n_pages); 3731 st->nents = 0; 3732 sg = st->sgl; 3733 3734 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { 3735 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset, 3736 rot_info->plane[i].width, rot_info->plane[i].height, 3737 rot_info->plane[i].stride, st, sg); 3738 } 3739 3740 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n", 3741 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); 3742 3743 kvfree(page_addr_list); 3744 3745 return st; 3746 3747 err_sg_alloc: 3748 kfree(st); 3749 err_st_alloc: 3750 kvfree(page_addr_list); 3751 3752 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 3753 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); 3754 3755 return ERR_PTR(ret); 3756 } 3757 3758 static noinline struct sg_table * 3759 intel_partial_pages(const struct i915_ggtt_view *view, 3760 struct drm_i915_gem_object *obj) 3761 { 3762 struct sg_table *st; 3763 struct scatterlist *sg, *iter; 3764 unsigned int count = view->partial.size; 3765 unsigned int offset; 3766 int ret = -ENOMEM; 3767 3768 st = kmalloc(sizeof(*st), GFP_KERNEL); 3769 if (!st) 3770 goto err_st_alloc; 3771 3772 ret = sg_alloc_table(st, count, GFP_KERNEL); 3773 if (ret) 3774 goto err_sg_alloc; 3775 3776 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); 3777 GEM_BUG_ON(!iter); 3778 3779 sg = st->sgl; 3780 st->nents = 0; 3781 do { 3782 unsigned int len; 3783 3784 len = min(iter->length - (offset << PAGE_SHIFT), 3785 count << PAGE_SHIFT); 3786 sg_set_page(sg, NULL, len, 0); 3787 sg_dma_address(sg) = 3788 sg_dma_address(iter) + (offset << PAGE_SHIFT); 3789 sg_dma_len(sg) = len; 3790 3791 st->nents++; 3792 count -= len >> PAGE_SHIFT; 3793 if (count == 0) { 3794 sg_mark_end(sg); 3795 return st; 3796 } 3797 3798 sg = __sg_next(sg); 3799 iter = __sg_next(iter); 3800 offset = 0; 3801 } while (1); 3802 3803 err_sg_alloc: 3804 kfree(st); 3805 err_st_alloc: 3806 return ERR_PTR(ret); 3807 } 3808 3809 static int 3810 i915_get_ggtt_vma_pages(struct i915_vma *vma) 3811 { 3812 int ret; 3813 3814 /* The vma->pages are only valid within the lifespan of the borrowed 3815 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 3816 * must be the vma->pages. A simple rule is that vma->pages must only 3817 * be accessed when the obj->mm.pages are pinned. 3818 */ 3819 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 3820 3821 switch (vma->ggtt_view.type) { 3822 case I915_GGTT_VIEW_NORMAL: 3823 vma->pages = vma->obj->mm.pages; 3824 return 0; 3825 3826 case I915_GGTT_VIEW_ROTATED: 3827 vma->pages = 3828 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); 3829 break; 3830 3831 case I915_GGTT_VIEW_PARTIAL: 3832 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); 3833 break; 3834 3835 default: 3836 WARN_ONCE(1, "GGTT view %u not implemented!\n", 3837 vma->ggtt_view.type); 3838 return -EINVAL; 3839 } 3840 3841 ret = 0; 3842 if (unlikely(IS_ERR(vma->pages))) { 3843 ret = PTR_ERR(vma->pages); 3844 vma->pages = NULL; 3845 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", 3846 vma->ggtt_view.type, ret); 3847 } 3848 return ret; 3849 } 3850 3851 /** 3852 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT) 3853 * @vm: the &struct i915_address_space 3854 * @node: the &struct drm_mm_node (typically i915_vma.mode) 3855 * @size: how much space to allocate inside the GTT, 3856 * must be #I915_GTT_PAGE_SIZE aligned 3857 * @offset: where to insert inside the GTT, 3858 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node 3859 * (@offset + @size) must fit within the address space 3860 * @color: color to apply to node, if this node is not from a VMA, 3861 * color must be #I915_COLOR_UNEVICTABLE 3862 * @flags: control search and eviction behaviour 3863 * 3864 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside 3865 * the address space (using @size and @color). If the @node does not fit, it 3866 * tries to evict any overlapping nodes from the GTT, including any 3867 * neighbouring nodes if the colors do not match (to ensure guard pages between 3868 * differing domains). See i915_gem_evict_for_node() for the gory details 3869 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on 3870 * evicting active overlapping objects, and any overlapping node that is pinned 3871 * or marked as unevictable will also result in failure. 3872 * 3873 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if 3874 * asked to wait for eviction and interrupted. 3875 */ 3876 int i915_gem_gtt_reserve(struct i915_address_space *vm, 3877 struct drm_mm_node *node, 3878 u64 size, u64 offset, unsigned long color, 3879 unsigned int flags) 3880 { 3881 int err; 3882 3883 GEM_BUG_ON(!size); 3884 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 3885 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT)); 3886 GEM_BUG_ON(range_overflows(offset, size, vm->total)); 3887 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base); 3888 GEM_BUG_ON(drm_mm_node_allocated(node)); 3889 3890 node->size = size; 3891 node->start = offset; 3892 node->color = color; 3893 3894 err = drm_mm_reserve_node(&vm->mm, node); 3895 if (err != -ENOSPC) 3896 return err; 3897 3898 if (flags & PIN_NOEVICT) 3899 return -ENOSPC; 3900 3901 err = i915_gem_evict_for_node(vm, node, flags); 3902 if (err == 0) 3903 err = drm_mm_reserve_node(&vm->mm, node); 3904 3905 return err; 3906 } 3907 3908 static u64 random_offset(u64 start, u64 end, u64 len, u64 align) 3909 { 3910 u64 range, addr; 3911 3912 GEM_BUG_ON(range_overflows(start, len, end)); 3913 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align)); 3914 3915 range = round_down(end - len, align) - round_up(start, align); 3916 if (range) { 3917 if (sizeof(unsigned long) == sizeof(u64)) { 3918 addr = get_random_long(); 3919 } else { 3920 addr = get_random_int(); 3921 if (range > U32_MAX) { 3922 addr <<= 32; 3923 addr |= get_random_int(); 3924 } 3925 } 3926 div64_u64_rem(addr, range, &addr); 3927 start += addr; 3928 } 3929 3930 return round_up(start, align); 3931 } 3932 3933 /** 3934 * i915_gem_gtt_insert - insert a node into an address_space (GTT) 3935 * @vm: the &struct i915_address_space 3936 * @node: the &struct drm_mm_node (typically i915_vma.node) 3937 * @size: how much space to allocate inside the GTT, 3938 * must be #I915_GTT_PAGE_SIZE aligned 3939 * @alignment: required alignment of starting offset, may be 0 but 3940 * if specified, this must be a power-of-two and at least 3941 * #I915_GTT_MIN_ALIGNMENT 3942 * @color: color to apply to node 3943 * @start: start of any range restriction inside GTT (0 for all), 3944 * must be #I915_GTT_PAGE_SIZE aligned 3945 * @end: end of any range restriction inside GTT (U64_MAX for all), 3946 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX 3947 * @flags: control search and eviction behaviour 3948 * 3949 * i915_gem_gtt_insert() first searches for an available hole into which 3950 * is can insert the node. The hole address is aligned to @alignment and 3951 * its @size must then fit entirely within the [@start, @end] bounds. The 3952 * nodes on either side of the hole must match @color, or else a guard page 3953 * will be inserted between the two nodes (or the node evicted). If no 3954 * suitable hole is found, first a victim is randomly selected and tested 3955 * for eviction, otherwise then the LRU list of objects within the GTT 3956 * is scanned to find the first set of replacement nodes to create the hole. 3957 * Those old overlapping nodes are evicted from the GTT (and so must be 3958 * rebound before any future use). Any node that is currently pinned cannot 3959 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently 3960 * active and #PIN_NONBLOCK is specified, that node is also skipped when 3961 * searching for an eviction candidate. See i915_gem_evict_something() for 3962 * the gory details on the eviction algorithm. 3963 * 3964 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if 3965 * asked to wait for eviction and interrupted. 3966 */ 3967 int i915_gem_gtt_insert(struct i915_address_space *vm, 3968 struct drm_mm_node *node, 3969 u64 size, u64 alignment, unsigned long color, 3970 u64 start, u64 end, unsigned int flags) 3971 { 3972 enum drm_mm_insert_mode mode; 3973 u64 offset; 3974 int err; 3975 3976 lockdep_assert_held(&vm->i915->drm.struct_mutex); 3977 GEM_BUG_ON(!size); 3978 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 3979 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 3980 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 3981 GEM_BUG_ON(start >= end); 3982 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 3983 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 3984 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base); 3985 GEM_BUG_ON(drm_mm_node_allocated(node)); 3986 3987 if (unlikely(range_overflows(start, size, end))) 3988 return -ENOSPC; 3989 3990 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment))) 3991 return -ENOSPC; 3992 3993 mode = DRM_MM_INSERT_BEST; 3994 if (flags & PIN_HIGH) 3995 mode = DRM_MM_INSERT_HIGH; 3996 if (flags & PIN_MAPPABLE) 3997 mode = DRM_MM_INSERT_LOW; 3998 3999 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, 4000 * so we know that we always have a minimum alignment of 4096. 4001 * The drm_mm range manager is optimised to return results 4002 * with zero alignment, so where possible use the optimal 4003 * path. 4004 */ 4005 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE); 4006 if (alignment <= I915_GTT_MIN_ALIGNMENT) 4007 alignment = 0; 4008 4009 err = drm_mm_insert_node_in_range(&vm->mm, node, 4010 size, alignment, color, 4011 start, end, mode); 4012 if (err != -ENOSPC) 4013 return err; 4014 4015 if (flags & PIN_NOEVICT) 4016 return -ENOSPC; 4017 4018 /* No free space, pick a slot at random. 4019 * 4020 * There is a pathological case here using a GTT shared between 4021 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt): 4022 * 4023 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->| 4024 * (64k objects) (448k objects) 4025 * 4026 * Now imagine that the eviction LRU is ordered top-down (just because 4027 * pathology meets real life), and that we need to evict an object to 4028 * make room inside the aperture. The eviction scan then has to walk 4029 * the 448k list before it finds one within range. And now imagine that 4030 * it has to search for a new hole between every byte inside the memcpy, 4031 * for several simultaneous clients. 4032 * 4033 * On a full-ppgtt system, if we have run out of available space, there 4034 * will be lots and lots of objects in the eviction list! Again, 4035 * searching that LRU list may be slow if we are also applying any 4036 * range restrictions (e.g. restriction to low 4GiB) and so, for 4037 * simplicity and similarilty between different GTT, try the single 4038 * random replacement first. 4039 */ 4040 offset = random_offset(start, end, 4041 size, alignment ?: I915_GTT_MIN_ALIGNMENT); 4042 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags); 4043 if (err != -ENOSPC) 4044 return err; 4045 4046 /* Randomly selected placement is pinned, do a search */ 4047 err = i915_gem_evict_something(vm, size, alignment, color, 4048 start, end, flags); 4049 if (err) 4050 return err; 4051 4052 return drm_mm_insert_node_in_range(&vm->mm, node, 4053 size, alignment, color, 4054 start, end, DRM_MM_INSERT_EVICT); 4055 } 4056 4057 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4058 #include "selftests/mock_gtt.c" 4059 #include "selftests/i915_gem_gtt.c" 4060 #endif 4061