1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/*
114 	 * Note that as an uncached mmio write, this will flush the
115 	 * WCB of the writes into the GGTT before it triggers the invalidate.
116 	 */
117 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
118 }
119 
120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
121 {
122 	gen6_ggtt_invalidate(dev_priv);
123 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
124 }
125 
126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
127 {
128 	intel_gtt_chipset_flush();
129 }
130 
131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
132 {
133 	i915->ggtt.invalidate(i915);
134 }
135 
136 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
137 			       	int enable_ppgtt)
138 {
139 	bool has_full_ppgtt;
140 	bool has_full_48bit_ppgtt;
141 
142 	if (!dev_priv->info.has_aliasing_ppgtt)
143 		return 0;
144 
145 	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
146 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147 
148 	if (intel_vgpu_active(dev_priv)) {
149 		/* GVT-g has no support for 32bit ppgtt */
150 		has_full_ppgtt = false;
151 		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152 	}
153 
154 	/*
155 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
156 	 * execlists, the sole mechanism available to submit work.
157 	 */
158 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 		return 0;
160 
161 	if (enable_ppgtt == 1)
162 		return 1;
163 
164 	if (enable_ppgtt == 2 && has_full_ppgtt)
165 		return 2;
166 
167 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
168 		return 3;
169 
170 	/* Disable ppgtt on SNB if VT-d is on. */
171 	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
173 		return 0;
174 	}
175 
176 	/* Early VLV doesn't have this */
177 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
178 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
179 		return 0;
180 	}
181 
182 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
183 		if (has_full_48bit_ppgtt)
184 			return 3;
185 
186 		if (has_full_ppgtt)
187 			return 2;
188 	}
189 
190 	return 1;
191 }
192 
193 static int ppgtt_bind_vma(struct i915_vma *vma,
194 			  enum i915_cache_level cache_level,
195 			  u32 unused)
196 {
197 	u32 pte_flags;
198 	int err;
199 
200 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
201 		err = vma->vm->allocate_va_range(vma->vm,
202 						 vma->node.start, vma->size);
203 		if (err)
204 			return err;
205 	}
206 
207 	/* Currently applicable only to VLV */
208 	pte_flags = 0;
209 	if (vma->obj->gt_ro)
210 		pte_flags |= PTE_READ_ONLY;
211 
212 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
213 
214 	return 0;
215 }
216 
217 static void ppgtt_unbind_vma(struct i915_vma *vma)
218 {
219 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
220 }
221 
222 static int ppgtt_set_pages(struct i915_vma *vma)
223 {
224 	GEM_BUG_ON(vma->pages);
225 
226 	vma->pages = vma->obj->mm.pages;
227 
228 	vma->page_sizes = vma->obj->mm.page_sizes;
229 
230 	return 0;
231 }
232 
233 static void clear_pages(struct i915_vma *vma)
234 {
235 	GEM_BUG_ON(!vma->pages);
236 
237 	if (vma->pages != vma->obj->mm.pages) {
238 		sg_free_table(vma->pages);
239 		kfree(vma->pages);
240 	}
241 	vma->pages = NULL;
242 
243 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
244 }
245 
246 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
247 				  enum i915_cache_level level)
248 {
249 	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
250 	pte |= addr;
251 
252 	switch (level) {
253 	case I915_CACHE_NONE:
254 		pte |= PPAT_UNCACHED;
255 		break;
256 	case I915_CACHE_WT:
257 		pte |= PPAT_DISPLAY_ELLC;
258 		break;
259 	default:
260 		pte |= PPAT_CACHED;
261 		break;
262 	}
263 
264 	return pte;
265 }
266 
267 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
268 				  const enum i915_cache_level level)
269 {
270 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
271 	pde |= addr;
272 	if (level != I915_CACHE_NONE)
273 		pde |= PPAT_CACHED_PDE;
274 	else
275 		pde |= PPAT_UNCACHED;
276 	return pde;
277 }
278 
279 #define gen8_pdpe_encode gen8_pde_encode
280 #define gen8_pml4e_encode gen8_pde_encode
281 
282 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
283 				 enum i915_cache_level level,
284 				 u32 unused)
285 {
286 	gen6_pte_t pte = GEN6_PTE_VALID;
287 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
288 
289 	switch (level) {
290 	case I915_CACHE_L3_LLC:
291 	case I915_CACHE_LLC:
292 		pte |= GEN6_PTE_CACHE_LLC;
293 		break;
294 	case I915_CACHE_NONE:
295 		pte |= GEN6_PTE_UNCACHED;
296 		break;
297 	default:
298 		MISSING_CASE(level);
299 	}
300 
301 	return pte;
302 }
303 
304 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
305 				 enum i915_cache_level level,
306 				 u32 unused)
307 {
308 	gen6_pte_t pte = GEN6_PTE_VALID;
309 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
310 
311 	switch (level) {
312 	case I915_CACHE_L3_LLC:
313 		pte |= GEN7_PTE_CACHE_L3_LLC;
314 		break;
315 	case I915_CACHE_LLC:
316 		pte |= GEN6_PTE_CACHE_LLC;
317 		break;
318 	case I915_CACHE_NONE:
319 		pte |= GEN6_PTE_UNCACHED;
320 		break;
321 	default:
322 		MISSING_CASE(level);
323 	}
324 
325 	return pte;
326 }
327 
328 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
329 				 enum i915_cache_level level,
330 				 u32 flags)
331 {
332 	gen6_pte_t pte = GEN6_PTE_VALID;
333 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
334 
335 	if (!(flags & PTE_READ_ONLY))
336 		pte |= BYT_PTE_WRITEABLE;
337 
338 	if (level != I915_CACHE_NONE)
339 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
340 
341 	return pte;
342 }
343 
344 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
345 				 enum i915_cache_level level,
346 				 u32 unused)
347 {
348 	gen6_pte_t pte = GEN6_PTE_VALID;
349 	pte |= HSW_PTE_ADDR_ENCODE(addr);
350 
351 	if (level != I915_CACHE_NONE)
352 		pte |= HSW_WB_LLC_AGE3;
353 
354 	return pte;
355 }
356 
357 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
358 				  enum i915_cache_level level,
359 				  u32 unused)
360 {
361 	gen6_pte_t pte = GEN6_PTE_VALID;
362 	pte |= HSW_PTE_ADDR_ENCODE(addr);
363 
364 	switch (level) {
365 	case I915_CACHE_NONE:
366 		break;
367 	case I915_CACHE_WT:
368 		pte |= HSW_WT_ELLC_LLC_AGE3;
369 		break;
370 	default:
371 		pte |= HSW_WB_ELLC_LLC_AGE3;
372 		break;
373 	}
374 
375 	return pte;
376 }
377 
378 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
379 {
380 	struct pagevec *pvec = &vm->free_pages;
381 	struct pagevec stash;
382 
383 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
384 		i915_gem_shrink_all(vm->i915);
385 
386 	if (likely(pvec->nr))
387 		return pvec->pages[--pvec->nr];
388 
389 	if (!vm->pt_kmap_wc)
390 		return alloc_page(gfp);
391 
392 	/* A placeholder for a specific mutex to guard the WC stash */
393 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
394 
395 	/* Look in our global stash of WC pages... */
396 	pvec = &vm->i915->mm.wc_stash;
397 	if (likely(pvec->nr))
398 		return pvec->pages[--pvec->nr];
399 
400 	/*
401 	 * Otherwise batch allocate pages to amoritize cost of set_pages_wc.
402 	 *
403 	 * We have to be careful as page allocation may trigger the shrinker
404 	 * (via direct reclaim) which will fill up the WC stash underneath us.
405 	 * So we add our WB pages into a temporary pvec on the stack and merge
406 	 * them into the WC stash after all the allocations are complete.
407 	 */
408 	pagevec_init(&stash);
409 	do {
410 		struct page *page;
411 
412 		page = alloc_page(gfp);
413 		if (unlikely(!page))
414 			break;
415 
416 		stash.pages[stash.nr++] = page;
417 	} while (stash.nr < pagevec_space(pvec));
418 
419 	if (stash.nr) {
420 		int nr = min_t(int, stash.nr, pagevec_space(pvec));
421 		struct page **pages = stash.pages + stash.nr - nr;
422 
423 		if (nr && !set_pages_array_wc(pages, nr)) {
424 			memcpy(pvec->pages + pvec->nr,
425 			       pages, sizeof(pages[0]) * nr);
426 			pvec->nr += nr;
427 			stash.nr -= nr;
428 		}
429 
430 		pagevec_release(&stash);
431 	}
432 
433 	return likely(pvec->nr) ? pvec->pages[--pvec->nr] : NULL;
434 }
435 
436 static void vm_free_pages_release(struct i915_address_space *vm,
437 				  bool immediate)
438 {
439 	struct pagevec *pvec = &vm->free_pages;
440 
441 	GEM_BUG_ON(!pagevec_count(pvec));
442 
443 	if (vm->pt_kmap_wc) {
444 		struct pagevec *stash = &vm->i915->mm.wc_stash;
445 
446 		/* When we use WC, first fill up the global stash and then
447 		 * only if full immediately free the overflow.
448 		 */
449 
450 		lockdep_assert_held(&vm->i915->drm.struct_mutex);
451 		if (pagevec_space(stash)) {
452 			do {
453 				stash->pages[stash->nr++] =
454 					pvec->pages[--pvec->nr];
455 				if (!pvec->nr)
456 					return;
457 			} while (pagevec_space(stash));
458 
459 			/* As we have made some room in the VM's free_pages,
460 			 * we can wait for it to fill again. Unless we are
461 			 * inside i915_address_space_fini() and must
462 			 * immediately release the pages!
463 			 */
464 			if (!immediate)
465 				return;
466 		}
467 
468 		set_pages_array_wb(pvec->pages, pvec->nr);
469 	}
470 
471 	__pagevec_release(pvec);
472 }
473 
474 static void vm_free_page(struct i915_address_space *vm, struct page *page)
475 {
476 	/*
477 	 * On !llc, we need to change the pages back to WB. We only do so
478 	 * in bulk, so we rarely need to change the page attributes here,
479 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
480 	 * To make detection of the possible sleep more likely, use an
481 	 * unconditional might_sleep() for everybody.
482 	 */
483 	might_sleep();
484 	if (!pagevec_add(&vm->free_pages, page))
485 		vm_free_pages_release(vm, false);
486 }
487 
488 static int __setup_page_dma(struct i915_address_space *vm,
489 			    struct i915_page_dma *p,
490 			    gfp_t gfp)
491 {
492 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
493 	if (unlikely(!p->page))
494 		return -ENOMEM;
495 
496 	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
497 				PCI_DMA_BIDIRECTIONAL);
498 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
499 		vm_free_page(vm, p->page);
500 		return -ENOMEM;
501 	}
502 
503 	return 0;
504 }
505 
506 static int setup_page_dma(struct i915_address_space *vm,
507 			  struct i915_page_dma *p)
508 {
509 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
510 }
511 
512 static void cleanup_page_dma(struct i915_address_space *vm,
513 			     struct i915_page_dma *p)
514 {
515 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
516 	vm_free_page(vm, p->page);
517 }
518 
519 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
520 
521 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
522 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
523 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
524 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
525 
526 static void fill_page_dma(struct i915_address_space *vm,
527 			  struct i915_page_dma *p,
528 			  const u64 val)
529 {
530 	u64 * const vaddr = kmap_atomic(p->page);
531 
532 	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
533 
534 	kunmap_atomic(vaddr);
535 }
536 
537 static void fill_page_dma_32(struct i915_address_space *vm,
538 			     struct i915_page_dma *p,
539 			     const u32 v)
540 {
541 	fill_page_dma(vm, p, (u64)v << 32 | v);
542 }
543 
544 static int
545 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
546 {
547 	unsigned long size;
548 
549 	/*
550 	 * In order to utilize 64K pages for an object with a size < 2M, we will
551 	 * need to support a 64K scratch page, given that every 16th entry for a
552 	 * page-table operating in 64K mode must point to a properly aligned 64K
553 	 * region, including any PTEs which happen to point to scratch.
554 	 *
555 	 * This is only relevant for the 48b PPGTT where we support
556 	 * huge-gtt-pages, see also i915_vma_insert().
557 	 *
558 	 * TODO: we should really consider write-protecting the scratch-page and
559 	 * sharing between ppgtt
560 	 */
561 	size = I915_GTT_PAGE_SIZE_4K;
562 	if (i915_vm_is_48bit(vm) &&
563 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
564 		size = I915_GTT_PAGE_SIZE_64K;
565 		gfp |= __GFP_NOWARN;
566 	}
567 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
568 
569 	do {
570 		int order = get_order(size);
571 		struct page *page;
572 		dma_addr_t addr;
573 
574 		page = alloc_pages(gfp, order);
575 		if (unlikely(!page))
576 			goto skip;
577 
578 		addr = dma_map_page(vm->dma, page, 0, size,
579 				    PCI_DMA_BIDIRECTIONAL);
580 		if (unlikely(dma_mapping_error(vm->dma, addr)))
581 			goto free_page;
582 
583 		if (unlikely(!IS_ALIGNED(addr, size)))
584 			goto unmap_page;
585 
586 		vm->scratch_page.page = page;
587 		vm->scratch_page.daddr = addr;
588 		vm->scratch_page.order = order;
589 		return 0;
590 
591 unmap_page:
592 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
593 free_page:
594 		__free_pages(page, order);
595 skip:
596 		if (size == I915_GTT_PAGE_SIZE_4K)
597 			return -ENOMEM;
598 
599 		size = I915_GTT_PAGE_SIZE_4K;
600 		gfp &= ~__GFP_NOWARN;
601 	} while (1);
602 }
603 
604 static void cleanup_scratch_page(struct i915_address_space *vm)
605 {
606 	struct i915_page_dma *p = &vm->scratch_page;
607 
608 	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
609 		       PCI_DMA_BIDIRECTIONAL);
610 	__free_pages(p->page, p->order);
611 }
612 
613 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
614 {
615 	struct i915_page_table *pt;
616 
617 	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
618 	if (unlikely(!pt))
619 		return ERR_PTR(-ENOMEM);
620 
621 	if (unlikely(setup_px(vm, pt))) {
622 		kfree(pt);
623 		return ERR_PTR(-ENOMEM);
624 	}
625 
626 	pt->used_ptes = 0;
627 	return pt;
628 }
629 
630 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
631 {
632 	cleanup_px(vm, pt);
633 	kfree(pt);
634 }
635 
636 static void gen8_initialize_pt(struct i915_address_space *vm,
637 			       struct i915_page_table *pt)
638 {
639 	fill_px(vm, pt,
640 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
641 }
642 
643 static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
644 			       struct i915_page_table *pt)
645 {
646 	fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
647 }
648 
649 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
650 {
651 	struct i915_page_directory *pd;
652 
653 	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
654 	if (unlikely(!pd))
655 		return ERR_PTR(-ENOMEM);
656 
657 	if (unlikely(setup_px(vm, pd))) {
658 		kfree(pd);
659 		return ERR_PTR(-ENOMEM);
660 	}
661 
662 	pd->used_pdes = 0;
663 	return pd;
664 }
665 
666 static void free_pd(struct i915_address_space *vm,
667 		    struct i915_page_directory *pd)
668 {
669 	cleanup_px(vm, pd);
670 	kfree(pd);
671 }
672 
673 static void gen8_initialize_pd(struct i915_address_space *vm,
674 			       struct i915_page_directory *pd)
675 {
676 	fill_px(vm, pd,
677 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
678 	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
679 }
680 
681 static int __pdp_init(struct i915_address_space *vm,
682 		      struct i915_page_directory_pointer *pdp)
683 {
684 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
685 
686 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
687 					    I915_GFP_ALLOW_FAIL);
688 	if (unlikely(!pdp->page_directory))
689 		return -ENOMEM;
690 
691 	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
692 
693 	return 0;
694 }
695 
696 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
697 {
698 	kfree(pdp->page_directory);
699 	pdp->page_directory = NULL;
700 }
701 
702 static inline bool use_4lvl(const struct i915_address_space *vm)
703 {
704 	return i915_vm_is_48bit(vm);
705 }
706 
707 static struct i915_page_directory_pointer *
708 alloc_pdp(struct i915_address_space *vm)
709 {
710 	struct i915_page_directory_pointer *pdp;
711 	int ret = -ENOMEM;
712 
713 	GEM_BUG_ON(!use_4lvl(vm));
714 
715 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
716 	if (!pdp)
717 		return ERR_PTR(-ENOMEM);
718 
719 	ret = __pdp_init(vm, pdp);
720 	if (ret)
721 		goto fail_bitmap;
722 
723 	ret = setup_px(vm, pdp);
724 	if (ret)
725 		goto fail_page_m;
726 
727 	return pdp;
728 
729 fail_page_m:
730 	__pdp_fini(pdp);
731 fail_bitmap:
732 	kfree(pdp);
733 
734 	return ERR_PTR(ret);
735 }
736 
737 static void free_pdp(struct i915_address_space *vm,
738 		     struct i915_page_directory_pointer *pdp)
739 {
740 	__pdp_fini(pdp);
741 
742 	if (!use_4lvl(vm))
743 		return;
744 
745 	cleanup_px(vm, pdp);
746 	kfree(pdp);
747 }
748 
749 static void gen8_initialize_pdp(struct i915_address_space *vm,
750 				struct i915_page_directory_pointer *pdp)
751 {
752 	gen8_ppgtt_pdpe_t scratch_pdpe;
753 
754 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
755 
756 	fill_px(vm, pdp, scratch_pdpe);
757 }
758 
759 static void gen8_initialize_pml4(struct i915_address_space *vm,
760 				 struct i915_pml4 *pml4)
761 {
762 	fill_px(vm, pml4,
763 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
764 	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
765 }
766 
767 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
768  * the page table structures, we mark them dirty so that
769  * context switching/execlist queuing code takes extra steps
770  * to ensure that tlbs are flushed.
771  */
772 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
773 {
774 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
775 }
776 
777 /* Removes entries from a single page table, releasing it if it's empty.
778  * Caller can use the return value to update higher-level entries.
779  */
780 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
781 				struct i915_page_table *pt,
782 				u64 start, u64 length)
783 {
784 	unsigned int num_entries = gen8_pte_count(start, length);
785 	unsigned int pte = gen8_pte_index(start);
786 	unsigned int pte_end = pte + num_entries;
787 	const gen8_pte_t scratch_pte =
788 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
789 	gen8_pte_t *vaddr;
790 
791 	GEM_BUG_ON(num_entries > pt->used_ptes);
792 
793 	pt->used_ptes -= num_entries;
794 	if (!pt->used_ptes)
795 		return true;
796 
797 	vaddr = kmap_atomic_px(pt);
798 	while (pte < pte_end)
799 		vaddr[pte++] = scratch_pte;
800 	kunmap_atomic(vaddr);
801 
802 	return false;
803 }
804 
805 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
806 			       struct i915_page_directory *pd,
807 			       struct i915_page_table *pt,
808 			       unsigned int pde)
809 {
810 	gen8_pde_t *vaddr;
811 
812 	pd->page_table[pde] = pt;
813 
814 	vaddr = kmap_atomic_px(pd);
815 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
816 	kunmap_atomic(vaddr);
817 }
818 
819 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
820 				struct i915_page_directory *pd,
821 				u64 start, u64 length)
822 {
823 	struct i915_page_table *pt;
824 	u32 pde;
825 
826 	gen8_for_each_pde(pt, pd, start, length, pde) {
827 		GEM_BUG_ON(pt == vm->scratch_pt);
828 
829 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
830 			continue;
831 
832 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
833 		GEM_BUG_ON(!pd->used_pdes);
834 		pd->used_pdes--;
835 
836 		free_pt(vm, pt);
837 	}
838 
839 	return !pd->used_pdes;
840 }
841 
842 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
843 				struct i915_page_directory_pointer *pdp,
844 				struct i915_page_directory *pd,
845 				unsigned int pdpe)
846 {
847 	gen8_ppgtt_pdpe_t *vaddr;
848 
849 	pdp->page_directory[pdpe] = pd;
850 	if (!use_4lvl(vm))
851 		return;
852 
853 	vaddr = kmap_atomic_px(pdp);
854 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
855 	kunmap_atomic(vaddr);
856 }
857 
858 /* Removes entries from a single page dir pointer, releasing it if it's empty.
859  * Caller can use the return value to update higher-level entries
860  */
861 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
862 				 struct i915_page_directory_pointer *pdp,
863 				 u64 start, u64 length)
864 {
865 	struct i915_page_directory *pd;
866 	unsigned int pdpe;
867 
868 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
869 		GEM_BUG_ON(pd == vm->scratch_pd);
870 
871 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
872 			continue;
873 
874 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
875 		GEM_BUG_ON(!pdp->used_pdpes);
876 		pdp->used_pdpes--;
877 
878 		free_pd(vm, pd);
879 	}
880 
881 	return !pdp->used_pdpes;
882 }
883 
884 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
885 				  u64 start, u64 length)
886 {
887 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
888 }
889 
890 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
891 				 struct i915_page_directory_pointer *pdp,
892 				 unsigned int pml4e)
893 {
894 	gen8_ppgtt_pml4e_t *vaddr;
895 
896 	pml4->pdps[pml4e] = pdp;
897 
898 	vaddr = kmap_atomic_px(pml4);
899 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
900 	kunmap_atomic(vaddr);
901 }
902 
903 /* Removes entries from a single pml4.
904  * This is the top-level structure in 4-level page tables used on gen8+.
905  * Empty entries are always scratch pml4e.
906  */
907 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
908 				  u64 start, u64 length)
909 {
910 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
911 	struct i915_pml4 *pml4 = &ppgtt->pml4;
912 	struct i915_page_directory_pointer *pdp;
913 	unsigned int pml4e;
914 
915 	GEM_BUG_ON(!use_4lvl(vm));
916 
917 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
918 		GEM_BUG_ON(pdp == vm->scratch_pdp);
919 
920 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
921 			continue;
922 
923 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
924 
925 		free_pdp(vm, pdp);
926 	}
927 }
928 
929 static inline struct sgt_dma {
930 	struct scatterlist *sg;
931 	dma_addr_t dma, max;
932 } sgt_dma(struct i915_vma *vma) {
933 	struct scatterlist *sg = vma->pages->sgl;
934 	dma_addr_t addr = sg_dma_address(sg);
935 	return (struct sgt_dma) { sg, addr, addr + sg->length };
936 }
937 
938 struct gen8_insert_pte {
939 	u16 pml4e;
940 	u16 pdpe;
941 	u16 pde;
942 	u16 pte;
943 };
944 
945 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
946 {
947 	return (struct gen8_insert_pte) {
948 		 gen8_pml4e_index(start),
949 		 gen8_pdpe_index(start),
950 		 gen8_pde_index(start),
951 		 gen8_pte_index(start),
952 	};
953 }
954 
955 static __always_inline bool
956 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
957 			      struct i915_page_directory_pointer *pdp,
958 			      struct sgt_dma *iter,
959 			      struct gen8_insert_pte *idx,
960 			      enum i915_cache_level cache_level)
961 {
962 	struct i915_page_directory *pd;
963 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
964 	gen8_pte_t *vaddr;
965 	bool ret;
966 
967 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
968 	pd = pdp->page_directory[idx->pdpe];
969 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
970 	do {
971 		vaddr[idx->pte] = pte_encode | iter->dma;
972 
973 		iter->dma += PAGE_SIZE;
974 		if (iter->dma >= iter->max) {
975 			iter->sg = __sg_next(iter->sg);
976 			if (!iter->sg) {
977 				ret = false;
978 				break;
979 			}
980 
981 			iter->dma = sg_dma_address(iter->sg);
982 			iter->max = iter->dma + iter->sg->length;
983 		}
984 
985 		if (++idx->pte == GEN8_PTES) {
986 			idx->pte = 0;
987 
988 			if (++idx->pde == I915_PDES) {
989 				idx->pde = 0;
990 
991 				/* Limited by sg length for 3lvl */
992 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
993 					idx->pdpe = 0;
994 					ret = true;
995 					break;
996 				}
997 
998 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
999 				pd = pdp->page_directory[idx->pdpe];
1000 			}
1001 
1002 			kunmap_atomic(vaddr);
1003 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1004 		}
1005 	} while (1);
1006 	kunmap_atomic(vaddr);
1007 
1008 	return ret;
1009 }
1010 
1011 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1012 				   struct i915_vma *vma,
1013 				   enum i915_cache_level cache_level,
1014 				   u32 unused)
1015 {
1016 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1017 	struct sgt_dma iter = sgt_dma(vma);
1018 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1019 
1020 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1021 				      cache_level);
1022 
1023 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1024 }
1025 
1026 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1027 					   struct i915_page_directory_pointer **pdps,
1028 					   struct sgt_dma *iter,
1029 					   enum i915_cache_level cache_level)
1030 {
1031 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1032 	u64 start = vma->node.start;
1033 	dma_addr_t rem = iter->sg->length;
1034 
1035 	do {
1036 		struct gen8_insert_pte idx = gen8_insert_pte(start);
1037 		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1038 		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1039 		unsigned int page_size;
1040 		bool maybe_64K = false;
1041 		gen8_pte_t encode = pte_encode;
1042 		gen8_pte_t *vaddr;
1043 		u16 index, max;
1044 
1045 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1046 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1047 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1048 			index = idx.pde;
1049 			max = I915_PDES;
1050 			page_size = I915_GTT_PAGE_SIZE_2M;
1051 
1052 			encode |= GEN8_PDE_PS_2M;
1053 
1054 			vaddr = kmap_atomic_px(pd);
1055 		} else {
1056 			struct i915_page_table *pt = pd->page_table[idx.pde];
1057 
1058 			index = idx.pte;
1059 			max = GEN8_PTES;
1060 			page_size = I915_GTT_PAGE_SIZE;
1061 
1062 			if (!index &&
1063 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1064 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1065 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1066 			     rem >= (max - index) << PAGE_SHIFT))
1067 				maybe_64K = true;
1068 
1069 			vaddr = kmap_atomic_px(pt);
1070 		}
1071 
1072 		do {
1073 			GEM_BUG_ON(iter->sg->length < page_size);
1074 			vaddr[index++] = encode | iter->dma;
1075 
1076 			start += page_size;
1077 			iter->dma += page_size;
1078 			rem -= page_size;
1079 			if (iter->dma >= iter->max) {
1080 				iter->sg = __sg_next(iter->sg);
1081 				if (!iter->sg)
1082 					break;
1083 
1084 				rem = iter->sg->length;
1085 				iter->dma = sg_dma_address(iter->sg);
1086 				iter->max = iter->dma + rem;
1087 
1088 				if (maybe_64K && index < max &&
1089 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1090 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1091 				       rem >= (max - index) << PAGE_SHIFT)))
1092 					maybe_64K = false;
1093 
1094 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1095 					break;
1096 			}
1097 		} while (rem >= page_size && index < max);
1098 
1099 		kunmap_atomic(vaddr);
1100 
1101 		/*
1102 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1103 		 * filled whole page-table with 64K entries, or filled part of
1104 		 * it and have reached the end of the sg table and we have
1105 		 * enough padding.
1106 		 */
1107 		if (maybe_64K &&
1108 		    (index == max ||
1109 		     (i915_vm_has_scratch_64K(vma->vm) &&
1110 		      !iter->sg && IS_ALIGNED(vma->node.start +
1111 					      vma->node.size,
1112 					      I915_GTT_PAGE_SIZE_2M)))) {
1113 			vaddr = kmap_atomic_px(pd);
1114 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1115 			kunmap_atomic(vaddr);
1116 			page_size = I915_GTT_PAGE_SIZE_64K;
1117 
1118 			/*
1119 			 * We write all 4K page entries, even when using 64K
1120 			 * pages. In order to verify that the HW isn't cheating
1121 			 * by using the 4K PTE instead of the 64K PTE, we want
1122 			 * to remove all the surplus entries. If the HW skipped
1123 			 * the 64K PTE, it will read/write into the scratch page
1124 			 * instead - which we detect as missing results during
1125 			 * selftests.
1126 			 */
1127 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1128 				u16 i;
1129 
1130 				encode = pte_encode | vma->vm->scratch_page.daddr;
1131 				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1132 
1133 				for (i = 1; i < index; i += 16)
1134 					memset64(vaddr + i, encode, 15);
1135 
1136 				kunmap_atomic(vaddr);
1137 			}
1138 		}
1139 
1140 		vma->page_sizes.gtt |= page_size;
1141 	} while (iter->sg);
1142 }
1143 
1144 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1145 				   struct i915_vma *vma,
1146 				   enum i915_cache_level cache_level,
1147 				   u32 unused)
1148 {
1149 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1150 	struct sgt_dma iter = sgt_dma(vma);
1151 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1152 
1153 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1154 		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
1155 	} else {
1156 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1157 
1158 		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1159 						     &iter, &idx, cache_level))
1160 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1161 
1162 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1163 	}
1164 }
1165 
1166 static void gen8_free_page_tables(struct i915_address_space *vm,
1167 				  struct i915_page_directory *pd)
1168 {
1169 	int i;
1170 
1171 	if (!px_page(pd))
1172 		return;
1173 
1174 	for (i = 0; i < I915_PDES; i++) {
1175 		if (pd->page_table[i] != vm->scratch_pt)
1176 			free_pt(vm, pd->page_table[i]);
1177 	}
1178 }
1179 
1180 static int gen8_init_scratch(struct i915_address_space *vm)
1181 {
1182 	int ret;
1183 
1184 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1185 	if (ret)
1186 		return ret;
1187 
1188 	vm->scratch_pt = alloc_pt(vm);
1189 	if (IS_ERR(vm->scratch_pt)) {
1190 		ret = PTR_ERR(vm->scratch_pt);
1191 		goto free_scratch_page;
1192 	}
1193 
1194 	vm->scratch_pd = alloc_pd(vm);
1195 	if (IS_ERR(vm->scratch_pd)) {
1196 		ret = PTR_ERR(vm->scratch_pd);
1197 		goto free_pt;
1198 	}
1199 
1200 	if (use_4lvl(vm)) {
1201 		vm->scratch_pdp = alloc_pdp(vm);
1202 		if (IS_ERR(vm->scratch_pdp)) {
1203 			ret = PTR_ERR(vm->scratch_pdp);
1204 			goto free_pd;
1205 		}
1206 	}
1207 
1208 	gen8_initialize_pt(vm, vm->scratch_pt);
1209 	gen8_initialize_pd(vm, vm->scratch_pd);
1210 	if (use_4lvl(vm))
1211 		gen8_initialize_pdp(vm, vm->scratch_pdp);
1212 
1213 	return 0;
1214 
1215 free_pd:
1216 	free_pd(vm, vm->scratch_pd);
1217 free_pt:
1218 	free_pt(vm, vm->scratch_pt);
1219 free_scratch_page:
1220 	cleanup_scratch_page(vm);
1221 
1222 	return ret;
1223 }
1224 
1225 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1226 {
1227 	struct i915_address_space *vm = &ppgtt->vm;
1228 	struct drm_i915_private *dev_priv = vm->i915;
1229 	enum vgt_g2v_type msg;
1230 	int i;
1231 
1232 	if (use_4lvl(vm)) {
1233 		const u64 daddr = px_dma(&ppgtt->pml4);
1234 
1235 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1236 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1237 
1238 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1239 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1240 	} else {
1241 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1242 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1243 
1244 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1245 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1246 		}
1247 
1248 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1249 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1250 	}
1251 
1252 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1253 
1254 	return 0;
1255 }
1256 
1257 static void gen8_free_scratch(struct i915_address_space *vm)
1258 {
1259 	if (use_4lvl(vm))
1260 		free_pdp(vm, vm->scratch_pdp);
1261 	free_pd(vm, vm->scratch_pd);
1262 	free_pt(vm, vm->scratch_pt);
1263 	cleanup_scratch_page(vm);
1264 }
1265 
1266 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1267 				    struct i915_page_directory_pointer *pdp)
1268 {
1269 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1270 	int i;
1271 
1272 	for (i = 0; i < pdpes; i++) {
1273 		if (pdp->page_directory[i] == vm->scratch_pd)
1274 			continue;
1275 
1276 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1277 		free_pd(vm, pdp->page_directory[i]);
1278 	}
1279 
1280 	free_pdp(vm, pdp);
1281 }
1282 
1283 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1284 {
1285 	int i;
1286 
1287 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1288 		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1289 			continue;
1290 
1291 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1292 	}
1293 
1294 	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1295 }
1296 
1297 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1298 {
1299 	struct drm_i915_private *dev_priv = vm->i915;
1300 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1301 
1302 	if (intel_vgpu_active(dev_priv))
1303 		gen8_ppgtt_notify_vgt(ppgtt, false);
1304 
1305 	if (use_4lvl(vm))
1306 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1307 	else
1308 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1309 
1310 	gen8_free_scratch(vm);
1311 }
1312 
1313 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1314 			       struct i915_page_directory *pd,
1315 			       u64 start, u64 length)
1316 {
1317 	struct i915_page_table *pt;
1318 	u64 from = start;
1319 	unsigned int pde;
1320 
1321 	gen8_for_each_pde(pt, pd, start, length, pde) {
1322 		int count = gen8_pte_count(start, length);
1323 
1324 		if (pt == vm->scratch_pt) {
1325 			pd->used_pdes++;
1326 
1327 			pt = alloc_pt(vm);
1328 			if (IS_ERR(pt)) {
1329 				pd->used_pdes--;
1330 				goto unwind;
1331 			}
1332 
1333 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1334 				gen8_initialize_pt(vm, pt);
1335 
1336 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1337 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1338 		}
1339 
1340 		pt->used_ptes += count;
1341 	}
1342 	return 0;
1343 
1344 unwind:
1345 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1346 	return -ENOMEM;
1347 }
1348 
1349 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1350 				struct i915_page_directory_pointer *pdp,
1351 				u64 start, u64 length)
1352 {
1353 	struct i915_page_directory *pd;
1354 	u64 from = start;
1355 	unsigned int pdpe;
1356 	int ret;
1357 
1358 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1359 		if (pd == vm->scratch_pd) {
1360 			pdp->used_pdpes++;
1361 
1362 			pd = alloc_pd(vm);
1363 			if (IS_ERR(pd)) {
1364 				pdp->used_pdpes--;
1365 				goto unwind;
1366 			}
1367 
1368 			gen8_initialize_pd(vm, pd);
1369 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1370 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1371 
1372 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1373 		}
1374 
1375 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1376 		if (unlikely(ret))
1377 			goto unwind_pd;
1378 	}
1379 
1380 	return 0;
1381 
1382 unwind_pd:
1383 	if (!pd->used_pdes) {
1384 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1385 		GEM_BUG_ON(!pdp->used_pdpes);
1386 		pdp->used_pdpes--;
1387 		free_pd(vm, pd);
1388 	}
1389 unwind:
1390 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1391 	return -ENOMEM;
1392 }
1393 
1394 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1395 				 u64 start, u64 length)
1396 {
1397 	return gen8_ppgtt_alloc_pdp(vm,
1398 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1399 }
1400 
1401 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1402 				 u64 start, u64 length)
1403 {
1404 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1405 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1406 	struct i915_page_directory_pointer *pdp;
1407 	u64 from = start;
1408 	u32 pml4e;
1409 	int ret;
1410 
1411 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1412 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1413 			pdp = alloc_pdp(vm);
1414 			if (IS_ERR(pdp))
1415 				goto unwind;
1416 
1417 			gen8_initialize_pdp(vm, pdp);
1418 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1419 		}
1420 
1421 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1422 		if (unlikely(ret))
1423 			goto unwind_pdp;
1424 	}
1425 
1426 	return 0;
1427 
1428 unwind_pdp:
1429 	if (!pdp->used_pdpes) {
1430 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1431 		free_pdp(vm, pdp);
1432 	}
1433 unwind:
1434 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1435 	return -ENOMEM;
1436 }
1437 
1438 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1439 			  struct i915_page_directory_pointer *pdp,
1440 			  u64 start, u64 length,
1441 			  gen8_pte_t scratch_pte,
1442 			  struct seq_file *m)
1443 {
1444 	struct i915_address_space *vm = &ppgtt->vm;
1445 	struct i915_page_directory *pd;
1446 	u32 pdpe;
1447 
1448 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1449 		struct i915_page_table *pt;
1450 		u64 pd_len = length;
1451 		u64 pd_start = start;
1452 		u32 pde;
1453 
1454 		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1455 			continue;
1456 
1457 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1458 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1459 			u32 pte;
1460 			gen8_pte_t *pt_vaddr;
1461 
1462 			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1463 				continue;
1464 
1465 			pt_vaddr = kmap_atomic_px(pt);
1466 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1467 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1468 					  pde << GEN8_PDE_SHIFT |
1469 					  pte << GEN8_PTE_SHIFT);
1470 				int i;
1471 				bool found = false;
1472 
1473 				for (i = 0; i < 4; i++)
1474 					if (pt_vaddr[pte + i] != scratch_pte)
1475 						found = true;
1476 				if (!found)
1477 					continue;
1478 
1479 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1480 				for (i = 0; i < 4; i++) {
1481 					if (pt_vaddr[pte + i] != scratch_pte)
1482 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1483 					else
1484 						seq_puts(m, "  SCRATCH ");
1485 				}
1486 				seq_puts(m, "\n");
1487 			}
1488 			kunmap_atomic(pt_vaddr);
1489 		}
1490 	}
1491 }
1492 
1493 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1494 {
1495 	struct i915_address_space *vm = &ppgtt->vm;
1496 	const gen8_pte_t scratch_pte =
1497 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1498 	u64 start = 0, length = ppgtt->vm.total;
1499 
1500 	if (use_4lvl(vm)) {
1501 		u64 pml4e;
1502 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1503 		struct i915_page_directory_pointer *pdp;
1504 
1505 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1506 			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1507 				continue;
1508 
1509 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1510 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1511 		}
1512 	} else {
1513 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1514 	}
1515 }
1516 
1517 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1518 {
1519 	struct i915_address_space *vm = &ppgtt->vm;
1520 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1521 	struct i915_page_directory *pd;
1522 	u64 start = 0, length = ppgtt->vm.total;
1523 	u64 from = start;
1524 	unsigned int pdpe;
1525 
1526 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1527 		pd = alloc_pd(vm);
1528 		if (IS_ERR(pd))
1529 			goto unwind;
1530 
1531 		gen8_initialize_pd(vm, pd);
1532 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1533 		pdp->used_pdpes++;
1534 	}
1535 
1536 	pdp->used_pdpes++; /* never remove */
1537 	return 0;
1538 
1539 unwind:
1540 	start -= from;
1541 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1542 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1543 		free_pd(vm, pd);
1544 	}
1545 	pdp->used_pdpes = 0;
1546 	return -ENOMEM;
1547 }
1548 
1549 /*
1550  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1551  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1552  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1553  * space.
1554  *
1555  */
1556 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1557 {
1558 	struct i915_hw_ppgtt *ppgtt;
1559 	int err;
1560 
1561 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1562 	if (!ppgtt)
1563 		return ERR_PTR(-ENOMEM);
1564 
1565 	ppgtt->vm.i915 = i915;
1566 	ppgtt->vm.dma = &i915->drm.pdev->dev;
1567 
1568 	ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1569 		1ULL << 48 :
1570 		1ULL << 32;
1571 
1572 	/* There are only few exceptions for gen >=6. chv and bxt.
1573 	 * And we are not sure about the latter so play safe for now.
1574 	 */
1575 	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1576 		ppgtt->vm.pt_kmap_wc = true;
1577 
1578 	err = gen8_init_scratch(&ppgtt->vm);
1579 	if (err)
1580 		goto err_free;
1581 
1582 	if (use_4lvl(&ppgtt->vm)) {
1583 		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
1584 		if (err)
1585 			goto err_scratch;
1586 
1587 		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1588 
1589 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1590 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1591 		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1592 	} else {
1593 		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
1594 		if (err)
1595 			goto err_scratch;
1596 
1597 		if (intel_vgpu_active(i915)) {
1598 			err = gen8_preallocate_top_level_pdp(ppgtt);
1599 			if (err) {
1600 				__pdp_fini(&ppgtt->pdp);
1601 				goto err_scratch;
1602 			}
1603 		}
1604 
1605 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1606 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1607 		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1608 	}
1609 
1610 	if (intel_vgpu_active(i915))
1611 		gen8_ppgtt_notify_vgt(ppgtt, true);
1612 
1613 	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1614 	ppgtt->debug_dump = gen8_dump_ppgtt;
1615 
1616 	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1617 	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1618 	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1619 	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1620 
1621 	return ppgtt;
1622 
1623 err_scratch:
1624 	gen8_free_scratch(&ppgtt->vm);
1625 err_free:
1626 	kfree(ppgtt);
1627 	return ERR_PTR(err);
1628 }
1629 
1630 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
1631 {
1632 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1633 	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1634 	struct i915_page_table *pt;
1635 	u32 pte, pde;
1636 
1637 	gen6_for_all_pdes(pt, &base->pd, pde) {
1638 		gen6_pte_t *vaddr;
1639 
1640 		if (pt == base->vm.scratch_pt)
1641 			continue;
1642 
1643 		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
1644 			u32 expected =
1645 				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
1646 				GEN6_PDE_VALID;
1647 			u32 pd_entry = readl(ppgtt->pd_addr + pde);
1648 
1649 			if (pd_entry != expected)
1650 				seq_printf(m,
1651 					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1652 					   pde,
1653 					   pd_entry,
1654 					   expected);
1655 
1656 			seq_printf(m, "\tPDE: %x\n", pd_entry);
1657 		}
1658 
1659 		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
1660 		for (pte = 0; pte < GEN6_PTES; pte += 4) {
1661 			int i;
1662 
1663 			for (i = 0; i < 4; i++)
1664 				if (vaddr[pte + i] != scratch_pte)
1665 					break;
1666 			if (i == 4)
1667 				continue;
1668 
1669 			seq_printf(m, "\t\t(%03d, %04d) %08lx: ",
1670 				   pde, pte,
1671 				   (pde * GEN6_PTES + pte) * PAGE_SIZE);
1672 			for (i = 0; i < 4; i++) {
1673 				if (vaddr[pte + i] != scratch_pte)
1674 					seq_printf(m, " %08x", vaddr[pte + i]);
1675 				else
1676 					seq_puts(m, "  SCRATCH");
1677 			}
1678 			seq_puts(m, "\n");
1679 		}
1680 		kunmap_atomic(vaddr);
1681 	}
1682 }
1683 
1684 /* Write pde (index) from the page directory @pd to the page table @pt */
1685 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
1686 				  const unsigned int pde,
1687 				  const struct i915_page_table *pt)
1688 {
1689 	/* Caller needs to make sure the write completes if necessary */
1690 	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1691 		  ppgtt->pd_addr + pde);
1692 }
1693 
1694 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1695 {
1696 	struct intel_engine_cs *engine;
1697 	enum intel_engine_id id;
1698 
1699 	for_each_engine(engine, dev_priv, id) {
1700 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1701 				 GEN8_GFX_PPGTT_48B : 0;
1702 		I915_WRITE(RING_MODE_GEN7(engine),
1703 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1704 	}
1705 }
1706 
1707 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1708 {
1709 	struct intel_engine_cs *engine;
1710 	u32 ecochk, ecobits;
1711 	enum intel_engine_id id;
1712 
1713 	ecobits = I915_READ(GAC_ECO_BITS);
1714 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1715 
1716 	ecochk = I915_READ(GAM_ECOCHK);
1717 	if (IS_HASWELL(dev_priv)) {
1718 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1719 	} else {
1720 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1721 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1722 	}
1723 	I915_WRITE(GAM_ECOCHK, ecochk);
1724 
1725 	for_each_engine(engine, dev_priv, id) {
1726 		/* GFX_MODE is per-ring on gen7+ */
1727 		I915_WRITE(RING_MODE_GEN7(engine),
1728 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1729 	}
1730 }
1731 
1732 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1733 {
1734 	u32 ecochk, gab_ctl, ecobits;
1735 
1736 	ecobits = I915_READ(GAC_ECO_BITS);
1737 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1738 		   ECOBITS_PPGTT_CACHE64B);
1739 
1740 	gab_ctl = I915_READ(GAB_CTL);
1741 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1742 
1743 	ecochk = I915_READ(GAM_ECOCHK);
1744 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1745 
1746 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1747 }
1748 
1749 /* PPGTT support for Sandybdrige/Gen6 and later */
1750 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1751 				   u64 start, u64 length)
1752 {
1753 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1754 	unsigned int first_entry = start >> PAGE_SHIFT;
1755 	unsigned int pde = first_entry / GEN6_PTES;
1756 	unsigned int pte = first_entry % GEN6_PTES;
1757 	unsigned int num_entries = length >> PAGE_SHIFT;
1758 	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1759 
1760 	while (num_entries) {
1761 		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1762 		const unsigned int end = min(pte + num_entries, GEN6_PTES);
1763 		const unsigned int count = end - pte;
1764 		gen6_pte_t *vaddr;
1765 
1766 		GEM_BUG_ON(pt == vm->scratch_pt);
1767 
1768 		num_entries -= count;
1769 
1770 		GEM_BUG_ON(count > pt->used_ptes);
1771 		pt->used_ptes -= count;
1772 		if (!pt->used_ptes)
1773 			ppgtt->scan_for_unused_pt = true;
1774 
1775 		/*
1776 		 * Note that the hw doesn't support removing PDE on the fly
1777 		 * (they are cached inside the context with no means to
1778 		 * invalidate the cache), so we can only reset the PTE
1779 		 * entries back to scratch.
1780 		 */
1781 
1782 		vaddr = kmap_atomic_px(pt);
1783 		do {
1784 			vaddr[pte++] = scratch_pte;
1785 		} while (pte < end);
1786 		kunmap_atomic(vaddr);
1787 
1788 		pte = 0;
1789 	}
1790 }
1791 
1792 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1793 				      struct i915_vma *vma,
1794 				      enum i915_cache_level cache_level,
1795 				      u32 flags)
1796 {
1797 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1798 	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1799 	unsigned act_pt = first_entry / GEN6_PTES;
1800 	unsigned act_pte = first_entry % GEN6_PTES;
1801 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1802 	struct sgt_dma iter = sgt_dma(vma);
1803 	gen6_pte_t *vaddr;
1804 
1805 	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
1806 
1807 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1808 	do {
1809 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1810 
1811 		iter.dma += PAGE_SIZE;
1812 		if (iter.dma == iter.max) {
1813 			iter.sg = __sg_next(iter.sg);
1814 			if (!iter.sg)
1815 				break;
1816 
1817 			iter.dma = sg_dma_address(iter.sg);
1818 			iter.max = iter.dma + iter.sg->length;
1819 		}
1820 
1821 		if (++act_pte == GEN6_PTES) {
1822 			kunmap_atomic(vaddr);
1823 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1824 			act_pte = 0;
1825 		}
1826 	} while (1);
1827 	kunmap_atomic(vaddr);
1828 
1829 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1830 }
1831 
1832 static int gen6_alloc_va_range(struct i915_address_space *vm,
1833 			       u64 start, u64 length)
1834 {
1835 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1836 	struct i915_page_table *pt;
1837 	u64 from = start;
1838 	unsigned int pde;
1839 	bool flush = false;
1840 
1841 	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1842 		const unsigned int count = gen6_pte_count(start, length);
1843 
1844 		if (pt == vm->scratch_pt) {
1845 			pt = alloc_pt(vm);
1846 			if (IS_ERR(pt))
1847 				goto unwind_out;
1848 
1849 			gen6_initialize_pt(ppgtt, pt);
1850 			ppgtt->base.pd.page_table[pde] = pt;
1851 
1852 			if (i915_vma_is_bound(ppgtt->vma,
1853 					      I915_VMA_GLOBAL_BIND)) {
1854 				gen6_write_pde(ppgtt, pde, pt);
1855 				flush = true;
1856 			}
1857 
1858 			GEM_BUG_ON(pt->used_ptes);
1859 		}
1860 
1861 		pt->used_ptes += count;
1862 	}
1863 
1864 	if (flush) {
1865 		mark_tlbs_dirty(&ppgtt->base);
1866 		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1867 	}
1868 
1869 	return 0;
1870 
1871 unwind_out:
1872 	gen6_ppgtt_clear_range(vm, from, start - from);
1873 	return -ENOMEM;
1874 }
1875 
1876 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1877 {
1878 	struct i915_address_space * const vm = &ppgtt->base.vm;
1879 	struct i915_page_table *unused;
1880 	u32 pde;
1881 	int ret;
1882 
1883 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1884 	if (ret)
1885 		return ret;
1886 
1887 	ppgtt->scratch_pte =
1888 		vm->pte_encode(vm->scratch_page.daddr,
1889 			       I915_CACHE_NONE, PTE_READ_ONLY);
1890 
1891 	vm->scratch_pt = alloc_pt(vm);
1892 	if (IS_ERR(vm->scratch_pt)) {
1893 		cleanup_scratch_page(vm);
1894 		return PTR_ERR(vm->scratch_pt);
1895 	}
1896 
1897 	gen6_initialize_pt(ppgtt, vm->scratch_pt);
1898 	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
1899 		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1900 
1901 	return 0;
1902 }
1903 
1904 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1905 {
1906 	free_pt(vm, vm->scratch_pt);
1907 	cleanup_scratch_page(vm);
1908 }
1909 
1910 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1911 {
1912 	struct i915_page_table *pt;
1913 	u32 pde;
1914 
1915 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1916 		if (pt != ppgtt->base.vm.scratch_pt)
1917 			free_pt(&ppgtt->base.vm, pt);
1918 }
1919 
1920 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1921 {
1922 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1923 
1924 	i915_vma_destroy(ppgtt->vma);
1925 
1926 	gen6_ppgtt_free_pd(ppgtt);
1927 	gen6_ppgtt_free_scratch(vm);
1928 }
1929 
1930 static int pd_vma_set_pages(struct i915_vma *vma)
1931 {
1932 	vma->pages = ERR_PTR(-ENODEV);
1933 	return 0;
1934 }
1935 
1936 static void pd_vma_clear_pages(struct i915_vma *vma)
1937 {
1938 	GEM_BUG_ON(!vma->pages);
1939 
1940 	vma->pages = NULL;
1941 }
1942 
1943 static int pd_vma_bind(struct i915_vma *vma,
1944 		       enum i915_cache_level cache_level,
1945 		       u32 unused)
1946 {
1947 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1948 	struct gen6_hw_ppgtt *ppgtt = vma->private;
1949 	u32 ggtt_offset = i915_ggtt_offset(vma) / PAGE_SIZE;
1950 	struct i915_page_table *pt;
1951 	unsigned int pde;
1952 
1953 	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1954 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1955 
1956 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1957 		gen6_write_pde(ppgtt, pde, pt);
1958 
1959 	mark_tlbs_dirty(&ppgtt->base);
1960 	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1961 
1962 	return 0;
1963 }
1964 
1965 static void pd_vma_unbind(struct i915_vma *vma)
1966 {
1967 	struct gen6_hw_ppgtt *ppgtt = vma->private;
1968 	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
1969 	struct i915_page_table *pt;
1970 	unsigned int pde;
1971 
1972 	if (!ppgtt->scan_for_unused_pt)
1973 		return;
1974 
1975 	/* Free all no longer used page tables */
1976 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
1977 		if (pt->used_ptes || pt == scratch_pt)
1978 			continue;
1979 
1980 		free_pt(&ppgtt->base.vm, pt);
1981 		ppgtt->base.pd.page_table[pde] = scratch_pt;
1982 	}
1983 
1984 	ppgtt->scan_for_unused_pt = false;
1985 }
1986 
1987 static const struct i915_vma_ops pd_vma_ops = {
1988 	.set_pages = pd_vma_set_pages,
1989 	.clear_pages = pd_vma_clear_pages,
1990 	.bind_vma = pd_vma_bind,
1991 	.unbind_vma = pd_vma_unbind,
1992 };
1993 
1994 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
1995 {
1996 	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
1997 	struct i915_ggtt *ggtt = &i915->ggtt;
1998 	struct i915_vma *vma;
1999 	int i;
2000 
2001 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
2002 	GEM_BUG_ON(size > ggtt->vm.total);
2003 
2004 	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
2005 	if (!vma)
2006 		return ERR_PTR(-ENOMEM);
2007 
2008 	for (i = 0; i < ARRAY_SIZE(vma->last_read); i++)
2009 		init_request_active(&vma->last_read[i], NULL);
2010 	init_request_active(&vma->last_fence, NULL);
2011 
2012 	vma->vm = &ggtt->vm;
2013 	vma->ops = &pd_vma_ops;
2014 	vma->private = ppgtt;
2015 
2016 	vma->size = size;
2017 	vma->fence_size = size;
2018 	vma->flags = I915_VMA_GGTT;
2019 	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
2020 
2021 	INIT_LIST_HEAD(&vma->obj_link);
2022 	list_add(&vma->vm_link, &vma->vm->unbound_list);
2023 
2024 	return vma;
2025 }
2026 
2027 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2028 {
2029 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2030 
2031 	/*
2032 	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
2033 	 * which will be pinned into every active context.
2034 	 * (When vma->pin_count becomes atomic, I expect we will naturally
2035 	 * need a larger, unpacked, type and kill this redundancy.)
2036 	 */
2037 	if (ppgtt->pin_count++)
2038 		return 0;
2039 
2040 	/*
2041 	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2042 	 * allocator works in address space sizes, so it's multiplied by page
2043 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2044 	 */
2045 	return i915_vma_pin(ppgtt->vma,
2046 			    0, GEN6_PD_ALIGN,
2047 			    PIN_GLOBAL | PIN_HIGH);
2048 }
2049 
2050 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
2051 {
2052 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2053 
2054 	GEM_BUG_ON(!ppgtt->pin_count);
2055 	if (--ppgtt->pin_count)
2056 		return;
2057 
2058 	i915_vma_unpin(ppgtt->vma);
2059 }
2060 
2061 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2062 {
2063 	struct i915_ggtt * const ggtt = &i915->ggtt;
2064 	struct gen6_hw_ppgtt *ppgtt;
2065 	int err;
2066 
2067 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2068 	if (!ppgtt)
2069 		return ERR_PTR(-ENOMEM);
2070 
2071 	ppgtt->base.vm.i915 = i915;
2072 	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2073 
2074 	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2075 
2076 	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2077 	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2078 	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2079 	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2080 	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2081 
2082 	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2083 	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
2084 	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
2085 	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2086 
2087 	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2088 
2089 	err = gen6_ppgtt_init_scratch(ppgtt);
2090 	if (err)
2091 		goto err_free;
2092 
2093 	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2094 	if (IS_ERR(ppgtt->vma)) {
2095 		err = PTR_ERR(ppgtt->vma);
2096 		goto err_scratch;
2097 	}
2098 
2099 	return &ppgtt->base;
2100 
2101 err_scratch:
2102 	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2103 err_free:
2104 	kfree(ppgtt);
2105 	return ERR_PTR(err);
2106 }
2107 
2108 static void i915_address_space_init(struct i915_address_space *vm,
2109 				    struct drm_i915_private *dev_priv,
2110 				    const char *name)
2111 {
2112 	drm_mm_init(&vm->mm, 0, vm->total);
2113 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
2114 
2115 	INIT_LIST_HEAD(&vm->active_list);
2116 	INIT_LIST_HEAD(&vm->inactive_list);
2117 	INIT_LIST_HEAD(&vm->unbound_list);
2118 
2119 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2120 	pagevec_init(&vm->free_pages);
2121 }
2122 
2123 static void i915_address_space_fini(struct i915_address_space *vm)
2124 {
2125 	if (pagevec_count(&vm->free_pages))
2126 		vm_free_pages_release(vm, true);
2127 
2128 	drm_mm_takedown(&vm->mm);
2129 	list_del(&vm->global_link);
2130 }
2131 
2132 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2133 {
2134 	/* This function is for gtt related workarounds. This function is
2135 	 * called on driver load and after a GPU reset, so you can place
2136 	 * workarounds here even if they get overwritten by GPU reset.
2137 	 */
2138 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2139 	if (IS_BROADWELL(dev_priv))
2140 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2141 	else if (IS_CHERRYVIEW(dev_priv))
2142 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2143 	else if (IS_GEN9_LP(dev_priv))
2144 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2145 	else if (INTEL_GEN(dev_priv) >= 9)
2146 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2147 
2148 	/*
2149 	 * To support 64K PTEs we need to first enable the use of the
2150 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2151 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2152 	 * shouldn't be needed after GEN10.
2153 	 *
2154 	 * 64K pages were first introduced from BDW+, although technically they
2155 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2156 	 * 32K pages, but we don't currently have any support for it in our
2157 	 * driver.
2158 	 */
2159 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2160 	    INTEL_GEN(dev_priv) <= 10)
2161 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2162 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2163 			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2164 }
2165 
2166 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2167 {
2168 	gtt_write_workarounds(dev_priv);
2169 
2170 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2171 	 * and the PDPs are contained within the context itself.  We don't
2172 	 * need to do anything here. */
2173 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2174 		return 0;
2175 
2176 	if (!USES_PPGTT(dev_priv))
2177 		return 0;
2178 
2179 	if (IS_GEN6(dev_priv))
2180 		gen6_ppgtt_enable(dev_priv);
2181 	else if (IS_GEN7(dev_priv))
2182 		gen7_ppgtt_enable(dev_priv);
2183 	else if (INTEL_GEN(dev_priv) >= 8)
2184 		gen8_ppgtt_enable(dev_priv);
2185 	else
2186 		MISSING_CASE(INTEL_GEN(dev_priv));
2187 
2188 	return 0;
2189 }
2190 
2191 static struct i915_hw_ppgtt *
2192 __hw_ppgtt_create(struct drm_i915_private *i915)
2193 {
2194 	if (INTEL_GEN(i915) < 8)
2195 		return gen6_ppgtt_create(i915);
2196 	else
2197 		return gen8_ppgtt_create(i915);
2198 }
2199 
2200 struct i915_hw_ppgtt *
2201 i915_ppgtt_create(struct drm_i915_private *i915,
2202 		  struct drm_i915_file_private *fpriv,
2203 		  const char *name)
2204 {
2205 	struct i915_hw_ppgtt *ppgtt;
2206 
2207 	ppgtt = __hw_ppgtt_create(i915);
2208 	if (IS_ERR(ppgtt))
2209 		return ppgtt;
2210 
2211 	kref_init(&ppgtt->ref);
2212 	i915_address_space_init(&ppgtt->vm, i915, name);
2213 	ppgtt->vm.file = fpriv;
2214 
2215 	trace_i915_ppgtt_create(&ppgtt->vm);
2216 
2217 	return ppgtt;
2218 }
2219 
2220 void i915_ppgtt_close(struct i915_address_space *vm)
2221 {
2222 	GEM_BUG_ON(vm->closed);
2223 	vm->closed = true;
2224 }
2225 
2226 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2227 {
2228 	struct list_head *phases[] = {
2229 		&vm->active_list,
2230 		&vm->inactive_list,
2231 		&vm->unbound_list,
2232 		NULL,
2233 	}, **phase;
2234 
2235 	vm->closed = true;
2236 	for (phase = phases; *phase; phase++) {
2237 		struct i915_vma *vma, *vn;
2238 
2239 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2240 			i915_vma_destroy(vma);
2241 	}
2242 }
2243 
2244 void i915_ppgtt_release(struct kref *kref)
2245 {
2246 	struct i915_hw_ppgtt *ppgtt =
2247 		container_of(kref, struct i915_hw_ppgtt, ref);
2248 
2249 	trace_i915_ppgtt_release(&ppgtt->vm);
2250 
2251 	ppgtt_destroy_vma(&ppgtt->vm);
2252 
2253 	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
2254 	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
2255 	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2256 
2257 	ppgtt->vm.cleanup(&ppgtt->vm);
2258 	i915_address_space_fini(&ppgtt->vm);
2259 	kfree(ppgtt);
2260 }
2261 
2262 /* Certain Gen5 chipsets require require idling the GPU before
2263  * unmapping anything from the GTT when VT-d is enabled.
2264  */
2265 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2266 {
2267 	/* Query intel_iommu to see if we need the workaround. Presumably that
2268 	 * was loaded first.
2269 	 */
2270 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2271 }
2272 
2273 static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2274 {
2275 	struct intel_engine_cs *engine;
2276 	enum intel_engine_id id;
2277 	u32 fault;
2278 
2279 	for_each_engine(engine, dev_priv, id) {
2280 		fault = I915_READ(RING_FAULT_REG(engine));
2281 		if (fault & RING_FAULT_VALID) {
2282 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2283 					 "\tAddr: 0x%08lx\n"
2284 					 "\tAddress space: %s\n"
2285 					 "\tSource ID: %d\n"
2286 					 "\tType: %d\n",
2287 					 fault & PAGE_MASK,
2288 					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2289 					 RING_FAULT_SRCID(fault),
2290 					 RING_FAULT_FAULT_TYPE(fault));
2291 			I915_WRITE(RING_FAULT_REG(engine),
2292 				   fault & ~RING_FAULT_VALID);
2293 		}
2294 	}
2295 
2296 	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2297 }
2298 
2299 static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
2300 {
2301 	u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2302 
2303 	if (fault & RING_FAULT_VALID) {
2304 		u32 fault_data0, fault_data1;
2305 		u64 fault_addr;
2306 
2307 		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2308 		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2309 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2310 			     ((u64)fault_data0 << 12);
2311 
2312 		DRM_DEBUG_DRIVER("Unexpected fault\n"
2313 				 "\tAddr: 0x%08x_%08x\n"
2314 				 "\tAddress space: %s\n"
2315 				 "\tEngine ID: %d\n"
2316 				 "\tSource ID: %d\n"
2317 				 "\tType: %d\n",
2318 				 upper_32_bits(fault_addr),
2319 				 lower_32_bits(fault_addr),
2320 				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2321 				 GEN8_RING_FAULT_ENGINE_ID(fault),
2322 				 RING_FAULT_SRCID(fault),
2323 				 RING_FAULT_FAULT_TYPE(fault));
2324 		I915_WRITE(GEN8_RING_FAULT_REG,
2325 			   fault & ~RING_FAULT_VALID);
2326 	}
2327 
2328 	POSTING_READ(GEN8_RING_FAULT_REG);
2329 }
2330 
2331 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2332 {
2333 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
2334 	if (INTEL_GEN(dev_priv) >= 8)
2335 		gen8_check_and_clear_faults(dev_priv);
2336 	else if (INTEL_GEN(dev_priv) >= 6)
2337 		gen6_check_and_clear_faults(dev_priv);
2338 	else
2339 		return;
2340 }
2341 
2342 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2343 {
2344 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2345 
2346 	/* Don't bother messing with faults pre GEN6 as we have little
2347 	 * documentation supporting that it's a good idea.
2348 	 */
2349 	if (INTEL_GEN(dev_priv) < 6)
2350 		return;
2351 
2352 	i915_check_and_clear_faults(dev_priv);
2353 
2354 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2355 
2356 	i915_ggtt_invalidate(dev_priv);
2357 }
2358 
2359 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2360 			       struct sg_table *pages)
2361 {
2362 	do {
2363 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2364 				     pages->sgl, pages->nents,
2365 				     PCI_DMA_BIDIRECTIONAL,
2366 				     DMA_ATTR_NO_WARN))
2367 			return 0;
2368 
2369 		/* If the DMA remap fails, one cause can be that we have
2370 		 * too many objects pinned in a small remapping table,
2371 		 * such as swiotlb. Incrementally purge all other objects and
2372 		 * try again - if there are no more pages to remove from
2373 		 * the DMA remapper, i915_gem_shrink will return 0.
2374 		 */
2375 		GEM_BUG_ON(obj->mm.pages == pages);
2376 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2377 				 obj->base.size >> PAGE_SHIFT, NULL,
2378 				 I915_SHRINK_BOUND |
2379 				 I915_SHRINK_UNBOUND |
2380 				 I915_SHRINK_ACTIVE));
2381 
2382 	return -ENOSPC;
2383 }
2384 
2385 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2386 {
2387 	writeq(pte, addr);
2388 }
2389 
2390 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2391 				  dma_addr_t addr,
2392 				  u64 offset,
2393 				  enum i915_cache_level level,
2394 				  u32 unused)
2395 {
2396 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2397 	gen8_pte_t __iomem *pte =
2398 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2399 
2400 	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2401 
2402 	ggtt->invalidate(vm->i915);
2403 }
2404 
2405 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2406 				     struct i915_vma *vma,
2407 				     enum i915_cache_level level,
2408 				     u32 unused)
2409 {
2410 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2411 	struct sgt_iter sgt_iter;
2412 	gen8_pte_t __iomem *gtt_entries;
2413 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2414 	dma_addr_t addr;
2415 
2416 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2417 	gtt_entries += vma->node.start >> PAGE_SHIFT;
2418 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2419 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2420 
2421 	/*
2422 	 * We want to flush the TLBs only after we're certain all the PTE
2423 	 * updates have finished.
2424 	 */
2425 	ggtt->invalidate(vm->i915);
2426 }
2427 
2428 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2429 				  dma_addr_t addr,
2430 				  u64 offset,
2431 				  enum i915_cache_level level,
2432 				  u32 flags)
2433 {
2434 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2435 	gen6_pte_t __iomem *pte =
2436 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2437 
2438 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2439 
2440 	ggtt->invalidate(vm->i915);
2441 }
2442 
2443 /*
2444  * Binds an object into the global gtt with the specified cache level. The object
2445  * will be accessible to the GPU via commands whose operands reference offsets
2446  * within the global GTT as well as accessible by the GPU through the GMADR
2447  * mapped BAR (dev_priv->mm.gtt->gtt).
2448  */
2449 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2450 				     struct i915_vma *vma,
2451 				     enum i915_cache_level level,
2452 				     u32 flags)
2453 {
2454 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2455 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2456 	unsigned int i = vma->node.start >> PAGE_SHIFT;
2457 	struct sgt_iter iter;
2458 	dma_addr_t addr;
2459 	for_each_sgt_dma(addr, iter, vma->pages)
2460 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2461 
2462 	/*
2463 	 * We want to flush the TLBs only after we're certain all the PTE
2464 	 * updates have finished.
2465 	 */
2466 	ggtt->invalidate(vm->i915);
2467 }
2468 
2469 static void nop_clear_range(struct i915_address_space *vm,
2470 			    u64 start, u64 length)
2471 {
2472 }
2473 
2474 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2475 				  u64 start, u64 length)
2476 {
2477 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2478 	unsigned first_entry = start >> PAGE_SHIFT;
2479 	unsigned num_entries = length >> PAGE_SHIFT;
2480 	const gen8_pte_t scratch_pte =
2481 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2482 	gen8_pte_t __iomem *gtt_base =
2483 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2484 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2485 	int i;
2486 
2487 	if (WARN(num_entries > max_entries,
2488 		 "First entry = %d; Num entries = %d (max=%d)\n",
2489 		 first_entry, num_entries, max_entries))
2490 		num_entries = max_entries;
2491 
2492 	for (i = 0; i < num_entries; i++)
2493 		gen8_set_pte(&gtt_base[i], scratch_pte);
2494 }
2495 
2496 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2497 {
2498 	struct drm_i915_private *dev_priv = vm->i915;
2499 
2500 	/*
2501 	 * Make sure the internal GAM fifo has been cleared of all GTT
2502 	 * writes before exiting stop_machine(). This guarantees that
2503 	 * any aperture accesses waiting to start in another process
2504 	 * cannot back up behind the GTT writes causing a hang.
2505 	 * The register can be any arbitrary GAM register.
2506 	 */
2507 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2508 }
2509 
2510 struct insert_page {
2511 	struct i915_address_space *vm;
2512 	dma_addr_t addr;
2513 	u64 offset;
2514 	enum i915_cache_level level;
2515 };
2516 
2517 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2518 {
2519 	struct insert_page *arg = _arg;
2520 
2521 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2522 	bxt_vtd_ggtt_wa(arg->vm);
2523 
2524 	return 0;
2525 }
2526 
2527 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2528 					  dma_addr_t addr,
2529 					  u64 offset,
2530 					  enum i915_cache_level level,
2531 					  u32 unused)
2532 {
2533 	struct insert_page arg = { vm, addr, offset, level };
2534 
2535 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2536 }
2537 
2538 struct insert_entries {
2539 	struct i915_address_space *vm;
2540 	struct i915_vma *vma;
2541 	enum i915_cache_level level;
2542 };
2543 
2544 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2545 {
2546 	struct insert_entries *arg = _arg;
2547 
2548 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2549 	bxt_vtd_ggtt_wa(arg->vm);
2550 
2551 	return 0;
2552 }
2553 
2554 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2555 					     struct i915_vma *vma,
2556 					     enum i915_cache_level level,
2557 					     u32 unused)
2558 {
2559 	struct insert_entries arg = { vm, vma, level };
2560 
2561 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2562 }
2563 
2564 struct clear_range {
2565 	struct i915_address_space *vm;
2566 	u64 start;
2567 	u64 length;
2568 };
2569 
2570 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2571 {
2572 	struct clear_range *arg = _arg;
2573 
2574 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2575 	bxt_vtd_ggtt_wa(arg->vm);
2576 
2577 	return 0;
2578 }
2579 
2580 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2581 					  u64 start,
2582 					  u64 length)
2583 {
2584 	struct clear_range arg = { vm, start, length };
2585 
2586 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2587 }
2588 
2589 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2590 				  u64 start, u64 length)
2591 {
2592 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2593 	unsigned first_entry = start >> PAGE_SHIFT;
2594 	unsigned num_entries = length >> PAGE_SHIFT;
2595 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2596 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2597 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2598 	int i;
2599 
2600 	if (WARN(num_entries > max_entries,
2601 		 "First entry = %d; Num entries = %d (max=%d)\n",
2602 		 first_entry, num_entries, max_entries))
2603 		num_entries = max_entries;
2604 
2605 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2606 				     I915_CACHE_LLC, 0);
2607 
2608 	for (i = 0; i < num_entries; i++)
2609 		iowrite32(scratch_pte, &gtt_base[i]);
2610 }
2611 
2612 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2613 				  dma_addr_t addr,
2614 				  u64 offset,
2615 				  enum i915_cache_level cache_level,
2616 				  u32 unused)
2617 {
2618 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2619 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2620 
2621 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2622 }
2623 
2624 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2625 				     struct i915_vma *vma,
2626 				     enum i915_cache_level cache_level,
2627 				     u32 unused)
2628 {
2629 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2630 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2631 
2632 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2633 				    flags);
2634 }
2635 
2636 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2637 				  u64 start, u64 length)
2638 {
2639 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2640 }
2641 
2642 static int ggtt_bind_vma(struct i915_vma *vma,
2643 			 enum i915_cache_level cache_level,
2644 			 u32 flags)
2645 {
2646 	struct drm_i915_private *i915 = vma->vm->i915;
2647 	struct drm_i915_gem_object *obj = vma->obj;
2648 	u32 pte_flags;
2649 
2650 	/* Currently applicable only to VLV */
2651 	pte_flags = 0;
2652 	if (obj->gt_ro)
2653 		pte_flags |= PTE_READ_ONLY;
2654 
2655 	intel_runtime_pm_get(i915);
2656 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2657 	intel_runtime_pm_put(i915);
2658 
2659 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2660 
2661 	/*
2662 	 * Without aliasing PPGTT there's no difference between
2663 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2664 	 * upgrade to both bound if we bind either to avoid double-binding.
2665 	 */
2666 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2667 
2668 	return 0;
2669 }
2670 
2671 static void ggtt_unbind_vma(struct i915_vma *vma)
2672 {
2673 	struct drm_i915_private *i915 = vma->vm->i915;
2674 
2675 	intel_runtime_pm_get(i915);
2676 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2677 	intel_runtime_pm_put(i915);
2678 }
2679 
2680 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2681 				 enum i915_cache_level cache_level,
2682 				 u32 flags)
2683 {
2684 	struct drm_i915_private *i915 = vma->vm->i915;
2685 	u32 pte_flags;
2686 	int ret;
2687 
2688 	/* Currently applicable only to VLV */
2689 	pte_flags = 0;
2690 	if (vma->obj->gt_ro)
2691 		pte_flags |= PTE_READ_ONLY;
2692 
2693 	if (flags & I915_VMA_LOCAL_BIND) {
2694 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2695 
2696 		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2697 			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2698 							   vma->node.start,
2699 							   vma->size);
2700 			if (ret)
2701 				return ret;
2702 		}
2703 
2704 		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2705 					  pte_flags);
2706 	}
2707 
2708 	if (flags & I915_VMA_GLOBAL_BIND) {
2709 		intel_runtime_pm_get(i915);
2710 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2711 		intel_runtime_pm_put(i915);
2712 	}
2713 
2714 	return 0;
2715 }
2716 
2717 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2718 {
2719 	struct drm_i915_private *i915 = vma->vm->i915;
2720 
2721 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2722 		intel_runtime_pm_get(i915);
2723 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2724 		intel_runtime_pm_put(i915);
2725 	}
2726 
2727 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2728 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2729 
2730 		vm->clear_range(vm, vma->node.start, vma->size);
2731 	}
2732 }
2733 
2734 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2735 			       struct sg_table *pages)
2736 {
2737 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2738 	struct device *kdev = &dev_priv->drm.pdev->dev;
2739 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2740 
2741 	if (unlikely(ggtt->do_idle_maps)) {
2742 		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2743 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2744 			/* Wait a bit, in hopes it avoids the hang */
2745 			udelay(10);
2746 		}
2747 	}
2748 
2749 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2750 }
2751 
2752 static int ggtt_set_pages(struct i915_vma *vma)
2753 {
2754 	int ret;
2755 
2756 	GEM_BUG_ON(vma->pages);
2757 
2758 	ret = i915_get_ggtt_vma_pages(vma);
2759 	if (ret)
2760 		return ret;
2761 
2762 	vma->page_sizes = vma->obj->mm.page_sizes;
2763 
2764 	return 0;
2765 }
2766 
2767 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2768 				  unsigned long color,
2769 				  u64 *start,
2770 				  u64 *end)
2771 {
2772 	if (node->allocated && node->color != color)
2773 		*start += I915_GTT_PAGE_SIZE;
2774 
2775 	/* Also leave a space between the unallocated reserved node after the
2776 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2777 	 * to insert a guard page to prevent prefetches crossing over the
2778 	 * GTT boundary.
2779 	 */
2780 	node = list_next_entry(node, node_list);
2781 	if (node->color != color)
2782 		*end -= I915_GTT_PAGE_SIZE;
2783 }
2784 
2785 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2786 {
2787 	struct i915_ggtt *ggtt = &i915->ggtt;
2788 	struct i915_hw_ppgtt *ppgtt;
2789 	int err;
2790 
2791 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2792 	if (IS_ERR(ppgtt))
2793 		return PTR_ERR(ppgtt);
2794 
2795 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2796 		err = -ENODEV;
2797 		goto err_ppgtt;
2798 	}
2799 
2800 	/*
2801 	 * Note we only pre-allocate as far as the end of the global
2802 	 * GTT. On 48b / 4-level page-tables, the difference is very,
2803 	 * very significant! We have to preallocate as GVT/vgpu does
2804 	 * not like the page directory disappearing.
2805 	 */
2806 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2807 	if (err)
2808 		goto err_ppgtt;
2809 
2810 	i915->mm.aliasing_ppgtt = ppgtt;
2811 
2812 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2813 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2814 
2815 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2816 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2817 
2818 	return 0;
2819 
2820 err_ppgtt:
2821 	i915_ppgtt_put(ppgtt);
2822 	return err;
2823 }
2824 
2825 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2826 {
2827 	struct i915_ggtt *ggtt = &i915->ggtt;
2828 	struct i915_hw_ppgtt *ppgtt;
2829 
2830 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2831 	if (!ppgtt)
2832 		return;
2833 
2834 	i915_ppgtt_put(ppgtt);
2835 
2836 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2837 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2838 }
2839 
2840 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2841 {
2842 	/* Let GEM Manage all of the aperture.
2843 	 *
2844 	 * However, leave one page at the end still bound to the scratch page.
2845 	 * There are a number of places where the hardware apparently prefetches
2846 	 * past the end of the object, and we've seen multiple hangs with the
2847 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2848 	 * aperture.  One page should be enough to keep any prefetching inside
2849 	 * of the aperture.
2850 	 */
2851 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2852 	unsigned long hole_start, hole_end;
2853 	struct drm_mm_node *entry;
2854 	int ret;
2855 
2856 	ret = intel_vgt_balloon(dev_priv);
2857 	if (ret)
2858 		return ret;
2859 
2860 	/* Reserve a mappable slot for our lockless error capture */
2861 	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2862 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2863 					  0, ggtt->mappable_end,
2864 					  DRM_MM_INSERT_LOW);
2865 	if (ret)
2866 		return ret;
2867 
2868 	/* Clear any non-preallocated blocks */
2869 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2870 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2871 			      hole_start, hole_end);
2872 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
2873 				     hole_end - hole_start);
2874 	}
2875 
2876 	/* And finally clear the reserved guard page */
2877 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2878 
2879 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2880 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2881 		if (ret)
2882 			goto err;
2883 	}
2884 
2885 	return 0;
2886 
2887 err:
2888 	drm_mm_remove_node(&ggtt->error_capture);
2889 	return ret;
2890 }
2891 
2892 /**
2893  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2894  * @dev_priv: i915 device
2895  */
2896 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2897 {
2898 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2899 	struct i915_vma *vma, *vn;
2900 	struct pagevec *pvec;
2901 
2902 	ggtt->vm.closed = true;
2903 
2904 	mutex_lock(&dev_priv->drm.struct_mutex);
2905 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2906 
2907 	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
2908 	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2909 		WARN_ON(i915_vma_unbind(vma));
2910 
2911 	if (drm_mm_node_allocated(&ggtt->error_capture))
2912 		drm_mm_remove_node(&ggtt->error_capture);
2913 
2914 	if (drm_mm_initialized(&ggtt->vm.mm)) {
2915 		intel_vgt_deballoon(dev_priv);
2916 		i915_address_space_fini(&ggtt->vm);
2917 	}
2918 
2919 	ggtt->vm.cleanup(&ggtt->vm);
2920 
2921 	pvec = &dev_priv->mm.wc_stash;
2922 	if (pvec->nr) {
2923 		set_pages_array_wb(pvec->pages, pvec->nr);
2924 		__pagevec_release(pvec);
2925 	}
2926 
2927 	mutex_unlock(&dev_priv->drm.struct_mutex);
2928 
2929 	arch_phys_wc_del(ggtt->mtrr);
2930 	io_mapping_fini(&ggtt->iomap);
2931 
2932 	i915_gem_cleanup_stolen(&dev_priv->drm);
2933 }
2934 
2935 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2936 {
2937 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2938 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2939 	return snb_gmch_ctl << 20;
2940 }
2941 
2942 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2943 {
2944 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2945 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2946 	if (bdw_gmch_ctl)
2947 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2948 
2949 #ifdef CONFIG_X86_32
2950 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2951 	if (bdw_gmch_ctl > 4)
2952 		bdw_gmch_ctl = 4;
2953 #endif
2954 
2955 	return bdw_gmch_ctl << 20;
2956 }
2957 
2958 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2959 {
2960 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2961 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2962 
2963 	if (gmch_ctrl)
2964 		return 1 << (20 + gmch_ctrl);
2965 
2966 	return 0;
2967 }
2968 
2969 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2970 {
2971 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2972 	struct pci_dev *pdev = dev_priv->drm.pdev;
2973 	phys_addr_t phys_addr;
2974 	int ret;
2975 
2976 	/* For Modern GENs the PTEs and register space are split in the BAR */
2977 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2978 
2979 	/*
2980 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2981 	 * will be dropped. For WC mappings in general we have 64 byte burst
2982 	 * writes when the WC buffer is flushed, so we can't use it, but have to
2983 	 * resort to an uncached mapping. The WC issue is easily caught by the
2984 	 * readback check when writing GTT PTE entries.
2985 	 */
2986 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2987 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2988 	else
2989 		ggtt->gsm = ioremap_wc(phys_addr, size);
2990 	if (!ggtt->gsm) {
2991 		DRM_ERROR("Failed to map the ggtt page table\n");
2992 		return -ENOMEM;
2993 	}
2994 
2995 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2996 	if (ret) {
2997 		DRM_ERROR("Scratch setup failed\n");
2998 		/* iounmap will also get called at remove, but meh */
2999 		iounmap(ggtt->gsm);
3000 		return ret;
3001 	}
3002 
3003 	return 0;
3004 }
3005 
3006 static struct intel_ppat_entry *
3007 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3008 {
3009 	struct intel_ppat_entry *entry = &ppat->entries[index];
3010 
3011 	GEM_BUG_ON(index >= ppat->max_entries);
3012 	GEM_BUG_ON(test_bit(index, ppat->used));
3013 
3014 	entry->ppat = ppat;
3015 	entry->value = value;
3016 	kref_init(&entry->ref);
3017 	set_bit(index, ppat->used);
3018 	set_bit(index, ppat->dirty);
3019 
3020 	return entry;
3021 }
3022 
3023 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3024 {
3025 	struct intel_ppat *ppat = entry->ppat;
3026 	unsigned int index = entry - ppat->entries;
3027 
3028 	GEM_BUG_ON(index >= ppat->max_entries);
3029 	GEM_BUG_ON(!test_bit(index, ppat->used));
3030 
3031 	entry->value = ppat->clear_value;
3032 	clear_bit(index, ppat->used);
3033 	set_bit(index, ppat->dirty);
3034 }
3035 
3036 /**
3037  * intel_ppat_get - get a usable PPAT entry
3038  * @i915: i915 device instance
3039  * @value: the PPAT value required by the caller
3040  *
3041  * The function tries to search if there is an existing PPAT entry which
3042  * matches with the required value. If perfectly matched, the existing PPAT
3043  * entry will be used. If only partially matched, it will try to check if
3044  * there is any available PPAT index. If yes, it will allocate a new PPAT
3045  * index for the required entry and update the HW. If not, the partially
3046  * matched entry will be used.
3047  */
3048 const struct intel_ppat_entry *
3049 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3050 {
3051 	struct intel_ppat *ppat = &i915->ppat;
3052 	struct intel_ppat_entry *entry = NULL;
3053 	unsigned int scanned, best_score;
3054 	int i;
3055 
3056 	GEM_BUG_ON(!ppat->max_entries);
3057 
3058 	scanned = best_score = 0;
3059 	for_each_set_bit(i, ppat->used, ppat->max_entries) {
3060 		unsigned int score;
3061 
3062 		score = ppat->match(ppat->entries[i].value, value);
3063 		if (score > best_score) {
3064 			entry = &ppat->entries[i];
3065 			if (score == INTEL_PPAT_PERFECT_MATCH) {
3066 				kref_get(&entry->ref);
3067 				return entry;
3068 			}
3069 			best_score = score;
3070 		}
3071 		scanned++;
3072 	}
3073 
3074 	if (scanned == ppat->max_entries) {
3075 		if (!entry)
3076 			return ERR_PTR(-ENOSPC);
3077 
3078 		kref_get(&entry->ref);
3079 		return entry;
3080 	}
3081 
3082 	i = find_first_zero_bit(ppat->used, ppat->max_entries);
3083 	entry = __alloc_ppat_entry(ppat, i, value);
3084 	ppat->update_hw(i915);
3085 	return entry;
3086 }
3087 
3088 static void release_ppat(struct kref *kref)
3089 {
3090 	struct intel_ppat_entry *entry =
3091 		container_of(kref, struct intel_ppat_entry, ref);
3092 	struct drm_i915_private *i915 = entry->ppat->i915;
3093 
3094 	__free_ppat_entry(entry);
3095 	entry->ppat->update_hw(i915);
3096 }
3097 
3098 /**
3099  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3100  * @entry: an intel PPAT entry
3101  *
3102  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3103  * entry is dynamically allocated, its reference count will be decreased. Once
3104  * the reference count becomes into zero, the PPAT index becomes free again.
3105  */
3106 void intel_ppat_put(const struct intel_ppat_entry *entry)
3107 {
3108 	struct intel_ppat *ppat = entry->ppat;
3109 	unsigned int index = entry - ppat->entries;
3110 
3111 	GEM_BUG_ON(!ppat->max_entries);
3112 
3113 	kref_put(&ppat->entries[index].ref, release_ppat);
3114 }
3115 
3116 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3117 {
3118 	struct intel_ppat *ppat = &dev_priv->ppat;
3119 	int i;
3120 
3121 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3122 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3123 		clear_bit(i, ppat->dirty);
3124 	}
3125 }
3126 
3127 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3128 {
3129 	struct intel_ppat *ppat = &dev_priv->ppat;
3130 	u64 pat = 0;
3131 	int i;
3132 
3133 	for (i = 0; i < ppat->max_entries; i++)
3134 		pat |= GEN8_PPAT(i, ppat->entries[i].value);
3135 
3136 	bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3137 
3138 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3139 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3140 }
3141 
3142 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3143 {
3144 	unsigned int score = 0;
3145 	enum {
3146 		AGE_MATCH = BIT(0),
3147 		TC_MATCH = BIT(1),
3148 		CA_MATCH = BIT(2),
3149 	};
3150 
3151 	/* Cache attribute has to be matched. */
3152 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3153 		return 0;
3154 
3155 	score |= CA_MATCH;
3156 
3157 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3158 		score |= TC_MATCH;
3159 
3160 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3161 		score |= AGE_MATCH;
3162 
3163 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3164 		return INTEL_PPAT_PERFECT_MATCH;
3165 
3166 	return score;
3167 }
3168 
3169 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3170 {
3171 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3172 		INTEL_PPAT_PERFECT_MATCH : 0;
3173 }
3174 
3175 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3176 {
3177 	ppat->max_entries = 8;
3178 	ppat->update_hw = cnl_private_pat_update_hw;
3179 	ppat->match = bdw_private_pat_match;
3180 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3181 
3182 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3183 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3184 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3185 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3186 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3187 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3188 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3189 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3190 }
3191 
3192 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3193  * bits. When using advanced contexts each context stores its own PAT, but
3194  * writing this data shouldn't be harmful even in those cases. */
3195 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3196 {
3197 	ppat->max_entries = 8;
3198 	ppat->update_hw = bdw_private_pat_update_hw;
3199 	ppat->match = bdw_private_pat_match;
3200 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3201 
3202 	if (!USES_PPGTT(ppat->i915)) {
3203 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3204 		 * so RTL will always use the value corresponding to
3205 		 * pat_sel = 000".
3206 		 * So let's disable cache for GGTT to avoid screen corruptions.
3207 		 * MOCS still can be used though.
3208 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3209 		 * before this patch, i.e. the same uncached + snooping access
3210 		 * like on gen6/7 seems to be in effect.
3211 		 * - So this just fixes blitter/render access. Again it looks
3212 		 * like it's not just uncached access, but uncached + snooping.
3213 		 * So we can still hold onto all our assumptions wrt cpu
3214 		 * clflushing on LLC machines.
3215 		 */
3216 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3217 		return;
3218 	}
3219 
3220 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3221 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3222 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3223 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3224 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3225 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3226 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3227 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3228 }
3229 
3230 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3231 {
3232 	ppat->max_entries = 8;
3233 	ppat->update_hw = bdw_private_pat_update_hw;
3234 	ppat->match = chv_private_pat_match;
3235 	ppat->clear_value = CHV_PPAT_SNOOP;
3236 
3237 	/*
3238 	 * Map WB on BDW to snooped on CHV.
3239 	 *
3240 	 * Only the snoop bit has meaning for CHV, the rest is
3241 	 * ignored.
3242 	 *
3243 	 * The hardware will never snoop for certain types of accesses:
3244 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3245 	 * - PPGTT page tables
3246 	 * - some other special cycles
3247 	 *
3248 	 * As with BDW, we also need to consider the following for GT accesses:
3249 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3250 	 * so RTL will always use the value corresponding to
3251 	 * pat_sel = 000".
3252 	 * Which means we must set the snoop bit in PAT entry 0
3253 	 * in order to keep the global status page working.
3254 	 */
3255 
3256 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3257 	__alloc_ppat_entry(ppat, 1, 0);
3258 	__alloc_ppat_entry(ppat, 2, 0);
3259 	__alloc_ppat_entry(ppat, 3, 0);
3260 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3261 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3262 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3263 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3264 }
3265 
3266 static void gen6_gmch_remove(struct i915_address_space *vm)
3267 {
3268 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3269 
3270 	iounmap(ggtt->gsm);
3271 	cleanup_scratch_page(vm);
3272 }
3273 
3274 static void setup_private_pat(struct drm_i915_private *dev_priv)
3275 {
3276 	struct intel_ppat *ppat = &dev_priv->ppat;
3277 	int i;
3278 
3279 	ppat->i915 = dev_priv;
3280 
3281 	if (INTEL_GEN(dev_priv) >= 10)
3282 		cnl_setup_private_ppat(ppat);
3283 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3284 		chv_setup_private_ppat(ppat);
3285 	else
3286 		bdw_setup_private_ppat(ppat);
3287 
3288 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3289 
3290 	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3291 		ppat->entries[i].value = ppat->clear_value;
3292 		ppat->entries[i].ppat = ppat;
3293 		set_bit(i, ppat->dirty);
3294 	}
3295 
3296 	ppat->update_hw(dev_priv);
3297 }
3298 
3299 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3300 {
3301 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3302 	struct pci_dev *pdev = dev_priv->drm.pdev;
3303 	unsigned int size;
3304 	u16 snb_gmch_ctl;
3305 	int err;
3306 
3307 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3308 	ggtt->gmadr =
3309 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3310 						 pci_resource_len(pdev, 2));
3311 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3312 
3313 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3314 	if (!err)
3315 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3316 	if (err)
3317 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3318 
3319 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3320 	if (IS_CHERRYVIEW(dev_priv))
3321 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3322 	else
3323 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3324 
3325 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3326 	ggtt->vm.cleanup = gen6_gmch_remove;
3327 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
3328 	ggtt->vm.clear_range = nop_clear_range;
3329 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3330 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3331 
3332 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3333 
3334 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3335 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3336 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3337 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3338 		if (ggtt->vm.clear_range != nop_clear_range)
3339 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3340 	}
3341 
3342 	ggtt->invalidate = gen6_ggtt_invalidate;
3343 
3344 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3345 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3346 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3347 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3348 
3349 	setup_private_pat(dev_priv);
3350 
3351 	return ggtt_probe_common(ggtt, size);
3352 }
3353 
3354 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3355 {
3356 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3357 	struct pci_dev *pdev = dev_priv->drm.pdev;
3358 	unsigned int size;
3359 	u16 snb_gmch_ctl;
3360 	int err;
3361 
3362 	ggtt->gmadr =
3363 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3364 						 pci_resource_len(pdev, 2));
3365 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3366 
3367 	/* 64/512MB is the current min/max we actually know of, but this is just
3368 	 * a coarse sanity check.
3369 	 */
3370 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3371 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3372 		return -ENXIO;
3373 	}
3374 
3375 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3376 	if (!err)
3377 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3378 	if (err)
3379 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3380 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3381 
3382 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3383 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3384 
3385 	ggtt->vm.clear_range = gen6_ggtt_clear_range;
3386 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
3387 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3388 	ggtt->vm.cleanup = gen6_gmch_remove;
3389 
3390 	ggtt->invalidate = gen6_ggtt_invalidate;
3391 
3392 	if (HAS_EDRAM(dev_priv))
3393 		ggtt->vm.pte_encode = iris_pte_encode;
3394 	else if (IS_HASWELL(dev_priv))
3395 		ggtt->vm.pte_encode = hsw_pte_encode;
3396 	else if (IS_VALLEYVIEW(dev_priv))
3397 		ggtt->vm.pte_encode = byt_pte_encode;
3398 	else if (INTEL_GEN(dev_priv) >= 7)
3399 		ggtt->vm.pte_encode = ivb_pte_encode;
3400 	else
3401 		ggtt->vm.pte_encode = snb_pte_encode;
3402 
3403 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3404 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3405 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3406 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3407 
3408 	return ggtt_probe_common(ggtt, size);
3409 }
3410 
3411 static void i915_gmch_remove(struct i915_address_space *vm)
3412 {
3413 	intel_gmch_remove();
3414 }
3415 
3416 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3417 {
3418 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3419 	phys_addr_t gmadr_base;
3420 	int ret;
3421 
3422 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3423 	if (!ret) {
3424 		DRM_ERROR("failed to set up gmch\n");
3425 		return -EIO;
3426 	}
3427 
3428 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3429 
3430 	ggtt->gmadr =
3431 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3432 						 ggtt->mappable_end);
3433 
3434 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3435 	ggtt->vm.insert_page = i915_ggtt_insert_page;
3436 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3437 	ggtt->vm.clear_range = i915_ggtt_clear_range;
3438 	ggtt->vm.cleanup = i915_gmch_remove;
3439 
3440 	ggtt->invalidate = gmch_ggtt_invalidate;
3441 
3442 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3443 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3444 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3445 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3446 
3447 	if (unlikely(ggtt->do_idle_maps))
3448 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3449 
3450 	return 0;
3451 }
3452 
3453 /**
3454  * i915_ggtt_probe_hw - Probe GGTT hardware location
3455  * @dev_priv: i915 device
3456  */
3457 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3458 {
3459 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3460 	int ret;
3461 
3462 	ggtt->vm.i915 = dev_priv;
3463 	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3464 
3465 	if (INTEL_GEN(dev_priv) <= 5)
3466 		ret = i915_gmch_probe(ggtt);
3467 	else if (INTEL_GEN(dev_priv) < 8)
3468 		ret = gen6_gmch_probe(ggtt);
3469 	else
3470 		ret = gen8_gmch_probe(ggtt);
3471 	if (ret)
3472 		return ret;
3473 
3474 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3475 	 * This is easier than doing range restriction on the fly, as we
3476 	 * currently don't have any bits spare to pass in this upper
3477 	 * restriction!
3478 	 */
3479 	if (USES_GUC(dev_priv)) {
3480 		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
3481 		ggtt->mappable_end =
3482 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3483 	}
3484 
3485 	if ((ggtt->vm.total - 1) >> 32) {
3486 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3487 			  " of address space! Found %lldM!\n",
3488 			  ggtt->vm.total >> 20);
3489 		ggtt->vm.total = 1ULL << 32;
3490 		ggtt->mappable_end =
3491 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3492 	}
3493 
3494 	if (ggtt->mappable_end > ggtt->vm.total) {
3495 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3496 			  " aperture=%pa, total=%llx\n",
3497 			  &ggtt->mappable_end, ggtt->vm.total);
3498 		ggtt->mappable_end = ggtt->vm.total;
3499 	}
3500 
3501 	/* GMADR is the PCI mmio aperture into the global GTT. */
3502 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3503 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3504 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3505 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3506 	if (intel_vtd_active())
3507 		DRM_INFO("VT-d active for gfx access\n");
3508 
3509 	return 0;
3510 }
3511 
3512 /**
3513  * i915_ggtt_init_hw - Initialize GGTT hardware
3514  * @dev_priv: i915 device
3515  */
3516 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3517 {
3518 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3519 	int ret;
3520 
3521 	INIT_LIST_HEAD(&dev_priv->vm_list);
3522 
3523 	/* Note that we use page colouring to enforce a guard page at the
3524 	 * end of the address space. This is required as the CS may prefetch
3525 	 * beyond the end of the batch buffer, across the page boundary,
3526 	 * and beyond the end of the GTT if we do not provide a guard.
3527 	 */
3528 	mutex_lock(&dev_priv->drm.struct_mutex);
3529 	i915_address_space_init(&ggtt->vm, dev_priv, "[global]");
3530 	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3531 		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3532 	mutex_unlock(&dev_priv->drm.struct_mutex);
3533 
3534 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3535 				dev_priv->ggtt.gmadr.start,
3536 				dev_priv->ggtt.mappable_end)) {
3537 		ret = -EIO;
3538 		goto out_gtt_cleanup;
3539 	}
3540 
3541 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3542 
3543 	/*
3544 	 * Initialise stolen early so that we may reserve preallocated
3545 	 * objects for the BIOS to KMS transition.
3546 	 */
3547 	ret = i915_gem_init_stolen(dev_priv);
3548 	if (ret)
3549 		goto out_gtt_cleanup;
3550 
3551 	return 0;
3552 
3553 out_gtt_cleanup:
3554 	ggtt->vm.cleanup(&ggtt->vm);
3555 	return ret;
3556 }
3557 
3558 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3559 {
3560 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3561 		return -EIO;
3562 
3563 	return 0;
3564 }
3565 
3566 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3567 {
3568 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3569 
3570 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3571 
3572 	i915_ggtt_invalidate(i915);
3573 }
3574 
3575 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3576 {
3577 	/* We should only be called after i915_ggtt_enable_guc() */
3578 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3579 
3580 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3581 
3582 	i915_ggtt_invalidate(i915);
3583 }
3584 
3585 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3586 {
3587 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3588 	struct i915_vma *vma, *vn;
3589 
3590 	i915_check_and_clear_faults(dev_priv);
3591 
3592 	/* First fill our portion of the GTT with scratch pages */
3593 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3594 
3595 	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3596 
3597 	/* clflush objects bound into the GGTT and rebind them. */
3598 	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
3599 	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3600 		struct drm_i915_gem_object *obj = vma->obj;
3601 
3602 		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3603 			continue;
3604 
3605 		if (!i915_vma_unbind(vma))
3606 			continue;
3607 
3608 		WARN_ON(i915_vma_bind(vma,
3609 				      obj ? obj->cache_level : 0,
3610 				      PIN_UPDATE));
3611 		if (obj)
3612 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3613 	}
3614 
3615 	ggtt->vm.closed = false;
3616 	i915_ggtt_invalidate(dev_priv);
3617 
3618 	if (INTEL_GEN(dev_priv) >= 8) {
3619 		struct intel_ppat *ppat = &dev_priv->ppat;
3620 
3621 		bitmap_set(ppat->dirty, 0, ppat->max_entries);
3622 		dev_priv->ppat.update_hw(dev_priv);
3623 		return;
3624 	}
3625 }
3626 
3627 static struct scatterlist *
3628 rotate_pages(const dma_addr_t *in, unsigned int offset,
3629 	     unsigned int width, unsigned int height,
3630 	     unsigned int stride,
3631 	     struct sg_table *st, struct scatterlist *sg)
3632 {
3633 	unsigned int column, row;
3634 	unsigned int src_idx;
3635 
3636 	for (column = 0; column < width; column++) {
3637 		src_idx = stride * (height - 1) + column;
3638 		for (row = 0; row < height; row++) {
3639 			st->nents++;
3640 			/* We don't need the pages, but need to initialize
3641 			 * the entries so the sg list can be happily traversed.
3642 			 * The only thing we need are DMA addresses.
3643 			 */
3644 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3645 			sg_dma_address(sg) = in[offset + src_idx];
3646 			sg_dma_len(sg) = PAGE_SIZE;
3647 			sg = sg_next(sg);
3648 			src_idx -= stride;
3649 		}
3650 	}
3651 
3652 	return sg;
3653 }
3654 
3655 static noinline struct sg_table *
3656 intel_rotate_pages(struct intel_rotation_info *rot_info,
3657 		   struct drm_i915_gem_object *obj)
3658 {
3659 	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3660 	unsigned int size = intel_rotation_info_size(rot_info);
3661 	struct sgt_iter sgt_iter;
3662 	dma_addr_t dma_addr;
3663 	unsigned long i;
3664 	dma_addr_t *page_addr_list;
3665 	struct sg_table *st;
3666 	struct scatterlist *sg;
3667 	int ret = -ENOMEM;
3668 
3669 	/* Allocate a temporary list of source pages for random access. */
3670 	page_addr_list = kvmalloc_array(n_pages,
3671 					sizeof(dma_addr_t),
3672 					GFP_KERNEL);
3673 	if (!page_addr_list)
3674 		return ERR_PTR(ret);
3675 
3676 	/* Allocate target SG list. */
3677 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3678 	if (!st)
3679 		goto err_st_alloc;
3680 
3681 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3682 	if (ret)
3683 		goto err_sg_alloc;
3684 
3685 	/* Populate source page list from the object. */
3686 	i = 0;
3687 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3688 		page_addr_list[i++] = dma_addr;
3689 
3690 	GEM_BUG_ON(i != n_pages);
3691 	st->nents = 0;
3692 	sg = st->sgl;
3693 
3694 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3695 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3696 				  rot_info->plane[i].width, rot_info->plane[i].height,
3697 				  rot_info->plane[i].stride, st, sg);
3698 	}
3699 
3700 	kvfree(page_addr_list);
3701 
3702 	return st;
3703 
3704 err_sg_alloc:
3705 	kfree(st);
3706 err_st_alloc:
3707 	kvfree(page_addr_list);
3708 
3709 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3710 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3711 
3712 	return ERR_PTR(ret);
3713 }
3714 
3715 static noinline struct sg_table *
3716 intel_partial_pages(const struct i915_ggtt_view *view,
3717 		    struct drm_i915_gem_object *obj)
3718 {
3719 	struct sg_table *st;
3720 	struct scatterlist *sg, *iter;
3721 	unsigned int count = view->partial.size;
3722 	unsigned int offset;
3723 	int ret = -ENOMEM;
3724 
3725 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3726 	if (!st)
3727 		goto err_st_alloc;
3728 
3729 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3730 	if (ret)
3731 		goto err_sg_alloc;
3732 
3733 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3734 	GEM_BUG_ON(!iter);
3735 
3736 	sg = st->sgl;
3737 	st->nents = 0;
3738 	do {
3739 		unsigned int len;
3740 
3741 		len = min(iter->length - (offset << PAGE_SHIFT),
3742 			  count << PAGE_SHIFT);
3743 		sg_set_page(sg, NULL, len, 0);
3744 		sg_dma_address(sg) =
3745 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3746 		sg_dma_len(sg) = len;
3747 
3748 		st->nents++;
3749 		count -= len >> PAGE_SHIFT;
3750 		if (count == 0) {
3751 			sg_mark_end(sg);
3752 			return st;
3753 		}
3754 
3755 		sg = __sg_next(sg);
3756 		iter = __sg_next(iter);
3757 		offset = 0;
3758 	} while (1);
3759 
3760 err_sg_alloc:
3761 	kfree(st);
3762 err_st_alloc:
3763 	return ERR_PTR(ret);
3764 }
3765 
3766 static int
3767 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3768 {
3769 	int ret;
3770 
3771 	/* The vma->pages are only valid within the lifespan of the borrowed
3772 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3773 	 * must be the vma->pages. A simple rule is that vma->pages must only
3774 	 * be accessed when the obj->mm.pages are pinned.
3775 	 */
3776 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3777 
3778 	switch (vma->ggtt_view.type) {
3779 	default:
3780 		GEM_BUG_ON(vma->ggtt_view.type);
3781 		/* fall through */
3782 	case I915_GGTT_VIEW_NORMAL:
3783 		vma->pages = vma->obj->mm.pages;
3784 		return 0;
3785 
3786 	case I915_GGTT_VIEW_ROTATED:
3787 		vma->pages =
3788 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3789 		break;
3790 
3791 	case I915_GGTT_VIEW_PARTIAL:
3792 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3793 		break;
3794 	}
3795 
3796 	ret = 0;
3797 	if (unlikely(IS_ERR(vma->pages))) {
3798 		ret = PTR_ERR(vma->pages);
3799 		vma->pages = NULL;
3800 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3801 			  vma->ggtt_view.type, ret);
3802 	}
3803 	return ret;
3804 }
3805 
3806 /**
3807  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3808  * @vm: the &struct i915_address_space
3809  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3810  * @size: how much space to allocate inside the GTT,
3811  *        must be #I915_GTT_PAGE_SIZE aligned
3812  * @offset: where to insert inside the GTT,
3813  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3814  *          (@offset + @size) must fit within the address space
3815  * @color: color to apply to node, if this node is not from a VMA,
3816  *         color must be #I915_COLOR_UNEVICTABLE
3817  * @flags: control search and eviction behaviour
3818  *
3819  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3820  * the address space (using @size and @color). If the @node does not fit, it
3821  * tries to evict any overlapping nodes from the GTT, including any
3822  * neighbouring nodes if the colors do not match (to ensure guard pages between
3823  * differing domains). See i915_gem_evict_for_node() for the gory details
3824  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3825  * evicting active overlapping objects, and any overlapping node that is pinned
3826  * or marked as unevictable will also result in failure.
3827  *
3828  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3829  * asked to wait for eviction and interrupted.
3830  */
3831 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3832 			 struct drm_mm_node *node,
3833 			 u64 size, u64 offset, unsigned long color,
3834 			 unsigned int flags)
3835 {
3836 	int err;
3837 
3838 	GEM_BUG_ON(!size);
3839 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3840 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3841 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3842 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3843 	GEM_BUG_ON(drm_mm_node_allocated(node));
3844 
3845 	node->size = size;
3846 	node->start = offset;
3847 	node->color = color;
3848 
3849 	err = drm_mm_reserve_node(&vm->mm, node);
3850 	if (err != -ENOSPC)
3851 		return err;
3852 
3853 	if (flags & PIN_NOEVICT)
3854 		return -ENOSPC;
3855 
3856 	err = i915_gem_evict_for_node(vm, node, flags);
3857 	if (err == 0)
3858 		err = drm_mm_reserve_node(&vm->mm, node);
3859 
3860 	return err;
3861 }
3862 
3863 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3864 {
3865 	u64 range, addr;
3866 
3867 	GEM_BUG_ON(range_overflows(start, len, end));
3868 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3869 
3870 	range = round_down(end - len, align) - round_up(start, align);
3871 	if (range) {
3872 		if (sizeof(unsigned long) == sizeof(u64)) {
3873 			addr = get_random_long();
3874 		} else {
3875 			addr = get_random_int();
3876 			if (range > U32_MAX) {
3877 				addr <<= 32;
3878 				addr |= get_random_int();
3879 			}
3880 		}
3881 		div64_u64_rem(addr, range, &addr);
3882 		start += addr;
3883 	}
3884 
3885 	return round_up(start, align);
3886 }
3887 
3888 /**
3889  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3890  * @vm: the &struct i915_address_space
3891  * @node: the &struct drm_mm_node (typically i915_vma.node)
3892  * @size: how much space to allocate inside the GTT,
3893  *        must be #I915_GTT_PAGE_SIZE aligned
3894  * @alignment: required alignment of starting offset, may be 0 but
3895  *             if specified, this must be a power-of-two and at least
3896  *             #I915_GTT_MIN_ALIGNMENT
3897  * @color: color to apply to node
3898  * @start: start of any range restriction inside GTT (0 for all),
3899  *         must be #I915_GTT_PAGE_SIZE aligned
3900  * @end: end of any range restriction inside GTT (U64_MAX for all),
3901  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3902  * @flags: control search and eviction behaviour
3903  *
3904  * i915_gem_gtt_insert() first searches for an available hole into which
3905  * is can insert the node. The hole address is aligned to @alignment and
3906  * its @size must then fit entirely within the [@start, @end] bounds. The
3907  * nodes on either side of the hole must match @color, or else a guard page
3908  * will be inserted between the two nodes (or the node evicted). If no
3909  * suitable hole is found, first a victim is randomly selected and tested
3910  * for eviction, otherwise then the LRU list of objects within the GTT
3911  * is scanned to find the first set of replacement nodes to create the hole.
3912  * Those old overlapping nodes are evicted from the GTT (and so must be
3913  * rebound before any future use). Any node that is currently pinned cannot
3914  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3915  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3916  * searching for an eviction candidate. See i915_gem_evict_something() for
3917  * the gory details on the eviction algorithm.
3918  *
3919  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3920  * asked to wait for eviction and interrupted.
3921  */
3922 int i915_gem_gtt_insert(struct i915_address_space *vm,
3923 			struct drm_mm_node *node,
3924 			u64 size, u64 alignment, unsigned long color,
3925 			u64 start, u64 end, unsigned int flags)
3926 {
3927 	enum drm_mm_insert_mode mode;
3928 	u64 offset;
3929 	int err;
3930 
3931 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3932 	GEM_BUG_ON(!size);
3933 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3934 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3935 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3936 	GEM_BUG_ON(start >= end);
3937 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3938 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3939 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3940 	GEM_BUG_ON(drm_mm_node_allocated(node));
3941 
3942 	if (unlikely(range_overflows(start, size, end)))
3943 		return -ENOSPC;
3944 
3945 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3946 		return -ENOSPC;
3947 
3948 	mode = DRM_MM_INSERT_BEST;
3949 	if (flags & PIN_HIGH)
3950 		mode = DRM_MM_INSERT_HIGHEST;
3951 	if (flags & PIN_MAPPABLE)
3952 		mode = DRM_MM_INSERT_LOW;
3953 
3954 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3955 	 * so we know that we always have a minimum alignment of 4096.
3956 	 * The drm_mm range manager is optimised to return results
3957 	 * with zero alignment, so where possible use the optimal
3958 	 * path.
3959 	 */
3960 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3961 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3962 		alignment = 0;
3963 
3964 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3965 					  size, alignment, color,
3966 					  start, end, mode);
3967 	if (err != -ENOSPC)
3968 		return err;
3969 
3970 	if (mode & DRM_MM_INSERT_ONCE) {
3971 		err = drm_mm_insert_node_in_range(&vm->mm, node,
3972 						  size, alignment, color,
3973 						  start, end,
3974 						  DRM_MM_INSERT_BEST);
3975 		if (err != -ENOSPC)
3976 			return err;
3977 	}
3978 
3979 	if (flags & PIN_NOEVICT)
3980 		return -ENOSPC;
3981 
3982 	/* No free space, pick a slot at random.
3983 	 *
3984 	 * There is a pathological case here using a GTT shared between
3985 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3986 	 *
3987 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3988 	 *         (64k objects)             (448k objects)
3989 	 *
3990 	 * Now imagine that the eviction LRU is ordered top-down (just because
3991 	 * pathology meets real life), and that we need to evict an object to
3992 	 * make room inside the aperture. The eviction scan then has to walk
3993 	 * the 448k list before it finds one within range. And now imagine that
3994 	 * it has to search for a new hole between every byte inside the memcpy,
3995 	 * for several simultaneous clients.
3996 	 *
3997 	 * On a full-ppgtt system, if we have run out of available space, there
3998 	 * will be lots and lots of objects in the eviction list! Again,
3999 	 * searching that LRU list may be slow if we are also applying any
4000 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
4001 	 * simplicity and similarilty between different GTT, try the single
4002 	 * random replacement first.
4003 	 */
4004 	offset = random_offset(start, end,
4005 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4006 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4007 	if (err != -ENOSPC)
4008 		return err;
4009 
4010 	/* Randomly selected placement is pinned, do a search */
4011 	err = i915_gem_evict_something(vm, size, alignment, color,
4012 				       start, end, flags);
4013 	if (err)
4014 		return err;
4015 
4016 	return drm_mm_insert_node_in_range(&vm->mm, node,
4017 					   size, alignment, color,
4018 					   start, end, DRM_MM_INSERT_EVICT);
4019 }
4020 
4021 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4022 #include "selftests/mock_gtt.c"
4023 #include "selftests/i915_gem_gtt.c"
4024 #endif
4025