1 /* 2 * Copyright © 2010 Daniel Vetter 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <drm/drmP.h> 26 #include <drm/i915_drm.h> 27 #include "i915_drv.h" 28 #include "i915_trace.h" 29 #include "intel_drv.h" 30 31 #define GEN6_PPGTT_PD_ENTRIES 512 32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t)) 33 typedef uint64_t gen8_gtt_pte_t; 34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t; 35 36 /* PPGTT stuff */ 37 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0)) 38 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0)) 39 40 #define GEN6_PDE_VALID (1 << 0) 41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */ 42 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) 43 44 #define GEN6_PTE_VALID (1 << 0) 45 #define GEN6_PTE_UNCACHED (1 << 1) 46 #define HSW_PTE_UNCACHED (0) 47 #define GEN6_PTE_CACHE_LLC (2 << 1) 48 #define GEN7_PTE_CACHE_L3_LLC (3 << 1) 49 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) 50 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr) 51 52 /* Cacheability Control is a 4-bit value. The low three bits are stored in * 53 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE. 54 */ 55 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \ 56 (((bits) & 0x8) << (11 - 3))) 57 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2) 58 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3) 59 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb) 60 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8) 61 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6) 62 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7) 63 64 #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t)) 65 #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t)) 66 #define GEN8_LEGACY_PDPS 4 67 68 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD) 69 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */ 70 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */ 71 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */ 72 73 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr, 74 enum i915_cache_level level, 75 bool valid) 76 { 77 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0; 78 pte |= addr; 79 if (level != I915_CACHE_NONE) 80 pte |= PPAT_CACHED_INDEX; 81 else 82 pte |= PPAT_UNCACHED_INDEX; 83 return pte; 84 } 85 86 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev, 87 dma_addr_t addr, 88 enum i915_cache_level level) 89 { 90 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW; 91 pde |= addr; 92 if (level != I915_CACHE_NONE) 93 pde |= PPAT_CACHED_PDE_INDEX; 94 else 95 pde |= PPAT_UNCACHED_INDEX; 96 return pde; 97 } 98 99 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr, 100 enum i915_cache_level level, 101 bool valid) 102 { 103 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; 104 pte |= GEN6_PTE_ADDR_ENCODE(addr); 105 106 switch (level) { 107 case I915_CACHE_L3_LLC: 108 case I915_CACHE_LLC: 109 pte |= GEN6_PTE_CACHE_LLC; 110 break; 111 case I915_CACHE_NONE: 112 pte |= GEN6_PTE_UNCACHED; 113 break; 114 default: 115 WARN_ON(1); 116 } 117 118 return pte; 119 } 120 121 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr, 122 enum i915_cache_level level, 123 bool valid) 124 { 125 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; 126 pte |= GEN6_PTE_ADDR_ENCODE(addr); 127 128 switch (level) { 129 case I915_CACHE_L3_LLC: 130 pte |= GEN7_PTE_CACHE_L3_LLC; 131 break; 132 case I915_CACHE_LLC: 133 pte |= GEN6_PTE_CACHE_LLC; 134 break; 135 case I915_CACHE_NONE: 136 pte |= GEN6_PTE_UNCACHED; 137 break; 138 default: 139 WARN_ON(1); 140 } 141 142 return pte; 143 } 144 145 #define BYT_PTE_WRITEABLE (1 << 1) 146 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2) 147 148 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr, 149 enum i915_cache_level level, 150 bool valid) 151 { 152 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; 153 pte |= GEN6_PTE_ADDR_ENCODE(addr); 154 155 /* Mark the page as writeable. Other platforms don't have a 156 * setting for read-only/writable, so this matches that behavior. 157 */ 158 pte |= BYT_PTE_WRITEABLE; 159 160 if (level != I915_CACHE_NONE) 161 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 162 163 return pte; 164 } 165 166 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr, 167 enum i915_cache_level level, 168 bool valid) 169 { 170 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; 171 pte |= HSW_PTE_ADDR_ENCODE(addr); 172 173 if (level != I915_CACHE_NONE) 174 pte |= HSW_WB_LLC_AGE3; 175 176 return pte; 177 } 178 179 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr, 180 enum i915_cache_level level, 181 bool valid) 182 { 183 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; 184 pte |= HSW_PTE_ADDR_ENCODE(addr); 185 186 switch (level) { 187 case I915_CACHE_NONE: 188 break; 189 case I915_CACHE_WT: 190 pte |= HSW_WT_ELLC_LLC_AGE3; 191 break; 192 default: 193 pte |= HSW_WB_ELLC_LLC_AGE3; 194 break; 195 } 196 197 return pte; 198 } 199 200 /* Broadwell Page Directory Pointer Descriptors */ 201 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry, 202 uint64_t val) 203 { 204 int ret; 205 206 BUG_ON(entry >= 4); 207 208 ret = intel_ring_begin(ring, 6); 209 if (ret) 210 return ret; 211 212 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 213 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry)); 214 intel_ring_emit(ring, (u32)(val >> 32)); 215 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 216 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry)); 217 intel_ring_emit(ring, (u32)(val)); 218 intel_ring_advance(ring); 219 220 return 0; 221 } 222 223 static int gen8_ppgtt_enable(struct drm_device *dev) 224 { 225 struct drm_i915_private *dev_priv = dev->dev_private; 226 struct intel_ring_buffer *ring; 227 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 228 int i, j, ret; 229 230 /* bit of a hack to find the actual last used pd */ 231 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE; 232 233 for_each_ring(ring, dev_priv, j) { 234 I915_WRITE(RING_MODE_GEN7(ring), 235 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 236 } 237 238 for (i = used_pd - 1; i >= 0; i--) { 239 dma_addr_t addr = ppgtt->pd_dma_addr[i]; 240 for_each_ring(ring, dev_priv, j) { 241 ret = gen8_write_pdp(ring, i, addr); 242 if (ret) 243 return ret; 244 } 245 } 246 return 0; 247 } 248 249 static void gen8_ppgtt_clear_range(struct i915_address_space *vm, 250 unsigned first_entry, 251 unsigned num_entries, 252 bool use_scratch) 253 { 254 struct i915_hw_ppgtt *ppgtt = 255 container_of(vm, struct i915_hw_ppgtt, base); 256 gen8_gtt_pte_t *pt_vaddr, scratch_pte; 257 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE; 258 unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE; 259 unsigned last_pte, i; 260 261 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr, 262 I915_CACHE_LLC, use_scratch); 263 264 while (num_entries) { 265 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt]; 266 267 last_pte = first_pte + num_entries; 268 if (last_pte > GEN8_PTES_PER_PAGE) 269 last_pte = GEN8_PTES_PER_PAGE; 270 271 pt_vaddr = kmap_atomic(page_table); 272 273 for (i = first_pte; i < last_pte; i++) 274 pt_vaddr[i] = scratch_pte; 275 276 kunmap_atomic(pt_vaddr); 277 278 num_entries -= last_pte - first_pte; 279 first_pte = 0; 280 act_pt++; 281 } 282 } 283 284 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm, 285 struct sg_table *pages, 286 unsigned first_entry, 287 enum i915_cache_level cache_level) 288 { 289 struct i915_hw_ppgtt *ppgtt = 290 container_of(vm, struct i915_hw_ppgtt, base); 291 gen8_gtt_pte_t *pt_vaddr; 292 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE; 293 unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE; 294 struct sg_page_iter sg_iter; 295 296 pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]); 297 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { 298 dma_addr_t page_addr; 299 300 page_addr = sg_dma_address(sg_iter.sg) + 301 (sg_iter.sg_pgoffset << PAGE_SHIFT); 302 pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level, 303 true); 304 if (++act_pte == GEN8_PTES_PER_PAGE) { 305 kunmap_atomic(pt_vaddr); 306 act_pt++; 307 pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]); 308 act_pte = 0; 309 310 } 311 } 312 kunmap_atomic(pt_vaddr); 313 } 314 315 static void gen8_ppgtt_cleanup(struct i915_address_space *vm) 316 { 317 struct i915_hw_ppgtt *ppgtt = 318 container_of(vm, struct i915_hw_ppgtt, base); 319 int i, j; 320 321 for (i = 0; i < ppgtt->num_pd_pages ; i++) { 322 if (ppgtt->pd_dma_addr[i]) { 323 pci_unmap_page(ppgtt->base.dev->pdev, 324 ppgtt->pd_dma_addr[i], 325 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 326 327 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) { 328 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j]; 329 if (addr) 330 pci_unmap_page(ppgtt->base.dev->pdev, 331 addr, 332 PAGE_SIZE, 333 PCI_DMA_BIDIRECTIONAL); 334 335 } 336 } 337 kfree(ppgtt->gen8_pt_dma_addr[i]); 338 } 339 340 __free_pages(ppgtt->gen8_pt_pages, ppgtt->num_pt_pages << PAGE_SHIFT); 341 __free_pages(ppgtt->pd_pages, ppgtt->num_pd_pages << PAGE_SHIFT); 342 } 343 344 /** 345 * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a 346 * net effect resembling a 2-level page table in normal x86 terms. Each PDP 347 * represents 1GB of memory 348 * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space. 349 * 350 * TODO: Do something with the size parameter 351 **/ 352 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size) 353 { 354 struct page *pt_pages; 355 int i, j, ret = -ENOMEM; 356 const int max_pdp = DIV_ROUND_UP(size, 1 << 30); 357 const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp; 358 359 if (size % (1<<30)) 360 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size); 361 362 /* FIXME: split allocation into smaller pieces. For now we only ever do 363 * this once, but with full PPGTT, the multiple contiguous allocations 364 * will be bad. 365 */ 366 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT)); 367 if (!ppgtt->pd_pages) 368 return -ENOMEM; 369 370 pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT)); 371 if (!pt_pages) { 372 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT)); 373 return -ENOMEM; 374 } 375 376 ppgtt->gen8_pt_pages = pt_pages; 377 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT); 378 ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT); 379 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE; 380 ppgtt->enable = gen8_ppgtt_enable; 381 ppgtt->base.clear_range = gen8_ppgtt_clear_range; 382 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries; 383 ppgtt->base.cleanup = gen8_ppgtt_cleanup; 384 385 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS); 386 387 /* 388 * - Create a mapping for the page directories. 389 * - For each page directory: 390 * allocate space for page table mappings. 391 * map each page table 392 */ 393 for (i = 0; i < max_pdp; i++) { 394 dma_addr_t temp; 395 temp = pci_map_page(ppgtt->base.dev->pdev, 396 &ppgtt->pd_pages[i], 0, 397 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 398 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp)) 399 goto err_out; 400 401 ppgtt->pd_dma_addr[i] = temp; 402 403 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL); 404 if (!ppgtt->gen8_pt_dma_addr[i]) 405 goto err_out; 406 407 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) { 408 struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j]; 409 temp = pci_map_page(ppgtt->base.dev->pdev, 410 p, 0, PAGE_SIZE, 411 PCI_DMA_BIDIRECTIONAL); 412 413 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp)) 414 goto err_out; 415 416 ppgtt->gen8_pt_dma_addr[i][j] = temp; 417 } 418 } 419 420 /* For now, the PPGTT helper functions all require that the PDEs are 421 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we 422 * will never need to touch the PDEs again */ 423 for (i = 0; i < max_pdp; i++) { 424 gen8_ppgtt_pde_t *pd_vaddr; 425 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]); 426 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) { 427 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j]; 428 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr, 429 I915_CACHE_LLC); 430 } 431 kunmap_atomic(pd_vaddr); 432 } 433 434 ppgtt->base.clear_range(&ppgtt->base, 0, 435 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE, 436 true); 437 438 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n", 439 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp); 440 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n", 441 ppgtt->num_pt_pages, 442 (ppgtt->num_pt_pages - num_pt_pages) + 443 size % (1<<30)); 444 return 0; 445 446 err_out: 447 ppgtt->base.cleanup(&ppgtt->base); 448 return ret; 449 } 450 451 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt) 452 { 453 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private; 454 gen6_gtt_pte_t __iomem *pd_addr; 455 uint32_t pd_entry; 456 int i; 457 458 WARN_ON(ppgtt->pd_offset & 0x3f); 459 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm + 460 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t); 461 for (i = 0; i < ppgtt->num_pd_entries; i++) { 462 dma_addr_t pt_addr; 463 464 pt_addr = ppgtt->pt_dma_addr[i]; 465 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr); 466 pd_entry |= GEN6_PDE_VALID; 467 468 writel(pd_entry, pd_addr + i); 469 } 470 readl(pd_addr); 471 } 472 473 static int gen6_ppgtt_enable(struct drm_device *dev) 474 { 475 drm_i915_private_t *dev_priv = dev->dev_private; 476 uint32_t pd_offset; 477 struct intel_ring_buffer *ring; 478 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 479 int i; 480 481 BUG_ON(ppgtt->pd_offset & 0x3f); 482 483 gen6_write_pdes(ppgtt); 484 485 pd_offset = ppgtt->pd_offset; 486 pd_offset /= 64; /* in cachelines, */ 487 pd_offset <<= 16; 488 489 if (INTEL_INFO(dev)->gen == 6) { 490 uint32_t ecochk, gab_ctl, ecobits; 491 492 ecobits = I915_READ(GAC_ECO_BITS); 493 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | 494 ECOBITS_PPGTT_CACHE64B); 495 496 gab_ctl = I915_READ(GAB_CTL); 497 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); 498 499 ecochk = I915_READ(GAM_ECOCHK); 500 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | 501 ECOCHK_PPGTT_CACHE64B); 502 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 503 } else if (INTEL_INFO(dev)->gen >= 7) { 504 uint32_t ecochk, ecobits; 505 506 ecobits = I915_READ(GAC_ECO_BITS); 507 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); 508 509 ecochk = I915_READ(GAM_ECOCHK); 510 if (IS_HASWELL(dev)) { 511 ecochk |= ECOCHK_PPGTT_WB_HSW; 512 } else { 513 ecochk |= ECOCHK_PPGTT_LLC_IVB; 514 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; 515 } 516 I915_WRITE(GAM_ECOCHK, ecochk); 517 /* GFX_MODE is per-ring on gen7+ */ 518 } 519 520 for_each_ring(ring, dev_priv, i) { 521 if (INTEL_INFO(dev)->gen >= 7) 522 I915_WRITE(RING_MODE_GEN7(ring), 523 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 524 525 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); 526 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset); 527 } 528 return 0; 529 } 530 531 /* PPGTT support for Sandybdrige/Gen6 and later */ 532 static void gen6_ppgtt_clear_range(struct i915_address_space *vm, 533 unsigned first_entry, 534 unsigned num_entries, 535 bool use_scratch) 536 { 537 struct i915_hw_ppgtt *ppgtt = 538 container_of(vm, struct i915_hw_ppgtt, base); 539 gen6_gtt_pte_t *pt_vaddr, scratch_pte; 540 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES; 541 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES; 542 unsigned last_pte, i; 543 544 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true); 545 546 while (num_entries) { 547 last_pte = first_pte + num_entries; 548 if (last_pte > I915_PPGTT_PT_ENTRIES) 549 last_pte = I915_PPGTT_PT_ENTRIES; 550 551 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]); 552 553 for (i = first_pte; i < last_pte; i++) 554 pt_vaddr[i] = scratch_pte; 555 556 kunmap_atomic(pt_vaddr); 557 558 num_entries -= last_pte - first_pte; 559 first_pte = 0; 560 act_pt++; 561 } 562 } 563 564 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, 565 struct sg_table *pages, 566 unsigned first_entry, 567 enum i915_cache_level cache_level) 568 { 569 struct i915_hw_ppgtt *ppgtt = 570 container_of(vm, struct i915_hw_ppgtt, base); 571 gen6_gtt_pte_t *pt_vaddr; 572 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES; 573 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES; 574 struct sg_page_iter sg_iter; 575 576 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]); 577 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { 578 dma_addr_t page_addr; 579 580 page_addr = sg_page_iter_dma_address(&sg_iter); 581 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true); 582 if (++act_pte == I915_PPGTT_PT_ENTRIES) { 583 kunmap_atomic(pt_vaddr); 584 act_pt++; 585 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]); 586 act_pte = 0; 587 588 } 589 } 590 kunmap_atomic(pt_vaddr); 591 } 592 593 static void gen6_ppgtt_cleanup(struct i915_address_space *vm) 594 { 595 struct i915_hw_ppgtt *ppgtt = 596 container_of(vm, struct i915_hw_ppgtt, base); 597 int i; 598 599 drm_mm_takedown(&ppgtt->base.mm); 600 601 if (ppgtt->pt_dma_addr) { 602 for (i = 0; i < ppgtt->num_pd_entries; i++) 603 pci_unmap_page(ppgtt->base.dev->pdev, 604 ppgtt->pt_dma_addr[i], 605 4096, PCI_DMA_BIDIRECTIONAL); 606 } 607 608 kfree(ppgtt->pt_dma_addr); 609 for (i = 0; i < ppgtt->num_pd_entries; i++) 610 __free_page(ppgtt->pt_pages[i]); 611 kfree(ppgtt->pt_pages); 612 kfree(ppgtt); 613 } 614 615 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) 616 { 617 struct drm_device *dev = ppgtt->base.dev; 618 struct drm_i915_private *dev_priv = dev->dev_private; 619 unsigned first_pd_entry_in_global_pt; 620 int i; 621 int ret = -ENOMEM; 622 623 /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024 624 * entries. For aliasing ppgtt support we just steal them at the end for 625 * now. */ 626 first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt); 627 628 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode; 629 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES; 630 ppgtt->enable = gen6_ppgtt_enable; 631 ppgtt->base.clear_range = gen6_ppgtt_clear_range; 632 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; 633 ppgtt->base.cleanup = gen6_ppgtt_cleanup; 634 ppgtt->base.scratch = dev_priv->gtt.base.scratch; 635 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *), 636 GFP_KERNEL); 637 if (!ppgtt->pt_pages) 638 return -ENOMEM; 639 640 for (i = 0; i < ppgtt->num_pd_entries; i++) { 641 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL); 642 if (!ppgtt->pt_pages[i]) 643 goto err_pt_alloc; 644 } 645 646 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t), 647 GFP_KERNEL); 648 if (!ppgtt->pt_dma_addr) 649 goto err_pt_alloc; 650 651 for (i = 0; i < ppgtt->num_pd_entries; i++) { 652 dma_addr_t pt_addr; 653 654 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096, 655 PCI_DMA_BIDIRECTIONAL); 656 657 if (pci_dma_mapping_error(dev->pdev, pt_addr)) { 658 ret = -EIO; 659 goto err_pd_pin; 660 661 } 662 ppgtt->pt_dma_addr[i] = pt_addr; 663 } 664 665 ppgtt->base.clear_range(&ppgtt->base, 0, 666 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true); 667 668 ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t); 669 670 return 0; 671 672 err_pd_pin: 673 if (ppgtt->pt_dma_addr) { 674 for (i--; i >= 0; i--) 675 pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i], 676 4096, PCI_DMA_BIDIRECTIONAL); 677 } 678 err_pt_alloc: 679 kfree(ppgtt->pt_dma_addr); 680 for (i = 0; i < ppgtt->num_pd_entries; i++) { 681 if (ppgtt->pt_pages[i]) 682 __free_page(ppgtt->pt_pages[i]); 683 } 684 kfree(ppgtt->pt_pages); 685 686 return ret; 687 } 688 689 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev) 690 { 691 struct drm_i915_private *dev_priv = dev->dev_private; 692 struct i915_hw_ppgtt *ppgtt; 693 int ret; 694 695 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); 696 if (!ppgtt) 697 return -ENOMEM; 698 699 ppgtt->base.dev = dev; 700 701 if (INTEL_INFO(dev)->gen < 8) 702 ret = gen6_ppgtt_init(ppgtt); 703 else if (IS_GEN8(dev)) 704 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total); 705 else 706 BUG(); 707 708 if (ret) 709 kfree(ppgtt); 710 else { 711 dev_priv->mm.aliasing_ppgtt = ppgtt; 712 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start, 713 ppgtt->base.total); 714 } 715 716 return ret; 717 } 718 719 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev) 720 { 721 struct drm_i915_private *dev_priv = dev->dev_private; 722 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 723 724 if (!ppgtt) 725 return; 726 727 ppgtt->base.cleanup(&ppgtt->base); 728 dev_priv->mm.aliasing_ppgtt = NULL; 729 } 730 731 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt, 732 struct drm_i915_gem_object *obj, 733 enum i915_cache_level cache_level) 734 { 735 ppgtt->base.insert_entries(&ppgtt->base, obj->pages, 736 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT, 737 cache_level); 738 } 739 740 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt, 741 struct drm_i915_gem_object *obj) 742 { 743 ppgtt->base.clear_range(&ppgtt->base, 744 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT, 745 obj->base.size >> PAGE_SHIFT, 746 true); 747 } 748 749 extern int intel_iommu_gfx_mapped; 750 /* Certain Gen5 chipsets require require idling the GPU before 751 * unmapping anything from the GTT when VT-d is enabled. 752 */ 753 static inline bool needs_idle_maps(struct drm_device *dev) 754 { 755 #ifdef CONFIG_INTEL_IOMMU 756 /* Query intel_iommu to see if we need the workaround. Presumably that 757 * was loaded first. 758 */ 759 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped) 760 return true; 761 #endif 762 return false; 763 } 764 765 static bool do_idling(struct drm_i915_private *dev_priv) 766 { 767 bool ret = dev_priv->mm.interruptible; 768 769 if (unlikely(dev_priv->gtt.do_idle_maps)) { 770 dev_priv->mm.interruptible = false; 771 if (i915_gpu_idle(dev_priv->dev)) { 772 DRM_ERROR("Couldn't idle GPU\n"); 773 /* Wait a bit, in hopes it avoids the hang */ 774 udelay(10); 775 } 776 } 777 778 return ret; 779 } 780 781 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible) 782 { 783 if (unlikely(dev_priv->gtt.do_idle_maps)) 784 dev_priv->mm.interruptible = interruptible; 785 } 786 787 void i915_check_and_clear_faults(struct drm_device *dev) 788 { 789 struct drm_i915_private *dev_priv = dev->dev_private; 790 struct intel_ring_buffer *ring; 791 int i; 792 793 if (INTEL_INFO(dev)->gen < 6) 794 return; 795 796 for_each_ring(ring, dev_priv, i) { 797 u32 fault_reg; 798 fault_reg = I915_READ(RING_FAULT_REG(ring)); 799 if (fault_reg & RING_FAULT_VALID) { 800 DRM_DEBUG_DRIVER("Unexpected fault\n" 801 "\tAddr: 0x%08lx\\n" 802 "\tAddress space: %s\n" 803 "\tSource ID: %d\n" 804 "\tType: %d\n", 805 fault_reg & PAGE_MASK, 806 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", 807 RING_FAULT_SRCID(fault_reg), 808 RING_FAULT_FAULT_TYPE(fault_reg)); 809 I915_WRITE(RING_FAULT_REG(ring), 810 fault_reg & ~RING_FAULT_VALID); 811 } 812 } 813 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS])); 814 } 815 816 void i915_gem_suspend_gtt_mappings(struct drm_device *dev) 817 { 818 struct drm_i915_private *dev_priv = dev->dev_private; 819 820 /* Don't bother messing with faults pre GEN6 as we have little 821 * documentation supporting that it's a good idea. 822 */ 823 if (INTEL_INFO(dev)->gen < 6) 824 return; 825 826 i915_check_and_clear_faults(dev); 827 828 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, 829 dev_priv->gtt.base.start / PAGE_SIZE, 830 dev_priv->gtt.base.total / PAGE_SIZE, 831 false); 832 } 833 834 void i915_gem_restore_gtt_mappings(struct drm_device *dev) 835 { 836 struct drm_i915_private *dev_priv = dev->dev_private; 837 struct drm_i915_gem_object *obj; 838 839 i915_check_and_clear_faults(dev); 840 841 /* First fill our portion of the GTT with scratch pages */ 842 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, 843 dev_priv->gtt.base.start / PAGE_SIZE, 844 dev_priv->gtt.base.total / PAGE_SIZE, 845 true); 846 847 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 848 i915_gem_clflush_object(obj, obj->pin_display); 849 i915_gem_gtt_bind_object(obj, obj->cache_level); 850 } 851 852 i915_gem_chipset_flush(dev); 853 } 854 855 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj) 856 { 857 if (obj->has_dma_mapping) 858 return 0; 859 860 if (!dma_map_sg(&obj->base.dev->pdev->dev, 861 obj->pages->sgl, obj->pages->nents, 862 PCI_DMA_BIDIRECTIONAL)) 863 return -ENOSPC; 864 865 return 0; 866 } 867 868 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte) 869 { 870 #ifdef writeq 871 writeq(pte, addr); 872 #else 873 iowrite32((u32)pte, addr); 874 iowrite32(pte >> 32, addr + 4); 875 #endif 876 } 877 878 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 879 struct sg_table *st, 880 unsigned int first_entry, 881 enum i915_cache_level level) 882 { 883 struct drm_i915_private *dev_priv = vm->dev->dev_private; 884 gen8_gtt_pte_t __iomem *gtt_entries = 885 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; 886 int i = 0; 887 struct sg_page_iter sg_iter; 888 dma_addr_t addr; 889 890 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { 891 addr = sg_dma_address(sg_iter.sg) + 892 (sg_iter.sg_pgoffset << PAGE_SHIFT); 893 gen8_set_pte(>t_entries[i], 894 gen8_pte_encode(addr, level, true)); 895 i++; 896 } 897 898 /* 899 * XXX: This serves as a posting read to make sure that the PTE has 900 * actually been updated. There is some concern that even though 901 * registers and PTEs are within the same BAR that they are potentially 902 * of NUMA access patterns. Therefore, even with the way we assume 903 * hardware should work, we must keep this posting read for paranoia. 904 */ 905 if (i != 0) 906 WARN_ON(readq(>t_entries[i-1]) 907 != gen8_pte_encode(addr, level, true)); 908 909 #if 0 /* TODO: Still needed on GEN8? */ 910 /* This next bit makes the above posting read even more important. We 911 * want to flush the TLBs only after we're certain all the PTE updates 912 * have finished. 913 */ 914 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 915 POSTING_READ(GFX_FLSH_CNTL_GEN6); 916 #endif 917 } 918 919 /* 920 * Binds an object into the global gtt with the specified cache level. The object 921 * will be accessible to the GPU via commands whose operands reference offsets 922 * within the global GTT as well as accessible by the GPU through the GMADR 923 * mapped BAR (dev_priv->mm.gtt->gtt). 924 */ 925 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 926 struct sg_table *st, 927 unsigned int first_entry, 928 enum i915_cache_level level) 929 { 930 struct drm_i915_private *dev_priv = vm->dev->dev_private; 931 gen6_gtt_pte_t __iomem *gtt_entries = 932 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; 933 int i = 0; 934 struct sg_page_iter sg_iter; 935 dma_addr_t addr; 936 937 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { 938 addr = sg_page_iter_dma_address(&sg_iter); 939 iowrite32(vm->pte_encode(addr, level, true), >t_entries[i]); 940 i++; 941 } 942 943 /* XXX: This serves as a posting read to make sure that the PTE has 944 * actually been updated. There is some concern that even though 945 * registers and PTEs are within the same BAR that they are potentially 946 * of NUMA access patterns. Therefore, even with the way we assume 947 * hardware should work, we must keep this posting read for paranoia. 948 */ 949 if (i != 0) 950 WARN_ON(readl(>t_entries[i-1]) != 951 vm->pte_encode(addr, level, true)); 952 953 /* This next bit makes the above posting read even more important. We 954 * want to flush the TLBs only after we're certain all the PTE updates 955 * have finished. 956 */ 957 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 958 POSTING_READ(GFX_FLSH_CNTL_GEN6); 959 } 960 961 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 962 unsigned int first_entry, 963 unsigned int num_entries, 964 bool use_scratch) 965 { 966 struct drm_i915_private *dev_priv = vm->dev->dev_private; 967 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base = 968 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; 969 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; 970 int i; 971 972 if (WARN(num_entries > max_entries, 973 "First entry = %d; Num entries = %d (max=%d)\n", 974 first_entry, num_entries, max_entries)) 975 num_entries = max_entries; 976 977 scratch_pte = gen8_pte_encode(vm->scratch.addr, 978 I915_CACHE_LLC, 979 use_scratch); 980 for (i = 0; i < num_entries; i++) 981 gen8_set_pte(>t_base[i], scratch_pte); 982 readl(gtt_base); 983 } 984 985 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 986 unsigned int first_entry, 987 unsigned int num_entries, 988 bool use_scratch) 989 { 990 struct drm_i915_private *dev_priv = vm->dev->dev_private; 991 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base = 992 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; 993 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; 994 int i; 995 996 if (WARN(num_entries > max_entries, 997 "First entry = %d; Num entries = %d (max=%d)\n", 998 first_entry, num_entries, max_entries)) 999 num_entries = max_entries; 1000 1001 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch); 1002 1003 for (i = 0; i < num_entries; i++) 1004 iowrite32(scratch_pte, >t_base[i]); 1005 readl(gtt_base); 1006 } 1007 1008 static void i915_ggtt_insert_entries(struct i915_address_space *vm, 1009 struct sg_table *st, 1010 unsigned int pg_start, 1011 enum i915_cache_level cache_level) 1012 { 1013 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 1014 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 1015 1016 intel_gtt_insert_sg_entries(st, pg_start, flags); 1017 1018 } 1019 1020 static void i915_ggtt_clear_range(struct i915_address_space *vm, 1021 unsigned int first_entry, 1022 unsigned int num_entries, 1023 bool unused) 1024 { 1025 intel_gtt_clear_range(first_entry, num_entries); 1026 } 1027 1028 1029 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj, 1030 enum i915_cache_level cache_level) 1031 { 1032 struct drm_device *dev = obj->base.dev; 1033 struct drm_i915_private *dev_priv = dev->dev_private; 1034 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT; 1035 1036 dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages, 1037 entry, 1038 cache_level); 1039 1040 obj->has_global_gtt_mapping = 1; 1041 } 1042 1043 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj) 1044 { 1045 struct drm_device *dev = obj->base.dev; 1046 struct drm_i915_private *dev_priv = dev->dev_private; 1047 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT; 1048 1049 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, 1050 entry, 1051 obj->base.size >> PAGE_SHIFT, 1052 true); 1053 1054 obj->has_global_gtt_mapping = 0; 1055 } 1056 1057 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj) 1058 { 1059 struct drm_device *dev = obj->base.dev; 1060 struct drm_i915_private *dev_priv = dev->dev_private; 1061 bool interruptible; 1062 1063 interruptible = do_idling(dev_priv); 1064 1065 if (!obj->has_dma_mapping) 1066 dma_unmap_sg(&dev->pdev->dev, 1067 obj->pages->sgl, obj->pages->nents, 1068 PCI_DMA_BIDIRECTIONAL); 1069 1070 undo_idling(dev_priv, interruptible); 1071 } 1072 1073 static void i915_gtt_color_adjust(struct drm_mm_node *node, 1074 unsigned long color, 1075 unsigned long *start, 1076 unsigned long *end) 1077 { 1078 if (node->color != color) 1079 *start += 4096; 1080 1081 if (!list_empty(&node->node_list)) { 1082 node = list_entry(node->node_list.next, 1083 struct drm_mm_node, 1084 node_list); 1085 if (node->allocated && node->color != color) 1086 *end -= 4096; 1087 } 1088 } 1089 1090 void i915_gem_setup_global_gtt(struct drm_device *dev, 1091 unsigned long start, 1092 unsigned long mappable_end, 1093 unsigned long end) 1094 { 1095 /* Let GEM Manage all of the aperture. 1096 * 1097 * However, leave one page at the end still bound to the scratch page. 1098 * There are a number of places where the hardware apparently prefetches 1099 * past the end of the object, and we've seen multiple hangs with the 1100 * GPU head pointer stuck in a batchbuffer bound at the last page of the 1101 * aperture. One page should be enough to keep any prefetching inside 1102 * of the aperture. 1103 */ 1104 struct drm_i915_private *dev_priv = dev->dev_private; 1105 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base; 1106 struct drm_mm_node *entry; 1107 struct drm_i915_gem_object *obj; 1108 unsigned long hole_start, hole_end; 1109 1110 BUG_ON(mappable_end > end); 1111 1112 /* Subtract the guard page ... */ 1113 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE); 1114 if (!HAS_LLC(dev)) 1115 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust; 1116 1117 /* Mark any preallocated objects as occupied */ 1118 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 1119 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm); 1120 int ret; 1121 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n", 1122 i915_gem_obj_ggtt_offset(obj), obj->base.size); 1123 1124 WARN_ON(i915_gem_obj_ggtt_bound(obj)); 1125 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node); 1126 if (ret) 1127 DRM_DEBUG_KMS("Reservation failed\n"); 1128 obj->has_global_gtt_mapping = 1; 1129 list_add(&vma->vma_link, &obj->vma_list); 1130 } 1131 1132 dev_priv->gtt.base.start = start; 1133 dev_priv->gtt.base.total = end - start; 1134 1135 /* Clear any non-preallocated blocks */ 1136 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) { 1137 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE; 1138 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", 1139 hole_start, hole_end); 1140 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true); 1141 } 1142 1143 /* And finally clear the reserved guard page */ 1144 ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true); 1145 } 1146 1147 static bool 1148 intel_enable_ppgtt(struct drm_device *dev) 1149 { 1150 if (i915_enable_ppgtt >= 0) 1151 return i915_enable_ppgtt; 1152 1153 #ifdef CONFIG_INTEL_IOMMU 1154 /* Disable ppgtt on SNB if VT-d is on. */ 1155 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) 1156 return false; 1157 #endif 1158 1159 return true; 1160 } 1161 1162 void i915_gem_init_global_gtt(struct drm_device *dev) 1163 { 1164 struct drm_i915_private *dev_priv = dev->dev_private; 1165 unsigned long gtt_size, mappable_size; 1166 1167 gtt_size = dev_priv->gtt.base.total; 1168 mappable_size = dev_priv->gtt.mappable_end; 1169 1170 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) { 1171 int ret; 1172 1173 if (INTEL_INFO(dev)->gen <= 7) { 1174 /* PPGTT pdes are stolen from global gtt ptes, so shrink the 1175 * aperture accordingly when using aliasing ppgtt. */ 1176 gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE; 1177 } 1178 1179 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size); 1180 1181 ret = i915_gem_init_aliasing_ppgtt(dev); 1182 if (!ret) 1183 return; 1184 1185 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret); 1186 drm_mm_takedown(&dev_priv->gtt.base.mm); 1187 if (INTEL_INFO(dev)->gen < 8) 1188 gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE; 1189 } 1190 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size); 1191 } 1192 1193 static int setup_scratch_page(struct drm_device *dev) 1194 { 1195 struct drm_i915_private *dev_priv = dev->dev_private; 1196 struct page *page; 1197 dma_addr_t dma_addr; 1198 1199 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); 1200 if (page == NULL) 1201 return -ENOMEM; 1202 get_page(page); 1203 set_pages_uc(page, 1); 1204 1205 #ifdef CONFIG_INTEL_IOMMU 1206 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE, 1207 PCI_DMA_BIDIRECTIONAL); 1208 if (pci_dma_mapping_error(dev->pdev, dma_addr)) 1209 return -EINVAL; 1210 #else 1211 dma_addr = page_to_phys(page); 1212 #endif 1213 dev_priv->gtt.base.scratch.page = page; 1214 dev_priv->gtt.base.scratch.addr = dma_addr; 1215 1216 return 0; 1217 } 1218 1219 static void teardown_scratch_page(struct drm_device *dev) 1220 { 1221 struct drm_i915_private *dev_priv = dev->dev_private; 1222 struct page *page = dev_priv->gtt.base.scratch.page; 1223 1224 set_pages_wb(page, 1); 1225 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr, 1226 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 1227 put_page(page); 1228 __free_page(page); 1229 } 1230 1231 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 1232 { 1233 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 1234 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 1235 return snb_gmch_ctl << 20; 1236 } 1237 1238 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 1239 { 1240 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 1241 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 1242 if (bdw_gmch_ctl) 1243 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 1244 return bdw_gmch_ctl << 20; 1245 } 1246 1247 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl) 1248 { 1249 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; 1250 snb_gmch_ctl &= SNB_GMCH_GMS_MASK; 1251 return snb_gmch_ctl << 25; /* 32 MB units */ 1252 } 1253 1254 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) 1255 { 1256 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; 1257 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; 1258 return bdw_gmch_ctl << 25; /* 32 MB units */ 1259 } 1260 1261 static int ggtt_probe_common(struct drm_device *dev, 1262 size_t gtt_size) 1263 { 1264 struct drm_i915_private *dev_priv = dev->dev_private; 1265 phys_addr_t gtt_bus_addr; 1266 int ret; 1267 1268 /* For Modern GENs the PTEs and register space are split in the BAR */ 1269 gtt_bus_addr = pci_resource_start(dev->pdev, 0) + 1270 (pci_resource_len(dev->pdev, 0) / 2); 1271 1272 dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size); 1273 if (!dev_priv->gtt.gsm) { 1274 DRM_ERROR("Failed to map the gtt page table\n"); 1275 return -ENOMEM; 1276 } 1277 1278 ret = setup_scratch_page(dev); 1279 if (ret) { 1280 DRM_ERROR("Scratch setup failed\n"); 1281 /* iounmap will also get called at remove, but meh */ 1282 iounmap(dev_priv->gtt.gsm); 1283 } 1284 1285 return ret; 1286 } 1287 1288 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 1289 * bits. When using advanced contexts each context stores its own PAT, but 1290 * writing this data shouldn't be harmful even in those cases. */ 1291 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv) 1292 { 1293 #define GEN8_PPAT_UC (0<<0) 1294 #define GEN8_PPAT_WC (1<<0) 1295 #define GEN8_PPAT_WT (2<<0) 1296 #define GEN8_PPAT_WB (3<<0) 1297 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2) 1298 /* FIXME(BDW): Bspec is completely confused about cache control bits. */ 1299 #define GEN8_PPAT_LLC (1<<2) 1300 #define GEN8_PPAT_LLCELLC (2<<2) 1301 #define GEN8_PPAT_LLCeLLC (3<<2) 1302 #define GEN8_PPAT_AGE(x) (x<<4) 1303 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8)) 1304 uint64_t pat; 1305 1306 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ 1307 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ 1308 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ 1309 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ 1310 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | 1311 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | 1312 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | 1313 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 1314 1315 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b 1316 * write would work. */ 1317 I915_WRITE(GEN8_PRIVATE_PAT, pat); 1318 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32); 1319 } 1320 1321 static int gen8_gmch_probe(struct drm_device *dev, 1322 size_t *gtt_total, 1323 size_t *stolen, 1324 phys_addr_t *mappable_base, 1325 unsigned long *mappable_end) 1326 { 1327 struct drm_i915_private *dev_priv = dev->dev_private; 1328 unsigned int gtt_size; 1329 u16 snb_gmch_ctl; 1330 int ret; 1331 1332 /* TODO: We're not aware of mappable constraints on gen8 yet */ 1333 *mappable_base = pci_resource_start(dev->pdev, 2); 1334 *mappable_end = pci_resource_len(dev->pdev, 2); 1335 1336 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39))) 1337 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39)); 1338 1339 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1340 1341 *stolen = gen8_get_stolen_size(snb_gmch_ctl); 1342 1343 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl); 1344 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT; 1345 1346 gen8_setup_private_ppat(dev_priv); 1347 1348 ret = ggtt_probe_common(dev, gtt_size); 1349 1350 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range; 1351 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries; 1352 1353 return ret; 1354 } 1355 1356 static int gen6_gmch_probe(struct drm_device *dev, 1357 size_t *gtt_total, 1358 size_t *stolen, 1359 phys_addr_t *mappable_base, 1360 unsigned long *mappable_end) 1361 { 1362 struct drm_i915_private *dev_priv = dev->dev_private; 1363 unsigned int gtt_size; 1364 u16 snb_gmch_ctl; 1365 int ret; 1366 1367 *mappable_base = pci_resource_start(dev->pdev, 2); 1368 *mappable_end = pci_resource_len(dev->pdev, 2); 1369 1370 /* 64/512MB is the current min/max we actually know of, but this is just 1371 * a coarse sanity check. 1372 */ 1373 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) { 1374 DRM_ERROR("Unknown GMADR size (%lx)\n", 1375 dev_priv->gtt.mappable_end); 1376 return -ENXIO; 1377 } 1378 1379 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40))) 1380 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40)); 1381 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1382 1383 *stolen = gen6_get_stolen_size(snb_gmch_ctl); 1384 1385 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl); 1386 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT; 1387 1388 ret = ggtt_probe_common(dev, gtt_size); 1389 1390 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range; 1391 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries; 1392 1393 return ret; 1394 } 1395 1396 static void gen6_gmch_remove(struct i915_address_space *vm) 1397 { 1398 1399 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base); 1400 iounmap(gtt->gsm); 1401 teardown_scratch_page(vm->dev); 1402 } 1403 1404 static int i915_gmch_probe(struct drm_device *dev, 1405 size_t *gtt_total, 1406 size_t *stolen, 1407 phys_addr_t *mappable_base, 1408 unsigned long *mappable_end) 1409 { 1410 struct drm_i915_private *dev_priv = dev->dev_private; 1411 int ret; 1412 1413 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL); 1414 if (!ret) { 1415 DRM_ERROR("failed to set up gmch\n"); 1416 return -EIO; 1417 } 1418 1419 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end); 1420 1421 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev); 1422 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range; 1423 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries; 1424 1425 return 0; 1426 } 1427 1428 static void i915_gmch_remove(struct i915_address_space *vm) 1429 { 1430 intel_gmch_remove(); 1431 } 1432 1433 int i915_gem_gtt_init(struct drm_device *dev) 1434 { 1435 struct drm_i915_private *dev_priv = dev->dev_private; 1436 struct i915_gtt *gtt = &dev_priv->gtt; 1437 int ret; 1438 1439 if (INTEL_INFO(dev)->gen <= 5) { 1440 gtt->gtt_probe = i915_gmch_probe; 1441 gtt->base.cleanup = i915_gmch_remove; 1442 } else if (INTEL_INFO(dev)->gen < 8) { 1443 gtt->gtt_probe = gen6_gmch_probe; 1444 gtt->base.cleanup = gen6_gmch_remove; 1445 if (IS_HASWELL(dev) && dev_priv->ellc_size) 1446 gtt->base.pte_encode = iris_pte_encode; 1447 else if (IS_HASWELL(dev)) 1448 gtt->base.pte_encode = hsw_pte_encode; 1449 else if (IS_VALLEYVIEW(dev)) 1450 gtt->base.pte_encode = byt_pte_encode; 1451 else if (INTEL_INFO(dev)->gen >= 7) 1452 gtt->base.pte_encode = ivb_pte_encode; 1453 else 1454 gtt->base.pte_encode = snb_pte_encode; 1455 } else { 1456 dev_priv->gtt.gtt_probe = gen8_gmch_probe; 1457 dev_priv->gtt.base.cleanup = gen6_gmch_remove; 1458 } 1459 1460 ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size, 1461 >t->mappable_base, >t->mappable_end); 1462 if (ret) 1463 return ret; 1464 1465 gtt->base.dev = dev; 1466 1467 /* GMADR is the PCI mmio aperture into the global GTT. */ 1468 DRM_INFO("Memory usable by graphics device = %zdM\n", 1469 gtt->base.total >> 20); 1470 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20); 1471 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20); 1472 1473 return 0; 1474 } 1475