1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: Global GTT views
37  *
38  * Background and previous state
39  *
40  * Historically objects could exists (be bound) in global GTT space only as
41  * singular instances with a view representing all of the object's backing pages
42  * in a linear fashion. This view will be called a normal view.
43  *
44  * To support multiple views of the same object, where the number of mapped
45  * pages is not equal to the backing store, or where the layout of the pages
46  * is not linear, concept of a GGTT view was added.
47  *
48  * One example of an alternative view is a stereo display driven by a single
49  * image. In this case we would have a framebuffer looking like this
50  * (2x2 pages):
51  *
52  *    12
53  *    34
54  *
55  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56  * rendering. In contrast, fed to the display engine would be an alternative
57  * view which could look something like this:
58  *
59  *   1212
60  *   3434
61  *
62  * In this example both the size and layout of pages in the alternative view is
63  * different from the normal view.
64  *
65  * Implementation and usage
66  *
67  * GGTT views are implemented using VMAs and are distinguished via enum
68  * i915_ggtt_view_type and struct i915_ggtt_view.
69  *
70  * A new flavour of core GEM functions which work with GGTT bound objects were
71  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72  * renaming  in large amounts of code. They take the struct i915_ggtt_view
73  * parameter encapsulating all metadata required to implement a view.
74  *
75  * As a helper for callers which are only interested in the normal view,
76  * globally const i915_ggtt_view_normal singleton instance exists. All old core
77  * GEM API functions, the ones not taking the view parameter, are operating on,
78  * or with the normal GGTT view.
79  *
80  * Code wanting to add or use a new GGTT view needs to:
81  *
82  * 1. Add a new enum with a suitable name.
83  * 2. Extend the metadata in the i915_ggtt_view structure if required.
84  * 3. Add support to i915_get_vma_pages().
85  *
86  * New views are required to build a scatter-gather table from within the
87  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88  * exists for the lifetime of an VMA.
89  *
90  * Core API is designed to have copy semantics which means that passed in
91  * struct i915_ggtt_view does not need to be persistent (left around after
92  * calling the core API functions).
93  *
94  */
95 
96 static inline struct i915_ggtt *
97 i915_vm_to_ggtt(struct i915_address_space *vm)
98 {
99 	GEM_BUG_ON(!i915_is_ggtt(vm));
100 	return container_of(vm, struct i915_ggtt, base);
101 }
102 
103 static int
104 i915_get_ggtt_vma_pages(struct i915_vma *vma);
105 
106 const struct i915_ggtt_view i915_ggtt_view_normal = {
107 	.type = I915_GGTT_VIEW_NORMAL,
108 };
109 const struct i915_ggtt_view i915_ggtt_view_rotated = {
110 	.type = I915_GGTT_VIEW_ROTATED,
111 };
112 
113 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
114 			       	int enable_ppgtt)
115 {
116 	bool has_aliasing_ppgtt;
117 	bool has_full_ppgtt;
118 	bool has_full_48bit_ppgtt;
119 
120 	has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
121 	has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
122 	has_full_48bit_ppgtt =
123 	       	IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
124 
125 	if (intel_vgpu_active(dev_priv))
126 		has_full_ppgtt = false; /* emulation is too hard */
127 
128 	if (!has_aliasing_ppgtt)
129 		return 0;
130 
131 	/*
132 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
133 	 * execlists, the sole mechanism available to submit work.
134 	 */
135 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
136 		return 0;
137 
138 	if (enable_ppgtt == 1)
139 		return 1;
140 
141 	if (enable_ppgtt == 2 && has_full_ppgtt)
142 		return 2;
143 
144 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
145 		return 3;
146 
147 #ifdef CONFIG_INTEL_IOMMU
148 	/* Disable ppgtt on SNB if VT-d is on. */
149 	if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
150 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
151 		return 0;
152 	}
153 #endif
154 
155 	/* Early VLV doesn't have this */
156 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
157 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
158 		return 0;
159 	}
160 
161 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists)
162 		return has_full_48bit_ppgtt ? 3 : 2;
163 	else
164 		return has_aliasing_ppgtt ? 1 : 0;
165 }
166 
167 static int ppgtt_bind_vma(struct i915_vma *vma,
168 			  enum i915_cache_level cache_level,
169 			  u32 unused)
170 {
171 	u32 pte_flags = 0;
172 
173 	/* Currently applicable only to VLV */
174 	if (vma->obj->gt_ro)
175 		pte_flags |= PTE_READ_ONLY;
176 
177 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
178 				cache_level, pte_flags);
179 
180 	return 0;
181 }
182 
183 static void ppgtt_unbind_vma(struct i915_vma *vma)
184 {
185 	vma->vm->clear_range(vma->vm,
186 			     vma->node.start,
187 			     vma->obj->base.size,
188 			     true);
189 }
190 
191 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
192 				  enum i915_cache_level level,
193 				  bool valid)
194 {
195 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
196 	pte |= addr;
197 
198 	switch (level) {
199 	case I915_CACHE_NONE:
200 		pte |= PPAT_UNCACHED_INDEX;
201 		break;
202 	case I915_CACHE_WT:
203 		pte |= PPAT_DISPLAY_ELLC_INDEX;
204 		break;
205 	default:
206 		pte |= PPAT_CACHED_INDEX;
207 		break;
208 	}
209 
210 	return pte;
211 }
212 
213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
214 				  const enum i915_cache_level level)
215 {
216 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
217 	pde |= addr;
218 	if (level != I915_CACHE_NONE)
219 		pde |= PPAT_CACHED_PDE_INDEX;
220 	else
221 		pde |= PPAT_UNCACHED_INDEX;
222 	return pde;
223 }
224 
225 #define gen8_pdpe_encode gen8_pde_encode
226 #define gen8_pml4e_encode gen8_pde_encode
227 
228 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
229 				 enum i915_cache_level level,
230 				 bool valid, u32 unused)
231 {
232 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
233 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 
235 	switch (level) {
236 	case I915_CACHE_L3_LLC:
237 	case I915_CACHE_LLC:
238 		pte |= GEN6_PTE_CACHE_LLC;
239 		break;
240 	case I915_CACHE_NONE:
241 		pte |= GEN6_PTE_UNCACHED;
242 		break;
243 	default:
244 		MISSING_CASE(level);
245 	}
246 
247 	return pte;
248 }
249 
250 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
251 				 enum i915_cache_level level,
252 				 bool valid, u32 unused)
253 {
254 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
255 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
256 
257 	switch (level) {
258 	case I915_CACHE_L3_LLC:
259 		pte |= GEN7_PTE_CACHE_L3_LLC;
260 		break;
261 	case I915_CACHE_LLC:
262 		pte |= GEN6_PTE_CACHE_LLC;
263 		break;
264 	case I915_CACHE_NONE:
265 		pte |= GEN6_PTE_UNCACHED;
266 		break;
267 	default:
268 		MISSING_CASE(level);
269 	}
270 
271 	return pte;
272 }
273 
274 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
275 				 enum i915_cache_level level,
276 				 bool valid, u32 flags)
277 {
278 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
279 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
280 
281 	if (!(flags & PTE_READ_ONLY))
282 		pte |= BYT_PTE_WRITEABLE;
283 
284 	if (level != I915_CACHE_NONE)
285 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
286 
287 	return pte;
288 }
289 
290 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
291 				 enum i915_cache_level level,
292 				 bool valid, u32 unused)
293 {
294 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
295 	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 
297 	if (level != I915_CACHE_NONE)
298 		pte |= HSW_WB_LLC_AGE3;
299 
300 	return pte;
301 }
302 
303 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
304 				  enum i915_cache_level level,
305 				  bool valid, u32 unused)
306 {
307 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
308 	pte |= HSW_PTE_ADDR_ENCODE(addr);
309 
310 	switch (level) {
311 	case I915_CACHE_NONE:
312 		break;
313 	case I915_CACHE_WT:
314 		pte |= HSW_WT_ELLC_LLC_AGE3;
315 		break;
316 	default:
317 		pte |= HSW_WB_ELLC_LLC_AGE3;
318 		break;
319 	}
320 
321 	return pte;
322 }
323 
324 static int __setup_page_dma(struct drm_device *dev,
325 			    struct i915_page_dma *p, gfp_t flags)
326 {
327 	struct device *device = &dev->pdev->dev;
328 
329 	p->page = alloc_page(flags);
330 	if (!p->page)
331 		return -ENOMEM;
332 
333 	p->daddr = dma_map_page(device,
334 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
335 
336 	if (dma_mapping_error(device, p->daddr)) {
337 		__free_page(p->page);
338 		return -EINVAL;
339 	}
340 
341 	return 0;
342 }
343 
344 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
345 {
346 	return __setup_page_dma(dev, p, GFP_KERNEL);
347 }
348 
349 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
350 {
351 	if (WARN_ON(!p->page))
352 		return;
353 
354 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
355 	__free_page(p->page);
356 	memset(p, 0, sizeof(*p));
357 }
358 
359 static void *kmap_page_dma(struct i915_page_dma *p)
360 {
361 	return kmap_atomic(p->page);
362 }
363 
364 /* We use the flushing unmap only with ppgtt structures:
365  * page directories, page tables and scratch pages.
366  */
367 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
368 {
369 	/* There are only few exceptions for gen >=6. chv and bxt.
370 	 * And we are not sure about the latter so play safe for now.
371 	 */
372 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
373 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
374 
375 	kunmap_atomic(vaddr);
376 }
377 
378 #define kmap_px(px) kmap_page_dma(px_base(px))
379 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
380 
381 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
382 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
383 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
384 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
385 
386 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
387 			  const uint64_t val)
388 {
389 	int i;
390 	uint64_t * const vaddr = kmap_page_dma(p);
391 
392 	for (i = 0; i < 512; i++)
393 		vaddr[i] = val;
394 
395 	kunmap_page_dma(dev, vaddr);
396 }
397 
398 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
399 			     const uint32_t val32)
400 {
401 	uint64_t v = val32;
402 
403 	v = v << 32 | val32;
404 
405 	fill_page_dma(dev, p, v);
406 }
407 
408 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
409 {
410 	struct i915_page_scratch *sp;
411 	int ret;
412 
413 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
414 	if (sp == NULL)
415 		return ERR_PTR(-ENOMEM);
416 
417 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
418 	if (ret) {
419 		kfree(sp);
420 		return ERR_PTR(ret);
421 	}
422 
423 	set_pages_uc(px_page(sp), 1);
424 
425 	return sp;
426 }
427 
428 static void free_scratch_page(struct drm_device *dev,
429 			      struct i915_page_scratch *sp)
430 {
431 	set_pages_wb(px_page(sp), 1);
432 
433 	cleanup_px(dev, sp);
434 	kfree(sp);
435 }
436 
437 static struct i915_page_table *alloc_pt(struct drm_device *dev)
438 {
439 	struct i915_page_table *pt;
440 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
441 		GEN8_PTES : GEN6_PTES;
442 	int ret = -ENOMEM;
443 
444 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
445 	if (!pt)
446 		return ERR_PTR(-ENOMEM);
447 
448 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
449 				GFP_KERNEL);
450 
451 	if (!pt->used_ptes)
452 		goto fail_bitmap;
453 
454 	ret = setup_px(dev, pt);
455 	if (ret)
456 		goto fail_page_m;
457 
458 	return pt;
459 
460 fail_page_m:
461 	kfree(pt->used_ptes);
462 fail_bitmap:
463 	kfree(pt);
464 
465 	return ERR_PTR(ret);
466 }
467 
468 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
469 {
470 	cleanup_px(dev, pt);
471 	kfree(pt->used_ptes);
472 	kfree(pt);
473 }
474 
475 static void gen8_initialize_pt(struct i915_address_space *vm,
476 			       struct i915_page_table *pt)
477 {
478 	gen8_pte_t scratch_pte;
479 
480 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
481 				      I915_CACHE_LLC, true);
482 
483 	fill_px(vm->dev, pt, scratch_pte);
484 }
485 
486 static void gen6_initialize_pt(struct i915_address_space *vm,
487 			       struct i915_page_table *pt)
488 {
489 	gen6_pte_t scratch_pte;
490 
491 	WARN_ON(px_dma(vm->scratch_page) == 0);
492 
493 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
494 				     I915_CACHE_LLC, true, 0);
495 
496 	fill32_px(vm->dev, pt, scratch_pte);
497 }
498 
499 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
500 {
501 	struct i915_page_directory *pd;
502 	int ret = -ENOMEM;
503 
504 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
505 	if (!pd)
506 		return ERR_PTR(-ENOMEM);
507 
508 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
509 				sizeof(*pd->used_pdes), GFP_KERNEL);
510 	if (!pd->used_pdes)
511 		goto fail_bitmap;
512 
513 	ret = setup_px(dev, pd);
514 	if (ret)
515 		goto fail_page_m;
516 
517 	return pd;
518 
519 fail_page_m:
520 	kfree(pd->used_pdes);
521 fail_bitmap:
522 	kfree(pd);
523 
524 	return ERR_PTR(ret);
525 }
526 
527 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
528 {
529 	if (px_page(pd)) {
530 		cleanup_px(dev, pd);
531 		kfree(pd->used_pdes);
532 		kfree(pd);
533 	}
534 }
535 
536 static void gen8_initialize_pd(struct i915_address_space *vm,
537 			       struct i915_page_directory *pd)
538 {
539 	gen8_pde_t scratch_pde;
540 
541 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
542 
543 	fill_px(vm->dev, pd, scratch_pde);
544 }
545 
546 static int __pdp_init(struct drm_device *dev,
547 		      struct i915_page_directory_pointer *pdp)
548 {
549 	size_t pdpes = I915_PDPES_PER_PDP(dev);
550 
551 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
552 				  sizeof(unsigned long),
553 				  GFP_KERNEL);
554 	if (!pdp->used_pdpes)
555 		return -ENOMEM;
556 
557 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
558 				      GFP_KERNEL);
559 	if (!pdp->page_directory) {
560 		kfree(pdp->used_pdpes);
561 		/* the PDP might be the statically allocated top level. Keep it
562 		 * as clean as possible */
563 		pdp->used_pdpes = NULL;
564 		return -ENOMEM;
565 	}
566 
567 	return 0;
568 }
569 
570 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
571 {
572 	kfree(pdp->used_pdpes);
573 	kfree(pdp->page_directory);
574 	pdp->page_directory = NULL;
575 }
576 
577 static struct
578 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
579 {
580 	struct i915_page_directory_pointer *pdp;
581 	int ret = -ENOMEM;
582 
583 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
584 
585 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
586 	if (!pdp)
587 		return ERR_PTR(-ENOMEM);
588 
589 	ret = __pdp_init(dev, pdp);
590 	if (ret)
591 		goto fail_bitmap;
592 
593 	ret = setup_px(dev, pdp);
594 	if (ret)
595 		goto fail_page_m;
596 
597 	return pdp;
598 
599 fail_page_m:
600 	__pdp_fini(pdp);
601 fail_bitmap:
602 	kfree(pdp);
603 
604 	return ERR_PTR(ret);
605 }
606 
607 static void free_pdp(struct drm_device *dev,
608 		     struct i915_page_directory_pointer *pdp)
609 {
610 	__pdp_fini(pdp);
611 	if (USES_FULL_48BIT_PPGTT(dev)) {
612 		cleanup_px(dev, pdp);
613 		kfree(pdp);
614 	}
615 }
616 
617 static void gen8_initialize_pdp(struct i915_address_space *vm,
618 				struct i915_page_directory_pointer *pdp)
619 {
620 	gen8_ppgtt_pdpe_t scratch_pdpe;
621 
622 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
623 
624 	fill_px(vm->dev, pdp, scratch_pdpe);
625 }
626 
627 static void gen8_initialize_pml4(struct i915_address_space *vm,
628 				 struct i915_pml4 *pml4)
629 {
630 	gen8_ppgtt_pml4e_t scratch_pml4e;
631 
632 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
633 					  I915_CACHE_LLC);
634 
635 	fill_px(vm->dev, pml4, scratch_pml4e);
636 }
637 
638 static void
639 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
640 			  struct i915_page_directory_pointer *pdp,
641 			  struct i915_page_directory *pd,
642 			  int index)
643 {
644 	gen8_ppgtt_pdpe_t *page_directorypo;
645 
646 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
647 		return;
648 
649 	page_directorypo = kmap_px(pdp);
650 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
651 	kunmap_px(ppgtt, page_directorypo);
652 }
653 
654 static void
655 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
656 				  struct i915_pml4 *pml4,
657 				  struct i915_page_directory_pointer *pdp,
658 				  int index)
659 {
660 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
661 
662 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
663 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
664 	kunmap_px(ppgtt, pagemap);
665 }
666 
667 /* Broadwell Page Directory Pointer Descriptors */
668 static int gen8_write_pdp(struct drm_i915_gem_request *req,
669 			  unsigned entry,
670 			  dma_addr_t addr)
671 {
672 	struct intel_engine_cs *engine = req->engine;
673 	int ret;
674 
675 	BUG_ON(entry >= 4);
676 
677 	ret = intel_ring_begin(req, 6);
678 	if (ret)
679 		return ret;
680 
681 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
682 	intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
683 	intel_ring_emit(engine, upper_32_bits(addr));
684 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
685 	intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
686 	intel_ring_emit(engine, lower_32_bits(addr));
687 	intel_ring_advance(engine);
688 
689 	return 0;
690 }
691 
692 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
693 				 struct drm_i915_gem_request *req)
694 {
695 	int i, ret;
696 
697 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
698 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
699 
700 		ret = gen8_write_pdp(req, i, pd_daddr);
701 		if (ret)
702 			return ret;
703 	}
704 
705 	return 0;
706 }
707 
708 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
709 			      struct drm_i915_gem_request *req)
710 {
711 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
712 }
713 
714 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
715 				       struct i915_page_directory_pointer *pdp,
716 				       uint64_t start,
717 				       uint64_t length,
718 				       gen8_pte_t scratch_pte)
719 {
720 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
721 	gen8_pte_t *pt_vaddr;
722 	unsigned pdpe = gen8_pdpe_index(start);
723 	unsigned pde = gen8_pde_index(start);
724 	unsigned pte = gen8_pte_index(start);
725 	unsigned num_entries = length >> PAGE_SHIFT;
726 	unsigned last_pte, i;
727 
728 	if (WARN_ON(!pdp))
729 		return;
730 
731 	while (num_entries) {
732 		struct i915_page_directory *pd;
733 		struct i915_page_table *pt;
734 
735 		if (WARN_ON(!pdp->page_directory[pdpe]))
736 			break;
737 
738 		pd = pdp->page_directory[pdpe];
739 
740 		if (WARN_ON(!pd->page_table[pde]))
741 			break;
742 
743 		pt = pd->page_table[pde];
744 
745 		if (WARN_ON(!px_page(pt)))
746 			break;
747 
748 		last_pte = pte + num_entries;
749 		if (last_pte > GEN8_PTES)
750 			last_pte = GEN8_PTES;
751 
752 		pt_vaddr = kmap_px(pt);
753 
754 		for (i = pte; i < last_pte; i++) {
755 			pt_vaddr[i] = scratch_pte;
756 			num_entries--;
757 		}
758 
759 		kunmap_px(ppgtt, pt_vaddr);
760 
761 		pte = 0;
762 		if (++pde == I915_PDES) {
763 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
764 				break;
765 			pde = 0;
766 		}
767 	}
768 }
769 
770 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
771 				   uint64_t start,
772 				   uint64_t length,
773 				   bool use_scratch)
774 {
775 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
776 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
777 						 I915_CACHE_LLC, use_scratch);
778 
779 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
780 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
781 					   scratch_pte);
782 	} else {
783 		uint64_t pml4e;
784 		struct i915_page_directory_pointer *pdp;
785 
786 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
787 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
788 						   scratch_pte);
789 		}
790 	}
791 }
792 
793 static void
794 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
795 			      struct i915_page_directory_pointer *pdp,
796 			      struct sg_page_iter *sg_iter,
797 			      uint64_t start,
798 			      enum i915_cache_level cache_level)
799 {
800 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
801 	gen8_pte_t *pt_vaddr;
802 	unsigned pdpe = gen8_pdpe_index(start);
803 	unsigned pde = gen8_pde_index(start);
804 	unsigned pte = gen8_pte_index(start);
805 
806 	pt_vaddr = NULL;
807 
808 	while (__sg_page_iter_next(sg_iter)) {
809 		if (pt_vaddr == NULL) {
810 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
811 			struct i915_page_table *pt = pd->page_table[pde];
812 			pt_vaddr = kmap_px(pt);
813 		}
814 
815 		pt_vaddr[pte] =
816 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
817 					cache_level, true);
818 		if (++pte == GEN8_PTES) {
819 			kunmap_px(ppgtt, pt_vaddr);
820 			pt_vaddr = NULL;
821 			if (++pde == I915_PDES) {
822 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
823 					break;
824 				pde = 0;
825 			}
826 			pte = 0;
827 		}
828 	}
829 
830 	if (pt_vaddr)
831 		kunmap_px(ppgtt, pt_vaddr);
832 }
833 
834 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
835 				      struct sg_table *pages,
836 				      uint64_t start,
837 				      enum i915_cache_level cache_level,
838 				      u32 unused)
839 {
840 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
841 	struct sg_page_iter sg_iter;
842 
843 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
844 
845 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
846 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
847 					      cache_level);
848 	} else {
849 		struct i915_page_directory_pointer *pdp;
850 		uint64_t pml4e;
851 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
852 
853 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
854 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
855 						      start, cache_level);
856 		}
857 	}
858 }
859 
860 static void gen8_free_page_tables(struct drm_device *dev,
861 				  struct i915_page_directory *pd)
862 {
863 	int i;
864 
865 	if (!px_page(pd))
866 		return;
867 
868 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
869 		if (WARN_ON(!pd->page_table[i]))
870 			continue;
871 
872 		free_pt(dev, pd->page_table[i]);
873 		pd->page_table[i] = NULL;
874 	}
875 }
876 
877 static int gen8_init_scratch(struct i915_address_space *vm)
878 {
879 	struct drm_device *dev = vm->dev;
880 	int ret;
881 
882 	vm->scratch_page = alloc_scratch_page(dev);
883 	if (IS_ERR(vm->scratch_page))
884 		return PTR_ERR(vm->scratch_page);
885 
886 	vm->scratch_pt = alloc_pt(dev);
887 	if (IS_ERR(vm->scratch_pt)) {
888 		ret = PTR_ERR(vm->scratch_pt);
889 		goto free_scratch_page;
890 	}
891 
892 	vm->scratch_pd = alloc_pd(dev);
893 	if (IS_ERR(vm->scratch_pd)) {
894 		ret = PTR_ERR(vm->scratch_pd);
895 		goto free_pt;
896 	}
897 
898 	if (USES_FULL_48BIT_PPGTT(dev)) {
899 		vm->scratch_pdp = alloc_pdp(dev);
900 		if (IS_ERR(vm->scratch_pdp)) {
901 			ret = PTR_ERR(vm->scratch_pdp);
902 			goto free_pd;
903 		}
904 	}
905 
906 	gen8_initialize_pt(vm, vm->scratch_pt);
907 	gen8_initialize_pd(vm, vm->scratch_pd);
908 	if (USES_FULL_48BIT_PPGTT(dev))
909 		gen8_initialize_pdp(vm, vm->scratch_pdp);
910 
911 	return 0;
912 
913 free_pd:
914 	free_pd(dev, vm->scratch_pd);
915 free_pt:
916 	free_pt(dev, vm->scratch_pt);
917 free_scratch_page:
918 	free_scratch_page(dev, vm->scratch_page);
919 
920 	return ret;
921 }
922 
923 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
924 {
925 	enum vgt_g2v_type msg;
926 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
927 	int i;
928 
929 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
930 		u64 daddr = px_dma(&ppgtt->pml4);
931 
932 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
933 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
934 
935 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
936 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
937 	} else {
938 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
939 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
940 
941 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
942 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
943 		}
944 
945 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
946 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
947 	}
948 
949 	I915_WRITE(vgtif_reg(g2v_notify), msg);
950 
951 	return 0;
952 }
953 
954 static void gen8_free_scratch(struct i915_address_space *vm)
955 {
956 	struct drm_device *dev = vm->dev;
957 
958 	if (USES_FULL_48BIT_PPGTT(dev))
959 		free_pdp(dev, vm->scratch_pdp);
960 	free_pd(dev, vm->scratch_pd);
961 	free_pt(dev, vm->scratch_pt);
962 	free_scratch_page(dev, vm->scratch_page);
963 }
964 
965 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
966 				    struct i915_page_directory_pointer *pdp)
967 {
968 	int i;
969 
970 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
971 		if (WARN_ON(!pdp->page_directory[i]))
972 			continue;
973 
974 		gen8_free_page_tables(dev, pdp->page_directory[i]);
975 		free_pd(dev, pdp->page_directory[i]);
976 	}
977 
978 	free_pdp(dev, pdp);
979 }
980 
981 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
982 {
983 	int i;
984 
985 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
986 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
987 			continue;
988 
989 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
990 	}
991 
992 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
993 }
994 
995 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
996 {
997 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
998 
999 	if (intel_vgpu_active(to_i915(vm->dev)))
1000 		gen8_ppgtt_notify_vgt(ppgtt, false);
1001 
1002 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
1003 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
1004 	else
1005 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1006 
1007 	gen8_free_scratch(vm);
1008 }
1009 
1010 /**
1011  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1012  * @vm:	Master vm structure.
1013  * @pd:	Page directory for this address range.
1014  * @start:	Starting virtual address to begin allocations.
1015  * @length:	Size of the allocations.
1016  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1017  *		caller to free on error.
1018  *
1019  * Allocate the required number of page tables. Extremely similar to
1020  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1021  * the page directory boundary (instead of the page directory pointer). That
1022  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1023  * possible, and likely that the caller will need to use multiple calls of this
1024  * function to achieve the appropriate allocation.
1025  *
1026  * Return: 0 if success; negative error code otherwise.
1027  */
1028 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1029 				     struct i915_page_directory *pd,
1030 				     uint64_t start,
1031 				     uint64_t length,
1032 				     unsigned long *new_pts)
1033 {
1034 	struct drm_device *dev = vm->dev;
1035 	struct i915_page_table *pt;
1036 	uint32_t pde;
1037 
1038 	gen8_for_each_pde(pt, pd, start, length, pde) {
1039 		/* Don't reallocate page tables */
1040 		if (test_bit(pde, pd->used_pdes)) {
1041 			/* Scratch is never allocated this way */
1042 			WARN_ON(pt == vm->scratch_pt);
1043 			continue;
1044 		}
1045 
1046 		pt = alloc_pt(dev);
1047 		if (IS_ERR(pt))
1048 			goto unwind_out;
1049 
1050 		gen8_initialize_pt(vm, pt);
1051 		pd->page_table[pde] = pt;
1052 		__set_bit(pde, new_pts);
1053 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1054 	}
1055 
1056 	return 0;
1057 
1058 unwind_out:
1059 	for_each_set_bit(pde, new_pts, I915_PDES)
1060 		free_pt(dev, pd->page_table[pde]);
1061 
1062 	return -ENOMEM;
1063 }
1064 
1065 /**
1066  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1067  * @vm:	Master vm structure.
1068  * @pdp:	Page directory pointer for this address range.
1069  * @start:	Starting virtual address to begin allocations.
1070  * @length:	Size of the allocations.
1071  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1072  *		caller to free on error.
1073  *
1074  * Allocate the required number of page directories starting at the pde index of
1075  * @start, and ending at the pde index @start + @length. This function will skip
1076  * over already allocated page directories within the range, and only allocate
1077  * new ones, setting the appropriate pointer within the pdp as well as the
1078  * correct position in the bitmap @new_pds.
1079  *
1080  * The function will only allocate the pages within the range for a give page
1081  * directory pointer. In other words, if @start + @length straddles a virtually
1082  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1083  * required by the caller, This is not currently possible, and the BUG in the
1084  * code will prevent it.
1085  *
1086  * Return: 0 if success; negative error code otherwise.
1087  */
1088 static int
1089 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1090 				  struct i915_page_directory_pointer *pdp,
1091 				  uint64_t start,
1092 				  uint64_t length,
1093 				  unsigned long *new_pds)
1094 {
1095 	struct drm_device *dev = vm->dev;
1096 	struct i915_page_directory *pd;
1097 	uint32_t pdpe;
1098 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1099 
1100 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1101 
1102 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1103 		if (test_bit(pdpe, pdp->used_pdpes))
1104 			continue;
1105 
1106 		pd = alloc_pd(dev);
1107 		if (IS_ERR(pd))
1108 			goto unwind_out;
1109 
1110 		gen8_initialize_pd(vm, pd);
1111 		pdp->page_directory[pdpe] = pd;
1112 		__set_bit(pdpe, new_pds);
1113 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1114 	}
1115 
1116 	return 0;
1117 
1118 unwind_out:
1119 	for_each_set_bit(pdpe, new_pds, pdpes)
1120 		free_pd(dev, pdp->page_directory[pdpe]);
1121 
1122 	return -ENOMEM;
1123 }
1124 
1125 /**
1126  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1127  * @vm:	Master vm structure.
1128  * @pml4:	Page map level 4 for this address range.
1129  * @start:	Starting virtual address to begin allocations.
1130  * @length:	Size of the allocations.
1131  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1132  *		caller to free on error.
1133  *
1134  * Allocate the required number of page directory pointers. Extremely similar to
1135  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1136  * The main difference is here we are limited by the pml4 boundary (instead of
1137  * the page directory pointer).
1138  *
1139  * Return: 0 if success; negative error code otherwise.
1140  */
1141 static int
1142 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1143 				  struct i915_pml4 *pml4,
1144 				  uint64_t start,
1145 				  uint64_t length,
1146 				  unsigned long *new_pdps)
1147 {
1148 	struct drm_device *dev = vm->dev;
1149 	struct i915_page_directory_pointer *pdp;
1150 	uint32_t pml4e;
1151 
1152 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1153 
1154 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1155 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1156 			pdp = alloc_pdp(dev);
1157 			if (IS_ERR(pdp))
1158 				goto unwind_out;
1159 
1160 			gen8_initialize_pdp(vm, pdp);
1161 			pml4->pdps[pml4e] = pdp;
1162 			__set_bit(pml4e, new_pdps);
1163 			trace_i915_page_directory_pointer_entry_alloc(vm,
1164 								      pml4e,
1165 								      start,
1166 								      GEN8_PML4E_SHIFT);
1167 		}
1168 	}
1169 
1170 	return 0;
1171 
1172 unwind_out:
1173 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1174 		free_pdp(dev, pml4->pdps[pml4e]);
1175 
1176 	return -ENOMEM;
1177 }
1178 
1179 static void
1180 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1181 {
1182 	kfree(new_pts);
1183 	kfree(new_pds);
1184 }
1185 
1186 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1187  * of these are based on the number of PDPEs in the system.
1188  */
1189 static
1190 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1191 					 unsigned long **new_pts,
1192 					 uint32_t pdpes)
1193 {
1194 	unsigned long *pds;
1195 	unsigned long *pts;
1196 
1197 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1198 	if (!pds)
1199 		return -ENOMEM;
1200 
1201 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1202 		      GFP_TEMPORARY);
1203 	if (!pts)
1204 		goto err_out;
1205 
1206 	*new_pds = pds;
1207 	*new_pts = pts;
1208 
1209 	return 0;
1210 
1211 err_out:
1212 	free_gen8_temp_bitmaps(pds, pts);
1213 	return -ENOMEM;
1214 }
1215 
1216 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1217  * the page table structures, we mark them dirty so that
1218  * context switching/execlist queuing code takes extra steps
1219  * to ensure that tlbs are flushed.
1220  */
1221 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1222 {
1223 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1224 }
1225 
1226 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1227 				    struct i915_page_directory_pointer *pdp,
1228 				    uint64_t start,
1229 				    uint64_t length)
1230 {
1231 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1232 	unsigned long *new_page_dirs, *new_page_tables;
1233 	struct drm_device *dev = vm->dev;
1234 	struct i915_page_directory *pd;
1235 	const uint64_t orig_start = start;
1236 	const uint64_t orig_length = length;
1237 	uint32_t pdpe;
1238 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1239 	int ret;
1240 
1241 	/* Wrap is never okay since we can only represent 48b, and we don't
1242 	 * actually use the other side of the canonical address space.
1243 	 */
1244 	if (WARN_ON(start + length < start))
1245 		return -ENODEV;
1246 
1247 	if (WARN_ON(start + length > vm->total))
1248 		return -ENODEV;
1249 
1250 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1251 	if (ret)
1252 		return ret;
1253 
1254 	/* Do the allocations first so we can easily bail out */
1255 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1256 						new_page_dirs);
1257 	if (ret) {
1258 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1259 		return ret;
1260 	}
1261 
1262 	/* For every page directory referenced, allocate page tables */
1263 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1264 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1265 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1266 		if (ret)
1267 			goto err_out;
1268 	}
1269 
1270 	start = orig_start;
1271 	length = orig_length;
1272 
1273 	/* Allocations have completed successfully, so set the bitmaps, and do
1274 	 * the mappings. */
1275 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1276 		gen8_pde_t *const page_directory = kmap_px(pd);
1277 		struct i915_page_table *pt;
1278 		uint64_t pd_len = length;
1279 		uint64_t pd_start = start;
1280 		uint32_t pde;
1281 
1282 		/* Every pd should be allocated, we just did that above. */
1283 		WARN_ON(!pd);
1284 
1285 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1286 			/* Same reasoning as pd */
1287 			WARN_ON(!pt);
1288 			WARN_ON(!pd_len);
1289 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1290 
1291 			/* Set our used ptes within the page table */
1292 			bitmap_set(pt->used_ptes,
1293 				   gen8_pte_index(pd_start),
1294 				   gen8_pte_count(pd_start, pd_len));
1295 
1296 			/* Our pde is now pointing to the pagetable, pt */
1297 			__set_bit(pde, pd->used_pdes);
1298 
1299 			/* Map the PDE to the page table */
1300 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1301 							      I915_CACHE_LLC);
1302 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1303 							gen8_pte_index(start),
1304 							gen8_pte_count(start, length),
1305 							GEN8_PTES);
1306 
1307 			/* NB: We haven't yet mapped ptes to pages. At this
1308 			 * point we're still relying on insert_entries() */
1309 		}
1310 
1311 		kunmap_px(ppgtt, page_directory);
1312 		__set_bit(pdpe, pdp->used_pdpes);
1313 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1314 	}
1315 
1316 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1317 	mark_tlbs_dirty(ppgtt);
1318 	return 0;
1319 
1320 err_out:
1321 	while (pdpe--) {
1322 		unsigned long temp;
1323 
1324 		for_each_set_bit(temp, new_page_tables + pdpe *
1325 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1326 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1327 	}
1328 
1329 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1330 		free_pd(dev, pdp->page_directory[pdpe]);
1331 
1332 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1333 	mark_tlbs_dirty(ppgtt);
1334 	return ret;
1335 }
1336 
1337 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1338 				    struct i915_pml4 *pml4,
1339 				    uint64_t start,
1340 				    uint64_t length)
1341 {
1342 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1343 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1344 	struct i915_page_directory_pointer *pdp;
1345 	uint64_t pml4e;
1346 	int ret = 0;
1347 
1348 	/* Do the pml4 allocations first, so we don't need to track the newly
1349 	 * allocated tables below the pdp */
1350 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1351 
1352 	/* The pagedirectory and pagetable allocations are done in the shared 3
1353 	 * and 4 level code. Just allocate the pdps.
1354 	 */
1355 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1356 						new_pdps);
1357 	if (ret)
1358 		return ret;
1359 
1360 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1361 	     "The allocation has spanned more than 512GB. "
1362 	     "It is highly likely this is incorrect.");
1363 
1364 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1365 		WARN_ON(!pdp);
1366 
1367 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1368 		if (ret)
1369 			goto err_out;
1370 
1371 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1372 	}
1373 
1374 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1375 		  GEN8_PML4ES_PER_PML4);
1376 
1377 	return 0;
1378 
1379 err_out:
1380 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1381 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1382 
1383 	return ret;
1384 }
1385 
1386 static int gen8_alloc_va_range(struct i915_address_space *vm,
1387 			       uint64_t start, uint64_t length)
1388 {
1389 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1390 
1391 	if (USES_FULL_48BIT_PPGTT(vm->dev))
1392 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1393 	else
1394 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1395 }
1396 
1397 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1398 			  uint64_t start, uint64_t length,
1399 			  gen8_pte_t scratch_pte,
1400 			  struct seq_file *m)
1401 {
1402 	struct i915_page_directory *pd;
1403 	uint32_t pdpe;
1404 
1405 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1406 		struct i915_page_table *pt;
1407 		uint64_t pd_len = length;
1408 		uint64_t pd_start = start;
1409 		uint32_t pde;
1410 
1411 		if (!test_bit(pdpe, pdp->used_pdpes))
1412 			continue;
1413 
1414 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1415 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1416 			uint32_t  pte;
1417 			gen8_pte_t *pt_vaddr;
1418 
1419 			if (!test_bit(pde, pd->used_pdes))
1420 				continue;
1421 
1422 			pt_vaddr = kmap_px(pt);
1423 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1424 				uint64_t va =
1425 					(pdpe << GEN8_PDPE_SHIFT) |
1426 					(pde << GEN8_PDE_SHIFT) |
1427 					(pte << GEN8_PTE_SHIFT);
1428 				int i;
1429 				bool found = false;
1430 
1431 				for (i = 0; i < 4; i++)
1432 					if (pt_vaddr[pte + i] != scratch_pte)
1433 						found = true;
1434 				if (!found)
1435 					continue;
1436 
1437 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1438 				for (i = 0; i < 4; i++) {
1439 					if (pt_vaddr[pte + i] != scratch_pte)
1440 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1441 					else
1442 						seq_puts(m, "  SCRATCH ");
1443 				}
1444 				seq_puts(m, "\n");
1445 			}
1446 			/* don't use kunmap_px, it could trigger
1447 			 * an unnecessary flush.
1448 			 */
1449 			kunmap_atomic(pt_vaddr);
1450 		}
1451 	}
1452 }
1453 
1454 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1455 {
1456 	struct i915_address_space *vm = &ppgtt->base;
1457 	uint64_t start = ppgtt->base.start;
1458 	uint64_t length = ppgtt->base.total;
1459 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1460 						 I915_CACHE_LLC, true);
1461 
1462 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1463 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1464 	} else {
1465 		uint64_t pml4e;
1466 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1467 		struct i915_page_directory_pointer *pdp;
1468 
1469 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1470 			if (!test_bit(pml4e, pml4->used_pml4es))
1471 				continue;
1472 
1473 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1474 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1475 		}
1476 	}
1477 }
1478 
1479 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1480 {
1481 	unsigned long *new_page_dirs, *new_page_tables;
1482 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1483 	int ret;
1484 
1485 	/* We allocate temp bitmap for page tables for no gain
1486 	 * but as this is for init only, lets keep the things simple
1487 	 */
1488 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1489 	if (ret)
1490 		return ret;
1491 
1492 	/* Allocate for all pdps regardless of how the ppgtt
1493 	 * was defined.
1494 	 */
1495 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1496 						0, 1ULL << 32,
1497 						new_page_dirs);
1498 	if (!ret)
1499 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1500 
1501 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1502 
1503 	return ret;
1504 }
1505 
1506 /*
1507  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1508  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1509  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1510  * space.
1511  *
1512  */
1513 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1514 {
1515 	int ret;
1516 
1517 	ret = gen8_init_scratch(&ppgtt->base);
1518 	if (ret)
1519 		return ret;
1520 
1521 	ppgtt->base.start = 0;
1522 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1523 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1524 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1525 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1526 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1527 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1528 	ppgtt->debug_dump = gen8_dump_ppgtt;
1529 
1530 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1531 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1532 		if (ret)
1533 			goto free_scratch;
1534 
1535 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1536 
1537 		ppgtt->base.total = 1ULL << 48;
1538 		ppgtt->switch_mm = gen8_48b_mm_switch;
1539 	} else {
1540 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1541 		if (ret)
1542 			goto free_scratch;
1543 
1544 		ppgtt->base.total = 1ULL << 32;
1545 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1546 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1547 							      0, 0,
1548 							      GEN8_PML4E_SHIFT);
1549 
1550 		if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1551 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1552 			if (ret)
1553 				goto free_scratch;
1554 		}
1555 	}
1556 
1557 	if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1558 		gen8_ppgtt_notify_vgt(ppgtt, true);
1559 
1560 	return 0;
1561 
1562 free_scratch:
1563 	gen8_free_scratch(&ppgtt->base);
1564 	return ret;
1565 }
1566 
1567 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1568 {
1569 	struct i915_address_space *vm = &ppgtt->base;
1570 	struct i915_page_table *unused;
1571 	gen6_pte_t scratch_pte;
1572 	uint32_t pd_entry;
1573 	uint32_t  pte, pde;
1574 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1575 
1576 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1577 				     I915_CACHE_LLC, true, 0);
1578 
1579 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1580 		u32 expected;
1581 		gen6_pte_t *pt_vaddr;
1582 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1583 		pd_entry = readl(ppgtt->pd_addr + pde);
1584 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1585 
1586 		if (pd_entry != expected)
1587 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1588 				   pde,
1589 				   pd_entry,
1590 				   expected);
1591 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1592 
1593 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1594 
1595 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1596 			unsigned long va =
1597 				(pde * PAGE_SIZE * GEN6_PTES) +
1598 				(pte * PAGE_SIZE);
1599 			int i;
1600 			bool found = false;
1601 			for (i = 0; i < 4; i++)
1602 				if (pt_vaddr[pte + i] != scratch_pte)
1603 					found = true;
1604 			if (!found)
1605 				continue;
1606 
1607 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1608 			for (i = 0; i < 4; i++) {
1609 				if (pt_vaddr[pte + i] != scratch_pte)
1610 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1611 				else
1612 					seq_puts(m, "  SCRATCH ");
1613 			}
1614 			seq_puts(m, "\n");
1615 		}
1616 		kunmap_px(ppgtt, pt_vaddr);
1617 	}
1618 }
1619 
1620 /* Write pde (index) from the page directory @pd to the page table @pt */
1621 static void gen6_write_pde(struct i915_page_directory *pd,
1622 			    const int pde, struct i915_page_table *pt)
1623 {
1624 	/* Caller needs to make sure the write completes if necessary */
1625 	struct i915_hw_ppgtt *ppgtt =
1626 		container_of(pd, struct i915_hw_ppgtt, pd);
1627 	u32 pd_entry;
1628 
1629 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1630 	pd_entry |= GEN6_PDE_VALID;
1631 
1632 	writel(pd_entry, ppgtt->pd_addr + pde);
1633 }
1634 
1635 /* Write all the page tables found in the ppgtt structure to incrementing page
1636  * directories. */
1637 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1638 				  struct i915_page_directory *pd,
1639 				  uint32_t start, uint32_t length)
1640 {
1641 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1642 	struct i915_page_table *pt;
1643 	uint32_t pde;
1644 
1645 	gen6_for_each_pde(pt, pd, start, length, pde)
1646 		gen6_write_pde(pd, pde, pt);
1647 
1648 	/* Make sure write is complete before other code can use this page
1649 	 * table. Also require for WC mapped PTEs */
1650 	readl(ggtt->gsm);
1651 }
1652 
1653 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1654 {
1655 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1656 
1657 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1658 }
1659 
1660 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1661 			 struct drm_i915_gem_request *req)
1662 {
1663 	struct intel_engine_cs *engine = req->engine;
1664 	int ret;
1665 
1666 	/* NB: TLBs must be flushed and invalidated before a switch */
1667 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1668 	if (ret)
1669 		return ret;
1670 
1671 	ret = intel_ring_begin(req, 6);
1672 	if (ret)
1673 		return ret;
1674 
1675 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1676 	intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1677 	intel_ring_emit(engine, PP_DIR_DCLV_2G);
1678 	intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1679 	intel_ring_emit(engine, get_pd_offset(ppgtt));
1680 	intel_ring_emit(engine, MI_NOOP);
1681 	intel_ring_advance(engine);
1682 
1683 	return 0;
1684 }
1685 
1686 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1687 			  struct drm_i915_gem_request *req)
1688 {
1689 	struct intel_engine_cs *engine = req->engine;
1690 	int ret;
1691 
1692 	/* NB: TLBs must be flushed and invalidated before a switch */
1693 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1694 	if (ret)
1695 		return ret;
1696 
1697 	ret = intel_ring_begin(req, 6);
1698 	if (ret)
1699 		return ret;
1700 
1701 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1702 	intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1703 	intel_ring_emit(engine, PP_DIR_DCLV_2G);
1704 	intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1705 	intel_ring_emit(engine, get_pd_offset(ppgtt));
1706 	intel_ring_emit(engine, MI_NOOP);
1707 	intel_ring_advance(engine);
1708 
1709 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1710 	if (engine->id != RCS) {
1711 		ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1712 		if (ret)
1713 			return ret;
1714 	}
1715 
1716 	return 0;
1717 }
1718 
1719 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1720 			  struct drm_i915_gem_request *req)
1721 {
1722 	struct intel_engine_cs *engine = req->engine;
1723 	struct drm_i915_private *dev_priv = req->i915;
1724 
1725 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1726 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1727 	return 0;
1728 }
1729 
1730 static void gen8_ppgtt_enable(struct drm_device *dev)
1731 {
1732 	struct drm_i915_private *dev_priv = to_i915(dev);
1733 	struct intel_engine_cs *engine;
1734 
1735 	for_each_engine(engine, dev_priv) {
1736 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1737 		I915_WRITE(RING_MODE_GEN7(engine),
1738 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1739 	}
1740 }
1741 
1742 static void gen7_ppgtt_enable(struct drm_device *dev)
1743 {
1744 	struct drm_i915_private *dev_priv = to_i915(dev);
1745 	struct intel_engine_cs *engine;
1746 	uint32_t ecochk, ecobits;
1747 
1748 	ecobits = I915_READ(GAC_ECO_BITS);
1749 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1750 
1751 	ecochk = I915_READ(GAM_ECOCHK);
1752 	if (IS_HASWELL(dev)) {
1753 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1754 	} else {
1755 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1756 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1757 	}
1758 	I915_WRITE(GAM_ECOCHK, ecochk);
1759 
1760 	for_each_engine(engine, dev_priv) {
1761 		/* GFX_MODE is per-ring on gen7+ */
1762 		I915_WRITE(RING_MODE_GEN7(engine),
1763 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1764 	}
1765 }
1766 
1767 static void gen6_ppgtt_enable(struct drm_device *dev)
1768 {
1769 	struct drm_i915_private *dev_priv = to_i915(dev);
1770 	uint32_t ecochk, gab_ctl, ecobits;
1771 
1772 	ecobits = I915_READ(GAC_ECO_BITS);
1773 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1774 		   ECOBITS_PPGTT_CACHE64B);
1775 
1776 	gab_ctl = I915_READ(GAB_CTL);
1777 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1778 
1779 	ecochk = I915_READ(GAM_ECOCHK);
1780 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1781 
1782 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1783 }
1784 
1785 /* PPGTT support for Sandybdrige/Gen6 and later */
1786 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1787 				   uint64_t start,
1788 				   uint64_t length,
1789 				   bool use_scratch)
1790 {
1791 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1792 	gen6_pte_t *pt_vaddr, scratch_pte;
1793 	unsigned first_entry = start >> PAGE_SHIFT;
1794 	unsigned num_entries = length >> PAGE_SHIFT;
1795 	unsigned act_pt = first_entry / GEN6_PTES;
1796 	unsigned first_pte = first_entry % GEN6_PTES;
1797 	unsigned last_pte, i;
1798 
1799 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1800 				     I915_CACHE_LLC, true, 0);
1801 
1802 	while (num_entries) {
1803 		last_pte = first_pte + num_entries;
1804 		if (last_pte > GEN6_PTES)
1805 			last_pte = GEN6_PTES;
1806 
1807 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1808 
1809 		for (i = first_pte; i < last_pte; i++)
1810 			pt_vaddr[i] = scratch_pte;
1811 
1812 		kunmap_px(ppgtt, pt_vaddr);
1813 
1814 		num_entries -= last_pte - first_pte;
1815 		first_pte = 0;
1816 		act_pt++;
1817 	}
1818 }
1819 
1820 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1821 				      struct sg_table *pages,
1822 				      uint64_t start,
1823 				      enum i915_cache_level cache_level, u32 flags)
1824 {
1825 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1826 	unsigned first_entry = start >> PAGE_SHIFT;
1827 	unsigned act_pt = first_entry / GEN6_PTES;
1828 	unsigned act_pte = first_entry % GEN6_PTES;
1829 	gen6_pte_t *pt_vaddr = NULL;
1830 	struct sgt_iter sgt_iter;
1831 	dma_addr_t addr;
1832 
1833 	for_each_sgt_dma(addr, sgt_iter, pages) {
1834 		if (pt_vaddr == NULL)
1835 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1836 
1837 		pt_vaddr[act_pte] =
1838 			vm->pte_encode(addr, cache_level, true, flags);
1839 
1840 		if (++act_pte == GEN6_PTES) {
1841 			kunmap_px(ppgtt, pt_vaddr);
1842 			pt_vaddr = NULL;
1843 			act_pt++;
1844 			act_pte = 0;
1845 		}
1846 	}
1847 
1848 	if (pt_vaddr)
1849 		kunmap_px(ppgtt, pt_vaddr);
1850 }
1851 
1852 static int gen6_alloc_va_range(struct i915_address_space *vm,
1853 			       uint64_t start_in, uint64_t length_in)
1854 {
1855 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1856 	struct drm_device *dev = vm->dev;
1857 	struct drm_i915_private *dev_priv = to_i915(dev);
1858 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1859 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1860 	struct i915_page_table *pt;
1861 	uint32_t start, length, start_save, length_save;
1862 	uint32_t pde;
1863 	int ret;
1864 
1865 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1866 		return -ENODEV;
1867 
1868 	start = start_save = start_in;
1869 	length = length_save = length_in;
1870 
1871 	bitmap_zero(new_page_tables, I915_PDES);
1872 
1873 	/* The allocation is done in two stages so that we can bail out with
1874 	 * minimal amount of pain. The first stage finds new page tables that
1875 	 * need allocation. The second stage marks use ptes within the page
1876 	 * tables.
1877 	 */
1878 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1879 		if (pt != vm->scratch_pt) {
1880 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1881 			continue;
1882 		}
1883 
1884 		/* We've already allocated a page table */
1885 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1886 
1887 		pt = alloc_pt(dev);
1888 		if (IS_ERR(pt)) {
1889 			ret = PTR_ERR(pt);
1890 			goto unwind_out;
1891 		}
1892 
1893 		gen6_initialize_pt(vm, pt);
1894 
1895 		ppgtt->pd.page_table[pde] = pt;
1896 		__set_bit(pde, new_page_tables);
1897 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1898 	}
1899 
1900 	start = start_save;
1901 	length = length_save;
1902 
1903 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1904 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1905 
1906 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1907 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1908 			   gen6_pte_count(start, length));
1909 
1910 		if (__test_and_clear_bit(pde, new_page_tables))
1911 			gen6_write_pde(&ppgtt->pd, pde, pt);
1912 
1913 		trace_i915_page_table_entry_map(vm, pde, pt,
1914 					 gen6_pte_index(start),
1915 					 gen6_pte_count(start, length),
1916 					 GEN6_PTES);
1917 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1918 				GEN6_PTES);
1919 	}
1920 
1921 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1922 
1923 	/* Make sure write is complete before other code can use this page
1924 	 * table. Also require for WC mapped PTEs */
1925 	readl(ggtt->gsm);
1926 
1927 	mark_tlbs_dirty(ppgtt);
1928 	return 0;
1929 
1930 unwind_out:
1931 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1932 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1933 
1934 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1935 		free_pt(vm->dev, pt);
1936 	}
1937 
1938 	mark_tlbs_dirty(ppgtt);
1939 	return ret;
1940 }
1941 
1942 static int gen6_init_scratch(struct i915_address_space *vm)
1943 {
1944 	struct drm_device *dev = vm->dev;
1945 
1946 	vm->scratch_page = alloc_scratch_page(dev);
1947 	if (IS_ERR(vm->scratch_page))
1948 		return PTR_ERR(vm->scratch_page);
1949 
1950 	vm->scratch_pt = alloc_pt(dev);
1951 	if (IS_ERR(vm->scratch_pt)) {
1952 		free_scratch_page(dev, vm->scratch_page);
1953 		return PTR_ERR(vm->scratch_pt);
1954 	}
1955 
1956 	gen6_initialize_pt(vm, vm->scratch_pt);
1957 
1958 	return 0;
1959 }
1960 
1961 static void gen6_free_scratch(struct i915_address_space *vm)
1962 {
1963 	struct drm_device *dev = vm->dev;
1964 
1965 	free_pt(dev, vm->scratch_pt);
1966 	free_scratch_page(dev, vm->scratch_page);
1967 }
1968 
1969 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1970 {
1971 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1972 	struct i915_page_directory *pd = &ppgtt->pd;
1973 	struct drm_device *dev = vm->dev;
1974 	struct i915_page_table *pt;
1975 	uint32_t pde;
1976 
1977 	drm_mm_remove_node(&ppgtt->node);
1978 
1979 	gen6_for_all_pdes(pt, pd, pde)
1980 		if (pt != vm->scratch_pt)
1981 			free_pt(dev, pt);
1982 
1983 	gen6_free_scratch(vm);
1984 }
1985 
1986 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1987 {
1988 	struct i915_address_space *vm = &ppgtt->base;
1989 	struct drm_device *dev = ppgtt->base.dev;
1990 	struct drm_i915_private *dev_priv = to_i915(dev);
1991 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1992 	bool retried = false;
1993 	int ret;
1994 
1995 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1996 	 * allocator works in address space sizes, so it's multiplied by page
1997 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1998 	 */
1999 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2000 
2001 	ret = gen6_init_scratch(vm);
2002 	if (ret)
2003 		return ret;
2004 
2005 alloc:
2006 	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2007 						  &ppgtt->node, GEN6_PD_SIZE,
2008 						  GEN6_PD_ALIGN, 0,
2009 						  0, ggtt->base.total,
2010 						  DRM_MM_TOPDOWN);
2011 	if (ret == -ENOSPC && !retried) {
2012 		ret = i915_gem_evict_something(dev, &ggtt->base,
2013 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2014 					       I915_CACHE_NONE,
2015 					       0, ggtt->base.total,
2016 					       0);
2017 		if (ret)
2018 			goto err_out;
2019 
2020 		retried = true;
2021 		goto alloc;
2022 	}
2023 
2024 	if (ret)
2025 		goto err_out;
2026 
2027 
2028 	if (ppgtt->node.start < ggtt->mappable_end)
2029 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2030 
2031 	return 0;
2032 
2033 err_out:
2034 	gen6_free_scratch(vm);
2035 	return ret;
2036 }
2037 
2038 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2039 {
2040 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2041 }
2042 
2043 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2044 				  uint64_t start, uint64_t length)
2045 {
2046 	struct i915_page_table *unused;
2047 	uint32_t pde;
2048 
2049 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2050 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2051 }
2052 
2053 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2054 {
2055 	struct drm_device *dev = ppgtt->base.dev;
2056 	struct drm_i915_private *dev_priv = to_i915(dev);
2057 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2058 	int ret;
2059 
2060 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2061 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2062 		ppgtt->switch_mm = gen6_mm_switch;
2063 	else if (IS_HASWELL(dev))
2064 		ppgtt->switch_mm = hsw_mm_switch;
2065 	else if (IS_GEN7(dev))
2066 		ppgtt->switch_mm = gen7_mm_switch;
2067 	else
2068 		BUG();
2069 
2070 	ret = gen6_ppgtt_alloc(ppgtt);
2071 	if (ret)
2072 		return ret;
2073 
2074 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2075 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2076 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2077 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2078 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2079 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2080 	ppgtt->base.start = 0;
2081 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2082 	ppgtt->debug_dump = gen6_dump_ppgtt;
2083 
2084 	ppgtt->pd.base.ggtt_offset =
2085 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2086 
2087 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2088 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2089 
2090 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2091 
2092 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2093 
2094 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2095 			 ppgtt->node.size >> 20,
2096 			 ppgtt->node.start / PAGE_SIZE);
2097 
2098 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2099 		  ppgtt->pd.base.ggtt_offset << 10);
2100 
2101 	return 0;
2102 }
2103 
2104 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2105 {
2106 	ppgtt->base.dev = dev;
2107 
2108 	if (INTEL_INFO(dev)->gen < 8)
2109 		return gen6_ppgtt_init(ppgtt);
2110 	else
2111 		return gen8_ppgtt_init(ppgtt);
2112 }
2113 
2114 static void i915_address_space_init(struct i915_address_space *vm,
2115 				    struct drm_i915_private *dev_priv)
2116 {
2117 	drm_mm_init(&vm->mm, vm->start, vm->total);
2118 	vm->dev = &dev_priv->drm;
2119 	INIT_LIST_HEAD(&vm->active_list);
2120 	INIT_LIST_HEAD(&vm->inactive_list);
2121 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2122 }
2123 
2124 static void gtt_write_workarounds(struct drm_device *dev)
2125 {
2126 	struct drm_i915_private *dev_priv = to_i915(dev);
2127 
2128 	/* This function is for gtt related workarounds. This function is
2129 	 * called on driver load and after a GPU reset, so you can place
2130 	 * workarounds here even if they get overwritten by GPU reset.
2131 	 */
2132 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2133 	if (IS_BROADWELL(dev))
2134 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2135 	else if (IS_CHERRYVIEW(dev))
2136 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2137 	else if (IS_SKYLAKE(dev))
2138 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2139 	else if (IS_BROXTON(dev))
2140 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2141 }
2142 
2143 static int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2144 {
2145 	struct drm_i915_private *dev_priv = to_i915(dev);
2146 	int ret = 0;
2147 
2148 	ret = __hw_ppgtt_init(dev, ppgtt);
2149 	if (ret == 0) {
2150 		kref_init(&ppgtt->ref);
2151 		i915_address_space_init(&ppgtt->base, dev_priv);
2152 	}
2153 
2154 	return ret;
2155 }
2156 
2157 int i915_ppgtt_init_hw(struct drm_device *dev)
2158 {
2159 	gtt_write_workarounds(dev);
2160 
2161 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2162 	 * and the PDPs are contained within the context itself.  We don't
2163 	 * need to do anything here. */
2164 	if (i915.enable_execlists)
2165 		return 0;
2166 
2167 	if (!USES_PPGTT(dev))
2168 		return 0;
2169 
2170 	if (IS_GEN6(dev))
2171 		gen6_ppgtt_enable(dev);
2172 	else if (IS_GEN7(dev))
2173 		gen7_ppgtt_enable(dev);
2174 	else if (INTEL_INFO(dev)->gen >= 8)
2175 		gen8_ppgtt_enable(dev);
2176 	else
2177 		MISSING_CASE(INTEL_INFO(dev)->gen);
2178 
2179 	return 0;
2180 }
2181 
2182 struct i915_hw_ppgtt *
2183 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2184 {
2185 	struct i915_hw_ppgtt *ppgtt;
2186 	int ret;
2187 
2188 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2189 	if (!ppgtt)
2190 		return ERR_PTR(-ENOMEM);
2191 
2192 	ret = i915_ppgtt_init(dev, ppgtt);
2193 	if (ret) {
2194 		kfree(ppgtt);
2195 		return ERR_PTR(ret);
2196 	}
2197 
2198 	ppgtt->file_priv = fpriv;
2199 
2200 	trace_i915_ppgtt_create(&ppgtt->base);
2201 
2202 	return ppgtt;
2203 }
2204 
2205 void  i915_ppgtt_release(struct kref *kref)
2206 {
2207 	struct i915_hw_ppgtt *ppgtt =
2208 		container_of(kref, struct i915_hw_ppgtt, ref);
2209 
2210 	trace_i915_ppgtt_release(&ppgtt->base);
2211 
2212 	/* vmas should already be unbound */
2213 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2214 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2215 
2216 	list_del(&ppgtt->base.global_link);
2217 	drm_mm_takedown(&ppgtt->base.mm);
2218 
2219 	ppgtt->base.cleanup(&ppgtt->base);
2220 	kfree(ppgtt);
2221 }
2222 
2223 extern int intel_iommu_gfx_mapped;
2224 /* Certain Gen5 chipsets require require idling the GPU before
2225  * unmapping anything from the GTT when VT-d is enabled.
2226  */
2227 static bool needs_idle_maps(struct drm_device *dev)
2228 {
2229 #ifdef CONFIG_INTEL_IOMMU
2230 	/* Query intel_iommu to see if we need the workaround. Presumably that
2231 	 * was loaded first.
2232 	 */
2233 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2234 		return true;
2235 #endif
2236 	return false;
2237 }
2238 
2239 static bool do_idling(struct drm_i915_private *dev_priv)
2240 {
2241 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2242 	bool ret = dev_priv->mm.interruptible;
2243 
2244 	if (unlikely(ggtt->do_idle_maps)) {
2245 		dev_priv->mm.interruptible = false;
2246 		if (i915_gem_wait_for_idle(dev_priv)) {
2247 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2248 			/* Wait a bit, in hopes it avoids the hang */
2249 			udelay(10);
2250 		}
2251 	}
2252 
2253 	return ret;
2254 }
2255 
2256 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2257 {
2258 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2259 
2260 	if (unlikely(ggtt->do_idle_maps))
2261 		dev_priv->mm.interruptible = interruptible;
2262 }
2263 
2264 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2265 {
2266 	struct intel_engine_cs *engine;
2267 
2268 	if (INTEL_INFO(dev_priv)->gen < 6)
2269 		return;
2270 
2271 	for_each_engine(engine, dev_priv) {
2272 		u32 fault_reg;
2273 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2274 		if (fault_reg & RING_FAULT_VALID) {
2275 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2276 					 "\tAddr: 0x%08lx\n"
2277 					 "\tAddress space: %s\n"
2278 					 "\tSource ID: %d\n"
2279 					 "\tType: %d\n",
2280 					 fault_reg & PAGE_MASK,
2281 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2282 					 RING_FAULT_SRCID(fault_reg),
2283 					 RING_FAULT_FAULT_TYPE(fault_reg));
2284 			I915_WRITE(RING_FAULT_REG(engine),
2285 				   fault_reg & ~RING_FAULT_VALID);
2286 		}
2287 	}
2288 	POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2289 }
2290 
2291 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2292 {
2293 	if (INTEL_INFO(dev_priv)->gen < 6) {
2294 		intel_gtt_chipset_flush();
2295 	} else {
2296 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2297 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2298 	}
2299 }
2300 
2301 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2302 {
2303 	struct drm_i915_private *dev_priv = to_i915(dev);
2304 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2305 
2306 	/* Don't bother messing with faults pre GEN6 as we have little
2307 	 * documentation supporting that it's a good idea.
2308 	 */
2309 	if (INTEL_INFO(dev)->gen < 6)
2310 		return;
2311 
2312 	i915_check_and_clear_faults(dev_priv);
2313 
2314 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2315 			     true);
2316 
2317 	i915_ggtt_flush(dev_priv);
2318 }
2319 
2320 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2321 {
2322 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2323 			obj->pages->sgl, obj->pages->nents,
2324 			PCI_DMA_BIDIRECTIONAL))
2325 		return -ENOSPC;
2326 
2327 	return 0;
2328 }
2329 
2330 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2331 {
2332 #ifdef writeq
2333 	writeq(pte, addr);
2334 #else
2335 	iowrite32((u32)pte, addr);
2336 	iowrite32(pte >> 32, addr + 4);
2337 #endif
2338 }
2339 
2340 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2341 				  dma_addr_t addr,
2342 				  uint64_t offset,
2343 				  enum i915_cache_level level,
2344 				  u32 unused)
2345 {
2346 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2347 	gen8_pte_t __iomem *pte =
2348 		(gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2349 		(offset >> PAGE_SHIFT);
2350 	int rpm_atomic_seq;
2351 
2352 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2353 
2354 	gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2355 
2356 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2357 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2358 
2359 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2360 }
2361 
2362 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2363 				     struct sg_table *st,
2364 				     uint64_t start,
2365 				     enum i915_cache_level level, u32 unused)
2366 {
2367 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2368 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2369 	struct sgt_iter sgt_iter;
2370 	gen8_pte_t __iomem *gtt_entries;
2371 	gen8_pte_t gtt_entry;
2372 	dma_addr_t addr;
2373 	int rpm_atomic_seq;
2374 	int i = 0;
2375 
2376 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2377 
2378 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2379 
2380 	for_each_sgt_dma(addr, sgt_iter, st) {
2381 		gtt_entry = gen8_pte_encode(addr, level, true);
2382 		gen8_set_pte(&gtt_entries[i++], gtt_entry);
2383 	}
2384 
2385 	/*
2386 	 * XXX: This serves as a posting read to make sure that the PTE has
2387 	 * actually been updated. There is some concern that even though
2388 	 * registers and PTEs are within the same BAR that they are potentially
2389 	 * of NUMA access patterns. Therefore, even with the way we assume
2390 	 * hardware should work, we must keep this posting read for paranoia.
2391 	 */
2392 	if (i != 0)
2393 		WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2394 
2395 	/* This next bit makes the above posting read even more important. We
2396 	 * want to flush the TLBs only after we're certain all the PTE updates
2397 	 * have finished.
2398 	 */
2399 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2400 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2401 
2402 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2403 }
2404 
2405 struct insert_entries {
2406 	struct i915_address_space *vm;
2407 	struct sg_table *st;
2408 	uint64_t start;
2409 	enum i915_cache_level level;
2410 	u32 flags;
2411 };
2412 
2413 static int gen8_ggtt_insert_entries__cb(void *_arg)
2414 {
2415 	struct insert_entries *arg = _arg;
2416 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2417 				 arg->start, arg->level, arg->flags);
2418 	return 0;
2419 }
2420 
2421 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2422 					  struct sg_table *st,
2423 					  uint64_t start,
2424 					  enum i915_cache_level level,
2425 					  u32 flags)
2426 {
2427 	struct insert_entries arg = { vm, st, start, level, flags };
2428 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2429 }
2430 
2431 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2432 				  dma_addr_t addr,
2433 				  uint64_t offset,
2434 				  enum i915_cache_level level,
2435 				  u32 flags)
2436 {
2437 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2438 	gen6_pte_t __iomem *pte =
2439 		(gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2440 		(offset >> PAGE_SHIFT);
2441 	int rpm_atomic_seq;
2442 
2443 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2444 
2445 	iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2446 
2447 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2448 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2449 
2450 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2451 }
2452 
2453 /*
2454  * Binds an object into the global gtt with the specified cache level. The object
2455  * will be accessible to the GPU via commands whose operands reference offsets
2456  * within the global GTT as well as accessible by the GPU through the GMADR
2457  * mapped BAR (dev_priv->mm.gtt->gtt).
2458  */
2459 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2460 				     struct sg_table *st,
2461 				     uint64_t start,
2462 				     enum i915_cache_level level, u32 flags)
2463 {
2464 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2465 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2466 	struct sgt_iter sgt_iter;
2467 	gen6_pte_t __iomem *gtt_entries;
2468 	gen6_pte_t gtt_entry;
2469 	dma_addr_t addr;
2470 	int rpm_atomic_seq;
2471 	int i = 0;
2472 
2473 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2474 
2475 	gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2476 
2477 	for_each_sgt_dma(addr, sgt_iter, st) {
2478 		gtt_entry = vm->pte_encode(addr, level, true, flags);
2479 		iowrite32(gtt_entry, &gtt_entries[i++]);
2480 	}
2481 
2482 	/* XXX: This serves as a posting read to make sure that the PTE has
2483 	 * actually been updated. There is some concern that even though
2484 	 * registers and PTEs are within the same BAR that they are potentially
2485 	 * of NUMA access patterns. Therefore, even with the way we assume
2486 	 * hardware should work, we must keep this posting read for paranoia.
2487 	 */
2488 	if (i != 0)
2489 		WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2490 
2491 	/* This next bit makes the above posting read even more important. We
2492 	 * want to flush the TLBs only after we're certain all the PTE updates
2493 	 * have finished.
2494 	 */
2495 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2496 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2497 
2498 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2499 }
2500 
2501 static void nop_clear_range(struct i915_address_space *vm,
2502 			    uint64_t start,
2503 			    uint64_t length,
2504 			    bool use_scratch)
2505 {
2506 }
2507 
2508 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2509 				  uint64_t start,
2510 				  uint64_t length,
2511 				  bool use_scratch)
2512 {
2513 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2514 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2515 	unsigned first_entry = start >> PAGE_SHIFT;
2516 	unsigned num_entries = length >> PAGE_SHIFT;
2517 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2518 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2519 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2520 	int i;
2521 	int rpm_atomic_seq;
2522 
2523 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2524 
2525 	if (WARN(num_entries > max_entries,
2526 		 "First entry = %d; Num entries = %d (max=%d)\n",
2527 		 first_entry, num_entries, max_entries))
2528 		num_entries = max_entries;
2529 
2530 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2531 				      I915_CACHE_LLC,
2532 				      use_scratch);
2533 	for (i = 0; i < num_entries; i++)
2534 		gen8_set_pte(&gtt_base[i], scratch_pte);
2535 	readl(gtt_base);
2536 
2537 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2538 }
2539 
2540 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2541 				  uint64_t start,
2542 				  uint64_t length,
2543 				  bool use_scratch)
2544 {
2545 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2546 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2547 	unsigned first_entry = start >> PAGE_SHIFT;
2548 	unsigned num_entries = length >> PAGE_SHIFT;
2549 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2550 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2551 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2552 	int i;
2553 	int rpm_atomic_seq;
2554 
2555 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2556 
2557 	if (WARN(num_entries > max_entries,
2558 		 "First entry = %d; Num entries = %d (max=%d)\n",
2559 		 first_entry, num_entries, max_entries))
2560 		num_entries = max_entries;
2561 
2562 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2563 				     I915_CACHE_LLC, use_scratch, 0);
2564 
2565 	for (i = 0; i < num_entries; i++)
2566 		iowrite32(scratch_pte, &gtt_base[i]);
2567 	readl(gtt_base);
2568 
2569 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2570 }
2571 
2572 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2573 				  dma_addr_t addr,
2574 				  uint64_t offset,
2575 				  enum i915_cache_level cache_level,
2576 				  u32 unused)
2577 {
2578 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2579 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2580 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2581 	int rpm_atomic_seq;
2582 
2583 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2584 
2585 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2586 
2587 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2588 }
2589 
2590 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2591 				     struct sg_table *pages,
2592 				     uint64_t start,
2593 				     enum i915_cache_level cache_level, u32 unused)
2594 {
2595 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2596 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2597 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2598 	int rpm_atomic_seq;
2599 
2600 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2601 
2602 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2603 
2604 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2605 
2606 }
2607 
2608 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2609 				  uint64_t start,
2610 				  uint64_t length,
2611 				  bool unused)
2612 {
2613 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2614 	unsigned first_entry = start >> PAGE_SHIFT;
2615 	unsigned num_entries = length >> PAGE_SHIFT;
2616 	int rpm_atomic_seq;
2617 
2618 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2619 
2620 	intel_gtt_clear_range(first_entry, num_entries);
2621 
2622 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2623 }
2624 
2625 static int ggtt_bind_vma(struct i915_vma *vma,
2626 			 enum i915_cache_level cache_level,
2627 			 u32 flags)
2628 {
2629 	struct drm_i915_gem_object *obj = vma->obj;
2630 	u32 pte_flags = 0;
2631 	int ret;
2632 
2633 	ret = i915_get_ggtt_vma_pages(vma);
2634 	if (ret)
2635 		return ret;
2636 
2637 	/* Currently applicable only to VLV */
2638 	if (obj->gt_ro)
2639 		pte_flags |= PTE_READ_ONLY;
2640 
2641 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2642 				vma->node.start,
2643 				cache_level, pte_flags);
2644 
2645 	/*
2646 	 * Without aliasing PPGTT there's no difference between
2647 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2648 	 * upgrade to both bound if we bind either to avoid double-binding.
2649 	 */
2650 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2651 
2652 	return 0;
2653 }
2654 
2655 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2656 				 enum i915_cache_level cache_level,
2657 				 u32 flags)
2658 {
2659 	u32 pte_flags;
2660 	int ret;
2661 
2662 	ret = i915_get_ggtt_vma_pages(vma);
2663 	if (ret)
2664 		return ret;
2665 
2666 	/* Currently applicable only to VLV */
2667 	pte_flags = 0;
2668 	if (vma->obj->gt_ro)
2669 		pte_flags |= PTE_READ_ONLY;
2670 
2671 
2672 	if (flags & GLOBAL_BIND) {
2673 		vma->vm->insert_entries(vma->vm,
2674 					vma->ggtt_view.pages,
2675 					vma->node.start,
2676 					cache_level, pte_flags);
2677 	}
2678 
2679 	if (flags & LOCAL_BIND) {
2680 		struct i915_hw_ppgtt *appgtt =
2681 			to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2682 		appgtt->base.insert_entries(&appgtt->base,
2683 					    vma->ggtt_view.pages,
2684 					    vma->node.start,
2685 					    cache_level, pte_flags);
2686 	}
2687 
2688 	return 0;
2689 }
2690 
2691 static void ggtt_unbind_vma(struct i915_vma *vma)
2692 {
2693 	struct drm_device *dev = vma->vm->dev;
2694 	struct drm_i915_private *dev_priv = to_i915(dev);
2695 	struct drm_i915_gem_object *obj = vma->obj;
2696 	const uint64_t size = min_t(uint64_t,
2697 				    obj->base.size,
2698 				    vma->node.size);
2699 
2700 	if (vma->bound & GLOBAL_BIND) {
2701 		vma->vm->clear_range(vma->vm,
2702 				     vma->node.start,
2703 				     size,
2704 				     true);
2705 	}
2706 
2707 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2708 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2709 
2710 		appgtt->base.clear_range(&appgtt->base,
2711 					 vma->node.start,
2712 					 size,
2713 					 true);
2714 	}
2715 }
2716 
2717 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2718 {
2719 	struct drm_device *dev = obj->base.dev;
2720 	struct drm_i915_private *dev_priv = to_i915(dev);
2721 	bool interruptible;
2722 
2723 	interruptible = do_idling(dev_priv);
2724 
2725 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2726 		     PCI_DMA_BIDIRECTIONAL);
2727 
2728 	undo_idling(dev_priv, interruptible);
2729 }
2730 
2731 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2732 				  unsigned long color,
2733 				  u64 *start,
2734 				  u64 *end)
2735 {
2736 	if (node->color != color)
2737 		*start += 4096;
2738 
2739 	if (!list_empty(&node->node_list)) {
2740 		node = list_entry(node->node_list.next,
2741 				  struct drm_mm_node,
2742 				  node_list);
2743 		if (node->allocated && node->color != color)
2744 			*end -= 4096;
2745 	}
2746 }
2747 
2748 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2749 				     u64 start,
2750 				     u64 mappable_end,
2751 				     u64 end)
2752 {
2753 	/* Let GEM Manage all of the aperture.
2754 	 *
2755 	 * However, leave one page at the end still bound to the scratch page.
2756 	 * There are a number of places where the hardware apparently prefetches
2757 	 * past the end of the object, and we've seen multiple hangs with the
2758 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2759 	 * aperture.  One page should be enough to keep any prefetching inside
2760 	 * of the aperture.
2761 	 */
2762 	struct drm_i915_private *dev_priv = to_i915(dev);
2763 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2764 	struct drm_mm_node *entry;
2765 	struct drm_i915_gem_object *obj;
2766 	unsigned long hole_start, hole_end;
2767 	int ret;
2768 
2769 	BUG_ON(mappable_end > end);
2770 
2771 	ggtt->base.start = start;
2772 
2773 	/* Subtract the guard page before address space initialization to
2774 	 * shrink the range used by drm_mm */
2775 	ggtt->base.total = end - start - PAGE_SIZE;
2776 	i915_address_space_init(&ggtt->base, dev_priv);
2777 	ggtt->base.total += PAGE_SIZE;
2778 
2779 	ret = intel_vgt_balloon(dev_priv);
2780 	if (ret)
2781 		return ret;
2782 
2783 	if (!HAS_LLC(dev))
2784 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2785 
2786 	/* Mark any preallocated objects as occupied */
2787 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2788 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, &ggtt->base);
2789 
2790 		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2791 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2792 
2793 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2794 		ret = drm_mm_reserve_node(&ggtt->base.mm, &vma->node);
2795 		if (ret) {
2796 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2797 			return ret;
2798 		}
2799 		vma->bound |= GLOBAL_BIND;
2800 		__i915_vma_set_map_and_fenceable(vma);
2801 		list_add_tail(&vma->vm_link, &ggtt->base.inactive_list);
2802 	}
2803 
2804 	/* Clear any non-preallocated blocks */
2805 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2806 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2807 			      hole_start, hole_end);
2808 		ggtt->base.clear_range(&ggtt->base, hole_start,
2809 				     hole_end - hole_start, true);
2810 	}
2811 
2812 	/* And finally clear the reserved guard page */
2813 	ggtt->base.clear_range(&ggtt->base, end - PAGE_SIZE, PAGE_SIZE, true);
2814 
2815 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2816 		struct i915_hw_ppgtt *ppgtt;
2817 
2818 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2819 		if (!ppgtt)
2820 			return -ENOMEM;
2821 
2822 		ret = __hw_ppgtt_init(dev, ppgtt);
2823 		if (ret) {
2824 			ppgtt->base.cleanup(&ppgtt->base);
2825 			kfree(ppgtt);
2826 			return ret;
2827 		}
2828 
2829 		if (ppgtt->base.allocate_va_range)
2830 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2831 							    ppgtt->base.total);
2832 		if (ret) {
2833 			ppgtt->base.cleanup(&ppgtt->base);
2834 			kfree(ppgtt);
2835 			return ret;
2836 		}
2837 
2838 		ppgtt->base.clear_range(&ppgtt->base,
2839 					ppgtt->base.start,
2840 					ppgtt->base.total,
2841 					true);
2842 
2843 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2844 		WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2845 		ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 /**
2852  * i915_gem_init_ggtt - Initialize GEM for Global GTT
2853  * @dev: DRM device
2854  */
2855 void i915_gem_init_ggtt(struct drm_device *dev)
2856 {
2857 	struct drm_i915_private *dev_priv = to_i915(dev);
2858 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2859 
2860 	i915_gem_setup_global_gtt(dev, 0, ggtt->mappable_end, ggtt->base.total);
2861 }
2862 
2863 /**
2864  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2865  * @dev: DRM device
2866  */
2867 void i915_ggtt_cleanup_hw(struct drm_device *dev)
2868 {
2869 	struct drm_i915_private *dev_priv = to_i915(dev);
2870 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2871 
2872 	if (dev_priv->mm.aliasing_ppgtt) {
2873 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2874 
2875 		ppgtt->base.cleanup(&ppgtt->base);
2876 		kfree(ppgtt);
2877 	}
2878 
2879 	i915_gem_cleanup_stolen(dev);
2880 
2881 	if (drm_mm_initialized(&ggtt->base.mm)) {
2882 		intel_vgt_deballoon(dev_priv);
2883 
2884 		drm_mm_takedown(&ggtt->base.mm);
2885 		list_del(&ggtt->base.global_link);
2886 	}
2887 
2888 	ggtt->base.cleanup(&ggtt->base);
2889 }
2890 
2891 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2892 {
2893 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2894 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2895 	return snb_gmch_ctl << 20;
2896 }
2897 
2898 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2899 {
2900 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2901 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2902 	if (bdw_gmch_ctl)
2903 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2904 
2905 #ifdef CONFIG_X86_32
2906 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2907 	if (bdw_gmch_ctl > 4)
2908 		bdw_gmch_ctl = 4;
2909 #endif
2910 
2911 	return bdw_gmch_ctl << 20;
2912 }
2913 
2914 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2915 {
2916 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2917 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2918 
2919 	if (gmch_ctrl)
2920 		return 1 << (20 + gmch_ctrl);
2921 
2922 	return 0;
2923 }
2924 
2925 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2926 {
2927 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2928 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2929 	return snb_gmch_ctl << 25; /* 32 MB units */
2930 }
2931 
2932 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2933 {
2934 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2935 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2936 	return bdw_gmch_ctl << 25; /* 32 MB units */
2937 }
2938 
2939 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2940 {
2941 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2942 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2943 
2944 	/*
2945 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2946 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2947 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2948 	 */
2949 	if (gmch_ctrl < 0x11)
2950 		return gmch_ctrl << 25;
2951 	else if (gmch_ctrl < 0x17)
2952 		return (gmch_ctrl - 0x11 + 2) << 22;
2953 	else
2954 		return (gmch_ctrl - 0x17 + 9) << 22;
2955 }
2956 
2957 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2958 {
2959 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2960 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2961 
2962 	if (gen9_gmch_ctl < 0xf0)
2963 		return gen9_gmch_ctl << 25; /* 32 MB units */
2964 	else
2965 		/* 4MB increments starting at 0xf0 for 4MB */
2966 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2967 }
2968 
2969 static int ggtt_probe_common(struct drm_device *dev,
2970 			     size_t gtt_size)
2971 {
2972 	struct drm_i915_private *dev_priv = to_i915(dev);
2973 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2974 	struct i915_page_scratch *scratch_page;
2975 	phys_addr_t ggtt_phys_addr;
2976 
2977 	/* For Modern GENs the PTEs and register space are split in the BAR */
2978 	ggtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2979 			 (pci_resource_len(dev->pdev, 0) / 2);
2980 
2981 	/*
2982 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2983 	 * dropped. For WC mappings in general we have 64 byte burst writes
2984 	 * when the WC buffer is flushed, so we can't use it, but have to
2985 	 * resort to an uncached mapping. The WC issue is easily caught by the
2986 	 * readback check when writing GTT PTE entries.
2987 	 */
2988 	if (IS_BROXTON(dev))
2989 		ggtt->gsm = ioremap_nocache(ggtt_phys_addr, gtt_size);
2990 	else
2991 		ggtt->gsm = ioremap_wc(ggtt_phys_addr, gtt_size);
2992 	if (!ggtt->gsm) {
2993 		DRM_ERROR("Failed to map the gtt page table\n");
2994 		return -ENOMEM;
2995 	}
2996 
2997 	scratch_page = alloc_scratch_page(dev);
2998 	if (IS_ERR(scratch_page)) {
2999 		DRM_ERROR("Scratch setup failed\n");
3000 		/* iounmap will also get called at remove, but meh */
3001 		iounmap(ggtt->gsm);
3002 		return PTR_ERR(scratch_page);
3003 	}
3004 
3005 	ggtt->base.scratch_page = scratch_page;
3006 
3007 	return 0;
3008 }
3009 
3010 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3011  * bits. When using advanced contexts each context stores its own PAT, but
3012  * writing this data shouldn't be harmful even in those cases. */
3013 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
3014 {
3015 	uint64_t pat;
3016 
3017 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
3018 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
3019 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
3020 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
3021 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
3022 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
3023 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
3024 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3025 
3026 	if (!USES_PPGTT(dev_priv))
3027 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3028 		 * so RTL will always use the value corresponding to
3029 		 * pat_sel = 000".
3030 		 * So let's disable cache for GGTT to avoid screen corruptions.
3031 		 * MOCS still can be used though.
3032 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3033 		 * before this patch, i.e. the same uncached + snooping access
3034 		 * like on gen6/7 seems to be in effect.
3035 		 * - So this just fixes blitter/render access. Again it looks
3036 		 * like it's not just uncached access, but uncached + snooping.
3037 		 * So we can still hold onto all our assumptions wrt cpu
3038 		 * clflushing on LLC machines.
3039 		 */
3040 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
3041 
3042 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
3043 	 * write would work. */
3044 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3045 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3046 }
3047 
3048 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3049 {
3050 	uint64_t pat;
3051 
3052 	/*
3053 	 * Map WB on BDW to snooped on CHV.
3054 	 *
3055 	 * Only the snoop bit has meaning for CHV, the rest is
3056 	 * ignored.
3057 	 *
3058 	 * The hardware will never snoop for certain types of accesses:
3059 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3060 	 * - PPGTT page tables
3061 	 * - some other special cycles
3062 	 *
3063 	 * As with BDW, we also need to consider the following for GT accesses:
3064 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3065 	 * so RTL will always use the value corresponding to
3066 	 * pat_sel = 000".
3067 	 * Which means we must set the snoop bit in PAT entry 0
3068 	 * in order to keep the global status page working.
3069 	 */
3070 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3071 	      GEN8_PPAT(1, 0) |
3072 	      GEN8_PPAT(2, 0) |
3073 	      GEN8_PPAT(3, 0) |
3074 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3075 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3076 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3077 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3078 
3079 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3080 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3081 }
3082 
3083 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3084 {
3085 	struct drm_device *dev = ggtt->base.dev;
3086 	struct drm_i915_private *dev_priv = to_i915(dev);
3087 	u16 snb_gmch_ctl;
3088 	int ret;
3089 
3090 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3091 	ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3092 	ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3093 
3094 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3095 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3096 
3097 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3098 
3099 	if (INTEL_INFO(dev)->gen >= 9) {
3100 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3101 		ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3102 	} else if (IS_CHERRYVIEW(dev)) {
3103 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3104 		ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3105 	} else {
3106 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3107 		ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3108 	}
3109 
3110 	ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3111 
3112 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3113 		chv_setup_private_ppat(dev_priv);
3114 	else
3115 		bdw_setup_private_ppat(dev_priv);
3116 
3117 	ret = ggtt_probe_common(dev, ggtt->size);
3118 
3119 	ggtt->base.bind_vma = ggtt_bind_vma;
3120 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3121 	ggtt->base.insert_page = gen8_ggtt_insert_page;
3122 	ggtt->base.clear_range = nop_clear_range;
3123 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3124 		ggtt->base.clear_range = gen8_ggtt_clear_range;
3125 
3126 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3127 	if (IS_CHERRYVIEW(dev_priv))
3128 		ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3129 
3130 	return ret;
3131 }
3132 
3133 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3134 {
3135 	struct drm_device *dev = ggtt->base.dev;
3136 	u16 snb_gmch_ctl;
3137 	int ret;
3138 
3139 	ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3140 	ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3141 
3142 	/* 64/512MB is the current min/max we actually know of, but this is just
3143 	 * a coarse sanity check.
3144 	 */
3145 	if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3146 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3147 		return -ENXIO;
3148 	}
3149 
3150 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3151 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3152 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3153 
3154 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3155 	ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3156 	ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3157 
3158 	ret = ggtt_probe_common(dev, ggtt->size);
3159 
3160 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3161 	ggtt->base.insert_page = gen6_ggtt_insert_page;
3162 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3163 	ggtt->base.bind_vma = ggtt_bind_vma;
3164 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3165 
3166 	return ret;
3167 }
3168 
3169 static void gen6_gmch_remove(struct i915_address_space *vm)
3170 {
3171 	struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3172 
3173 	iounmap(ggtt->gsm);
3174 	free_scratch_page(vm->dev, vm->scratch_page);
3175 }
3176 
3177 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3178 {
3179 	struct drm_device *dev = ggtt->base.dev;
3180 	struct drm_i915_private *dev_priv = to_i915(dev);
3181 	int ret;
3182 
3183 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3184 	if (!ret) {
3185 		DRM_ERROR("failed to set up gmch\n");
3186 		return -EIO;
3187 	}
3188 
3189 	intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3190 		      &ggtt->mappable_base, &ggtt->mappable_end);
3191 
3192 	ggtt->do_idle_maps = needs_idle_maps(&dev_priv->drm);
3193 	ggtt->base.insert_page = i915_ggtt_insert_page;
3194 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3195 	ggtt->base.clear_range = i915_ggtt_clear_range;
3196 	ggtt->base.bind_vma = ggtt_bind_vma;
3197 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3198 
3199 	if (unlikely(ggtt->do_idle_maps))
3200 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3201 
3202 	return 0;
3203 }
3204 
3205 static void i915_gmch_remove(struct i915_address_space *vm)
3206 {
3207 	intel_gmch_remove();
3208 }
3209 
3210 /**
3211  * i915_ggtt_init_hw - Initialize GGTT hardware
3212  * @dev: DRM device
3213  */
3214 int i915_ggtt_init_hw(struct drm_device *dev)
3215 {
3216 	struct drm_i915_private *dev_priv = to_i915(dev);
3217 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3218 	int ret;
3219 
3220 	if (INTEL_INFO(dev)->gen <= 5) {
3221 		ggtt->probe = i915_gmch_probe;
3222 		ggtt->base.cleanup = i915_gmch_remove;
3223 	} else if (INTEL_INFO(dev)->gen < 8) {
3224 		ggtt->probe = gen6_gmch_probe;
3225 		ggtt->base.cleanup = gen6_gmch_remove;
3226 
3227 		if (HAS_EDRAM(dev))
3228 			ggtt->base.pte_encode = iris_pte_encode;
3229 		else if (IS_HASWELL(dev))
3230 			ggtt->base.pte_encode = hsw_pte_encode;
3231 		else if (IS_VALLEYVIEW(dev))
3232 			ggtt->base.pte_encode = byt_pte_encode;
3233 		else if (INTEL_INFO(dev)->gen >= 7)
3234 			ggtt->base.pte_encode = ivb_pte_encode;
3235 		else
3236 			ggtt->base.pte_encode = snb_pte_encode;
3237 	} else {
3238 		ggtt->probe = gen8_gmch_probe;
3239 		ggtt->base.cleanup = gen6_gmch_remove;
3240 	}
3241 
3242 	ggtt->base.dev = dev;
3243 	ggtt->base.is_ggtt = true;
3244 
3245 	ret = ggtt->probe(ggtt);
3246 	if (ret)
3247 		return ret;
3248 
3249 	if ((ggtt->base.total - 1) >> 32) {
3250 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3251 			  "of address space! Found %lldM!\n",
3252 			  ggtt->base.total >> 20);
3253 		ggtt->base.total = 1ULL << 32;
3254 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3255 	}
3256 
3257 	/*
3258 	 * Initialise stolen early so that we may reserve preallocated
3259 	 * objects for the BIOS to KMS transition.
3260 	 */
3261 	ret = i915_gem_init_stolen(dev);
3262 	if (ret)
3263 		goto out_gtt_cleanup;
3264 
3265 	/* GMADR is the PCI mmio aperture into the global GTT. */
3266 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3267 		 ggtt->base.total >> 20);
3268 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3269 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3270 #ifdef CONFIG_INTEL_IOMMU
3271 	if (intel_iommu_gfx_mapped)
3272 		DRM_INFO("VT-d active for gfx access\n");
3273 #endif
3274 
3275 	return 0;
3276 
3277 out_gtt_cleanup:
3278 	ggtt->base.cleanup(&ggtt->base);
3279 
3280 	return ret;
3281 }
3282 
3283 int i915_ggtt_enable_hw(struct drm_device *dev)
3284 {
3285 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3286 		return -EIO;
3287 
3288 	return 0;
3289 }
3290 
3291 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3292 {
3293 	struct drm_i915_private *dev_priv = to_i915(dev);
3294 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3295 	struct drm_i915_gem_object *obj;
3296 	struct i915_vma *vma;
3297 
3298 	i915_check_and_clear_faults(dev_priv);
3299 
3300 	/* First fill our portion of the GTT with scratch pages */
3301 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3302 			       true);
3303 
3304 	/* Cache flush objects bound into GGTT and rebind them. */
3305 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3306 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3307 			if (vma->vm != &ggtt->base)
3308 				continue;
3309 
3310 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3311 					      PIN_UPDATE));
3312 		}
3313 
3314 		if (obj->pin_display)
3315 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3316 	}
3317 
3318 	if (INTEL_INFO(dev)->gen >= 8) {
3319 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3320 			chv_setup_private_ppat(dev_priv);
3321 		else
3322 			bdw_setup_private_ppat(dev_priv);
3323 
3324 		return;
3325 	}
3326 
3327 	if (USES_PPGTT(dev)) {
3328 		struct i915_address_space *vm;
3329 
3330 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3331 			/* TODO: Perhaps it shouldn't be gen6 specific */
3332 
3333 			struct i915_hw_ppgtt *ppgtt;
3334 
3335 			if (vm->is_ggtt)
3336 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3337 			else
3338 				ppgtt = i915_vm_to_ppgtt(vm);
3339 
3340 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3341 					      0, ppgtt->base.total);
3342 		}
3343 	}
3344 
3345 	i915_ggtt_flush(dev_priv);
3346 }
3347 
3348 static struct i915_vma *
3349 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3350 		      struct i915_address_space *vm,
3351 		      const struct i915_ggtt_view *ggtt_view)
3352 {
3353 	struct i915_vma *vma;
3354 
3355 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3356 		return ERR_PTR(-EINVAL);
3357 
3358 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3359 	if (vma == NULL)
3360 		return ERR_PTR(-ENOMEM);
3361 
3362 	INIT_LIST_HEAD(&vma->vm_link);
3363 	INIT_LIST_HEAD(&vma->obj_link);
3364 	INIT_LIST_HEAD(&vma->exec_list);
3365 	vma->vm = vm;
3366 	vma->obj = obj;
3367 	vma->is_ggtt = i915_is_ggtt(vm);
3368 
3369 	if (i915_is_ggtt(vm))
3370 		vma->ggtt_view = *ggtt_view;
3371 	else
3372 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3373 
3374 	list_add_tail(&vma->obj_link, &obj->vma_list);
3375 
3376 	return vma;
3377 }
3378 
3379 struct i915_vma *
3380 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3381 				  struct i915_address_space *vm)
3382 {
3383 	struct i915_vma *vma;
3384 
3385 	vma = i915_gem_obj_to_vma(obj, vm);
3386 	if (!vma)
3387 		vma = __i915_gem_vma_create(obj, vm,
3388 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3389 
3390 	return vma;
3391 }
3392 
3393 struct i915_vma *
3394 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3395 				       const struct i915_ggtt_view *view)
3396 {
3397 	struct drm_device *dev = obj->base.dev;
3398 	struct drm_i915_private *dev_priv = to_i915(dev);
3399 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3400 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3401 
3402 	if (!vma)
3403 		vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3404 
3405 	return vma;
3406 
3407 }
3408 
3409 static struct scatterlist *
3410 rotate_pages(const dma_addr_t *in, unsigned int offset,
3411 	     unsigned int width, unsigned int height,
3412 	     unsigned int stride,
3413 	     struct sg_table *st, struct scatterlist *sg)
3414 {
3415 	unsigned int column, row;
3416 	unsigned int src_idx;
3417 
3418 	for (column = 0; column < width; column++) {
3419 		src_idx = stride * (height - 1) + column;
3420 		for (row = 0; row < height; row++) {
3421 			st->nents++;
3422 			/* We don't need the pages, but need to initialize
3423 			 * the entries so the sg list can be happily traversed.
3424 			 * The only thing we need are DMA addresses.
3425 			 */
3426 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3427 			sg_dma_address(sg) = in[offset + src_idx];
3428 			sg_dma_len(sg) = PAGE_SIZE;
3429 			sg = sg_next(sg);
3430 			src_idx -= stride;
3431 		}
3432 	}
3433 
3434 	return sg;
3435 }
3436 
3437 static struct sg_table *
3438 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3439 			  struct drm_i915_gem_object *obj)
3440 {
3441 	const size_t n_pages = obj->base.size / PAGE_SIZE;
3442 	unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3443 	unsigned int size_pages_uv;
3444 	struct sgt_iter sgt_iter;
3445 	dma_addr_t dma_addr;
3446 	unsigned long i;
3447 	dma_addr_t *page_addr_list;
3448 	struct sg_table *st;
3449 	unsigned int uv_start_page;
3450 	struct scatterlist *sg;
3451 	int ret = -ENOMEM;
3452 
3453 	/* Allocate a temporary list of source pages for random access. */
3454 	page_addr_list = drm_malloc_gfp(n_pages,
3455 					sizeof(dma_addr_t),
3456 					GFP_TEMPORARY);
3457 	if (!page_addr_list)
3458 		return ERR_PTR(ret);
3459 
3460 	/* Account for UV plane with NV12. */
3461 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3462 		size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3463 	else
3464 		size_pages_uv = 0;
3465 
3466 	/* Allocate target SG list. */
3467 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3468 	if (!st)
3469 		goto err_st_alloc;
3470 
3471 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3472 	if (ret)
3473 		goto err_sg_alloc;
3474 
3475 	/* Populate source page list from the object. */
3476 	i = 0;
3477 	for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3478 		page_addr_list[i++] = dma_addr;
3479 
3480 	GEM_BUG_ON(i != n_pages);
3481 	st->nents = 0;
3482 	sg = st->sgl;
3483 
3484 	/* Rotate the pages. */
3485 	sg = rotate_pages(page_addr_list, 0,
3486 			  rot_info->plane[0].width, rot_info->plane[0].height,
3487 			  rot_info->plane[0].width,
3488 			  st, sg);
3489 
3490 	/* Append the UV plane if NV12. */
3491 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3492 		uv_start_page = size_pages;
3493 
3494 		/* Check for tile-row un-alignment. */
3495 		if (offset_in_page(rot_info->uv_offset))
3496 			uv_start_page--;
3497 
3498 		rot_info->uv_start_page = uv_start_page;
3499 
3500 		sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3501 				  rot_info->plane[1].width, rot_info->plane[1].height,
3502 				  rot_info->plane[1].width,
3503 				  st, sg);
3504 	}
3505 
3506 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3507 		      obj->base.size, rot_info->plane[0].width,
3508 		      rot_info->plane[0].height, size_pages + size_pages_uv,
3509 		      size_pages);
3510 
3511 	drm_free_large(page_addr_list);
3512 
3513 	return st;
3514 
3515 err_sg_alloc:
3516 	kfree(st);
3517 err_st_alloc:
3518 	drm_free_large(page_addr_list);
3519 
3520 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3521 		      obj->base.size, ret, rot_info->plane[0].width,
3522 		      rot_info->plane[0].height, size_pages + size_pages_uv,
3523 		      size_pages);
3524 	return ERR_PTR(ret);
3525 }
3526 
3527 static struct sg_table *
3528 intel_partial_pages(const struct i915_ggtt_view *view,
3529 		    struct drm_i915_gem_object *obj)
3530 {
3531 	struct sg_table *st;
3532 	struct scatterlist *sg;
3533 	struct sg_page_iter obj_sg_iter;
3534 	int ret = -ENOMEM;
3535 
3536 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3537 	if (!st)
3538 		goto err_st_alloc;
3539 
3540 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3541 	if (ret)
3542 		goto err_sg_alloc;
3543 
3544 	sg = st->sgl;
3545 	st->nents = 0;
3546 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3547 		view->params.partial.offset)
3548 	{
3549 		if (st->nents >= view->params.partial.size)
3550 			break;
3551 
3552 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3553 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3554 		sg_dma_len(sg) = PAGE_SIZE;
3555 
3556 		sg = sg_next(sg);
3557 		st->nents++;
3558 	}
3559 
3560 	return st;
3561 
3562 err_sg_alloc:
3563 	kfree(st);
3564 err_st_alloc:
3565 	return ERR_PTR(ret);
3566 }
3567 
3568 static int
3569 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3570 {
3571 	int ret = 0;
3572 
3573 	if (vma->ggtt_view.pages)
3574 		return 0;
3575 
3576 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3577 		vma->ggtt_view.pages = vma->obj->pages;
3578 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3579 		vma->ggtt_view.pages =
3580 			intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3581 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3582 		vma->ggtt_view.pages =
3583 			intel_partial_pages(&vma->ggtt_view, vma->obj);
3584 	else
3585 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3586 			  vma->ggtt_view.type);
3587 
3588 	if (!vma->ggtt_view.pages) {
3589 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3590 			  vma->ggtt_view.type);
3591 		ret = -EINVAL;
3592 	} else if (IS_ERR(vma->ggtt_view.pages)) {
3593 		ret = PTR_ERR(vma->ggtt_view.pages);
3594 		vma->ggtt_view.pages = NULL;
3595 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3596 			  vma->ggtt_view.type, ret);
3597 	}
3598 
3599 	return ret;
3600 }
3601 
3602 /**
3603  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3604  * @vma: VMA to map
3605  * @cache_level: mapping cache level
3606  * @flags: flags like global or local mapping
3607  *
3608  * DMA addresses are taken from the scatter-gather table of this object (or of
3609  * this VMA in case of non-default GGTT views) and PTE entries set up.
3610  * Note that DMA addresses are also the only part of the SG table we care about.
3611  */
3612 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3613 		  u32 flags)
3614 {
3615 	int ret;
3616 	u32 bind_flags;
3617 
3618 	if (WARN_ON(flags == 0))
3619 		return -EINVAL;
3620 
3621 	bind_flags = 0;
3622 	if (flags & PIN_GLOBAL)
3623 		bind_flags |= GLOBAL_BIND;
3624 	if (flags & PIN_USER)
3625 		bind_flags |= LOCAL_BIND;
3626 
3627 	if (flags & PIN_UPDATE)
3628 		bind_flags |= vma->bound;
3629 	else
3630 		bind_flags &= ~vma->bound;
3631 
3632 	if (bind_flags == 0)
3633 		return 0;
3634 
3635 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3636 		/* XXX: i915_vma_pin() will fix this +- hack */
3637 		vma->pin_count++;
3638 		trace_i915_va_alloc(vma);
3639 		ret = vma->vm->allocate_va_range(vma->vm,
3640 						 vma->node.start,
3641 						 vma->node.size);
3642 		vma->pin_count--;
3643 		if (ret)
3644 			return ret;
3645 	}
3646 
3647 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3648 	if (ret)
3649 		return ret;
3650 
3651 	vma->bound |= bind_flags;
3652 
3653 	return 0;
3654 }
3655 
3656 /**
3657  * i915_ggtt_view_size - Get the size of a GGTT view.
3658  * @obj: Object the view is of.
3659  * @view: The view in question.
3660  *
3661  * @return The size of the GGTT view in bytes.
3662  */
3663 size_t
3664 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3665 		    const struct i915_ggtt_view *view)
3666 {
3667 	if (view->type == I915_GGTT_VIEW_NORMAL) {
3668 		return obj->base.size;
3669 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3670 		return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3671 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3672 		return view->params.partial.size << PAGE_SHIFT;
3673 	} else {
3674 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3675 		return obj->base.size;
3676 	}
3677 }
3678 
3679 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3680 {
3681 	void __iomem *ptr;
3682 
3683 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3684 	if (WARN_ON(!vma->obj->map_and_fenceable))
3685 		return ERR_PTR(-ENODEV);
3686 
3687 	GEM_BUG_ON(!vma->is_ggtt);
3688 	GEM_BUG_ON((vma->bound & GLOBAL_BIND) == 0);
3689 
3690 	ptr = vma->iomap;
3691 	if (ptr == NULL) {
3692 		ptr = io_mapping_map_wc(i915_vm_to_ggtt(vma->vm)->mappable,
3693 					vma->node.start,
3694 					vma->node.size);
3695 		if (ptr == NULL)
3696 			return ERR_PTR(-ENOMEM);
3697 
3698 		vma->iomap = ptr;
3699 	}
3700 
3701 	vma->pin_count++;
3702 	return ptr;
3703 }
3704