1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/*
114 	 * Note that as an uncached mmio write, this will flush the
115 	 * WCB of the writes into the GGTT before it triggers the invalidate.
116 	 */
117 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
118 }
119 
120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
121 {
122 	gen6_ggtt_invalidate(dev_priv);
123 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
124 }
125 
126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
127 {
128 	intel_gtt_chipset_flush();
129 }
130 
131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
132 {
133 	i915->ggtt.invalidate(i915);
134 }
135 
136 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
137 			       	int enable_ppgtt)
138 {
139 	bool has_full_ppgtt;
140 	bool has_full_48bit_ppgtt;
141 
142 	if (!dev_priv->info.has_aliasing_ppgtt)
143 		return 0;
144 
145 	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
146 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147 
148 	if (intel_vgpu_active(dev_priv)) {
149 		/* GVT-g has no support for 32bit ppgtt */
150 		has_full_ppgtt = false;
151 		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152 	}
153 
154 	/*
155 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
156 	 * execlists, the sole mechanism available to submit work.
157 	 */
158 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 		return 0;
160 
161 	if (enable_ppgtt == 1)
162 		return 1;
163 
164 	if (enable_ppgtt == 2 && has_full_ppgtt)
165 		return 2;
166 
167 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
168 		return 3;
169 
170 	/* Disable ppgtt on SNB if VT-d is on. */
171 	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
173 		return 0;
174 	}
175 
176 	/* Early VLV doesn't have this */
177 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
178 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
179 		return 0;
180 	}
181 
182 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
183 		if (has_full_48bit_ppgtt)
184 			return 3;
185 
186 		if (has_full_ppgtt)
187 			return 2;
188 	}
189 
190 	return 1;
191 }
192 
193 static int ppgtt_bind_vma(struct i915_vma *vma,
194 			  enum i915_cache_level cache_level,
195 			  u32 unused)
196 {
197 	u32 pte_flags;
198 	int ret;
199 
200 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
201 		ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
202 						 vma->size);
203 		if (ret)
204 			return ret;
205 	}
206 
207 	/* Currently applicable only to VLV */
208 	pte_flags = 0;
209 	if (vma->obj->gt_ro)
210 		pte_flags |= PTE_READ_ONLY;
211 
212 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
213 
214 	return 0;
215 }
216 
217 static void ppgtt_unbind_vma(struct i915_vma *vma)
218 {
219 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
220 }
221 
222 static int ppgtt_set_pages(struct i915_vma *vma)
223 {
224 	GEM_BUG_ON(vma->pages);
225 
226 	vma->pages = vma->obj->mm.pages;
227 
228 	vma->page_sizes = vma->obj->mm.page_sizes;
229 
230 	return 0;
231 }
232 
233 static void clear_pages(struct i915_vma *vma)
234 {
235 	GEM_BUG_ON(!vma->pages);
236 
237 	if (vma->pages != vma->obj->mm.pages) {
238 		sg_free_table(vma->pages);
239 		kfree(vma->pages);
240 	}
241 	vma->pages = NULL;
242 
243 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
244 }
245 
246 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
247 				  enum i915_cache_level level)
248 {
249 	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
250 	pte |= addr;
251 
252 	switch (level) {
253 	case I915_CACHE_NONE:
254 		pte |= PPAT_UNCACHED;
255 		break;
256 	case I915_CACHE_WT:
257 		pte |= PPAT_DISPLAY_ELLC;
258 		break;
259 	default:
260 		pte |= PPAT_CACHED;
261 		break;
262 	}
263 
264 	return pte;
265 }
266 
267 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
268 				  const enum i915_cache_level level)
269 {
270 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
271 	pde |= addr;
272 	if (level != I915_CACHE_NONE)
273 		pde |= PPAT_CACHED_PDE;
274 	else
275 		pde |= PPAT_UNCACHED;
276 	return pde;
277 }
278 
279 #define gen8_pdpe_encode gen8_pde_encode
280 #define gen8_pml4e_encode gen8_pde_encode
281 
282 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
283 				 enum i915_cache_level level,
284 				 u32 unused)
285 {
286 	gen6_pte_t pte = GEN6_PTE_VALID;
287 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
288 
289 	switch (level) {
290 	case I915_CACHE_L3_LLC:
291 	case I915_CACHE_LLC:
292 		pte |= GEN6_PTE_CACHE_LLC;
293 		break;
294 	case I915_CACHE_NONE:
295 		pte |= GEN6_PTE_UNCACHED;
296 		break;
297 	default:
298 		MISSING_CASE(level);
299 	}
300 
301 	return pte;
302 }
303 
304 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
305 				 enum i915_cache_level level,
306 				 u32 unused)
307 {
308 	gen6_pte_t pte = GEN6_PTE_VALID;
309 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
310 
311 	switch (level) {
312 	case I915_CACHE_L3_LLC:
313 		pte |= GEN7_PTE_CACHE_L3_LLC;
314 		break;
315 	case I915_CACHE_LLC:
316 		pte |= GEN6_PTE_CACHE_LLC;
317 		break;
318 	case I915_CACHE_NONE:
319 		pte |= GEN6_PTE_UNCACHED;
320 		break;
321 	default:
322 		MISSING_CASE(level);
323 	}
324 
325 	return pte;
326 }
327 
328 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
329 				 enum i915_cache_level level,
330 				 u32 flags)
331 {
332 	gen6_pte_t pte = GEN6_PTE_VALID;
333 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
334 
335 	if (!(flags & PTE_READ_ONLY))
336 		pte |= BYT_PTE_WRITEABLE;
337 
338 	if (level != I915_CACHE_NONE)
339 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
340 
341 	return pte;
342 }
343 
344 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
345 				 enum i915_cache_level level,
346 				 u32 unused)
347 {
348 	gen6_pte_t pte = GEN6_PTE_VALID;
349 	pte |= HSW_PTE_ADDR_ENCODE(addr);
350 
351 	if (level != I915_CACHE_NONE)
352 		pte |= HSW_WB_LLC_AGE3;
353 
354 	return pte;
355 }
356 
357 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
358 				  enum i915_cache_level level,
359 				  u32 unused)
360 {
361 	gen6_pte_t pte = GEN6_PTE_VALID;
362 	pte |= HSW_PTE_ADDR_ENCODE(addr);
363 
364 	switch (level) {
365 	case I915_CACHE_NONE:
366 		break;
367 	case I915_CACHE_WT:
368 		pte |= HSW_WT_ELLC_LLC_AGE3;
369 		break;
370 	default:
371 		pte |= HSW_WB_ELLC_LLC_AGE3;
372 		break;
373 	}
374 
375 	return pte;
376 }
377 
378 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
379 {
380 	struct pagevec *pvec = &vm->free_pages;
381 	struct pagevec stash;
382 
383 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
384 		i915_gem_shrink_all(vm->i915);
385 
386 	if (likely(pvec->nr))
387 		return pvec->pages[--pvec->nr];
388 
389 	if (!vm->pt_kmap_wc)
390 		return alloc_page(gfp);
391 
392 	/* A placeholder for a specific mutex to guard the WC stash */
393 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
394 
395 	/* Look in our global stash of WC pages... */
396 	pvec = &vm->i915->mm.wc_stash;
397 	if (likely(pvec->nr))
398 		return pvec->pages[--pvec->nr];
399 
400 	/*
401 	 * Otherwise batch allocate pages to amoritize cost of set_pages_wc.
402 	 *
403 	 * We have to be careful as page allocation may trigger the shrinker
404 	 * (via direct reclaim) which will fill up the WC stash underneath us.
405 	 * So we add our WB pages into a temporary pvec on the stack and merge
406 	 * them into the WC stash after all the allocations are complete.
407 	 */
408 	pagevec_init(&stash);
409 	do {
410 		struct page *page;
411 
412 		page = alloc_page(gfp);
413 		if (unlikely(!page))
414 			break;
415 
416 		stash.pages[stash.nr++] = page;
417 	} while (stash.nr < pagevec_space(pvec));
418 
419 	if (stash.nr) {
420 		int nr = min_t(int, stash.nr, pagevec_space(pvec));
421 		struct page **pages = stash.pages + stash.nr - nr;
422 
423 		if (nr && !set_pages_array_wc(pages, nr)) {
424 			memcpy(pvec->pages + pvec->nr,
425 			       pages, sizeof(pages[0]) * nr);
426 			pvec->nr += nr;
427 			stash.nr -= nr;
428 		}
429 
430 		pagevec_release(&stash);
431 	}
432 
433 	return likely(pvec->nr) ? pvec->pages[--pvec->nr] : NULL;
434 }
435 
436 static void vm_free_pages_release(struct i915_address_space *vm,
437 				  bool immediate)
438 {
439 	struct pagevec *pvec = &vm->free_pages;
440 
441 	GEM_BUG_ON(!pagevec_count(pvec));
442 
443 	if (vm->pt_kmap_wc) {
444 		struct pagevec *stash = &vm->i915->mm.wc_stash;
445 
446 		/* When we use WC, first fill up the global stash and then
447 		 * only if full immediately free the overflow.
448 		 */
449 
450 		lockdep_assert_held(&vm->i915->drm.struct_mutex);
451 		if (pagevec_space(stash)) {
452 			do {
453 				stash->pages[stash->nr++] =
454 					pvec->pages[--pvec->nr];
455 				if (!pvec->nr)
456 					return;
457 			} while (pagevec_space(stash));
458 
459 			/* As we have made some room in the VM's free_pages,
460 			 * we can wait for it to fill again. Unless we are
461 			 * inside i915_address_space_fini() and must
462 			 * immediately release the pages!
463 			 */
464 			if (!immediate)
465 				return;
466 		}
467 
468 		set_pages_array_wb(pvec->pages, pvec->nr);
469 	}
470 
471 	__pagevec_release(pvec);
472 }
473 
474 static void vm_free_page(struct i915_address_space *vm, struct page *page)
475 {
476 	/*
477 	 * On !llc, we need to change the pages back to WB. We only do so
478 	 * in bulk, so we rarely need to change the page attributes here,
479 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
480 	 * To make detection of the possible sleep more likely, use an
481 	 * unconditional might_sleep() for everybody.
482 	 */
483 	might_sleep();
484 	if (!pagevec_add(&vm->free_pages, page))
485 		vm_free_pages_release(vm, false);
486 }
487 
488 static int __setup_page_dma(struct i915_address_space *vm,
489 			    struct i915_page_dma *p,
490 			    gfp_t gfp)
491 {
492 	p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
493 	if (unlikely(!p->page))
494 		return -ENOMEM;
495 
496 	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
497 				PCI_DMA_BIDIRECTIONAL);
498 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
499 		vm_free_page(vm, p->page);
500 		return -ENOMEM;
501 	}
502 
503 	return 0;
504 }
505 
506 static int setup_page_dma(struct i915_address_space *vm,
507 			  struct i915_page_dma *p)
508 {
509 	return __setup_page_dma(vm, p, I915_GFP_DMA);
510 }
511 
512 static void cleanup_page_dma(struct i915_address_space *vm,
513 			     struct i915_page_dma *p)
514 {
515 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
516 	vm_free_page(vm, p->page);
517 }
518 
519 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
520 
521 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
522 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
523 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
524 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
525 
526 static void fill_page_dma(struct i915_address_space *vm,
527 			  struct i915_page_dma *p,
528 			  const u64 val)
529 {
530 	u64 * const vaddr = kmap_atomic(p->page);
531 
532 	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
533 
534 	kunmap_atomic(vaddr);
535 }
536 
537 static void fill_page_dma_32(struct i915_address_space *vm,
538 			     struct i915_page_dma *p,
539 			     const u32 v)
540 {
541 	fill_page_dma(vm, p, (u64)v << 32 | v);
542 }
543 
544 static int
545 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
546 {
547 	unsigned long size;
548 
549 	/*
550 	 * In order to utilize 64K pages for an object with a size < 2M, we will
551 	 * need to support a 64K scratch page, given that every 16th entry for a
552 	 * page-table operating in 64K mode must point to a properly aligned 64K
553 	 * region, including any PTEs which happen to point to scratch.
554 	 *
555 	 * This is only relevant for the 48b PPGTT where we support
556 	 * huge-gtt-pages, see also i915_vma_insert().
557 	 *
558 	 * TODO: we should really consider write-protecting the scratch-page and
559 	 * sharing between ppgtt
560 	 */
561 	size = I915_GTT_PAGE_SIZE_4K;
562 	if (i915_vm_is_48bit(vm) &&
563 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
564 		size = I915_GTT_PAGE_SIZE_64K;
565 		gfp |= __GFP_NOWARN;
566 	}
567 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
568 
569 	do {
570 		int order = get_order(size);
571 		struct page *page;
572 		dma_addr_t addr;
573 
574 		page = alloc_pages(gfp, order);
575 		if (unlikely(!page))
576 			goto skip;
577 
578 		addr = dma_map_page(vm->dma, page, 0, size,
579 				    PCI_DMA_BIDIRECTIONAL);
580 		if (unlikely(dma_mapping_error(vm->dma, addr)))
581 			goto free_page;
582 
583 		if (unlikely(!IS_ALIGNED(addr, size)))
584 			goto unmap_page;
585 
586 		vm->scratch_page.page = page;
587 		vm->scratch_page.daddr = addr;
588 		vm->scratch_page.order = order;
589 		return 0;
590 
591 unmap_page:
592 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
593 free_page:
594 		__free_pages(page, order);
595 skip:
596 		if (size == I915_GTT_PAGE_SIZE_4K)
597 			return -ENOMEM;
598 
599 		size = I915_GTT_PAGE_SIZE_4K;
600 		gfp &= ~__GFP_NOWARN;
601 	} while (1);
602 }
603 
604 static void cleanup_scratch_page(struct i915_address_space *vm)
605 {
606 	struct i915_page_dma *p = &vm->scratch_page;
607 
608 	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
609 		       PCI_DMA_BIDIRECTIONAL);
610 	__free_pages(p->page, p->order);
611 }
612 
613 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
614 {
615 	struct i915_page_table *pt;
616 
617 	pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
618 	if (unlikely(!pt))
619 		return ERR_PTR(-ENOMEM);
620 
621 	if (unlikely(setup_px(vm, pt))) {
622 		kfree(pt);
623 		return ERR_PTR(-ENOMEM);
624 	}
625 
626 	pt->used_ptes = 0;
627 	return pt;
628 }
629 
630 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
631 {
632 	cleanup_px(vm, pt);
633 	kfree(pt);
634 }
635 
636 static void gen8_initialize_pt(struct i915_address_space *vm,
637 			       struct i915_page_table *pt)
638 {
639 	fill_px(vm, pt,
640 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
641 }
642 
643 static void gen6_initialize_pt(struct i915_address_space *vm,
644 			       struct i915_page_table *pt)
645 {
646 	fill32_px(vm, pt,
647 		  vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
648 }
649 
650 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
651 {
652 	struct i915_page_directory *pd;
653 
654 	pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
655 	if (unlikely(!pd))
656 		return ERR_PTR(-ENOMEM);
657 
658 	if (unlikely(setup_px(vm, pd))) {
659 		kfree(pd);
660 		return ERR_PTR(-ENOMEM);
661 	}
662 
663 	pd->used_pdes = 0;
664 	return pd;
665 }
666 
667 static void free_pd(struct i915_address_space *vm,
668 		    struct i915_page_directory *pd)
669 {
670 	cleanup_px(vm, pd);
671 	kfree(pd);
672 }
673 
674 static void gen8_initialize_pd(struct i915_address_space *vm,
675 			       struct i915_page_directory *pd)
676 {
677 	fill_px(vm, pd,
678 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
679 	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
680 }
681 
682 static int __pdp_init(struct i915_address_space *vm,
683 		      struct i915_page_directory_pointer *pdp)
684 {
685 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
686 
687 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
688 					    GFP_KERNEL | __GFP_NOWARN);
689 	if (unlikely(!pdp->page_directory))
690 		return -ENOMEM;
691 
692 	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
693 
694 	return 0;
695 }
696 
697 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
698 {
699 	kfree(pdp->page_directory);
700 	pdp->page_directory = NULL;
701 }
702 
703 static inline bool use_4lvl(const struct i915_address_space *vm)
704 {
705 	return i915_vm_is_48bit(vm);
706 }
707 
708 static struct i915_page_directory_pointer *
709 alloc_pdp(struct i915_address_space *vm)
710 {
711 	struct i915_page_directory_pointer *pdp;
712 	int ret = -ENOMEM;
713 
714 	GEM_BUG_ON(!use_4lvl(vm));
715 
716 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
717 	if (!pdp)
718 		return ERR_PTR(-ENOMEM);
719 
720 	ret = __pdp_init(vm, pdp);
721 	if (ret)
722 		goto fail_bitmap;
723 
724 	ret = setup_px(vm, pdp);
725 	if (ret)
726 		goto fail_page_m;
727 
728 	return pdp;
729 
730 fail_page_m:
731 	__pdp_fini(pdp);
732 fail_bitmap:
733 	kfree(pdp);
734 
735 	return ERR_PTR(ret);
736 }
737 
738 static void free_pdp(struct i915_address_space *vm,
739 		     struct i915_page_directory_pointer *pdp)
740 {
741 	__pdp_fini(pdp);
742 
743 	if (!use_4lvl(vm))
744 		return;
745 
746 	cleanup_px(vm, pdp);
747 	kfree(pdp);
748 }
749 
750 static void gen8_initialize_pdp(struct i915_address_space *vm,
751 				struct i915_page_directory_pointer *pdp)
752 {
753 	gen8_ppgtt_pdpe_t scratch_pdpe;
754 
755 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
756 
757 	fill_px(vm, pdp, scratch_pdpe);
758 }
759 
760 static void gen8_initialize_pml4(struct i915_address_space *vm,
761 				 struct i915_pml4 *pml4)
762 {
763 	fill_px(vm, pml4,
764 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
765 	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
766 }
767 
768 /* Broadwell Page Directory Pointer Descriptors */
769 static int gen8_write_pdp(struct i915_request *rq,
770 			  unsigned entry,
771 			  dma_addr_t addr)
772 {
773 	struct intel_engine_cs *engine = rq->engine;
774 	u32 *cs;
775 
776 	BUG_ON(entry >= 4);
777 
778 	cs = intel_ring_begin(rq, 6);
779 	if (IS_ERR(cs))
780 		return PTR_ERR(cs);
781 
782 	*cs++ = MI_LOAD_REGISTER_IMM(1);
783 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
784 	*cs++ = upper_32_bits(addr);
785 	*cs++ = MI_LOAD_REGISTER_IMM(1);
786 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
787 	*cs++ = lower_32_bits(addr);
788 	intel_ring_advance(rq, cs);
789 
790 	return 0;
791 }
792 
793 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
794 			       struct i915_request *rq)
795 {
796 	int i, ret;
797 
798 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
799 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
800 
801 		ret = gen8_write_pdp(rq, i, pd_daddr);
802 		if (ret)
803 			return ret;
804 	}
805 
806 	return 0;
807 }
808 
809 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
810 			       struct i915_request *rq)
811 {
812 	return gen8_write_pdp(rq, 0, px_dma(&ppgtt->pml4));
813 }
814 
815 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
816  * the page table structures, we mark them dirty so that
817  * context switching/execlist queuing code takes extra steps
818  * to ensure that tlbs are flushed.
819  */
820 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
821 {
822 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
823 }
824 
825 /* Removes entries from a single page table, releasing it if it's empty.
826  * Caller can use the return value to update higher-level entries.
827  */
828 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
829 				struct i915_page_table *pt,
830 				u64 start, u64 length)
831 {
832 	unsigned int num_entries = gen8_pte_count(start, length);
833 	unsigned int pte = gen8_pte_index(start);
834 	unsigned int pte_end = pte + num_entries;
835 	const gen8_pte_t scratch_pte =
836 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
837 	gen8_pte_t *vaddr;
838 
839 	GEM_BUG_ON(num_entries > pt->used_ptes);
840 
841 	pt->used_ptes -= num_entries;
842 	if (!pt->used_ptes)
843 		return true;
844 
845 	vaddr = kmap_atomic_px(pt);
846 	while (pte < pte_end)
847 		vaddr[pte++] = scratch_pte;
848 	kunmap_atomic(vaddr);
849 
850 	return false;
851 }
852 
853 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
854 			       struct i915_page_directory *pd,
855 			       struct i915_page_table *pt,
856 			       unsigned int pde)
857 {
858 	gen8_pde_t *vaddr;
859 
860 	pd->page_table[pde] = pt;
861 
862 	vaddr = kmap_atomic_px(pd);
863 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
864 	kunmap_atomic(vaddr);
865 }
866 
867 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
868 				struct i915_page_directory *pd,
869 				u64 start, u64 length)
870 {
871 	struct i915_page_table *pt;
872 	u32 pde;
873 
874 	gen8_for_each_pde(pt, pd, start, length, pde) {
875 		GEM_BUG_ON(pt == vm->scratch_pt);
876 
877 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
878 			continue;
879 
880 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
881 		GEM_BUG_ON(!pd->used_pdes);
882 		pd->used_pdes--;
883 
884 		free_pt(vm, pt);
885 	}
886 
887 	return !pd->used_pdes;
888 }
889 
890 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
891 				struct i915_page_directory_pointer *pdp,
892 				struct i915_page_directory *pd,
893 				unsigned int pdpe)
894 {
895 	gen8_ppgtt_pdpe_t *vaddr;
896 
897 	pdp->page_directory[pdpe] = pd;
898 	if (!use_4lvl(vm))
899 		return;
900 
901 	vaddr = kmap_atomic_px(pdp);
902 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
903 	kunmap_atomic(vaddr);
904 }
905 
906 /* Removes entries from a single page dir pointer, releasing it if it's empty.
907  * Caller can use the return value to update higher-level entries
908  */
909 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
910 				 struct i915_page_directory_pointer *pdp,
911 				 u64 start, u64 length)
912 {
913 	struct i915_page_directory *pd;
914 	unsigned int pdpe;
915 
916 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
917 		GEM_BUG_ON(pd == vm->scratch_pd);
918 
919 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
920 			continue;
921 
922 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
923 		GEM_BUG_ON(!pdp->used_pdpes);
924 		pdp->used_pdpes--;
925 
926 		free_pd(vm, pd);
927 	}
928 
929 	return !pdp->used_pdpes;
930 }
931 
932 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
933 				  u64 start, u64 length)
934 {
935 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
936 }
937 
938 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
939 				 struct i915_page_directory_pointer *pdp,
940 				 unsigned int pml4e)
941 {
942 	gen8_ppgtt_pml4e_t *vaddr;
943 
944 	pml4->pdps[pml4e] = pdp;
945 
946 	vaddr = kmap_atomic_px(pml4);
947 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
948 	kunmap_atomic(vaddr);
949 }
950 
951 /* Removes entries from a single pml4.
952  * This is the top-level structure in 4-level page tables used on gen8+.
953  * Empty entries are always scratch pml4e.
954  */
955 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
956 				  u64 start, u64 length)
957 {
958 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
959 	struct i915_pml4 *pml4 = &ppgtt->pml4;
960 	struct i915_page_directory_pointer *pdp;
961 	unsigned int pml4e;
962 
963 	GEM_BUG_ON(!use_4lvl(vm));
964 
965 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
966 		GEM_BUG_ON(pdp == vm->scratch_pdp);
967 
968 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
969 			continue;
970 
971 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
972 
973 		free_pdp(vm, pdp);
974 	}
975 }
976 
977 static inline struct sgt_dma {
978 	struct scatterlist *sg;
979 	dma_addr_t dma, max;
980 } sgt_dma(struct i915_vma *vma) {
981 	struct scatterlist *sg = vma->pages->sgl;
982 	dma_addr_t addr = sg_dma_address(sg);
983 	return (struct sgt_dma) { sg, addr, addr + sg->length };
984 }
985 
986 struct gen8_insert_pte {
987 	u16 pml4e;
988 	u16 pdpe;
989 	u16 pde;
990 	u16 pte;
991 };
992 
993 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
994 {
995 	return (struct gen8_insert_pte) {
996 		 gen8_pml4e_index(start),
997 		 gen8_pdpe_index(start),
998 		 gen8_pde_index(start),
999 		 gen8_pte_index(start),
1000 	};
1001 }
1002 
1003 static __always_inline bool
1004 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1005 			      struct i915_page_directory_pointer *pdp,
1006 			      struct sgt_dma *iter,
1007 			      struct gen8_insert_pte *idx,
1008 			      enum i915_cache_level cache_level)
1009 {
1010 	struct i915_page_directory *pd;
1011 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1012 	gen8_pte_t *vaddr;
1013 	bool ret;
1014 
1015 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1016 	pd = pdp->page_directory[idx->pdpe];
1017 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1018 	do {
1019 		vaddr[idx->pte] = pte_encode | iter->dma;
1020 
1021 		iter->dma += PAGE_SIZE;
1022 		if (iter->dma >= iter->max) {
1023 			iter->sg = __sg_next(iter->sg);
1024 			if (!iter->sg) {
1025 				ret = false;
1026 				break;
1027 			}
1028 
1029 			iter->dma = sg_dma_address(iter->sg);
1030 			iter->max = iter->dma + iter->sg->length;
1031 		}
1032 
1033 		if (++idx->pte == GEN8_PTES) {
1034 			idx->pte = 0;
1035 
1036 			if (++idx->pde == I915_PDES) {
1037 				idx->pde = 0;
1038 
1039 				/* Limited by sg length for 3lvl */
1040 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1041 					idx->pdpe = 0;
1042 					ret = true;
1043 					break;
1044 				}
1045 
1046 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1047 				pd = pdp->page_directory[idx->pdpe];
1048 			}
1049 
1050 			kunmap_atomic(vaddr);
1051 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1052 		}
1053 	} while (1);
1054 	kunmap_atomic(vaddr);
1055 
1056 	return ret;
1057 }
1058 
1059 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1060 				   struct i915_vma *vma,
1061 				   enum i915_cache_level cache_level,
1062 				   u32 unused)
1063 {
1064 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1065 	struct sgt_dma iter = sgt_dma(vma);
1066 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1067 
1068 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1069 				      cache_level);
1070 
1071 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1072 }
1073 
1074 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1075 					   struct i915_page_directory_pointer **pdps,
1076 					   struct sgt_dma *iter,
1077 					   enum i915_cache_level cache_level)
1078 {
1079 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1080 	u64 start = vma->node.start;
1081 	dma_addr_t rem = iter->sg->length;
1082 
1083 	do {
1084 		struct gen8_insert_pte idx = gen8_insert_pte(start);
1085 		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1086 		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1087 		unsigned int page_size;
1088 		bool maybe_64K = false;
1089 		gen8_pte_t encode = pte_encode;
1090 		gen8_pte_t *vaddr;
1091 		u16 index, max;
1092 
1093 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1094 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1095 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1096 			index = idx.pde;
1097 			max = I915_PDES;
1098 			page_size = I915_GTT_PAGE_SIZE_2M;
1099 
1100 			encode |= GEN8_PDE_PS_2M;
1101 
1102 			vaddr = kmap_atomic_px(pd);
1103 		} else {
1104 			struct i915_page_table *pt = pd->page_table[idx.pde];
1105 
1106 			index = idx.pte;
1107 			max = GEN8_PTES;
1108 			page_size = I915_GTT_PAGE_SIZE;
1109 
1110 			if (!index &&
1111 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1112 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1113 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1114 			     rem >= (max - index) << PAGE_SHIFT))
1115 				maybe_64K = true;
1116 
1117 			vaddr = kmap_atomic_px(pt);
1118 		}
1119 
1120 		do {
1121 			GEM_BUG_ON(iter->sg->length < page_size);
1122 			vaddr[index++] = encode | iter->dma;
1123 
1124 			start += page_size;
1125 			iter->dma += page_size;
1126 			rem -= page_size;
1127 			if (iter->dma >= iter->max) {
1128 				iter->sg = __sg_next(iter->sg);
1129 				if (!iter->sg)
1130 					break;
1131 
1132 				rem = iter->sg->length;
1133 				iter->dma = sg_dma_address(iter->sg);
1134 				iter->max = iter->dma + rem;
1135 
1136 				if (maybe_64K && index < max &&
1137 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1138 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1139 				       rem >= (max - index) << PAGE_SHIFT)))
1140 					maybe_64K = false;
1141 
1142 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1143 					break;
1144 			}
1145 		} while (rem >= page_size && index < max);
1146 
1147 		kunmap_atomic(vaddr);
1148 
1149 		/*
1150 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1151 		 * filled whole page-table with 64K entries, or filled part of
1152 		 * it and have reached the end of the sg table and we have
1153 		 * enough padding.
1154 		 */
1155 		if (maybe_64K &&
1156 		    (index == max ||
1157 		     (i915_vm_has_scratch_64K(vma->vm) &&
1158 		      !iter->sg && IS_ALIGNED(vma->node.start +
1159 					      vma->node.size,
1160 					      I915_GTT_PAGE_SIZE_2M)))) {
1161 			vaddr = kmap_atomic_px(pd);
1162 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1163 			kunmap_atomic(vaddr);
1164 			page_size = I915_GTT_PAGE_SIZE_64K;
1165 
1166 			/*
1167 			 * We write all 4K page entries, even when using 64K
1168 			 * pages. In order to verify that the HW isn't cheating
1169 			 * by using the 4K PTE instead of the 64K PTE, we want
1170 			 * to remove all the surplus entries. If the HW skipped
1171 			 * the 64K PTE, it will read/write into the scratch page
1172 			 * instead - which we detect as missing results during
1173 			 * selftests.
1174 			 */
1175 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1176 				u16 i;
1177 
1178 				encode = pte_encode | vma->vm->scratch_page.daddr;
1179 				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1180 
1181 				for (i = 1; i < index; i += 16)
1182 					memset64(vaddr + i, encode, 15);
1183 
1184 				kunmap_atomic(vaddr);
1185 			}
1186 		}
1187 
1188 		vma->page_sizes.gtt |= page_size;
1189 	} while (iter->sg);
1190 }
1191 
1192 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1193 				   struct i915_vma *vma,
1194 				   enum i915_cache_level cache_level,
1195 				   u32 unused)
1196 {
1197 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1198 	struct sgt_dma iter = sgt_dma(vma);
1199 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1200 
1201 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1202 		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
1203 	} else {
1204 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1205 
1206 		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1207 						     &iter, &idx, cache_level))
1208 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1209 
1210 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1211 	}
1212 }
1213 
1214 static void gen8_free_page_tables(struct i915_address_space *vm,
1215 				  struct i915_page_directory *pd)
1216 {
1217 	int i;
1218 
1219 	if (!px_page(pd))
1220 		return;
1221 
1222 	for (i = 0; i < I915_PDES; i++) {
1223 		if (pd->page_table[i] != vm->scratch_pt)
1224 			free_pt(vm, pd->page_table[i]);
1225 	}
1226 }
1227 
1228 static int gen8_init_scratch(struct i915_address_space *vm)
1229 {
1230 	int ret;
1231 
1232 	ret = setup_scratch_page(vm, I915_GFP_DMA);
1233 	if (ret)
1234 		return ret;
1235 
1236 	vm->scratch_pt = alloc_pt(vm);
1237 	if (IS_ERR(vm->scratch_pt)) {
1238 		ret = PTR_ERR(vm->scratch_pt);
1239 		goto free_scratch_page;
1240 	}
1241 
1242 	vm->scratch_pd = alloc_pd(vm);
1243 	if (IS_ERR(vm->scratch_pd)) {
1244 		ret = PTR_ERR(vm->scratch_pd);
1245 		goto free_pt;
1246 	}
1247 
1248 	if (use_4lvl(vm)) {
1249 		vm->scratch_pdp = alloc_pdp(vm);
1250 		if (IS_ERR(vm->scratch_pdp)) {
1251 			ret = PTR_ERR(vm->scratch_pdp);
1252 			goto free_pd;
1253 		}
1254 	}
1255 
1256 	gen8_initialize_pt(vm, vm->scratch_pt);
1257 	gen8_initialize_pd(vm, vm->scratch_pd);
1258 	if (use_4lvl(vm))
1259 		gen8_initialize_pdp(vm, vm->scratch_pdp);
1260 
1261 	return 0;
1262 
1263 free_pd:
1264 	free_pd(vm, vm->scratch_pd);
1265 free_pt:
1266 	free_pt(vm, vm->scratch_pt);
1267 free_scratch_page:
1268 	cleanup_scratch_page(vm);
1269 
1270 	return ret;
1271 }
1272 
1273 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1274 {
1275 	struct i915_address_space *vm = &ppgtt->base;
1276 	struct drm_i915_private *dev_priv = vm->i915;
1277 	enum vgt_g2v_type msg;
1278 	int i;
1279 
1280 	if (use_4lvl(vm)) {
1281 		const u64 daddr = px_dma(&ppgtt->pml4);
1282 
1283 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1284 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1285 
1286 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1287 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1288 	} else {
1289 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1290 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1291 
1292 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1293 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1294 		}
1295 
1296 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1297 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1298 	}
1299 
1300 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1301 
1302 	return 0;
1303 }
1304 
1305 static void gen8_free_scratch(struct i915_address_space *vm)
1306 {
1307 	if (use_4lvl(vm))
1308 		free_pdp(vm, vm->scratch_pdp);
1309 	free_pd(vm, vm->scratch_pd);
1310 	free_pt(vm, vm->scratch_pt);
1311 	cleanup_scratch_page(vm);
1312 }
1313 
1314 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1315 				    struct i915_page_directory_pointer *pdp)
1316 {
1317 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1318 	int i;
1319 
1320 	for (i = 0; i < pdpes; i++) {
1321 		if (pdp->page_directory[i] == vm->scratch_pd)
1322 			continue;
1323 
1324 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1325 		free_pd(vm, pdp->page_directory[i]);
1326 	}
1327 
1328 	free_pdp(vm, pdp);
1329 }
1330 
1331 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1332 {
1333 	int i;
1334 
1335 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1336 		if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1337 			continue;
1338 
1339 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1340 	}
1341 
1342 	cleanup_px(&ppgtt->base, &ppgtt->pml4);
1343 }
1344 
1345 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1346 {
1347 	struct drm_i915_private *dev_priv = vm->i915;
1348 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1349 
1350 	if (intel_vgpu_active(dev_priv))
1351 		gen8_ppgtt_notify_vgt(ppgtt, false);
1352 
1353 	if (use_4lvl(vm))
1354 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1355 	else
1356 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1357 
1358 	gen8_free_scratch(vm);
1359 }
1360 
1361 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1362 			       struct i915_page_directory *pd,
1363 			       u64 start, u64 length)
1364 {
1365 	struct i915_page_table *pt;
1366 	u64 from = start;
1367 	unsigned int pde;
1368 
1369 	gen8_for_each_pde(pt, pd, start, length, pde) {
1370 		int count = gen8_pte_count(start, length);
1371 
1372 		if (pt == vm->scratch_pt) {
1373 			pd->used_pdes++;
1374 
1375 			pt = alloc_pt(vm);
1376 			if (IS_ERR(pt)) {
1377 				pd->used_pdes--;
1378 				goto unwind;
1379 			}
1380 
1381 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1382 				gen8_initialize_pt(vm, pt);
1383 
1384 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1385 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1386 		}
1387 
1388 		pt->used_ptes += count;
1389 	}
1390 	return 0;
1391 
1392 unwind:
1393 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1394 	return -ENOMEM;
1395 }
1396 
1397 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1398 				struct i915_page_directory_pointer *pdp,
1399 				u64 start, u64 length)
1400 {
1401 	struct i915_page_directory *pd;
1402 	u64 from = start;
1403 	unsigned int pdpe;
1404 	int ret;
1405 
1406 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1407 		if (pd == vm->scratch_pd) {
1408 			pdp->used_pdpes++;
1409 
1410 			pd = alloc_pd(vm);
1411 			if (IS_ERR(pd)) {
1412 				pdp->used_pdpes--;
1413 				goto unwind;
1414 			}
1415 
1416 			gen8_initialize_pd(vm, pd);
1417 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1418 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1419 
1420 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1421 		}
1422 
1423 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1424 		if (unlikely(ret))
1425 			goto unwind_pd;
1426 	}
1427 
1428 	return 0;
1429 
1430 unwind_pd:
1431 	if (!pd->used_pdes) {
1432 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1433 		GEM_BUG_ON(!pdp->used_pdpes);
1434 		pdp->used_pdpes--;
1435 		free_pd(vm, pd);
1436 	}
1437 unwind:
1438 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1439 	return -ENOMEM;
1440 }
1441 
1442 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1443 				 u64 start, u64 length)
1444 {
1445 	return gen8_ppgtt_alloc_pdp(vm,
1446 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1447 }
1448 
1449 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1450 				 u64 start, u64 length)
1451 {
1452 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1453 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1454 	struct i915_page_directory_pointer *pdp;
1455 	u64 from = start;
1456 	u32 pml4e;
1457 	int ret;
1458 
1459 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1460 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1461 			pdp = alloc_pdp(vm);
1462 			if (IS_ERR(pdp))
1463 				goto unwind;
1464 
1465 			gen8_initialize_pdp(vm, pdp);
1466 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1467 		}
1468 
1469 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1470 		if (unlikely(ret))
1471 			goto unwind_pdp;
1472 	}
1473 
1474 	return 0;
1475 
1476 unwind_pdp:
1477 	if (!pdp->used_pdpes) {
1478 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1479 		free_pdp(vm, pdp);
1480 	}
1481 unwind:
1482 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1483 	return -ENOMEM;
1484 }
1485 
1486 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1487 			  struct i915_page_directory_pointer *pdp,
1488 			  u64 start, u64 length,
1489 			  gen8_pte_t scratch_pte,
1490 			  struct seq_file *m)
1491 {
1492 	struct i915_address_space *vm = &ppgtt->base;
1493 	struct i915_page_directory *pd;
1494 	u32 pdpe;
1495 
1496 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1497 		struct i915_page_table *pt;
1498 		u64 pd_len = length;
1499 		u64 pd_start = start;
1500 		u32 pde;
1501 
1502 		if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1503 			continue;
1504 
1505 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1506 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1507 			u32 pte;
1508 			gen8_pte_t *pt_vaddr;
1509 
1510 			if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1511 				continue;
1512 
1513 			pt_vaddr = kmap_atomic_px(pt);
1514 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1515 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1516 					  pde << GEN8_PDE_SHIFT |
1517 					  pte << GEN8_PTE_SHIFT);
1518 				int i;
1519 				bool found = false;
1520 
1521 				for (i = 0; i < 4; i++)
1522 					if (pt_vaddr[pte + i] != scratch_pte)
1523 						found = true;
1524 				if (!found)
1525 					continue;
1526 
1527 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1528 				for (i = 0; i < 4; i++) {
1529 					if (pt_vaddr[pte + i] != scratch_pte)
1530 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1531 					else
1532 						seq_puts(m, "  SCRATCH ");
1533 				}
1534 				seq_puts(m, "\n");
1535 			}
1536 			kunmap_atomic(pt_vaddr);
1537 		}
1538 	}
1539 }
1540 
1541 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1542 {
1543 	struct i915_address_space *vm = &ppgtt->base;
1544 	const gen8_pte_t scratch_pte =
1545 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1546 	u64 start = 0, length = ppgtt->base.total;
1547 
1548 	if (use_4lvl(vm)) {
1549 		u64 pml4e;
1550 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1551 		struct i915_page_directory_pointer *pdp;
1552 
1553 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1554 			if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1555 				continue;
1556 
1557 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1558 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1559 		}
1560 	} else {
1561 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1562 	}
1563 }
1564 
1565 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1566 {
1567 	struct i915_address_space *vm = &ppgtt->base;
1568 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1569 	struct i915_page_directory *pd;
1570 	u64 start = 0, length = ppgtt->base.total;
1571 	u64 from = start;
1572 	unsigned int pdpe;
1573 
1574 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1575 		pd = alloc_pd(vm);
1576 		if (IS_ERR(pd))
1577 			goto unwind;
1578 
1579 		gen8_initialize_pd(vm, pd);
1580 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1581 		pdp->used_pdpes++;
1582 	}
1583 
1584 	pdp->used_pdpes++; /* never remove */
1585 	return 0;
1586 
1587 unwind:
1588 	start -= from;
1589 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1590 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1591 		free_pd(vm, pd);
1592 	}
1593 	pdp->used_pdpes = 0;
1594 	return -ENOMEM;
1595 }
1596 
1597 /*
1598  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1599  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1600  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1601  * space.
1602  *
1603  */
1604 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1605 {
1606 	struct i915_address_space *vm = &ppgtt->base;
1607 	struct drm_i915_private *dev_priv = vm->i915;
1608 	int ret;
1609 
1610 	ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1611 		1ULL << 48 :
1612 		1ULL << 32;
1613 
1614 	/* There are only few exceptions for gen >=6. chv and bxt.
1615 	 * And we are not sure about the latter so play safe for now.
1616 	 */
1617 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1618 		ppgtt->base.pt_kmap_wc = true;
1619 
1620 	ret = gen8_init_scratch(&ppgtt->base);
1621 	if (ret) {
1622 		ppgtt->base.total = 0;
1623 		return ret;
1624 	}
1625 
1626 	if (use_4lvl(vm)) {
1627 		ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1628 		if (ret)
1629 			goto free_scratch;
1630 
1631 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1632 
1633 		ppgtt->switch_mm = gen8_mm_switch_4lvl;
1634 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1635 		ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1636 		ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1637 	} else {
1638 		ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1639 		if (ret)
1640 			goto free_scratch;
1641 
1642 		if (intel_vgpu_active(dev_priv)) {
1643 			ret = gen8_preallocate_top_level_pdp(ppgtt);
1644 			if (ret) {
1645 				__pdp_fini(&ppgtt->pdp);
1646 				goto free_scratch;
1647 			}
1648 		}
1649 
1650 		ppgtt->switch_mm = gen8_mm_switch_3lvl;
1651 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1652 		ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1653 		ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1654 	}
1655 
1656 	if (intel_vgpu_active(dev_priv))
1657 		gen8_ppgtt_notify_vgt(ppgtt, true);
1658 
1659 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1660 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1661 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1662 	ppgtt->base.set_pages = ppgtt_set_pages;
1663 	ppgtt->base.clear_pages = clear_pages;
1664 	ppgtt->debug_dump = gen8_dump_ppgtt;
1665 
1666 	return 0;
1667 
1668 free_scratch:
1669 	gen8_free_scratch(&ppgtt->base);
1670 	return ret;
1671 }
1672 
1673 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1674 {
1675 	struct i915_address_space *vm = &ppgtt->base;
1676 	struct i915_page_table *unused;
1677 	gen6_pte_t scratch_pte;
1678 	u32 pd_entry, pte, pde;
1679 	u32 start = 0, length = ppgtt->base.total;
1680 
1681 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1682 				     I915_CACHE_LLC, 0);
1683 
1684 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1685 		u32 expected;
1686 		gen6_pte_t *pt_vaddr;
1687 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1688 		pd_entry = readl(ppgtt->pd_addr + pde);
1689 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1690 
1691 		if (pd_entry != expected)
1692 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1693 				   pde,
1694 				   pd_entry,
1695 				   expected);
1696 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1697 
1698 		pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1699 
1700 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1701 			unsigned long va =
1702 				(pde * PAGE_SIZE * GEN6_PTES) +
1703 				(pte * PAGE_SIZE);
1704 			int i;
1705 			bool found = false;
1706 			for (i = 0; i < 4; i++)
1707 				if (pt_vaddr[pte + i] != scratch_pte)
1708 					found = true;
1709 			if (!found)
1710 				continue;
1711 
1712 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1713 			for (i = 0; i < 4; i++) {
1714 				if (pt_vaddr[pte + i] != scratch_pte)
1715 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1716 				else
1717 					seq_puts(m, "  SCRATCH ");
1718 			}
1719 			seq_puts(m, "\n");
1720 		}
1721 		kunmap_atomic(pt_vaddr);
1722 	}
1723 }
1724 
1725 /* Write pde (index) from the page directory @pd to the page table @pt */
1726 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1727 				  const unsigned int pde,
1728 				  const struct i915_page_table *pt)
1729 {
1730 	/* Caller needs to make sure the write completes if necessary */
1731 	writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1732 		       ppgtt->pd_addr + pde);
1733 }
1734 
1735 /* Write all the page tables found in the ppgtt structure to incrementing page
1736  * directories. */
1737 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1738 				  u32 start, u32 length)
1739 {
1740 	struct i915_page_table *pt;
1741 	unsigned int pde;
1742 
1743 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1744 		gen6_write_pde(ppgtt, pde, pt);
1745 
1746 	mark_tlbs_dirty(ppgtt);
1747 	wmb();
1748 }
1749 
1750 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1751 {
1752 	GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1753 	return ppgtt->pd.base.ggtt_offset << 10;
1754 }
1755 
1756 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1757 			 struct i915_request *rq)
1758 {
1759 	struct intel_engine_cs *engine = rq->engine;
1760 	u32 *cs;
1761 
1762 	/* NB: TLBs must be flushed and invalidated before a switch */
1763 	cs = intel_ring_begin(rq, 6);
1764 	if (IS_ERR(cs))
1765 		return PTR_ERR(cs);
1766 
1767 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1768 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1769 	*cs++ = PP_DIR_DCLV_2G;
1770 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1771 	*cs++ = get_pd_offset(ppgtt);
1772 	*cs++ = MI_NOOP;
1773 	intel_ring_advance(rq, cs);
1774 
1775 	return 0;
1776 }
1777 
1778 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1779 			  struct i915_request *rq)
1780 {
1781 	struct intel_engine_cs *engine = rq->engine;
1782 	u32 *cs;
1783 
1784 	/* NB: TLBs must be flushed and invalidated before a switch */
1785 	cs = intel_ring_begin(rq, 6);
1786 	if (IS_ERR(cs))
1787 		return PTR_ERR(cs);
1788 
1789 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1790 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1791 	*cs++ = PP_DIR_DCLV_2G;
1792 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1793 	*cs++ = get_pd_offset(ppgtt);
1794 	*cs++ = MI_NOOP;
1795 	intel_ring_advance(rq, cs);
1796 
1797 	return 0;
1798 }
1799 
1800 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1801 			  struct i915_request *rq)
1802 {
1803 	struct intel_engine_cs *engine = rq->engine;
1804 	struct drm_i915_private *dev_priv = rq->i915;
1805 
1806 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1807 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1808 	return 0;
1809 }
1810 
1811 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1812 {
1813 	struct intel_engine_cs *engine;
1814 	enum intel_engine_id id;
1815 
1816 	for_each_engine(engine, dev_priv, id) {
1817 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1818 				 GEN8_GFX_PPGTT_48B : 0;
1819 		I915_WRITE(RING_MODE_GEN7(engine),
1820 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1821 	}
1822 }
1823 
1824 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1825 {
1826 	struct intel_engine_cs *engine;
1827 	u32 ecochk, ecobits;
1828 	enum intel_engine_id id;
1829 
1830 	ecobits = I915_READ(GAC_ECO_BITS);
1831 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1832 
1833 	ecochk = I915_READ(GAM_ECOCHK);
1834 	if (IS_HASWELL(dev_priv)) {
1835 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1836 	} else {
1837 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1838 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1839 	}
1840 	I915_WRITE(GAM_ECOCHK, ecochk);
1841 
1842 	for_each_engine(engine, dev_priv, id) {
1843 		/* GFX_MODE is per-ring on gen7+ */
1844 		I915_WRITE(RING_MODE_GEN7(engine),
1845 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1846 	}
1847 }
1848 
1849 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1850 {
1851 	u32 ecochk, gab_ctl, ecobits;
1852 
1853 	ecobits = I915_READ(GAC_ECO_BITS);
1854 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1855 		   ECOBITS_PPGTT_CACHE64B);
1856 
1857 	gab_ctl = I915_READ(GAB_CTL);
1858 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1859 
1860 	ecochk = I915_READ(GAM_ECOCHK);
1861 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1862 
1863 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1864 }
1865 
1866 /* PPGTT support for Sandybdrige/Gen6 and later */
1867 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1868 				   u64 start, u64 length)
1869 {
1870 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1871 	unsigned int first_entry = start >> PAGE_SHIFT;
1872 	unsigned int pde = first_entry / GEN6_PTES;
1873 	unsigned int pte = first_entry % GEN6_PTES;
1874 	unsigned int num_entries = length >> PAGE_SHIFT;
1875 	gen6_pte_t scratch_pte =
1876 		vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1877 
1878 	while (num_entries) {
1879 		struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1880 		unsigned int end = min(pte + num_entries, GEN6_PTES);
1881 		gen6_pte_t *vaddr;
1882 
1883 		num_entries -= end - pte;
1884 
1885 		/* Note that the hw doesn't support removing PDE on the fly
1886 		 * (they are cached inside the context with no means to
1887 		 * invalidate the cache), so we can only reset the PTE
1888 		 * entries back to scratch.
1889 		 */
1890 
1891 		vaddr = kmap_atomic_px(pt);
1892 		do {
1893 			vaddr[pte++] = scratch_pte;
1894 		} while (pte < end);
1895 		kunmap_atomic(vaddr);
1896 
1897 		pte = 0;
1898 	}
1899 }
1900 
1901 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1902 				      struct i915_vma *vma,
1903 				      enum i915_cache_level cache_level,
1904 				      u32 flags)
1905 {
1906 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1907 	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1908 	unsigned act_pt = first_entry / GEN6_PTES;
1909 	unsigned act_pte = first_entry % GEN6_PTES;
1910 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1911 	struct sgt_dma iter = sgt_dma(vma);
1912 	gen6_pte_t *vaddr;
1913 
1914 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1915 	do {
1916 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1917 
1918 		iter.dma += PAGE_SIZE;
1919 		if (iter.dma == iter.max) {
1920 			iter.sg = __sg_next(iter.sg);
1921 			if (!iter.sg)
1922 				break;
1923 
1924 			iter.dma = sg_dma_address(iter.sg);
1925 			iter.max = iter.dma + iter.sg->length;
1926 		}
1927 
1928 		if (++act_pte == GEN6_PTES) {
1929 			kunmap_atomic(vaddr);
1930 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1931 			act_pte = 0;
1932 		}
1933 	} while (1);
1934 	kunmap_atomic(vaddr);
1935 
1936 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1937 }
1938 
1939 static int gen6_alloc_va_range(struct i915_address_space *vm,
1940 			       u64 start, u64 length)
1941 {
1942 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1943 	struct i915_page_table *pt;
1944 	u64 from = start;
1945 	unsigned int pde;
1946 	bool flush = false;
1947 
1948 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1949 		if (pt == vm->scratch_pt) {
1950 			pt = alloc_pt(vm);
1951 			if (IS_ERR(pt))
1952 				goto unwind_out;
1953 
1954 			gen6_initialize_pt(vm, pt);
1955 			ppgtt->pd.page_table[pde] = pt;
1956 			gen6_write_pde(ppgtt, pde, pt);
1957 			flush = true;
1958 		}
1959 	}
1960 
1961 	if (flush) {
1962 		mark_tlbs_dirty(ppgtt);
1963 		wmb();
1964 	}
1965 
1966 	return 0;
1967 
1968 unwind_out:
1969 	gen6_ppgtt_clear_range(vm, from, start);
1970 	return -ENOMEM;
1971 }
1972 
1973 static int gen6_init_scratch(struct i915_address_space *vm)
1974 {
1975 	int ret;
1976 
1977 	ret = setup_scratch_page(vm, I915_GFP_DMA);
1978 	if (ret)
1979 		return ret;
1980 
1981 	vm->scratch_pt = alloc_pt(vm);
1982 	if (IS_ERR(vm->scratch_pt)) {
1983 		cleanup_scratch_page(vm);
1984 		return PTR_ERR(vm->scratch_pt);
1985 	}
1986 
1987 	gen6_initialize_pt(vm, vm->scratch_pt);
1988 
1989 	return 0;
1990 }
1991 
1992 static void gen6_free_scratch(struct i915_address_space *vm)
1993 {
1994 	free_pt(vm, vm->scratch_pt);
1995 	cleanup_scratch_page(vm);
1996 }
1997 
1998 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1999 {
2000 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
2001 	struct i915_page_directory *pd = &ppgtt->pd;
2002 	struct i915_page_table *pt;
2003 	u32 pde;
2004 
2005 	drm_mm_remove_node(&ppgtt->node);
2006 
2007 	gen6_for_all_pdes(pt, pd, pde)
2008 		if (pt != vm->scratch_pt)
2009 			free_pt(vm, pt);
2010 
2011 	gen6_free_scratch(vm);
2012 }
2013 
2014 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2015 {
2016 	struct i915_address_space *vm = &ppgtt->base;
2017 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
2018 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2019 	int ret;
2020 
2021 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2022 	 * allocator works in address space sizes, so it's multiplied by page
2023 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2024 	 */
2025 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2026 
2027 	ret = gen6_init_scratch(vm);
2028 	if (ret)
2029 		return ret;
2030 
2031 	ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
2032 				  GEN6_PD_SIZE, GEN6_PD_ALIGN,
2033 				  I915_COLOR_UNEVICTABLE,
2034 				  0, ggtt->base.total,
2035 				  PIN_HIGH);
2036 	if (ret)
2037 		goto err_out;
2038 
2039 	if (ppgtt->node.start < ggtt->mappable_end)
2040 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2041 
2042 	ppgtt->pd.base.ggtt_offset =
2043 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2044 
2045 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2046 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2047 
2048 	return 0;
2049 
2050 err_out:
2051 	gen6_free_scratch(vm);
2052 	return ret;
2053 }
2054 
2055 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2056 {
2057 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2058 }
2059 
2060 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2061 				  u64 start, u64 length)
2062 {
2063 	struct i915_page_table *unused;
2064 	u32 pde;
2065 
2066 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2067 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2068 }
2069 
2070 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2071 {
2072 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
2073 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2074 	int ret;
2075 
2076 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2077 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2078 		ppgtt->switch_mm = gen6_mm_switch;
2079 	else if (IS_HASWELL(dev_priv))
2080 		ppgtt->switch_mm = hsw_mm_switch;
2081 	else if (IS_GEN7(dev_priv))
2082 		ppgtt->switch_mm = gen7_mm_switch;
2083 	else
2084 		BUG();
2085 
2086 	ret = gen6_ppgtt_alloc(ppgtt);
2087 	if (ret)
2088 		return ret;
2089 
2090 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2091 
2092 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2093 	gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
2094 
2095 	ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
2096 	if (ret) {
2097 		gen6_ppgtt_cleanup(&ppgtt->base);
2098 		return ret;
2099 	}
2100 
2101 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2102 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2103 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2104 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2105 	ppgtt->base.set_pages = ppgtt_set_pages;
2106 	ppgtt->base.clear_pages = clear_pages;
2107 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2108 	ppgtt->debug_dump = gen6_dump_ppgtt;
2109 
2110 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2111 			 ppgtt->node.size >> 20,
2112 			 ppgtt->node.start / PAGE_SIZE);
2113 
2114 	DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
2115 			 ppgtt->pd.base.ggtt_offset << 10);
2116 
2117 	return 0;
2118 }
2119 
2120 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2121 			   struct drm_i915_private *dev_priv)
2122 {
2123 	ppgtt->base.i915 = dev_priv;
2124 	ppgtt->base.dma = &dev_priv->drm.pdev->dev;
2125 
2126 	if (INTEL_GEN(dev_priv) < 8)
2127 		return gen6_ppgtt_init(ppgtt);
2128 	else
2129 		return gen8_ppgtt_init(ppgtt);
2130 }
2131 
2132 static void i915_address_space_init(struct i915_address_space *vm,
2133 				    struct drm_i915_private *dev_priv,
2134 				    const char *name)
2135 {
2136 	drm_mm_init(&vm->mm, 0, vm->total);
2137 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
2138 
2139 	INIT_LIST_HEAD(&vm->active_list);
2140 	INIT_LIST_HEAD(&vm->inactive_list);
2141 	INIT_LIST_HEAD(&vm->unbound_list);
2142 
2143 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2144 	pagevec_init(&vm->free_pages);
2145 }
2146 
2147 static void i915_address_space_fini(struct i915_address_space *vm)
2148 {
2149 	if (pagevec_count(&vm->free_pages))
2150 		vm_free_pages_release(vm, true);
2151 
2152 	drm_mm_takedown(&vm->mm);
2153 	list_del(&vm->global_link);
2154 }
2155 
2156 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2157 {
2158 	/* This function is for gtt related workarounds. This function is
2159 	 * called on driver load and after a GPU reset, so you can place
2160 	 * workarounds here even if they get overwritten by GPU reset.
2161 	 */
2162 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2163 	if (IS_BROADWELL(dev_priv))
2164 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2165 	else if (IS_CHERRYVIEW(dev_priv))
2166 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2167 	else if (IS_GEN9_LP(dev_priv))
2168 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2169 	else if (INTEL_GEN(dev_priv) >= 9)
2170 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2171 
2172 	/*
2173 	 * To support 64K PTEs we need to first enable the use of the
2174 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2175 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2176 	 * shouldn't be needed after GEN10.
2177 	 *
2178 	 * 64K pages were first introduced from BDW+, although technically they
2179 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2180 	 * 32K pages, but we don't currently have any support for it in our
2181 	 * driver.
2182 	 */
2183 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2184 	    INTEL_GEN(dev_priv) <= 10)
2185 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2186 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2187 			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2188 }
2189 
2190 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2191 {
2192 	gtt_write_workarounds(dev_priv);
2193 
2194 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2195 	 * and the PDPs are contained within the context itself.  We don't
2196 	 * need to do anything here. */
2197 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2198 		return 0;
2199 
2200 	if (!USES_PPGTT(dev_priv))
2201 		return 0;
2202 
2203 	if (IS_GEN6(dev_priv))
2204 		gen6_ppgtt_enable(dev_priv);
2205 	else if (IS_GEN7(dev_priv))
2206 		gen7_ppgtt_enable(dev_priv);
2207 	else if (INTEL_GEN(dev_priv) >= 8)
2208 		gen8_ppgtt_enable(dev_priv);
2209 	else
2210 		MISSING_CASE(INTEL_GEN(dev_priv));
2211 
2212 	return 0;
2213 }
2214 
2215 struct i915_hw_ppgtt *
2216 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2217 		  struct drm_i915_file_private *fpriv,
2218 		  const char *name)
2219 {
2220 	struct i915_hw_ppgtt *ppgtt;
2221 	int ret;
2222 
2223 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2224 	if (!ppgtt)
2225 		return ERR_PTR(-ENOMEM);
2226 
2227 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
2228 	if (ret) {
2229 		kfree(ppgtt);
2230 		return ERR_PTR(ret);
2231 	}
2232 
2233 	kref_init(&ppgtt->ref);
2234 	i915_address_space_init(&ppgtt->base, dev_priv, name);
2235 	ppgtt->base.file = fpriv;
2236 
2237 	trace_i915_ppgtt_create(&ppgtt->base);
2238 
2239 	return ppgtt;
2240 }
2241 
2242 void i915_ppgtt_close(struct i915_address_space *vm)
2243 {
2244 	GEM_BUG_ON(vm->closed);
2245 	vm->closed = true;
2246 }
2247 
2248 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2249 {
2250 	struct list_head *phases[] = {
2251 		&vm->active_list,
2252 		&vm->inactive_list,
2253 		&vm->unbound_list,
2254 		NULL,
2255 	}, **phase;
2256 
2257 	vm->closed = true;
2258 	for (phase = phases; *phase; phase++) {
2259 		struct i915_vma *vma, *vn;
2260 
2261 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2262 			i915_vma_destroy(vma);
2263 	}
2264 }
2265 
2266 void i915_ppgtt_release(struct kref *kref)
2267 {
2268 	struct i915_hw_ppgtt *ppgtt =
2269 		container_of(kref, struct i915_hw_ppgtt, ref);
2270 
2271 	trace_i915_ppgtt_release(&ppgtt->base);
2272 
2273 	ppgtt_destroy_vma(&ppgtt->base);
2274 
2275 	GEM_BUG_ON(!list_empty(&ppgtt->base.active_list));
2276 	GEM_BUG_ON(!list_empty(&ppgtt->base.inactive_list));
2277 	GEM_BUG_ON(!list_empty(&ppgtt->base.unbound_list));
2278 
2279 	ppgtt->base.cleanup(&ppgtt->base);
2280 	i915_address_space_fini(&ppgtt->base);
2281 	kfree(ppgtt);
2282 }
2283 
2284 /* Certain Gen5 chipsets require require idling the GPU before
2285  * unmapping anything from the GTT when VT-d is enabled.
2286  */
2287 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2288 {
2289 	/* Query intel_iommu to see if we need the workaround. Presumably that
2290 	 * was loaded first.
2291 	 */
2292 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2293 }
2294 
2295 static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2296 {
2297 	struct intel_engine_cs *engine;
2298 	enum intel_engine_id id;
2299 	u32 fault;
2300 
2301 	for_each_engine(engine, dev_priv, id) {
2302 		fault = I915_READ(RING_FAULT_REG(engine));
2303 		if (fault & RING_FAULT_VALID) {
2304 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2305 					 "\tAddr: 0x%08lx\n"
2306 					 "\tAddress space: %s\n"
2307 					 "\tSource ID: %d\n"
2308 					 "\tType: %d\n",
2309 					 fault & PAGE_MASK,
2310 					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2311 					 RING_FAULT_SRCID(fault),
2312 					 RING_FAULT_FAULT_TYPE(fault));
2313 			I915_WRITE(RING_FAULT_REG(engine),
2314 				   fault & ~RING_FAULT_VALID);
2315 		}
2316 	}
2317 
2318 	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2319 }
2320 
2321 static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
2322 {
2323 	u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2324 
2325 	if (fault & RING_FAULT_VALID) {
2326 		u32 fault_data0, fault_data1;
2327 		u64 fault_addr;
2328 
2329 		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2330 		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2331 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2332 			     ((u64)fault_data0 << 12);
2333 
2334 		DRM_DEBUG_DRIVER("Unexpected fault\n"
2335 				 "\tAddr: 0x%08x_%08x\n"
2336 				 "\tAddress space: %s\n"
2337 				 "\tEngine ID: %d\n"
2338 				 "\tSource ID: %d\n"
2339 				 "\tType: %d\n",
2340 				 upper_32_bits(fault_addr),
2341 				 lower_32_bits(fault_addr),
2342 				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2343 				 GEN8_RING_FAULT_ENGINE_ID(fault),
2344 				 RING_FAULT_SRCID(fault),
2345 				 RING_FAULT_FAULT_TYPE(fault));
2346 		I915_WRITE(GEN8_RING_FAULT_REG,
2347 			   fault & ~RING_FAULT_VALID);
2348 	}
2349 
2350 	POSTING_READ(GEN8_RING_FAULT_REG);
2351 }
2352 
2353 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2354 {
2355 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
2356 	if (INTEL_GEN(dev_priv) >= 8)
2357 		gen8_check_and_clear_faults(dev_priv);
2358 	else if (INTEL_GEN(dev_priv) >= 6)
2359 		gen6_check_and_clear_faults(dev_priv);
2360 	else
2361 		return;
2362 }
2363 
2364 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2365 {
2366 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2367 
2368 	/* Don't bother messing with faults pre GEN6 as we have little
2369 	 * documentation supporting that it's a good idea.
2370 	 */
2371 	if (INTEL_GEN(dev_priv) < 6)
2372 		return;
2373 
2374 	i915_check_and_clear_faults(dev_priv);
2375 
2376 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2377 
2378 	i915_ggtt_invalidate(dev_priv);
2379 }
2380 
2381 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2382 			       struct sg_table *pages)
2383 {
2384 	do {
2385 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2386 				     pages->sgl, pages->nents,
2387 				     PCI_DMA_BIDIRECTIONAL,
2388 				     DMA_ATTR_NO_WARN))
2389 			return 0;
2390 
2391 		/* If the DMA remap fails, one cause can be that we have
2392 		 * too many objects pinned in a small remapping table,
2393 		 * such as swiotlb. Incrementally purge all other objects and
2394 		 * try again - if there are no more pages to remove from
2395 		 * the DMA remapper, i915_gem_shrink will return 0.
2396 		 */
2397 		GEM_BUG_ON(obj->mm.pages == pages);
2398 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2399 				 obj->base.size >> PAGE_SHIFT, NULL,
2400 				 I915_SHRINK_BOUND |
2401 				 I915_SHRINK_UNBOUND |
2402 				 I915_SHRINK_ACTIVE));
2403 
2404 	return -ENOSPC;
2405 }
2406 
2407 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2408 {
2409 	writeq(pte, addr);
2410 }
2411 
2412 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2413 				  dma_addr_t addr,
2414 				  u64 offset,
2415 				  enum i915_cache_level level,
2416 				  u32 unused)
2417 {
2418 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2419 	gen8_pte_t __iomem *pte =
2420 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2421 
2422 	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2423 
2424 	ggtt->invalidate(vm->i915);
2425 }
2426 
2427 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2428 				     struct i915_vma *vma,
2429 				     enum i915_cache_level level,
2430 				     u32 unused)
2431 {
2432 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2433 	struct sgt_iter sgt_iter;
2434 	gen8_pte_t __iomem *gtt_entries;
2435 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2436 	dma_addr_t addr;
2437 
2438 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2439 	gtt_entries += vma->node.start >> PAGE_SHIFT;
2440 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2441 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2442 
2443 	/*
2444 	 * We want to flush the TLBs only after we're certain all the PTE
2445 	 * updates have finished.
2446 	 */
2447 	ggtt->invalidate(vm->i915);
2448 }
2449 
2450 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2451 				  dma_addr_t addr,
2452 				  u64 offset,
2453 				  enum i915_cache_level level,
2454 				  u32 flags)
2455 {
2456 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2457 	gen6_pte_t __iomem *pte =
2458 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2459 
2460 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2461 
2462 	ggtt->invalidate(vm->i915);
2463 }
2464 
2465 /*
2466  * Binds an object into the global gtt with the specified cache level. The object
2467  * will be accessible to the GPU via commands whose operands reference offsets
2468  * within the global GTT as well as accessible by the GPU through the GMADR
2469  * mapped BAR (dev_priv->mm.gtt->gtt).
2470  */
2471 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2472 				     struct i915_vma *vma,
2473 				     enum i915_cache_level level,
2474 				     u32 flags)
2475 {
2476 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2477 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2478 	unsigned int i = vma->node.start >> PAGE_SHIFT;
2479 	struct sgt_iter iter;
2480 	dma_addr_t addr;
2481 	for_each_sgt_dma(addr, iter, vma->pages)
2482 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2483 
2484 	/*
2485 	 * We want to flush the TLBs only after we're certain all the PTE
2486 	 * updates have finished.
2487 	 */
2488 	ggtt->invalidate(vm->i915);
2489 }
2490 
2491 static void nop_clear_range(struct i915_address_space *vm,
2492 			    u64 start, u64 length)
2493 {
2494 }
2495 
2496 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2497 				  u64 start, u64 length)
2498 {
2499 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2500 	unsigned first_entry = start >> PAGE_SHIFT;
2501 	unsigned num_entries = length >> PAGE_SHIFT;
2502 	const gen8_pte_t scratch_pte =
2503 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2504 	gen8_pte_t __iomem *gtt_base =
2505 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2506 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2507 	int i;
2508 
2509 	if (WARN(num_entries > max_entries,
2510 		 "First entry = %d; Num entries = %d (max=%d)\n",
2511 		 first_entry, num_entries, max_entries))
2512 		num_entries = max_entries;
2513 
2514 	for (i = 0; i < num_entries; i++)
2515 		gen8_set_pte(&gtt_base[i], scratch_pte);
2516 }
2517 
2518 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2519 {
2520 	struct drm_i915_private *dev_priv = vm->i915;
2521 
2522 	/*
2523 	 * Make sure the internal GAM fifo has been cleared of all GTT
2524 	 * writes before exiting stop_machine(). This guarantees that
2525 	 * any aperture accesses waiting to start in another process
2526 	 * cannot back up behind the GTT writes causing a hang.
2527 	 * The register can be any arbitrary GAM register.
2528 	 */
2529 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2530 }
2531 
2532 struct insert_page {
2533 	struct i915_address_space *vm;
2534 	dma_addr_t addr;
2535 	u64 offset;
2536 	enum i915_cache_level level;
2537 };
2538 
2539 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2540 {
2541 	struct insert_page *arg = _arg;
2542 
2543 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2544 	bxt_vtd_ggtt_wa(arg->vm);
2545 
2546 	return 0;
2547 }
2548 
2549 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2550 					  dma_addr_t addr,
2551 					  u64 offset,
2552 					  enum i915_cache_level level,
2553 					  u32 unused)
2554 {
2555 	struct insert_page arg = { vm, addr, offset, level };
2556 
2557 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2558 }
2559 
2560 struct insert_entries {
2561 	struct i915_address_space *vm;
2562 	struct i915_vma *vma;
2563 	enum i915_cache_level level;
2564 };
2565 
2566 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2567 {
2568 	struct insert_entries *arg = _arg;
2569 
2570 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2571 	bxt_vtd_ggtt_wa(arg->vm);
2572 
2573 	return 0;
2574 }
2575 
2576 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2577 					     struct i915_vma *vma,
2578 					     enum i915_cache_level level,
2579 					     u32 unused)
2580 {
2581 	struct insert_entries arg = { vm, vma, level };
2582 
2583 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2584 }
2585 
2586 struct clear_range {
2587 	struct i915_address_space *vm;
2588 	u64 start;
2589 	u64 length;
2590 };
2591 
2592 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2593 {
2594 	struct clear_range *arg = _arg;
2595 
2596 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2597 	bxt_vtd_ggtt_wa(arg->vm);
2598 
2599 	return 0;
2600 }
2601 
2602 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2603 					  u64 start,
2604 					  u64 length)
2605 {
2606 	struct clear_range arg = { vm, start, length };
2607 
2608 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2609 }
2610 
2611 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2612 				  u64 start, u64 length)
2613 {
2614 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2615 	unsigned first_entry = start >> PAGE_SHIFT;
2616 	unsigned num_entries = length >> PAGE_SHIFT;
2617 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2618 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2619 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2620 	int i;
2621 
2622 	if (WARN(num_entries > max_entries,
2623 		 "First entry = %d; Num entries = %d (max=%d)\n",
2624 		 first_entry, num_entries, max_entries))
2625 		num_entries = max_entries;
2626 
2627 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2628 				     I915_CACHE_LLC, 0);
2629 
2630 	for (i = 0; i < num_entries; i++)
2631 		iowrite32(scratch_pte, &gtt_base[i]);
2632 }
2633 
2634 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2635 				  dma_addr_t addr,
2636 				  u64 offset,
2637 				  enum i915_cache_level cache_level,
2638 				  u32 unused)
2639 {
2640 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2641 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2642 
2643 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2644 }
2645 
2646 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2647 				     struct i915_vma *vma,
2648 				     enum i915_cache_level cache_level,
2649 				     u32 unused)
2650 {
2651 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2652 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2653 
2654 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2655 				    flags);
2656 }
2657 
2658 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2659 				  u64 start, u64 length)
2660 {
2661 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2662 }
2663 
2664 static int ggtt_bind_vma(struct i915_vma *vma,
2665 			 enum i915_cache_level cache_level,
2666 			 u32 flags)
2667 {
2668 	struct drm_i915_private *i915 = vma->vm->i915;
2669 	struct drm_i915_gem_object *obj = vma->obj;
2670 	u32 pte_flags;
2671 
2672 	/* Currently applicable only to VLV */
2673 	pte_flags = 0;
2674 	if (obj->gt_ro)
2675 		pte_flags |= PTE_READ_ONLY;
2676 
2677 	intel_runtime_pm_get(i915);
2678 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2679 	intel_runtime_pm_put(i915);
2680 
2681 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2682 
2683 	/*
2684 	 * Without aliasing PPGTT there's no difference between
2685 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2686 	 * upgrade to both bound if we bind either to avoid double-binding.
2687 	 */
2688 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2689 
2690 	return 0;
2691 }
2692 
2693 static void ggtt_unbind_vma(struct i915_vma *vma)
2694 {
2695 	struct drm_i915_private *i915 = vma->vm->i915;
2696 
2697 	intel_runtime_pm_get(i915);
2698 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2699 	intel_runtime_pm_put(i915);
2700 }
2701 
2702 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2703 				 enum i915_cache_level cache_level,
2704 				 u32 flags)
2705 {
2706 	struct drm_i915_private *i915 = vma->vm->i915;
2707 	u32 pte_flags;
2708 	int ret;
2709 
2710 	/* Currently applicable only to VLV */
2711 	pte_flags = 0;
2712 	if (vma->obj->gt_ro)
2713 		pte_flags |= PTE_READ_ONLY;
2714 
2715 	if (flags & I915_VMA_LOCAL_BIND) {
2716 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2717 
2718 		if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2719 		    appgtt->base.allocate_va_range) {
2720 			ret = appgtt->base.allocate_va_range(&appgtt->base,
2721 							     vma->node.start,
2722 							     vma->size);
2723 			if (ret)
2724 				return ret;
2725 		}
2726 
2727 		appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2728 					    pte_flags);
2729 	}
2730 
2731 	if (flags & I915_VMA_GLOBAL_BIND) {
2732 		intel_runtime_pm_get(i915);
2733 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2734 		intel_runtime_pm_put(i915);
2735 	}
2736 
2737 	return 0;
2738 }
2739 
2740 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2741 {
2742 	struct drm_i915_private *i915 = vma->vm->i915;
2743 
2744 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2745 		intel_runtime_pm_get(i915);
2746 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2747 		intel_runtime_pm_put(i915);
2748 	}
2749 
2750 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2751 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2752 
2753 		vm->clear_range(vm, vma->node.start, vma->size);
2754 	}
2755 }
2756 
2757 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2758 			       struct sg_table *pages)
2759 {
2760 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2761 	struct device *kdev = &dev_priv->drm.pdev->dev;
2762 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2763 
2764 	if (unlikely(ggtt->do_idle_maps)) {
2765 		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2766 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2767 			/* Wait a bit, in hopes it avoids the hang */
2768 			udelay(10);
2769 		}
2770 	}
2771 
2772 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2773 }
2774 
2775 static int ggtt_set_pages(struct i915_vma *vma)
2776 {
2777 	int ret;
2778 
2779 	GEM_BUG_ON(vma->pages);
2780 
2781 	ret = i915_get_ggtt_vma_pages(vma);
2782 	if (ret)
2783 		return ret;
2784 
2785 	vma->page_sizes = vma->obj->mm.page_sizes;
2786 
2787 	return 0;
2788 }
2789 
2790 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2791 				  unsigned long color,
2792 				  u64 *start,
2793 				  u64 *end)
2794 {
2795 	if (node->allocated && node->color != color)
2796 		*start += I915_GTT_PAGE_SIZE;
2797 
2798 	/* Also leave a space between the unallocated reserved node after the
2799 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2800 	 * to insert a guard page to prevent prefetches crossing over the
2801 	 * GTT boundary.
2802 	 */
2803 	node = list_next_entry(node, node_list);
2804 	if (node->color != color)
2805 		*end -= I915_GTT_PAGE_SIZE;
2806 }
2807 
2808 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2809 {
2810 	struct i915_ggtt *ggtt = &i915->ggtt;
2811 	struct i915_hw_ppgtt *ppgtt;
2812 	int err;
2813 
2814 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2815 	if (IS_ERR(ppgtt))
2816 		return PTR_ERR(ppgtt);
2817 
2818 	if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2819 		err = -ENODEV;
2820 		goto err_ppgtt;
2821 	}
2822 
2823 	if (ppgtt->base.allocate_va_range) {
2824 		/* Note we only pre-allocate as far as the end of the global
2825 		 * GTT. On 48b / 4-level page-tables, the difference is very,
2826 		 * very significant! We have to preallocate as GVT/vgpu does
2827 		 * not like the page directory disappearing.
2828 		 */
2829 		err = ppgtt->base.allocate_va_range(&ppgtt->base,
2830 						    0, ggtt->base.total);
2831 		if (err)
2832 			goto err_ppgtt;
2833 	}
2834 
2835 	i915->mm.aliasing_ppgtt = ppgtt;
2836 
2837 	GEM_BUG_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2838 	ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2839 
2840 	GEM_BUG_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2841 	ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2842 
2843 	return 0;
2844 
2845 err_ppgtt:
2846 	i915_ppgtt_put(ppgtt);
2847 	return err;
2848 }
2849 
2850 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2851 {
2852 	struct i915_ggtt *ggtt = &i915->ggtt;
2853 	struct i915_hw_ppgtt *ppgtt;
2854 
2855 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2856 	if (!ppgtt)
2857 		return;
2858 
2859 	i915_ppgtt_put(ppgtt);
2860 
2861 	ggtt->base.bind_vma = ggtt_bind_vma;
2862 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2863 }
2864 
2865 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2866 {
2867 	/* Let GEM Manage all of the aperture.
2868 	 *
2869 	 * However, leave one page at the end still bound to the scratch page.
2870 	 * There are a number of places where the hardware apparently prefetches
2871 	 * past the end of the object, and we've seen multiple hangs with the
2872 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2873 	 * aperture.  One page should be enough to keep any prefetching inside
2874 	 * of the aperture.
2875 	 */
2876 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2877 	unsigned long hole_start, hole_end;
2878 	struct drm_mm_node *entry;
2879 	int ret;
2880 
2881 	ret = intel_vgt_balloon(dev_priv);
2882 	if (ret)
2883 		return ret;
2884 
2885 	/* Reserve a mappable slot for our lockless error capture */
2886 	ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2887 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2888 					  0, ggtt->mappable_end,
2889 					  DRM_MM_INSERT_LOW);
2890 	if (ret)
2891 		return ret;
2892 
2893 	/* Clear any non-preallocated blocks */
2894 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2895 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2896 			      hole_start, hole_end);
2897 		ggtt->base.clear_range(&ggtt->base, hole_start,
2898 				       hole_end - hole_start);
2899 	}
2900 
2901 	/* And finally clear the reserved guard page */
2902 	ggtt->base.clear_range(&ggtt->base,
2903 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2904 
2905 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2906 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2907 		if (ret)
2908 			goto err;
2909 	}
2910 
2911 	return 0;
2912 
2913 err:
2914 	drm_mm_remove_node(&ggtt->error_capture);
2915 	return ret;
2916 }
2917 
2918 /**
2919  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2920  * @dev_priv: i915 device
2921  */
2922 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2923 {
2924 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2925 	struct i915_vma *vma, *vn;
2926 	struct pagevec *pvec;
2927 
2928 	ggtt->base.closed = true;
2929 
2930 	mutex_lock(&dev_priv->drm.struct_mutex);
2931 	GEM_BUG_ON(!list_empty(&ggtt->base.active_list));
2932 	list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2933 		WARN_ON(i915_vma_unbind(vma));
2934 	mutex_unlock(&dev_priv->drm.struct_mutex);
2935 
2936 	i915_gem_cleanup_stolen(&dev_priv->drm);
2937 
2938 	mutex_lock(&dev_priv->drm.struct_mutex);
2939 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2940 
2941 	if (drm_mm_node_allocated(&ggtt->error_capture))
2942 		drm_mm_remove_node(&ggtt->error_capture);
2943 
2944 	if (drm_mm_initialized(&ggtt->base.mm)) {
2945 		intel_vgt_deballoon(dev_priv);
2946 		i915_address_space_fini(&ggtt->base);
2947 	}
2948 
2949 	ggtt->base.cleanup(&ggtt->base);
2950 
2951 	pvec = &dev_priv->mm.wc_stash;
2952 	if (pvec->nr) {
2953 		set_pages_array_wb(pvec->pages, pvec->nr);
2954 		__pagevec_release(pvec);
2955 	}
2956 
2957 	mutex_unlock(&dev_priv->drm.struct_mutex);
2958 
2959 	arch_phys_wc_del(ggtt->mtrr);
2960 	io_mapping_fini(&ggtt->iomap);
2961 }
2962 
2963 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2964 {
2965 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2966 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2967 	return snb_gmch_ctl << 20;
2968 }
2969 
2970 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2971 {
2972 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2973 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2974 	if (bdw_gmch_ctl)
2975 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2976 
2977 #ifdef CONFIG_X86_32
2978 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2979 	if (bdw_gmch_ctl > 4)
2980 		bdw_gmch_ctl = 4;
2981 #endif
2982 
2983 	return bdw_gmch_ctl << 20;
2984 }
2985 
2986 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2987 {
2988 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2989 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2990 
2991 	if (gmch_ctrl)
2992 		return 1 << (20 + gmch_ctrl);
2993 
2994 	return 0;
2995 }
2996 
2997 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2998 {
2999 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3000 	struct pci_dev *pdev = dev_priv->drm.pdev;
3001 	phys_addr_t phys_addr;
3002 	int ret;
3003 
3004 	/* For Modern GENs the PTEs and register space are split in the BAR */
3005 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
3006 
3007 	/*
3008 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
3009 	 * will be dropped. For WC mappings in general we have 64 byte burst
3010 	 * writes when the WC buffer is flushed, so we can't use it, but have to
3011 	 * resort to an uncached mapping. The WC issue is easily caught by the
3012 	 * readback check when writing GTT PTE entries.
3013 	 */
3014 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3015 		ggtt->gsm = ioremap_nocache(phys_addr, size);
3016 	else
3017 		ggtt->gsm = ioremap_wc(phys_addr, size);
3018 	if (!ggtt->gsm) {
3019 		DRM_ERROR("Failed to map the ggtt page table\n");
3020 		return -ENOMEM;
3021 	}
3022 
3023 	ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
3024 	if (ret) {
3025 		DRM_ERROR("Scratch setup failed\n");
3026 		/* iounmap will also get called at remove, but meh */
3027 		iounmap(ggtt->gsm);
3028 		return ret;
3029 	}
3030 
3031 	return 0;
3032 }
3033 
3034 static struct intel_ppat_entry *
3035 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3036 {
3037 	struct intel_ppat_entry *entry = &ppat->entries[index];
3038 
3039 	GEM_BUG_ON(index >= ppat->max_entries);
3040 	GEM_BUG_ON(test_bit(index, ppat->used));
3041 
3042 	entry->ppat = ppat;
3043 	entry->value = value;
3044 	kref_init(&entry->ref);
3045 	set_bit(index, ppat->used);
3046 	set_bit(index, ppat->dirty);
3047 
3048 	return entry;
3049 }
3050 
3051 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3052 {
3053 	struct intel_ppat *ppat = entry->ppat;
3054 	unsigned int index = entry - ppat->entries;
3055 
3056 	GEM_BUG_ON(index >= ppat->max_entries);
3057 	GEM_BUG_ON(!test_bit(index, ppat->used));
3058 
3059 	entry->value = ppat->clear_value;
3060 	clear_bit(index, ppat->used);
3061 	set_bit(index, ppat->dirty);
3062 }
3063 
3064 /**
3065  * intel_ppat_get - get a usable PPAT entry
3066  * @i915: i915 device instance
3067  * @value: the PPAT value required by the caller
3068  *
3069  * The function tries to search if there is an existing PPAT entry which
3070  * matches with the required value. If perfectly matched, the existing PPAT
3071  * entry will be used. If only partially matched, it will try to check if
3072  * there is any available PPAT index. If yes, it will allocate a new PPAT
3073  * index for the required entry and update the HW. If not, the partially
3074  * matched entry will be used.
3075  */
3076 const struct intel_ppat_entry *
3077 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3078 {
3079 	struct intel_ppat *ppat = &i915->ppat;
3080 	struct intel_ppat_entry *entry = NULL;
3081 	unsigned int scanned, best_score;
3082 	int i;
3083 
3084 	GEM_BUG_ON(!ppat->max_entries);
3085 
3086 	scanned = best_score = 0;
3087 	for_each_set_bit(i, ppat->used, ppat->max_entries) {
3088 		unsigned int score;
3089 
3090 		score = ppat->match(ppat->entries[i].value, value);
3091 		if (score > best_score) {
3092 			entry = &ppat->entries[i];
3093 			if (score == INTEL_PPAT_PERFECT_MATCH) {
3094 				kref_get(&entry->ref);
3095 				return entry;
3096 			}
3097 			best_score = score;
3098 		}
3099 		scanned++;
3100 	}
3101 
3102 	if (scanned == ppat->max_entries) {
3103 		if (!entry)
3104 			return ERR_PTR(-ENOSPC);
3105 
3106 		kref_get(&entry->ref);
3107 		return entry;
3108 	}
3109 
3110 	i = find_first_zero_bit(ppat->used, ppat->max_entries);
3111 	entry = __alloc_ppat_entry(ppat, i, value);
3112 	ppat->update_hw(i915);
3113 	return entry;
3114 }
3115 
3116 static void release_ppat(struct kref *kref)
3117 {
3118 	struct intel_ppat_entry *entry =
3119 		container_of(kref, struct intel_ppat_entry, ref);
3120 	struct drm_i915_private *i915 = entry->ppat->i915;
3121 
3122 	__free_ppat_entry(entry);
3123 	entry->ppat->update_hw(i915);
3124 }
3125 
3126 /**
3127  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3128  * @entry: an intel PPAT entry
3129  *
3130  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3131  * entry is dynamically allocated, its reference count will be decreased. Once
3132  * the reference count becomes into zero, the PPAT index becomes free again.
3133  */
3134 void intel_ppat_put(const struct intel_ppat_entry *entry)
3135 {
3136 	struct intel_ppat *ppat = entry->ppat;
3137 	unsigned int index = entry - ppat->entries;
3138 
3139 	GEM_BUG_ON(!ppat->max_entries);
3140 
3141 	kref_put(&ppat->entries[index].ref, release_ppat);
3142 }
3143 
3144 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3145 {
3146 	struct intel_ppat *ppat = &dev_priv->ppat;
3147 	int i;
3148 
3149 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3150 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3151 		clear_bit(i, ppat->dirty);
3152 	}
3153 }
3154 
3155 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3156 {
3157 	struct intel_ppat *ppat = &dev_priv->ppat;
3158 	u64 pat = 0;
3159 	int i;
3160 
3161 	for (i = 0; i < ppat->max_entries; i++)
3162 		pat |= GEN8_PPAT(i, ppat->entries[i].value);
3163 
3164 	bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3165 
3166 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3167 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3168 }
3169 
3170 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3171 {
3172 	unsigned int score = 0;
3173 	enum {
3174 		AGE_MATCH = BIT(0),
3175 		TC_MATCH = BIT(1),
3176 		CA_MATCH = BIT(2),
3177 	};
3178 
3179 	/* Cache attribute has to be matched. */
3180 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3181 		return 0;
3182 
3183 	score |= CA_MATCH;
3184 
3185 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3186 		score |= TC_MATCH;
3187 
3188 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3189 		score |= AGE_MATCH;
3190 
3191 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3192 		return INTEL_PPAT_PERFECT_MATCH;
3193 
3194 	return score;
3195 }
3196 
3197 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3198 {
3199 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3200 		INTEL_PPAT_PERFECT_MATCH : 0;
3201 }
3202 
3203 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3204 {
3205 	ppat->max_entries = 8;
3206 	ppat->update_hw = cnl_private_pat_update_hw;
3207 	ppat->match = bdw_private_pat_match;
3208 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3209 
3210 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3211 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3212 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3213 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3214 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3215 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3216 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3217 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3218 }
3219 
3220 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3221  * bits. When using advanced contexts each context stores its own PAT, but
3222  * writing this data shouldn't be harmful even in those cases. */
3223 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3224 {
3225 	ppat->max_entries = 8;
3226 	ppat->update_hw = bdw_private_pat_update_hw;
3227 	ppat->match = bdw_private_pat_match;
3228 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3229 
3230 	if (!USES_PPGTT(ppat->i915)) {
3231 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3232 		 * so RTL will always use the value corresponding to
3233 		 * pat_sel = 000".
3234 		 * So let's disable cache for GGTT to avoid screen corruptions.
3235 		 * MOCS still can be used though.
3236 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3237 		 * before this patch, i.e. the same uncached + snooping access
3238 		 * like on gen6/7 seems to be in effect.
3239 		 * - So this just fixes blitter/render access. Again it looks
3240 		 * like it's not just uncached access, but uncached + snooping.
3241 		 * So we can still hold onto all our assumptions wrt cpu
3242 		 * clflushing on LLC machines.
3243 		 */
3244 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3245 		return;
3246 	}
3247 
3248 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3249 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3250 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3251 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3252 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3253 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3254 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3255 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3256 }
3257 
3258 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3259 {
3260 	ppat->max_entries = 8;
3261 	ppat->update_hw = bdw_private_pat_update_hw;
3262 	ppat->match = chv_private_pat_match;
3263 	ppat->clear_value = CHV_PPAT_SNOOP;
3264 
3265 	/*
3266 	 * Map WB on BDW to snooped on CHV.
3267 	 *
3268 	 * Only the snoop bit has meaning for CHV, the rest is
3269 	 * ignored.
3270 	 *
3271 	 * The hardware will never snoop for certain types of accesses:
3272 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3273 	 * - PPGTT page tables
3274 	 * - some other special cycles
3275 	 *
3276 	 * As with BDW, we also need to consider the following for GT accesses:
3277 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3278 	 * so RTL will always use the value corresponding to
3279 	 * pat_sel = 000".
3280 	 * Which means we must set the snoop bit in PAT entry 0
3281 	 * in order to keep the global status page working.
3282 	 */
3283 
3284 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3285 	__alloc_ppat_entry(ppat, 1, 0);
3286 	__alloc_ppat_entry(ppat, 2, 0);
3287 	__alloc_ppat_entry(ppat, 3, 0);
3288 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3289 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3290 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3291 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3292 }
3293 
3294 static void gen6_gmch_remove(struct i915_address_space *vm)
3295 {
3296 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3297 
3298 	iounmap(ggtt->gsm);
3299 	cleanup_scratch_page(vm);
3300 }
3301 
3302 static void setup_private_pat(struct drm_i915_private *dev_priv)
3303 {
3304 	struct intel_ppat *ppat = &dev_priv->ppat;
3305 	int i;
3306 
3307 	ppat->i915 = dev_priv;
3308 
3309 	if (INTEL_GEN(dev_priv) >= 10)
3310 		cnl_setup_private_ppat(ppat);
3311 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3312 		chv_setup_private_ppat(ppat);
3313 	else
3314 		bdw_setup_private_ppat(ppat);
3315 
3316 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3317 
3318 	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3319 		ppat->entries[i].value = ppat->clear_value;
3320 		ppat->entries[i].ppat = ppat;
3321 		set_bit(i, ppat->dirty);
3322 	}
3323 
3324 	ppat->update_hw(dev_priv);
3325 }
3326 
3327 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3328 {
3329 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3330 	struct pci_dev *pdev = dev_priv->drm.pdev;
3331 	unsigned int size;
3332 	u16 snb_gmch_ctl;
3333 	int err;
3334 
3335 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3336 	ggtt->gmadr =
3337 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3338 						 pci_resource_len(pdev, 2));
3339 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3340 
3341 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3342 	if (!err)
3343 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3344 	if (err)
3345 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3346 
3347 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3348 	if (IS_CHERRYVIEW(dev_priv))
3349 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3350 	else
3351 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3352 
3353 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3354 	ggtt->base.cleanup = gen6_gmch_remove;
3355 	ggtt->base.bind_vma = ggtt_bind_vma;
3356 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3357 	ggtt->base.set_pages = ggtt_set_pages;
3358 	ggtt->base.clear_pages = clear_pages;
3359 	ggtt->base.insert_page = gen8_ggtt_insert_page;
3360 	ggtt->base.clear_range = nop_clear_range;
3361 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3362 		ggtt->base.clear_range = gen8_ggtt_clear_range;
3363 
3364 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3365 
3366 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3367 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3368 		ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3369 		ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3370 		if (ggtt->base.clear_range != nop_clear_range)
3371 			ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3372 	}
3373 
3374 	ggtt->invalidate = gen6_ggtt_invalidate;
3375 
3376 	setup_private_pat(dev_priv);
3377 
3378 	return ggtt_probe_common(ggtt, size);
3379 }
3380 
3381 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3382 {
3383 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3384 	struct pci_dev *pdev = dev_priv->drm.pdev;
3385 	unsigned int size;
3386 	u16 snb_gmch_ctl;
3387 	int err;
3388 
3389 	ggtt->gmadr =
3390 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3391 						 pci_resource_len(pdev, 2));
3392 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3393 
3394 	/* 64/512MB is the current min/max we actually know of, but this is just
3395 	 * a coarse sanity check.
3396 	 */
3397 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3398 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3399 		return -ENXIO;
3400 	}
3401 
3402 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3403 	if (!err)
3404 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3405 	if (err)
3406 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3407 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3408 
3409 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3410 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3411 
3412 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3413 	ggtt->base.insert_page = gen6_ggtt_insert_page;
3414 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3415 	ggtt->base.bind_vma = ggtt_bind_vma;
3416 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3417 	ggtt->base.set_pages = ggtt_set_pages;
3418 	ggtt->base.clear_pages = clear_pages;
3419 	ggtt->base.cleanup = gen6_gmch_remove;
3420 
3421 	ggtt->invalidate = gen6_ggtt_invalidate;
3422 
3423 	if (HAS_EDRAM(dev_priv))
3424 		ggtt->base.pte_encode = iris_pte_encode;
3425 	else if (IS_HASWELL(dev_priv))
3426 		ggtt->base.pte_encode = hsw_pte_encode;
3427 	else if (IS_VALLEYVIEW(dev_priv))
3428 		ggtt->base.pte_encode = byt_pte_encode;
3429 	else if (INTEL_GEN(dev_priv) >= 7)
3430 		ggtt->base.pte_encode = ivb_pte_encode;
3431 	else
3432 		ggtt->base.pte_encode = snb_pte_encode;
3433 
3434 	return ggtt_probe_common(ggtt, size);
3435 }
3436 
3437 static void i915_gmch_remove(struct i915_address_space *vm)
3438 {
3439 	intel_gmch_remove();
3440 }
3441 
3442 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3443 {
3444 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3445 	phys_addr_t gmadr_base;
3446 	int ret;
3447 
3448 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3449 	if (!ret) {
3450 		DRM_ERROR("failed to set up gmch\n");
3451 		return -EIO;
3452 	}
3453 
3454 	intel_gtt_get(&ggtt->base.total,
3455 		      &gmadr_base,
3456 		      &ggtt->mappable_end);
3457 
3458 	ggtt->gmadr =
3459 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3460 						 ggtt->mappable_end);
3461 
3462 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3463 	ggtt->base.insert_page = i915_ggtt_insert_page;
3464 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3465 	ggtt->base.clear_range = i915_ggtt_clear_range;
3466 	ggtt->base.bind_vma = ggtt_bind_vma;
3467 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3468 	ggtt->base.set_pages = ggtt_set_pages;
3469 	ggtt->base.clear_pages = clear_pages;
3470 	ggtt->base.cleanup = i915_gmch_remove;
3471 
3472 	ggtt->invalidate = gmch_ggtt_invalidate;
3473 
3474 	if (unlikely(ggtt->do_idle_maps))
3475 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3476 
3477 	return 0;
3478 }
3479 
3480 /**
3481  * i915_ggtt_probe_hw - Probe GGTT hardware location
3482  * @dev_priv: i915 device
3483  */
3484 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3485 {
3486 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3487 	int ret;
3488 
3489 	ggtt->base.i915 = dev_priv;
3490 	ggtt->base.dma = &dev_priv->drm.pdev->dev;
3491 
3492 	if (INTEL_GEN(dev_priv) <= 5)
3493 		ret = i915_gmch_probe(ggtt);
3494 	else if (INTEL_GEN(dev_priv) < 8)
3495 		ret = gen6_gmch_probe(ggtt);
3496 	else
3497 		ret = gen8_gmch_probe(ggtt);
3498 	if (ret)
3499 		return ret;
3500 
3501 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3502 	 * This is easier than doing range restriction on the fly, as we
3503 	 * currently don't have any bits spare to pass in this upper
3504 	 * restriction!
3505 	 */
3506 	if (USES_GUC(dev_priv)) {
3507 		ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3508 		ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3509 	}
3510 
3511 	if ((ggtt->base.total - 1) >> 32) {
3512 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3513 			  " of address space! Found %lldM!\n",
3514 			  ggtt->base.total >> 20);
3515 		ggtt->base.total = 1ULL << 32;
3516 		ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3517 	}
3518 
3519 	if (ggtt->mappable_end > ggtt->base.total) {
3520 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3521 			  " aperture=%pa, total=%llx\n",
3522 			  &ggtt->mappable_end, ggtt->base.total);
3523 		ggtt->mappable_end = ggtt->base.total;
3524 	}
3525 
3526 	/* GMADR is the PCI mmio aperture into the global GTT. */
3527 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->base.total >> 20);
3528 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3529 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3530 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3531 	if (intel_vtd_active())
3532 		DRM_INFO("VT-d active for gfx access\n");
3533 
3534 	return 0;
3535 }
3536 
3537 /**
3538  * i915_ggtt_init_hw - Initialize GGTT hardware
3539  * @dev_priv: i915 device
3540  */
3541 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3542 {
3543 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3544 	int ret;
3545 
3546 	INIT_LIST_HEAD(&dev_priv->vm_list);
3547 
3548 	/* Note that we use page colouring to enforce a guard page at the
3549 	 * end of the address space. This is required as the CS may prefetch
3550 	 * beyond the end of the batch buffer, across the page boundary,
3551 	 * and beyond the end of the GTT if we do not provide a guard.
3552 	 */
3553 	mutex_lock(&dev_priv->drm.struct_mutex);
3554 	i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3555 	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3556 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3557 	mutex_unlock(&dev_priv->drm.struct_mutex);
3558 
3559 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3560 				dev_priv->ggtt.gmadr.start,
3561 				dev_priv->ggtt.mappable_end)) {
3562 		ret = -EIO;
3563 		goto out_gtt_cleanup;
3564 	}
3565 
3566 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3567 
3568 	/*
3569 	 * Initialise stolen early so that we may reserve preallocated
3570 	 * objects for the BIOS to KMS transition.
3571 	 */
3572 	ret = i915_gem_init_stolen(dev_priv);
3573 	if (ret)
3574 		goto out_gtt_cleanup;
3575 
3576 	return 0;
3577 
3578 out_gtt_cleanup:
3579 	ggtt->base.cleanup(&ggtt->base);
3580 	return ret;
3581 }
3582 
3583 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3584 {
3585 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3586 		return -EIO;
3587 
3588 	return 0;
3589 }
3590 
3591 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3592 {
3593 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3594 
3595 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3596 
3597 	i915_ggtt_invalidate(i915);
3598 }
3599 
3600 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3601 {
3602 	/* We should only be called after i915_ggtt_enable_guc() */
3603 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3604 
3605 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3606 
3607 	i915_ggtt_invalidate(i915);
3608 }
3609 
3610 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3611 {
3612 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3613 	struct drm_i915_gem_object *obj, *on;
3614 
3615 	i915_check_and_clear_faults(dev_priv);
3616 
3617 	/* First fill our portion of the GTT with scratch pages */
3618 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3619 
3620 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3621 
3622 	/* clflush objects bound into the GGTT and rebind them. */
3623 	list_for_each_entry_safe(obj, on, &dev_priv->mm.bound_list, mm.link) {
3624 		bool ggtt_bound = false;
3625 		struct i915_vma *vma;
3626 
3627 		for_each_ggtt_vma(vma, obj) {
3628 			if (!i915_vma_unbind(vma))
3629 				continue;
3630 
3631 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3632 					      PIN_UPDATE));
3633 			ggtt_bound = true;
3634 		}
3635 
3636 		if (ggtt_bound)
3637 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3638 	}
3639 
3640 	ggtt->base.closed = false;
3641 
3642 	if (INTEL_GEN(dev_priv) >= 8) {
3643 		struct intel_ppat *ppat = &dev_priv->ppat;
3644 
3645 		bitmap_set(ppat->dirty, 0, ppat->max_entries);
3646 		dev_priv->ppat.update_hw(dev_priv);
3647 		return;
3648 	}
3649 
3650 	if (USES_PPGTT(dev_priv)) {
3651 		struct i915_address_space *vm;
3652 
3653 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3654 			struct i915_hw_ppgtt *ppgtt;
3655 
3656 			if (i915_is_ggtt(vm))
3657 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3658 			else
3659 				ppgtt = i915_vm_to_ppgtt(vm);
3660 
3661 			gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3662 		}
3663 	}
3664 
3665 	i915_ggtt_invalidate(dev_priv);
3666 }
3667 
3668 static struct scatterlist *
3669 rotate_pages(const dma_addr_t *in, unsigned int offset,
3670 	     unsigned int width, unsigned int height,
3671 	     unsigned int stride,
3672 	     struct sg_table *st, struct scatterlist *sg)
3673 {
3674 	unsigned int column, row;
3675 	unsigned int src_idx;
3676 
3677 	for (column = 0; column < width; column++) {
3678 		src_idx = stride * (height - 1) + column;
3679 		for (row = 0; row < height; row++) {
3680 			st->nents++;
3681 			/* We don't need the pages, but need to initialize
3682 			 * the entries so the sg list can be happily traversed.
3683 			 * The only thing we need are DMA addresses.
3684 			 */
3685 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3686 			sg_dma_address(sg) = in[offset + src_idx];
3687 			sg_dma_len(sg) = PAGE_SIZE;
3688 			sg = sg_next(sg);
3689 			src_idx -= stride;
3690 		}
3691 	}
3692 
3693 	return sg;
3694 }
3695 
3696 static noinline struct sg_table *
3697 intel_rotate_pages(struct intel_rotation_info *rot_info,
3698 		   struct drm_i915_gem_object *obj)
3699 {
3700 	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3701 	unsigned int size = intel_rotation_info_size(rot_info);
3702 	struct sgt_iter sgt_iter;
3703 	dma_addr_t dma_addr;
3704 	unsigned long i;
3705 	dma_addr_t *page_addr_list;
3706 	struct sg_table *st;
3707 	struct scatterlist *sg;
3708 	int ret = -ENOMEM;
3709 
3710 	/* Allocate a temporary list of source pages for random access. */
3711 	page_addr_list = kvmalloc_array(n_pages,
3712 					sizeof(dma_addr_t),
3713 					GFP_KERNEL);
3714 	if (!page_addr_list)
3715 		return ERR_PTR(ret);
3716 
3717 	/* Allocate target SG list. */
3718 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3719 	if (!st)
3720 		goto err_st_alloc;
3721 
3722 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3723 	if (ret)
3724 		goto err_sg_alloc;
3725 
3726 	/* Populate source page list from the object. */
3727 	i = 0;
3728 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3729 		page_addr_list[i++] = dma_addr;
3730 
3731 	GEM_BUG_ON(i != n_pages);
3732 	st->nents = 0;
3733 	sg = st->sgl;
3734 
3735 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3736 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3737 				  rot_info->plane[i].width, rot_info->plane[i].height,
3738 				  rot_info->plane[i].stride, st, sg);
3739 	}
3740 
3741 	kvfree(page_addr_list);
3742 
3743 	return st;
3744 
3745 err_sg_alloc:
3746 	kfree(st);
3747 err_st_alloc:
3748 	kvfree(page_addr_list);
3749 
3750 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3751 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3752 
3753 	return ERR_PTR(ret);
3754 }
3755 
3756 static noinline struct sg_table *
3757 intel_partial_pages(const struct i915_ggtt_view *view,
3758 		    struct drm_i915_gem_object *obj)
3759 {
3760 	struct sg_table *st;
3761 	struct scatterlist *sg, *iter;
3762 	unsigned int count = view->partial.size;
3763 	unsigned int offset;
3764 	int ret = -ENOMEM;
3765 
3766 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3767 	if (!st)
3768 		goto err_st_alloc;
3769 
3770 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3771 	if (ret)
3772 		goto err_sg_alloc;
3773 
3774 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3775 	GEM_BUG_ON(!iter);
3776 
3777 	sg = st->sgl;
3778 	st->nents = 0;
3779 	do {
3780 		unsigned int len;
3781 
3782 		len = min(iter->length - (offset << PAGE_SHIFT),
3783 			  count << PAGE_SHIFT);
3784 		sg_set_page(sg, NULL, len, 0);
3785 		sg_dma_address(sg) =
3786 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3787 		sg_dma_len(sg) = len;
3788 
3789 		st->nents++;
3790 		count -= len >> PAGE_SHIFT;
3791 		if (count == 0) {
3792 			sg_mark_end(sg);
3793 			return st;
3794 		}
3795 
3796 		sg = __sg_next(sg);
3797 		iter = __sg_next(iter);
3798 		offset = 0;
3799 	} while (1);
3800 
3801 err_sg_alloc:
3802 	kfree(st);
3803 err_st_alloc:
3804 	return ERR_PTR(ret);
3805 }
3806 
3807 static int
3808 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3809 {
3810 	int ret;
3811 
3812 	/* The vma->pages are only valid within the lifespan of the borrowed
3813 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3814 	 * must be the vma->pages. A simple rule is that vma->pages must only
3815 	 * be accessed when the obj->mm.pages are pinned.
3816 	 */
3817 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3818 
3819 	switch (vma->ggtt_view.type) {
3820 	default:
3821 		GEM_BUG_ON(vma->ggtt_view.type);
3822 		/* fall through */
3823 	case I915_GGTT_VIEW_NORMAL:
3824 		vma->pages = vma->obj->mm.pages;
3825 		return 0;
3826 
3827 	case I915_GGTT_VIEW_ROTATED:
3828 		vma->pages =
3829 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3830 		break;
3831 
3832 	case I915_GGTT_VIEW_PARTIAL:
3833 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3834 		break;
3835 	}
3836 
3837 	ret = 0;
3838 	if (unlikely(IS_ERR(vma->pages))) {
3839 		ret = PTR_ERR(vma->pages);
3840 		vma->pages = NULL;
3841 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3842 			  vma->ggtt_view.type, ret);
3843 	}
3844 	return ret;
3845 }
3846 
3847 /**
3848  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3849  * @vm: the &struct i915_address_space
3850  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3851  * @size: how much space to allocate inside the GTT,
3852  *        must be #I915_GTT_PAGE_SIZE aligned
3853  * @offset: where to insert inside the GTT,
3854  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3855  *          (@offset + @size) must fit within the address space
3856  * @color: color to apply to node, if this node is not from a VMA,
3857  *         color must be #I915_COLOR_UNEVICTABLE
3858  * @flags: control search and eviction behaviour
3859  *
3860  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3861  * the address space (using @size and @color). If the @node does not fit, it
3862  * tries to evict any overlapping nodes from the GTT, including any
3863  * neighbouring nodes if the colors do not match (to ensure guard pages between
3864  * differing domains). See i915_gem_evict_for_node() for the gory details
3865  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3866  * evicting active overlapping objects, and any overlapping node that is pinned
3867  * or marked as unevictable will also result in failure.
3868  *
3869  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3870  * asked to wait for eviction and interrupted.
3871  */
3872 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3873 			 struct drm_mm_node *node,
3874 			 u64 size, u64 offset, unsigned long color,
3875 			 unsigned int flags)
3876 {
3877 	int err;
3878 
3879 	GEM_BUG_ON(!size);
3880 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3881 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3882 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3883 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3884 	GEM_BUG_ON(drm_mm_node_allocated(node));
3885 
3886 	node->size = size;
3887 	node->start = offset;
3888 	node->color = color;
3889 
3890 	err = drm_mm_reserve_node(&vm->mm, node);
3891 	if (err != -ENOSPC)
3892 		return err;
3893 
3894 	if (flags & PIN_NOEVICT)
3895 		return -ENOSPC;
3896 
3897 	err = i915_gem_evict_for_node(vm, node, flags);
3898 	if (err == 0)
3899 		err = drm_mm_reserve_node(&vm->mm, node);
3900 
3901 	return err;
3902 }
3903 
3904 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3905 {
3906 	u64 range, addr;
3907 
3908 	GEM_BUG_ON(range_overflows(start, len, end));
3909 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3910 
3911 	range = round_down(end - len, align) - round_up(start, align);
3912 	if (range) {
3913 		if (sizeof(unsigned long) == sizeof(u64)) {
3914 			addr = get_random_long();
3915 		} else {
3916 			addr = get_random_int();
3917 			if (range > U32_MAX) {
3918 				addr <<= 32;
3919 				addr |= get_random_int();
3920 			}
3921 		}
3922 		div64_u64_rem(addr, range, &addr);
3923 		start += addr;
3924 	}
3925 
3926 	return round_up(start, align);
3927 }
3928 
3929 /**
3930  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3931  * @vm: the &struct i915_address_space
3932  * @node: the &struct drm_mm_node (typically i915_vma.node)
3933  * @size: how much space to allocate inside the GTT,
3934  *        must be #I915_GTT_PAGE_SIZE aligned
3935  * @alignment: required alignment of starting offset, may be 0 but
3936  *             if specified, this must be a power-of-two and at least
3937  *             #I915_GTT_MIN_ALIGNMENT
3938  * @color: color to apply to node
3939  * @start: start of any range restriction inside GTT (0 for all),
3940  *         must be #I915_GTT_PAGE_SIZE aligned
3941  * @end: end of any range restriction inside GTT (U64_MAX for all),
3942  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3943  * @flags: control search and eviction behaviour
3944  *
3945  * i915_gem_gtt_insert() first searches for an available hole into which
3946  * is can insert the node. The hole address is aligned to @alignment and
3947  * its @size must then fit entirely within the [@start, @end] bounds. The
3948  * nodes on either side of the hole must match @color, or else a guard page
3949  * will be inserted between the two nodes (or the node evicted). If no
3950  * suitable hole is found, first a victim is randomly selected and tested
3951  * for eviction, otherwise then the LRU list of objects within the GTT
3952  * is scanned to find the first set of replacement nodes to create the hole.
3953  * Those old overlapping nodes are evicted from the GTT (and so must be
3954  * rebound before any future use). Any node that is currently pinned cannot
3955  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3956  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3957  * searching for an eviction candidate. See i915_gem_evict_something() for
3958  * the gory details on the eviction algorithm.
3959  *
3960  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3961  * asked to wait for eviction and interrupted.
3962  */
3963 int i915_gem_gtt_insert(struct i915_address_space *vm,
3964 			struct drm_mm_node *node,
3965 			u64 size, u64 alignment, unsigned long color,
3966 			u64 start, u64 end, unsigned int flags)
3967 {
3968 	enum drm_mm_insert_mode mode;
3969 	u64 offset;
3970 	int err;
3971 
3972 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3973 	GEM_BUG_ON(!size);
3974 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3975 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3976 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3977 	GEM_BUG_ON(start >= end);
3978 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3979 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3980 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3981 	GEM_BUG_ON(drm_mm_node_allocated(node));
3982 
3983 	if (unlikely(range_overflows(start, size, end)))
3984 		return -ENOSPC;
3985 
3986 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3987 		return -ENOSPC;
3988 
3989 	mode = DRM_MM_INSERT_BEST;
3990 	if (flags & PIN_HIGH)
3991 		mode = DRM_MM_INSERT_HIGH;
3992 	if (flags & PIN_MAPPABLE)
3993 		mode = DRM_MM_INSERT_LOW;
3994 
3995 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3996 	 * so we know that we always have a minimum alignment of 4096.
3997 	 * The drm_mm range manager is optimised to return results
3998 	 * with zero alignment, so where possible use the optimal
3999 	 * path.
4000 	 */
4001 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
4002 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
4003 		alignment = 0;
4004 
4005 	err = drm_mm_insert_node_in_range(&vm->mm, node,
4006 					  size, alignment, color,
4007 					  start, end, mode);
4008 	if (err != -ENOSPC)
4009 		return err;
4010 
4011 	if (flags & PIN_NOEVICT)
4012 		return -ENOSPC;
4013 
4014 	/* No free space, pick a slot at random.
4015 	 *
4016 	 * There is a pathological case here using a GTT shared between
4017 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4018 	 *
4019 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4020 	 *         (64k objects)             (448k objects)
4021 	 *
4022 	 * Now imagine that the eviction LRU is ordered top-down (just because
4023 	 * pathology meets real life), and that we need to evict an object to
4024 	 * make room inside the aperture. The eviction scan then has to walk
4025 	 * the 448k list before it finds one within range. And now imagine that
4026 	 * it has to search for a new hole between every byte inside the memcpy,
4027 	 * for several simultaneous clients.
4028 	 *
4029 	 * On a full-ppgtt system, if we have run out of available space, there
4030 	 * will be lots and lots of objects in the eviction list! Again,
4031 	 * searching that LRU list may be slow if we are also applying any
4032 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
4033 	 * simplicity and similarilty between different GTT, try the single
4034 	 * random replacement first.
4035 	 */
4036 	offset = random_offset(start, end,
4037 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4038 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4039 	if (err != -ENOSPC)
4040 		return err;
4041 
4042 	/* Randomly selected placement is pinned, do a search */
4043 	err = i915_gem_evict_something(vm, size, alignment, color,
4044 				       start, end, flags);
4045 	if (err)
4046 		return err;
4047 
4048 	return drm_mm_insert_node_in_range(&vm->mm, node,
4049 					   size, alignment, color,
4050 					   start, end, DRM_MM_INSERT_EVICT);
4051 }
4052 
4053 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4054 #include "selftests/mock_gtt.c"
4055 #include "selftests/i915_gem_gtt.c"
4056 #endif
4057