1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94 
95 const struct i915_ggtt_view i915_ggtt_view_normal;
96 const struct i915_ggtt_view i915_ggtt_view_rotated = {
97         .type = I915_GGTT_VIEW_ROTATED
98 };
99 
100 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
101 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
102 
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105 	bool has_aliasing_ppgtt;
106 	bool has_full_ppgtt;
107 
108 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110 
111 	if (intel_vgpu_active(dev))
112 		has_full_ppgtt = false; /* emulation is too hard */
113 
114 	/*
115 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 	 * execlists, the sole mechanism available to submit work.
117 	 */
118 	if (INTEL_INFO(dev)->gen < 9 &&
119 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120 		return 0;
121 
122 	if (enable_ppgtt == 1)
123 		return 1;
124 
125 	if (enable_ppgtt == 2 && has_full_ppgtt)
126 		return 2;
127 
128 #ifdef CONFIG_INTEL_IOMMU
129 	/* Disable ppgtt on SNB if VT-d is on. */
130 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
132 		return 0;
133 	}
134 #endif
135 
136 	/* Early VLV doesn't have this */
137 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138 	    dev->pdev->revision < 0xb) {
139 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140 		return 0;
141 	}
142 
143 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144 		return 2;
145 	else
146 		return has_aliasing_ppgtt ? 1 : 0;
147 }
148 
149 static void ppgtt_bind_vma(struct i915_vma *vma,
150 			   enum i915_cache_level cache_level,
151 			   u32 flags);
152 static void ppgtt_unbind_vma(struct i915_vma *vma);
153 
154 static inline gen8_pte_t gen8_pte_encode(dma_addr_t addr,
155 					 enum i915_cache_level level,
156 					 bool valid)
157 {
158 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
159 	pte |= addr;
160 
161 	switch (level) {
162 	case I915_CACHE_NONE:
163 		pte |= PPAT_UNCACHED_INDEX;
164 		break;
165 	case I915_CACHE_WT:
166 		pte |= PPAT_DISPLAY_ELLC_INDEX;
167 		break;
168 	default:
169 		pte |= PPAT_CACHED_INDEX;
170 		break;
171 	}
172 
173 	return pte;
174 }
175 
176 static inline gen8_pde_t gen8_pde_encode(struct drm_device *dev,
177 					  dma_addr_t addr,
178 					  enum i915_cache_level level)
179 {
180 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
181 	pde |= addr;
182 	if (level != I915_CACHE_NONE)
183 		pde |= PPAT_CACHED_PDE_INDEX;
184 	else
185 		pde |= PPAT_UNCACHED_INDEX;
186 	return pde;
187 }
188 
189 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
190 				 enum i915_cache_level level,
191 				 bool valid, u32 unused)
192 {
193 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
194 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
195 
196 	switch (level) {
197 	case I915_CACHE_L3_LLC:
198 	case I915_CACHE_LLC:
199 		pte |= GEN6_PTE_CACHE_LLC;
200 		break;
201 	case I915_CACHE_NONE:
202 		pte |= GEN6_PTE_UNCACHED;
203 		break;
204 	default:
205 		MISSING_CASE(level);
206 	}
207 
208 	return pte;
209 }
210 
211 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
212 				 enum i915_cache_level level,
213 				 bool valid, u32 unused)
214 {
215 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
216 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
217 
218 	switch (level) {
219 	case I915_CACHE_L3_LLC:
220 		pte |= GEN7_PTE_CACHE_L3_LLC;
221 		break;
222 	case I915_CACHE_LLC:
223 		pte |= GEN6_PTE_CACHE_LLC;
224 		break;
225 	case I915_CACHE_NONE:
226 		pte |= GEN6_PTE_UNCACHED;
227 		break;
228 	default:
229 		MISSING_CASE(level);
230 	}
231 
232 	return pte;
233 }
234 
235 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
236 				 enum i915_cache_level level,
237 				 bool valid, u32 flags)
238 {
239 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
240 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
241 
242 	if (!(flags & PTE_READ_ONLY))
243 		pte |= BYT_PTE_WRITEABLE;
244 
245 	if (level != I915_CACHE_NONE)
246 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
247 
248 	return pte;
249 }
250 
251 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
252 				 enum i915_cache_level level,
253 				 bool valid, u32 unused)
254 {
255 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
256 	pte |= HSW_PTE_ADDR_ENCODE(addr);
257 
258 	if (level != I915_CACHE_NONE)
259 		pte |= HSW_WB_LLC_AGE3;
260 
261 	return pte;
262 }
263 
264 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
265 				  enum i915_cache_level level,
266 				  bool valid, u32 unused)
267 {
268 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
269 	pte |= HSW_PTE_ADDR_ENCODE(addr);
270 
271 	switch (level) {
272 	case I915_CACHE_NONE:
273 		break;
274 	case I915_CACHE_WT:
275 		pte |= HSW_WT_ELLC_LLC_AGE3;
276 		break;
277 	default:
278 		pte |= HSW_WB_ELLC_LLC_AGE3;
279 		break;
280 	}
281 
282 	return pte;
283 }
284 
285 #define i915_dma_unmap_single(px, dev) \
286 	__i915_dma_unmap_single((px)->daddr, dev)
287 
288 static inline void __i915_dma_unmap_single(dma_addr_t daddr,
289 					struct drm_device *dev)
290 {
291 	struct device *device = &dev->pdev->dev;
292 
293 	dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
294 }
295 
296 /**
297  * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
298  * @px:	Page table/dir/etc to get a DMA map for
299  * @dev:	drm device
300  *
301  * Page table allocations are unified across all gens. They always require a
302  * single 4k allocation, as well as a DMA mapping. If we keep the structs
303  * symmetric here, the simple macro covers us for every page table type.
304  *
305  * Return: 0 if success.
306  */
307 #define i915_dma_map_single(px, dev) \
308 	i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
309 
310 static inline int i915_dma_map_page_single(struct page *page,
311 					   struct drm_device *dev,
312 					   dma_addr_t *daddr)
313 {
314 	struct device *device = &dev->pdev->dev;
315 
316 	*daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
317 	if (dma_mapping_error(device, *daddr))
318 		return -ENOMEM;
319 
320 	return 0;
321 }
322 
323 static void unmap_and_free_pt(struct i915_page_table_entry *pt,
324 			       struct drm_device *dev)
325 {
326 	if (WARN_ON(!pt->page))
327 		return;
328 
329 	i915_dma_unmap_single(pt, dev);
330 	__free_page(pt->page);
331 	kfree(pt->used_ptes);
332 	kfree(pt);
333 }
334 
335 static struct i915_page_table_entry *alloc_pt_single(struct drm_device *dev)
336 {
337 	struct i915_page_table_entry *pt;
338 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
339 		GEN8_PTES : GEN6_PTES;
340 	int ret = -ENOMEM;
341 
342 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
343 	if (!pt)
344 		return ERR_PTR(-ENOMEM);
345 
346 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
347 				GFP_KERNEL);
348 
349 	if (!pt->used_ptes)
350 		goto fail_bitmap;
351 
352 	pt->page = alloc_page(GFP_KERNEL);
353 	if (!pt->page)
354 		goto fail_page;
355 
356 	ret = i915_dma_map_single(pt, dev);
357 	if (ret)
358 		goto fail_dma;
359 
360 	return pt;
361 
362 fail_dma:
363 	__free_page(pt->page);
364 fail_page:
365 	kfree(pt->used_ptes);
366 fail_bitmap:
367 	kfree(pt);
368 
369 	return ERR_PTR(ret);
370 }
371 
372 /**
373  * alloc_pt_range() - Allocate a multiple page tables
374  * @pd:		The page directory which will have at least @count entries
375  *		available to point to the allocated page tables.
376  * @pde:	First page directory entry for which we are allocating.
377  * @count:	Number of pages to allocate.
378  * @dev:	DRM device.
379  *
380  * Allocates multiple page table pages and sets the appropriate entries in the
381  * page table structure within the page directory. Function cleans up after
382  * itself on any failures.
383  *
384  * Return: 0 if allocation succeeded.
385  */
386 static int alloc_pt_range(struct i915_page_directory_entry *pd, uint16_t pde, size_t count,
387 			  struct drm_device *dev)
388 {
389 	int i, ret;
390 
391 	/* 512 is the max page tables per page_directory on any platform. */
392 	if (WARN_ON(pde + count > I915_PDES))
393 		return -EINVAL;
394 
395 	for (i = pde; i < pde + count; i++) {
396 		struct i915_page_table_entry *pt = alloc_pt_single(dev);
397 
398 		if (IS_ERR(pt)) {
399 			ret = PTR_ERR(pt);
400 			goto err_out;
401 		}
402 		WARN(pd->page_table[i],
403 		     "Leaking page directory entry %d (%p)\n",
404 		     i, pd->page_table[i]);
405 		pd->page_table[i] = pt;
406 	}
407 
408 	return 0;
409 
410 err_out:
411 	while (i-- > pde)
412 		unmap_and_free_pt(pd->page_table[i], dev);
413 	return ret;
414 }
415 
416 static void unmap_and_free_pd(struct i915_page_directory_entry *pd)
417 {
418 	if (pd->page) {
419 		__free_page(pd->page);
420 		kfree(pd);
421 	}
422 }
423 
424 static struct i915_page_directory_entry *alloc_pd_single(void)
425 {
426 	struct i915_page_directory_entry *pd;
427 
428 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
429 	if (!pd)
430 		return ERR_PTR(-ENOMEM);
431 
432 	pd->page = alloc_page(GFP_KERNEL | __GFP_ZERO);
433 	if (!pd->page) {
434 		kfree(pd);
435 		return ERR_PTR(-ENOMEM);
436 	}
437 
438 	return pd;
439 }
440 
441 /* Broadwell Page Directory Pointer Descriptors */
442 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
443 			   uint64_t val)
444 {
445 	int ret;
446 
447 	BUG_ON(entry >= 4);
448 
449 	ret = intel_ring_begin(ring, 6);
450 	if (ret)
451 		return ret;
452 
453 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
454 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
455 	intel_ring_emit(ring, (u32)(val >> 32));
456 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
457 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
458 	intel_ring_emit(ring, (u32)(val));
459 	intel_ring_advance(ring);
460 
461 	return 0;
462 }
463 
464 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
465 			  struct intel_engine_cs *ring)
466 {
467 	int i, ret;
468 
469 	/* bit of a hack to find the actual last used pd */
470 	int used_pd = ppgtt->num_pd_entries / I915_PDES;
471 
472 	for (i = used_pd - 1; i >= 0; i--) {
473 		dma_addr_t addr = ppgtt->pdp.page_directory[i]->daddr;
474 		ret = gen8_write_pdp(ring, i, addr);
475 		if (ret)
476 			return ret;
477 	}
478 
479 	return 0;
480 }
481 
482 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
483 				   uint64_t start,
484 				   uint64_t length,
485 				   bool use_scratch)
486 {
487 	struct i915_hw_ppgtt *ppgtt =
488 		container_of(vm, struct i915_hw_ppgtt, base);
489 	gen8_pte_t *pt_vaddr, scratch_pte;
490 	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
491 	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
492 	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
493 	unsigned num_entries = length >> PAGE_SHIFT;
494 	unsigned last_pte, i;
495 
496 	scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
497 				      I915_CACHE_LLC, use_scratch);
498 
499 	while (num_entries) {
500 		struct i915_page_directory_entry *pd;
501 		struct i915_page_table_entry *pt;
502 		struct page *page_table;
503 
504 		if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
505 			continue;
506 
507 		pd = ppgtt->pdp.page_directory[pdpe];
508 
509 		if (WARN_ON(!pd->page_table[pde]))
510 			continue;
511 
512 		pt = pd->page_table[pde];
513 
514 		if (WARN_ON(!pt->page))
515 			continue;
516 
517 		page_table = pt->page;
518 
519 		last_pte = pte + num_entries;
520 		if (last_pte > GEN8_PTES)
521 			last_pte = GEN8_PTES;
522 
523 		pt_vaddr = kmap_atomic(page_table);
524 
525 		for (i = pte; i < last_pte; i++) {
526 			pt_vaddr[i] = scratch_pte;
527 			num_entries--;
528 		}
529 
530 		if (!HAS_LLC(ppgtt->base.dev))
531 			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
532 		kunmap_atomic(pt_vaddr);
533 
534 		pte = 0;
535 		if (++pde == I915_PDES) {
536 			pdpe++;
537 			pde = 0;
538 		}
539 	}
540 }
541 
542 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
543 				      struct sg_table *pages,
544 				      uint64_t start,
545 				      enum i915_cache_level cache_level, u32 unused)
546 {
547 	struct i915_hw_ppgtt *ppgtt =
548 		container_of(vm, struct i915_hw_ppgtt, base);
549 	gen8_pte_t *pt_vaddr;
550 	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
551 	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
552 	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
553 	struct sg_page_iter sg_iter;
554 
555 	pt_vaddr = NULL;
556 
557 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
558 		if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
559 			break;
560 
561 		if (pt_vaddr == NULL) {
562 			struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[pdpe];
563 			struct i915_page_table_entry *pt = pd->page_table[pde];
564 			struct page *page_table = pt->page;
565 
566 			pt_vaddr = kmap_atomic(page_table);
567 		}
568 
569 		pt_vaddr[pte] =
570 			gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
571 					cache_level, true);
572 		if (++pte == GEN8_PTES) {
573 			if (!HAS_LLC(ppgtt->base.dev))
574 				drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
575 			kunmap_atomic(pt_vaddr);
576 			pt_vaddr = NULL;
577 			if (++pde == I915_PDES) {
578 				pdpe++;
579 				pde = 0;
580 			}
581 			pte = 0;
582 		}
583 	}
584 	if (pt_vaddr) {
585 		if (!HAS_LLC(ppgtt->base.dev))
586 			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
587 		kunmap_atomic(pt_vaddr);
588 	}
589 }
590 
591 static void gen8_free_page_tables(struct i915_page_directory_entry *pd, struct drm_device *dev)
592 {
593 	int i;
594 
595 	if (!pd->page)
596 		return;
597 
598 	for (i = 0; i < I915_PDES; i++) {
599 		if (WARN_ON(!pd->page_table[i]))
600 			continue;
601 
602 		unmap_and_free_pt(pd->page_table[i], dev);
603 		pd->page_table[i] = NULL;
604 	}
605 }
606 
607 static void gen8_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
608 {
609 	int i;
610 
611 	for (i = 0; i < ppgtt->num_pd_pages; i++) {
612 		if (WARN_ON(!ppgtt->pdp.page_directory[i]))
613 			continue;
614 
615 		gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
616 		unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
617 	}
618 }
619 
620 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
621 {
622 	struct pci_dev *hwdev = ppgtt->base.dev->pdev;
623 	int i, j;
624 
625 	for (i = 0; i < ppgtt->num_pd_pages; i++) {
626 		/* TODO: In the future we'll support sparse mappings, so this
627 		 * will have to change. */
628 		if (!ppgtt->pdp.page_directory[i]->daddr)
629 			continue;
630 
631 		pci_unmap_page(hwdev, ppgtt->pdp.page_directory[i]->daddr, PAGE_SIZE,
632 			       PCI_DMA_BIDIRECTIONAL);
633 
634 		for (j = 0; j < I915_PDES; j++) {
635 			struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[i];
636 			struct i915_page_table_entry *pt;
637 			dma_addr_t addr;
638 
639 			if (WARN_ON(!pd->page_table[j]))
640 				continue;
641 
642 			pt = pd->page_table[j];
643 			addr = pt->daddr;
644 
645 			if (addr)
646 				pci_unmap_page(hwdev, addr, PAGE_SIZE,
647 					       PCI_DMA_BIDIRECTIONAL);
648 		}
649 	}
650 }
651 
652 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
653 {
654 	struct i915_hw_ppgtt *ppgtt =
655 		container_of(vm, struct i915_hw_ppgtt, base);
656 
657 	gen8_ppgtt_unmap_pages(ppgtt);
658 	gen8_ppgtt_free(ppgtt);
659 }
660 
661 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
662 {
663 	int i, ret;
664 
665 	for (i = 0; i < ppgtt->num_pd_pages; i++) {
666 		ret = alloc_pt_range(ppgtt->pdp.page_directory[i],
667 				     0, I915_PDES, ppgtt->base.dev);
668 		if (ret)
669 			goto unwind_out;
670 	}
671 
672 	return 0;
673 
674 unwind_out:
675 	while (i--)
676 		gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
677 
678 	return -ENOMEM;
679 }
680 
681 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
682 						const int max_pdp)
683 {
684 	int i;
685 
686 	for (i = 0; i < max_pdp; i++) {
687 		ppgtt->pdp.page_directory[i] = alloc_pd_single();
688 		if (IS_ERR(ppgtt->pdp.page_directory[i]))
689 			goto unwind_out;
690 	}
691 
692 	ppgtt->num_pd_pages = max_pdp;
693 	BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPES);
694 
695 	return 0;
696 
697 unwind_out:
698 	while (i--)
699 		unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
700 
701 	return -ENOMEM;
702 }
703 
704 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
705 			    const int max_pdp)
706 {
707 	int ret;
708 
709 	ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
710 	if (ret)
711 		return ret;
712 
713 	ret = gen8_ppgtt_allocate_page_tables(ppgtt);
714 	if (ret)
715 		goto err_out;
716 
717 	ppgtt->num_pd_entries = max_pdp * I915_PDES;
718 
719 	return 0;
720 
721 err_out:
722 	gen8_ppgtt_free(ppgtt);
723 	return ret;
724 }
725 
726 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
727 					     const int pd)
728 {
729 	dma_addr_t pd_addr;
730 	int ret;
731 
732 	pd_addr = pci_map_page(ppgtt->base.dev->pdev,
733 			       ppgtt->pdp.page_directory[pd]->page, 0,
734 			       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
735 
736 	ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
737 	if (ret)
738 		return ret;
739 
740 	ppgtt->pdp.page_directory[pd]->daddr = pd_addr;
741 
742 	return 0;
743 }
744 
745 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
746 					const int pd,
747 					const int pt)
748 {
749 	dma_addr_t pt_addr;
750 	struct i915_page_directory_entry *pdir = ppgtt->pdp.page_directory[pd];
751 	struct i915_page_table_entry *ptab = pdir->page_table[pt];
752 	struct page *p = ptab->page;
753 	int ret;
754 
755 	pt_addr = pci_map_page(ppgtt->base.dev->pdev,
756 			       p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
757 	ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
758 	if (ret)
759 		return ret;
760 
761 	ptab->daddr = pt_addr;
762 
763 	return 0;
764 }
765 
766 /*
767  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
768  * with a net effect resembling a 2-level page table in normal x86 terms. Each
769  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
770  * space.
771  *
772  * FIXME: split allocation into smaller pieces. For now we only ever do this
773  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
774  * TODO: Do something with the size parameter
775  */
776 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
777 {
778 	const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
779 	const int min_pt_pages = I915_PDES * max_pdp;
780 	int i, j, ret;
781 
782 	if (size % (1<<30))
783 		DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
784 
785 	/* 1. Do all our allocations for page directories and page tables.
786 	 * We allocate more than was asked so that we can point the unused parts
787 	 * to valid entries that point to scratch page. Dynamic page tables
788 	 * will fix this eventually.
789 	 */
790 	ret = gen8_ppgtt_alloc(ppgtt, GEN8_LEGACY_PDPES);
791 	if (ret)
792 		return ret;
793 
794 	/*
795 	 * 2. Create DMA mappings for the page directories and page tables.
796 	 */
797 	for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
798 		ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
799 		if (ret)
800 			goto bail;
801 
802 		for (j = 0; j < I915_PDES; j++) {
803 			ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
804 			if (ret)
805 				goto bail;
806 		}
807 	}
808 
809 	/*
810 	 * 3. Map all the page directory entires to point to the page tables
811 	 * we've allocated.
812 	 *
813 	 * For now, the PPGTT helper functions all require that the PDEs are
814 	 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
815 	 * will never need to touch the PDEs again.
816 	 */
817 	for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
818 		struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[i];
819 		gen8_pde_t *pd_vaddr;
820 		pd_vaddr = kmap_atomic(ppgtt->pdp.page_directory[i]->page);
821 		for (j = 0; j < I915_PDES; j++) {
822 			struct i915_page_table_entry *pt = pd->page_table[j];
823 			dma_addr_t addr = pt->daddr;
824 			pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
825 						      I915_CACHE_LLC);
826 		}
827 		if (!HAS_LLC(ppgtt->base.dev))
828 			drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
829 		kunmap_atomic(pd_vaddr);
830 	}
831 
832 	ppgtt->switch_mm = gen8_mm_switch;
833 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
834 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
835 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
836 	ppgtt->base.start = 0;
837 
838 	/* This is the area that we advertise as usable for the caller */
839 	ppgtt->base.total = max_pdp * I915_PDES * GEN8_PTES * PAGE_SIZE;
840 
841 	/* Set all ptes to a valid scratch page. Also above requested space */
842 	ppgtt->base.clear_range(&ppgtt->base, 0,
843 				ppgtt->num_pd_pages * GEN8_PTES * PAGE_SIZE,
844 				true);
845 
846 	DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
847 			 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
848 	DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
849 			 ppgtt->num_pd_entries,
850 			 (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
851 	return 0;
852 
853 bail:
854 	gen8_ppgtt_unmap_pages(ppgtt);
855 	gen8_ppgtt_free(ppgtt);
856 	return ret;
857 }
858 
859 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
860 {
861 	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
862 	struct i915_address_space *vm = &ppgtt->base;
863 	gen6_pte_t __iomem *pd_addr;
864 	gen6_pte_t scratch_pte;
865 	uint32_t pd_entry;
866 	int pte, pde;
867 
868 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
869 
870 	pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
871 		ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
872 
873 	seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
874 		   ppgtt->pd.pd_offset,
875 		   ppgtt->pd.pd_offset + ppgtt->num_pd_entries);
876 	for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
877 		u32 expected;
878 		gen6_pte_t *pt_vaddr;
879 		dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
880 		pd_entry = readl(pd_addr + pde);
881 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
882 
883 		if (pd_entry != expected)
884 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
885 				   pde,
886 				   pd_entry,
887 				   expected);
888 		seq_printf(m, "\tPDE: %x\n", pd_entry);
889 
890 		pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
891 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
892 			unsigned long va =
893 				(pde * PAGE_SIZE * GEN6_PTES) +
894 				(pte * PAGE_SIZE);
895 			int i;
896 			bool found = false;
897 			for (i = 0; i < 4; i++)
898 				if (pt_vaddr[pte + i] != scratch_pte)
899 					found = true;
900 			if (!found)
901 				continue;
902 
903 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
904 			for (i = 0; i < 4; i++) {
905 				if (pt_vaddr[pte + i] != scratch_pte)
906 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
907 				else
908 					seq_puts(m, "  SCRATCH ");
909 			}
910 			seq_puts(m, "\n");
911 		}
912 		kunmap_atomic(pt_vaddr);
913 	}
914 }
915 
916 /* Write pde (index) from the page directory @pd to the page table @pt */
917 static void gen6_write_pde(struct i915_page_directory_entry *pd,
918 			    const int pde, struct i915_page_table_entry *pt)
919 {
920 	/* Caller needs to make sure the write completes if necessary */
921 	struct i915_hw_ppgtt *ppgtt =
922 		container_of(pd, struct i915_hw_ppgtt, pd);
923 	u32 pd_entry;
924 
925 	pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
926 	pd_entry |= GEN6_PDE_VALID;
927 
928 	writel(pd_entry, ppgtt->pd_addr + pde);
929 }
930 
931 /* Write all the page tables found in the ppgtt structure to incrementing page
932  * directories. */
933 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
934 				  struct i915_page_directory_entry *pd,
935 				  uint32_t start, uint32_t length)
936 {
937 	struct i915_page_table_entry *pt;
938 	uint32_t pde, temp;
939 
940 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
941 		gen6_write_pde(pd, pde, pt);
942 
943 	/* Make sure write is complete before other code can use this page
944 	 * table. Also require for WC mapped PTEs */
945 	readl(dev_priv->gtt.gsm);
946 }
947 
948 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
949 {
950 	BUG_ON(ppgtt->pd.pd_offset & 0x3f);
951 
952 	return (ppgtt->pd.pd_offset / 64) << 16;
953 }
954 
955 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
956 			 struct intel_engine_cs *ring)
957 {
958 	int ret;
959 
960 	/* NB: TLBs must be flushed and invalidated before a switch */
961 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
962 	if (ret)
963 		return ret;
964 
965 	ret = intel_ring_begin(ring, 6);
966 	if (ret)
967 		return ret;
968 
969 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
970 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
971 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
972 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
973 	intel_ring_emit(ring, get_pd_offset(ppgtt));
974 	intel_ring_emit(ring, MI_NOOP);
975 	intel_ring_advance(ring);
976 
977 	return 0;
978 }
979 
980 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
981 			  struct intel_engine_cs *ring)
982 {
983 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
984 
985 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
986 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
987 	return 0;
988 }
989 
990 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
991 			  struct intel_engine_cs *ring)
992 {
993 	int ret;
994 
995 	/* NB: TLBs must be flushed and invalidated before a switch */
996 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
997 	if (ret)
998 		return ret;
999 
1000 	ret = intel_ring_begin(ring, 6);
1001 	if (ret)
1002 		return ret;
1003 
1004 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1005 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1006 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1007 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1008 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1009 	intel_ring_emit(ring, MI_NOOP);
1010 	intel_ring_advance(ring);
1011 
1012 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1013 	if (ring->id != RCS) {
1014 		ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1015 		if (ret)
1016 			return ret;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1023 			  struct intel_engine_cs *ring)
1024 {
1025 	struct drm_device *dev = ppgtt->base.dev;
1026 	struct drm_i915_private *dev_priv = dev->dev_private;
1027 
1028 
1029 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1030 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1031 
1032 	POSTING_READ(RING_PP_DIR_DCLV(ring));
1033 
1034 	return 0;
1035 }
1036 
1037 static void gen8_ppgtt_enable(struct drm_device *dev)
1038 {
1039 	struct drm_i915_private *dev_priv = dev->dev_private;
1040 	struct intel_engine_cs *ring;
1041 	int j;
1042 
1043 	for_each_ring(ring, dev_priv, j) {
1044 		I915_WRITE(RING_MODE_GEN7(ring),
1045 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1046 	}
1047 }
1048 
1049 static void gen7_ppgtt_enable(struct drm_device *dev)
1050 {
1051 	struct drm_i915_private *dev_priv = dev->dev_private;
1052 	struct intel_engine_cs *ring;
1053 	uint32_t ecochk, ecobits;
1054 	int i;
1055 
1056 	ecobits = I915_READ(GAC_ECO_BITS);
1057 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1058 
1059 	ecochk = I915_READ(GAM_ECOCHK);
1060 	if (IS_HASWELL(dev)) {
1061 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1062 	} else {
1063 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1064 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1065 	}
1066 	I915_WRITE(GAM_ECOCHK, ecochk);
1067 
1068 	for_each_ring(ring, dev_priv, i) {
1069 		/* GFX_MODE is per-ring on gen7+ */
1070 		I915_WRITE(RING_MODE_GEN7(ring),
1071 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1072 	}
1073 }
1074 
1075 static void gen6_ppgtt_enable(struct drm_device *dev)
1076 {
1077 	struct drm_i915_private *dev_priv = dev->dev_private;
1078 	uint32_t ecochk, gab_ctl, ecobits;
1079 
1080 	ecobits = I915_READ(GAC_ECO_BITS);
1081 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1082 		   ECOBITS_PPGTT_CACHE64B);
1083 
1084 	gab_ctl = I915_READ(GAB_CTL);
1085 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1086 
1087 	ecochk = I915_READ(GAM_ECOCHK);
1088 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1089 
1090 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1091 }
1092 
1093 /* PPGTT support for Sandybdrige/Gen6 and later */
1094 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1095 				   uint64_t start,
1096 				   uint64_t length,
1097 				   bool use_scratch)
1098 {
1099 	struct i915_hw_ppgtt *ppgtt =
1100 		container_of(vm, struct i915_hw_ppgtt, base);
1101 	gen6_pte_t *pt_vaddr, scratch_pte;
1102 	unsigned first_entry = start >> PAGE_SHIFT;
1103 	unsigned num_entries = length >> PAGE_SHIFT;
1104 	unsigned act_pt = first_entry / GEN6_PTES;
1105 	unsigned first_pte = first_entry % GEN6_PTES;
1106 	unsigned last_pte, i;
1107 
1108 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1109 
1110 	while (num_entries) {
1111 		last_pte = first_pte + num_entries;
1112 		if (last_pte > GEN6_PTES)
1113 			last_pte = GEN6_PTES;
1114 
1115 		pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1116 
1117 		for (i = first_pte; i < last_pte; i++)
1118 			pt_vaddr[i] = scratch_pte;
1119 
1120 		kunmap_atomic(pt_vaddr);
1121 
1122 		num_entries -= last_pte - first_pte;
1123 		first_pte = 0;
1124 		act_pt++;
1125 	}
1126 }
1127 
1128 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1129 				      struct sg_table *pages,
1130 				      uint64_t start,
1131 				      enum i915_cache_level cache_level, u32 flags)
1132 {
1133 	struct i915_hw_ppgtt *ppgtt =
1134 		container_of(vm, struct i915_hw_ppgtt, base);
1135 	gen6_pte_t *pt_vaddr;
1136 	unsigned first_entry = start >> PAGE_SHIFT;
1137 	unsigned act_pt = first_entry / GEN6_PTES;
1138 	unsigned act_pte = first_entry % GEN6_PTES;
1139 	struct sg_page_iter sg_iter;
1140 
1141 	pt_vaddr = NULL;
1142 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1143 		if (pt_vaddr == NULL)
1144 			pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1145 
1146 		pt_vaddr[act_pte] =
1147 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1148 				       cache_level, true, flags);
1149 
1150 		if (++act_pte == GEN6_PTES) {
1151 			kunmap_atomic(pt_vaddr);
1152 			pt_vaddr = NULL;
1153 			act_pt++;
1154 			act_pte = 0;
1155 		}
1156 	}
1157 	if (pt_vaddr)
1158 		kunmap_atomic(pt_vaddr);
1159 }
1160 
1161 /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1162  * are switching between contexts with the same LRCA, we also must do a force
1163  * restore.
1164  */
1165 static inline void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1166 {
1167 	/* If current vm != vm, */
1168 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1169 }
1170 
1171 static void gen6_initialize_pt(struct i915_address_space *vm,
1172 		struct i915_page_table_entry *pt)
1173 {
1174 	gen6_pte_t *pt_vaddr, scratch_pte;
1175 	int i;
1176 
1177 	WARN_ON(vm->scratch.addr == 0);
1178 
1179 	scratch_pte = vm->pte_encode(vm->scratch.addr,
1180 			I915_CACHE_LLC, true, 0);
1181 
1182 	pt_vaddr = kmap_atomic(pt->page);
1183 
1184 	for (i = 0; i < GEN6_PTES; i++)
1185 		pt_vaddr[i] = scratch_pte;
1186 
1187 	kunmap_atomic(pt_vaddr);
1188 }
1189 
1190 static int gen6_alloc_va_range(struct i915_address_space *vm,
1191 			       uint64_t start, uint64_t length)
1192 {
1193 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1194 	struct drm_device *dev = vm->dev;
1195 	struct drm_i915_private *dev_priv = dev->dev_private;
1196 	struct i915_hw_ppgtt *ppgtt =
1197 				container_of(vm, struct i915_hw_ppgtt, base);
1198 	struct i915_page_table_entry *pt;
1199 	const uint32_t start_save = start, length_save = length;
1200 	uint32_t pde, temp;
1201 	int ret;
1202 
1203 	WARN_ON(upper_32_bits(start));
1204 
1205 	bitmap_zero(new_page_tables, I915_PDES);
1206 
1207 	/* The allocation is done in two stages so that we can bail out with
1208 	 * minimal amount of pain. The first stage finds new page tables that
1209 	 * need allocation. The second stage marks use ptes within the page
1210 	 * tables.
1211 	 */
1212 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1213 		if (pt != ppgtt->scratch_pt) {
1214 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1215 			continue;
1216 		}
1217 
1218 		/* We've already allocated a page table */
1219 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1220 
1221 		pt = alloc_pt_single(dev);
1222 		if (IS_ERR(pt)) {
1223 			ret = PTR_ERR(pt);
1224 			goto unwind_out;
1225 		}
1226 
1227 		gen6_initialize_pt(vm, pt);
1228 
1229 		ppgtt->pd.page_table[pde] = pt;
1230 		set_bit(pde, new_page_tables);
1231 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1232 	}
1233 
1234 	start = start_save;
1235 	length = length_save;
1236 
1237 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1238 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1239 
1240 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1241 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1242 			   gen6_pte_count(start, length));
1243 
1244 		if (test_and_clear_bit(pde, new_page_tables))
1245 			gen6_write_pde(&ppgtt->pd, pde, pt);
1246 
1247 		trace_i915_page_table_entry_map(vm, pde, pt,
1248 					 gen6_pte_index(start),
1249 					 gen6_pte_count(start, length),
1250 					 GEN6_PTES);
1251 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1252 				GEN6_PTES);
1253 	}
1254 
1255 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1256 
1257 	/* Make sure write is complete before other code can use this page
1258 	 * table. Also require for WC mapped PTEs */
1259 	readl(dev_priv->gtt.gsm);
1260 
1261 	mark_tlbs_dirty(ppgtt);
1262 	return 0;
1263 
1264 unwind_out:
1265 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1266 		struct i915_page_table_entry *pt = ppgtt->pd.page_table[pde];
1267 
1268 		ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1269 		unmap_and_free_pt(pt, vm->dev);
1270 	}
1271 
1272 	mark_tlbs_dirty(ppgtt);
1273 	return ret;
1274 }
1275 
1276 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1277 {
1278 	int i;
1279 
1280 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
1281 		struct i915_page_table_entry *pt = ppgtt->pd.page_table[i];
1282 
1283 		if (pt != ppgtt->scratch_pt)
1284 			unmap_and_free_pt(ppgtt->pd.page_table[i], ppgtt->base.dev);
1285 	}
1286 
1287 	unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1288 	unmap_and_free_pd(&ppgtt->pd);
1289 }
1290 
1291 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1292 {
1293 	struct i915_hw_ppgtt *ppgtt =
1294 		container_of(vm, struct i915_hw_ppgtt, base);
1295 
1296 	drm_mm_remove_node(&ppgtt->node);
1297 
1298 	gen6_ppgtt_free(ppgtt);
1299 }
1300 
1301 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1302 {
1303 	struct drm_device *dev = ppgtt->base.dev;
1304 	struct drm_i915_private *dev_priv = dev->dev_private;
1305 	bool retried = false;
1306 	int ret;
1307 
1308 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1309 	 * allocator works in address space sizes, so it's multiplied by page
1310 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1311 	 */
1312 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1313 	ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1314 	if (IS_ERR(ppgtt->scratch_pt))
1315 		return PTR_ERR(ppgtt->scratch_pt);
1316 
1317 	gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1318 
1319 alloc:
1320 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1321 						  &ppgtt->node, GEN6_PD_SIZE,
1322 						  GEN6_PD_ALIGN, 0,
1323 						  0, dev_priv->gtt.base.total,
1324 						  DRM_MM_TOPDOWN);
1325 	if (ret == -ENOSPC && !retried) {
1326 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1327 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
1328 					       I915_CACHE_NONE,
1329 					       0, dev_priv->gtt.base.total,
1330 					       0);
1331 		if (ret)
1332 			goto err_out;
1333 
1334 		retried = true;
1335 		goto alloc;
1336 	}
1337 
1338 	if (ret)
1339 		goto err_out;
1340 
1341 
1342 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1343 		DRM_DEBUG("Forced to use aperture for PDEs\n");
1344 
1345 	ppgtt->num_pd_entries = I915_PDES;
1346 	return 0;
1347 
1348 err_out:
1349 	unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1350 	return ret;
1351 }
1352 
1353 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1354 {
1355 	return gen6_ppgtt_allocate_page_directories(ppgtt);
1356 }
1357 
1358 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1359 				  uint64_t start, uint64_t length)
1360 {
1361 	struct i915_page_table_entry *unused;
1362 	uint32_t pde, temp;
1363 
1364 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1365 		ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1366 }
1367 
1368 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt, bool aliasing)
1369 {
1370 	struct drm_device *dev = ppgtt->base.dev;
1371 	struct drm_i915_private *dev_priv = dev->dev_private;
1372 	int ret;
1373 
1374 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1375 	if (IS_GEN6(dev)) {
1376 		ppgtt->switch_mm = gen6_mm_switch;
1377 	} else if (IS_HASWELL(dev)) {
1378 		ppgtt->switch_mm = hsw_mm_switch;
1379 	} else if (IS_GEN7(dev)) {
1380 		ppgtt->switch_mm = gen7_mm_switch;
1381 	} else
1382 		BUG();
1383 
1384 	if (intel_vgpu_active(dev))
1385 		ppgtt->switch_mm = vgpu_mm_switch;
1386 
1387 	ret = gen6_ppgtt_alloc(ppgtt);
1388 	if (ret)
1389 		return ret;
1390 
1391 	if (aliasing) {
1392 		/* preallocate all pts */
1393 		ret = alloc_pt_range(&ppgtt->pd, 0, ppgtt->num_pd_entries,
1394 				ppgtt->base.dev);
1395 
1396 		if (ret) {
1397 			gen6_ppgtt_cleanup(&ppgtt->base);
1398 			return ret;
1399 		}
1400 	}
1401 
1402 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1403 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1404 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1405 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1406 	ppgtt->base.start = 0;
1407 	ppgtt->base.total = ppgtt->num_pd_entries * GEN6_PTES * PAGE_SIZE;
1408 	ppgtt->debug_dump = gen6_dump_ppgtt;
1409 
1410 	ppgtt->pd.pd_offset =
1411 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1412 
1413 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1414 		ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1415 
1416 	if (aliasing)
1417 		ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1418 	else
1419 		gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1420 
1421 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1422 
1423 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1424 			 ppgtt->node.size >> 20,
1425 			 ppgtt->node.start / PAGE_SIZE);
1426 
1427 	DRM_DEBUG("Adding PPGTT at offset %x\n",
1428 		  ppgtt->pd.pd_offset << 10);
1429 
1430 	return 0;
1431 }
1432 
1433 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt,
1434 		bool aliasing)
1435 {
1436 	struct drm_i915_private *dev_priv = dev->dev_private;
1437 
1438 	ppgtt->base.dev = dev;
1439 	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1440 
1441 	if (INTEL_INFO(dev)->gen < 8)
1442 		return gen6_ppgtt_init(ppgtt, aliasing);
1443 	else
1444 		return gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1445 }
1446 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1447 {
1448 	struct drm_i915_private *dev_priv = dev->dev_private;
1449 	int ret = 0;
1450 
1451 	ret = __hw_ppgtt_init(dev, ppgtt, false);
1452 	if (ret == 0) {
1453 		kref_init(&ppgtt->ref);
1454 		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1455 			    ppgtt->base.total);
1456 		i915_init_vm(dev_priv, &ppgtt->base);
1457 	}
1458 
1459 	return ret;
1460 }
1461 
1462 int i915_ppgtt_init_hw(struct drm_device *dev)
1463 {
1464 	struct drm_i915_private *dev_priv = dev->dev_private;
1465 	struct intel_engine_cs *ring;
1466 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1467 	int i, ret = 0;
1468 
1469 	/* In the case of execlists, PPGTT is enabled by the context descriptor
1470 	 * and the PDPs are contained within the context itself.  We don't
1471 	 * need to do anything here. */
1472 	if (i915.enable_execlists)
1473 		return 0;
1474 
1475 	if (!USES_PPGTT(dev))
1476 		return 0;
1477 
1478 	if (IS_GEN6(dev))
1479 		gen6_ppgtt_enable(dev);
1480 	else if (IS_GEN7(dev))
1481 		gen7_ppgtt_enable(dev);
1482 	else if (INTEL_INFO(dev)->gen >= 8)
1483 		gen8_ppgtt_enable(dev);
1484 	else
1485 		MISSING_CASE(INTEL_INFO(dev)->gen);
1486 
1487 	if (ppgtt) {
1488 		for_each_ring(ring, dev_priv, i) {
1489 			ret = ppgtt->switch_mm(ppgtt, ring);
1490 			if (ret != 0)
1491 				return ret;
1492 		}
1493 	}
1494 
1495 	return ret;
1496 }
1497 struct i915_hw_ppgtt *
1498 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1499 {
1500 	struct i915_hw_ppgtt *ppgtt;
1501 	int ret;
1502 
1503 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1504 	if (!ppgtt)
1505 		return ERR_PTR(-ENOMEM);
1506 
1507 	ret = i915_ppgtt_init(dev, ppgtt);
1508 	if (ret) {
1509 		kfree(ppgtt);
1510 		return ERR_PTR(ret);
1511 	}
1512 
1513 	ppgtt->file_priv = fpriv;
1514 
1515 	trace_i915_ppgtt_create(&ppgtt->base);
1516 
1517 	return ppgtt;
1518 }
1519 
1520 void  i915_ppgtt_release(struct kref *kref)
1521 {
1522 	struct i915_hw_ppgtt *ppgtt =
1523 		container_of(kref, struct i915_hw_ppgtt, ref);
1524 
1525 	trace_i915_ppgtt_release(&ppgtt->base);
1526 
1527 	/* vmas should already be unbound */
1528 	WARN_ON(!list_empty(&ppgtt->base.active_list));
1529 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1530 
1531 	list_del(&ppgtt->base.global_link);
1532 	drm_mm_takedown(&ppgtt->base.mm);
1533 
1534 	ppgtt->base.cleanup(&ppgtt->base);
1535 	kfree(ppgtt);
1536 }
1537 
1538 static void
1539 ppgtt_bind_vma(struct i915_vma *vma,
1540 	       enum i915_cache_level cache_level,
1541 	       u32 flags)
1542 {
1543 	/* Currently applicable only to VLV */
1544 	if (vma->obj->gt_ro)
1545 		flags |= PTE_READ_ONLY;
1546 
1547 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1548 				cache_level, flags);
1549 }
1550 
1551 static void ppgtt_unbind_vma(struct i915_vma *vma)
1552 {
1553 	vma->vm->clear_range(vma->vm,
1554 			     vma->node.start,
1555 			     vma->obj->base.size,
1556 			     true);
1557 }
1558 
1559 extern int intel_iommu_gfx_mapped;
1560 /* Certain Gen5 chipsets require require idling the GPU before
1561  * unmapping anything from the GTT when VT-d is enabled.
1562  */
1563 static inline bool needs_idle_maps(struct drm_device *dev)
1564 {
1565 #ifdef CONFIG_INTEL_IOMMU
1566 	/* Query intel_iommu to see if we need the workaround. Presumably that
1567 	 * was loaded first.
1568 	 */
1569 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1570 		return true;
1571 #endif
1572 	return false;
1573 }
1574 
1575 static bool do_idling(struct drm_i915_private *dev_priv)
1576 {
1577 	bool ret = dev_priv->mm.interruptible;
1578 
1579 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
1580 		dev_priv->mm.interruptible = false;
1581 		if (i915_gpu_idle(dev_priv->dev)) {
1582 			DRM_ERROR("Couldn't idle GPU\n");
1583 			/* Wait a bit, in hopes it avoids the hang */
1584 			udelay(10);
1585 		}
1586 	}
1587 
1588 	return ret;
1589 }
1590 
1591 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1592 {
1593 	if (unlikely(dev_priv->gtt.do_idle_maps))
1594 		dev_priv->mm.interruptible = interruptible;
1595 }
1596 
1597 void i915_check_and_clear_faults(struct drm_device *dev)
1598 {
1599 	struct drm_i915_private *dev_priv = dev->dev_private;
1600 	struct intel_engine_cs *ring;
1601 	int i;
1602 
1603 	if (INTEL_INFO(dev)->gen < 6)
1604 		return;
1605 
1606 	for_each_ring(ring, dev_priv, i) {
1607 		u32 fault_reg;
1608 		fault_reg = I915_READ(RING_FAULT_REG(ring));
1609 		if (fault_reg & RING_FAULT_VALID) {
1610 			DRM_DEBUG_DRIVER("Unexpected fault\n"
1611 					 "\tAddr: 0x%08lx\n"
1612 					 "\tAddress space: %s\n"
1613 					 "\tSource ID: %d\n"
1614 					 "\tType: %d\n",
1615 					 fault_reg & PAGE_MASK,
1616 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1617 					 RING_FAULT_SRCID(fault_reg),
1618 					 RING_FAULT_FAULT_TYPE(fault_reg));
1619 			I915_WRITE(RING_FAULT_REG(ring),
1620 				   fault_reg & ~RING_FAULT_VALID);
1621 		}
1622 	}
1623 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1624 }
1625 
1626 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1627 {
1628 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1629 		intel_gtt_chipset_flush();
1630 	} else {
1631 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1632 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
1633 	}
1634 }
1635 
1636 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1637 {
1638 	struct drm_i915_private *dev_priv = dev->dev_private;
1639 
1640 	/* Don't bother messing with faults pre GEN6 as we have little
1641 	 * documentation supporting that it's a good idea.
1642 	 */
1643 	if (INTEL_INFO(dev)->gen < 6)
1644 		return;
1645 
1646 	i915_check_and_clear_faults(dev);
1647 
1648 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1649 				       dev_priv->gtt.base.start,
1650 				       dev_priv->gtt.base.total,
1651 				       true);
1652 
1653 	i915_ggtt_flush(dev_priv);
1654 }
1655 
1656 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1657 {
1658 	struct drm_i915_private *dev_priv = dev->dev_private;
1659 	struct drm_i915_gem_object *obj;
1660 	struct i915_address_space *vm;
1661 
1662 	i915_check_and_clear_faults(dev);
1663 
1664 	/* First fill our portion of the GTT with scratch pages */
1665 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1666 				       dev_priv->gtt.base.start,
1667 				       dev_priv->gtt.base.total,
1668 				       true);
1669 
1670 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1671 		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1672 							   &dev_priv->gtt.base);
1673 		if (!vma)
1674 			continue;
1675 
1676 		i915_gem_clflush_object(obj, obj->pin_display);
1677 		/* The bind_vma code tries to be smart about tracking mappings.
1678 		 * Unfortunately above, we've just wiped out the mappings
1679 		 * without telling our object about it. So we need to fake it.
1680 		 *
1681 		 * Bind is not expected to fail since this is only called on
1682 		 * resume and assumption is all requirements exist already.
1683 		 */
1684 		vma->bound &= ~GLOBAL_BIND;
1685 		WARN_ON(i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND));
1686 	}
1687 
1688 
1689 	if (INTEL_INFO(dev)->gen >= 8) {
1690 		if (IS_CHERRYVIEW(dev))
1691 			chv_setup_private_ppat(dev_priv);
1692 		else
1693 			bdw_setup_private_ppat(dev_priv);
1694 
1695 		return;
1696 	}
1697 
1698 	if (USES_PPGTT(dev)) {
1699 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1700 			/* TODO: Perhaps it shouldn't be gen6 specific */
1701 
1702 			struct i915_hw_ppgtt *ppgtt =
1703 					container_of(vm, struct i915_hw_ppgtt,
1704 						     base);
1705 
1706 			if (i915_is_ggtt(vm))
1707 				ppgtt = dev_priv->mm.aliasing_ppgtt;
1708 
1709 			gen6_write_page_range(dev_priv, &ppgtt->pd,
1710 					      0, ppgtt->base.total);
1711 		}
1712 	}
1713 
1714 	i915_ggtt_flush(dev_priv);
1715 }
1716 
1717 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1718 {
1719 	if (obj->has_dma_mapping)
1720 		return 0;
1721 
1722 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
1723 			obj->pages->sgl, obj->pages->nents,
1724 			PCI_DMA_BIDIRECTIONAL))
1725 		return -ENOSPC;
1726 
1727 	return 0;
1728 }
1729 
1730 static inline void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1731 {
1732 #ifdef writeq
1733 	writeq(pte, addr);
1734 #else
1735 	iowrite32((u32)pte, addr);
1736 	iowrite32(pte >> 32, addr + 4);
1737 #endif
1738 }
1739 
1740 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1741 				     struct sg_table *st,
1742 				     uint64_t start,
1743 				     enum i915_cache_level level, u32 unused)
1744 {
1745 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1746 	unsigned first_entry = start >> PAGE_SHIFT;
1747 	gen8_pte_t __iomem *gtt_entries =
1748 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1749 	int i = 0;
1750 	struct sg_page_iter sg_iter;
1751 	dma_addr_t addr = 0; /* shut up gcc */
1752 
1753 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1754 		addr = sg_dma_address(sg_iter.sg) +
1755 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
1756 		gen8_set_pte(&gtt_entries[i],
1757 			     gen8_pte_encode(addr, level, true));
1758 		i++;
1759 	}
1760 
1761 	/*
1762 	 * XXX: This serves as a posting read to make sure that the PTE has
1763 	 * actually been updated. There is some concern that even though
1764 	 * registers and PTEs are within the same BAR that they are potentially
1765 	 * of NUMA access patterns. Therefore, even with the way we assume
1766 	 * hardware should work, we must keep this posting read for paranoia.
1767 	 */
1768 	if (i != 0)
1769 		WARN_ON(readq(&gtt_entries[i-1])
1770 			!= gen8_pte_encode(addr, level, true));
1771 
1772 	/* This next bit makes the above posting read even more important. We
1773 	 * want to flush the TLBs only after we're certain all the PTE updates
1774 	 * have finished.
1775 	 */
1776 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1777 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1778 }
1779 
1780 /*
1781  * Binds an object into the global gtt with the specified cache level. The object
1782  * will be accessible to the GPU via commands whose operands reference offsets
1783  * within the global GTT as well as accessible by the GPU through the GMADR
1784  * mapped BAR (dev_priv->mm.gtt->gtt).
1785  */
1786 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1787 				     struct sg_table *st,
1788 				     uint64_t start,
1789 				     enum i915_cache_level level, u32 flags)
1790 {
1791 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1792 	unsigned first_entry = start >> PAGE_SHIFT;
1793 	gen6_pte_t __iomem *gtt_entries =
1794 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1795 	int i = 0;
1796 	struct sg_page_iter sg_iter;
1797 	dma_addr_t addr = 0;
1798 
1799 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1800 		addr = sg_page_iter_dma_address(&sg_iter);
1801 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1802 		i++;
1803 	}
1804 
1805 	/* XXX: This serves as a posting read to make sure that the PTE has
1806 	 * actually been updated. There is some concern that even though
1807 	 * registers and PTEs are within the same BAR that they are potentially
1808 	 * of NUMA access patterns. Therefore, even with the way we assume
1809 	 * hardware should work, we must keep this posting read for paranoia.
1810 	 */
1811 	if (i != 0) {
1812 		unsigned long gtt = readl(&gtt_entries[i-1]);
1813 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1814 	}
1815 
1816 	/* This next bit makes the above posting read even more important. We
1817 	 * want to flush the TLBs only after we're certain all the PTE updates
1818 	 * have finished.
1819 	 */
1820 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1821 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1822 }
1823 
1824 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1825 				  uint64_t start,
1826 				  uint64_t length,
1827 				  bool use_scratch)
1828 {
1829 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1830 	unsigned first_entry = start >> PAGE_SHIFT;
1831 	unsigned num_entries = length >> PAGE_SHIFT;
1832 	gen8_pte_t scratch_pte, __iomem *gtt_base =
1833 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1834 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1835 	int i;
1836 
1837 	if (WARN(num_entries > max_entries,
1838 		 "First entry = %d; Num entries = %d (max=%d)\n",
1839 		 first_entry, num_entries, max_entries))
1840 		num_entries = max_entries;
1841 
1842 	scratch_pte = gen8_pte_encode(vm->scratch.addr,
1843 				      I915_CACHE_LLC,
1844 				      use_scratch);
1845 	for (i = 0; i < num_entries; i++)
1846 		gen8_set_pte(&gtt_base[i], scratch_pte);
1847 	readl(gtt_base);
1848 }
1849 
1850 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1851 				  uint64_t start,
1852 				  uint64_t length,
1853 				  bool use_scratch)
1854 {
1855 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1856 	unsigned first_entry = start >> PAGE_SHIFT;
1857 	unsigned num_entries = length >> PAGE_SHIFT;
1858 	gen6_pte_t scratch_pte, __iomem *gtt_base =
1859 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1860 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1861 	int i;
1862 
1863 	if (WARN(num_entries > max_entries,
1864 		 "First entry = %d; Num entries = %d (max=%d)\n",
1865 		 first_entry, num_entries, max_entries))
1866 		num_entries = max_entries;
1867 
1868 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1869 
1870 	for (i = 0; i < num_entries; i++)
1871 		iowrite32(scratch_pte, &gtt_base[i]);
1872 	readl(gtt_base);
1873 }
1874 
1875 
1876 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1877 			       enum i915_cache_level cache_level,
1878 			       u32 unused)
1879 {
1880 	const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1881 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1882 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1883 
1884 	BUG_ON(!i915_is_ggtt(vma->vm));
1885 	intel_gtt_insert_sg_entries(vma->ggtt_view.pages, entry, flags);
1886 	vma->bound = GLOBAL_BIND;
1887 }
1888 
1889 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1890 				  uint64_t start,
1891 				  uint64_t length,
1892 				  bool unused)
1893 {
1894 	unsigned first_entry = start >> PAGE_SHIFT;
1895 	unsigned num_entries = length >> PAGE_SHIFT;
1896 	intel_gtt_clear_range(first_entry, num_entries);
1897 }
1898 
1899 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1900 {
1901 	const unsigned int first = vma->node.start >> PAGE_SHIFT;
1902 	const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1903 
1904 	BUG_ON(!i915_is_ggtt(vma->vm));
1905 	vma->bound = 0;
1906 	intel_gtt_clear_range(first, size);
1907 }
1908 
1909 static void ggtt_bind_vma(struct i915_vma *vma,
1910 			  enum i915_cache_level cache_level,
1911 			  u32 flags)
1912 {
1913 	struct drm_device *dev = vma->vm->dev;
1914 	struct drm_i915_private *dev_priv = dev->dev_private;
1915 	struct drm_i915_gem_object *obj = vma->obj;
1916 	struct sg_table *pages = obj->pages;
1917 
1918 	/* Currently applicable only to VLV */
1919 	if (obj->gt_ro)
1920 		flags |= PTE_READ_ONLY;
1921 
1922 	if (i915_is_ggtt(vma->vm))
1923 		pages = vma->ggtt_view.pages;
1924 
1925 	/* If there is no aliasing PPGTT, or the caller needs a global mapping,
1926 	 * or we have a global mapping already but the cacheability flags have
1927 	 * changed, set the global PTEs.
1928 	 *
1929 	 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1930 	 * instead if none of the above hold true.
1931 	 *
1932 	 * NB: A global mapping should only be needed for special regions like
1933 	 * "gtt mappable", SNB errata, or if specified via special execbuf
1934 	 * flags. At all other times, the GPU will use the aliasing PPGTT.
1935 	 */
1936 	if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1937 		if (!(vma->bound & GLOBAL_BIND) ||
1938 		    (cache_level != obj->cache_level)) {
1939 			vma->vm->insert_entries(vma->vm, pages,
1940 						vma->node.start,
1941 						cache_level, flags);
1942 			vma->bound |= GLOBAL_BIND;
1943 		}
1944 	}
1945 
1946 	if (dev_priv->mm.aliasing_ppgtt &&
1947 	    (!(vma->bound & LOCAL_BIND) ||
1948 	     (cache_level != obj->cache_level))) {
1949 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1950 		appgtt->base.insert_entries(&appgtt->base, pages,
1951 					    vma->node.start,
1952 					    cache_level, flags);
1953 		vma->bound |= LOCAL_BIND;
1954 	}
1955 }
1956 
1957 static void ggtt_unbind_vma(struct i915_vma *vma)
1958 {
1959 	struct drm_device *dev = vma->vm->dev;
1960 	struct drm_i915_private *dev_priv = dev->dev_private;
1961 	struct drm_i915_gem_object *obj = vma->obj;
1962 
1963 	if (vma->bound & GLOBAL_BIND) {
1964 		vma->vm->clear_range(vma->vm,
1965 				     vma->node.start,
1966 				     obj->base.size,
1967 				     true);
1968 		vma->bound &= ~GLOBAL_BIND;
1969 	}
1970 
1971 	if (vma->bound & LOCAL_BIND) {
1972 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1973 		appgtt->base.clear_range(&appgtt->base,
1974 					 vma->node.start,
1975 					 obj->base.size,
1976 					 true);
1977 		vma->bound &= ~LOCAL_BIND;
1978 	}
1979 }
1980 
1981 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1982 {
1983 	struct drm_device *dev = obj->base.dev;
1984 	struct drm_i915_private *dev_priv = dev->dev_private;
1985 	bool interruptible;
1986 
1987 	interruptible = do_idling(dev_priv);
1988 
1989 	if (!obj->has_dma_mapping)
1990 		dma_unmap_sg(&dev->pdev->dev,
1991 			     obj->pages->sgl, obj->pages->nents,
1992 			     PCI_DMA_BIDIRECTIONAL);
1993 
1994 	undo_idling(dev_priv, interruptible);
1995 }
1996 
1997 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1998 				  unsigned long color,
1999 				  u64 *start,
2000 				  u64 *end)
2001 {
2002 	if (node->color != color)
2003 		*start += 4096;
2004 
2005 	if (!list_empty(&node->node_list)) {
2006 		node = list_entry(node->node_list.next,
2007 				  struct drm_mm_node,
2008 				  node_list);
2009 		if (node->allocated && node->color != color)
2010 			*end -= 4096;
2011 	}
2012 }
2013 
2014 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2015 				     unsigned long start,
2016 				     unsigned long mappable_end,
2017 				     unsigned long end)
2018 {
2019 	/* Let GEM Manage all of the aperture.
2020 	 *
2021 	 * However, leave one page at the end still bound to the scratch page.
2022 	 * There are a number of places where the hardware apparently prefetches
2023 	 * past the end of the object, and we've seen multiple hangs with the
2024 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2025 	 * aperture.  One page should be enough to keep any prefetching inside
2026 	 * of the aperture.
2027 	 */
2028 	struct drm_i915_private *dev_priv = dev->dev_private;
2029 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2030 	struct drm_mm_node *entry;
2031 	struct drm_i915_gem_object *obj;
2032 	unsigned long hole_start, hole_end;
2033 	int ret;
2034 
2035 	BUG_ON(mappable_end > end);
2036 
2037 	/* Subtract the guard page ... */
2038 	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2039 
2040 	dev_priv->gtt.base.start = start;
2041 	dev_priv->gtt.base.total = end - start;
2042 
2043 	if (intel_vgpu_active(dev)) {
2044 		ret = intel_vgt_balloon(dev);
2045 		if (ret)
2046 			return ret;
2047 	}
2048 
2049 	if (!HAS_LLC(dev))
2050 		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2051 
2052 	/* Mark any preallocated objects as occupied */
2053 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2054 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2055 
2056 		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2057 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2058 
2059 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2060 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2061 		if (ret) {
2062 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2063 			return ret;
2064 		}
2065 		vma->bound |= GLOBAL_BIND;
2066 	}
2067 
2068 	/* Clear any non-preallocated blocks */
2069 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2070 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2071 			      hole_start, hole_end);
2072 		ggtt_vm->clear_range(ggtt_vm, hole_start,
2073 				     hole_end - hole_start, true);
2074 	}
2075 
2076 	/* And finally clear the reserved guard page */
2077 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2078 
2079 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2080 		struct i915_hw_ppgtt *ppgtt;
2081 
2082 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2083 		if (!ppgtt)
2084 			return -ENOMEM;
2085 
2086 		ret = __hw_ppgtt_init(dev, ppgtt, true);
2087 		if (ret) {
2088 			kfree(ppgtt);
2089 			return ret;
2090 		}
2091 
2092 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2093 	}
2094 
2095 	return 0;
2096 }
2097 
2098 void i915_gem_init_global_gtt(struct drm_device *dev)
2099 {
2100 	struct drm_i915_private *dev_priv = dev->dev_private;
2101 	unsigned long gtt_size, mappable_size;
2102 
2103 	gtt_size = dev_priv->gtt.base.total;
2104 	mappable_size = dev_priv->gtt.mappable_end;
2105 
2106 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2107 }
2108 
2109 void i915_global_gtt_cleanup(struct drm_device *dev)
2110 {
2111 	struct drm_i915_private *dev_priv = dev->dev_private;
2112 	struct i915_address_space *vm = &dev_priv->gtt.base;
2113 
2114 	if (dev_priv->mm.aliasing_ppgtt) {
2115 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2116 
2117 		ppgtt->base.cleanup(&ppgtt->base);
2118 	}
2119 
2120 	if (drm_mm_initialized(&vm->mm)) {
2121 		if (intel_vgpu_active(dev))
2122 			intel_vgt_deballoon();
2123 
2124 		drm_mm_takedown(&vm->mm);
2125 		list_del(&vm->global_link);
2126 	}
2127 
2128 	vm->cleanup(vm);
2129 }
2130 
2131 static int setup_scratch_page(struct drm_device *dev)
2132 {
2133 	struct drm_i915_private *dev_priv = dev->dev_private;
2134 	struct page *page;
2135 	dma_addr_t dma_addr;
2136 
2137 	page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2138 	if (page == NULL)
2139 		return -ENOMEM;
2140 	set_pages_uc(page, 1);
2141 
2142 #ifdef CONFIG_INTEL_IOMMU
2143 	dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2144 				PCI_DMA_BIDIRECTIONAL);
2145 	if (pci_dma_mapping_error(dev->pdev, dma_addr))
2146 		return -EINVAL;
2147 #else
2148 	dma_addr = page_to_phys(page);
2149 #endif
2150 	dev_priv->gtt.base.scratch.page = page;
2151 	dev_priv->gtt.base.scratch.addr = dma_addr;
2152 
2153 	return 0;
2154 }
2155 
2156 static void teardown_scratch_page(struct drm_device *dev)
2157 {
2158 	struct drm_i915_private *dev_priv = dev->dev_private;
2159 	struct page *page = dev_priv->gtt.base.scratch.page;
2160 
2161 	set_pages_wb(page, 1);
2162 	pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2163 		       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2164 	__free_page(page);
2165 }
2166 
2167 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2168 {
2169 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2170 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2171 	return snb_gmch_ctl << 20;
2172 }
2173 
2174 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2175 {
2176 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2177 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2178 	if (bdw_gmch_ctl)
2179 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2180 
2181 #ifdef CONFIG_X86_32
2182 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2183 	if (bdw_gmch_ctl > 4)
2184 		bdw_gmch_ctl = 4;
2185 #endif
2186 
2187 	return bdw_gmch_ctl << 20;
2188 }
2189 
2190 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2191 {
2192 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2193 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2194 
2195 	if (gmch_ctrl)
2196 		return 1 << (20 + gmch_ctrl);
2197 
2198 	return 0;
2199 }
2200 
2201 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2202 {
2203 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2204 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2205 	return snb_gmch_ctl << 25; /* 32 MB units */
2206 }
2207 
2208 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2209 {
2210 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2211 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2212 	return bdw_gmch_ctl << 25; /* 32 MB units */
2213 }
2214 
2215 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2216 {
2217 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2218 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2219 
2220 	/*
2221 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2222 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2223 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2224 	 */
2225 	if (gmch_ctrl < 0x11)
2226 		return gmch_ctrl << 25;
2227 	else if (gmch_ctrl < 0x17)
2228 		return (gmch_ctrl - 0x11 + 2) << 22;
2229 	else
2230 		return (gmch_ctrl - 0x17 + 9) << 22;
2231 }
2232 
2233 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2234 {
2235 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2236 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2237 
2238 	if (gen9_gmch_ctl < 0xf0)
2239 		return gen9_gmch_ctl << 25; /* 32 MB units */
2240 	else
2241 		/* 4MB increments starting at 0xf0 for 4MB */
2242 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2243 }
2244 
2245 static int ggtt_probe_common(struct drm_device *dev,
2246 			     size_t gtt_size)
2247 {
2248 	struct drm_i915_private *dev_priv = dev->dev_private;
2249 	phys_addr_t gtt_phys_addr;
2250 	int ret;
2251 
2252 	/* For Modern GENs the PTEs and register space are split in the BAR */
2253 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2254 		(pci_resource_len(dev->pdev, 0) / 2);
2255 
2256 	dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2257 	if (!dev_priv->gtt.gsm) {
2258 		DRM_ERROR("Failed to map the gtt page table\n");
2259 		return -ENOMEM;
2260 	}
2261 
2262 	ret = setup_scratch_page(dev);
2263 	if (ret) {
2264 		DRM_ERROR("Scratch setup failed\n");
2265 		/* iounmap will also get called at remove, but meh */
2266 		iounmap(dev_priv->gtt.gsm);
2267 	}
2268 
2269 	return ret;
2270 }
2271 
2272 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2273  * bits. When using advanced contexts each context stores its own PAT, but
2274  * writing this data shouldn't be harmful even in those cases. */
2275 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2276 {
2277 	uint64_t pat;
2278 
2279 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2280 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2281 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2282 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2283 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2284 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2285 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2286 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2287 
2288 	if (!USES_PPGTT(dev_priv->dev))
2289 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2290 		 * so RTL will always use the value corresponding to
2291 		 * pat_sel = 000".
2292 		 * So let's disable cache for GGTT to avoid screen corruptions.
2293 		 * MOCS still can be used though.
2294 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2295 		 * before this patch, i.e. the same uncached + snooping access
2296 		 * like on gen6/7 seems to be in effect.
2297 		 * - So this just fixes blitter/render access. Again it looks
2298 		 * like it's not just uncached access, but uncached + snooping.
2299 		 * So we can still hold onto all our assumptions wrt cpu
2300 		 * clflushing on LLC machines.
2301 		 */
2302 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2303 
2304 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2305 	 * write would work. */
2306 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
2307 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2308 }
2309 
2310 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2311 {
2312 	uint64_t pat;
2313 
2314 	/*
2315 	 * Map WB on BDW to snooped on CHV.
2316 	 *
2317 	 * Only the snoop bit has meaning for CHV, the rest is
2318 	 * ignored.
2319 	 *
2320 	 * The hardware will never snoop for certain types of accesses:
2321 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2322 	 * - PPGTT page tables
2323 	 * - some other special cycles
2324 	 *
2325 	 * As with BDW, we also need to consider the following for GT accesses:
2326 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2327 	 * so RTL will always use the value corresponding to
2328 	 * pat_sel = 000".
2329 	 * Which means we must set the snoop bit in PAT entry 0
2330 	 * in order to keep the global status page working.
2331 	 */
2332 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2333 	      GEN8_PPAT(1, 0) |
2334 	      GEN8_PPAT(2, 0) |
2335 	      GEN8_PPAT(3, 0) |
2336 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2337 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2338 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2339 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2340 
2341 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
2342 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2343 }
2344 
2345 static int gen8_gmch_probe(struct drm_device *dev,
2346 			   size_t *gtt_total,
2347 			   size_t *stolen,
2348 			   phys_addr_t *mappable_base,
2349 			   unsigned long *mappable_end)
2350 {
2351 	struct drm_i915_private *dev_priv = dev->dev_private;
2352 	unsigned int gtt_size;
2353 	u16 snb_gmch_ctl;
2354 	int ret;
2355 
2356 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2357 	*mappable_base = pci_resource_start(dev->pdev, 2);
2358 	*mappable_end = pci_resource_len(dev->pdev, 2);
2359 
2360 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2361 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2362 
2363 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2364 
2365 	if (INTEL_INFO(dev)->gen >= 9) {
2366 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
2367 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2368 	} else if (IS_CHERRYVIEW(dev)) {
2369 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
2370 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2371 	} else {
2372 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
2373 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2374 	}
2375 
2376 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2377 
2378 	if (IS_CHERRYVIEW(dev))
2379 		chv_setup_private_ppat(dev_priv);
2380 	else
2381 		bdw_setup_private_ppat(dev_priv);
2382 
2383 	ret = ggtt_probe_common(dev, gtt_size);
2384 
2385 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2386 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2387 
2388 	return ret;
2389 }
2390 
2391 static int gen6_gmch_probe(struct drm_device *dev,
2392 			   size_t *gtt_total,
2393 			   size_t *stolen,
2394 			   phys_addr_t *mappable_base,
2395 			   unsigned long *mappable_end)
2396 {
2397 	struct drm_i915_private *dev_priv = dev->dev_private;
2398 	unsigned int gtt_size;
2399 	u16 snb_gmch_ctl;
2400 	int ret;
2401 
2402 	*mappable_base = pci_resource_start(dev->pdev, 2);
2403 	*mappable_end = pci_resource_len(dev->pdev, 2);
2404 
2405 	/* 64/512MB is the current min/max we actually know of, but this is just
2406 	 * a coarse sanity check.
2407 	 */
2408 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2409 		DRM_ERROR("Unknown GMADR size (%lx)\n",
2410 			  dev_priv->gtt.mappable_end);
2411 		return -ENXIO;
2412 	}
2413 
2414 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2415 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2416 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2417 
2418 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
2419 
2420 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2421 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2422 
2423 	ret = ggtt_probe_common(dev, gtt_size);
2424 
2425 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2426 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2427 
2428 	return ret;
2429 }
2430 
2431 static void gen6_gmch_remove(struct i915_address_space *vm)
2432 {
2433 
2434 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2435 
2436 	iounmap(gtt->gsm);
2437 	teardown_scratch_page(vm->dev);
2438 }
2439 
2440 static int i915_gmch_probe(struct drm_device *dev,
2441 			   size_t *gtt_total,
2442 			   size_t *stolen,
2443 			   phys_addr_t *mappable_base,
2444 			   unsigned long *mappable_end)
2445 {
2446 	struct drm_i915_private *dev_priv = dev->dev_private;
2447 	int ret;
2448 
2449 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2450 	if (!ret) {
2451 		DRM_ERROR("failed to set up gmch\n");
2452 		return -EIO;
2453 	}
2454 
2455 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2456 
2457 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2458 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2459 
2460 	if (unlikely(dev_priv->gtt.do_idle_maps))
2461 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2462 
2463 	return 0;
2464 }
2465 
2466 static void i915_gmch_remove(struct i915_address_space *vm)
2467 {
2468 	intel_gmch_remove();
2469 }
2470 
2471 int i915_gem_gtt_init(struct drm_device *dev)
2472 {
2473 	struct drm_i915_private *dev_priv = dev->dev_private;
2474 	struct i915_gtt *gtt = &dev_priv->gtt;
2475 	int ret;
2476 
2477 	if (INTEL_INFO(dev)->gen <= 5) {
2478 		gtt->gtt_probe = i915_gmch_probe;
2479 		gtt->base.cleanup = i915_gmch_remove;
2480 	} else if (INTEL_INFO(dev)->gen < 8) {
2481 		gtt->gtt_probe = gen6_gmch_probe;
2482 		gtt->base.cleanup = gen6_gmch_remove;
2483 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
2484 			gtt->base.pte_encode = iris_pte_encode;
2485 		else if (IS_HASWELL(dev))
2486 			gtt->base.pte_encode = hsw_pte_encode;
2487 		else if (IS_VALLEYVIEW(dev))
2488 			gtt->base.pte_encode = byt_pte_encode;
2489 		else if (INTEL_INFO(dev)->gen >= 7)
2490 			gtt->base.pte_encode = ivb_pte_encode;
2491 		else
2492 			gtt->base.pte_encode = snb_pte_encode;
2493 	} else {
2494 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2495 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2496 	}
2497 
2498 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2499 			     &gtt->mappable_base, &gtt->mappable_end);
2500 	if (ret)
2501 		return ret;
2502 
2503 	gtt->base.dev = dev;
2504 
2505 	/* GMADR is the PCI mmio aperture into the global GTT. */
2506 	DRM_INFO("Memory usable by graphics device = %zdM\n",
2507 		 gtt->base.total >> 20);
2508 	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2509 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2510 #ifdef CONFIG_INTEL_IOMMU
2511 	if (intel_iommu_gfx_mapped)
2512 		DRM_INFO("VT-d active for gfx access\n");
2513 #endif
2514 	/*
2515 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2516 	 * user's requested state against the hardware/driver capabilities.  We
2517 	 * do this now so that we can print out any log messages once rather
2518 	 * than every time we check intel_enable_ppgtt().
2519 	 */
2520 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2521 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2522 
2523 	return 0;
2524 }
2525 
2526 static struct i915_vma *
2527 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2528 		      struct i915_address_space *vm,
2529 		      const struct i915_ggtt_view *ggtt_view)
2530 {
2531 	struct i915_vma *vma;
2532 
2533 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2534 		return ERR_PTR(-EINVAL);
2535 	vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2536 	if (vma == NULL)
2537 		return ERR_PTR(-ENOMEM);
2538 
2539 	INIT_LIST_HEAD(&vma->vma_link);
2540 	INIT_LIST_HEAD(&vma->mm_list);
2541 	INIT_LIST_HEAD(&vma->exec_list);
2542 	vma->vm = vm;
2543 	vma->obj = obj;
2544 
2545 	if (INTEL_INFO(vm->dev)->gen >= 6) {
2546 		if (i915_is_ggtt(vm)) {
2547 			vma->ggtt_view = *ggtt_view;
2548 
2549 			vma->unbind_vma = ggtt_unbind_vma;
2550 			vma->bind_vma = ggtt_bind_vma;
2551 		} else {
2552 			vma->unbind_vma = ppgtt_unbind_vma;
2553 			vma->bind_vma = ppgtt_bind_vma;
2554 		}
2555 	} else {
2556 		BUG_ON(!i915_is_ggtt(vm));
2557 		vma->ggtt_view = *ggtt_view;
2558 		vma->unbind_vma = i915_ggtt_unbind_vma;
2559 		vma->bind_vma = i915_ggtt_bind_vma;
2560 	}
2561 
2562 	list_add_tail(&vma->vma_link, &obj->vma_list);
2563 	if (!i915_is_ggtt(vm))
2564 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2565 
2566 	return vma;
2567 }
2568 
2569 struct i915_vma *
2570 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2571 				  struct i915_address_space *vm)
2572 {
2573 	struct i915_vma *vma;
2574 
2575 	vma = i915_gem_obj_to_vma(obj, vm);
2576 	if (!vma)
2577 		vma = __i915_gem_vma_create(obj, vm,
2578 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2579 
2580 	return vma;
2581 }
2582 
2583 struct i915_vma *
2584 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2585 				       const struct i915_ggtt_view *view)
2586 {
2587 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2588 	struct i915_vma *vma;
2589 
2590 	if (WARN_ON(!view))
2591 		return ERR_PTR(-EINVAL);
2592 
2593 	vma = i915_gem_obj_to_ggtt_view(obj, view);
2594 
2595 	if (IS_ERR(vma))
2596 		return vma;
2597 
2598 	if (!vma)
2599 		vma = __i915_gem_vma_create(obj, ggtt, view);
2600 
2601 	return vma;
2602 
2603 }
2604 
2605 static void
2606 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2607 	     struct sg_table *st)
2608 {
2609 	unsigned int column, row;
2610 	unsigned int src_idx;
2611 	struct scatterlist *sg = st->sgl;
2612 
2613 	st->nents = 0;
2614 
2615 	for (column = 0; column < width; column++) {
2616 		src_idx = width * (height - 1) + column;
2617 		for (row = 0; row < height; row++) {
2618 			st->nents++;
2619 			/* We don't need the pages, but need to initialize
2620 			 * the entries so the sg list can be happily traversed.
2621 			 * The only thing we need are DMA addresses.
2622 			 */
2623 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
2624 			sg_dma_address(sg) = in[src_idx];
2625 			sg_dma_len(sg) = PAGE_SIZE;
2626 			sg = sg_next(sg);
2627 			src_idx -= width;
2628 		}
2629 	}
2630 }
2631 
2632 static struct sg_table *
2633 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2634 			  struct drm_i915_gem_object *obj)
2635 {
2636 	struct drm_device *dev = obj->base.dev;
2637 	struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2638 	unsigned long size, pages, rot_pages;
2639 	struct sg_page_iter sg_iter;
2640 	unsigned long i;
2641 	dma_addr_t *page_addr_list;
2642 	struct sg_table *st;
2643 	unsigned int tile_pitch, tile_height;
2644 	unsigned int width_pages, height_pages;
2645 	int ret = -ENOMEM;
2646 
2647 	pages = obj->base.size / PAGE_SIZE;
2648 
2649 	/* Calculate tiling geometry. */
2650 	tile_height = intel_tile_height(dev, rot_info->pixel_format,
2651 					rot_info->fb_modifier);
2652 	tile_pitch = PAGE_SIZE / tile_height;
2653 	width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2654 	height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2655 	rot_pages = width_pages * height_pages;
2656 	size = rot_pages * PAGE_SIZE;
2657 
2658 	/* Allocate a temporary list of source pages for random access. */
2659 	page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2660 	if (!page_addr_list)
2661 		return ERR_PTR(ret);
2662 
2663 	/* Allocate target SG list. */
2664 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2665 	if (!st)
2666 		goto err_st_alloc;
2667 
2668 	ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2669 	if (ret)
2670 		goto err_sg_alloc;
2671 
2672 	/* Populate source page list from the object. */
2673 	i = 0;
2674 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2675 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2676 		i++;
2677 	}
2678 
2679 	/* Rotate the pages. */
2680 	rotate_pages(page_addr_list, width_pages, height_pages, st);
2681 
2682 	DRM_DEBUG_KMS(
2683 		      "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2684 		      size, rot_info->pitch, rot_info->height,
2685 		      rot_info->pixel_format, width_pages, height_pages,
2686 		      rot_pages);
2687 
2688 	drm_free_large(page_addr_list);
2689 
2690 	return st;
2691 
2692 err_sg_alloc:
2693 	kfree(st);
2694 err_st_alloc:
2695 	drm_free_large(page_addr_list);
2696 
2697 	DRM_DEBUG_KMS(
2698 		      "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2699 		      size, ret, rot_info->pitch, rot_info->height,
2700 		      rot_info->pixel_format, width_pages, height_pages,
2701 		      rot_pages);
2702 	return ERR_PTR(ret);
2703 }
2704 
2705 static inline int
2706 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2707 {
2708 	int ret = 0;
2709 
2710 	if (vma->ggtt_view.pages)
2711 		return 0;
2712 
2713 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2714 		vma->ggtt_view.pages = vma->obj->pages;
2715 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2716 		vma->ggtt_view.pages =
2717 			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2718 	else
2719 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
2720 			  vma->ggtt_view.type);
2721 
2722 	if (!vma->ggtt_view.pages) {
2723 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2724 			  vma->ggtt_view.type);
2725 		ret = -EINVAL;
2726 	} else if (IS_ERR(vma->ggtt_view.pages)) {
2727 		ret = PTR_ERR(vma->ggtt_view.pages);
2728 		vma->ggtt_view.pages = NULL;
2729 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2730 			  vma->ggtt_view.type, ret);
2731 	}
2732 
2733 	return ret;
2734 }
2735 
2736 /**
2737  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2738  * @vma: VMA to map
2739  * @cache_level: mapping cache level
2740  * @flags: flags like global or local mapping
2741  *
2742  * DMA addresses are taken from the scatter-gather table of this object (or of
2743  * this VMA in case of non-default GGTT views) and PTE entries set up.
2744  * Note that DMA addresses are also the only part of the SG table we care about.
2745  */
2746 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2747 		  u32 flags)
2748 {
2749 	if (i915_is_ggtt(vma->vm)) {
2750 		int ret = i915_get_ggtt_vma_pages(vma);
2751 
2752 		if (ret)
2753 			return ret;
2754 	}
2755 
2756 	vma->bind_vma(vma, cache_level, flags);
2757 
2758 	return 0;
2759 }
2760