xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem_gtt.c (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/*
114 	 * Note that as an uncached mmio write, this will flush the
115 	 * WCB of the writes into the GGTT before it triggers the invalidate.
116 	 */
117 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
118 }
119 
120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
121 {
122 	gen6_ggtt_invalidate(dev_priv);
123 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
124 }
125 
126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
127 {
128 	intel_gtt_chipset_flush();
129 }
130 
131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
132 {
133 	i915->ggtt.invalidate(i915);
134 }
135 
136 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
137 			       	int enable_ppgtt)
138 {
139 	bool has_full_ppgtt;
140 	bool has_full_48bit_ppgtt;
141 
142 	if (!dev_priv->info.has_aliasing_ppgtt)
143 		return 0;
144 
145 	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
146 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147 
148 	if (intel_vgpu_active(dev_priv)) {
149 		/* GVT-g has no support for 32bit ppgtt */
150 		has_full_ppgtt = false;
151 		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152 	}
153 
154 	/*
155 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
156 	 * execlists, the sole mechanism available to submit work.
157 	 */
158 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 		return 0;
160 
161 	if (enable_ppgtt == 1)
162 		return 1;
163 
164 	if (enable_ppgtt == 2 && has_full_ppgtt)
165 		return 2;
166 
167 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
168 		return 3;
169 
170 	/* Disable ppgtt on SNB if VT-d is on. */
171 	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
173 		return 0;
174 	}
175 
176 	/* Early VLV doesn't have this */
177 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
178 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
179 		return 0;
180 	}
181 
182 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
183 		if (has_full_48bit_ppgtt)
184 			return 3;
185 
186 		if (has_full_ppgtt)
187 			return 2;
188 	}
189 
190 	return 1;
191 }
192 
193 static int ppgtt_bind_vma(struct i915_vma *vma,
194 			  enum i915_cache_level cache_level,
195 			  u32 unused)
196 {
197 	u32 pte_flags;
198 	int err;
199 
200 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
201 		err = vma->vm->allocate_va_range(vma->vm,
202 						 vma->node.start, vma->size);
203 		if (err)
204 			return err;
205 	}
206 
207 	/* Applicable to VLV, and gen8+ */
208 	pte_flags = 0;
209 	if (i915_gem_object_is_readonly(vma->obj))
210 		pte_flags |= PTE_READ_ONLY;
211 
212 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
213 
214 	return 0;
215 }
216 
217 static void ppgtt_unbind_vma(struct i915_vma *vma)
218 {
219 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
220 }
221 
222 static int ppgtt_set_pages(struct i915_vma *vma)
223 {
224 	GEM_BUG_ON(vma->pages);
225 
226 	vma->pages = vma->obj->mm.pages;
227 
228 	vma->page_sizes = vma->obj->mm.page_sizes;
229 
230 	return 0;
231 }
232 
233 static void clear_pages(struct i915_vma *vma)
234 {
235 	GEM_BUG_ON(!vma->pages);
236 
237 	if (vma->pages != vma->obj->mm.pages) {
238 		sg_free_table(vma->pages);
239 		kfree(vma->pages);
240 	}
241 	vma->pages = NULL;
242 
243 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
244 }
245 
246 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
247 				  enum i915_cache_level level,
248 				  u32 flags)
249 {
250 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
251 
252 	if (unlikely(flags & PTE_READ_ONLY))
253 		pte &= ~_PAGE_RW;
254 
255 	switch (level) {
256 	case I915_CACHE_NONE:
257 		pte |= PPAT_UNCACHED;
258 		break;
259 	case I915_CACHE_WT:
260 		pte |= PPAT_DISPLAY_ELLC;
261 		break;
262 	default:
263 		pte |= PPAT_CACHED;
264 		break;
265 	}
266 
267 	return pte;
268 }
269 
270 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
271 				  const enum i915_cache_level level)
272 {
273 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
274 	pde |= addr;
275 	if (level != I915_CACHE_NONE)
276 		pde |= PPAT_CACHED_PDE;
277 	else
278 		pde |= PPAT_UNCACHED;
279 	return pde;
280 }
281 
282 #define gen8_pdpe_encode gen8_pde_encode
283 #define gen8_pml4e_encode gen8_pde_encode
284 
285 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
286 				 enum i915_cache_level level,
287 				 u32 unused)
288 {
289 	gen6_pte_t pte = GEN6_PTE_VALID;
290 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
291 
292 	switch (level) {
293 	case I915_CACHE_L3_LLC:
294 	case I915_CACHE_LLC:
295 		pte |= GEN6_PTE_CACHE_LLC;
296 		break;
297 	case I915_CACHE_NONE:
298 		pte |= GEN6_PTE_UNCACHED;
299 		break;
300 	default:
301 		MISSING_CASE(level);
302 	}
303 
304 	return pte;
305 }
306 
307 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
308 				 enum i915_cache_level level,
309 				 u32 unused)
310 {
311 	gen6_pte_t pte = GEN6_PTE_VALID;
312 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
313 
314 	switch (level) {
315 	case I915_CACHE_L3_LLC:
316 		pte |= GEN7_PTE_CACHE_L3_LLC;
317 		break;
318 	case I915_CACHE_LLC:
319 		pte |= GEN6_PTE_CACHE_LLC;
320 		break;
321 	case I915_CACHE_NONE:
322 		pte |= GEN6_PTE_UNCACHED;
323 		break;
324 	default:
325 		MISSING_CASE(level);
326 	}
327 
328 	return pte;
329 }
330 
331 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
332 				 enum i915_cache_level level,
333 				 u32 flags)
334 {
335 	gen6_pte_t pte = GEN6_PTE_VALID;
336 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
337 
338 	if (!(flags & PTE_READ_ONLY))
339 		pte |= BYT_PTE_WRITEABLE;
340 
341 	if (level != I915_CACHE_NONE)
342 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
343 
344 	return pte;
345 }
346 
347 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
348 				 enum i915_cache_level level,
349 				 u32 unused)
350 {
351 	gen6_pte_t pte = GEN6_PTE_VALID;
352 	pte |= HSW_PTE_ADDR_ENCODE(addr);
353 
354 	if (level != I915_CACHE_NONE)
355 		pte |= HSW_WB_LLC_AGE3;
356 
357 	return pte;
358 }
359 
360 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
361 				  enum i915_cache_level level,
362 				  u32 unused)
363 {
364 	gen6_pte_t pte = GEN6_PTE_VALID;
365 	pte |= HSW_PTE_ADDR_ENCODE(addr);
366 
367 	switch (level) {
368 	case I915_CACHE_NONE:
369 		break;
370 	case I915_CACHE_WT:
371 		pte |= HSW_WT_ELLC_LLC_AGE3;
372 		break;
373 	default:
374 		pte |= HSW_WB_ELLC_LLC_AGE3;
375 		break;
376 	}
377 
378 	return pte;
379 }
380 
381 static void stash_init(struct pagestash *stash)
382 {
383 	pagevec_init(&stash->pvec);
384 	spin_lock_init(&stash->lock);
385 }
386 
387 static struct page *stash_pop_page(struct pagestash *stash)
388 {
389 	struct page *page = NULL;
390 
391 	spin_lock(&stash->lock);
392 	if (likely(stash->pvec.nr))
393 		page = stash->pvec.pages[--stash->pvec.nr];
394 	spin_unlock(&stash->lock);
395 
396 	return page;
397 }
398 
399 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
400 {
401 	int nr;
402 
403 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
404 
405 	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
406 	memcpy(stash->pvec.pages + stash->pvec.nr,
407 	       pvec->pages + pvec->nr - nr,
408 	       sizeof(pvec->pages[0]) * nr);
409 	stash->pvec.nr += nr;
410 
411 	spin_unlock(&stash->lock);
412 
413 	pvec->nr -= nr;
414 }
415 
416 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
417 {
418 	struct pagevec stack;
419 	struct page *page;
420 
421 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
422 		i915_gem_shrink_all(vm->i915);
423 
424 	page = stash_pop_page(&vm->free_pages);
425 	if (page)
426 		return page;
427 
428 	if (!vm->pt_kmap_wc)
429 		return alloc_page(gfp);
430 
431 	/* Look in our global stash of WC pages... */
432 	page = stash_pop_page(&vm->i915->mm.wc_stash);
433 	if (page)
434 		return page;
435 
436 	/*
437 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
438 	 *
439 	 * We have to be careful as page allocation may trigger the shrinker
440 	 * (via direct reclaim) which will fill up the WC stash underneath us.
441 	 * So we add our WB pages into a temporary pvec on the stack and merge
442 	 * them into the WC stash after all the allocations are complete.
443 	 */
444 	pagevec_init(&stack);
445 	do {
446 		struct page *page;
447 
448 		page = alloc_page(gfp);
449 		if (unlikely(!page))
450 			break;
451 
452 		stack.pages[stack.nr++] = page;
453 	} while (pagevec_space(&stack));
454 
455 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
456 		page = stack.pages[--stack.nr];
457 
458 		/* Merge spare WC pages to the global stash */
459 		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
460 
461 		/* Push any surplus WC pages onto the local VM stash */
462 		if (stack.nr)
463 			stash_push_pagevec(&vm->free_pages, &stack);
464 	}
465 
466 	/* Return unwanted leftovers */
467 	if (unlikely(stack.nr)) {
468 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
469 		__pagevec_release(&stack);
470 	}
471 
472 	return page;
473 }
474 
475 static void vm_free_pages_release(struct i915_address_space *vm,
476 				  bool immediate)
477 {
478 	struct pagevec *pvec = &vm->free_pages.pvec;
479 	struct pagevec stack;
480 
481 	lockdep_assert_held(&vm->free_pages.lock);
482 	GEM_BUG_ON(!pagevec_count(pvec));
483 
484 	if (vm->pt_kmap_wc) {
485 		/*
486 		 * When we use WC, first fill up the global stash and then
487 		 * only if full immediately free the overflow.
488 		 */
489 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
490 
491 		/*
492 		 * As we have made some room in the VM's free_pages,
493 		 * we can wait for it to fill again. Unless we are
494 		 * inside i915_address_space_fini() and must
495 		 * immediately release the pages!
496 		 */
497 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
498 			return;
499 
500 		/*
501 		 * We have to drop the lock to allow ourselves to sleep,
502 		 * so take a copy of the pvec and clear the stash for
503 		 * others to use it as we sleep.
504 		 */
505 		stack = *pvec;
506 		pagevec_reinit(pvec);
507 		spin_unlock(&vm->free_pages.lock);
508 
509 		pvec = &stack;
510 		set_pages_array_wb(pvec->pages, pvec->nr);
511 
512 		spin_lock(&vm->free_pages.lock);
513 	}
514 
515 	__pagevec_release(pvec);
516 }
517 
518 static void vm_free_page(struct i915_address_space *vm, struct page *page)
519 {
520 	/*
521 	 * On !llc, we need to change the pages back to WB. We only do so
522 	 * in bulk, so we rarely need to change the page attributes here,
523 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
524 	 * To make detection of the possible sleep more likely, use an
525 	 * unconditional might_sleep() for everybody.
526 	 */
527 	might_sleep();
528 	spin_lock(&vm->free_pages.lock);
529 	if (!pagevec_add(&vm->free_pages.pvec, page))
530 		vm_free_pages_release(vm, false);
531 	spin_unlock(&vm->free_pages.lock);
532 }
533 
534 static void i915_address_space_init(struct i915_address_space *vm,
535 				    struct drm_i915_private *dev_priv)
536 {
537 	/*
538 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
539 	 * Do a dummy acquire now under fs_reclaim so that any allocation
540 	 * attempt holding the lock is immediately reported by lockdep.
541 	 */
542 	mutex_init(&vm->mutex);
543 	i915_gem_shrinker_taints_mutex(&vm->mutex);
544 
545 	GEM_BUG_ON(!vm->total);
546 	drm_mm_init(&vm->mm, 0, vm->total);
547 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
548 
549 	stash_init(&vm->free_pages);
550 
551 	INIT_LIST_HEAD(&vm->active_list);
552 	INIT_LIST_HEAD(&vm->inactive_list);
553 	INIT_LIST_HEAD(&vm->unbound_list);
554 }
555 
556 static void i915_address_space_fini(struct i915_address_space *vm)
557 {
558 	spin_lock(&vm->free_pages.lock);
559 	if (pagevec_count(&vm->free_pages.pvec))
560 		vm_free_pages_release(vm, true);
561 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
562 	spin_unlock(&vm->free_pages.lock);
563 
564 	drm_mm_takedown(&vm->mm);
565 
566 	mutex_destroy(&vm->mutex);
567 }
568 
569 static int __setup_page_dma(struct i915_address_space *vm,
570 			    struct i915_page_dma *p,
571 			    gfp_t gfp)
572 {
573 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
574 	if (unlikely(!p->page))
575 		return -ENOMEM;
576 
577 	p->daddr = dma_map_page_attrs(vm->dma,
578 				      p->page, 0, PAGE_SIZE,
579 				      PCI_DMA_BIDIRECTIONAL,
580 				      DMA_ATTR_SKIP_CPU_SYNC |
581 				      DMA_ATTR_NO_WARN);
582 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
583 		vm_free_page(vm, p->page);
584 		return -ENOMEM;
585 	}
586 
587 	return 0;
588 }
589 
590 static int setup_page_dma(struct i915_address_space *vm,
591 			  struct i915_page_dma *p)
592 {
593 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
594 }
595 
596 static void cleanup_page_dma(struct i915_address_space *vm,
597 			     struct i915_page_dma *p)
598 {
599 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
600 	vm_free_page(vm, p->page);
601 }
602 
603 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
604 
605 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
606 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
607 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
608 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
609 
610 static void fill_page_dma(struct i915_address_space *vm,
611 			  struct i915_page_dma *p,
612 			  const u64 val)
613 {
614 	u64 * const vaddr = kmap_atomic(p->page);
615 
616 	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
617 
618 	kunmap_atomic(vaddr);
619 }
620 
621 static void fill_page_dma_32(struct i915_address_space *vm,
622 			     struct i915_page_dma *p,
623 			     const u32 v)
624 {
625 	fill_page_dma(vm, p, (u64)v << 32 | v);
626 }
627 
628 static int
629 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
630 {
631 	unsigned long size;
632 
633 	/*
634 	 * In order to utilize 64K pages for an object with a size < 2M, we will
635 	 * need to support a 64K scratch page, given that every 16th entry for a
636 	 * page-table operating in 64K mode must point to a properly aligned 64K
637 	 * region, including any PTEs which happen to point to scratch.
638 	 *
639 	 * This is only relevant for the 48b PPGTT where we support
640 	 * huge-gtt-pages, see also i915_vma_insert().
641 	 *
642 	 * TODO: we should really consider write-protecting the scratch-page and
643 	 * sharing between ppgtt
644 	 */
645 	size = I915_GTT_PAGE_SIZE_4K;
646 	if (i915_vm_is_48bit(vm) &&
647 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
648 		size = I915_GTT_PAGE_SIZE_64K;
649 		gfp |= __GFP_NOWARN;
650 	}
651 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
652 
653 	do {
654 		int order = get_order(size);
655 		struct page *page;
656 		dma_addr_t addr;
657 
658 		page = alloc_pages(gfp, order);
659 		if (unlikely(!page))
660 			goto skip;
661 
662 		addr = dma_map_page_attrs(vm->dma,
663 					  page, 0, size,
664 					  PCI_DMA_BIDIRECTIONAL,
665 					  DMA_ATTR_SKIP_CPU_SYNC |
666 					  DMA_ATTR_NO_WARN);
667 		if (unlikely(dma_mapping_error(vm->dma, addr)))
668 			goto free_page;
669 
670 		if (unlikely(!IS_ALIGNED(addr, size)))
671 			goto unmap_page;
672 
673 		vm->scratch_page.page = page;
674 		vm->scratch_page.daddr = addr;
675 		vm->scratch_page.order = order;
676 		return 0;
677 
678 unmap_page:
679 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
680 free_page:
681 		__free_pages(page, order);
682 skip:
683 		if (size == I915_GTT_PAGE_SIZE_4K)
684 			return -ENOMEM;
685 
686 		size = I915_GTT_PAGE_SIZE_4K;
687 		gfp &= ~__GFP_NOWARN;
688 	} while (1);
689 }
690 
691 static void cleanup_scratch_page(struct i915_address_space *vm)
692 {
693 	struct i915_page_dma *p = &vm->scratch_page;
694 
695 	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
696 		       PCI_DMA_BIDIRECTIONAL);
697 	__free_pages(p->page, p->order);
698 }
699 
700 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
701 {
702 	struct i915_page_table *pt;
703 
704 	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
705 	if (unlikely(!pt))
706 		return ERR_PTR(-ENOMEM);
707 
708 	if (unlikely(setup_px(vm, pt))) {
709 		kfree(pt);
710 		return ERR_PTR(-ENOMEM);
711 	}
712 
713 	pt->used_ptes = 0;
714 	return pt;
715 }
716 
717 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
718 {
719 	cleanup_px(vm, pt);
720 	kfree(pt);
721 }
722 
723 static void gen8_initialize_pt(struct i915_address_space *vm,
724 			       struct i915_page_table *pt)
725 {
726 	fill_px(vm, pt,
727 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
728 }
729 
730 static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
731 			       struct i915_page_table *pt)
732 {
733 	fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
734 }
735 
736 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
737 {
738 	struct i915_page_directory *pd;
739 
740 	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
741 	if (unlikely(!pd))
742 		return ERR_PTR(-ENOMEM);
743 
744 	if (unlikely(setup_px(vm, pd))) {
745 		kfree(pd);
746 		return ERR_PTR(-ENOMEM);
747 	}
748 
749 	pd->used_pdes = 0;
750 	return pd;
751 }
752 
753 static void free_pd(struct i915_address_space *vm,
754 		    struct i915_page_directory *pd)
755 {
756 	cleanup_px(vm, pd);
757 	kfree(pd);
758 }
759 
760 static void gen8_initialize_pd(struct i915_address_space *vm,
761 			       struct i915_page_directory *pd)
762 {
763 	fill_px(vm, pd,
764 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
765 	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
766 }
767 
768 static int __pdp_init(struct i915_address_space *vm,
769 		      struct i915_page_directory_pointer *pdp)
770 {
771 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
772 
773 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
774 					    I915_GFP_ALLOW_FAIL);
775 	if (unlikely(!pdp->page_directory))
776 		return -ENOMEM;
777 
778 	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
779 
780 	return 0;
781 }
782 
783 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
784 {
785 	kfree(pdp->page_directory);
786 	pdp->page_directory = NULL;
787 }
788 
789 static inline bool use_4lvl(const struct i915_address_space *vm)
790 {
791 	return i915_vm_is_48bit(vm);
792 }
793 
794 static struct i915_page_directory_pointer *
795 alloc_pdp(struct i915_address_space *vm)
796 {
797 	struct i915_page_directory_pointer *pdp;
798 	int ret = -ENOMEM;
799 
800 	GEM_BUG_ON(!use_4lvl(vm));
801 
802 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
803 	if (!pdp)
804 		return ERR_PTR(-ENOMEM);
805 
806 	ret = __pdp_init(vm, pdp);
807 	if (ret)
808 		goto fail_bitmap;
809 
810 	ret = setup_px(vm, pdp);
811 	if (ret)
812 		goto fail_page_m;
813 
814 	return pdp;
815 
816 fail_page_m:
817 	__pdp_fini(pdp);
818 fail_bitmap:
819 	kfree(pdp);
820 
821 	return ERR_PTR(ret);
822 }
823 
824 static void free_pdp(struct i915_address_space *vm,
825 		     struct i915_page_directory_pointer *pdp)
826 {
827 	__pdp_fini(pdp);
828 
829 	if (!use_4lvl(vm))
830 		return;
831 
832 	cleanup_px(vm, pdp);
833 	kfree(pdp);
834 }
835 
836 static void gen8_initialize_pdp(struct i915_address_space *vm,
837 				struct i915_page_directory_pointer *pdp)
838 {
839 	gen8_ppgtt_pdpe_t scratch_pdpe;
840 
841 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
842 
843 	fill_px(vm, pdp, scratch_pdpe);
844 }
845 
846 static void gen8_initialize_pml4(struct i915_address_space *vm,
847 				 struct i915_pml4 *pml4)
848 {
849 	fill_px(vm, pml4,
850 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
851 	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
852 }
853 
854 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
855  * the page table structures, we mark them dirty so that
856  * context switching/execlist queuing code takes extra steps
857  * to ensure that tlbs are flushed.
858  */
859 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
860 {
861 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
862 }
863 
864 /* Removes entries from a single page table, releasing it if it's empty.
865  * Caller can use the return value to update higher-level entries.
866  */
867 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
868 				struct i915_page_table *pt,
869 				u64 start, u64 length)
870 {
871 	unsigned int num_entries = gen8_pte_count(start, length);
872 	unsigned int pte = gen8_pte_index(start);
873 	unsigned int pte_end = pte + num_entries;
874 	const gen8_pte_t scratch_pte =
875 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
876 	gen8_pte_t *vaddr;
877 
878 	GEM_BUG_ON(num_entries > pt->used_ptes);
879 
880 	pt->used_ptes -= num_entries;
881 	if (!pt->used_ptes)
882 		return true;
883 
884 	vaddr = kmap_atomic_px(pt);
885 	while (pte < pte_end)
886 		vaddr[pte++] = scratch_pte;
887 	kunmap_atomic(vaddr);
888 
889 	return false;
890 }
891 
892 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
893 			       struct i915_page_directory *pd,
894 			       struct i915_page_table *pt,
895 			       unsigned int pde)
896 {
897 	gen8_pde_t *vaddr;
898 
899 	pd->page_table[pde] = pt;
900 
901 	vaddr = kmap_atomic_px(pd);
902 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
903 	kunmap_atomic(vaddr);
904 }
905 
906 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
907 				struct i915_page_directory *pd,
908 				u64 start, u64 length)
909 {
910 	struct i915_page_table *pt;
911 	u32 pde;
912 
913 	gen8_for_each_pde(pt, pd, start, length, pde) {
914 		GEM_BUG_ON(pt == vm->scratch_pt);
915 
916 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
917 			continue;
918 
919 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
920 		GEM_BUG_ON(!pd->used_pdes);
921 		pd->used_pdes--;
922 
923 		free_pt(vm, pt);
924 	}
925 
926 	return !pd->used_pdes;
927 }
928 
929 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
930 				struct i915_page_directory_pointer *pdp,
931 				struct i915_page_directory *pd,
932 				unsigned int pdpe)
933 {
934 	gen8_ppgtt_pdpe_t *vaddr;
935 
936 	pdp->page_directory[pdpe] = pd;
937 	if (!use_4lvl(vm))
938 		return;
939 
940 	vaddr = kmap_atomic_px(pdp);
941 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
942 	kunmap_atomic(vaddr);
943 }
944 
945 /* Removes entries from a single page dir pointer, releasing it if it's empty.
946  * Caller can use the return value to update higher-level entries
947  */
948 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
949 				 struct i915_page_directory_pointer *pdp,
950 				 u64 start, u64 length)
951 {
952 	struct i915_page_directory *pd;
953 	unsigned int pdpe;
954 
955 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
956 		GEM_BUG_ON(pd == vm->scratch_pd);
957 
958 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
959 			continue;
960 
961 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
962 		GEM_BUG_ON(!pdp->used_pdpes);
963 		pdp->used_pdpes--;
964 
965 		free_pd(vm, pd);
966 	}
967 
968 	return !pdp->used_pdpes;
969 }
970 
971 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
972 				  u64 start, u64 length)
973 {
974 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
975 }
976 
977 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
978 				 struct i915_page_directory_pointer *pdp,
979 				 unsigned int pml4e)
980 {
981 	gen8_ppgtt_pml4e_t *vaddr;
982 
983 	pml4->pdps[pml4e] = pdp;
984 
985 	vaddr = kmap_atomic_px(pml4);
986 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
987 	kunmap_atomic(vaddr);
988 }
989 
990 /* Removes entries from a single pml4.
991  * This is the top-level structure in 4-level page tables used on gen8+.
992  * Empty entries are always scratch pml4e.
993  */
994 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
995 				  u64 start, u64 length)
996 {
997 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
998 	struct i915_pml4 *pml4 = &ppgtt->pml4;
999 	struct i915_page_directory_pointer *pdp;
1000 	unsigned int pml4e;
1001 
1002 	GEM_BUG_ON(!use_4lvl(vm));
1003 
1004 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1005 		GEM_BUG_ON(pdp == vm->scratch_pdp);
1006 
1007 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
1008 			continue;
1009 
1010 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1011 
1012 		free_pdp(vm, pdp);
1013 	}
1014 }
1015 
1016 static inline struct sgt_dma {
1017 	struct scatterlist *sg;
1018 	dma_addr_t dma, max;
1019 } sgt_dma(struct i915_vma *vma) {
1020 	struct scatterlist *sg = vma->pages->sgl;
1021 	dma_addr_t addr = sg_dma_address(sg);
1022 	return (struct sgt_dma) { sg, addr, addr + sg->length };
1023 }
1024 
1025 struct gen8_insert_pte {
1026 	u16 pml4e;
1027 	u16 pdpe;
1028 	u16 pde;
1029 	u16 pte;
1030 };
1031 
1032 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
1033 {
1034 	return (struct gen8_insert_pte) {
1035 		 gen8_pml4e_index(start),
1036 		 gen8_pdpe_index(start),
1037 		 gen8_pde_index(start),
1038 		 gen8_pte_index(start),
1039 	};
1040 }
1041 
1042 static __always_inline bool
1043 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1044 			      struct i915_page_directory_pointer *pdp,
1045 			      struct sgt_dma *iter,
1046 			      struct gen8_insert_pte *idx,
1047 			      enum i915_cache_level cache_level,
1048 			      u32 flags)
1049 {
1050 	struct i915_page_directory *pd;
1051 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1052 	gen8_pte_t *vaddr;
1053 	bool ret;
1054 
1055 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1056 	pd = pdp->page_directory[idx->pdpe];
1057 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1058 	do {
1059 		vaddr[idx->pte] = pte_encode | iter->dma;
1060 
1061 		iter->dma += PAGE_SIZE;
1062 		if (iter->dma >= iter->max) {
1063 			iter->sg = __sg_next(iter->sg);
1064 			if (!iter->sg) {
1065 				ret = false;
1066 				break;
1067 			}
1068 
1069 			iter->dma = sg_dma_address(iter->sg);
1070 			iter->max = iter->dma + iter->sg->length;
1071 		}
1072 
1073 		if (++idx->pte == GEN8_PTES) {
1074 			idx->pte = 0;
1075 
1076 			if (++idx->pde == I915_PDES) {
1077 				idx->pde = 0;
1078 
1079 				/* Limited by sg length for 3lvl */
1080 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1081 					idx->pdpe = 0;
1082 					ret = true;
1083 					break;
1084 				}
1085 
1086 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1087 				pd = pdp->page_directory[idx->pdpe];
1088 			}
1089 
1090 			kunmap_atomic(vaddr);
1091 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1092 		}
1093 	} while (1);
1094 	kunmap_atomic(vaddr);
1095 
1096 	return ret;
1097 }
1098 
1099 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1100 				   struct i915_vma *vma,
1101 				   enum i915_cache_level cache_level,
1102 				   u32 flags)
1103 {
1104 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1105 	struct sgt_dma iter = sgt_dma(vma);
1106 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1107 
1108 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1109 				      cache_level, flags);
1110 
1111 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1112 }
1113 
1114 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1115 					   struct i915_page_directory_pointer **pdps,
1116 					   struct sgt_dma *iter,
1117 					   enum i915_cache_level cache_level,
1118 					   u32 flags)
1119 {
1120 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1121 	u64 start = vma->node.start;
1122 	dma_addr_t rem = iter->sg->length;
1123 
1124 	do {
1125 		struct gen8_insert_pte idx = gen8_insert_pte(start);
1126 		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1127 		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1128 		unsigned int page_size;
1129 		bool maybe_64K = false;
1130 		gen8_pte_t encode = pte_encode;
1131 		gen8_pte_t *vaddr;
1132 		u16 index, max;
1133 
1134 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1135 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1136 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1137 			index = idx.pde;
1138 			max = I915_PDES;
1139 			page_size = I915_GTT_PAGE_SIZE_2M;
1140 
1141 			encode |= GEN8_PDE_PS_2M;
1142 
1143 			vaddr = kmap_atomic_px(pd);
1144 		} else {
1145 			struct i915_page_table *pt = pd->page_table[idx.pde];
1146 
1147 			index = idx.pte;
1148 			max = GEN8_PTES;
1149 			page_size = I915_GTT_PAGE_SIZE;
1150 
1151 			if (!index &&
1152 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1153 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1154 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1155 			     rem >= (max - index) << PAGE_SHIFT))
1156 				maybe_64K = true;
1157 
1158 			vaddr = kmap_atomic_px(pt);
1159 		}
1160 
1161 		do {
1162 			GEM_BUG_ON(iter->sg->length < page_size);
1163 			vaddr[index++] = encode | iter->dma;
1164 
1165 			start += page_size;
1166 			iter->dma += page_size;
1167 			rem -= page_size;
1168 			if (iter->dma >= iter->max) {
1169 				iter->sg = __sg_next(iter->sg);
1170 				if (!iter->sg)
1171 					break;
1172 
1173 				rem = iter->sg->length;
1174 				iter->dma = sg_dma_address(iter->sg);
1175 				iter->max = iter->dma + rem;
1176 
1177 				if (maybe_64K && index < max &&
1178 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1179 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1180 				       rem >= (max - index) << PAGE_SHIFT)))
1181 					maybe_64K = false;
1182 
1183 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1184 					break;
1185 			}
1186 		} while (rem >= page_size && index < max);
1187 
1188 		kunmap_atomic(vaddr);
1189 
1190 		/*
1191 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1192 		 * filled whole page-table with 64K entries, or filled part of
1193 		 * it and have reached the end of the sg table and we have
1194 		 * enough padding.
1195 		 */
1196 		if (maybe_64K &&
1197 		    (index == max ||
1198 		     (i915_vm_has_scratch_64K(vma->vm) &&
1199 		      !iter->sg && IS_ALIGNED(vma->node.start +
1200 					      vma->node.size,
1201 					      I915_GTT_PAGE_SIZE_2M)))) {
1202 			vaddr = kmap_atomic_px(pd);
1203 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1204 			kunmap_atomic(vaddr);
1205 			page_size = I915_GTT_PAGE_SIZE_64K;
1206 
1207 			/*
1208 			 * We write all 4K page entries, even when using 64K
1209 			 * pages. In order to verify that the HW isn't cheating
1210 			 * by using the 4K PTE instead of the 64K PTE, we want
1211 			 * to remove all the surplus entries. If the HW skipped
1212 			 * the 64K PTE, it will read/write into the scratch page
1213 			 * instead - which we detect as missing results during
1214 			 * selftests.
1215 			 */
1216 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1217 				u16 i;
1218 
1219 				encode = pte_encode | vma->vm->scratch_page.daddr;
1220 				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1221 
1222 				for (i = 1; i < index; i += 16)
1223 					memset64(vaddr + i, encode, 15);
1224 
1225 				kunmap_atomic(vaddr);
1226 			}
1227 		}
1228 
1229 		vma->page_sizes.gtt |= page_size;
1230 	} while (iter->sg);
1231 }
1232 
1233 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1234 				   struct i915_vma *vma,
1235 				   enum i915_cache_level cache_level,
1236 				   u32 flags)
1237 {
1238 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1239 	struct sgt_dma iter = sgt_dma(vma);
1240 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1241 
1242 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1243 		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
1244 					       flags);
1245 	} else {
1246 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1247 
1248 		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1249 						     &iter, &idx, cache_level,
1250 						     flags))
1251 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1252 
1253 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1254 	}
1255 }
1256 
1257 static void gen8_free_page_tables(struct i915_address_space *vm,
1258 				  struct i915_page_directory *pd)
1259 {
1260 	int i;
1261 
1262 	if (!px_page(pd))
1263 		return;
1264 
1265 	for (i = 0; i < I915_PDES; i++) {
1266 		if (pd->page_table[i] != vm->scratch_pt)
1267 			free_pt(vm, pd->page_table[i]);
1268 	}
1269 }
1270 
1271 static int gen8_init_scratch(struct i915_address_space *vm)
1272 {
1273 	int ret;
1274 
1275 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1276 	if (ret)
1277 		return ret;
1278 
1279 	vm->scratch_pt = alloc_pt(vm);
1280 	if (IS_ERR(vm->scratch_pt)) {
1281 		ret = PTR_ERR(vm->scratch_pt);
1282 		goto free_scratch_page;
1283 	}
1284 
1285 	vm->scratch_pd = alloc_pd(vm);
1286 	if (IS_ERR(vm->scratch_pd)) {
1287 		ret = PTR_ERR(vm->scratch_pd);
1288 		goto free_pt;
1289 	}
1290 
1291 	if (use_4lvl(vm)) {
1292 		vm->scratch_pdp = alloc_pdp(vm);
1293 		if (IS_ERR(vm->scratch_pdp)) {
1294 			ret = PTR_ERR(vm->scratch_pdp);
1295 			goto free_pd;
1296 		}
1297 	}
1298 
1299 	gen8_initialize_pt(vm, vm->scratch_pt);
1300 	gen8_initialize_pd(vm, vm->scratch_pd);
1301 	if (use_4lvl(vm))
1302 		gen8_initialize_pdp(vm, vm->scratch_pdp);
1303 
1304 	return 0;
1305 
1306 free_pd:
1307 	free_pd(vm, vm->scratch_pd);
1308 free_pt:
1309 	free_pt(vm, vm->scratch_pt);
1310 free_scratch_page:
1311 	cleanup_scratch_page(vm);
1312 
1313 	return ret;
1314 }
1315 
1316 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1317 {
1318 	struct i915_address_space *vm = &ppgtt->vm;
1319 	struct drm_i915_private *dev_priv = vm->i915;
1320 	enum vgt_g2v_type msg;
1321 	int i;
1322 
1323 	if (use_4lvl(vm)) {
1324 		const u64 daddr = px_dma(&ppgtt->pml4);
1325 
1326 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1327 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1328 
1329 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1330 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1331 	} else {
1332 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1333 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1334 
1335 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1336 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1337 		}
1338 
1339 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1340 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1341 	}
1342 
1343 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1344 
1345 	return 0;
1346 }
1347 
1348 static void gen8_free_scratch(struct i915_address_space *vm)
1349 {
1350 	if (use_4lvl(vm))
1351 		free_pdp(vm, vm->scratch_pdp);
1352 	free_pd(vm, vm->scratch_pd);
1353 	free_pt(vm, vm->scratch_pt);
1354 	cleanup_scratch_page(vm);
1355 }
1356 
1357 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1358 				    struct i915_page_directory_pointer *pdp)
1359 {
1360 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1361 	int i;
1362 
1363 	for (i = 0; i < pdpes; i++) {
1364 		if (pdp->page_directory[i] == vm->scratch_pd)
1365 			continue;
1366 
1367 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1368 		free_pd(vm, pdp->page_directory[i]);
1369 	}
1370 
1371 	free_pdp(vm, pdp);
1372 }
1373 
1374 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1375 {
1376 	int i;
1377 
1378 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1379 		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1380 			continue;
1381 
1382 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1383 	}
1384 
1385 	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1386 }
1387 
1388 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1389 {
1390 	struct drm_i915_private *dev_priv = vm->i915;
1391 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1392 
1393 	if (intel_vgpu_active(dev_priv))
1394 		gen8_ppgtt_notify_vgt(ppgtt, false);
1395 
1396 	if (use_4lvl(vm))
1397 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1398 	else
1399 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1400 
1401 	gen8_free_scratch(vm);
1402 }
1403 
1404 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1405 			       struct i915_page_directory *pd,
1406 			       u64 start, u64 length)
1407 {
1408 	struct i915_page_table *pt;
1409 	u64 from = start;
1410 	unsigned int pde;
1411 
1412 	gen8_for_each_pde(pt, pd, start, length, pde) {
1413 		int count = gen8_pte_count(start, length);
1414 
1415 		if (pt == vm->scratch_pt) {
1416 			pd->used_pdes++;
1417 
1418 			pt = alloc_pt(vm);
1419 			if (IS_ERR(pt)) {
1420 				pd->used_pdes--;
1421 				goto unwind;
1422 			}
1423 
1424 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1425 				gen8_initialize_pt(vm, pt);
1426 
1427 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1428 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1429 		}
1430 
1431 		pt->used_ptes += count;
1432 	}
1433 	return 0;
1434 
1435 unwind:
1436 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1437 	return -ENOMEM;
1438 }
1439 
1440 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1441 				struct i915_page_directory_pointer *pdp,
1442 				u64 start, u64 length)
1443 {
1444 	struct i915_page_directory *pd;
1445 	u64 from = start;
1446 	unsigned int pdpe;
1447 	int ret;
1448 
1449 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1450 		if (pd == vm->scratch_pd) {
1451 			pdp->used_pdpes++;
1452 
1453 			pd = alloc_pd(vm);
1454 			if (IS_ERR(pd)) {
1455 				pdp->used_pdpes--;
1456 				goto unwind;
1457 			}
1458 
1459 			gen8_initialize_pd(vm, pd);
1460 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1461 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1462 
1463 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1464 		}
1465 
1466 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1467 		if (unlikely(ret))
1468 			goto unwind_pd;
1469 	}
1470 
1471 	return 0;
1472 
1473 unwind_pd:
1474 	if (!pd->used_pdes) {
1475 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1476 		GEM_BUG_ON(!pdp->used_pdpes);
1477 		pdp->used_pdpes--;
1478 		free_pd(vm, pd);
1479 	}
1480 unwind:
1481 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1482 	return -ENOMEM;
1483 }
1484 
1485 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1486 				 u64 start, u64 length)
1487 {
1488 	return gen8_ppgtt_alloc_pdp(vm,
1489 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1490 }
1491 
1492 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1493 				 u64 start, u64 length)
1494 {
1495 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1496 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1497 	struct i915_page_directory_pointer *pdp;
1498 	u64 from = start;
1499 	u32 pml4e;
1500 	int ret;
1501 
1502 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1503 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1504 			pdp = alloc_pdp(vm);
1505 			if (IS_ERR(pdp))
1506 				goto unwind;
1507 
1508 			gen8_initialize_pdp(vm, pdp);
1509 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1510 		}
1511 
1512 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1513 		if (unlikely(ret))
1514 			goto unwind_pdp;
1515 	}
1516 
1517 	return 0;
1518 
1519 unwind_pdp:
1520 	if (!pdp->used_pdpes) {
1521 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1522 		free_pdp(vm, pdp);
1523 	}
1524 unwind:
1525 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1526 	return -ENOMEM;
1527 }
1528 
1529 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1530 			  struct i915_page_directory_pointer *pdp,
1531 			  u64 start, u64 length,
1532 			  gen8_pte_t scratch_pte,
1533 			  struct seq_file *m)
1534 {
1535 	struct i915_address_space *vm = &ppgtt->vm;
1536 	struct i915_page_directory *pd;
1537 	u32 pdpe;
1538 
1539 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1540 		struct i915_page_table *pt;
1541 		u64 pd_len = length;
1542 		u64 pd_start = start;
1543 		u32 pde;
1544 
1545 		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1546 			continue;
1547 
1548 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1549 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1550 			u32 pte;
1551 			gen8_pte_t *pt_vaddr;
1552 
1553 			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1554 				continue;
1555 
1556 			pt_vaddr = kmap_atomic_px(pt);
1557 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1558 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1559 					  pde << GEN8_PDE_SHIFT |
1560 					  pte << GEN8_PTE_SHIFT);
1561 				int i;
1562 				bool found = false;
1563 
1564 				for (i = 0; i < 4; i++)
1565 					if (pt_vaddr[pte + i] != scratch_pte)
1566 						found = true;
1567 				if (!found)
1568 					continue;
1569 
1570 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1571 				for (i = 0; i < 4; i++) {
1572 					if (pt_vaddr[pte + i] != scratch_pte)
1573 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1574 					else
1575 						seq_puts(m, "  SCRATCH ");
1576 				}
1577 				seq_puts(m, "\n");
1578 			}
1579 			kunmap_atomic(pt_vaddr);
1580 		}
1581 	}
1582 }
1583 
1584 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1585 {
1586 	struct i915_address_space *vm = &ppgtt->vm;
1587 	const gen8_pte_t scratch_pte =
1588 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1589 	u64 start = 0, length = ppgtt->vm.total;
1590 
1591 	if (use_4lvl(vm)) {
1592 		u64 pml4e;
1593 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1594 		struct i915_page_directory_pointer *pdp;
1595 
1596 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1597 			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1598 				continue;
1599 
1600 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1601 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1602 		}
1603 	} else {
1604 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1605 	}
1606 }
1607 
1608 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1609 {
1610 	struct i915_address_space *vm = &ppgtt->vm;
1611 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1612 	struct i915_page_directory *pd;
1613 	u64 start = 0, length = ppgtt->vm.total;
1614 	u64 from = start;
1615 	unsigned int pdpe;
1616 
1617 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1618 		pd = alloc_pd(vm);
1619 		if (IS_ERR(pd))
1620 			goto unwind;
1621 
1622 		gen8_initialize_pd(vm, pd);
1623 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1624 		pdp->used_pdpes++;
1625 	}
1626 
1627 	pdp->used_pdpes++; /* never remove */
1628 	return 0;
1629 
1630 unwind:
1631 	start -= from;
1632 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1633 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1634 		free_pd(vm, pd);
1635 	}
1636 	pdp->used_pdpes = 0;
1637 	return -ENOMEM;
1638 }
1639 
1640 /*
1641  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1642  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1643  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1644  * space.
1645  *
1646  */
1647 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1648 {
1649 	struct i915_hw_ppgtt *ppgtt;
1650 	int err;
1651 
1652 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1653 	if (!ppgtt)
1654 		return ERR_PTR(-ENOMEM);
1655 
1656 	kref_init(&ppgtt->ref);
1657 
1658 	ppgtt->vm.i915 = i915;
1659 	ppgtt->vm.dma = &i915->drm.pdev->dev;
1660 
1661 	ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1662 		1ULL << 48 :
1663 		1ULL << 32;
1664 
1665 	/*
1666 	 * From bdw, there is support for read-only pages in the PPGTT.
1667 	 *
1668 	 * XXX GVT is not honouring the lack of RW in the PTE bits.
1669 	 */
1670 	ppgtt->vm.has_read_only = !intel_vgpu_active(i915);
1671 
1672 	i915_address_space_init(&ppgtt->vm, i915);
1673 
1674 	/* There are only few exceptions for gen >=6. chv and bxt.
1675 	 * And we are not sure about the latter so play safe for now.
1676 	 */
1677 	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1678 		ppgtt->vm.pt_kmap_wc = true;
1679 
1680 	err = gen8_init_scratch(&ppgtt->vm);
1681 	if (err)
1682 		goto err_free;
1683 
1684 	if (use_4lvl(&ppgtt->vm)) {
1685 		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
1686 		if (err)
1687 			goto err_scratch;
1688 
1689 		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1690 
1691 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1692 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1693 		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1694 	} else {
1695 		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
1696 		if (err)
1697 			goto err_scratch;
1698 
1699 		if (intel_vgpu_active(i915)) {
1700 			err = gen8_preallocate_top_level_pdp(ppgtt);
1701 			if (err) {
1702 				__pdp_fini(&ppgtt->pdp);
1703 				goto err_scratch;
1704 			}
1705 		}
1706 
1707 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1708 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1709 		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1710 	}
1711 
1712 	if (intel_vgpu_active(i915))
1713 		gen8_ppgtt_notify_vgt(ppgtt, true);
1714 
1715 	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1716 	ppgtt->debug_dump = gen8_dump_ppgtt;
1717 
1718 	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1719 	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1720 	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1721 	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1722 
1723 	return ppgtt;
1724 
1725 err_scratch:
1726 	gen8_free_scratch(&ppgtt->vm);
1727 err_free:
1728 	kfree(ppgtt);
1729 	return ERR_PTR(err);
1730 }
1731 
1732 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
1733 {
1734 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1735 	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1736 	struct i915_page_table *pt;
1737 	u32 pte, pde;
1738 
1739 	gen6_for_all_pdes(pt, &base->pd, pde) {
1740 		gen6_pte_t *vaddr;
1741 
1742 		if (pt == base->vm.scratch_pt)
1743 			continue;
1744 
1745 		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
1746 			u32 expected =
1747 				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
1748 				GEN6_PDE_VALID;
1749 			u32 pd_entry = readl(ppgtt->pd_addr + pde);
1750 
1751 			if (pd_entry != expected)
1752 				seq_printf(m,
1753 					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1754 					   pde,
1755 					   pd_entry,
1756 					   expected);
1757 
1758 			seq_printf(m, "\tPDE: %x\n", pd_entry);
1759 		}
1760 
1761 		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
1762 		for (pte = 0; pte < GEN6_PTES; pte += 4) {
1763 			int i;
1764 
1765 			for (i = 0; i < 4; i++)
1766 				if (vaddr[pte + i] != scratch_pte)
1767 					break;
1768 			if (i == 4)
1769 				continue;
1770 
1771 			seq_printf(m, "\t\t(%03d, %04d) %08lx: ",
1772 				   pde, pte,
1773 				   (pde * GEN6_PTES + pte) * PAGE_SIZE);
1774 			for (i = 0; i < 4; i++) {
1775 				if (vaddr[pte + i] != scratch_pte)
1776 					seq_printf(m, " %08x", vaddr[pte + i]);
1777 				else
1778 					seq_puts(m, "  SCRATCH");
1779 			}
1780 			seq_puts(m, "\n");
1781 		}
1782 		kunmap_atomic(vaddr);
1783 	}
1784 }
1785 
1786 /* Write pde (index) from the page directory @pd to the page table @pt */
1787 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
1788 				  const unsigned int pde,
1789 				  const struct i915_page_table *pt)
1790 {
1791 	/* Caller needs to make sure the write completes if necessary */
1792 	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1793 		  ppgtt->pd_addr + pde);
1794 }
1795 
1796 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1797 {
1798 	struct intel_engine_cs *engine;
1799 	enum intel_engine_id id;
1800 
1801 	for_each_engine(engine, dev_priv, id) {
1802 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1803 				 GEN8_GFX_PPGTT_48B : 0;
1804 		I915_WRITE(RING_MODE_GEN7(engine),
1805 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1806 	}
1807 }
1808 
1809 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1810 {
1811 	struct intel_engine_cs *engine;
1812 	u32 ecochk, ecobits;
1813 	enum intel_engine_id id;
1814 
1815 	ecobits = I915_READ(GAC_ECO_BITS);
1816 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1817 
1818 	ecochk = I915_READ(GAM_ECOCHK);
1819 	if (IS_HASWELL(dev_priv)) {
1820 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1821 	} else {
1822 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1823 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1824 	}
1825 	I915_WRITE(GAM_ECOCHK, ecochk);
1826 
1827 	for_each_engine(engine, dev_priv, id) {
1828 		/* GFX_MODE is per-ring on gen7+ */
1829 		I915_WRITE(RING_MODE_GEN7(engine),
1830 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1831 	}
1832 }
1833 
1834 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1835 {
1836 	u32 ecochk, gab_ctl, ecobits;
1837 
1838 	ecobits = I915_READ(GAC_ECO_BITS);
1839 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1840 		   ECOBITS_PPGTT_CACHE64B);
1841 
1842 	gab_ctl = I915_READ(GAB_CTL);
1843 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1844 
1845 	ecochk = I915_READ(GAM_ECOCHK);
1846 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1847 
1848 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1849 }
1850 
1851 /* PPGTT support for Sandybdrige/Gen6 and later */
1852 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1853 				   u64 start, u64 length)
1854 {
1855 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1856 	unsigned int first_entry = start >> PAGE_SHIFT;
1857 	unsigned int pde = first_entry / GEN6_PTES;
1858 	unsigned int pte = first_entry % GEN6_PTES;
1859 	unsigned int num_entries = length >> PAGE_SHIFT;
1860 	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1861 
1862 	while (num_entries) {
1863 		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1864 		const unsigned int end = min(pte + num_entries, GEN6_PTES);
1865 		const unsigned int count = end - pte;
1866 		gen6_pte_t *vaddr;
1867 
1868 		GEM_BUG_ON(pt == vm->scratch_pt);
1869 
1870 		num_entries -= count;
1871 
1872 		GEM_BUG_ON(count > pt->used_ptes);
1873 		pt->used_ptes -= count;
1874 		if (!pt->used_ptes)
1875 			ppgtt->scan_for_unused_pt = true;
1876 
1877 		/*
1878 		 * Note that the hw doesn't support removing PDE on the fly
1879 		 * (they are cached inside the context with no means to
1880 		 * invalidate the cache), so we can only reset the PTE
1881 		 * entries back to scratch.
1882 		 */
1883 
1884 		vaddr = kmap_atomic_px(pt);
1885 		do {
1886 			vaddr[pte++] = scratch_pte;
1887 		} while (pte < end);
1888 		kunmap_atomic(vaddr);
1889 
1890 		pte = 0;
1891 	}
1892 }
1893 
1894 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1895 				      struct i915_vma *vma,
1896 				      enum i915_cache_level cache_level,
1897 				      u32 flags)
1898 {
1899 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1900 	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1901 	unsigned act_pt = first_entry / GEN6_PTES;
1902 	unsigned act_pte = first_entry % GEN6_PTES;
1903 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1904 	struct sgt_dma iter = sgt_dma(vma);
1905 	gen6_pte_t *vaddr;
1906 
1907 	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
1908 
1909 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1910 	do {
1911 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1912 
1913 		iter.dma += PAGE_SIZE;
1914 		if (iter.dma == iter.max) {
1915 			iter.sg = __sg_next(iter.sg);
1916 			if (!iter.sg)
1917 				break;
1918 
1919 			iter.dma = sg_dma_address(iter.sg);
1920 			iter.max = iter.dma + iter.sg->length;
1921 		}
1922 
1923 		if (++act_pte == GEN6_PTES) {
1924 			kunmap_atomic(vaddr);
1925 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1926 			act_pte = 0;
1927 		}
1928 	} while (1);
1929 	kunmap_atomic(vaddr);
1930 
1931 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1932 }
1933 
1934 static int gen6_alloc_va_range(struct i915_address_space *vm,
1935 			       u64 start, u64 length)
1936 {
1937 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1938 	struct i915_page_table *pt;
1939 	u64 from = start;
1940 	unsigned int pde;
1941 	bool flush = false;
1942 
1943 	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1944 		const unsigned int count = gen6_pte_count(start, length);
1945 
1946 		if (pt == vm->scratch_pt) {
1947 			pt = alloc_pt(vm);
1948 			if (IS_ERR(pt))
1949 				goto unwind_out;
1950 
1951 			gen6_initialize_pt(ppgtt, pt);
1952 			ppgtt->base.pd.page_table[pde] = pt;
1953 
1954 			if (i915_vma_is_bound(ppgtt->vma,
1955 					      I915_VMA_GLOBAL_BIND)) {
1956 				gen6_write_pde(ppgtt, pde, pt);
1957 				flush = true;
1958 			}
1959 
1960 			GEM_BUG_ON(pt->used_ptes);
1961 		}
1962 
1963 		pt->used_ptes += count;
1964 	}
1965 
1966 	if (flush) {
1967 		mark_tlbs_dirty(&ppgtt->base);
1968 		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1969 	}
1970 
1971 	return 0;
1972 
1973 unwind_out:
1974 	gen6_ppgtt_clear_range(vm, from, start - from);
1975 	return -ENOMEM;
1976 }
1977 
1978 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1979 {
1980 	struct i915_address_space * const vm = &ppgtt->base.vm;
1981 	struct i915_page_table *unused;
1982 	u32 pde;
1983 	int ret;
1984 
1985 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1986 	if (ret)
1987 		return ret;
1988 
1989 	ppgtt->scratch_pte =
1990 		vm->pte_encode(vm->scratch_page.daddr,
1991 			       I915_CACHE_NONE, PTE_READ_ONLY);
1992 
1993 	vm->scratch_pt = alloc_pt(vm);
1994 	if (IS_ERR(vm->scratch_pt)) {
1995 		cleanup_scratch_page(vm);
1996 		return PTR_ERR(vm->scratch_pt);
1997 	}
1998 
1999 	gen6_initialize_pt(ppgtt, vm->scratch_pt);
2000 	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
2001 		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
2002 
2003 	return 0;
2004 }
2005 
2006 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
2007 {
2008 	free_pt(vm, vm->scratch_pt);
2009 	cleanup_scratch_page(vm);
2010 }
2011 
2012 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
2013 {
2014 	struct i915_page_table *pt;
2015 	u32 pde;
2016 
2017 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2018 		if (pt != ppgtt->base.vm.scratch_pt)
2019 			free_pt(&ppgtt->base.vm, pt);
2020 }
2021 
2022 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2023 {
2024 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
2025 
2026 	i915_vma_destroy(ppgtt->vma);
2027 
2028 	gen6_ppgtt_free_pd(ppgtt);
2029 	gen6_ppgtt_free_scratch(vm);
2030 }
2031 
2032 static int pd_vma_set_pages(struct i915_vma *vma)
2033 {
2034 	vma->pages = ERR_PTR(-ENODEV);
2035 	return 0;
2036 }
2037 
2038 static void pd_vma_clear_pages(struct i915_vma *vma)
2039 {
2040 	GEM_BUG_ON(!vma->pages);
2041 
2042 	vma->pages = NULL;
2043 }
2044 
2045 static int pd_vma_bind(struct i915_vma *vma,
2046 		       enum i915_cache_level cache_level,
2047 		       u32 unused)
2048 {
2049 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
2050 	struct gen6_hw_ppgtt *ppgtt = vma->private;
2051 	u32 ggtt_offset = i915_ggtt_offset(vma) / PAGE_SIZE;
2052 	struct i915_page_table *pt;
2053 	unsigned int pde;
2054 
2055 	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
2056 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2057 
2058 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2059 		gen6_write_pde(ppgtt, pde, pt);
2060 
2061 	mark_tlbs_dirty(&ppgtt->base);
2062 	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2063 
2064 	return 0;
2065 }
2066 
2067 static void pd_vma_unbind(struct i915_vma *vma)
2068 {
2069 	struct gen6_hw_ppgtt *ppgtt = vma->private;
2070 	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
2071 	struct i915_page_table *pt;
2072 	unsigned int pde;
2073 
2074 	if (!ppgtt->scan_for_unused_pt)
2075 		return;
2076 
2077 	/* Free all no longer used page tables */
2078 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
2079 		if (pt->used_ptes || pt == scratch_pt)
2080 			continue;
2081 
2082 		free_pt(&ppgtt->base.vm, pt);
2083 		ppgtt->base.pd.page_table[pde] = scratch_pt;
2084 	}
2085 
2086 	ppgtt->scan_for_unused_pt = false;
2087 }
2088 
2089 static const struct i915_vma_ops pd_vma_ops = {
2090 	.set_pages = pd_vma_set_pages,
2091 	.clear_pages = pd_vma_clear_pages,
2092 	.bind_vma = pd_vma_bind,
2093 	.unbind_vma = pd_vma_unbind,
2094 };
2095 
2096 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
2097 {
2098 	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
2099 	struct i915_ggtt *ggtt = &i915->ggtt;
2100 	struct i915_vma *vma;
2101 
2102 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
2103 	GEM_BUG_ON(size > ggtt->vm.total);
2104 
2105 	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
2106 	if (!vma)
2107 		return ERR_PTR(-ENOMEM);
2108 
2109 	init_request_active(&vma->last_fence, NULL);
2110 
2111 	vma->vm = &ggtt->vm;
2112 	vma->ops = &pd_vma_ops;
2113 	vma->private = ppgtt;
2114 
2115 	vma->active = RB_ROOT;
2116 
2117 	vma->size = size;
2118 	vma->fence_size = size;
2119 	vma->flags = I915_VMA_GGTT;
2120 	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
2121 
2122 	INIT_LIST_HEAD(&vma->obj_link);
2123 	list_add(&vma->vm_link, &vma->vm->unbound_list);
2124 
2125 	return vma;
2126 }
2127 
2128 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2129 {
2130 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2131 
2132 	/*
2133 	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
2134 	 * which will be pinned into every active context.
2135 	 * (When vma->pin_count becomes atomic, I expect we will naturally
2136 	 * need a larger, unpacked, type and kill this redundancy.)
2137 	 */
2138 	if (ppgtt->pin_count++)
2139 		return 0;
2140 
2141 	/*
2142 	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2143 	 * allocator works in address space sizes, so it's multiplied by page
2144 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2145 	 */
2146 	return i915_vma_pin(ppgtt->vma,
2147 			    0, GEN6_PD_ALIGN,
2148 			    PIN_GLOBAL | PIN_HIGH);
2149 }
2150 
2151 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
2152 {
2153 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2154 
2155 	GEM_BUG_ON(!ppgtt->pin_count);
2156 	if (--ppgtt->pin_count)
2157 		return;
2158 
2159 	i915_vma_unpin(ppgtt->vma);
2160 }
2161 
2162 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2163 {
2164 	struct i915_ggtt * const ggtt = &i915->ggtt;
2165 	struct gen6_hw_ppgtt *ppgtt;
2166 	int err;
2167 
2168 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2169 	if (!ppgtt)
2170 		return ERR_PTR(-ENOMEM);
2171 
2172 	kref_init(&ppgtt->base.ref);
2173 
2174 	ppgtt->base.vm.i915 = i915;
2175 	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2176 
2177 	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2178 
2179 	i915_address_space_init(&ppgtt->base.vm, i915);
2180 
2181 	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2182 	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2183 	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2184 	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2185 	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2186 
2187 	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2188 	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
2189 	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
2190 	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2191 
2192 	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2193 
2194 	err = gen6_ppgtt_init_scratch(ppgtt);
2195 	if (err)
2196 		goto err_free;
2197 
2198 	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2199 	if (IS_ERR(ppgtt->vma)) {
2200 		err = PTR_ERR(ppgtt->vma);
2201 		goto err_scratch;
2202 	}
2203 
2204 	return &ppgtt->base;
2205 
2206 err_scratch:
2207 	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2208 err_free:
2209 	kfree(ppgtt);
2210 	return ERR_PTR(err);
2211 }
2212 
2213 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2214 {
2215 	/* This function is for gtt related workarounds. This function is
2216 	 * called on driver load and after a GPU reset, so you can place
2217 	 * workarounds here even if they get overwritten by GPU reset.
2218 	 */
2219 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2220 	if (IS_BROADWELL(dev_priv))
2221 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2222 	else if (IS_CHERRYVIEW(dev_priv))
2223 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2224 	else if (IS_GEN9_LP(dev_priv))
2225 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2226 	else if (INTEL_GEN(dev_priv) >= 9)
2227 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2228 
2229 	/*
2230 	 * To support 64K PTEs we need to first enable the use of the
2231 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2232 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2233 	 * shouldn't be needed after GEN10.
2234 	 *
2235 	 * 64K pages were first introduced from BDW+, although technically they
2236 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2237 	 * 32K pages, but we don't currently have any support for it in our
2238 	 * driver.
2239 	 */
2240 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2241 	    INTEL_GEN(dev_priv) <= 10)
2242 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2243 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2244 			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2245 }
2246 
2247 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2248 {
2249 	gtt_write_workarounds(dev_priv);
2250 
2251 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2252 	 * and the PDPs are contained within the context itself.  We don't
2253 	 * need to do anything here. */
2254 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2255 		return 0;
2256 
2257 	if (!USES_PPGTT(dev_priv))
2258 		return 0;
2259 
2260 	if (IS_GEN6(dev_priv))
2261 		gen6_ppgtt_enable(dev_priv);
2262 	else if (IS_GEN7(dev_priv))
2263 		gen7_ppgtt_enable(dev_priv);
2264 	else if (INTEL_GEN(dev_priv) >= 8)
2265 		gen8_ppgtt_enable(dev_priv);
2266 	else
2267 		MISSING_CASE(INTEL_GEN(dev_priv));
2268 
2269 	return 0;
2270 }
2271 
2272 static struct i915_hw_ppgtt *
2273 __hw_ppgtt_create(struct drm_i915_private *i915)
2274 {
2275 	if (INTEL_GEN(i915) < 8)
2276 		return gen6_ppgtt_create(i915);
2277 	else
2278 		return gen8_ppgtt_create(i915);
2279 }
2280 
2281 struct i915_hw_ppgtt *
2282 i915_ppgtt_create(struct drm_i915_private *i915,
2283 		  struct drm_i915_file_private *fpriv)
2284 {
2285 	struct i915_hw_ppgtt *ppgtt;
2286 
2287 	ppgtt = __hw_ppgtt_create(i915);
2288 	if (IS_ERR(ppgtt))
2289 		return ppgtt;
2290 
2291 	ppgtt->vm.file = fpriv;
2292 
2293 	trace_i915_ppgtt_create(&ppgtt->vm);
2294 
2295 	return ppgtt;
2296 }
2297 
2298 void i915_ppgtt_close(struct i915_address_space *vm)
2299 {
2300 	GEM_BUG_ON(vm->closed);
2301 	vm->closed = true;
2302 }
2303 
2304 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2305 {
2306 	struct list_head *phases[] = {
2307 		&vm->active_list,
2308 		&vm->inactive_list,
2309 		&vm->unbound_list,
2310 		NULL,
2311 	}, **phase;
2312 
2313 	vm->closed = true;
2314 	for (phase = phases; *phase; phase++) {
2315 		struct i915_vma *vma, *vn;
2316 
2317 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2318 			i915_vma_destroy(vma);
2319 	}
2320 }
2321 
2322 void i915_ppgtt_release(struct kref *kref)
2323 {
2324 	struct i915_hw_ppgtt *ppgtt =
2325 		container_of(kref, struct i915_hw_ppgtt, ref);
2326 
2327 	trace_i915_ppgtt_release(&ppgtt->vm);
2328 
2329 	ppgtt_destroy_vma(&ppgtt->vm);
2330 
2331 	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
2332 	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
2333 	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2334 
2335 	ppgtt->vm.cleanup(&ppgtt->vm);
2336 	i915_address_space_fini(&ppgtt->vm);
2337 	kfree(ppgtt);
2338 }
2339 
2340 /* Certain Gen5 chipsets require require idling the GPU before
2341  * unmapping anything from the GTT when VT-d is enabled.
2342  */
2343 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2344 {
2345 	/* Query intel_iommu to see if we need the workaround. Presumably that
2346 	 * was loaded first.
2347 	 */
2348 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2349 }
2350 
2351 static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2352 {
2353 	struct intel_engine_cs *engine;
2354 	enum intel_engine_id id;
2355 	u32 fault;
2356 
2357 	for_each_engine(engine, dev_priv, id) {
2358 		fault = I915_READ(RING_FAULT_REG(engine));
2359 		if (fault & RING_FAULT_VALID) {
2360 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2361 					 "\tAddr: 0x%08lx\n"
2362 					 "\tAddress space: %s\n"
2363 					 "\tSource ID: %d\n"
2364 					 "\tType: %d\n",
2365 					 fault & PAGE_MASK,
2366 					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2367 					 RING_FAULT_SRCID(fault),
2368 					 RING_FAULT_FAULT_TYPE(fault));
2369 			I915_WRITE(RING_FAULT_REG(engine),
2370 				   fault & ~RING_FAULT_VALID);
2371 		}
2372 	}
2373 
2374 	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2375 }
2376 
2377 static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
2378 {
2379 	u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2380 
2381 	if (fault & RING_FAULT_VALID) {
2382 		u32 fault_data0, fault_data1;
2383 		u64 fault_addr;
2384 
2385 		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2386 		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2387 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2388 			     ((u64)fault_data0 << 12);
2389 
2390 		DRM_DEBUG_DRIVER("Unexpected fault\n"
2391 				 "\tAddr: 0x%08x_%08x\n"
2392 				 "\tAddress space: %s\n"
2393 				 "\tEngine ID: %d\n"
2394 				 "\tSource ID: %d\n"
2395 				 "\tType: %d\n",
2396 				 upper_32_bits(fault_addr),
2397 				 lower_32_bits(fault_addr),
2398 				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2399 				 GEN8_RING_FAULT_ENGINE_ID(fault),
2400 				 RING_FAULT_SRCID(fault),
2401 				 RING_FAULT_FAULT_TYPE(fault));
2402 		I915_WRITE(GEN8_RING_FAULT_REG,
2403 			   fault & ~RING_FAULT_VALID);
2404 	}
2405 
2406 	POSTING_READ(GEN8_RING_FAULT_REG);
2407 }
2408 
2409 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2410 {
2411 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
2412 	if (INTEL_GEN(dev_priv) >= 8)
2413 		gen8_check_and_clear_faults(dev_priv);
2414 	else if (INTEL_GEN(dev_priv) >= 6)
2415 		gen6_check_and_clear_faults(dev_priv);
2416 	else
2417 		return;
2418 }
2419 
2420 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2421 {
2422 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2423 
2424 	/* Don't bother messing with faults pre GEN6 as we have little
2425 	 * documentation supporting that it's a good idea.
2426 	 */
2427 	if (INTEL_GEN(dev_priv) < 6)
2428 		return;
2429 
2430 	i915_check_and_clear_faults(dev_priv);
2431 
2432 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2433 
2434 	i915_ggtt_invalidate(dev_priv);
2435 }
2436 
2437 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2438 			       struct sg_table *pages)
2439 {
2440 	do {
2441 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2442 				     pages->sgl, pages->nents,
2443 				     PCI_DMA_BIDIRECTIONAL,
2444 				     DMA_ATTR_NO_WARN))
2445 			return 0;
2446 
2447 		/* If the DMA remap fails, one cause can be that we have
2448 		 * too many objects pinned in a small remapping table,
2449 		 * such as swiotlb. Incrementally purge all other objects and
2450 		 * try again - if there are no more pages to remove from
2451 		 * the DMA remapper, i915_gem_shrink will return 0.
2452 		 */
2453 		GEM_BUG_ON(obj->mm.pages == pages);
2454 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2455 				 obj->base.size >> PAGE_SHIFT, NULL,
2456 				 I915_SHRINK_BOUND |
2457 				 I915_SHRINK_UNBOUND |
2458 				 I915_SHRINK_ACTIVE));
2459 
2460 	return -ENOSPC;
2461 }
2462 
2463 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2464 {
2465 	writeq(pte, addr);
2466 }
2467 
2468 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2469 				  dma_addr_t addr,
2470 				  u64 offset,
2471 				  enum i915_cache_level level,
2472 				  u32 unused)
2473 {
2474 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2475 	gen8_pte_t __iomem *pte =
2476 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2477 
2478 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2479 
2480 	ggtt->invalidate(vm->i915);
2481 }
2482 
2483 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2484 				     struct i915_vma *vma,
2485 				     enum i915_cache_level level,
2486 				     u32 flags)
2487 {
2488 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2489 	struct sgt_iter sgt_iter;
2490 	gen8_pte_t __iomem *gtt_entries;
2491 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2492 	dma_addr_t addr;
2493 
2494 	/*
2495 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2496 	 * not to allow the user to override access to a read only page.
2497 	 */
2498 
2499 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2500 	gtt_entries += vma->node.start >> PAGE_SHIFT;
2501 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2502 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2503 
2504 	/*
2505 	 * We want to flush the TLBs only after we're certain all the PTE
2506 	 * updates have finished.
2507 	 */
2508 	ggtt->invalidate(vm->i915);
2509 }
2510 
2511 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2512 				  dma_addr_t addr,
2513 				  u64 offset,
2514 				  enum i915_cache_level level,
2515 				  u32 flags)
2516 {
2517 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2518 	gen6_pte_t __iomem *pte =
2519 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2520 
2521 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2522 
2523 	ggtt->invalidate(vm->i915);
2524 }
2525 
2526 /*
2527  * Binds an object into the global gtt with the specified cache level. The object
2528  * will be accessible to the GPU via commands whose operands reference offsets
2529  * within the global GTT as well as accessible by the GPU through the GMADR
2530  * mapped BAR (dev_priv->mm.gtt->gtt).
2531  */
2532 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2533 				     struct i915_vma *vma,
2534 				     enum i915_cache_level level,
2535 				     u32 flags)
2536 {
2537 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2538 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2539 	unsigned int i = vma->node.start >> PAGE_SHIFT;
2540 	struct sgt_iter iter;
2541 	dma_addr_t addr;
2542 	for_each_sgt_dma(addr, iter, vma->pages)
2543 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2544 
2545 	/*
2546 	 * We want to flush the TLBs only after we're certain all the PTE
2547 	 * updates have finished.
2548 	 */
2549 	ggtt->invalidate(vm->i915);
2550 }
2551 
2552 static void nop_clear_range(struct i915_address_space *vm,
2553 			    u64 start, u64 length)
2554 {
2555 }
2556 
2557 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2558 				  u64 start, u64 length)
2559 {
2560 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2561 	unsigned first_entry = start >> PAGE_SHIFT;
2562 	unsigned num_entries = length >> PAGE_SHIFT;
2563 	const gen8_pte_t scratch_pte =
2564 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
2565 	gen8_pte_t __iomem *gtt_base =
2566 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2567 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2568 	int i;
2569 
2570 	if (WARN(num_entries > max_entries,
2571 		 "First entry = %d; Num entries = %d (max=%d)\n",
2572 		 first_entry, num_entries, max_entries))
2573 		num_entries = max_entries;
2574 
2575 	for (i = 0; i < num_entries; i++)
2576 		gen8_set_pte(&gtt_base[i], scratch_pte);
2577 }
2578 
2579 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2580 {
2581 	struct drm_i915_private *dev_priv = vm->i915;
2582 
2583 	/*
2584 	 * Make sure the internal GAM fifo has been cleared of all GTT
2585 	 * writes before exiting stop_machine(). This guarantees that
2586 	 * any aperture accesses waiting to start in another process
2587 	 * cannot back up behind the GTT writes causing a hang.
2588 	 * The register can be any arbitrary GAM register.
2589 	 */
2590 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2591 }
2592 
2593 struct insert_page {
2594 	struct i915_address_space *vm;
2595 	dma_addr_t addr;
2596 	u64 offset;
2597 	enum i915_cache_level level;
2598 };
2599 
2600 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2601 {
2602 	struct insert_page *arg = _arg;
2603 
2604 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2605 	bxt_vtd_ggtt_wa(arg->vm);
2606 
2607 	return 0;
2608 }
2609 
2610 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2611 					  dma_addr_t addr,
2612 					  u64 offset,
2613 					  enum i915_cache_level level,
2614 					  u32 unused)
2615 {
2616 	struct insert_page arg = { vm, addr, offset, level };
2617 
2618 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2619 }
2620 
2621 struct insert_entries {
2622 	struct i915_address_space *vm;
2623 	struct i915_vma *vma;
2624 	enum i915_cache_level level;
2625 	u32 flags;
2626 };
2627 
2628 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2629 {
2630 	struct insert_entries *arg = _arg;
2631 
2632 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2633 	bxt_vtd_ggtt_wa(arg->vm);
2634 
2635 	return 0;
2636 }
2637 
2638 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2639 					     struct i915_vma *vma,
2640 					     enum i915_cache_level level,
2641 					     u32 flags)
2642 {
2643 	struct insert_entries arg = { vm, vma, level, flags };
2644 
2645 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2646 }
2647 
2648 struct clear_range {
2649 	struct i915_address_space *vm;
2650 	u64 start;
2651 	u64 length;
2652 };
2653 
2654 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2655 {
2656 	struct clear_range *arg = _arg;
2657 
2658 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2659 	bxt_vtd_ggtt_wa(arg->vm);
2660 
2661 	return 0;
2662 }
2663 
2664 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2665 					  u64 start,
2666 					  u64 length)
2667 {
2668 	struct clear_range arg = { vm, start, length };
2669 
2670 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2671 }
2672 
2673 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2674 				  u64 start, u64 length)
2675 {
2676 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2677 	unsigned first_entry = start >> PAGE_SHIFT;
2678 	unsigned num_entries = length >> PAGE_SHIFT;
2679 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2680 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2681 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2682 	int i;
2683 
2684 	if (WARN(num_entries > max_entries,
2685 		 "First entry = %d; Num entries = %d (max=%d)\n",
2686 		 first_entry, num_entries, max_entries))
2687 		num_entries = max_entries;
2688 
2689 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2690 				     I915_CACHE_LLC, 0);
2691 
2692 	for (i = 0; i < num_entries; i++)
2693 		iowrite32(scratch_pte, &gtt_base[i]);
2694 }
2695 
2696 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2697 				  dma_addr_t addr,
2698 				  u64 offset,
2699 				  enum i915_cache_level cache_level,
2700 				  u32 unused)
2701 {
2702 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2703 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2704 
2705 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2706 }
2707 
2708 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2709 				     struct i915_vma *vma,
2710 				     enum i915_cache_level cache_level,
2711 				     u32 unused)
2712 {
2713 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2714 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2715 
2716 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2717 				    flags);
2718 }
2719 
2720 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2721 				  u64 start, u64 length)
2722 {
2723 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2724 }
2725 
2726 static int ggtt_bind_vma(struct i915_vma *vma,
2727 			 enum i915_cache_level cache_level,
2728 			 u32 flags)
2729 {
2730 	struct drm_i915_private *i915 = vma->vm->i915;
2731 	struct drm_i915_gem_object *obj = vma->obj;
2732 	u32 pte_flags;
2733 
2734 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2735 	pte_flags = 0;
2736 	if (i915_gem_object_is_readonly(obj))
2737 		pte_flags |= PTE_READ_ONLY;
2738 
2739 	intel_runtime_pm_get(i915);
2740 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2741 	intel_runtime_pm_put(i915);
2742 
2743 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2744 
2745 	/*
2746 	 * Without aliasing PPGTT there's no difference between
2747 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2748 	 * upgrade to both bound if we bind either to avoid double-binding.
2749 	 */
2750 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2751 
2752 	return 0;
2753 }
2754 
2755 static void ggtt_unbind_vma(struct i915_vma *vma)
2756 {
2757 	struct drm_i915_private *i915 = vma->vm->i915;
2758 
2759 	intel_runtime_pm_get(i915);
2760 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2761 	intel_runtime_pm_put(i915);
2762 }
2763 
2764 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2765 				 enum i915_cache_level cache_level,
2766 				 u32 flags)
2767 {
2768 	struct drm_i915_private *i915 = vma->vm->i915;
2769 	u32 pte_flags;
2770 	int ret;
2771 
2772 	/* Currently applicable only to VLV */
2773 	pte_flags = 0;
2774 	if (i915_gem_object_is_readonly(vma->obj))
2775 		pte_flags |= PTE_READ_ONLY;
2776 
2777 	if (flags & I915_VMA_LOCAL_BIND) {
2778 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2779 
2780 		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2781 			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2782 							   vma->node.start,
2783 							   vma->size);
2784 			if (ret)
2785 				return ret;
2786 		}
2787 
2788 		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2789 					  pte_flags);
2790 	}
2791 
2792 	if (flags & I915_VMA_GLOBAL_BIND) {
2793 		intel_runtime_pm_get(i915);
2794 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2795 		intel_runtime_pm_put(i915);
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2802 {
2803 	struct drm_i915_private *i915 = vma->vm->i915;
2804 
2805 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2806 		intel_runtime_pm_get(i915);
2807 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2808 		intel_runtime_pm_put(i915);
2809 	}
2810 
2811 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2812 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2813 
2814 		vm->clear_range(vm, vma->node.start, vma->size);
2815 	}
2816 }
2817 
2818 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2819 			       struct sg_table *pages)
2820 {
2821 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2822 	struct device *kdev = &dev_priv->drm.pdev->dev;
2823 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2824 
2825 	if (unlikely(ggtt->do_idle_maps)) {
2826 		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2827 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2828 			/* Wait a bit, in hopes it avoids the hang */
2829 			udelay(10);
2830 		}
2831 	}
2832 
2833 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2834 }
2835 
2836 static int ggtt_set_pages(struct i915_vma *vma)
2837 {
2838 	int ret;
2839 
2840 	GEM_BUG_ON(vma->pages);
2841 
2842 	ret = i915_get_ggtt_vma_pages(vma);
2843 	if (ret)
2844 		return ret;
2845 
2846 	vma->page_sizes = vma->obj->mm.page_sizes;
2847 
2848 	return 0;
2849 }
2850 
2851 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2852 				  unsigned long color,
2853 				  u64 *start,
2854 				  u64 *end)
2855 {
2856 	if (node->allocated && node->color != color)
2857 		*start += I915_GTT_PAGE_SIZE;
2858 
2859 	/* Also leave a space between the unallocated reserved node after the
2860 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2861 	 * to insert a guard page to prevent prefetches crossing over the
2862 	 * GTT boundary.
2863 	 */
2864 	node = list_next_entry(node, node_list);
2865 	if (node->color != color)
2866 		*end -= I915_GTT_PAGE_SIZE;
2867 }
2868 
2869 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2870 {
2871 	struct i915_ggtt *ggtt = &i915->ggtt;
2872 	struct i915_hw_ppgtt *ppgtt;
2873 	int err;
2874 
2875 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2876 	if (IS_ERR(ppgtt))
2877 		return PTR_ERR(ppgtt);
2878 
2879 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2880 		err = -ENODEV;
2881 		goto err_ppgtt;
2882 	}
2883 
2884 	/*
2885 	 * Note we only pre-allocate as far as the end of the global
2886 	 * GTT. On 48b / 4-level page-tables, the difference is very,
2887 	 * very significant! We have to preallocate as GVT/vgpu does
2888 	 * not like the page directory disappearing.
2889 	 */
2890 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2891 	if (err)
2892 		goto err_ppgtt;
2893 
2894 	i915->mm.aliasing_ppgtt = ppgtt;
2895 
2896 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2897 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2898 
2899 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2900 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2901 
2902 	return 0;
2903 
2904 err_ppgtt:
2905 	i915_ppgtt_put(ppgtt);
2906 	return err;
2907 }
2908 
2909 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2910 {
2911 	struct i915_ggtt *ggtt = &i915->ggtt;
2912 	struct i915_hw_ppgtt *ppgtt;
2913 
2914 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2915 	if (!ppgtt)
2916 		return;
2917 
2918 	i915_ppgtt_put(ppgtt);
2919 
2920 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2921 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2922 }
2923 
2924 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2925 {
2926 	/* Let GEM Manage all of the aperture.
2927 	 *
2928 	 * However, leave one page at the end still bound to the scratch page.
2929 	 * There are a number of places where the hardware apparently prefetches
2930 	 * past the end of the object, and we've seen multiple hangs with the
2931 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2932 	 * aperture.  One page should be enough to keep any prefetching inside
2933 	 * of the aperture.
2934 	 */
2935 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2936 	unsigned long hole_start, hole_end;
2937 	struct drm_mm_node *entry;
2938 	int ret;
2939 
2940 	ret = intel_vgt_balloon(dev_priv);
2941 	if (ret)
2942 		return ret;
2943 
2944 	/* Reserve a mappable slot for our lockless error capture */
2945 	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2946 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2947 					  0, ggtt->mappable_end,
2948 					  DRM_MM_INSERT_LOW);
2949 	if (ret)
2950 		return ret;
2951 
2952 	/* Clear any non-preallocated blocks */
2953 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2954 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2955 			      hole_start, hole_end);
2956 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
2957 				     hole_end - hole_start);
2958 	}
2959 
2960 	/* And finally clear the reserved guard page */
2961 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2962 
2963 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2964 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2965 		if (ret)
2966 			goto err;
2967 	}
2968 
2969 	return 0;
2970 
2971 err:
2972 	drm_mm_remove_node(&ggtt->error_capture);
2973 	return ret;
2974 }
2975 
2976 /**
2977  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2978  * @dev_priv: i915 device
2979  */
2980 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2981 {
2982 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2983 	struct i915_vma *vma, *vn;
2984 	struct pagevec *pvec;
2985 
2986 	ggtt->vm.closed = true;
2987 
2988 	mutex_lock(&dev_priv->drm.struct_mutex);
2989 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2990 
2991 	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
2992 	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2993 		WARN_ON(i915_vma_unbind(vma));
2994 
2995 	if (drm_mm_node_allocated(&ggtt->error_capture))
2996 		drm_mm_remove_node(&ggtt->error_capture);
2997 
2998 	if (drm_mm_initialized(&ggtt->vm.mm)) {
2999 		intel_vgt_deballoon(dev_priv);
3000 		i915_address_space_fini(&ggtt->vm);
3001 	}
3002 
3003 	ggtt->vm.cleanup(&ggtt->vm);
3004 
3005 	pvec = &dev_priv->mm.wc_stash.pvec;
3006 	if (pvec->nr) {
3007 		set_pages_array_wb(pvec->pages, pvec->nr);
3008 		__pagevec_release(pvec);
3009 	}
3010 
3011 	mutex_unlock(&dev_priv->drm.struct_mutex);
3012 
3013 	arch_phys_wc_del(ggtt->mtrr);
3014 	io_mapping_fini(&ggtt->iomap);
3015 
3016 	i915_gem_cleanup_stolen(&dev_priv->drm);
3017 }
3018 
3019 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
3020 {
3021 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
3022 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
3023 	return snb_gmch_ctl << 20;
3024 }
3025 
3026 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
3027 {
3028 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
3029 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
3030 	if (bdw_gmch_ctl)
3031 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3032 
3033 #ifdef CONFIG_X86_32
3034 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
3035 	if (bdw_gmch_ctl > 4)
3036 		bdw_gmch_ctl = 4;
3037 #endif
3038 
3039 	return bdw_gmch_ctl << 20;
3040 }
3041 
3042 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3043 {
3044 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
3045 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
3046 
3047 	if (gmch_ctrl)
3048 		return 1 << (20 + gmch_ctrl);
3049 
3050 	return 0;
3051 }
3052 
3053 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
3054 {
3055 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3056 	struct pci_dev *pdev = dev_priv->drm.pdev;
3057 	phys_addr_t phys_addr;
3058 	int ret;
3059 
3060 	/* For Modern GENs the PTEs and register space are split in the BAR */
3061 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
3062 
3063 	/*
3064 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
3065 	 * will be dropped. For WC mappings in general we have 64 byte burst
3066 	 * writes when the WC buffer is flushed, so we can't use it, but have to
3067 	 * resort to an uncached mapping. The WC issue is easily caught by the
3068 	 * readback check when writing GTT PTE entries.
3069 	 */
3070 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3071 		ggtt->gsm = ioremap_nocache(phys_addr, size);
3072 	else
3073 		ggtt->gsm = ioremap_wc(phys_addr, size);
3074 	if (!ggtt->gsm) {
3075 		DRM_ERROR("Failed to map the ggtt page table\n");
3076 		return -ENOMEM;
3077 	}
3078 
3079 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3080 	if (ret) {
3081 		DRM_ERROR("Scratch setup failed\n");
3082 		/* iounmap will also get called at remove, but meh */
3083 		iounmap(ggtt->gsm);
3084 		return ret;
3085 	}
3086 
3087 	return 0;
3088 }
3089 
3090 static struct intel_ppat_entry *
3091 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3092 {
3093 	struct intel_ppat_entry *entry = &ppat->entries[index];
3094 
3095 	GEM_BUG_ON(index >= ppat->max_entries);
3096 	GEM_BUG_ON(test_bit(index, ppat->used));
3097 
3098 	entry->ppat = ppat;
3099 	entry->value = value;
3100 	kref_init(&entry->ref);
3101 	set_bit(index, ppat->used);
3102 	set_bit(index, ppat->dirty);
3103 
3104 	return entry;
3105 }
3106 
3107 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3108 {
3109 	struct intel_ppat *ppat = entry->ppat;
3110 	unsigned int index = entry - ppat->entries;
3111 
3112 	GEM_BUG_ON(index >= ppat->max_entries);
3113 	GEM_BUG_ON(!test_bit(index, ppat->used));
3114 
3115 	entry->value = ppat->clear_value;
3116 	clear_bit(index, ppat->used);
3117 	set_bit(index, ppat->dirty);
3118 }
3119 
3120 /**
3121  * intel_ppat_get - get a usable PPAT entry
3122  * @i915: i915 device instance
3123  * @value: the PPAT value required by the caller
3124  *
3125  * The function tries to search if there is an existing PPAT entry which
3126  * matches with the required value. If perfectly matched, the existing PPAT
3127  * entry will be used. If only partially matched, it will try to check if
3128  * there is any available PPAT index. If yes, it will allocate a new PPAT
3129  * index for the required entry and update the HW. If not, the partially
3130  * matched entry will be used.
3131  */
3132 const struct intel_ppat_entry *
3133 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3134 {
3135 	struct intel_ppat *ppat = &i915->ppat;
3136 	struct intel_ppat_entry *entry = NULL;
3137 	unsigned int scanned, best_score;
3138 	int i;
3139 
3140 	GEM_BUG_ON(!ppat->max_entries);
3141 
3142 	scanned = best_score = 0;
3143 	for_each_set_bit(i, ppat->used, ppat->max_entries) {
3144 		unsigned int score;
3145 
3146 		score = ppat->match(ppat->entries[i].value, value);
3147 		if (score > best_score) {
3148 			entry = &ppat->entries[i];
3149 			if (score == INTEL_PPAT_PERFECT_MATCH) {
3150 				kref_get(&entry->ref);
3151 				return entry;
3152 			}
3153 			best_score = score;
3154 		}
3155 		scanned++;
3156 	}
3157 
3158 	if (scanned == ppat->max_entries) {
3159 		if (!entry)
3160 			return ERR_PTR(-ENOSPC);
3161 
3162 		kref_get(&entry->ref);
3163 		return entry;
3164 	}
3165 
3166 	i = find_first_zero_bit(ppat->used, ppat->max_entries);
3167 	entry = __alloc_ppat_entry(ppat, i, value);
3168 	ppat->update_hw(i915);
3169 	return entry;
3170 }
3171 
3172 static void release_ppat(struct kref *kref)
3173 {
3174 	struct intel_ppat_entry *entry =
3175 		container_of(kref, struct intel_ppat_entry, ref);
3176 	struct drm_i915_private *i915 = entry->ppat->i915;
3177 
3178 	__free_ppat_entry(entry);
3179 	entry->ppat->update_hw(i915);
3180 }
3181 
3182 /**
3183  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3184  * @entry: an intel PPAT entry
3185  *
3186  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3187  * entry is dynamically allocated, its reference count will be decreased. Once
3188  * the reference count becomes into zero, the PPAT index becomes free again.
3189  */
3190 void intel_ppat_put(const struct intel_ppat_entry *entry)
3191 {
3192 	struct intel_ppat *ppat = entry->ppat;
3193 	unsigned int index = entry - ppat->entries;
3194 
3195 	GEM_BUG_ON(!ppat->max_entries);
3196 
3197 	kref_put(&ppat->entries[index].ref, release_ppat);
3198 }
3199 
3200 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3201 {
3202 	struct intel_ppat *ppat = &dev_priv->ppat;
3203 	int i;
3204 
3205 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3206 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3207 		clear_bit(i, ppat->dirty);
3208 	}
3209 }
3210 
3211 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3212 {
3213 	struct intel_ppat *ppat = &dev_priv->ppat;
3214 	u64 pat = 0;
3215 	int i;
3216 
3217 	for (i = 0; i < ppat->max_entries; i++)
3218 		pat |= GEN8_PPAT(i, ppat->entries[i].value);
3219 
3220 	bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3221 
3222 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3223 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3224 }
3225 
3226 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3227 {
3228 	unsigned int score = 0;
3229 	enum {
3230 		AGE_MATCH = BIT(0),
3231 		TC_MATCH = BIT(1),
3232 		CA_MATCH = BIT(2),
3233 	};
3234 
3235 	/* Cache attribute has to be matched. */
3236 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3237 		return 0;
3238 
3239 	score |= CA_MATCH;
3240 
3241 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3242 		score |= TC_MATCH;
3243 
3244 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3245 		score |= AGE_MATCH;
3246 
3247 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3248 		return INTEL_PPAT_PERFECT_MATCH;
3249 
3250 	return score;
3251 }
3252 
3253 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3254 {
3255 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3256 		INTEL_PPAT_PERFECT_MATCH : 0;
3257 }
3258 
3259 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3260 {
3261 	ppat->max_entries = 8;
3262 	ppat->update_hw = cnl_private_pat_update_hw;
3263 	ppat->match = bdw_private_pat_match;
3264 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3265 
3266 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3267 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3268 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3269 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3270 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3271 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3272 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3273 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3274 }
3275 
3276 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3277  * bits. When using advanced contexts each context stores its own PAT, but
3278  * writing this data shouldn't be harmful even in those cases. */
3279 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3280 {
3281 	ppat->max_entries = 8;
3282 	ppat->update_hw = bdw_private_pat_update_hw;
3283 	ppat->match = bdw_private_pat_match;
3284 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3285 
3286 	if (!USES_PPGTT(ppat->i915)) {
3287 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3288 		 * so RTL will always use the value corresponding to
3289 		 * pat_sel = 000".
3290 		 * So let's disable cache for GGTT to avoid screen corruptions.
3291 		 * MOCS still can be used though.
3292 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3293 		 * before this patch, i.e. the same uncached + snooping access
3294 		 * like on gen6/7 seems to be in effect.
3295 		 * - So this just fixes blitter/render access. Again it looks
3296 		 * like it's not just uncached access, but uncached + snooping.
3297 		 * So we can still hold onto all our assumptions wrt cpu
3298 		 * clflushing on LLC machines.
3299 		 */
3300 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3301 		return;
3302 	}
3303 
3304 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3305 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3306 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3307 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3308 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3309 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3310 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3311 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3312 }
3313 
3314 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3315 {
3316 	ppat->max_entries = 8;
3317 	ppat->update_hw = bdw_private_pat_update_hw;
3318 	ppat->match = chv_private_pat_match;
3319 	ppat->clear_value = CHV_PPAT_SNOOP;
3320 
3321 	/*
3322 	 * Map WB on BDW to snooped on CHV.
3323 	 *
3324 	 * Only the snoop bit has meaning for CHV, the rest is
3325 	 * ignored.
3326 	 *
3327 	 * The hardware will never snoop for certain types of accesses:
3328 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3329 	 * - PPGTT page tables
3330 	 * - some other special cycles
3331 	 *
3332 	 * As with BDW, we also need to consider the following for GT accesses:
3333 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3334 	 * so RTL will always use the value corresponding to
3335 	 * pat_sel = 000".
3336 	 * Which means we must set the snoop bit in PAT entry 0
3337 	 * in order to keep the global status page working.
3338 	 */
3339 
3340 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3341 	__alloc_ppat_entry(ppat, 1, 0);
3342 	__alloc_ppat_entry(ppat, 2, 0);
3343 	__alloc_ppat_entry(ppat, 3, 0);
3344 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3345 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3346 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3347 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3348 }
3349 
3350 static void gen6_gmch_remove(struct i915_address_space *vm)
3351 {
3352 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3353 
3354 	iounmap(ggtt->gsm);
3355 	cleanup_scratch_page(vm);
3356 }
3357 
3358 static void setup_private_pat(struct drm_i915_private *dev_priv)
3359 {
3360 	struct intel_ppat *ppat = &dev_priv->ppat;
3361 	int i;
3362 
3363 	ppat->i915 = dev_priv;
3364 
3365 	if (INTEL_GEN(dev_priv) >= 10)
3366 		cnl_setup_private_ppat(ppat);
3367 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3368 		chv_setup_private_ppat(ppat);
3369 	else
3370 		bdw_setup_private_ppat(ppat);
3371 
3372 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3373 
3374 	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3375 		ppat->entries[i].value = ppat->clear_value;
3376 		ppat->entries[i].ppat = ppat;
3377 		set_bit(i, ppat->dirty);
3378 	}
3379 
3380 	ppat->update_hw(dev_priv);
3381 }
3382 
3383 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3384 {
3385 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3386 	struct pci_dev *pdev = dev_priv->drm.pdev;
3387 	unsigned int size;
3388 	u16 snb_gmch_ctl;
3389 	int err;
3390 
3391 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3392 	ggtt->gmadr =
3393 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3394 						 pci_resource_len(pdev, 2));
3395 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3396 
3397 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3398 	if (!err)
3399 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3400 	if (err)
3401 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3402 
3403 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3404 	if (IS_CHERRYVIEW(dev_priv))
3405 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3406 	else
3407 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3408 
3409 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3410 	ggtt->vm.cleanup = gen6_gmch_remove;
3411 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
3412 	ggtt->vm.clear_range = nop_clear_range;
3413 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3414 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3415 
3416 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3417 
3418 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3419 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3420 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3421 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3422 		if (ggtt->vm.clear_range != nop_clear_range)
3423 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3424 	}
3425 
3426 	ggtt->invalidate = gen6_ggtt_invalidate;
3427 
3428 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3429 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3430 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3431 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3432 
3433 	setup_private_pat(dev_priv);
3434 
3435 	return ggtt_probe_common(ggtt, size);
3436 }
3437 
3438 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3439 {
3440 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3441 	struct pci_dev *pdev = dev_priv->drm.pdev;
3442 	unsigned int size;
3443 	u16 snb_gmch_ctl;
3444 	int err;
3445 
3446 	ggtt->gmadr =
3447 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3448 						 pci_resource_len(pdev, 2));
3449 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3450 
3451 	/* 64/512MB is the current min/max we actually know of, but this is just
3452 	 * a coarse sanity check.
3453 	 */
3454 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3455 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3456 		return -ENXIO;
3457 	}
3458 
3459 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3460 	if (!err)
3461 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3462 	if (err)
3463 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3464 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3465 
3466 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3467 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3468 
3469 	ggtt->vm.clear_range = gen6_ggtt_clear_range;
3470 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
3471 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3472 	ggtt->vm.cleanup = gen6_gmch_remove;
3473 
3474 	ggtt->invalidate = gen6_ggtt_invalidate;
3475 
3476 	if (HAS_EDRAM(dev_priv))
3477 		ggtt->vm.pte_encode = iris_pte_encode;
3478 	else if (IS_HASWELL(dev_priv))
3479 		ggtt->vm.pte_encode = hsw_pte_encode;
3480 	else if (IS_VALLEYVIEW(dev_priv))
3481 		ggtt->vm.pte_encode = byt_pte_encode;
3482 	else if (INTEL_GEN(dev_priv) >= 7)
3483 		ggtt->vm.pte_encode = ivb_pte_encode;
3484 	else
3485 		ggtt->vm.pte_encode = snb_pte_encode;
3486 
3487 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3488 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3489 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3490 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3491 
3492 	return ggtt_probe_common(ggtt, size);
3493 }
3494 
3495 static void i915_gmch_remove(struct i915_address_space *vm)
3496 {
3497 	intel_gmch_remove();
3498 }
3499 
3500 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3501 {
3502 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3503 	phys_addr_t gmadr_base;
3504 	int ret;
3505 
3506 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3507 	if (!ret) {
3508 		DRM_ERROR("failed to set up gmch\n");
3509 		return -EIO;
3510 	}
3511 
3512 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3513 
3514 	ggtt->gmadr =
3515 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3516 						 ggtt->mappable_end);
3517 
3518 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3519 	ggtt->vm.insert_page = i915_ggtt_insert_page;
3520 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3521 	ggtt->vm.clear_range = i915_ggtt_clear_range;
3522 	ggtt->vm.cleanup = i915_gmch_remove;
3523 
3524 	ggtt->invalidate = gmch_ggtt_invalidate;
3525 
3526 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3527 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3528 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3529 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3530 
3531 	if (unlikely(ggtt->do_idle_maps))
3532 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3533 
3534 	return 0;
3535 }
3536 
3537 /**
3538  * i915_ggtt_probe_hw - Probe GGTT hardware location
3539  * @dev_priv: i915 device
3540  */
3541 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3542 {
3543 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3544 	int ret;
3545 
3546 	ggtt->vm.i915 = dev_priv;
3547 	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3548 
3549 	if (INTEL_GEN(dev_priv) <= 5)
3550 		ret = i915_gmch_probe(ggtt);
3551 	else if (INTEL_GEN(dev_priv) < 8)
3552 		ret = gen6_gmch_probe(ggtt);
3553 	else
3554 		ret = gen8_gmch_probe(ggtt);
3555 	if (ret)
3556 		return ret;
3557 
3558 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3559 	 * This is easier than doing range restriction on the fly, as we
3560 	 * currently don't have any bits spare to pass in this upper
3561 	 * restriction!
3562 	 */
3563 	if (USES_GUC(dev_priv)) {
3564 		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
3565 		ggtt->mappable_end =
3566 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3567 	}
3568 
3569 	if ((ggtt->vm.total - 1) >> 32) {
3570 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3571 			  " of address space! Found %lldM!\n",
3572 			  ggtt->vm.total >> 20);
3573 		ggtt->vm.total = 1ULL << 32;
3574 		ggtt->mappable_end =
3575 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3576 	}
3577 
3578 	if (ggtt->mappable_end > ggtt->vm.total) {
3579 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3580 			  " aperture=%pa, total=%llx\n",
3581 			  &ggtt->mappable_end, ggtt->vm.total);
3582 		ggtt->mappable_end = ggtt->vm.total;
3583 	}
3584 
3585 	/* GMADR is the PCI mmio aperture into the global GTT. */
3586 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3587 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3588 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3589 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3590 	if (intel_vtd_active())
3591 		DRM_INFO("VT-d active for gfx access\n");
3592 
3593 	return 0;
3594 }
3595 
3596 /**
3597  * i915_ggtt_init_hw - Initialize GGTT hardware
3598  * @dev_priv: i915 device
3599  */
3600 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3601 {
3602 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3603 	int ret;
3604 
3605 	stash_init(&dev_priv->mm.wc_stash);
3606 
3607 	/* Note that we use page colouring to enforce a guard page at the
3608 	 * end of the address space. This is required as the CS may prefetch
3609 	 * beyond the end of the batch buffer, across the page boundary,
3610 	 * and beyond the end of the GTT if we do not provide a guard.
3611 	 */
3612 	mutex_lock(&dev_priv->drm.struct_mutex);
3613 	i915_address_space_init(&ggtt->vm, dev_priv);
3614 
3615 	/* Only VLV supports read-only GGTT mappings */
3616 	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
3617 
3618 	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3619 		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3620 	mutex_unlock(&dev_priv->drm.struct_mutex);
3621 
3622 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3623 				dev_priv->ggtt.gmadr.start,
3624 				dev_priv->ggtt.mappable_end)) {
3625 		ret = -EIO;
3626 		goto out_gtt_cleanup;
3627 	}
3628 
3629 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3630 
3631 	/*
3632 	 * Initialise stolen early so that we may reserve preallocated
3633 	 * objects for the BIOS to KMS transition.
3634 	 */
3635 	ret = i915_gem_init_stolen(dev_priv);
3636 	if (ret)
3637 		goto out_gtt_cleanup;
3638 
3639 	return 0;
3640 
3641 out_gtt_cleanup:
3642 	ggtt->vm.cleanup(&ggtt->vm);
3643 	return ret;
3644 }
3645 
3646 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3647 {
3648 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3649 		return -EIO;
3650 
3651 	return 0;
3652 }
3653 
3654 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3655 {
3656 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3657 
3658 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3659 
3660 	i915_ggtt_invalidate(i915);
3661 }
3662 
3663 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3664 {
3665 	/* We should only be called after i915_ggtt_enable_guc() */
3666 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3667 
3668 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3669 
3670 	i915_ggtt_invalidate(i915);
3671 }
3672 
3673 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3674 {
3675 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3676 	struct i915_vma *vma, *vn;
3677 
3678 	i915_check_and_clear_faults(dev_priv);
3679 
3680 	/* First fill our portion of the GTT with scratch pages */
3681 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3682 
3683 	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3684 
3685 	/* clflush objects bound into the GGTT and rebind them. */
3686 	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
3687 	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3688 		struct drm_i915_gem_object *obj = vma->obj;
3689 
3690 		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3691 			continue;
3692 
3693 		if (!i915_vma_unbind(vma))
3694 			continue;
3695 
3696 		WARN_ON(i915_vma_bind(vma,
3697 				      obj ? obj->cache_level : 0,
3698 				      PIN_UPDATE));
3699 		if (obj)
3700 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3701 	}
3702 
3703 	ggtt->vm.closed = false;
3704 	i915_ggtt_invalidate(dev_priv);
3705 
3706 	if (INTEL_GEN(dev_priv) >= 8) {
3707 		struct intel_ppat *ppat = &dev_priv->ppat;
3708 
3709 		bitmap_set(ppat->dirty, 0, ppat->max_entries);
3710 		dev_priv->ppat.update_hw(dev_priv);
3711 		return;
3712 	}
3713 }
3714 
3715 static struct scatterlist *
3716 rotate_pages(const dma_addr_t *in, unsigned int offset,
3717 	     unsigned int width, unsigned int height,
3718 	     unsigned int stride,
3719 	     struct sg_table *st, struct scatterlist *sg)
3720 {
3721 	unsigned int column, row;
3722 	unsigned int src_idx;
3723 
3724 	for (column = 0; column < width; column++) {
3725 		src_idx = stride * (height - 1) + column;
3726 		for (row = 0; row < height; row++) {
3727 			st->nents++;
3728 			/* We don't need the pages, but need to initialize
3729 			 * the entries so the sg list can be happily traversed.
3730 			 * The only thing we need are DMA addresses.
3731 			 */
3732 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3733 			sg_dma_address(sg) = in[offset + src_idx];
3734 			sg_dma_len(sg) = PAGE_SIZE;
3735 			sg = sg_next(sg);
3736 			src_idx -= stride;
3737 		}
3738 	}
3739 
3740 	return sg;
3741 }
3742 
3743 static noinline struct sg_table *
3744 intel_rotate_pages(struct intel_rotation_info *rot_info,
3745 		   struct drm_i915_gem_object *obj)
3746 {
3747 	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3748 	unsigned int size = intel_rotation_info_size(rot_info);
3749 	struct sgt_iter sgt_iter;
3750 	dma_addr_t dma_addr;
3751 	unsigned long i;
3752 	dma_addr_t *page_addr_list;
3753 	struct sg_table *st;
3754 	struct scatterlist *sg;
3755 	int ret = -ENOMEM;
3756 
3757 	/* Allocate a temporary list of source pages for random access. */
3758 	page_addr_list = kvmalloc_array(n_pages,
3759 					sizeof(dma_addr_t),
3760 					GFP_KERNEL);
3761 	if (!page_addr_list)
3762 		return ERR_PTR(ret);
3763 
3764 	/* Allocate target SG list. */
3765 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3766 	if (!st)
3767 		goto err_st_alloc;
3768 
3769 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3770 	if (ret)
3771 		goto err_sg_alloc;
3772 
3773 	/* Populate source page list from the object. */
3774 	i = 0;
3775 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3776 		page_addr_list[i++] = dma_addr;
3777 
3778 	GEM_BUG_ON(i != n_pages);
3779 	st->nents = 0;
3780 	sg = st->sgl;
3781 
3782 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3783 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3784 				  rot_info->plane[i].width, rot_info->plane[i].height,
3785 				  rot_info->plane[i].stride, st, sg);
3786 	}
3787 
3788 	kvfree(page_addr_list);
3789 
3790 	return st;
3791 
3792 err_sg_alloc:
3793 	kfree(st);
3794 err_st_alloc:
3795 	kvfree(page_addr_list);
3796 
3797 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3798 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3799 
3800 	return ERR_PTR(ret);
3801 }
3802 
3803 static noinline struct sg_table *
3804 intel_partial_pages(const struct i915_ggtt_view *view,
3805 		    struct drm_i915_gem_object *obj)
3806 {
3807 	struct sg_table *st;
3808 	struct scatterlist *sg, *iter;
3809 	unsigned int count = view->partial.size;
3810 	unsigned int offset;
3811 	int ret = -ENOMEM;
3812 
3813 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3814 	if (!st)
3815 		goto err_st_alloc;
3816 
3817 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3818 	if (ret)
3819 		goto err_sg_alloc;
3820 
3821 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3822 	GEM_BUG_ON(!iter);
3823 
3824 	sg = st->sgl;
3825 	st->nents = 0;
3826 	do {
3827 		unsigned int len;
3828 
3829 		len = min(iter->length - (offset << PAGE_SHIFT),
3830 			  count << PAGE_SHIFT);
3831 		sg_set_page(sg, NULL, len, 0);
3832 		sg_dma_address(sg) =
3833 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3834 		sg_dma_len(sg) = len;
3835 
3836 		st->nents++;
3837 		count -= len >> PAGE_SHIFT;
3838 		if (count == 0) {
3839 			sg_mark_end(sg);
3840 			return st;
3841 		}
3842 
3843 		sg = __sg_next(sg);
3844 		iter = __sg_next(iter);
3845 		offset = 0;
3846 	} while (1);
3847 
3848 err_sg_alloc:
3849 	kfree(st);
3850 err_st_alloc:
3851 	return ERR_PTR(ret);
3852 }
3853 
3854 static int
3855 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3856 {
3857 	int ret;
3858 
3859 	/* The vma->pages are only valid within the lifespan of the borrowed
3860 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3861 	 * must be the vma->pages. A simple rule is that vma->pages must only
3862 	 * be accessed when the obj->mm.pages are pinned.
3863 	 */
3864 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3865 
3866 	switch (vma->ggtt_view.type) {
3867 	default:
3868 		GEM_BUG_ON(vma->ggtt_view.type);
3869 		/* fall through */
3870 	case I915_GGTT_VIEW_NORMAL:
3871 		vma->pages = vma->obj->mm.pages;
3872 		return 0;
3873 
3874 	case I915_GGTT_VIEW_ROTATED:
3875 		vma->pages =
3876 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3877 		break;
3878 
3879 	case I915_GGTT_VIEW_PARTIAL:
3880 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3881 		break;
3882 	}
3883 
3884 	ret = 0;
3885 	if (unlikely(IS_ERR(vma->pages))) {
3886 		ret = PTR_ERR(vma->pages);
3887 		vma->pages = NULL;
3888 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3889 			  vma->ggtt_view.type, ret);
3890 	}
3891 	return ret;
3892 }
3893 
3894 /**
3895  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3896  * @vm: the &struct i915_address_space
3897  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3898  * @size: how much space to allocate inside the GTT,
3899  *        must be #I915_GTT_PAGE_SIZE aligned
3900  * @offset: where to insert inside the GTT,
3901  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3902  *          (@offset + @size) must fit within the address space
3903  * @color: color to apply to node, if this node is not from a VMA,
3904  *         color must be #I915_COLOR_UNEVICTABLE
3905  * @flags: control search and eviction behaviour
3906  *
3907  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3908  * the address space (using @size and @color). If the @node does not fit, it
3909  * tries to evict any overlapping nodes from the GTT, including any
3910  * neighbouring nodes if the colors do not match (to ensure guard pages between
3911  * differing domains). See i915_gem_evict_for_node() for the gory details
3912  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3913  * evicting active overlapping objects, and any overlapping node that is pinned
3914  * or marked as unevictable will also result in failure.
3915  *
3916  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3917  * asked to wait for eviction and interrupted.
3918  */
3919 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3920 			 struct drm_mm_node *node,
3921 			 u64 size, u64 offset, unsigned long color,
3922 			 unsigned int flags)
3923 {
3924 	int err;
3925 
3926 	GEM_BUG_ON(!size);
3927 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3928 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3929 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3930 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3931 	GEM_BUG_ON(drm_mm_node_allocated(node));
3932 
3933 	node->size = size;
3934 	node->start = offset;
3935 	node->color = color;
3936 
3937 	err = drm_mm_reserve_node(&vm->mm, node);
3938 	if (err != -ENOSPC)
3939 		return err;
3940 
3941 	if (flags & PIN_NOEVICT)
3942 		return -ENOSPC;
3943 
3944 	err = i915_gem_evict_for_node(vm, node, flags);
3945 	if (err == 0)
3946 		err = drm_mm_reserve_node(&vm->mm, node);
3947 
3948 	return err;
3949 }
3950 
3951 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3952 {
3953 	u64 range, addr;
3954 
3955 	GEM_BUG_ON(range_overflows(start, len, end));
3956 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3957 
3958 	range = round_down(end - len, align) - round_up(start, align);
3959 	if (range) {
3960 		if (sizeof(unsigned long) == sizeof(u64)) {
3961 			addr = get_random_long();
3962 		} else {
3963 			addr = get_random_int();
3964 			if (range > U32_MAX) {
3965 				addr <<= 32;
3966 				addr |= get_random_int();
3967 			}
3968 		}
3969 		div64_u64_rem(addr, range, &addr);
3970 		start += addr;
3971 	}
3972 
3973 	return round_up(start, align);
3974 }
3975 
3976 /**
3977  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3978  * @vm: the &struct i915_address_space
3979  * @node: the &struct drm_mm_node (typically i915_vma.node)
3980  * @size: how much space to allocate inside the GTT,
3981  *        must be #I915_GTT_PAGE_SIZE aligned
3982  * @alignment: required alignment of starting offset, may be 0 but
3983  *             if specified, this must be a power-of-two and at least
3984  *             #I915_GTT_MIN_ALIGNMENT
3985  * @color: color to apply to node
3986  * @start: start of any range restriction inside GTT (0 for all),
3987  *         must be #I915_GTT_PAGE_SIZE aligned
3988  * @end: end of any range restriction inside GTT (U64_MAX for all),
3989  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3990  * @flags: control search and eviction behaviour
3991  *
3992  * i915_gem_gtt_insert() first searches for an available hole into which
3993  * is can insert the node. The hole address is aligned to @alignment and
3994  * its @size must then fit entirely within the [@start, @end] bounds. The
3995  * nodes on either side of the hole must match @color, or else a guard page
3996  * will be inserted between the two nodes (or the node evicted). If no
3997  * suitable hole is found, first a victim is randomly selected and tested
3998  * for eviction, otherwise then the LRU list of objects within the GTT
3999  * is scanned to find the first set of replacement nodes to create the hole.
4000  * Those old overlapping nodes are evicted from the GTT (and so must be
4001  * rebound before any future use). Any node that is currently pinned cannot
4002  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
4003  * active and #PIN_NONBLOCK is specified, that node is also skipped when
4004  * searching for an eviction candidate. See i915_gem_evict_something() for
4005  * the gory details on the eviction algorithm.
4006  *
4007  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
4008  * asked to wait for eviction and interrupted.
4009  */
4010 int i915_gem_gtt_insert(struct i915_address_space *vm,
4011 			struct drm_mm_node *node,
4012 			u64 size, u64 alignment, unsigned long color,
4013 			u64 start, u64 end, unsigned int flags)
4014 {
4015 	enum drm_mm_insert_mode mode;
4016 	u64 offset;
4017 	int err;
4018 
4019 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
4020 	GEM_BUG_ON(!size);
4021 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
4022 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
4023 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
4024 	GEM_BUG_ON(start >= end);
4025 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
4026 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4027 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4028 	GEM_BUG_ON(drm_mm_node_allocated(node));
4029 
4030 	if (unlikely(range_overflows(start, size, end)))
4031 		return -ENOSPC;
4032 
4033 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
4034 		return -ENOSPC;
4035 
4036 	mode = DRM_MM_INSERT_BEST;
4037 	if (flags & PIN_HIGH)
4038 		mode = DRM_MM_INSERT_HIGHEST;
4039 	if (flags & PIN_MAPPABLE)
4040 		mode = DRM_MM_INSERT_LOW;
4041 
4042 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
4043 	 * so we know that we always have a minimum alignment of 4096.
4044 	 * The drm_mm range manager is optimised to return results
4045 	 * with zero alignment, so where possible use the optimal
4046 	 * path.
4047 	 */
4048 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
4049 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
4050 		alignment = 0;
4051 
4052 	err = drm_mm_insert_node_in_range(&vm->mm, node,
4053 					  size, alignment, color,
4054 					  start, end, mode);
4055 	if (err != -ENOSPC)
4056 		return err;
4057 
4058 	if (mode & DRM_MM_INSERT_ONCE) {
4059 		err = drm_mm_insert_node_in_range(&vm->mm, node,
4060 						  size, alignment, color,
4061 						  start, end,
4062 						  DRM_MM_INSERT_BEST);
4063 		if (err != -ENOSPC)
4064 			return err;
4065 	}
4066 
4067 	if (flags & PIN_NOEVICT)
4068 		return -ENOSPC;
4069 
4070 	/* No free space, pick a slot at random.
4071 	 *
4072 	 * There is a pathological case here using a GTT shared between
4073 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4074 	 *
4075 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4076 	 *         (64k objects)             (448k objects)
4077 	 *
4078 	 * Now imagine that the eviction LRU is ordered top-down (just because
4079 	 * pathology meets real life), and that we need to evict an object to
4080 	 * make room inside the aperture. The eviction scan then has to walk
4081 	 * the 448k list before it finds one within range. And now imagine that
4082 	 * it has to search for a new hole between every byte inside the memcpy,
4083 	 * for several simultaneous clients.
4084 	 *
4085 	 * On a full-ppgtt system, if we have run out of available space, there
4086 	 * will be lots and lots of objects in the eviction list! Again,
4087 	 * searching that LRU list may be slow if we are also applying any
4088 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
4089 	 * simplicity and similarilty between different GTT, try the single
4090 	 * random replacement first.
4091 	 */
4092 	offset = random_offset(start, end,
4093 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4094 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4095 	if (err != -ENOSPC)
4096 		return err;
4097 
4098 	/* Randomly selected placement is pinned, do a search */
4099 	err = i915_gem_evict_something(vm, size, alignment, color,
4100 				       start, end, flags);
4101 	if (err)
4102 		return err;
4103 
4104 	return drm_mm_insert_node_in_range(&vm->mm, node,
4105 					   size, alignment, color,
4106 					   start, end, DRM_MM_INSERT_EVICT);
4107 }
4108 
4109 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4110 #include "selftests/mock_gtt.c"
4111 #include "selftests/i915_gem_gtt.c"
4112 #endif
4113