1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/*
114 	 * Note that as an uncached mmio write, this will flush the
115 	 * WCB of the writes into the GGTT before it triggers the invalidate.
116 	 */
117 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
118 }
119 
120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
121 {
122 	gen6_ggtt_invalidate(dev_priv);
123 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
124 }
125 
126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
127 {
128 	intel_gtt_chipset_flush();
129 }
130 
131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
132 {
133 	i915->ggtt.invalidate(i915);
134 }
135 
136 static int ppgtt_bind_vma(struct i915_vma *vma,
137 			  enum i915_cache_level cache_level,
138 			  u32 unused)
139 {
140 	u32 pte_flags;
141 	int err;
142 
143 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
144 		err = vma->vm->allocate_va_range(vma->vm,
145 						 vma->node.start, vma->size);
146 		if (err)
147 			return err;
148 	}
149 
150 	/* Applicable to VLV, and gen8+ */
151 	pte_flags = 0;
152 	if (i915_gem_object_is_readonly(vma->obj))
153 		pte_flags |= PTE_READ_ONLY;
154 
155 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
156 
157 	return 0;
158 }
159 
160 static void ppgtt_unbind_vma(struct i915_vma *vma)
161 {
162 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
163 }
164 
165 static int ppgtt_set_pages(struct i915_vma *vma)
166 {
167 	GEM_BUG_ON(vma->pages);
168 
169 	vma->pages = vma->obj->mm.pages;
170 
171 	vma->page_sizes = vma->obj->mm.page_sizes;
172 
173 	return 0;
174 }
175 
176 static void clear_pages(struct i915_vma *vma)
177 {
178 	GEM_BUG_ON(!vma->pages);
179 
180 	if (vma->pages != vma->obj->mm.pages) {
181 		sg_free_table(vma->pages);
182 		kfree(vma->pages);
183 	}
184 	vma->pages = NULL;
185 
186 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
187 }
188 
189 static u64 gen8_pte_encode(dma_addr_t addr,
190 			   enum i915_cache_level level,
191 			   u32 flags)
192 {
193 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
194 
195 	if (unlikely(flags & PTE_READ_ONLY))
196 		pte &= ~_PAGE_RW;
197 
198 	switch (level) {
199 	case I915_CACHE_NONE:
200 		pte |= PPAT_UNCACHED;
201 		break;
202 	case I915_CACHE_WT:
203 		pte |= PPAT_DISPLAY_ELLC;
204 		break;
205 	default:
206 		pte |= PPAT_CACHED;
207 		break;
208 	}
209 
210 	return pte;
211 }
212 
213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
214 				  const enum i915_cache_level level)
215 {
216 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
217 	pde |= addr;
218 	if (level != I915_CACHE_NONE)
219 		pde |= PPAT_CACHED_PDE;
220 	else
221 		pde |= PPAT_UNCACHED;
222 	return pde;
223 }
224 
225 #define gen8_pdpe_encode gen8_pde_encode
226 #define gen8_pml4e_encode gen8_pde_encode
227 
228 static u64 snb_pte_encode(dma_addr_t addr,
229 			  enum i915_cache_level level,
230 			  u32 flags)
231 {
232 	gen6_pte_t pte = GEN6_PTE_VALID;
233 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 
235 	switch (level) {
236 	case I915_CACHE_L3_LLC:
237 	case I915_CACHE_LLC:
238 		pte |= GEN6_PTE_CACHE_LLC;
239 		break;
240 	case I915_CACHE_NONE:
241 		pte |= GEN6_PTE_UNCACHED;
242 		break;
243 	default:
244 		MISSING_CASE(level);
245 	}
246 
247 	return pte;
248 }
249 
250 static u64 ivb_pte_encode(dma_addr_t addr,
251 			  enum i915_cache_level level,
252 			  u32 flags)
253 {
254 	gen6_pte_t pte = GEN6_PTE_VALID;
255 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
256 
257 	switch (level) {
258 	case I915_CACHE_L3_LLC:
259 		pte |= GEN7_PTE_CACHE_L3_LLC;
260 		break;
261 	case I915_CACHE_LLC:
262 		pte |= GEN6_PTE_CACHE_LLC;
263 		break;
264 	case I915_CACHE_NONE:
265 		pte |= GEN6_PTE_UNCACHED;
266 		break;
267 	default:
268 		MISSING_CASE(level);
269 	}
270 
271 	return pte;
272 }
273 
274 static u64 byt_pte_encode(dma_addr_t addr,
275 			  enum i915_cache_level level,
276 			  u32 flags)
277 {
278 	gen6_pte_t pte = GEN6_PTE_VALID;
279 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
280 
281 	if (!(flags & PTE_READ_ONLY))
282 		pte |= BYT_PTE_WRITEABLE;
283 
284 	if (level != I915_CACHE_NONE)
285 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
286 
287 	return pte;
288 }
289 
290 static u64 hsw_pte_encode(dma_addr_t addr,
291 			  enum i915_cache_level level,
292 			  u32 flags)
293 {
294 	gen6_pte_t pte = GEN6_PTE_VALID;
295 	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 
297 	if (level != I915_CACHE_NONE)
298 		pte |= HSW_WB_LLC_AGE3;
299 
300 	return pte;
301 }
302 
303 static u64 iris_pte_encode(dma_addr_t addr,
304 			   enum i915_cache_level level,
305 			   u32 flags)
306 {
307 	gen6_pte_t pte = GEN6_PTE_VALID;
308 	pte |= HSW_PTE_ADDR_ENCODE(addr);
309 
310 	switch (level) {
311 	case I915_CACHE_NONE:
312 		break;
313 	case I915_CACHE_WT:
314 		pte |= HSW_WT_ELLC_LLC_AGE3;
315 		break;
316 	default:
317 		pte |= HSW_WB_ELLC_LLC_AGE3;
318 		break;
319 	}
320 
321 	return pte;
322 }
323 
324 static void stash_init(struct pagestash *stash)
325 {
326 	pagevec_init(&stash->pvec);
327 	spin_lock_init(&stash->lock);
328 }
329 
330 static struct page *stash_pop_page(struct pagestash *stash)
331 {
332 	struct page *page = NULL;
333 
334 	spin_lock(&stash->lock);
335 	if (likely(stash->pvec.nr))
336 		page = stash->pvec.pages[--stash->pvec.nr];
337 	spin_unlock(&stash->lock);
338 
339 	return page;
340 }
341 
342 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
343 {
344 	int nr;
345 
346 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
347 
348 	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
349 	memcpy(stash->pvec.pages + stash->pvec.nr,
350 	       pvec->pages + pvec->nr - nr,
351 	       sizeof(pvec->pages[0]) * nr);
352 	stash->pvec.nr += nr;
353 
354 	spin_unlock(&stash->lock);
355 
356 	pvec->nr -= nr;
357 }
358 
359 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
360 {
361 	struct pagevec stack;
362 	struct page *page;
363 
364 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
365 		i915_gem_shrink_all(vm->i915);
366 
367 	page = stash_pop_page(&vm->free_pages);
368 	if (page)
369 		return page;
370 
371 	if (!vm->pt_kmap_wc)
372 		return alloc_page(gfp);
373 
374 	/* Look in our global stash of WC pages... */
375 	page = stash_pop_page(&vm->i915->mm.wc_stash);
376 	if (page)
377 		return page;
378 
379 	/*
380 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
381 	 *
382 	 * We have to be careful as page allocation may trigger the shrinker
383 	 * (via direct reclaim) which will fill up the WC stash underneath us.
384 	 * So we add our WB pages into a temporary pvec on the stack and merge
385 	 * them into the WC stash after all the allocations are complete.
386 	 */
387 	pagevec_init(&stack);
388 	do {
389 		struct page *page;
390 
391 		page = alloc_page(gfp);
392 		if (unlikely(!page))
393 			break;
394 
395 		stack.pages[stack.nr++] = page;
396 	} while (pagevec_space(&stack));
397 
398 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
399 		page = stack.pages[--stack.nr];
400 
401 		/* Merge spare WC pages to the global stash */
402 		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
403 
404 		/* Push any surplus WC pages onto the local VM stash */
405 		if (stack.nr)
406 			stash_push_pagevec(&vm->free_pages, &stack);
407 	}
408 
409 	/* Return unwanted leftovers */
410 	if (unlikely(stack.nr)) {
411 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
412 		__pagevec_release(&stack);
413 	}
414 
415 	return page;
416 }
417 
418 static void vm_free_pages_release(struct i915_address_space *vm,
419 				  bool immediate)
420 {
421 	struct pagevec *pvec = &vm->free_pages.pvec;
422 	struct pagevec stack;
423 
424 	lockdep_assert_held(&vm->free_pages.lock);
425 	GEM_BUG_ON(!pagevec_count(pvec));
426 
427 	if (vm->pt_kmap_wc) {
428 		/*
429 		 * When we use WC, first fill up the global stash and then
430 		 * only if full immediately free the overflow.
431 		 */
432 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
433 
434 		/*
435 		 * As we have made some room in the VM's free_pages,
436 		 * we can wait for it to fill again. Unless we are
437 		 * inside i915_address_space_fini() and must
438 		 * immediately release the pages!
439 		 */
440 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
441 			return;
442 
443 		/*
444 		 * We have to drop the lock to allow ourselves to sleep,
445 		 * so take a copy of the pvec and clear the stash for
446 		 * others to use it as we sleep.
447 		 */
448 		stack = *pvec;
449 		pagevec_reinit(pvec);
450 		spin_unlock(&vm->free_pages.lock);
451 
452 		pvec = &stack;
453 		set_pages_array_wb(pvec->pages, pvec->nr);
454 
455 		spin_lock(&vm->free_pages.lock);
456 	}
457 
458 	__pagevec_release(pvec);
459 }
460 
461 static void vm_free_page(struct i915_address_space *vm, struct page *page)
462 {
463 	/*
464 	 * On !llc, we need to change the pages back to WB. We only do so
465 	 * in bulk, so we rarely need to change the page attributes here,
466 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
467 	 * To make detection of the possible sleep more likely, use an
468 	 * unconditional might_sleep() for everybody.
469 	 */
470 	might_sleep();
471 	spin_lock(&vm->free_pages.lock);
472 	if (!pagevec_add(&vm->free_pages.pvec, page))
473 		vm_free_pages_release(vm, false);
474 	spin_unlock(&vm->free_pages.lock);
475 }
476 
477 static void i915_address_space_init(struct i915_address_space *vm,
478 				    struct drm_i915_private *dev_priv)
479 {
480 	/*
481 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
482 	 * Do a dummy acquire now under fs_reclaim so that any allocation
483 	 * attempt holding the lock is immediately reported by lockdep.
484 	 */
485 	mutex_init(&vm->mutex);
486 	i915_gem_shrinker_taints_mutex(&vm->mutex);
487 
488 	GEM_BUG_ON(!vm->total);
489 	drm_mm_init(&vm->mm, 0, vm->total);
490 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
491 
492 	stash_init(&vm->free_pages);
493 
494 	INIT_LIST_HEAD(&vm->active_list);
495 	INIT_LIST_HEAD(&vm->inactive_list);
496 	INIT_LIST_HEAD(&vm->unbound_list);
497 }
498 
499 static void i915_address_space_fini(struct i915_address_space *vm)
500 {
501 	spin_lock(&vm->free_pages.lock);
502 	if (pagevec_count(&vm->free_pages.pvec))
503 		vm_free_pages_release(vm, true);
504 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
505 	spin_unlock(&vm->free_pages.lock);
506 
507 	drm_mm_takedown(&vm->mm);
508 
509 	mutex_destroy(&vm->mutex);
510 }
511 
512 static int __setup_page_dma(struct i915_address_space *vm,
513 			    struct i915_page_dma *p,
514 			    gfp_t gfp)
515 {
516 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
517 	if (unlikely(!p->page))
518 		return -ENOMEM;
519 
520 	p->daddr = dma_map_page_attrs(vm->dma,
521 				      p->page, 0, PAGE_SIZE,
522 				      PCI_DMA_BIDIRECTIONAL,
523 				      DMA_ATTR_SKIP_CPU_SYNC |
524 				      DMA_ATTR_NO_WARN);
525 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
526 		vm_free_page(vm, p->page);
527 		return -ENOMEM;
528 	}
529 
530 	return 0;
531 }
532 
533 static int setup_page_dma(struct i915_address_space *vm,
534 			  struct i915_page_dma *p)
535 {
536 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
537 }
538 
539 static void cleanup_page_dma(struct i915_address_space *vm,
540 			     struct i915_page_dma *p)
541 {
542 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
543 	vm_free_page(vm, p->page);
544 }
545 
546 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
547 
548 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
549 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
550 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
551 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
552 
553 static void fill_page_dma(struct i915_address_space *vm,
554 			  struct i915_page_dma *p,
555 			  const u64 val)
556 {
557 	u64 * const vaddr = kmap_atomic(p->page);
558 
559 	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
560 
561 	kunmap_atomic(vaddr);
562 }
563 
564 static void fill_page_dma_32(struct i915_address_space *vm,
565 			     struct i915_page_dma *p,
566 			     const u32 v)
567 {
568 	fill_page_dma(vm, p, (u64)v << 32 | v);
569 }
570 
571 static int
572 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
573 {
574 	unsigned long size;
575 
576 	/*
577 	 * In order to utilize 64K pages for an object with a size < 2M, we will
578 	 * need to support a 64K scratch page, given that every 16th entry for a
579 	 * page-table operating in 64K mode must point to a properly aligned 64K
580 	 * region, including any PTEs which happen to point to scratch.
581 	 *
582 	 * This is only relevant for the 48b PPGTT where we support
583 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
584 	 * scratch (read-only) between all vm, we create one 64k scratch page
585 	 * for all.
586 	 */
587 	size = I915_GTT_PAGE_SIZE_4K;
588 	if (i915_vm_is_48bit(vm) &&
589 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
590 		size = I915_GTT_PAGE_SIZE_64K;
591 		gfp |= __GFP_NOWARN;
592 	}
593 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
594 
595 	do {
596 		int order = get_order(size);
597 		struct page *page;
598 		dma_addr_t addr;
599 
600 		page = alloc_pages(gfp, order);
601 		if (unlikely(!page))
602 			goto skip;
603 
604 		addr = dma_map_page_attrs(vm->dma,
605 					  page, 0, size,
606 					  PCI_DMA_BIDIRECTIONAL,
607 					  DMA_ATTR_SKIP_CPU_SYNC |
608 					  DMA_ATTR_NO_WARN);
609 		if (unlikely(dma_mapping_error(vm->dma, addr)))
610 			goto free_page;
611 
612 		if (unlikely(!IS_ALIGNED(addr, size)))
613 			goto unmap_page;
614 
615 		vm->scratch_page.page = page;
616 		vm->scratch_page.daddr = addr;
617 		vm->scratch_page.order = order;
618 		return 0;
619 
620 unmap_page:
621 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
622 free_page:
623 		__free_pages(page, order);
624 skip:
625 		if (size == I915_GTT_PAGE_SIZE_4K)
626 			return -ENOMEM;
627 
628 		size = I915_GTT_PAGE_SIZE_4K;
629 		gfp &= ~__GFP_NOWARN;
630 	} while (1);
631 }
632 
633 static void cleanup_scratch_page(struct i915_address_space *vm)
634 {
635 	struct i915_page_dma *p = &vm->scratch_page;
636 
637 	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
638 		       PCI_DMA_BIDIRECTIONAL);
639 	__free_pages(p->page, p->order);
640 }
641 
642 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
643 {
644 	struct i915_page_table *pt;
645 
646 	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
647 	if (unlikely(!pt))
648 		return ERR_PTR(-ENOMEM);
649 
650 	if (unlikely(setup_px(vm, pt))) {
651 		kfree(pt);
652 		return ERR_PTR(-ENOMEM);
653 	}
654 
655 	pt->used_ptes = 0;
656 	return pt;
657 }
658 
659 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
660 {
661 	cleanup_px(vm, pt);
662 	kfree(pt);
663 }
664 
665 static void gen8_initialize_pt(struct i915_address_space *vm,
666 			       struct i915_page_table *pt)
667 {
668 	fill_px(vm, pt, vm->scratch_pte);
669 }
670 
671 static void gen6_initialize_pt(struct i915_address_space *vm,
672 			       struct i915_page_table *pt)
673 {
674 	fill32_px(vm, pt, vm->scratch_pte);
675 }
676 
677 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
678 {
679 	struct i915_page_directory *pd;
680 
681 	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
682 	if (unlikely(!pd))
683 		return ERR_PTR(-ENOMEM);
684 
685 	if (unlikely(setup_px(vm, pd))) {
686 		kfree(pd);
687 		return ERR_PTR(-ENOMEM);
688 	}
689 
690 	pd->used_pdes = 0;
691 	return pd;
692 }
693 
694 static void free_pd(struct i915_address_space *vm,
695 		    struct i915_page_directory *pd)
696 {
697 	cleanup_px(vm, pd);
698 	kfree(pd);
699 }
700 
701 static void gen8_initialize_pd(struct i915_address_space *vm,
702 			       struct i915_page_directory *pd)
703 {
704 	fill_px(vm, pd,
705 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
706 	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
707 }
708 
709 static int __pdp_init(struct i915_address_space *vm,
710 		      struct i915_page_directory_pointer *pdp)
711 {
712 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
713 
714 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
715 					    I915_GFP_ALLOW_FAIL);
716 	if (unlikely(!pdp->page_directory))
717 		return -ENOMEM;
718 
719 	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
720 
721 	return 0;
722 }
723 
724 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
725 {
726 	kfree(pdp->page_directory);
727 	pdp->page_directory = NULL;
728 }
729 
730 static inline bool use_4lvl(const struct i915_address_space *vm)
731 {
732 	return i915_vm_is_48bit(vm);
733 }
734 
735 static struct i915_page_directory_pointer *
736 alloc_pdp(struct i915_address_space *vm)
737 {
738 	struct i915_page_directory_pointer *pdp;
739 	int ret = -ENOMEM;
740 
741 	GEM_BUG_ON(!use_4lvl(vm));
742 
743 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
744 	if (!pdp)
745 		return ERR_PTR(-ENOMEM);
746 
747 	ret = __pdp_init(vm, pdp);
748 	if (ret)
749 		goto fail_bitmap;
750 
751 	ret = setup_px(vm, pdp);
752 	if (ret)
753 		goto fail_page_m;
754 
755 	return pdp;
756 
757 fail_page_m:
758 	__pdp_fini(pdp);
759 fail_bitmap:
760 	kfree(pdp);
761 
762 	return ERR_PTR(ret);
763 }
764 
765 static void free_pdp(struct i915_address_space *vm,
766 		     struct i915_page_directory_pointer *pdp)
767 {
768 	__pdp_fini(pdp);
769 
770 	if (!use_4lvl(vm))
771 		return;
772 
773 	cleanup_px(vm, pdp);
774 	kfree(pdp);
775 }
776 
777 static void gen8_initialize_pdp(struct i915_address_space *vm,
778 				struct i915_page_directory_pointer *pdp)
779 {
780 	gen8_ppgtt_pdpe_t scratch_pdpe;
781 
782 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
783 
784 	fill_px(vm, pdp, scratch_pdpe);
785 }
786 
787 static void gen8_initialize_pml4(struct i915_address_space *vm,
788 				 struct i915_pml4 *pml4)
789 {
790 	fill_px(vm, pml4,
791 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
792 	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
793 }
794 
795 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
796  * the page table structures, we mark them dirty so that
797  * context switching/execlist queuing code takes extra steps
798  * to ensure that tlbs are flushed.
799  */
800 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
801 {
802 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
803 }
804 
805 /* Removes entries from a single page table, releasing it if it's empty.
806  * Caller can use the return value to update higher-level entries.
807  */
808 static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
809 				struct i915_page_table *pt,
810 				u64 start, u64 length)
811 {
812 	unsigned int num_entries = gen8_pte_count(start, length);
813 	unsigned int pte = gen8_pte_index(start);
814 	unsigned int pte_end = pte + num_entries;
815 	gen8_pte_t *vaddr;
816 
817 	GEM_BUG_ON(num_entries > pt->used_ptes);
818 
819 	pt->used_ptes -= num_entries;
820 	if (!pt->used_ptes)
821 		return true;
822 
823 	vaddr = kmap_atomic_px(pt);
824 	while (pte < pte_end)
825 		vaddr[pte++] = vm->scratch_pte;
826 	kunmap_atomic(vaddr);
827 
828 	return false;
829 }
830 
831 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
832 			       struct i915_page_directory *pd,
833 			       struct i915_page_table *pt,
834 			       unsigned int pde)
835 {
836 	gen8_pde_t *vaddr;
837 
838 	pd->page_table[pde] = pt;
839 
840 	vaddr = kmap_atomic_px(pd);
841 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
842 	kunmap_atomic(vaddr);
843 }
844 
845 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
846 				struct i915_page_directory *pd,
847 				u64 start, u64 length)
848 {
849 	struct i915_page_table *pt;
850 	u32 pde;
851 
852 	gen8_for_each_pde(pt, pd, start, length, pde) {
853 		GEM_BUG_ON(pt == vm->scratch_pt);
854 
855 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
856 			continue;
857 
858 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
859 		GEM_BUG_ON(!pd->used_pdes);
860 		pd->used_pdes--;
861 
862 		free_pt(vm, pt);
863 	}
864 
865 	return !pd->used_pdes;
866 }
867 
868 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
869 				struct i915_page_directory_pointer *pdp,
870 				struct i915_page_directory *pd,
871 				unsigned int pdpe)
872 {
873 	gen8_ppgtt_pdpe_t *vaddr;
874 
875 	pdp->page_directory[pdpe] = pd;
876 	if (!use_4lvl(vm))
877 		return;
878 
879 	vaddr = kmap_atomic_px(pdp);
880 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
881 	kunmap_atomic(vaddr);
882 }
883 
884 /* Removes entries from a single page dir pointer, releasing it if it's empty.
885  * Caller can use the return value to update higher-level entries
886  */
887 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
888 				 struct i915_page_directory_pointer *pdp,
889 				 u64 start, u64 length)
890 {
891 	struct i915_page_directory *pd;
892 	unsigned int pdpe;
893 
894 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
895 		GEM_BUG_ON(pd == vm->scratch_pd);
896 
897 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
898 			continue;
899 
900 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
901 		GEM_BUG_ON(!pdp->used_pdpes);
902 		pdp->used_pdpes--;
903 
904 		free_pd(vm, pd);
905 	}
906 
907 	return !pdp->used_pdpes;
908 }
909 
910 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
911 				  u64 start, u64 length)
912 {
913 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
914 }
915 
916 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
917 				 struct i915_page_directory_pointer *pdp,
918 				 unsigned int pml4e)
919 {
920 	gen8_ppgtt_pml4e_t *vaddr;
921 
922 	pml4->pdps[pml4e] = pdp;
923 
924 	vaddr = kmap_atomic_px(pml4);
925 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
926 	kunmap_atomic(vaddr);
927 }
928 
929 /* Removes entries from a single pml4.
930  * This is the top-level structure in 4-level page tables used on gen8+.
931  * Empty entries are always scratch pml4e.
932  */
933 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
934 				  u64 start, u64 length)
935 {
936 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
937 	struct i915_pml4 *pml4 = &ppgtt->pml4;
938 	struct i915_page_directory_pointer *pdp;
939 	unsigned int pml4e;
940 
941 	GEM_BUG_ON(!use_4lvl(vm));
942 
943 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
944 		GEM_BUG_ON(pdp == vm->scratch_pdp);
945 
946 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
947 			continue;
948 
949 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
950 
951 		free_pdp(vm, pdp);
952 	}
953 }
954 
955 static inline struct sgt_dma {
956 	struct scatterlist *sg;
957 	dma_addr_t dma, max;
958 } sgt_dma(struct i915_vma *vma) {
959 	struct scatterlist *sg = vma->pages->sgl;
960 	dma_addr_t addr = sg_dma_address(sg);
961 	return (struct sgt_dma) { sg, addr, addr + sg->length };
962 }
963 
964 struct gen8_insert_pte {
965 	u16 pml4e;
966 	u16 pdpe;
967 	u16 pde;
968 	u16 pte;
969 };
970 
971 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
972 {
973 	return (struct gen8_insert_pte) {
974 		 gen8_pml4e_index(start),
975 		 gen8_pdpe_index(start),
976 		 gen8_pde_index(start),
977 		 gen8_pte_index(start),
978 	};
979 }
980 
981 static __always_inline bool
982 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
983 			      struct i915_page_directory_pointer *pdp,
984 			      struct sgt_dma *iter,
985 			      struct gen8_insert_pte *idx,
986 			      enum i915_cache_level cache_level,
987 			      u32 flags)
988 {
989 	struct i915_page_directory *pd;
990 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
991 	gen8_pte_t *vaddr;
992 	bool ret;
993 
994 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
995 	pd = pdp->page_directory[idx->pdpe];
996 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
997 	do {
998 		vaddr[idx->pte] = pte_encode | iter->dma;
999 
1000 		iter->dma += I915_GTT_PAGE_SIZE;
1001 		if (iter->dma >= iter->max) {
1002 			iter->sg = __sg_next(iter->sg);
1003 			if (!iter->sg) {
1004 				ret = false;
1005 				break;
1006 			}
1007 
1008 			iter->dma = sg_dma_address(iter->sg);
1009 			iter->max = iter->dma + iter->sg->length;
1010 		}
1011 
1012 		if (++idx->pte == GEN8_PTES) {
1013 			idx->pte = 0;
1014 
1015 			if (++idx->pde == I915_PDES) {
1016 				idx->pde = 0;
1017 
1018 				/* Limited by sg length for 3lvl */
1019 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1020 					idx->pdpe = 0;
1021 					ret = true;
1022 					break;
1023 				}
1024 
1025 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1026 				pd = pdp->page_directory[idx->pdpe];
1027 			}
1028 
1029 			kunmap_atomic(vaddr);
1030 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1031 		}
1032 	} while (1);
1033 	kunmap_atomic(vaddr);
1034 
1035 	return ret;
1036 }
1037 
1038 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1039 				   struct i915_vma *vma,
1040 				   enum i915_cache_level cache_level,
1041 				   u32 flags)
1042 {
1043 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1044 	struct sgt_dma iter = sgt_dma(vma);
1045 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1046 
1047 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1048 				      cache_level, flags);
1049 
1050 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1051 }
1052 
1053 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1054 					   struct i915_page_directory_pointer **pdps,
1055 					   struct sgt_dma *iter,
1056 					   enum i915_cache_level cache_level,
1057 					   u32 flags)
1058 {
1059 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1060 	u64 start = vma->node.start;
1061 	dma_addr_t rem = iter->sg->length;
1062 
1063 	do {
1064 		struct gen8_insert_pte idx = gen8_insert_pte(start);
1065 		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1066 		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1067 		unsigned int page_size;
1068 		bool maybe_64K = false;
1069 		gen8_pte_t encode = pte_encode;
1070 		gen8_pte_t *vaddr;
1071 		u16 index, max;
1072 
1073 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1074 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1075 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1076 			index = idx.pde;
1077 			max = I915_PDES;
1078 			page_size = I915_GTT_PAGE_SIZE_2M;
1079 
1080 			encode |= GEN8_PDE_PS_2M;
1081 
1082 			vaddr = kmap_atomic_px(pd);
1083 		} else {
1084 			struct i915_page_table *pt = pd->page_table[idx.pde];
1085 
1086 			index = idx.pte;
1087 			max = GEN8_PTES;
1088 			page_size = I915_GTT_PAGE_SIZE;
1089 
1090 			if (!index &&
1091 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1092 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1093 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1094 			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1095 				maybe_64K = true;
1096 
1097 			vaddr = kmap_atomic_px(pt);
1098 		}
1099 
1100 		do {
1101 			GEM_BUG_ON(iter->sg->length < page_size);
1102 			vaddr[index++] = encode | iter->dma;
1103 
1104 			start += page_size;
1105 			iter->dma += page_size;
1106 			rem -= page_size;
1107 			if (iter->dma >= iter->max) {
1108 				iter->sg = __sg_next(iter->sg);
1109 				if (!iter->sg)
1110 					break;
1111 
1112 				rem = iter->sg->length;
1113 				iter->dma = sg_dma_address(iter->sg);
1114 				iter->max = iter->dma + rem;
1115 
1116 				if (maybe_64K && index < max &&
1117 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1118 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1119 				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1120 					maybe_64K = false;
1121 
1122 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1123 					break;
1124 			}
1125 		} while (rem >= page_size && index < max);
1126 
1127 		kunmap_atomic(vaddr);
1128 
1129 		/*
1130 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1131 		 * filled whole page-table with 64K entries, or filled part of
1132 		 * it and have reached the end of the sg table and we have
1133 		 * enough padding.
1134 		 */
1135 		if (maybe_64K &&
1136 		    (index == max ||
1137 		     (i915_vm_has_scratch_64K(vma->vm) &&
1138 		      !iter->sg && IS_ALIGNED(vma->node.start +
1139 					      vma->node.size,
1140 					      I915_GTT_PAGE_SIZE_2M)))) {
1141 			vaddr = kmap_atomic_px(pd);
1142 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1143 			kunmap_atomic(vaddr);
1144 			page_size = I915_GTT_PAGE_SIZE_64K;
1145 
1146 			/*
1147 			 * We write all 4K page entries, even when using 64K
1148 			 * pages. In order to verify that the HW isn't cheating
1149 			 * by using the 4K PTE instead of the 64K PTE, we want
1150 			 * to remove all the surplus entries. If the HW skipped
1151 			 * the 64K PTE, it will read/write into the scratch page
1152 			 * instead - which we detect as missing results during
1153 			 * selftests.
1154 			 */
1155 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1156 				u16 i;
1157 
1158 				encode = vma->vm->scratch_pte;
1159 				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1160 
1161 				for (i = 1; i < index; i += 16)
1162 					memset64(vaddr + i, encode, 15);
1163 
1164 				kunmap_atomic(vaddr);
1165 			}
1166 		}
1167 
1168 		vma->page_sizes.gtt |= page_size;
1169 	} while (iter->sg);
1170 }
1171 
1172 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1173 				   struct i915_vma *vma,
1174 				   enum i915_cache_level cache_level,
1175 				   u32 flags)
1176 {
1177 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1178 	struct sgt_dma iter = sgt_dma(vma);
1179 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1180 
1181 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1182 		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
1183 					       flags);
1184 	} else {
1185 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1186 
1187 		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1188 						     &iter, &idx, cache_level,
1189 						     flags))
1190 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1191 
1192 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1193 	}
1194 }
1195 
1196 static void gen8_free_page_tables(struct i915_address_space *vm,
1197 				  struct i915_page_directory *pd)
1198 {
1199 	int i;
1200 
1201 	for (i = 0; i < I915_PDES; i++) {
1202 		if (pd->page_table[i] != vm->scratch_pt)
1203 			free_pt(vm, pd->page_table[i]);
1204 	}
1205 }
1206 
1207 static int gen8_init_scratch(struct i915_address_space *vm)
1208 {
1209 	int ret;
1210 
1211 	/*
1212 	 * If everybody agrees to not to write into the scratch page,
1213 	 * we can reuse it for all vm, keeping contexts and processes separate.
1214 	 */
1215 	if (vm->has_read_only &&
1216 	    vm->i915->kernel_context &&
1217 	    vm->i915->kernel_context->ppgtt) {
1218 		struct i915_address_space *clone =
1219 			&vm->i915->kernel_context->ppgtt->vm;
1220 
1221 		GEM_BUG_ON(!clone->has_read_only);
1222 
1223 		vm->scratch_page.order = clone->scratch_page.order;
1224 		vm->scratch_pte = clone->scratch_pte;
1225 		vm->scratch_pt  = clone->scratch_pt;
1226 		vm->scratch_pd  = clone->scratch_pd;
1227 		vm->scratch_pdp = clone->scratch_pdp;
1228 		return 0;
1229 	}
1230 
1231 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1232 	if (ret)
1233 		return ret;
1234 
1235 	vm->scratch_pte =
1236 		gen8_pte_encode(vm->scratch_page.daddr,
1237 				I915_CACHE_LLC,
1238 				PTE_READ_ONLY);
1239 
1240 	vm->scratch_pt = alloc_pt(vm);
1241 	if (IS_ERR(vm->scratch_pt)) {
1242 		ret = PTR_ERR(vm->scratch_pt);
1243 		goto free_scratch_page;
1244 	}
1245 
1246 	vm->scratch_pd = alloc_pd(vm);
1247 	if (IS_ERR(vm->scratch_pd)) {
1248 		ret = PTR_ERR(vm->scratch_pd);
1249 		goto free_pt;
1250 	}
1251 
1252 	if (use_4lvl(vm)) {
1253 		vm->scratch_pdp = alloc_pdp(vm);
1254 		if (IS_ERR(vm->scratch_pdp)) {
1255 			ret = PTR_ERR(vm->scratch_pdp);
1256 			goto free_pd;
1257 		}
1258 	}
1259 
1260 	gen8_initialize_pt(vm, vm->scratch_pt);
1261 	gen8_initialize_pd(vm, vm->scratch_pd);
1262 	if (use_4lvl(vm))
1263 		gen8_initialize_pdp(vm, vm->scratch_pdp);
1264 
1265 	return 0;
1266 
1267 free_pd:
1268 	free_pd(vm, vm->scratch_pd);
1269 free_pt:
1270 	free_pt(vm, vm->scratch_pt);
1271 free_scratch_page:
1272 	cleanup_scratch_page(vm);
1273 
1274 	return ret;
1275 }
1276 
1277 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1278 {
1279 	struct i915_address_space *vm = &ppgtt->vm;
1280 	struct drm_i915_private *dev_priv = vm->i915;
1281 	enum vgt_g2v_type msg;
1282 	int i;
1283 
1284 	if (use_4lvl(vm)) {
1285 		const u64 daddr = px_dma(&ppgtt->pml4);
1286 
1287 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1288 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1289 
1290 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1291 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1292 	} else {
1293 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1294 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1295 
1296 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1297 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1298 		}
1299 
1300 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1301 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1302 	}
1303 
1304 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1305 
1306 	return 0;
1307 }
1308 
1309 static void gen8_free_scratch(struct i915_address_space *vm)
1310 {
1311 	if (!vm->scratch_page.daddr)
1312 		return;
1313 
1314 	if (use_4lvl(vm))
1315 		free_pdp(vm, vm->scratch_pdp);
1316 	free_pd(vm, vm->scratch_pd);
1317 	free_pt(vm, vm->scratch_pt);
1318 	cleanup_scratch_page(vm);
1319 }
1320 
1321 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1322 				    struct i915_page_directory_pointer *pdp)
1323 {
1324 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1325 	int i;
1326 
1327 	for (i = 0; i < pdpes; i++) {
1328 		if (pdp->page_directory[i] == vm->scratch_pd)
1329 			continue;
1330 
1331 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1332 		free_pd(vm, pdp->page_directory[i]);
1333 	}
1334 
1335 	free_pdp(vm, pdp);
1336 }
1337 
1338 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1339 {
1340 	int i;
1341 
1342 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1343 		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1344 			continue;
1345 
1346 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1347 	}
1348 
1349 	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1350 }
1351 
1352 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1353 {
1354 	struct drm_i915_private *dev_priv = vm->i915;
1355 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1356 
1357 	if (intel_vgpu_active(dev_priv))
1358 		gen8_ppgtt_notify_vgt(ppgtt, false);
1359 
1360 	if (use_4lvl(vm))
1361 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1362 	else
1363 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1364 
1365 	gen8_free_scratch(vm);
1366 }
1367 
1368 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1369 			       struct i915_page_directory *pd,
1370 			       u64 start, u64 length)
1371 {
1372 	struct i915_page_table *pt;
1373 	u64 from = start;
1374 	unsigned int pde;
1375 
1376 	gen8_for_each_pde(pt, pd, start, length, pde) {
1377 		int count = gen8_pte_count(start, length);
1378 
1379 		if (pt == vm->scratch_pt) {
1380 			pd->used_pdes++;
1381 
1382 			pt = alloc_pt(vm);
1383 			if (IS_ERR(pt)) {
1384 				pd->used_pdes--;
1385 				goto unwind;
1386 			}
1387 
1388 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1389 				gen8_initialize_pt(vm, pt);
1390 
1391 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1392 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1393 		}
1394 
1395 		pt->used_ptes += count;
1396 	}
1397 	return 0;
1398 
1399 unwind:
1400 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1401 	return -ENOMEM;
1402 }
1403 
1404 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1405 				struct i915_page_directory_pointer *pdp,
1406 				u64 start, u64 length)
1407 {
1408 	struct i915_page_directory *pd;
1409 	u64 from = start;
1410 	unsigned int pdpe;
1411 	int ret;
1412 
1413 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1414 		if (pd == vm->scratch_pd) {
1415 			pdp->used_pdpes++;
1416 
1417 			pd = alloc_pd(vm);
1418 			if (IS_ERR(pd)) {
1419 				pdp->used_pdpes--;
1420 				goto unwind;
1421 			}
1422 
1423 			gen8_initialize_pd(vm, pd);
1424 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1425 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1426 
1427 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1428 		}
1429 
1430 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1431 		if (unlikely(ret))
1432 			goto unwind_pd;
1433 	}
1434 
1435 	return 0;
1436 
1437 unwind_pd:
1438 	if (!pd->used_pdes) {
1439 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1440 		GEM_BUG_ON(!pdp->used_pdpes);
1441 		pdp->used_pdpes--;
1442 		free_pd(vm, pd);
1443 	}
1444 unwind:
1445 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1446 	return -ENOMEM;
1447 }
1448 
1449 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1450 				 u64 start, u64 length)
1451 {
1452 	return gen8_ppgtt_alloc_pdp(vm,
1453 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1454 }
1455 
1456 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1457 				 u64 start, u64 length)
1458 {
1459 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1460 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1461 	struct i915_page_directory_pointer *pdp;
1462 	u64 from = start;
1463 	u32 pml4e;
1464 	int ret;
1465 
1466 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1467 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1468 			pdp = alloc_pdp(vm);
1469 			if (IS_ERR(pdp))
1470 				goto unwind;
1471 
1472 			gen8_initialize_pdp(vm, pdp);
1473 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1474 		}
1475 
1476 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1477 		if (unlikely(ret))
1478 			goto unwind_pdp;
1479 	}
1480 
1481 	return 0;
1482 
1483 unwind_pdp:
1484 	if (!pdp->used_pdpes) {
1485 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1486 		free_pdp(vm, pdp);
1487 	}
1488 unwind:
1489 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1490 	return -ENOMEM;
1491 }
1492 
1493 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1494 			  struct i915_page_directory_pointer *pdp,
1495 			  u64 start, u64 length,
1496 			  gen8_pte_t scratch_pte,
1497 			  struct seq_file *m)
1498 {
1499 	struct i915_address_space *vm = &ppgtt->vm;
1500 	struct i915_page_directory *pd;
1501 	u32 pdpe;
1502 
1503 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1504 		struct i915_page_table *pt;
1505 		u64 pd_len = length;
1506 		u64 pd_start = start;
1507 		u32 pde;
1508 
1509 		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1510 			continue;
1511 
1512 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1513 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1514 			u32 pte;
1515 			gen8_pte_t *pt_vaddr;
1516 
1517 			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1518 				continue;
1519 
1520 			pt_vaddr = kmap_atomic_px(pt);
1521 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1522 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1523 					  pde << GEN8_PDE_SHIFT |
1524 					  pte << GEN8_PTE_SHIFT);
1525 				int i;
1526 				bool found = false;
1527 
1528 				for (i = 0; i < 4; i++)
1529 					if (pt_vaddr[pte + i] != scratch_pte)
1530 						found = true;
1531 				if (!found)
1532 					continue;
1533 
1534 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1535 				for (i = 0; i < 4; i++) {
1536 					if (pt_vaddr[pte + i] != scratch_pte)
1537 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1538 					else
1539 						seq_puts(m, "  SCRATCH ");
1540 				}
1541 				seq_puts(m, "\n");
1542 			}
1543 			kunmap_atomic(pt_vaddr);
1544 		}
1545 	}
1546 }
1547 
1548 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1549 {
1550 	struct i915_address_space *vm = &ppgtt->vm;
1551 	const gen8_pte_t scratch_pte = vm->scratch_pte;
1552 	u64 start = 0, length = ppgtt->vm.total;
1553 
1554 	if (use_4lvl(vm)) {
1555 		u64 pml4e;
1556 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1557 		struct i915_page_directory_pointer *pdp;
1558 
1559 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1560 			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1561 				continue;
1562 
1563 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1564 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1565 		}
1566 	} else {
1567 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1568 	}
1569 }
1570 
1571 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1572 {
1573 	struct i915_address_space *vm = &ppgtt->vm;
1574 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1575 	struct i915_page_directory *pd;
1576 	u64 start = 0, length = ppgtt->vm.total;
1577 	u64 from = start;
1578 	unsigned int pdpe;
1579 
1580 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1581 		pd = alloc_pd(vm);
1582 		if (IS_ERR(pd))
1583 			goto unwind;
1584 
1585 		gen8_initialize_pd(vm, pd);
1586 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1587 		pdp->used_pdpes++;
1588 	}
1589 
1590 	pdp->used_pdpes++; /* never remove */
1591 	return 0;
1592 
1593 unwind:
1594 	start -= from;
1595 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1596 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1597 		free_pd(vm, pd);
1598 	}
1599 	pdp->used_pdpes = 0;
1600 	return -ENOMEM;
1601 }
1602 
1603 /*
1604  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1605  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1606  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1607  * space.
1608  *
1609  */
1610 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1611 {
1612 	struct i915_hw_ppgtt *ppgtt;
1613 	int err;
1614 
1615 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1616 	if (!ppgtt)
1617 		return ERR_PTR(-ENOMEM);
1618 
1619 	kref_init(&ppgtt->ref);
1620 
1621 	ppgtt->vm.i915 = i915;
1622 	ppgtt->vm.dma = &i915->drm.pdev->dev;
1623 
1624 	ppgtt->vm.total = HAS_FULL_48BIT_PPGTT(i915) ?
1625 		1ULL << 48 :
1626 		1ULL << 32;
1627 
1628 	/* From bdw, there is support for read-only pages in the PPGTT. */
1629 	ppgtt->vm.has_read_only = true;
1630 
1631 	i915_address_space_init(&ppgtt->vm, i915);
1632 
1633 	/* There are only few exceptions for gen >=6. chv and bxt.
1634 	 * And we are not sure about the latter so play safe for now.
1635 	 */
1636 	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1637 		ppgtt->vm.pt_kmap_wc = true;
1638 
1639 	err = gen8_init_scratch(&ppgtt->vm);
1640 	if (err)
1641 		goto err_free;
1642 
1643 	if (use_4lvl(&ppgtt->vm)) {
1644 		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
1645 		if (err)
1646 			goto err_scratch;
1647 
1648 		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1649 
1650 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1651 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1652 		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1653 	} else {
1654 		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
1655 		if (err)
1656 			goto err_scratch;
1657 
1658 		if (intel_vgpu_active(i915)) {
1659 			err = gen8_preallocate_top_level_pdp(ppgtt);
1660 			if (err) {
1661 				__pdp_fini(&ppgtt->pdp);
1662 				goto err_scratch;
1663 			}
1664 		}
1665 
1666 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1667 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1668 		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1669 	}
1670 
1671 	if (intel_vgpu_active(i915))
1672 		gen8_ppgtt_notify_vgt(ppgtt, true);
1673 
1674 	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1675 	ppgtt->debug_dump = gen8_dump_ppgtt;
1676 
1677 	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1678 	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1679 	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1680 	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1681 
1682 	return ppgtt;
1683 
1684 err_scratch:
1685 	gen8_free_scratch(&ppgtt->vm);
1686 err_free:
1687 	kfree(ppgtt);
1688 	return ERR_PTR(err);
1689 }
1690 
1691 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
1692 {
1693 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1694 	const gen6_pte_t scratch_pte = base->vm.scratch_pte;
1695 	struct i915_page_table *pt;
1696 	u32 pte, pde;
1697 
1698 	gen6_for_all_pdes(pt, &base->pd, pde) {
1699 		gen6_pte_t *vaddr;
1700 
1701 		if (pt == base->vm.scratch_pt)
1702 			continue;
1703 
1704 		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
1705 			u32 expected =
1706 				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
1707 				GEN6_PDE_VALID;
1708 			u32 pd_entry = readl(ppgtt->pd_addr + pde);
1709 
1710 			if (pd_entry != expected)
1711 				seq_printf(m,
1712 					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1713 					   pde,
1714 					   pd_entry,
1715 					   expected);
1716 
1717 			seq_printf(m, "\tPDE: %x\n", pd_entry);
1718 		}
1719 
1720 		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
1721 		for (pte = 0; pte < GEN6_PTES; pte += 4) {
1722 			int i;
1723 
1724 			for (i = 0; i < 4; i++)
1725 				if (vaddr[pte + i] != scratch_pte)
1726 					break;
1727 			if (i == 4)
1728 				continue;
1729 
1730 			seq_printf(m, "\t\t(%03d, %04d) %08llx: ",
1731 				   pde, pte,
1732 				   (pde * GEN6_PTES + pte) * I915_GTT_PAGE_SIZE);
1733 			for (i = 0; i < 4; i++) {
1734 				if (vaddr[pte + i] != scratch_pte)
1735 					seq_printf(m, " %08x", vaddr[pte + i]);
1736 				else
1737 					seq_puts(m, "  SCRATCH");
1738 			}
1739 			seq_puts(m, "\n");
1740 		}
1741 		kunmap_atomic(vaddr);
1742 	}
1743 }
1744 
1745 /* Write pde (index) from the page directory @pd to the page table @pt */
1746 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
1747 				  const unsigned int pde,
1748 				  const struct i915_page_table *pt)
1749 {
1750 	/* Caller needs to make sure the write completes if necessary */
1751 	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1752 		  ppgtt->pd_addr + pde);
1753 }
1754 
1755 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1756 {
1757 	struct intel_engine_cs *engine;
1758 	u32 ecochk, ecobits;
1759 	enum intel_engine_id id;
1760 
1761 	ecobits = I915_READ(GAC_ECO_BITS);
1762 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1763 
1764 	ecochk = I915_READ(GAM_ECOCHK);
1765 	if (IS_HASWELL(dev_priv)) {
1766 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1767 	} else {
1768 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1769 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1770 	}
1771 	I915_WRITE(GAM_ECOCHK, ecochk);
1772 
1773 	for_each_engine(engine, dev_priv, id) {
1774 		/* GFX_MODE is per-ring on gen7+ */
1775 		I915_WRITE(RING_MODE_GEN7(engine),
1776 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1777 	}
1778 }
1779 
1780 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1781 {
1782 	u32 ecochk, gab_ctl, ecobits;
1783 
1784 	ecobits = I915_READ(GAC_ECO_BITS);
1785 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1786 		   ECOBITS_PPGTT_CACHE64B);
1787 
1788 	gab_ctl = I915_READ(GAB_CTL);
1789 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1790 
1791 	ecochk = I915_READ(GAM_ECOCHK);
1792 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1793 
1794 	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
1795 		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1796 }
1797 
1798 /* PPGTT support for Sandybdrige/Gen6 and later */
1799 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1800 				   u64 start, u64 length)
1801 {
1802 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1803 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1804 	unsigned int pde = first_entry / GEN6_PTES;
1805 	unsigned int pte = first_entry % GEN6_PTES;
1806 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1807 	const gen6_pte_t scratch_pte = vm->scratch_pte;
1808 
1809 	while (num_entries) {
1810 		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1811 		const unsigned int end = min(pte + num_entries, GEN6_PTES);
1812 		const unsigned int count = end - pte;
1813 		gen6_pte_t *vaddr;
1814 
1815 		GEM_BUG_ON(pt == vm->scratch_pt);
1816 
1817 		num_entries -= count;
1818 
1819 		GEM_BUG_ON(count > pt->used_ptes);
1820 		pt->used_ptes -= count;
1821 		if (!pt->used_ptes)
1822 			ppgtt->scan_for_unused_pt = true;
1823 
1824 		/*
1825 		 * Note that the hw doesn't support removing PDE on the fly
1826 		 * (they are cached inside the context with no means to
1827 		 * invalidate the cache), so we can only reset the PTE
1828 		 * entries back to scratch.
1829 		 */
1830 
1831 		vaddr = kmap_atomic_px(pt);
1832 		do {
1833 			vaddr[pte++] = scratch_pte;
1834 		} while (pte < end);
1835 		kunmap_atomic(vaddr);
1836 
1837 		pte = 0;
1838 	}
1839 }
1840 
1841 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1842 				      struct i915_vma *vma,
1843 				      enum i915_cache_level cache_level,
1844 				      u32 flags)
1845 {
1846 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1847 	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1848 	unsigned act_pt = first_entry / GEN6_PTES;
1849 	unsigned act_pte = first_entry % GEN6_PTES;
1850 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1851 	struct sgt_dma iter = sgt_dma(vma);
1852 	gen6_pte_t *vaddr;
1853 
1854 	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
1855 
1856 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1857 	do {
1858 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1859 
1860 		iter.dma += I915_GTT_PAGE_SIZE;
1861 		if (iter.dma == iter.max) {
1862 			iter.sg = __sg_next(iter.sg);
1863 			if (!iter.sg)
1864 				break;
1865 
1866 			iter.dma = sg_dma_address(iter.sg);
1867 			iter.max = iter.dma + iter.sg->length;
1868 		}
1869 
1870 		if (++act_pte == GEN6_PTES) {
1871 			kunmap_atomic(vaddr);
1872 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1873 			act_pte = 0;
1874 		}
1875 	} while (1);
1876 	kunmap_atomic(vaddr);
1877 
1878 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1879 }
1880 
1881 static int gen6_alloc_va_range(struct i915_address_space *vm,
1882 			       u64 start, u64 length)
1883 {
1884 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1885 	struct i915_page_table *pt;
1886 	u64 from = start;
1887 	unsigned int pde;
1888 	bool flush = false;
1889 
1890 	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1891 		const unsigned int count = gen6_pte_count(start, length);
1892 
1893 		if (pt == vm->scratch_pt) {
1894 			pt = alloc_pt(vm);
1895 			if (IS_ERR(pt))
1896 				goto unwind_out;
1897 
1898 			gen6_initialize_pt(vm, pt);
1899 			ppgtt->base.pd.page_table[pde] = pt;
1900 
1901 			if (i915_vma_is_bound(ppgtt->vma,
1902 					      I915_VMA_GLOBAL_BIND)) {
1903 				gen6_write_pde(ppgtt, pde, pt);
1904 				flush = true;
1905 			}
1906 
1907 			GEM_BUG_ON(pt->used_ptes);
1908 		}
1909 
1910 		pt->used_ptes += count;
1911 	}
1912 
1913 	if (flush) {
1914 		mark_tlbs_dirty(&ppgtt->base);
1915 		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1916 	}
1917 
1918 	return 0;
1919 
1920 unwind_out:
1921 	gen6_ppgtt_clear_range(vm, from, start - from);
1922 	return -ENOMEM;
1923 }
1924 
1925 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1926 {
1927 	struct i915_address_space * const vm = &ppgtt->base.vm;
1928 	struct i915_page_table *unused;
1929 	u32 pde;
1930 	int ret;
1931 
1932 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1933 	if (ret)
1934 		return ret;
1935 
1936 	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1937 					 I915_CACHE_NONE,
1938 					 PTE_READ_ONLY);
1939 
1940 	vm->scratch_pt = alloc_pt(vm);
1941 	if (IS_ERR(vm->scratch_pt)) {
1942 		cleanup_scratch_page(vm);
1943 		return PTR_ERR(vm->scratch_pt);
1944 	}
1945 
1946 	gen6_initialize_pt(vm, vm->scratch_pt);
1947 	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
1948 		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1949 
1950 	return 0;
1951 }
1952 
1953 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1954 {
1955 	free_pt(vm, vm->scratch_pt);
1956 	cleanup_scratch_page(vm);
1957 }
1958 
1959 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1960 {
1961 	struct i915_page_table *pt;
1962 	u32 pde;
1963 
1964 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1965 		if (pt != ppgtt->base.vm.scratch_pt)
1966 			free_pt(&ppgtt->base.vm, pt);
1967 }
1968 
1969 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1970 {
1971 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1972 
1973 	i915_vma_destroy(ppgtt->vma);
1974 
1975 	gen6_ppgtt_free_pd(ppgtt);
1976 	gen6_ppgtt_free_scratch(vm);
1977 }
1978 
1979 static int pd_vma_set_pages(struct i915_vma *vma)
1980 {
1981 	vma->pages = ERR_PTR(-ENODEV);
1982 	return 0;
1983 }
1984 
1985 static void pd_vma_clear_pages(struct i915_vma *vma)
1986 {
1987 	GEM_BUG_ON(!vma->pages);
1988 
1989 	vma->pages = NULL;
1990 }
1991 
1992 static int pd_vma_bind(struct i915_vma *vma,
1993 		       enum i915_cache_level cache_level,
1994 		       u32 unused)
1995 {
1996 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1997 	struct gen6_hw_ppgtt *ppgtt = vma->private;
1998 	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1999 	struct i915_page_table *pt;
2000 	unsigned int pde;
2001 
2002 	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
2003 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2004 
2005 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2006 		gen6_write_pde(ppgtt, pde, pt);
2007 
2008 	mark_tlbs_dirty(&ppgtt->base);
2009 	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2010 
2011 	return 0;
2012 }
2013 
2014 static void pd_vma_unbind(struct i915_vma *vma)
2015 {
2016 	struct gen6_hw_ppgtt *ppgtt = vma->private;
2017 	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
2018 	struct i915_page_table *pt;
2019 	unsigned int pde;
2020 
2021 	if (!ppgtt->scan_for_unused_pt)
2022 		return;
2023 
2024 	/* Free all no longer used page tables */
2025 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
2026 		if (pt->used_ptes || pt == scratch_pt)
2027 			continue;
2028 
2029 		free_pt(&ppgtt->base.vm, pt);
2030 		ppgtt->base.pd.page_table[pde] = scratch_pt;
2031 	}
2032 
2033 	ppgtt->scan_for_unused_pt = false;
2034 }
2035 
2036 static const struct i915_vma_ops pd_vma_ops = {
2037 	.set_pages = pd_vma_set_pages,
2038 	.clear_pages = pd_vma_clear_pages,
2039 	.bind_vma = pd_vma_bind,
2040 	.unbind_vma = pd_vma_unbind,
2041 };
2042 
2043 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
2044 {
2045 	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
2046 	struct i915_ggtt *ggtt = &i915->ggtt;
2047 	struct i915_vma *vma;
2048 
2049 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
2050 	GEM_BUG_ON(size > ggtt->vm.total);
2051 
2052 	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
2053 	if (!vma)
2054 		return ERR_PTR(-ENOMEM);
2055 
2056 	init_request_active(&vma->last_fence, NULL);
2057 
2058 	vma->vm = &ggtt->vm;
2059 	vma->ops = &pd_vma_ops;
2060 	vma->private = ppgtt;
2061 
2062 	vma->active = RB_ROOT;
2063 
2064 	vma->size = size;
2065 	vma->fence_size = size;
2066 	vma->flags = I915_VMA_GGTT;
2067 	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
2068 
2069 	INIT_LIST_HEAD(&vma->obj_link);
2070 	list_add(&vma->vm_link, &vma->vm->unbound_list);
2071 
2072 	return vma;
2073 }
2074 
2075 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2076 {
2077 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2078 
2079 	/*
2080 	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
2081 	 * which will be pinned into every active context.
2082 	 * (When vma->pin_count becomes atomic, I expect we will naturally
2083 	 * need a larger, unpacked, type and kill this redundancy.)
2084 	 */
2085 	if (ppgtt->pin_count++)
2086 		return 0;
2087 
2088 	/*
2089 	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2090 	 * allocator works in address space sizes, so it's multiplied by page
2091 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2092 	 */
2093 	return i915_vma_pin(ppgtt->vma,
2094 			    0, GEN6_PD_ALIGN,
2095 			    PIN_GLOBAL | PIN_HIGH);
2096 }
2097 
2098 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
2099 {
2100 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2101 
2102 	GEM_BUG_ON(!ppgtt->pin_count);
2103 	if (--ppgtt->pin_count)
2104 		return;
2105 
2106 	i915_vma_unpin(ppgtt->vma);
2107 }
2108 
2109 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2110 {
2111 	struct i915_ggtt * const ggtt = &i915->ggtt;
2112 	struct gen6_hw_ppgtt *ppgtt;
2113 	int err;
2114 
2115 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2116 	if (!ppgtt)
2117 		return ERR_PTR(-ENOMEM);
2118 
2119 	kref_init(&ppgtt->base.ref);
2120 
2121 	ppgtt->base.vm.i915 = i915;
2122 	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2123 
2124 	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
2125 
2126 	i915_address_space_init(&ppgtt->base.vm, i915);
2127 
2128 	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2129 	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2130 	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2131 	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2132 	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2133 
2134 	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2135 	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
2136 	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
2137 	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2138 
2139 	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2140 
2141 	err = gen6_ppgtt_init_scratch(ppgtt);
2142 	if (err)
2143 		goto err_free;
2144 
2145 	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2146 	if (IS_ERR(ppgtt->vma)) {
2147 		err = PTR_ERR(ppgtt->vma);
2148 		goto err_scratch;
2149 	}
2150 
2151 	return &ppgtt->base;
2152 
2153 err_scratch:
2154 	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2155 err_free:
2156 	kfree(ppgtt);
2157 	return ERR_PTR(err);
2158 }
2159 
2160 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2161 {
2162 	/* This function is for gtt related workarounds. This function is
2163 	 * called on driver load and after a GPU reset, so you can place
2164 	 * workarounds here even if they get overwritten by GPU reset.
2165 	 */
2166 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2167 	if (IS_BROADWELL(dev_priv))
2168 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2169 	else if (IS_CHERRYVIEW(dev_priv))
2170 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2171 	else if (IS_GEN9_LP(dev_priv))
2172 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2173 	else if (INTEL_GEN(dev_priv) >= 9)
2174 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2175 
2176 	/*
2177 	 * To support 64K PTEs we need to first enable the use of the
2178 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2179 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2180 	 * shouldn't be needed after GEN10.
2181 	 *
2182 	 * 64K pages were first introduced from BDW+, although technically they
2183 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2184 	 * 32K pages, but we don't currently have any support for it in our
2185 	 * driver.
2186 	 */
2187 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2188 	    INTEL_GEN(dev_priv) <= 10)
2189 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2190 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2191 			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2192 }
2193 
2194 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2195 {
2196 	gtt_write_workarounds(dev_priv);
2197 
2198 	if (IS_GEN6(dev_priv))
2199 		gen6_ppgtt_enable(dev_priv);
2200 	else if (IS_GEN7(dev_priv))
2201 		gen7_ppgtt_enable(dev_priv);
2202 
2203 	return 0;
2204 }
2205 
2206 static struct i915_hw_ppgtt *
2207 __hw_ppgtt_create(struct drm_i915_private *i915)
2208 {
2209 	if (INTEL_GEN(i915) < 8)
2210 		return gen6_ppgtt_create(i915);
2211 	else
2212 		return gen8_ppgtt_create(i915);
2213 }
2214 
2215 struct i915_hw_ppgtt *
2216 i915_ppgtt_create(struct drm_i915_private *i915,
2217 		  struct drm_i915_file_private *fpriv)
2218 {
2219 	struct i915_hw_ppgtt *ppgtt;
2220 
2221 	ppgtt = __hw_ppgtt_create(i915);
2222 	if (IS_ERR(ppgtt))
2223 		return ppgtt;
2224 
2225 	ppgtt->vm.file = fpriv;
2226 
2227 	trace_i915_ppgtt_create(&ppgtt->vm);
2228 
2229 	return ppgtt;
2230 }
2231 
2232 void i915_ppgtt_close(struct i915_address_space *vm)
2233 {
2234 	GEM_BUG_ON(vm->closed);
2235 	vm->closed = true;
2236 }
2237 
2238 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2239 {
2240 	struct list_head *phases[] = {
2241 		&vm->active_list,
2242 		&vm->inactive_list,
2243 		&vm->unbound_list,
2244 		NULL,
2245 	}, **phase;
2246 
2247 	vm->closed = true;
2248 	for (phase = phases; *phase; phase++) {
2249 		struct i915_vma *vma, *vn;
2250 
2251 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2252 			i915_vma_destroy(vma);
2253 	}
2254 }
2255 
2256 void i915_ppgtt_release(struct kref *kref)
2257 {
2258 	struct i915_hw_ppgtt *ppgtt =
2259 		container_of(kref, struct i915_hw_ppgtt, ref);
2260 
2261 	trace_i915_ppgtt_release(&ppgtt->vm);
2262 
2263 	ppgtt_destroy_vma(&ppgtt->vm);
2264 
2265 	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
2266 	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
2267 	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2268 
2269 	ppgtt->vm.cleanup(&ppgtt->vm);
2270 	i915_address_space_fini(&ppgtt->vm);
2271 	kfree(ppgtt);
2272 }
2273 
2274 /* Certain Gen5 chipsets require require idling the GPU before
2275  * unmapping anything from the GTT when VT-d is enabled.
2276  */
2277 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2278 {
2279 	/* Query intel_iommu to see if we need the workaround. Presumably that
2280 	 * was loaded first.
2281 	 */
2282 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2283 }
2284 
2285 static void gen6_check_faults(struct drm_i915_private *dev_priv)
2286 {
2287 	struct intel_engine_cs *engine;
2288 	enum intel_engine_id id;
2289 	u32 fault;
2290 
2291 	for_each_engine(engine, dev_priv, id) {
2292 		fault = I915_READ(RING_FAULT_REG(engine));
2293 		if (fault & RING_FAULT_VALID) {
2294 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2295 					 "\tAddr: 0x%08lx\n"
2296 					 "\tAddress space: %s\n"
2297 					 "\tSource ID: %d\n"
2298 					 "\tType: %d\n",
2299 					 fault & PAGE_MASK,
2300 					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2301 					 RING_FAULT_SRCID(fault),
2302 					 RING_FAULT_FAULT_TYPE(fault));
2303 		}
2304 	}
2305 }
2306 
2307 static void gen8_check_faults(struct drm_i915_private *dev_priv)
2308 {
2309 	u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2310 
2311 	if (fault & RING_FAULT_VALID) {
2312 		u32 fault_data0, fault_data1;
2313 		u64 fault_addr;
2314 
2315 		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2316 		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2317 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2318 			     ((u64)fault_data0 << 12);
2319 
2320 		DRM_DEBUG_DRIVER("Unexpected fault\n"
2321 				 "\tAddr: 0x%08x_%08x\n"
2322 				 "\tAddress space: %s\n"
2323 				 "\tEngine ID: %d\n"
2324 				 "\tSource ID: %d\n"
2325 				 "\tType: %d\n",
2326 				 upper_32_bits(fault_addr),
2327 				 lower_32_bits(fault_addr),
2328 				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2329 				 GEN8_RING_FAULT_ENGINE_ID(fault),
2330 				 RING_FAULT_SRCID(fault),
2331 				 RING_FAULT_FAULT_TYPE(fault));
2332 	}
2333 }
2334 
2335 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2336 {
2337 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
2338 	if (INTEL_GEN(dev_priv) >= 8)
2339 		gen8_check_faults(dev_priv);
2340 	else if (INTEL_GEN(dev_priv) >= 6)
2341 		gen6_check_faults(dev_priv);
2342 	else
2343 		return;
2344 
2345 	i915_clear_error_registers(dev_priv);
2346 }
2347 
2348 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2349 {
2350 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2351 
2352 	/* Don't bother messing with faults pre GEN6 as we have little
2353 	 * documentation supporting that it's a good idea.
2354 	 */
2355 	if (INTEL_GEN(dev_priv) < 6)
2356 		return;
2357 
2358 	i915_check_and_clear_faults(dev_priv);
2359 
2360 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2361 
2362 	i915_ggtt_invalidate(dev_priv);
2363 }
2364 
2365 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2366 			       struct sg_table *pages)
2367 {
2368 	do {
2369 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2370 				     pages->sgl, pages->nents,
2371 				     PCI_DMA_BIDIRECTIONAL,
2372 				     DMA_ATTR_NO_WARN))
2373 			return 0;
2374 
2375 		/* If the DMA remap fails, one cause can be that we have
2376 		 * too many objects pinned in a small remapping table,
2377 		 * such as swiotlb. Incrementally purge all other objects and
2378 		 * try again - if there are no more pages to remove from
2379 		 * the DMA remapper, i915_gem_shrink will return 0.
2380 		 */
2381 		GEM_BUG_ON(obj->mm.pages == pages);
2382 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2383 				 obj->base.size >> PAGE_SHIFT, NULL,
2384 				 I915_SHRINK_BOUND |
2385 				 I915_SHRINK_UNBOUND |
2386 				 I915_SHRINK_ACTIVE));
2387 
2388 	return -ENOSPC;
2389 }
2390 
2391 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2392 {
2393 	writeq(pte, addr);
2394 }
2395 
2396 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2397 				  dma_addr_t addr,
2398 				  u64 offset,
2399 				  enum i915_cache_level level,
2400 				  u32 unused)
2401 {
2402 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2403 	gen8_pte_t __iomem *pte =
2404 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2405 
2406 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2407 
2408 	ggtt->invalidate(vm->i915);
2409 }
2410 
2411 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2412 				     struct i915_vma *vma,
2413 				     enum i915_cache_level level,
2414 				     u32 flags)
2415 {
2416 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2417 	struct sgt_iter sgt_iter;
2418 	gen8_pte_t __iomem *gtt_entries;
2419 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2420 	dma_addr_t addr;
2421 
2422 	/*
2423 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2424 	 * not to allow the user to override access to a read only page.
2425 	 */
2426 
2427 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2428 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2429 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2430 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2431 
2432 	/*
2433 	 * We want to flush the TLBs only after we're certain all the PTE
2434 	 * updates have finished.
2435 	 */
2436 	ggtt->invalidate(vm->i915);
2437 }
2438 
2439 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2440 				  dma_addr_t addr,
2441 				  u64 offset,
2442 				  enum i915_cache_level level,
2443 				  u32 flags)
2444 {
2445 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2446 	gen6_pte_t __iomem *pte =
2447 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2448 
2449 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2450 
2451 	ggtt->invalidate(vm->i915);
2452 }
2453 
2454 /*
2455  * Binds an object into the global gtt with the specified cache level. The object
2456  * will be accessible to the GPU via commands whose operands reference offsets
2457  * within the global GTT as well as accessible by the GPU through the GMADR
2458  * mapped BAR (dev_priv->mm.gtt->gtt).
2459  */
2460 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2461 				     struct i915_vma *vma,
2462 				     enum i915_cache_level level,
2463 				     u32 flags)
2464 {
2465 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2466 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2467 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2468 	struct sgt_iter iter;
2469 	dma_addr_t addr;
2470 	for_each_sgt_dma(addr, iter, vma->pages)
2471 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2472 
2473 	/*
2474 	 * We want to flush the TLBs only after we're certain all the PTE
2475 	 * updates have finished.
2476 	 */
2477 	ggtt->invalidate(vm->i915);
2478 }
2479 
2480 static void nop_clear_range(struct i915_address_space *vm,
2481 			    u64 start, u64 length)
2482 {
2483 }
2484 
2485 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2486 				  u64 start, u64 length)
2487 {
2488 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2489 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2490 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2491 	const gen8_pte_t scratch_pte = vm->scratch_pte;
2492 	gen8_pte_t __iomem *gtt_base =
2493 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2494 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2495 	int i;
2496 
2497 	if (WARN(num_entries > max_entries,
2498 		 "First entry = %d; Num entries = %d (max=%d)\n",
2499 		 first_entry, num_entries, max_entries))
2500 		num_entries = max_entries;
2501 
2502 	for (i = 0; i < num_entries; i++)
2503 		gen8_set_pte(&gtt_base[i], scratch_pte);
2504 }
2505 
2506 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2507 {
2508 	struct drm_i915_private *dev_priv = vm->i915;
2509 
2510 	/*
2511 	 * Make sure the internal GAM fifo has been cleared of all GTT
2512 	 * writes before exiting stop_machine(). This guarantees that
2513 	 * any aperture accesses waiting to start in another process
2514 	 * cannot back up behind the GTT writes causing a hang.
2515 	 * The register can be any arbitrary GAM register.
2516 	 */
2517 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2518 }
2519 
2520 struct insert_page {
2521 	struct i915_address_space *vm;
2522 	dma_addr_t addr;
2523 	u64 offset;
2524 	enum i915_cache_level level;
2525 };
2526 
2527 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2528 {
2529 	struct insert_page *arg = _arg;
2530 
2531 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2532 	bxt_vtd_ggtt_wa(arg->vm);
2533 
2534 	return 0;
2535 }
2536 
2537 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2538 					  dma_addr_t addr,
2539 					  u64 offset,
2540 					  enum i915_cache_level level,
2541 					  u32 unused)
2542 {
2543 	struct insert_page arg = { vm, addr, offset, level };
2544 
2545 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2546 }
2547 
2548 struct insert_entries {
2549 	struct i915_address_space *vm;
2550 	struct i915_vma *vma;
2551 	enum i915_cache_level level;
2552 	u32 flags;
2553 };
2554 
2555 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2556 {
2557 	struct insert_entries *arg = _arg;
2558 
2559 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2560 	bxt_vtd_ggtt_wa(arg->vm);
2561 
2562 	return 0;
2563 }
2564 
2565 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2566 					     struct i915_vma *vma,
2567 					     enum i915_cache_level level,
2568 					     u32 flags)
2569 {
2570 	struct insert_entries arg = { vm, vma, level, flags };
2571 
2572 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2573 }
2574 
2575 struct clear_range {
2576 	struct i915_address_space *vm;
2577 	u64 start;
2578 	u64 length;
2579 };
2580 
2581 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2582 {
2583 	struct clear_range *arg = _arg;
2584 
2585 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2586 	bxt_vtd_ggtt_wa(arg->vm);
2587 
2588 	return 0;
2589 }
2590 
2591 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2592 					  u64 start,
2593 					  u64 length)
2594 {
2595 	struct clear_range arg = { vm, start, length };
2596 
2597 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2598 }
2599 
2600 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2601 				  u64 start, u64 length)
2602 {
2603 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2604 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2605 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2606 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2607 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2608 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2609 	int i;
2610 
2611 	if (WARN(num_entries > max_entries,
2612 		 "First entry = %d; Num entries = %d (max=%d)\n",
2613 		 first_entry, num_entries, max_entries))
2614 		num_entries = max_entries;
2615 
2616 	scratch_pte = vm->scratch_pte;
2617 
2618 	for (i = 0; i < num_entries; i++)
2619 		iowrite32(scratch_pte, &gtt_base[i]);
2620 }
2621 
2622 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2623 				  dma_addr_t addr,
2624 				  u64 offset,
2625 				  enum i915_cache_level cache_level,
2626 				  u32 unused)
2627 {
2628 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2629 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2630 
2631 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2632 }
2633 
2634 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2635 				     struct i915_vma *vma,
2636 				     enum i915_cache_level cache_level,
2637 				     u32 unused)
2638 {
2639 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2640 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2641 
2642 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2643 				    flags);
2644 }
2645 
2646 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2647 				  u64 start, u64 length)
2648 {
2649 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2650 }
2651 
2652 static int ggtt_bind_vma(struct i915_vma *vma,
2653 			 enum i915_cache_level cache_level,
2654 			 u32 flags)
2655 {
2656 	struct drm_i915_private *i915 = vma->vm->i915;
2657 	struct drm_i915_gem_object *obj = vma->obj;
2658 	u32 pte_flags;
2659 
2660 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2661 	pte_flags = 0;
2662 	if (i915_gem_object_is_readonly(obj))
2663 		pte_flags |= PTE_READ_ONLY;
2664 
2665 	intel_runtime_pm_get(i915);
2666 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2667 	intel_runtime_pm_put(i915);
2668 
2669 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2670 
2671 	/*
2672 	 * Without aliasing PPGTT there's no difference between
2673 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2674 	 * upgrade to both bound if we bind either to avoid double-binding.
2675 	 */
2676 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2677 
2678 	return 0;
2679 }
2680 
2681 static void ggtt_unbind_vma(struct i915_vma *vma)
2682 {
2683 	struct drm_i915_private *i915 = vma->vm->i915;
2684 
2685 	intel_runtime_pm_get(i915);
2686 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2687 	intel_runtime_pm_put(i915);
2688 }
2689 
2690 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2691 				 enum i915_cache_level cache_level,
2692 				 u32 flags)
2693 {
2694 	struct drm_i915_private *i915 = vma->vm->i915;
2695 	u32 pte_flags;
2696 	int ret;
2697 
2698 	/* Currently applicable only to VLV */
2699 	pte_flags = 0;
2700 	if (i915_gem_object_is_readonly(vma->obj))
2701 		pte_flags |= PTE_READ_ONLY;
2702 
2703 	if (flags & I915_VMA_LOCAL_BIND) {
2704 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2705 
2706 		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2707 			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2708 							   vma->node.start,
2709 							   vma->size);
2710 			if (ret)
2711 				return ret;
2712 		}
2713 
2714 		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2715 					  pte_flags);
2716 	}
2717 
2718 	if (flags & I915_VMA_GLOBAL_BIND) {
2719 		intel_runtime_pm_get(i915);
2720 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2721 		intel_runtime_pm_put(i915);
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2728 {
2729 	struct drm_i915_private *i915 = vma->vm->i915;
2730 
2731 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2732 		intel_runtime_pm_get(i915);
2733 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2734 		intel_runtime_pm_put(i915);
2735 	}
2736 
2737 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2738 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2739 
2740 		vm->clear_range(vm, vma->node.start, vma->size);
2741 	}
2742 }
2743 
2744 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2745 			       struct sg_table *pages)
2746 {
2747 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2748 	struct device *kdev = &dev_priv->drm.pdev->dev;
2749 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2750 
2751 	if (unlikely(ggtt->do_idle_maps)) {
2752 		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2753 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2754 			/* Wait a bit, in hopes it avoids the hang */
2755 			udelay(10);
2756 		}
2757 	}
2758 
2759 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2760 }
2761 
2762 static int ggtt_set_pages(struct i915_vma *vma)
2763 {
2764 	int ret;
2765 
2766 	GEM_BUG_ON(vma->pages);
2767 
2768 	ret = i915_get_ggtt_vma_pages(vma);
2769 	if (ret)
2770 		return ret;
2771 
2772 	vma->page_sizes = vma->obj->mm.page_sizes;
2773 
2774 	return 0;
2775 }
2776 
2777 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2778 				  unsigned long color,
2779 				  u64 *start,
2780 				  u64 *end)
2781 {
2782 	if (node->allocated && node->color != color)
2783 		*start += I915_GTT_PAGE_SIZE;
2784 
2785 	/* Also leave a space between the unallocated reserved node after the
2786 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2787 	 * to insert a guard page to prevent prefetches crossing over the
2788 	 * GTT boundary.
2789 	 */
2790 	node = list_next_entry(node, node_list);
2791 	if (node->color != color)
2792 		*end -= I915_GTT_PAGE_SIZE;
2793 }
2794 
2795 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2796 {
2797 	struct i915_ggtt *ggtt = &i915->ggtt;
2798 	struct i915_hw_ppgtt *ppgtt;
2799 	int err;
2800 
2801 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2802 	if (IS_ERR(ppgtt))
2803 		return PTR_ERR(ppgtt);
2804 
2805 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2806 		err = -ENODEV;
2807 		goto err_ppgtt;
2808 	}
2809 
2810 	/*
2811 	 * Note we only pre-allocate as far as the end of the global
2812 	 * GTT. On 48b / 4-level page-tables, the difference is very,
2813 	 * very significant! We have to preallocate as GVT/vgpu does
2814 	 * not like the page directory disappearing.
2815 	 */
2816 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2817 	if (err)
2818 		goto err_ppgtt;
2819 
2820 	i915->mm.aliasing_ppgtt = ppgtt;
2821 
2822 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2823 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2824 
2825 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2826 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2827 
2828 	return 0;
2829 
2830 err_ppgtt:
2831 	i915_ppgtt_put(ppgtt);
2832 	return err;
2833 }
2834 
2835 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2836 {
2837 	struct i915_ggtt *ggtt = &i915->ggtt;
2838 	struct i915_hw_ppgtt *ppgtt;
2839 
2840 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2841 	if (!ppgtt)
2842 		return;
2843 
2844 	i915_ppgtt_put(ppgtt);
2845 
2846 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2847 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2848 }
2849 
2850 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2851 {
2852 	/* Let GEM Manage all of the aperture.
2853 	 *
2854 	 * However, leave one page at the end still bound to the scratch page.
2855 	 * There are a number of places where the hardware apparently prefetches
2856 	 * past the end of the object, and we've seen multiple hangs with the
2857 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2858 	 * aperture.  One page should be enough to keep any prefetching inside
2859 	 * of the aperture.
2860 	 */
2861 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2862 	unsigned long hole_start, hole_end;
2863 	struct drm_mm_node *entry;
2864 	int ret;
2865 
2866 	/*
2867 	 * GuC requires all resources that we're sharing with it to be placed in
2868 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
2869 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2870 	 * why.
2871 	 */
2872 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2873 			       intel_guc_reserved_gtt_size(&dev_priv->guc));
2874 
2875 	ret = intel_vgt_balloon(dev_priv);
2876 	if (ret)
2877 		return ret;
2878 
2879 	/* Reserve a mappable slot for our lockless error capture */
2880 	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2881 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2882 					  0, ggtt->mappable_end,
2883 					  DRM_MM_INSERT_LOW);
2884 	if (ret)
2885 		return ret;
2886 
2887 	/* Clear any non-preallocated blocks */
2888 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2889 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2890 			      hole_start, hole_end);
2891 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
2892 				     hole_end - hole_start);
2893 	}
2894 
2895 	/* And finally clear the reserved guard page */
2896 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2897 
2898 	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2899 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2900 		if (ret)
2901 			goto err;
2902 	}
2903 
2904 	return 0;
2905 
2906 err:
2907 	drm_mm_remove_node(&ggtt->error_capture);
2908 	return ret;
2909 }
2910 
2911 /**
2912  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2913  * @dev_priv: i915 device
2914  */
2915 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2916 {
2917 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2918 	struct i915_vma *vma, *vn;
2919 	struct pagevec *pvec;
2920 
2921 	ggtt->vm.closed = true;
2922 
2923 	mutex_lock(&dev_priv->drm.struct_mutex);
2924 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2925 
2926 	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
2927 	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2928 		WARN_ON(i915_vma_unbind(vma));
2929 
2930 	if (drm_mm_node_allocated(&ggtt->error_capture))
2931 		drm_mm_remove_node(&ggtt->error_capture);
2932 
2933 	if (drm_mm_initialized(&ggtt->vm.mm)) {
2934 		intel_vgt_deballoon(dev_priv);
2935 		i915_address_space_fini(&ggtt->vm);
2936 	}
2937 
2938 	ggtt->vm.cleanup(&ggtt->vm);
2939 
2940 	pvec = &dev_priv->mm.wc_stash.pvec;
2941 	if (pvec->nr) {
2942 		set_pages_array_wb(pvec->pages, pvec->nr);
2943 		__pagevec_release(pvec);
2944 	}
2945 
2946 	mutex_unlock(&dev_priv->drm.struct_mutex);
2947 
2948 	arch_phys_wc_del(ggtt->mtrr);
2949 	io_mapping_fini(&ggtt->iomap);
2950 
2951 	i915_gem_cleanup_stolen(dev_priv);
2952 }
2953 
2954 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2955 {
2956 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2957 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2958 	return snb_gmch_ctl << 20;
2959 }
2960 
2961 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2962 {
2963 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2964 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2965 	if (bdw_gmch_ctl)
2966 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2967 
2968 #ifdef CONFIG_X86_32
2969 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2970 	if (bdw_gmch_ctl > 4)
2971 		bdw_gmch_ctl = 4;
2972 #endif
2973 
2974 	return bdw_gmch_ctl << 20;
2975 }
2976 
2977 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2978 {
2979 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2980 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2981 
2982 	if (gmch_ctrl)
2983 		return 1 << (20 + gmch_ctrl);
2984 
2985 	return 0;
2986 }
2987 
2988 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2989 {
2990 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2991 	struct pci_dev *pdev = dev_priv->drm.pdev;
2992 	phys_addr_t phys_addr;
2993 	int ret;
2994 
2995 	/* For Modern GENs the PTEs and register space are split in the BAR */
2996 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2997 
2998 	/*
2999 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
3000 	 * will be dropped. For WC mappings in general we have 64 byte burst
3001 	 * writes when the WC buffer is flushed, so we can't use it, but have to
3002 	 * resort to an uncached mapping. The WC issue is easily caught by the
3003 	 * readback check when writing GTT PTE entries.
3004 	 */
3005 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3006 		ggtt->gsm = ioremap_nocache(phys_addr, size);
3007 	else
3008 		ggtt->gsm = ioremap_wc(phys_addr, size);
3009 	if (!ggtt->gsm) {
3010 		DRM_ERROR("Failed to map the ggtt page table\n");
3011 		return -ENOMEM;
3012 	}
3013 
3014 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3015 	if (ret) {
3016 		DRM_ERROR("Scratch setup failed\n");
3017 		/* iounmap will also get called at remove, but meh */
3018 		iounmap(ggtt->gsm);
3019 		return ret;
3020 	}
3021 
3022 	ggtt->vm.scratch_pte =
3023 		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
3024 				    I915_CACHE_NONE, 0);
3025 
3026 	return 0;
3027 }
3028 
3029 static struct intel_ppat_entry *
3030 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3031 {
3032 	struct intel_ppat_entry *entry = &ppat->entries[index];
3033 
3034 	GEM_BUG_ON(index >= ppat->max_entries);
3035 	GEM_BUG_ON(test_bit(index, ppat->used));
3036 
3037 	entry->ppat = ppat;
3038 	entry->value = value;
3039 	kref_init(&entry->ref);
3040 	set_bit(index, ppat->used);
3041 	set_bit(index, ppat->dirty);
3042 
3043 	return entry;
3044 }
3045 
3046 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3047 {
3048 	struct intel_ppat *ppat = entry->ppat;
3049 	unsigned int index = entry - ppat->entries;
3050 
3051 	GEM_BUG_ON(index >= ppat->max_entries);
3052 	GEM_BUG_ON(!test_bit(index, ppat->used));
3053 
3054 	entry->value = ppat->clear_value;
3055 	clear_bit(index, ppat->used);
3056 	set_bit(index, ppat->dirty);
3057 }
3058 
3059 /**
3060  * intel_ppat_get - get a usable PPAT entry
3061  * @i915: i915 device instance
3062  * @value: the PPAT value required by the caller
3063  *
3064  * The function tries to search if there is an existing PPAT entry which
3065  * matches with the required value. If perfectly matched, the existing PPAT
3066  * entry will be used. If only partially matched, it will try to check if
3067  * there is any available PPAT index. If yes, it will allocate a new PPAT
3068  * index for the required entry and update the HW. If not, the partially
3069  * matched entry will be used.
3070  */
3071 const struct intel_ppat_entry *
3072 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3073 {
3074 	struct intel_ppat *ppat = &i915->ppat;
3075 	struct intel_ppat_entry *entry = NULL;
3076 	unsigned int scanned, best_score;
3077 	int i;
3078 
3079 	GEM_BUG_ON(!ppat->max_entries);
3080 
3081 	scanned = best_score = 0;
3082 	for_each_set_bit(i, ppat->used, ppat->max_entries) {
3083 		unsigned int score;
3084 
3085 		score = ppat->match(ppat->entries[i].value, value);
3086 		if (score > best_score) {
3087 			entry = &ppat->entries[i];
3088 			if (score == INTEL_PPAT_PERFECT_MATCH) {
3089 				kref_get(&entry->ref);
3090 				return entry;
3091 			}
3092 			best_score = score;
3093 		}
3094 		scanned++;
3095 	}
3096 
3097 	if (scanned == ppat->max_entries) {
3098 		if (!entry)
3099 			return ERR_PTR(-ENOSPC);
3100 
3101 		kref_get(&entry->ref);
3102 		return entry;
3103 	}
3104 
3105 	i = find_first_zero_bit(ppat->used, ppat->max_entries);
3106 	entry = __alloc_ppat_entry(ppat, i, value);
3107 	ppat->update_hw(i915);
3108 	return entry;
3109 }
3110 
3111 static void release_ppat(struct kref *kref)
3112 {
3113 	struct intel_ppat_entry *entry =
3114 		container_of(kref, struct intel_ppat_entry, ref);
3115 	struct drm_i915_private *i915 = entry->ppat->i915;
3116 
3117 	__free_ppat_entry(entry);
3118 	entry->ppat->update_hw(i915);
3119 }
3120 
3121 /**
3122  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3123  * @entry: an intel PPAT entry
3124  *
3125  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3126  * entry is dynamically allocated, its reference count will be decreased. Once
3127  * the reference count becomes into zero, the PPAT index becomes free again.
3128  */
3129 void intel_ppat_put(const struct intel_ppat_entry *entry)
3130 {
3131 	struct intel_ppat *ppat = entry->ppat;
3132 	unsigned int index = entry - ppat->entries;
3133 
3134 	GEM_BUG_ON(!ppat->max_entries);
3135 
3136 	kref_put(&ppat->entries[index].ref, release_ppat);
3137 }
3138 
3139 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3140 {
3141 	struct intel_ppat *ppat = &dev_priv->ppat;
3142 	int i;
3143 
3144 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3145 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3146 		clear_bit(i, ppat->dirty);
3147 	}
3148 }
3149 
3150 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3151 {
3152 	struct intel_ppat *ppat = &dev_priv->ppat;
3153 	u64 pat = 0;
3154 	int i;
3155 
3156 	for (i = 0; i < ppat->max_entries; i++)
3157 		pat |= GEN8_PPAT(i, ppat->entries[i].value);
3158 
3159 	bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3160 
3161 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3162 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3163 }
3164 
3165 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3166 {
3167 	unsigned int score = 0;
3168 	enum {
3169 		AGE_MATCH = BIT(0),
3170 		TC_MATCH = BIT(1),
3171 		CA_MATCH = BIT(2),
3172 	};
3173 
3174 	/* Cache attribute has to be matched. */
3175 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3176 		return 0;
3177 
3178 	score |= CA_MATCH;
3179 
3180 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3181 		score |= TC_MATCH;
3182 
3183 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3184 		score |= AGE_MATCH;
3185 
3186 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3187 		return INTEL_PPAT_PERFECT_MATCH;
3188 
3189 	return score;
3190 }
3191 
3192 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3193 {
3194 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3195 		INTEL_PPAT_PERFECT_MATCH : 0;
3196 }
3197 
3198 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3199 {
3200 	ppat->max_entries = 8;
3201 	ppat->update_hw = cnl_private_pat_update_hw;
3202 	ppat->match = bdw_private_pat_match;
3203 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3204 
3205 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3206 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3207 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3208 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3209 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3210 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3211 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3212 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3213 }
3214 
3215 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3216  * bits. When using advanced contexts each context stores its own PAT, but
3217  * writing this data shouldn't be harmful even in those cases. */
3218 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3219 {
3220 	ppat->max_entries = 8;
3221 	ppat->update_hw = bdw_private_pat_update_hw;
3222 	ppat->match = bdw_private_pat_match;
3223 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3224 
3225 	if (!HAS_PPGTT(ppat->i915)) {
3226 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3227 		 * so RTL will always use the value corresponding to
3228 		 * pat_sel = 000".
3229 		 * So let's disable cache for GGTT to avoid screen corruptions.
3230 		 * MOCS still can be used though.
3231 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3232 		 * before this patch, i.e. the same uncached + snooping access
3233 		 * like on gen6/7 seems to be in effect.
3234 		 * - So this just fixes blitter/render access. Again it looks
3235 		 * like it's not just uncached access, but uncached + snooping.
3236 		 * So we can still hold onto all our assumptions wrt cpu
3237 		 * clflushing on LLC machines.
3238 		 */
3239 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3240 		return;
3241 	}
3242 
3243 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3244 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3245 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3246 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3247 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3248 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3249 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3250 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3251 }
3252 
3253 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3254 {
3255 	ppat->max_entries = 8;
3256 	ppat->update_hw = bdw_private_pat_update_hw;
3257 	ppat->match = chv_private_pat_match;
3258 	ppat->clear_value = CHV_PPAT_SNOOP;
3259 
3260 	/*
3261 	 * Map WB on BDW to snooped on CHV.
3262 	 *
3263 	 * Only the snoop bit has meaning for CHV, the rest is
3264 	 * ignored.
3265 	 *
3266 	 * The hardware will never snoop for certain types of accesses:
3267 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3268 	 * - PPGTT page tables
3269 	 * - some other special cycles
3270 	 *
3271 	 * As with BDW, we also need to consider the following for GT accesses:
3272 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3273 	 * so RTL will always use the value corresponding to
3274 	 * pat_sel = 000".
3275 	 * Which means we must set the snoop bit in PAT entry 0
3276 	 * in order to keep the global status page working.
3277 	 */
3278 
3279 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3280 	__alloc_ppat_entry(ppat, 1, 0);
3281 	__alloc_ppat_entry(ppat, 2, 0);
3282 	__alloc_ppat_entry(ppat, 3, 0);
3283 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3284 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3285 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3286 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3287 }
3288 
3289 static void gen6_gmch_remove(struct i915_address_space *vm)
3290 {
3291 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3292 
3293 	iounmap(ggtt->gsm);
3294 	cleanup_scratch_page(vm);
3295 }
3296 
3297 static void setup_private_pat(struct drm_i915_private *dev_priv)
3298 {
3299 	struct intel_ppat *ppat = &dev_priv->ppat;
3300 	int i;
3301 
3302 	ppat->i915 = dev_priv;
3303 
3304 	if (INTEL_GEN(dev_priv) >= 10)
3305 		cnl_setup_private_ppat(ppat);
3306 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3307 		chv_setup_private_ppat(ppat);
3308 	else
3309 		bdw_setup_private_ppat(ppat);
3310 
3311 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3312 
3313 	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3314 		ppat->entries[i].value = ppat->clear_value;
3315 		ppat->entries[i].ppat = ppat;
3316 		set_bit(i, ppat->dirty);
3317 	}
3318 
3319 	ppat->update_hw(dev_priv);
3320 }
3321 
3322 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3323 {
3324 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3325 	struct pci_dev *pdev = dev_priv->drm.pdev;
3326 	unsigned int size;
3327 	u16 snb_gmch_ctl;
3328 	int err;
3329 
3330 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3331 	ggtt->gmadr =
3332 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3333 						 pci_resource_len(pdev, 2));
3334 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3335 
3336 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3337 	if (!err)
3338 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3339 	if (err)
3340 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3341 
3342 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3343 	if (IS_CHERRYVIEW(dev_priv))
3344 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3345 	else
3346 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3347 
3348 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3349 	ggtt->vm.cleanup = gen6_gmch_remove;
3350 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
3351 	ggtt->vm.clear_range = nop_clear_range;
3352 	if (intel_scanout_needs_vtd_wa(dev_priv))
3353 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3354 
3355 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3356 
3357 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3358 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3359 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3360 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3361 		if (ggtt->vm.clear_range != nop_clear_range)
3362 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3363 
3364 		/* Prevent recursively calling stop_machine() and deadlocks. */
3365 		dev_info(dev_priv->drm.dev,
3366 			 "Disabling error capture for VT-d workaround\n");
3367 		i915_disable_error_state(dev_priv, -ENODEV);
3368 	}
3369 
3370 	ggtt->invalidate = gen6_ggtt_invalidate;
3371 
3372 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3373 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3374 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3375 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3376 
3377 	ggtt->vm.pte_encode = gen8_pte_encode;
3378 
3379 	setup_private_pat(dev_priv);
3380 
3381 	return ggtt_probe_common(ggtt, size);
3382 }
3383 
3384 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3385 {
3386 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3387 	struct pci_dev *pdev = dev_priv->drm.pdev;
3388 	unsigned int size;
3389 	u16 snb_gmch_ctl;
3390 	int err;
3391 
3392 	ggtt->gmadr =
3393 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3394 						 pci_resource_len(pdev, 2));
3395 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3396 
3397 	/* 64/512MB is the current min/max we actually know of, but this is just
3398 	 * a coarse sanity check.
3399 	 */
3400 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3401 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3402 		return -ENXIO;
3403 	}
3404 
3405 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3406 	if (!err)
3407 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3408 	if (err)
3409 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3410 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3411 
3412 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3413 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3414 
3415 	ggtt->vm.clear_range = gen6_ggtt_clear_range;
3416 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
3417 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3418 	ggtt->vm.cleanup = gen6_gmch_remove;
3419 
3420 	ggtt->invalidate = gen6_ggtt_invalidate;
3421 
3422 	if (HAS_EDRAM(dev_priv))
3423 		ggtt->vm.pte_encode = iris_pte_encode;
3424 	else if (IS_HASWELL(dev_priv))
3425 		ggtt->vm.pte_encode = hsw_pte_encode;
3426 	else if (IS_VALLEYVIEW(dev_priv))
3427 		ggtt->vm.pte_encode = byt_pte_encode;
3428 	else if (INTEL_GEN(dev_priv) >= 7)
3429 		ggtt->vm.pte_encode = ivb_pte_encode;
3430 	else
3431 		ggtt->vm.pte_encode = snb_pte_encode;
3432 
3433 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3434 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3435 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3436 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3437 
3438 	return ggtt_probe_common(ggtt, size);
3439 }
3440 
3441 static void i915_gmch_remove(struct i915_address_space *vm)
3442 {
3443 	intel_gmch_remove();
3444 }
3445 
3446 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3447 {
3448 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3449 	phys_addr_t gmadr_base;
3450 	int ret;
3451 
3452 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3453 	if (!ret) {
3454 		DRM_ERROR("failed to set up gmch\n");
3455 		return -EIO;
3456 	}
3457 
3458 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3459 
3460 	ggtt->gmadr =
3461 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3462 						 ggtt->mappable_end);
3463 
3464 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3465 	ggtt->vm.insert_page = i915_ggtt_insert_page;
3466 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3467 	ggtt->vm.clear_range = i915_ggtt_clear_range;
3468 	ggtt->vm.cleanup = i915_gmch_remove;
3469 
3470 	ggtt->invalidate = gmch_ggtt_invalidate;
3471 
3472 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3473 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3474 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3475 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3476 
3477 	if (unlikely(ggtt->do_idle_maps))
3478 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3479 
3480 	return 0;
3481 }
3482 
3483 /**
3484  * i915_ggtt_probe_hw - Probe GGTT hardware location
3485  * @dev_priv: i915 device
3486  */
3487 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3488 {
3489 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3490 	int ret;
3491 
3492 	ggtt->vm.i915 = dev_priv;
3493 	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3494 
3495 	if (INTEL_GEN(dev_priv) <= 5)
3496 		ret = i915_gmch_probe(ggtt);
3497 	else if (INTEL_GEN(dev_priv) < 8)
3498 		ret = gen6_gmch_probe(ggtt);
3499 	else
3500 		ret = gen8_gmch_probe(ggtt);
3501 	if (ret)
3502 		return ret;
3503 
3504 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3505 	 * This is easier than doing range restriction on the fly, as we
3506 	 * currently don't have any bits spare to pass in this upper
3507 	 * restriction!
3508 	 */
3509 	if (USES_GUC(dev_priv)) {
3510 		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
3511 		ggtt->mappable_end =
3512 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3513 	}
3514 
3515 	if ((ggtt->vm.total - 1) >> 32) {
3516 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3517 			  " of address space! Found %lldM!\n",
3518 			  ggtt->vm.total >> 20);
3519 		ggtt->vm.total = 1ULL << 32;
3520 		ggtt->mappable_end =
3521 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3522 	}
3523 
3524 	if (ggtt->mappable_end > ggtt->vm.total) {
3525 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3526 			  " aperture=%pa, total=%llx\n",
3527 			  &ggtt->mappable_end, ggtt->vm.total);
3528 		ggtt->mappable_end = ggtt->vm.total;
3529 	}
3530 
3531 	/* GMADR is the PCI mmio aperture into the global GTT. */
3532 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3533 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3534 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3535 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3536 	if (intel_vtd_active())
3537 		DRM_INFO("VT-d active for gfx access\n");
3538 
3539 	return 0;
3540 }
3541 
3542 /**
3543  * i915_ggtt_init_hw - Initialize GGTT hardware
3544  * @dev_priv: i915 device
3545  */
3546 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3547 {
3548 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3549 	int ret;
3550 
3551 	stash_init(&dev_priv->mm.wc_stash);
3552 
3553 	/* Note that we use page colouring to enforce a guard page at the
3554 	 * end of the address space. This is required as the CS may prefetch
3555 	 * beyond the end of the batch buffer, across the page boundary,
3556 	 * and beyond the end of the GTT if we do not provide a guard.
3557 	 */
3558 	mutex_lock(&dev_priv->drm.struct_mutex);
3559 	i915_address_space_init(&ggtt->vm, dev_priv);
3560 
3561 	ggtt->vm.is_ggtt = true;
3562 
3563 	/* Only VLV supports read-only GGTT mappings */
3564 	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
3565 
3566 	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3567 		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3568 	mutex_unlock(&dev_priv->drm.struct_mutex);
3569 
3570 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3571 				dev_priv->ggtt.gmadr.start,
3572 				dev_priv->ggtt.mappable_end)) {
3573 		ret = -EIO;
3574 		goto out_gtt_cleanup;
3575 	}
3576 
3577 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3578 
3579 	/*
3580 	 * Initialise stolen early so that we may reserve preallocated
3581 	 * objects for the BIOS to KMS transition.
3582 	 */
3583 	ret = i915_gem_init_stolen(dev_priv);
3584 	if (ret)
3585 		goto out_gtt_cleanup;
3586 
3587 	return 0;
3588 
3589 out_gtt_cleanup:
3590 	ggtt->vm.cleanup(&ggtt->vm);
3591 	return ret;
3592 }
3593 
3594 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3595 {
3596 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3597 		return -EIO;
3598 
3599 	return 0;
3600 }
3601 
3602 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3603 {
3604 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3605 
3606 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3607 
3608 	i915_ggtt_invalidate(i915);
3609 }
3610 
3611 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3612 {
3613 	/* XXX Temporary pardon for error unload */
3614 	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
3615 		return;
3616 
3617 	/* We should only be called after i915_ggtt_enable_guc() */
3618 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3619 
3620 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3621 
3622 	i915_ggtt_invalidate(i915);
3623 }
3624 
3625 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3626 {
3627 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3628 	struct i915_vma *vma, *vn;
3629 
3630 	i915_check_and_clear_faults(dev_priv);
3631 
3632 	/* First fill our portion of the GTT with scratch pages */
3633 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3634 
3635 	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3636 
3637 	/* clflush objects bound into the GGTT and rebind them. */
3638 	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
3639 	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3640 		struct drm_i915_gem_object *obj = vma->obj;
3641 
3642 		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3643 			continue;
3644 
3645 		if (!i915_vma_unbind(vma))
3646 			continue;
3647 
3648 		WARN_ON(i915_vma_bind(vma,
3649 				      obj ? obj->cache_level : 0,
3650 				      PIN_UPDATE));
3651 		if (obj)
3652 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3653 	}
3654 
3655 	ggtt->vm.closed = false;
3656 	i915_ggtt_invalidate(dev_priv);
3657 
3658 	if (INTEL_GEN(dev_priv) >= 8) {
3659 		struct intel_ppat *ppat = &dev_priv->ppat;
3660 
3661 		bitmap_set(ppat->dirty, 0, ppat->max_entries);
3662 		dev_priv->ppat.update_hw(dev_priv);
3663 		return;
3664 	}
3665 }
3666 
3667 static struct scatterlist *
3668 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3669 	     unsigned int width, unsigned int height,
3670 	     unsigned int stride,
3671 	     struct sg_table *st, struct scatterlist *sg)
3672 {
3673 	unsigned int column, row;
3674 	unsigned int src_idx;
3675 
3676 	for (column = 0; column < width; column++) {
3677 		src_idx = stride * (height - 1) + column + offset;
3678 		for (row = 0; row < height; row++) {
3679 			st->nents++;
3680 			/* We don't need the pages, but need to initialize
3681 			 * the entries so the sg list can be happily traversed.
3682 			 * The only thing we need are DMA addresses.
3683 			 */
3684 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3685 			sg_dma_address(sg) =
3686 				i915_gem_object_get_dma_address(obj, src_idx);
3687 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3688 			sg = sg_next(sg);
3689 			src_idx -= stride;
3690 		}
3691 	}
3692 
3693 	return sg;
3694 }
3695 
3696 static noinline struct sg_table *
3697 intel_rotate_pages(struct intel_rotation_info *rot_info,
3698 		   struct drm_i915_gem_object *obj)
3699 {
3700 	unsigned int size = intel_rotation_info_size(rot_info);
3701 	struct sg_table *st;
3702 	struct scatterlist *sg;
3703 	int ret = -ENOMEM;
3704 	int i;
3705 
3706 	/* Allocate target SG list. */
3707 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3708 	if (!st)
3709 		goto err_st_alloc;
3710 
3711 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3712 	if (ret)
3713 		goto err_sg_alloc;
3714 
3715 	st->nents = 0;
3716 	sg = st->sgl;
3717 
3718 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3719 		sg = rotate_pages(obj, rot_info->plane[i].offset,
3720 				  rot_info->plane[i].width, rot_info->plane[i].height,
3721 				  rot_info->plane[i].stride, st, sg);
3722 	}
3723 
3724 	return st;
3725 
3726 err_sg_alloc:
3727 	kfree(st);
3728 err_st_alloc:
3729 
3730 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3731 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3732 
3733 	return ERR_PTR(ret);
3734 }
3735 
3736 static noinline struct sg_table *
3737 intel_partial_pages(const struct i915_ggtt_view *view,
3738 		    struct drm_i915_gem_object *obj)
3739 {
3740 	struct sg_table *st;
3741 	struct scatterlist *sg, *iter;
3742 	unsigned int count = view->partial.size;
3743 	unsigned int offset;
3744 	int ret = -ENOMEM;
3745 
3746 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3747 	if (!st)
3748 		goto err_st_alloc;
3749 
3750 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3751 	if (ret)
3752 		goto err_sg_alloc;
3753 
3754 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3755 	GEM_BUG_ON(!iter);
3756 
3757 	sg = st->sgl;
3758 	st->nents = 0;
3759 	do {
3760 		unsigned int len;
3761 
3762 		len = min(iter->length - (offset << PAGE_SHIFT),
3763 			  count << PAGE_SHIFT);
3764 		sg_set_page(sg, NULL, len, 0);
3765 		sg_dma_address(sg) =
3766 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3767 		sg_dma_len(sg) = len;
3768 
3769 		st->nents++;
3770 		count -= len >> PAGE_SHIFT;
3771 		if (count == 0) {
3772 			sg_mark_end(sg);
3773 			i915_sg_trim(st); /* Drop any unused tail entries. */
3774 
3775 			return st;
3776 		}
3777 
3778 		sg = __sg_next(sg);
3779 		iter = __sg_next(iter);
3780 		offset = 0;
3781 	} while (1);
3782 
3783 err_sg_alloc:
3784 	kfree(st);
3785 err_st_alloc:
3786 	return ERR_PTR(ret);
3787 }
3788 
3789 static int
3790 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3791 {
3792 	int ret;
3793 
3794 	/* The vma->pages are only valid within the lifespan of the borrowed
3795 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3796 	 * must be the vma->pages. A simple rule is that vma->pages must only
3797 	 * be accessed when the obj->mm.pages are pinned.
3798 	 */
3799 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3800 
3801 	switch (vma->ggtt_view.type) {
3802 	default:
3803 		GEM_BUG_ON(vma->ggtt_view.type);
3804 		/* fall through */
3805 	case I915_GGTT_VIEW_NORMAL:
3806 		vma->pages = vma->obj->mm.pages;
3807 		return 0;
3808 
3809 	case I915_GGTT_VIEW_ROTATED:
3810 		vma->pages =
3811 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3812 		break;
3813 
3814 	case I915_GGTT_VIEW_PARTIAL:
3815 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3816 		break;
3817 	}
3818 
3819 	ret = 0;
3820 	if (unlikely(IS_ERR(vma->pages))) {
3821 		ret = PTR_ERR(vma->pages);
3822 		vma->pages = NULL;
3823 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3824 			  vma->ggtt_view.type, ret);
3825 	}
3826 	return ret;
3827 }
3828 
3829 /**
3830  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3831  * @vm: the &struct i915_address_space
3832  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3833  * @size: how much space to allocate inside the GTT,
3834  *        must be #I915_GTT_PAGE_SIZE aligned
3835  * @offset: where to insert inside the GTT,
3836  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3837  *          (@offset + @size) must fit within the address space
3838  * @color: color to apply to node, if this node is not from a VMA,
3839  *         color must be #I915_COLOR_UNEVICTABLE
3840  * @flags: control search and eviction behaviour
3841  *
3842  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3843  * the address space (using @size and @color). If the @node does not fit, it
3844  * tries to evict any overlapping nodes from the GTT, including any
3845  * neighbouring nodes if the colors do not match (to ensure guard pages between
3846  * differing domains). See i915_gem_evict_for_node() for the gory details
3847  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3848  * evicting active overlapping objects, and any overlapping node that is pinned
3849  * or marked as unevictable will also result in failure.
3850  *
3851  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3852  * asked to wait for eviction and interrupted.
3853  */
3854 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3855 			 struct drm_mm_node *node,
3856 			 u64 size, u64 offset, unsigned long color,
3857 			 unsigned int flags)
3858 {
3859 	int err;
3860 
3861 	GEM_BUG_ON(!size);
3862 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3863 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3864 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3865 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3866 	GEM_BUG_ON(drm_mm_node_allocated(node));
3867 
3868 	node->size = size;
3869 	node->start = offset;
3870 	node->color = color;
3871 
3872 	err = drm_mm_reserve_node(&vm->mm, node);
3873 	if (err != -ENOSPC)
3874 		return err;
3875 
3876 	if (flags & PIN_NOEVICT)
3877 		return -ENOSPC;
3878 
3879 	err = i915_gem_evict_for_node(vm, node, flags);
3880 	if (err == 0)
3881 		err = drm_mm_reserve_node(&vm->mm, node);
3882 
3883 	return err;
3884 }
3885 
3886 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3887 {
3888 	u64 range, addr;
3889 
3890 	GEM_BUG_ON(range_overflows(start, len, end));
3891 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3892 
3893 	range = round_down(end - len, align) - round_up(start, align);
3894 	if (range) {
3895 		if (sizeof(unsigned long) == sizeof(u64)) {
3896 			addr = get_random_long();
3897 		} else {
3898 			addr = get_random_int();
3899 			if (range > U32_MAX) {
3900 				addr <<= 32;
3901 				addr |= get_random_int();
3902 			}
3903 		}
3904 		div64_u64_rem(addr, range, &addr);
3905 		start += addr;
3906 	}
3907 
3908 	return round_up(start, align);
3909 }
3910 
3911 /**
3912  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3913  * @vm: the &struct i915_address_space
3914  * @node: the &struct drm_mm_node (typically i915_vma.node)
3915  * @size: how much space to allocate inside the GTT,
3916  *        must be #I915_GTT_PAGE_SIZE aligned
3917  * @alignment: required alignment of starting offset, may be 0 but
3918  *             if specified, this must be a power-of-two and at least
3919  *             #I915_GTT_MIN_ALIGNMENT
3920  * @color: color to apply to node
3921  * @start: start of any range restriction inside GTT (0 for all),
3922  *         must be #I915_GTT_PAGE_SIZE aligned
3923  * @end: end of any range restriction inside GTT (U64_MAX for all),
3924  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3925  * @flags: control search and eviction behaviour
3926  *
3927  * i915_gem_gtt_insert() first searches for an available hole into which
3928  * is can insert the node. The hole address is aligned to @alignment and
3929  * its @size must then fit entirely within the [@start, @end] bounds. The
3930  * nodes on either side of the hole must match @color, or else a guard page
3931  * will be inserted between the two nodes (or the node evicted). If no
3932  * suitable hole is found, first a victim is randomly selected and tested
3933  * for eviction, otherwise then the LRU list of objects within the GTT
3934  * is scanned to find the first set of replacement nodes to create the hole.
3935  * Those old overlapping nodes are evicted from the GTT (and so must be
3936  * rebound before any future use). Any node that is currently pinned cannot
3937  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3938  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3939  * searching for an eviction candidate. See i915_gem_evict_something() for
3940  * the gory details on the eviction algorithm.
3941  *
3942  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3943  * asked to wait for eviction and interrupted.
3944  */
3945 int i915_gem_gtt_insert(struct i915_address_space *vm,
3946 			struct drm_mm_node *node,
3947 			u64 size, u64 alignment, unsigned long color,
3948 			u64 start, u64 end, unsigned int flags)
3949 {
3950 	enum drm_mm_insert_mode mode;
3951 	u64 offset;
3952 	int err;
3953 
3954 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3955 	GEM_BUG_ON(!size);
3956 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3957 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3958 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3959 	GEM_BUG_ON(start >= end);
3960 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3961 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3962 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3963 	GEM_BUG_ON(drm_mm_node_allocated(node));
3964 
3965 	if (unlikely(range_overflows(start, size, end)))
3966 		return -ENOSPC;
3967 
3968 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3969 		return -ENOSPC;
3970 
3971 	mode = DRM_MM_INSERT_BEST;
3972 	if (flags & PIN_HIGH)
3973 		mode = DRM_MM_INSERT_HIGHEST;
3974 	if (flags & PIN_MAPPABLE)
3975 		mode = DRM_MM_INSERT_LOW;
3976 
3977 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3978 	 * so we know that we always have a minimum alignment of 4096.
3979 	 * The drm_mm range manager is optimised to return results
3980 	 * with zero alignment, so where possible use the optimal
3981 	 * path.
3982 	 */
3983 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3984 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3985 		alignment = 0;
3986 
3987 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3988 					  size, alignment, color,
3989 					  start, end, mode);
3990 	if (err != -ENOSPC)
3991 		return err;
3992 
3993 	if (mode & DRM_MM_INSERT_ONCE) {
3994 		err = drm_mm_insert_node_in_range(&vm->mm, node,
3995 						  size, alignment, color,
3996 						  start, end,
3997 						  DRM_MM_INSERT_BEST);
3998 		if (err != -ENOSPC)
3999 			return err;
4000 	}
4001 
4002 	if (flags & PIN_NOEVICT)
4003 		return -ENOSPC;
4004 
4005 	/* No free space, pick a slot at random.
4006 	 *
4007 	 * There is a pathological case here using a GTT shared between
4008 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4009 	 *
4010 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4011 	 *         (64k objects)             (448k objects)
4012 	 *
4013 	 * Now imagine that the eviction LRU is ordered top-down (just because
4014 	 * pathology meets real life), and that we need to evict an object to
4015 	 * make room inside the aperture. The eviction scan then has to walk
4016 	 * the 448k list before it finds one within range. And now imagine that
4017 	 * it has to search for a new hole between every byte inside the memcpy,
4018 	 * for several simultaneous clients.
4019 	 *
4020 	 * On a full-ppgtt system, if we have run out of available space, there
4021 	 * will be lots and lots of objects in the eviction list! Again,
4022 	 * searching that LRU list may be slow if we are also applying any
4023 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
4024 	 * simplicity and similarilty between different GTT, try the single
4025 	 * random replacement first.
4026 	 */
4027 	offset = random_offset(start, end,
4028 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4029 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4030 	if (err != -ENOSPC)
4031 		return err;
4032 
4033 	/* Randomly selected placement is pinned, do a search */
4034 	err = i915_gem_evict_something(vm, size, alignment, color,
4035 				       start, end, flags);
4036 	if (err)
4037 		return err;
4038 
4039 	return drm_mm_insert_node_in_range(&vm->mm, node,
4040 					   size, alignment, color,
4041 					   start, end, DRM_MM_INSERT_EVICT);
4042 }
4043 
4044 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4045 #include "selftests/mock_gtt.c"
4046 #include "selftests/i915_gem_gtt.c"
4047 #endif
4048