1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/* Note that as an uncached mmio write, this should flush the
114 	 * WCB of the writes into the GGTT before it triggers the invalidate.
115 	 */
116 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118 
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121 	gen6_ggtt_invalidate(dev_priv);
122 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124 
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127 	intel_gtt_chipset_flush();
128 }
129 
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132 	i915->ggtt.invalidate(i915);
133 }
134 
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136 			       	int enable_ppgtt)
137 {
138 	bool has_aliasing_ppgtt;
139 	bool has_full_ppgtt;
140 	bool has_full_48bit_ppgtt;
141 
142 	has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
143 	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
144 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
145 
146 	if (intel_vgpu_active(dev_priv)) {
147 		/* GVT-g has no support for 32bit ppgtt */
148 		has_full_ppgtt = false;
149 		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
150 	}
151 
152 	if (!has_aliasing_ppgtt)
153 		return 0;
154 
155 	/*
156 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
157 	 * execlists, the sole mechanism available to submit work.
158 	 */
159 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
160 		return 0;
161 
162 	if (enable_ppgtt == 1)
163 		return 1;
164 
165 	if (enable_ppgtt == 2 && has_full_ppgtt)
166 		return 2;
167 
168 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
169 		return 3;
170 
171 	/* Disable ppgtt on SNB if VT-d is on. */
172 	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
173 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
174 		return 0;
175 	}
176 
177 	/* Early VLV doesn't have this */
178 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
179 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
180 		return 0;
181 	}
182 
183 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists) {
184 		if (has_full_48bit_ppgtt)
185 			return 3;
186 
187 		if (has_full_ppgtt)
188 			return 2;
189 	}
190 
191 	return has_aliasing_ppgtt ? 1 : 0;
192 }
193 
194 static int ppgtt_bind_vma(struct i915_vma *vma,
195 			  enum i915_cache_level cache_level,
196 			  u32 unused)
197 {
198 	u32 pte_flags;
199 	int ret;
200 
201 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
202 		ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
203 						 vma->size);
204 		if (ret)
205 			return ret;
206 	}
207 
208 	vma->pages = vma->obj->mm.pages;
209 
210 	/* Currently applicable only to VLV */
211 	pte_flags = 0;
212 	if (vma->obj->gt_ro)
213 		pte_flags |= PTE_READ_ONLY;
214 
215 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
216 
217 	return 0;
218 }
219 
220 static void ppgtt_unbind_vma(struct i915_vma *vma)
221 {
222 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
223 }
224 
225 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
226 				  enum i915_cache_level level)
227 {
228 	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
229 	pte |= addr;
230 
231 	switch (level) {
232 	case I915_CACHE_NONE:
233 		pte |= PPAT_UNCACHED_INDEX;
234 		break;
235 	case I915_CACHE_WT:
236 		pte |= PPAT_DISPLAY_ELLC_INDEX;
237 		break;
238 	default:
239 		pte |= PPAT_CACHED_INDEX;
240 		break;
241 	}
242 
243 	return pte;
244 }
245 
246 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
247 				  const enum i915_cache_level level)
248 {
249 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
250 	pde |= addr;
251 	if (level != I915_CACHE_NONE)
252 		pde |= PPAT_CACHED_PDE_INDEX;
253 	else
254 		pde |= PPAT_UNCACHED_INDEX;
255 	return pde;
256 }
257 
258 #define gen8_pdpe_encode gen8_pde_encode
259 #define gen8_pml4e_encode gen8_pde_encode
260 
261 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
262 				 enum i915_cache_level level,
263 				 u32 unused)
264 {
265 	gen6_pte_t pte = GEN6_PTE_VALID;
266 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
267 
268 	switch (level) {
269 	case I915_CACHE_L3_LLC:
270 	case I915_CACHE_LLC:
271 		pte |= GEN6_PTE_CACHE_LLC;
272 		break;
273 	case I915_CACHE_NONE:
274 		pte |= GEN6_PTE_UNCACHED;
275 		break;
276 	default:
277 		MISSING_CASE(level);
278 	}
279 
280 	return pte;
281 }
282 
283 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
284 				 enum i915_cache_level level,
285 				 u32 unused)
286 {
287 	gen6_pte_t pte = GEN6_PTE_VALID;
288 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
289 
290 	switch (level) {
291 	case I915_CACHE_L3_LLC:
292 		pte |= GEN7_PTE_CACHE_L3_LLC;
293 		break;
294 	case I915_CACHE_LLC:
295 		pte |= GEN6_PTE_CACHE_LLC;
296 		break;
297 	case I915_CACHE_NONE:
298 		pte |= GEN6_PTE_UNCACHED;
299 		break;
300 	default:
301 		MISSING_CASE(level);
302 	}
303 
304 	return pte;
305 }
306 
307 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
308 				 enum i915_cache_level level,
309 				 u32 flags)
310 {
311 	gen6_pte_t pte = GEN6_PTE_VALID;
312 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
313 
314 	if (!(flags & PTE_READ_ONLY))
315 		pte |= BYT_PTE_WRITEABLE;
316 
317 	if (level != I915_CACHE_NONE)
318 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
319 
320 	return pte;
321 }
322 
323 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
324 				 enum i915_cache_level level,
325 				 u32 unused)
326 {
327 	gen6_pte_t pte = GEN6_PTE_VALID;
328 	pte |= HSW_PTE_ADDR_ENCODE(addr);
329 
330 	if (level != I915_CACHE_NONE)
331 		pte |= HSW_WB_LLC_AGE3;
332 
333 	return pte;
334 }
335 
336 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
337 				  enum i915_cache_level level,
338 				  u32 unused)
339 {
340 	gen6_pte_t pte = GEN6_PTE_VALID;
341 	pte |= HSW_PTE_ADDR_ENCODE(addr);
342 
343 	switch (level) {
344 	case I915_CACHE_NONE:
345 		break;
346 	case I915_CACHE_WT:
347 		pte |= HSW_WT_ELLC_LLC_AGE3;
348 		break;
349 	default:
350 		pte |= HSW_WB_ELLC_LLC_AGE3;
351 		break;
352 	}
353 
354 	return pte;
355 }
356 
357 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
358 {
359 	struct page *page;
360 
361 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
362 		i915_gem_shrink_all(vm->i915);
363 
364 	if (vm->free_pages.nr)
365 		return vm->free_pages.pages[--vm->free_pages.nr];
366 
367 	page = alloc_page(gfp);
368 	if (!page)
369 		return NULL;
370 
371 	if (vm->pt_kmap_wc)
372 		set_pages_array_wc(&page, 1);
373 
374 	return page;
375 }
376 
377 static void vm_free_pages_release(struct i915_address_space *vm)
378 {
379 	GEM_BUG_ON(!pagevec_count(&vm->free_pages));
380 
381 	if (vm->pt_kmap_wc)
382 		set_pages_array_wb(vm->free_pages.pages,
383 				   pagevec_count(&vm->free_pages));
384 
385 	__pagevec_release(&vm->free_pages);
386 }
387 
388 static void vm_free_page(struct i915_address_space *vm, struct page *page)
389 {
390 	if (!pagevec_add(&vm->free_pages, page))
391 		vm_free_pages_release(vm);
392 }
393 
394 static int __setup_page_dma(struct i915_address_space *vm,
395 			    struct i915_page_dma *p,
396 			    gfp_t gfp)
397 {
398 	p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
399 	if (unlikely(!p->page))
400 		return -ENOMEM;
401 
402 	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
403 				PCI_DMA_BIDIRECTIONAL);
404 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
405 		vm_free_page(vm, p->page);
406 		return -ENOMEM;
407 	}
408 
409 	return 0;
410 }
411 
412 static int setup_page_dma(struct i915_address_space *vm,
413 			  struct i915_page_dma *p)
414 {
415 	return __setup_page_dma(vm, p, I915_GFP_DMA);
416 }
417 
418 static void cleanup_page_dma(struct i915_address_space *vm,
419 			     struct i915_page_dma *p)
420 {
421 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
422 	vm_free_page(vm, p->page);
423 }
424 
425 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
426 
427 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
428 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
429 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
430 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
431 
432 static void fill_page_dma(struct i915_address_space *vm,
433 			  struct i915_page_dma *p,
434 			  const u64 val)
435 {
436 	u64 * const vaddr = kmap_atomic(p->page);
437 	int i;
438 
439 	for (i = 0; i < 512; i++)
440 		vaddr[i] = val;
441 
442 	kunmap_atomic(vaddr);
443 }
444 
445 static void fill_page_dma_32(struct i915_address_space *vm,
446 			     struct i915_page_dma *p,
447 			     const u32 v)
448 {
449 	fill_page_dma(vm, p, (u64)v << 32 | v);
450 }
451 
452 static int
453 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
454 {
455 	return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO);
456 }
457 
458 static void cleanup_scratch_page(struct i915_address_space *vm)
459 {
460 	cleanup_page_dma(vm, &vm->scratch_page);
461 }
462 
463 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
464 {
465 	struct i915_page_table *pt;
466 
467 	pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
468 	if (unlikely(!pt))
469 		return ERR_PTR(-ENOMEM);
470 
471 	if (unlikely(setup_px(vm, pt))) {
472 		kfree(pt);
473 		return ERR_PTR(-ENOMEM);
474 	}
475 
476 	pt->used_ptes = 0;
477 	return pt;
478 }
479 
480 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
481 {
482 	cleanup_px(vm, pt);
483 	kfree(pt);
484 }
485 
486 static void gen8_initialize_pt(struct i915_address_space *vm,
487 			       struct i915_page_table *pt)
488 {
489 	fill_px(vm, pt,
490 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
491 }
492 
493 static void gen6_initialize_pt(struct i915_address_space *vm,
494 			       struct i915_page_table *pt)
495 {
496 	fill32_px(vm, pt,
497 		  vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
498 }
499 
500 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
501 {
502 	struct i915_page_directory *pd;
503 
504 	pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
505 	if (unlikely(!pd))
506 		return ERR_PTR(-ENOMEM);
507 
508 	if (unlikely(setup_px(vm, pd))) {
509 		kfree(pd);
510 		return ERR_PTR(-ENOMEM);
511 	}
512 
513 	pd->used_pdes = 0;
514 	return pd;
515 }
516 
517 static void free_pd(struct i915_address_space *vm,
518 		    struct i915_page_directory *pd)
519 {
520 	cleanup_px(vm, pd);
521 	kfree(pd);
522 }
523 
524 static void gen8_initialize_pd(struct i915_address_space *vm,
525 			       struct i915_page_directory *pd)
526 {
527 	unsigned int i;
528 
529 	fill_px(vm, pd,
530 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
531 	for (i = 0; i < I915_PDES; i++)
532 		pd->page_table[i] = vm->scratch_pt;
533 }
534 
535 static int __pdp_init(struct i915_address_space *vm,
536 		      struct i915_page_directory_pointer *pdp)
537 {
538 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
539 	unsigned int i;
540 
541 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
542 					    GFP_KERNEL | __GFP_NOWARN);
543 	if (unlikely(!pdp->page_directory))
544 		return -ENOMEM;
545 
546 	for (i = 0; i < pdpes; i++)
547 		pdp->page_directory[i] = vm->scratch_pd;
548 
549 	return 0;
550 }
551 
552 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
553 {
554 	kfree(pdp->page_directory);
555 	pdp->page_directory = NULL;
556 }
557 
558 static inline bool use_4lvl(const struct i915_address_space *vm)
559 {
560 	return i915_vm_is_48bit(vm);
561 }
562 
563 static struct i915_page_directory_pointer *
564 alloc_pdp(struct i915_address_space *vm)
565 {
566 	struct i915_page_directory_pointer *pdp;
567 	int ret = -ENOMEM;
568 
569 	WARN_ON(!use_4lvl(vm));
570 
571 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
572 	if (!pdp)
573 		return ERR_PTR(-ENOMEM);
574 
575 	ret = __pdp_init(vm, pdp);
576 	if (ret)
577 		goto fail_bitmap;
578 
579 	ret = setup_px(vm, pdp);
580 	if (ret)
581 		goto fail_page_m;
582 
583 	return pdp;
584 
585 fail_page_m:
586 	__pdp_fini(pdp);
587 fail_bitmap:
588 	kfree(pdp);
589 
590 	return ERR_PTR(ret);
591 }
592 
593 static void free_pdp(struct i915_address_space *vm,
594 		     struct i915_page_directory_pointer *pdp)
595 {
596 	__pdp_fini(pdp);
597 
598 	if (!use_4lvl(vm))
599 		return;
600 
601 	cleanup_px(vm, pdp);
602 	kfree(pdp);
603 }
604 
605 static void gen8_initialize_pdp(struct i915_address_space *vm,
606 				struct i915_page_directory_pointer *pdp)
607 {
608 	gen8_ppgtt_pdpe_t scratch_pdpe;
609 
610 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
611 
612 	fill_px(vm, pdp, scratch_pdpe);
613 }
614 
615 static void gen8_initialize_pml4(struct i915_address_space *vm,
616 				 struct i915_pml4 *pml4)
617 {
618 	unsigned int i;
619 
620 	fill_px(vm, pml4,
621 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
622 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
623 		pml4->pdps[i] = vm->scratch_pdp;
624 }
625 
626 /* Broadwell Page Directory Pointer Descriptors */
627 static int gen8_write_pdp(struct drm_i915_gem_request *req,
628 			  unsigned entry,
629 			  dma_addr_t addr)
630 {
631 	struct intel_engine_cs *engine = req->engine;
632 	u32 *cs;
633 
634 	BUG_ON(entry >= 4);
635 
636 	cs = intel_ring_begin(req, 6);
637 	if (IS_ERR(cs))
638 		return PTR_ERR(cs);
639 
640 	*cs++ = MI_LOAD_REGISTER_IMM(1);
641 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
642 	*cs++ = upper_32_bits(addr);
643 	*cs++ = MI_LOAD_REGISTER_IMM(1);
644 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
645 	*cs++ = lower_32_bits(addr);
646 	intel_ring_advance(req, cs);
647 
648 	return 0;
649 }
650 
651 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
652 			       struct drm_i915_gem_request *req)
653 {
654 	int i, ret;
655 
656 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
657 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
658 
659 		ret = gen8_write_pdp(req, i, pd_daddr);
660 		if (ret)
661 			return ret;
662 	}
663 
664 	return 0;
665 }
666 
667 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
668 			       struct drm_i915_gem_request *req)
669 {
670 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
671 }
672 
673 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
674  * the page table structures, we mark them dirty so that
675  * context switching/execlist queuing code takes extra steps
676  * to ensure that tlbs are flushed.
677  */
678 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
679 {
680 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
681 }
682 
683 /* Removes entries from a single page table, releasing it if it's empty.
684  * Caller can use the return value to update higher-level entries.
685  */
686 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
687 				struct i915_page_table *pt,
688 				u64 start, u64 length)
689 {
690 	unsigned int num_entries = gen8_pte_count(start, length);
691 	unsigned int pte = gen8_pte_index(start);
692 	unsigned int pte_end = pte + num_entries;
693 	const gen8_pte_t scratch_pte =
694 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
695 	gen8_pte_t *vaddr;
696 
697 	GEM_BUG_ON(num_entries > pt->used_ptes);
698 
699 	pt->used_ptes -= num_entries;
700 	if (!pt->used_ptes)
701 		return true;
702 
703 	vaddr = kmap_atomic_px(pt);
704 	while (pte < pte_end)
705 		vaddr[pte++] = scratch_pte;
706 	kunmap_atomic(vaddr);
707 
708 	return false;
709 }
710 
711 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
712 			       struct i915_page_directory *pd,
713 			       struct i915_page_table *pt,
714 			       unsigned int pde)
715 {
716 	gen8_pde_t *vaddr;
717 
718 	pd->page_table[pde] = pt;
719 
720 	vaddr = kmap_atomic_px(pd);
721 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
722 	kunmap_atomic(vaddr);
723 }
724 
725 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
726 				struct i915_page_directory *pd,
727 				u64 start, u64 length)
728 {
729 	struct i915_page_table *pt;
730 	u32 pde;
731 
732 	gen8_for_each_pde(pt, pd, start, length, pde) {
733 		GEM_BUG_ON(pt == vm->scratch_pt);
734 
735 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
736 			continue;
737 
738 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
739 		GEM_BUG_ON(!pd->used_pdes);
740 		pd->used_pdes--;
741 
742 		free_pt(vm, pt);
743 	}
744 
745 	return !pd->used_pdes;
746 }
747 
748 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
749 				struct i915_page_directory_pointer *pdp,
750 				struct i915_page_directory *pd,
751 				unsigned int pdpe)
752 {
753 	gen8_ppgtt_pdpe_t *vaddr;
754 
755 	pdp->page_directory[pdpe] = pd;
756 	if (!use_4lvl(vm))
757 		return;
758 
759 	vaddr = kmap_atomic_px(pdp);
760 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
761 	kunmap_atomic(vaddr);
762 }
763 
764 /* Removes entries from a single page dir pointer, releasing it if it's empty.
765  * Caller can use the return value to update higher-level entries
766  */
767 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
768 				 struct i915_page_directory_pointer *pdp,
769 				 u64 start, u64 length)
770 {
771 	struct i915_page_directory *pd;
772 	unsigned int pdpe;
773 
774 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
775 		GEM_BUG_ON(pd == vm->scratch_pd);
776 
777 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
778 			continue;
779 
780 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
781 		GEM_BUG_ON(!pdp->used_pdpes);
782 		pdp->used_pdpes--;
783 
784 		free_pd(vm, pd);
785 	}
786 
787 	return !pdp->used_pdpes;
788 }
789 
790 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
791 				  u64 start, u64 length)
792 {
793 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
794 }
795 
796 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
797 				 struct i915_page_directory_pointer *pdp,
798 				 unsigned int pml4e)
799 {
800 	gen8_ppgtt_pml4e_t *vaddr;
801 
802 	pml4->pdps[pml4e] = pdp;
803 
804 	vaddr = kmap_atomic_px(pml4);
805 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
806 	kunmap_atomic(vaddr);
807 }
808 
809 /* Removes entries from a single pml4.
810  * This is the top-level structure in 4-level page tables used on gen8+.
811  * Empty entries are always scratch pml4e.
812  */
813 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
814 				  u64 start, u64 length)
815 {
816 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
817 	struct i915_pml4 *pml4 = &ppgtt->pml4;
818 	struct i915_page_directory_pointer *pdp;
819 	unsigned int pml4e;
820 
821 	GEM_BUG_ON(!use_4lvl(vm));
822 
823 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
824 		GEM_BUG_ON(pdp == vm->scratch_pdp);
825 
826 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
827 			continue;
828 
829 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
830 
831 		free_pdp(vm, pdp);
832 	}
833 }
834 
835 struct sgt_dma {
836 	struct scatterlist *sg;
837 	dma_addr_t dma, max;
838 };
839 
840 struct gen8_insert_pte {
841 	u16 pml4e;
842 	u16 pdpe;
843 	u16 pde;
844 	u16 pte;
845 };
846 
847 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
848 {
849 	return (struct gen8_insert_pte) {
850 		 gen8_pml4e_index(start),
851 		 gen8_pdpe_index(start),
852 		 gen8_pde_index(start),
853 		 gen8_pte_index(start),
854 	};
855 }
856 
857 static __always_inline bool
858 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
859 			      struct i915_page_directory_pointer *pdp,
860 			      struct sgt_dma *iter,
861 			      struct gen8_insert_pte *idx,
862 			      enum i915_cache_level cache_level)
863 {
864 	struct i915_page_directory *pd;
865 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
866 	gen8_pte_t *vaddr;
867 	bool ret;
868 
869 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
870 	pd = pdp->page_directory[idx->pdpe];
871 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
872 	do {
873 		vaddr[idx->pte] = pte_encode | iter->dma;
874 
875 		iter->dma += PAGE_SIZE;
876 		if (iter->dma >= iter->max) {
877 			iter->sg = __sg_next(iter->sg);
878 			if (!iter->sg) {
879 				ret = false;
880 				break;
881 			}
882 
883 			iter->dma = sg_dma_address(iter->sg);
884 			iter->max = iter->dma + iter->sg->length;
885 		}
886 
887 		if (++idx->pte == GEN8_PTES) {
888 			idx->pte = 0;
889 
890 			if (++idx->pde == I915_PDES) {
891 				idx->pde = 0;
892 
893 				/* Limited by sg length for 3lvl */
894 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
895 					idx->pdpe = 0;
896 					ret = true;
897 					break;
898 				}
899 
900 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
901 				pd = pdp->page_directory[idx->pdpe];
902 			}
903 
904 			kunmap_atomic(vaddr);
905 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
906 		}
907 	} while (1);
908 	kunmap_atomic(vaddr);
909 
910 	return ret;
911 }
912 
913 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
914 				   struct i915_vma *vma,
915 				   enum i915_cache_level cache_level,
916 				   u32 unused)
917 {
918 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
919 	struct sgt_dma iter = {
920 		.sg = vma->pages->sgl,
921 		.dma = sg_dma_address(iter.sg),
922 		.max = iter.dma + iter.sg->length,
923 	};
924 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
925 
926 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
927 				      cache_level);
928 }
929 
930 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
931 				   struct i915_vma *vma,
932 				   enum i915_cache_level cache_level,
933 				   u32 unused)
934 {
935 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
936 	struct sgt_dma iter = {
937 		.sg = vma->pages->sgl,
938 		.dma = sg_dma_address(iter.sg),
939 		.max = iter.dma + iter.sg->length,
940 	};
941 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
942 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
943 
944 	while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter,
945 					     &idx, cache_level))
946 		GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
947 }
948 
949 static void gen8_free_page_tables(struct i915_address_space *vm,
950 				  struct i915_page_directory *pd)
951 {
952 	int i;
953 
954 	if (!px_page(pd))
955 		return;
956 
957 	for (i = 0; i < I915_PDES; i++) {
958 		if (pd->page_table[i] != vm->scratch_pt)
959 			free_pt(vm, pd->page_table[i]);
960 	}
961 }
962 
963 static int gen8_init_scratch(struct i915_address_space *vm)
964 {
965 	int ret;
966 
967 	ret = setup_scratch_page(vm, I915_GFP_DMA);
968 	if (ret)
969 		return ret;
970 
971 	vm->scratch_pt = alloc_pt(vm);
972 	if (IS_ERR(vm->scratch_pt)) {
973 		ret = PTR_ERR(vm->scratch_pt);
974 		goto free_scratch_page;
975 	}
976 
977 	vm->scratch_pd = alloc_pd(vm);
978 	if (IS_ERR(vm->scratch_pd)) {
979 		ret = PTR_ERR(vm->scratch_pd);
980 		goto free_pt;
981 	}
982 
983 	if (use_4lvl(vm)) {
984 		vm->scratch_pdp = alloc_pdp(vm);
985 		if (IS_ERR(vm->scratch_pdp)) {
986 			ret = PTR_ERR(vm->scratch_pdp);
987 			goto free_pd;
988 		}
989 	}
990 
991 	gen8_initialize_pt(vm, vm->scratch_pt);
992 	gen8_initialize_pd(vm, vm->scratch_pd);
993 	if (use_4lvl(vm))
994 		gen8_initialize_pdp(vm, vm->scratch_pdp);
995 
996 	return 0;
997 
998 free_pd:
999 	free_pd(vm, vm->scratch_pd);
1000 free_pt:
1001 	free_pt(vm, vm->scratch_pt);
1002 free_scratch_page:
1003 	cleanup_scratch_page(vm);
1004 
1005 	return ret;
1006 }
1007 
1008 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1009 {
1010 	struct i915_address_space *vm = &ppgtt->base;
1011 	struct drm_i915_private *dev_priv = vm->i915;
1012 	enum vgt_g2v_type msg;
1013 	int i;
1014 
1015 	if (use_4lvl(vm)) {
1016 		const u64 daddr = px_dma(&ppgtt->pml4);
1017 
1018 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1019 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1020 
1021 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1022 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1023 	} else {
1024 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1025 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1026 
1027 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1028 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1029 		}
1030 
1031 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1032 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1033 	}
1034 
1035 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1036 
1037 	return 0;
1038 }
1039 
1040 static void gen8_free_scratch(struct i915_address_space *vm)
1041 {
1042 	if (use_4lvl(vm))
1043 		free_pdp(vm, vm->scratch_pdp);
1044 	free_pd(vm, vm->scratch_pd);
1045 	free_pt(vm, vm->scratch_pt);
1046 	cleanup_scratch_page(vm);
1047 }
1048 
1049 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1050 				    struct i915_page_directory_pointer *pdp)
1051 {
1052 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1053 	int i;
1054 
1055 	for (i = 0; i < pdpes; i++) {
1056 		if (pdp->page_directory[i] == vm->scratch_pd)
1057 			continue;
1058 
1059 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1060 		free_pd(vm, pdp->page_directory[i]);
1061 	}
1062 
1063 	free_pdp(vm, pdp);
1064 }
1065 
1066 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1067 {
1068 	int i;
1069 
1070 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1071 		if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1072 			continue;
1073 
1074 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1075 	}
1076 
1077 	cleanup_px(&ppgtt->base, &ppgtt->pml4);
1078 }
1079 
1080 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1081 {
1082 	struct drm_i915_private *dev_priv = vm->i915;
1083 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1084 
1085 	if (intel_vgpu_active(dev_priv))
1086 		gen8_ppgtt_notify_vgt(ppgtt, false);
1087 
1088 	if (use_4lvl(vm))
1089 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1090 	else
1091 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1092 
1093 	gen8_free_scratch(vm);
1094 }
1095 
1096 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1097 			       struct i915_page_directory *pd,
1098 			       u64 start, u64 length)
1099 {
1100 	struct i915_page_table *pt;
1101 	u64 from = start;
1102 	unsigned int pde;
1103 
1104 	gen8_for_each_pde(pt, pd, start, length, pde) {
1105 		if (pt == vm->scratch_pt) {
1106 			pt = alloc_pt(vm);
1107 			if (IS_ERR(pt))
1108 				goto unwind;
1109 
1110 			gen8_initialize_pt(vm, pt);
1111 
1112 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1113 			pd->used_pdes++;
1114 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1115 		}
1116 
1117 		pt->used_ptes += gen8_pte_count(start, length);
1118 	}
1119 	return 0;
1120 
1121 unwind:
1122 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1123 	return -ENOMEM;
1124 }
1125 
1126 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1127 				struct i915_page_directory_pointer *pdp,
1128 				u64 start, u64 length)
1129 {
1130 	struct i915_page_directory *pd;
1131 	u64 from = start;
1132 	unsigned int pdpe;
1133 	int ret;
1134 
1135 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1136 		if (pd == vm->scratch_pd) {
1137 			pd = alloc_pd(vm);
1138 			if (IS_ERR(pd))
1139 				goto unwind;
1140 
1141 			gen8_initialize_pd(vm, pd);
1142 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1143 			pdp->used_pdpes++;
1144 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1145 
1146 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1147 		}
1148 
1149 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1150 		if (unlikely(ret))
1151 			goto unwind_pd;
1152 	}
1153 
1154 	return 0;
1155 
1156 unwind_pd:
1157 	if (!pd->used_pdes) {
1158 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1159 		GEM_BUG_ON(!pdp->used_pdpes);
1160 		pdp->used_pdpes--;
1161 		free_pd(vm, pd);
1162 	}
1163 unwind:
1164 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1165 	return -ENOMEM;
1166 }
1167 
1168 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1169 				 u64 start, u64 length)
1170 {
1171 	return gen8_ppgtt_alloc_pdp(vm,
1172 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1173 }
1174 
1175 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1176 				 u64 start, u64 length)
1177 {
1178 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1179 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1180 	struct i915_page_directory_pointer *pdp;
1181 	u64 from = start;
1182 	u32 pml4e;
1183 	int ret;
1184 
1185 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1186 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1187 			pdp = alloc_pdp(vm);
1188 			if (IS_ERR(pdp))
1189 				goto unwind;
1190 
1191 			gen8_initialize_pdp(vm, pdp);
1192 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1193 		}
1194 
1195 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1196 		if (unlikely(ret))
1197 			goto unwind_pdp;
1198 	}
1199 
1200 	return 0;
1201 
1202 unwind_pdp:
1203 	if (!pdp->used_pdpes) {
1204 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1205 		free_pdp(vm, pdp);
1206 	}
1207 unwind:
1208 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1209 	return -ENOMEM;
1210 }
1211 
1212 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1213 			  struct i915_page_directory_pointer *pdp,
1214 			  u64 start, u64 length,
1215 			  gen8_pte_t scratch_pte,
1216 			  struct seq_file *m)
1217 {
1218 	struct i915_address_space *vm = &ppgtt->base;
1219 	struct i915_page_directory *pd;
1220 	u32 pdpe;
1221 
1222 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1223 		struct i915_page_table *pt;
1224 		u64 pd_len = length;
1225 		u64 pd_start = start;
1226 		u32 pde;
1227 
1228 		if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1229 			continue;
1230 
1231 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1232 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1233 			u32 pte;
1234 			gen8_pte_t *pt_vaddr;
1235 
1236 			if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1237 				continue;
1238 
1239 			pt_vaddr = kmap_atomic_px(pt);
1240 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1241 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1242 					  pde << GEN8_PDE_SHIFT |
1243 					  pte << GEN8_PTE_SHIFT);
1244 				int i;
1245 				bool found = false;
1246 
1247 				for (i = 0; i < 4; i++)
1248 					if (pt_vaddr[pte + i] != scratch_pte)
1249 						found = true;
1250 				if (!found)
1251 					continue;
1252 
1253 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1254 				for (i = 0; i < 4; i++) {
1255 					if (pt_vaddr[pte + i] != scratch_pte)
1256 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1257 					else
1258 						seq_puts(m, "  SCRATCH ");
1259 				}
1260 				seq_puts(m, "\n");
1261 			}
1262 			kunmap_atomic(pt_vaddr);
1263 		}
1264 	}
1265 }
1266 
1267 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1268 {
1269 	struct i915_address_space *vm = &ppgtt->base;
1270 	const gen8_pte_t scratch_pte =
1271 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1272 	u64 start = 0, length = ppgtt->base.total;
1273 
1274 	if (use_4lvl(vm)) {
1275 		u64 pml4e;
1276 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1277 		struct i915_page_directory_pointer *pdp;
1278 
1279 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1280 			if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1281 				continue;
1282 
1283 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1284 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1285 		}
1286 	} else {
1287 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1288 	}
1289 }
1290 
1291 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1292 {
1293 	struct i915_address_space *vm = &ppgtt->base;
1294 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1295 	struct i915_page_directory *pd;
1296 	u64 start = 0, length = ppgtt->base.total;
1297 	u64 from = start;
1298 	unsigned int pdpe;
1299 
1300 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1301 		pd = alloc_pd(vm);
1302 		if (IS_ERR(pd))
1303 			goto unwind;
1304 
1305 		gen8_initialize_pd(vm, pd);
1306 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1307 		pdp->used_pdpes++;
1308 	}
1309 
1310 	pdp->used_pdpes++; /* never remove */
1311 	return 0;
1312 
1313 unwind:
1314 	start -= from;
1315 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1316 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1317 		free_pd(vm, pd);
1318 	}
1319 	pdp->used_pdpes = 0;
1320 	return -ENOMEM;
1321 }
1322 
1323 /*
1324  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1325  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1326  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1327  * space.
1328  *
1329  */
1330 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1331 {
1332 	struct i915_address_space *vm = &ppgtt->base;
1333 	struct drm_i915_private *dev_priv = vm->i915;
1334 	int ret;
1335 
1336 	ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1337 		1ULL << 48 :
1338 		1ULL << 32;
1339 
1340 	ret = gen8_init_scratch(&ppgtt->base);
1341 	if (ret) {
1342 		ppgtt->base.total = 0;
1343 		return ret;
1344 	}
1345 
1346 	/* There are only few exceptions for gen >=6. chv and bxt.
1347 	 * And we are not sure about the latter so play safe for now.
1348 	 */
1349 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1350 		ppgtt->base.pt_kmap_wc = true;
1351 
1352 	if (use_4lvl(vm)) {
1353 		ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1354 		if (ret)
1355 			goto free_scratch;
1356 
1357 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1358 
1359 		ppgtt->switch_mm = gen8_mm_switch_4lvl;
1360 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1361 		ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1362 		ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1363 	} else {
1364 		ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1365 		if (ret)
1366 			goto free_scratch;
1367 
1368 		if (intel_vgpu_active(dev_priv)) {
1369 			ret = gen8_preallocate_top_level_pdp(ppgtt);
1370 			if (ret) {
1371 				__pdp_fini(&ppgtt->pdp);
1372 				goto free_scratch;
1373 			}
1374 		}
1375 
1376 		ppgtt->switch_mm = gen8_mm_switch_3lvl;
1377 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1378 		ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1379 		ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1380 	}
1381 
1382 	if (intel_vgpu_active(dev_priv))
1383 		gen8_ppgtt_notify_vgt(ppgtt, true);
1384 
1385 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1386 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1387 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1388 	ppgtt->debug_dump = gen8_dump_ppgtt;
1389 
1390 	return 0;
1391 
1392 free_scratch:
1393 	gen8_free_scratch(&ppgtt->base);
1394 	return ret;
1395 }
1396 
1397 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1398 {
1399 	struct i915_address_space *vm = &ppgtt->base;
1400 	struct i915_page_table *unused;
1401 	gen6_pte_t scratch_pte;
1402 	u32 pd_entry, pte, pde;
1403 	u32 start = 0, length = ppgtt->base.total;
1404 
1405 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1406 				     I915_CACHE_LLC, 0);
1407 
1408 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1409 		u32 expected;
1410 		gen6_pte_t *pt_vaddr;
1411 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1412 		pd_entry = readl(ppgtt->pd_addr + pde);
1413 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1414 
1415 		if (pd_entry != expected)
1416 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1417 				   pde,
1418 				   pd_entry,
1419 				   expected);
1420 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1421 
1422 		pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1423 
1424 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1425 			unsigned long va =
1426 				(pde * PAGE_SIZE * GEN6_PTES) +
1427 				(pte * PAGE_SIZE);
1428 			int i;
1429 			bool found = false;
1430 			for (i = 0; i < 4; i++)
1431 				if (pt_vaddr[pte + i] != scratch_pte)
1432 					found = true;
1433 			if (!found)
1434 				continue;
1435 
1436 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1437 			for (i = 0; i < 4; i++) {
1438 				if (pt_vaddr[pte + i] != scratch_pte)
1439 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1440 				else
1441 					seq_puts(m, "  SCRATCH ");
1442 			}
1443 			seq_puts(m, "\n");
1444 		}
1445 		kunmap_atomic(pt_vaddr);
1446 	}
1447 }
1448 
1449 /* Write pde (index) from the page directory @pd to the page table @pt */
1450 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1451 				  const unsigned int pde,
1452 				  const struct i915_page_table *pt)
1453 {
1454 	/* Caller needs to make sure the write completes if necessary */
1455 	writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1456 		       ppgtt->pd_addr + pde);
1457 }
1458 
1459 /* Write all the page tables found in the ppgtt structure to incrementing page
1460  * directories. */
1461 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1462 				  u32 start, u32 length)
1463 {
1464 	struct i915_page_table *pt;
1465 	unsigned int pde;
1466 
1467 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1468 		gen6_write_pde(ppgtt, pde, pt);
1469 
1470 	mark_tlbs_dirty(ppgtt);
1471 	wmb();
1472 }
1473 
1474 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1475 {
1476 	GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1477 	return ppgtt->pd.base.ggtt_offset << 10;
1478 }
1479 
1480 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1481 			 struct drm_i915_gem_request *req)
1482 {
1483 	struct intel_engine_cs *engine = req->engine;
1484 	u32 *cs;
1485 
1486 	/* NB: TLBs must be flushed and invalidated before a switch */
1487 	cs = intel_ring_begin(req, 6);
1488 	if (IS_ERR(cs))
1489 		return PTR_ERR(cs);
1490 
1491 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1492 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1493 	*cs++ = PP_DIR_DCLV_2G;
1494 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1495 	*cs++ = get_pd_offset(ppgtt);
1496 	*cs++ = MI_NOOP;
1497 	intel_ring_advance(req, cs);
1498 
1499 	return 0;
1500 }
1501 
1502 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1503 			  struct drm_i915_gem_request *req)
1504 {
1505 	struct intel_engine_cs *engine = req->engine;
1506 	u32 *cs;
1507 
1508 	/* NB: TLBs must be flushed and invalidated before a switch */
1509 	cs = intel_ring_begin(req, 6);
1510 	if (IS_ERR(cs))
1511 		return PTR_ERR(cs);
1512 
1513 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1514 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1515 	*cs++ = PP_DIR_DCLV_2G;
1516 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1517 	*cs++ = get_pd_offset(ppgtt);
1518 	*cs++ = MI_NOOP;
1519 	intel_ring_advance(req, cs);
1520 
1521 	return 0;
1522 }
1523 
1524 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1525 			  struct drm_i915_gem_request *req)
1526 {
1527 	struct intel_engine_cs *engine = req->engine;
1528 	struct drm_i915_private *dev_priv = req->i915;
1529 
1530 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1531 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1532 	return 0;
1533 }
1534 
1535 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1536 {
1537 	struct intel_engine_cs *engine;
1538 	enum intel_engine_id id;
1539 
1540 	for_each_engine(engine, dev_priv, id) {
1541 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1542 				 GEN8_GFX_PPGTT_48B : 0;
1543 		I915_WRITE(RING_MODE_GEN7(engine),
1544 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1545 	}
1546 }
1547 
1548 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1549 {
1550 	struct intel_engine_cs *engine;
1551 	u32 ecochk, ecobits;
1552 	enum intel_engine_id id;
1553 
1554 	ecobits = I915_READ(GAC_ECO_BITS);
1555 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1556 
1557 	ecochk = I915_READ(GAM_ECOCHK);
1558 	if (IS_HASWELL(dev_priv)) {
1559 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1560 	} else {
1561 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1562 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1563 	}
1564 	I915_WRITE(GAM_ECOCHK, ecochk);
1565 
1566 	for_each_engine(engine, dev_priv, id) {
1567 		/* GFX_MODE is per-ring on gen7+ */
1568 		I915_WRITE(RING_MODE_GEN7(engine),
1569 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1570 	}
1571 }
1572 
1573 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1574 {
1575 	u32 ecochk, gab_ctl, ecobits;
1576 
1577 	ecobits = I915_READ(GAC_ECO_BITS);
1578 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1579 		   ECOBITS_PPGTT_CACHE64B);
1580 
1581 	gab_ctl = I915_READ(GAB_CTL);
1582 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1583 
1584 	ecochk = I915_READ(GAM_ECOCHK);
1585 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1586 
1587 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1588 }
1589 
1590 /* PPGTT support for Sandybdrige/Gen6 and later */
1591 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1592 				   u64 start, u64 length)
1593 {
1594 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1595 	unsigned int first_entry = start >> PAGE_SHIFT;
1596 	unsigned int pde = first_entry / GEN6_PTES;
1597 	unsigned int pte = first_entry % GEN6_PTES;
1598 	unsigned int num_entries = length >> PAGE_SHIFT;
1599 	gen6_pte_t scratch_pte =
1600 		vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1601 
1602 	while (num_entries) {
1603 		struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1604 		unsigned int end = min(pte + num_entries, GEN6_PTES);
1605 		gen6_pte_t *vaddr;
1606 
1607 		num_entries -= end - pte;
1608 
1609 		/* Note that the hw doesn't support removing PDE on the fly
1610 		 * (they are cached inside the context with no means to
1611 		 * invalidate the cache), so we can only reset the PTE
1612 		 * entries back to scratch.
1613 		 */
1614 
1615 		vaddr = kmap_atomic_px(pt);
1616 		do {
1617 			vaddr[pte++] = scratch_pte;
1618 		} while (pte < end);
1619 		kunmap_atomic(vaddr);
1620 
1621 		pte = 0;
1622 	}
1623 }
1624 
1625 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1626 				      struct i915_vma *vma,
1627 				      enum i915_cache_level cache_level,
1628 				      u32 flags)
1629 {
1630 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1631 	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1632 	unsigned act_pt = first_entry / GEN6_PTES;
1633 	unsigned act_pte = first_entry % GEN6_PTES;
1634 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1635 	struct sgt_dma iter;
1636 	gen6_pte_t *vaddr;
1637 
1638 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1639 	iter.sg = vma->pages->sgl;
1640 	iter.dma = sg_dma_address(iter.sg);
1641 	iter.max = iter.dma + iter.sg->length;
1642 	do {
1643 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1644 
1645 		iter.dma += PAGE_SIZE;
1646 		if (iter.dma == iter.max) {
1647 			iter.sg = __sg_next(iter.sg);
1648 			if (!iter.sg)
1649 				break;
1650 
1651 			iter.dma = sg_dma_address(iter.sg);
1652 			iter.max = iter.dma + iter.sg->length;
1653 		}
1654 
1655 		if (++act_pte == GEN6_PTES) {
1656 			kunmap_atomic(vaddr);
1657 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1658 			act_pte = 0;
1659 		}
1660 	} while (1);
1661 	kunmap_atomic(vaddr);
1662 }
1663 
1664 static int gen6_alloc_va_range(struct i915_address_space *vm,
1665 			       u64 start, u64 length)
1666 {
1667 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1668 	struct i915_page_table *pt;
1669 	u64 from = start;
1670 	unsigned int pde;
1671 	bool flush = false;
1672 
1673 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1674 		if (pt == vm->scratch_pt) {
1675 			pt = alloc_pt(vm);
1676 			if (IS_ERR(pt))
1677 				goto unwind_out;
1678 
1679 			gen6_initialize_pt(vm, pt);
1680 			ppgtt->pd.page_table[pde] = pt;
1681 			gen6_write_pde(ppgtt, pde, pt);
1682 			flush = true;
1683 		}
1684 	}
1685 
1686 	if (flush) {
1687 		mark_tlbs_dirty(ppgtt);
1688 		wmb();
1689 	}
1690 
1691 	return 0;
1692 
1693 unwind_out:
1694 	gen6_ppgtt_clear_range(vm, from, start);
1695 	return -ENOMEM;
1696 }
1697 
1698 static int gen6_init_scratch(struct i915_address_space *vm)
1699 {
1700 	int ret;
1701 
1702 	ret = setup_scratch_page(vm, I915_GFP_DMA);
1703 	if (ret)
1704 		return ret;
1705 
1706 	vm->scratch_pt = alloc_pt(vm);
1707 	if (IS_ERR(vm->scratch_pt)) {
1708 		cleanup_scratch_page(vm);
1709 		return PTR_ERR(vm->scratch_pt);
1710 	}
1711 
1712 	gen6_initialize_pt(vm, vm->scratch_pt);
1713 
1714 	return 0;
1715 }
1716 
1717 static void gen6_free_scratch(struct i915_address_space *vm)
1718 {
1719 	free_pt(vm, vm->scratch_pt);
1720 	cleanup_scratch_page(vm);
1721 }
1722 
1723 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1724 {
1725 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1726 	struct i915_page_directory *pd = &ppgtt->pd;
1727 	struct i915_page_table *pt;
1728 	u32 pde;
1729 
1730 	drm_mm_remove_node(&ppgtt->node);
1731 
1732 	gen6_for_all_pdes(pt, pd, pde)
1733 		if (pt != vm->scratch_pt)
1734 			free_pt(vm, pt);
1735 
1736 	gen6_free_scratch(vm);
1737 }
1738 
1739 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1740 {
1741 	struct i915_address_space *vm = &ppgtt->base;
1742 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1743 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1744 	int ret;
1745 
1746 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1747 	 * allocator works in address space sizes, so it's multiplied by page
1748 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1749 	 */
1750 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1751 
1752 	ret = gen6_init_scratch(vm);
1753 	if (ret)
1754 		return ret;
1755 
1756 	ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1757 				  GEN6_PD_SIZE, GEN6_PD_ALIGN,
1758 				  I915_COLOR_UNEVICTABLE,
1759 				  0, ggtt->base.total,
1760 				  PIN_HIGH);
1761 	if (ret)
1762 		goto err_out;
1763 
1764 	if (ppgtt->node.start < ggtt->mappable_end)
1765 		DRM_DEBUG("Forced to use aperture for PDEs\n");
1766 
1767 	ppgtt->pd.base.ggtt_offset =
1768 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1769 
1770 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
1771 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1772 
1773 	return 0;
1774 
1775 err_out:
1776 	gen6_free_scratch(vm);
1777 	return ret;
1778 }
1779 
1780 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1781 {
1782 	return gen6_ppgtt_allocate_page_directories(ppgtt);
1783 }
1784 
1785 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1786 				  u64 start, u64 length)
1787 {
1788 	struct i915_page_table *unused;
1789 	u32 pde;
1790 
1791 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
1792 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1793 }
1794 
1795 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1796 {
1797 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1798 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1799 	int ret;
1800 
1801 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
1802 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
1803 		ppgtt->switch_mm = gen6_mm_switch;
1804 	else if (IS_HASWELL(dev_priv))
1805 		ppgtt->switch_mm = hsw_mm_switch;
1806 	else if (IS_GEN7(dev_priv))
1807 		ppgtt->switch_mm = gen7_mm_switch;
1808 	else
1809 		BUG();
1810 
1811 	ret = gen6_ppgtt_alloc(ppgtt);
1812 	if (ret)
1813 		return ret;
1814 
1815 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1816 
1817 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1818 	gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
1819 
1820 	ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
1821 	if (ret) {
1822 		gen6_ppgtt_cleanup(&ppgtt->base);
1823 		return ret;
1824 	}
1825 
1826 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1827 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1828 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1829 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1830 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1831 	ppgtt->debug_dump = gen6_dump_ppgtt;
1832 
1833 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1834 			 ppgtt->node.size >> 20,
1835 			 ppgtt->node.start / PAGE_SIZE);
1836 
1837 	DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
1838 			 ppgtt->pd.base.ggtt_offset << 10);
1839 
1840 	return 0;
1841 }
1842 
1843 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
1844 			   struct drm_i915_private *dev_priv)
1845 {
1846 	ppgtt->base.i915 = dev_priv;
1847 	ppgtt->base.dma = &dev_priv->drm.pdev->dev;
1848 
1849 	if (INTEL_INFO(dev_priv)->gen < 8)
1850 		return gen6_ppgtt_init(ppgtt);
1851 	else
1852 		return gen8_ppgtt_init(ppgtt);
1853 }
1854 
1855 static void i915_address_space_init(struct i915_address_space *vm,
1856 				    struct drm_i915_private *dev_priv,
1857 				    const char *name)
1858 {
1859 	i915_gem_timeline_init(dev_priv, &vm->timeline, name);
1860 
1861 	drm_mm_init(&vm->mm, 0, vm->total);
1862 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
1863 
1864 	INIT_LIST_HEAD(&vm->active_list);
1865 	INIT_LIST_HEAD(&vm->inactive_list);
1866 	INIT_LIST_HEAD(&vm->unbound_list);
1867 
1868 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
1869 	pagevec_init(&vm->free_pages, false);
1870 }
1871 
1872 static void i915_address_space_fini(struct i915_address_space *vm)
1873 {
1874 	if (pagevec_count(&vm->free_pages))
1875 		vm_free_pages_release(vm);
1876 
1877 	i915_gem_timeline_fini(&vm->timeline);
1878 	drm_mm_takedown(&vm->mm);
1879 	list_del(&vm->global_link);
1880 }
1881 
1882 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
1883 {
1884 	/* This function is for gtt related workarounds. This function is
1885 	 * called on driver load and after a GPU reset, so you can place
1886 	 * workarounds here even if they get overwritten by GPU reset.
1887 	 */
1888 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl */
1889 	if (IS_BROADWELL(dev_priv))
1890 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
1891 	else if (IS_CHERRYVIEW(dev_priv))
1892 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
1893 	else if (IS_GEN9_BC(dev_priv))
1894 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
1895 	else if (IS_GEN9_LP(dev_priv))
1896 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
1897 }
1898 
1899 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
1900 {
1901 	gtt_write_workarounds(dev_priv);
1902 
1903 	/* In the case of execlists, PPGTT is enabled by the context descriptor
1904 	 * and the PDPs are contained within the context itself.  We don't
1905 	 * need to do anything here. */
1906 	if (i915.enable_execlists)
1907 		return 0;
1908 
1909 	if (!USES_PPGTT(dev_priv))
1910 		return 0;
1911 
1912 	if (IS_GEN6(dev_priv))
1913 		gen6_ppgtt_enable(dev_priv);
1914 	else if (IS_GEN7(dev_priv))
1915 		gen7_ppgtt_enable(dev_priv);
1916 	else if (INTEL_GEN(dev_priv) >= 8)
1917 		gen8_ppgtt_enable(dev_priv);
1918 	else
1919 		MISSING_CASE(INTEL_GEN(dev_priv));
1920 
1921 	return 0;
1922 }
1923 
1924 struct i915_hw_ppgtt *
1925 i915_ppgtt_create(struct drm_i915_private *dev_priv,
1926 		  struct drm_i915_file_private *fpriv,
1927 		  const char *name)
1928 {
1929 	struct i915_hw_ppgtt *ppgtt;
1930 	int ret;
1931 
1932 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1933 	if (!ppgtt)
1934 		return ERR_PTR(-ENOMEM);
1935 
1936 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
1937 	if (ret) {
1938 		kfree(ppgtt);
1939 		return ERR_PTR(ret);
1940 	}
1941 
1942 	kref_init(&ppgtt->ref);
1943 	i915_address_space_init(&ppgtt->base, dev_priv, name);
1944 	ppgtt->base.file = fpriv;
1945 
1946 	trace_i915_ppgtt_create(&ppgtt->base);
1947 
1948 	return ppgtt;
1949 }
1950 
1951 void i915_ppgtt_close(struct i915_address_space *vm)
1952 {
1953 	struct list_head *phases[] = {
1954 		&vm->active_list,
1955 		&vm->inactive_list,
1956 		&vm->unbound_list,
1957 		NULL,
1958 	}, **phase;
1959 
1960 	GEM_BUG_ON(vm->closed);
1961 	vm->closed = true;
1962 
1963 	for (phase = phases; *phase; phase++) {
1964 		struct i915_vma *vma, *vn;
1965 
1966 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
1967 			if (!i915_vma_is_closed(vma))
1968 				i915_vma_close(vma);
1969 	}
1970 }
1971 
1972 void i915_ppgtt_release(struct kref *kref)
1973 {
1974 	struct i915_hw_ppgtt *ppgtt =
1975 		container_of(kref, struct i915_hw_ppgtt, ref);
1976 
1977 	trace_i915_ppgtt_release(&ppgtt->base);
1978 
1979 	/* vmas should already be unbound and destroyed */
1980 	WARN_ON(!list_empty(&ppgtt->base.active_list));
1981 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1982 	WARN_ON(!list_empty(&ppgtt->base.unbound_list));
1983 
1984 	ppgtt->base.cleanup(&ppgtt->base);
1985 	i915_address_space_fini(&ppgtt->base);
1986 	kfree(ppgtt);
1987 }
1988 
1989 /* Certain Gen5 chipsets require require idling the GPU before
1990  * unmapping anything from the GTT when VT-d is enabled.
1991  */
1992 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
1993 {
1994 	/* Query intel_iommu to see if we need the workaround. Presumably that
1995 	 * was loaded first.
1996 	 */
1997 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
1998 }
1999 
2000 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2001 {
2002 	struct intel_engine_cs *engine;
2003 	enum intel_engine_id id;
2004 
2005 	if (INTEL_INFO(dev_priv)->gen < 6)
2006 		return;
2007 
2008 	for_each_engine(engine, dev_priv, id) {
2009 		u32 fault_reg;
2010 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2011 		if (fault_reg & RING_FAULT_VALID) {
2012 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2013 					 "\tAddr: 0x%08lx\n"
2014 					 "\tAddress space: %s\n"
2015 					 "\tSource ID: %d\n"
2016 					 "\tType: %d\n",
2017 					 fault_reg & PAGE_MASK,
2018 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2019 					 RING_FAULT_SRCID(fault_reg),
2020 					 RING_FAULT_FAULT_TYPE(fault_reg));
2021 			I915_WRITE(RING_FAULT_REG(engine),
2022 				   fault_reg & ~RING_FAULT_VALID);
2023 		}
2024 	}
2025 
2026 	/* Engine specific init may not have been done till this point. */
2027 	if (dev_priv->engine[RCS])
2028 		POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2029 }
2030 
2031 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2032 {
2033 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2034 
2035 	/* Don't bother messing with faults pre GEN6 as we have little
2036 	 * documentation supporting that it's a good idea.
2037 	 */
2038 	if (INTEL_GEN(dev_priv) < 6)
2039 		return;
2040 
2041 	i915_check_and_clear_faults(dev_priv);
2042 
2043 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2044 
2045 	i915_ggtt_invalidate(dev_priv);
2046 }
2047 
2048 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2049 			       struct sg_table *pages)
2050 {
2051 	do {
2052 		if (dma_map_sg(&obj->base.dev->pdev->dev,
2053 			       pages->sgl, pages->nents,
2054 			       PCI_DMA_BIDIRECTIONAL))
2055 			return 0;
2056 
2057 		/* If the DMA remap fails, one cause can be that we have
2058 		 * too many objects pinned in a small remapping table,
2059 		 * such as swiotlb. Incrementally purge all other objects and
2060 		 * try again - if there are no more pages to remove from
2061 		 * the DMA remapper, i915_gem_shrink will return 0.
2062 		 */
2063 		GEM_BUG_ON(obj->mm.pages == pages);
2064 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2065 				 obj->base.size >> PAGE_SHIFT, NULL,
2066 				 I915_SHRINK_BOUND |
2067 				 I915_SHRINK_UNBOUND |
2068 				 I915_SHRINK_ACTIVE));
2069 
2070 	return -ENOSPC;
2071 }
2072 
2073 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2074 {
2075 	writeq(pte, addr);
2076 }
2077 
2078 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2079 				  dma_addr_t addr,
2080 				  u64 offset,
2081 				  enum i915_cache_level level,
2082 				  u32 unused)
2083 {
2084 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2085 	gen8_pte_t __iomem *pte =
2086 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2087 
2088 	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2089 
2090 	ggtt->invalidate(vm->i915);
2091 }
2092 
2093 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2094 				     struct i915_vma *vma,
2095 				     enum i915_cache_level level,
2096 				     u32 unused)
2097 {
2098 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2099 	struct sgt_iter sgt_iter;
2100 	gen8_pte_t __iomem *gtt_entries;
2101 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2102 	dma_addr_t addr;
2103 
2104 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2105 	gtt_entries += vma->node.start >> PAGE_SHIFT;
2106 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2107 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2108 
2109 	wmb();
2110 
2111 	/* This next bit makes the above posting read even more important. We
2112 	 * want to flush the TLBs only after we're certain all the PTE updates
2113 	 * have finished.
2114 	 */
2115 	ggtt->invalidate(vm->i915);
2116 }
2117 
2118 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2119 				  dma_addr_t addr,
2120 				  u64 offset,
2121 				  enum i915_cache_level level,
2122 				  u32 flags)
2123 {
2124 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2125 	gen6_pte_t __iomem *pte =
2126 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2127 
2128 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2129 
2130 	ggtt->invalidate(vm->i915);
2131 }
2132 
2133 /*
2134  * Binds an object into the global gtt with the specified cache level. The object
2135  * will be accessible to the GPU via commands whose operands reference offsets
2136  * within the global GTT as well as accessible by the GPU through the GMADR
2137  * mapped BAR (dev_priv->mm.gtt->gtt).
2138  */
2139 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2140 				     struct i915_vma *vma,
2141 				     enum i915_cache_level level,
2142 				     u32 flags)
2143 {
2144 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2145 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2146 	unsigned int i = vma->node.start >> PAGE_SHIFT;
2147 	struct sgt_iter iter;
2148 	dma_addr_t addr;
2149 	for_each_sgt_dma(addr, iter, vma->pages)
2150 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2151 	wmb();
2152 
2153 	/* This next bit makes the above posting read even more important. We
2154 	 * want to flush the TLBs only after we're certain all the PTE updates
2155 	 * have finished.
2156 	 */
2157 	ggtt->invalidate(vm->i915);
2158 }
2159 
2160 static void nop_clear_range(struct i915_address_space *vm,
2161 			    u64 start, u64 length)
2162 {
2163 }
2164 
2165 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2166 				  u64 start, u64 length)
2167 {
2168 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2169 	unsigned first_entry = start >> PAGE_SHIFT;
2170 	unsigned num_entries = length >> PAGE_SHIFT;
2171 	const gen8_pte_t scratch_pte =
2172 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2173 	gen8_pte_t __iomem *gtt_base =
2174 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2175 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2176 	int i;
2177 
2178 	if (WARN(num_entries > max_entries,
2179 		 "First entry = %d; Num entries = %d (max=%d)\n",
2180 		 first_entry, num_entries, max_entries))
2181 		num_entries = max_entries;
2182 
2183 	for (i = 0; i < num_entries; i++)
2184 		gen8_set_pte(&gtt_base[i], scratch_pte);
2185 }
2186 
2187 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2188 {
2189 	struct drm_i915_private *dev_priv = vm->i915;
2190 
2191 	/*
2192 	 * Make sure the internal GAM fifo has been cleared of all GTT
2193 	 * writes before exiting stop_machine(). This guarantees that
2194 	 * any aperture accesses waiting to start in another process
2195 	 * cannot back up behind the GTT writes causing a hang.
2196 	 * The register can be any arbitrary GAM register.
2197 	 */
2198 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2199 }
2200 
2201 struct insert_page {
2202 	struct i915_address_space *vm;
2203 	dma_addr_t addr;
2204 	u64 offset;
2205 	enum i915_cache_level level;
2206 };
2207 
2208 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2209 {
2210 	struct insert_page *arg = _arg;
2211 
2212 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2213 	bxt_vtd_ggtt_wa(arg->vm);
2214 
2215 	return 0;
2216 }
2217 
2218 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2219 					  dma_addr_t addr,
2220 					  u64 offset,
2221 					  enum i915_cache_level level,
2222 					  u32 unused)
2223 {
2224 	struct insert_page arg = { vm, addr, offset, level };
2225 
2226 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2227 }
2228 
2229 struct insert_entries {
2230 	struct i915_address_space *vm;
2231 	struct i915_vma *vma;
2232 	enum i915_cache_level level;
2233 };
2234 
2235 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2236 {
2237 	struct insert_entries *arg = _arg;
2238 
2239 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2240 	bxt_vtd_ggtt_wa(arg->vm);
2241 
2242 	return 0;
2243 }
2244 
2245 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2246 					     struct i915_vma *vma,
2247 					     enum i915_cache_level level,
2248 					     u32 unused)
2249 {
2250 	struct insert_entries arg = { vm, vma, level };
2251 
2252 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2253 }
2254 
2255 struct clear_range {
2256 	struct i915_address_space *vm;
2257 	u64 start;
2258 	u64 length;
2259 };
2260 
2261 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2262 {
2263 	struct clear_range *arg = _arg;
2264 
2265 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2266 	bxt_vtd_ggtt_wa(arg->vm);
2267 
2268 	return 0;
2269 }
2270 
2271 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2272 					  u64 start,
2273 					  u64 length)
2274 {
2275 	struct clear_range arg = { vm, start, length };
2276 
2277 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2278 }
2279 
2280 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2281 				  u64 start, u64 length)
2282 {
2283 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2284 	unsigned first_entry = start >> PAGE_SHIFT;
2285 	unsigned num_entries = length >> PAGE_SHIFT;
2286 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2287 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2288 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2289 	int i;
2290 
2291 	if (WARN(num_entries > max_entries,
2292 		 "First entry = %d; Num entries = %d (max=%d)\n",
2293 		 first_entry, num_entries, max_entries))
2294 		num_entries = max_entries;
2295 
2296 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2297 				     I915_CACHE_LLC, 0);
2298 
2299 	for (i = 0; i < num_entries; i++)
2300 		iowrite32(scratch_pte, &gtt_base[i]);
2301 }
2302 
2303 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2304 				  dma_addr_t addr,
2305 				  u64 offset,
2306 				  enum i915_cache_level cache_level,
2307 				  u32 unused)
2308 {
2309 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2310 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2311 
2312 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2313 }
2314 
2315 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2316 				     struct i915_vma *vma,
2317 				     enum i915_cache_level cache_level,
2318 				     u32 unused)
2319 {
2320 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2321 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2322 
2323 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2324 				    flags);
2325 }
2326 
2327 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2328 				  u64 start, u64 length)
2329 {
2330 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2331 }
2332 
2333 static int ggtt_bind_vma(struct i915_vma *vma,
2334 			 enum i915_cache_level cache_level,
2335 			 u32 flags)
2336 {
2337 	struct drm_i915_private *i915 = vma->vm->i915;
2338 	struct drm_i915_gem_object *obj = vma->obj;
2339 	u32 pte_flags;
2340 
2341 	if (unlikely(!vma->pages)) {
2342 		int ret = i915_get_ggtt_vma_pages(vma);
2343 		if (ret)
2344 			return ret;
2345 	}
2346 
2347 	/* Currently applicable only to VLV */
2348 	pte_flags = 0;
2349 	if (obj->gt_ro)
2350 		pte_flags |= PTE_READ_ONLY;
2351 
2352 	intel_runtime_pm_get(i915);
2353 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2354 	intel_runtime_pm_put(i915);
2355 
2356 	/*
2357 	 * Without aliasing PPGTT there's no difference between
2358 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2359 	 * upgrade to both bound if we bind either to avoid double-binding.
2360 	 */
2361 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2362 
2363 	return 0;
2364 }
2365 
2366 static void ggtt_unbind_vma(struct i915_vma *vma)
2367 {
2368 	struct drm_i915_private *i915 = vma->vm->i915;
2369 
2370 	intel_runtime_pm_get(i915);
2371 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2372 	intel_runtime_pm_put(i915);
2373 }
2374 
2375 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2376 				 enum i915_cache_level cache_level,
2377 				 u32 flags)
2378 {
2379 	struct drm_i915_private *i915 = vma->vm->i915;
2380 	u32 pte_flags;
2381 	int ret;
2382 
2383 	if (unlikely(!vma->pages)) {
2384 		ret = i915_get_ggtt_vma_pages(vma);
2385 		if (ret)
2386 			return ret;
2387 	}
2388 
2389 	/* Currently applicable only to VLV */
2390 	pte_flags = 0;
2391 	if (vma->obj->gt_ro)
2392 		pte_flags |= PTE_READ_ONLY;
2393 
2394 	if (flags & I915_VMA_LOCAL_BIND) {
2395 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2396 
2397 		if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2398 		    appgtt->base.allocate_va_range) {
2399 			ret = appgtt->base.allocate_va_range(&appgtt->base,
2400 							     vma->node.start,
2401 							     vma->size);
2402 			if (ret)
2403 				goto err_pages;
2404 		}
2405 
2406 		appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2407 					    pte_flags);
2408 	}
2409 
2410 	if (flags & I915_VMA_GLOBAL_BIND) {
2411 		intel_runtime_pm_get(i915);
2412 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2413 		intel_runtime_pm_put(i915);
2414 	}
2415 
2416 	return 0;
2417 
2418 err_pages:
2419 	if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) {
2420 		if (vma->pages != vma->obj->mm.pages) {
2421 			GEM_BUG_ON(!vma->pages);
2422 			sg_free_table(vma->pages);
2423 			kfree(vma->pages);
2424 		}
2425 		vma->pages = NULL;
2426 	}
2427 	return ret;
2428 }
2429 
2430 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2431 {
2432 	struct drm_i915_private *i915 = vma->vm->i915;
2433 
2434 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2435 		intel_runtime_pm_get(i915);
2436 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2437 		intel_runtime_pm_put(i915);
2438 	}
2439 
2440 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2441 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2442 
2443 		vm->clear_range(vm, vma->node.start, vma->size);
2444 	}
2445 }
2446 
2447 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2448 			       struct sg_table *pages)
2449 {
2450 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2451 	struct device *kdev = &dev_priv->drm.pdev->dev;
2452 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2453 
2454 	if (unlikely(ggtt->do_idle_maps)) {
2455 		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2456 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2457 			/* Wait a bit, in hopes it avoids the hang */
2458 			udelay(10);
2459 		}
2460 	}
2461 
2462 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2463 }
2464 
2465 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2466 				  unsigned long color,
2467 				  u64 *start,
2468 				  u64 *end)
2469 {
2470 	if (node->allocated && node->color != color)
2471 		*start += I915_GTT_PAGE_SIZE;
2472 
2473 	/* Also leave a space between the unallocated reserved node after the
2474 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2475 	 * to insert a guard page to prevent prefetches crossing over the
2476 	 * GTT boundary.
2477 	 */
2478 	node = list_next_entry(node, node_list);
2479 	if (node->color != color)
2480 		*end -= I915_GTT_PAGE_SIZE;
2481 }
2482 
2483 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2484 {
2485 	struct i915_ggtt *ggtt = &i915->ggtt;
2486 	struct i915_hw_ppgtt *ppgtt;
2487 	int err;
2488 
2489 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2490 	if (IS_ERR(ppgtt))
2491 		return PTR_ERR(ppgtt);
2492 
2493 	if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2494 		err = -ENODEV;
2495 		goto err_ppgtt;
2496 	}
2497 
2498 	if (ppgtt->base.allocate_va_range) {
2499 		/* Note we only pre-allocate as far as the end of the global
2500 		 * GTT. On 48b / 4-level page-tables, the difference is very,
2501 		 * very significant! We have to preallocate as GVT/vgpu does
2502 		 * not like the page directory disappearing.
2503 		 */
2504 		err = ppgtt->base.allocate_va_range(&ppgtt->base,
2505 						    0, ggtt->base.total);
2506 		if (err)
2507 			goto err_ppgtt;
2508 	}
2509 
2510 	i915->mm.aliasing_ppgtt = ppgtt;
2511 
2512 	WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2513 	ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2514 
2515 	WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2516 	ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2517 
2518 	return 0;
2519 
2520 err_ppgtt:
2521 	i915_ppgtt_put(ppgtt);
2522 	return err;
2523 }
2524 
2525 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2526 {
2527 	struct i915_ggtt *ggtt = &i915->ggtt;
2528 	struct i915_hw_ppgtt *ppgtt;
2529 
2530 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2531 	if (!ppgtt)
2532 		return;
2533 
2534 	i915_ppgtt_put(ppgtt);
2535 
2536 	ggtt->base.bind_vma = ggtt_bind_vma;
2537 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2538 }
2539 
2540 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2541 {
2542 	/* Let GEM Manage all of the aperture.
2543 	 *
2544 	 * However, leave one page at the end still bound to the scratch page.
2545 	 * There are a number of places where the hardware apparently prefetches
2546 	 * past the end of the object, and we've seen multiple hangs with the
2547 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2548 	 * aperture.  One page should be enough to keep any prefetching inside
2549 	 * of the aperture.
2550 	 */
2551 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2552 	unsigned long hole_start, hole_end;
2553 	struct drm_mm_node *entry;
2554 	int ret;
2555 
2556 	ret = intel_vgt_balloon(dev_priv);
2557 	if (ret)
2558 		return ret;
2559 
2560 	/* Reserve a mappable slot for our lockless error capture */
2561 	ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2562 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2563 					  0, ggtt->mappable_end,
2564 					  DRM_MM_INSERT_LOW);
2565 	if (ret)
2566 		return ret;
2567 
2568 	/* Clear any non-preallocated blocks */
2569 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2570 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2571 			      hole_start, hole_end);
2572 		ggtt->base.clear_range(&ggtt->base, hole_start,
2573 				       hole_end - hole_start);
2574 	}
2575 
2576 	/* And finally clear the reserved guard page */
2577 	ggtt->base.clear_range(&ggtt->base,
2578 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2579 
2580 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2581 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2582 		if (ret)
2583 			goto err;
2584 	}
2585 
2586 	return 0;
2587 
2588 err:
2589 	drm_mm_remove_node(&ggtt->error_capture);
2590 	return ret;
2591 }
2592 
2593 /**
2594  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2595  * @dev_priv: i915 device
2596  */
2597 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2598 {
2599 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2600 	struct i915_vma *vma, *vn;
2601 
2602 	ggtt->base.closed = true;
2603 
2604 	mutex_lock(&dev_priv->drm.struct_mutex);
2605 	WARN_ON(!list_empty(&ggtt->base.active_list));
2606 	list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2607 		WARN_ON(i915_vma_unbind(vma));
2608 	mutex_unlock(&dev_priv->drm.struct_mutex);
2609 
2610 	i915_gem_cleanup_stolen(&dev_priv->drm);
2611 
2612 	mutex_lock(&dev_priv->drm.struct_mutex);
2613 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2614 
2615 	if (drm_mm_node_allocated(&ggtt->error_capture))
2616 		drm_mm_remove_node(&ggtt->error_capture);
2617 
2618 	if (drm_mm_initialized(&ggtt->base.mm)) {
2619 		intel_vgt_deballoon(dev_priv);
2620 		i915_address_space_fini(&ggtt->base);
2621 	}
2622 
2623 	ggtt->base.cleanup(&ggtt->base);
2624 	mutex_unlock(&dev_priv->drm.struct_mutex);
2625 
2626 	arch_phys_wc_del(ggtt->mtrr);
2627 	io_mapping_fini(&ggtt->mappable);
2628 }
2629 
2630 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2631 {
2632 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2633 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2634 	return snb_gmch_ctl << 20;
2635 }
2636 
2637 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2638 {
2639 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2640 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2641 	if (bdw_gmch_ctl)
2642 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2643 
2644 #ifdef CONFIG_X86_32
2645 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2646 	if (bdw_gmch_ctl > 4)
2647 		bdw_gmch_ctl = 4;
2648 #endif
2649 
2650 	return bdw_gmch_ctl << 20;
2651 }
2652 
2653 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2654 {
2655 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2656 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2657 
2658 	if (gmch_ctrl)
2659 		return 1 << (20 + gmch_ctrl);
2660 
2661 	return 0;
2662 }
2663 
2664 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2665 {
2666 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2667 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2668 	return (size_t)snb_gmch_ctl << 25; /* 32 MB units */
2669 }
2670 
2671 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2672 {
2673 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2674 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2675 	return (size_t)bdw_gmch_ctl << 25; /* 32 MB units */
2676 }
2677 
2678 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2679 {
2680 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2681 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2682 
2683 	/*
2684 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2685 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2686 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2687 	 */
2688 	if (gmch_ctrl < 0x11)
2689 		return (size_t)gmch_ctrl << 25;
2690 	else if (gmch_ctrl < 0x17)
2691 		return (size_t)(gmch_ctrl - 0x11 + 2) << 22;
2692 	else
2693 		return (size_t)(gmch_ctrl - 0x17 + 9) << 22;
2694 }
2695 
2696 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2697 {
2698 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2699 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2700 
2701 	if (gen9_gmch_ctl < 0xf0)
2702 		return (size_t)gen9_gmch_ctl << 25; /* 32 MB units */
2703 	else
2704 		/* 4MB increments starting at 0xf0 for 4MB */
2705 		return (size_t)(gen9_gmch_ctl - 0xf0 + 1) << 22;
2706 }
2707 
2708 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2709 {
2710 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2711 	struct pci_dev *pdev = dev_priv->drm.pdev;
2712 	phys_addr_t phys_addr;
2713 	int ret;
2714 
2715 	/* For Modern GENs the PTEs and register space are split in the BAR */
2716 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2717 
2718 	/*
2719 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2720 	 * dropped. For WC mappings in general we have 64 byte burst writes
2721 	 * when the WC buffer is flushed, so we can't use it, but have to
2722 	 * resort to an uncached mapping. The WC issue is easily caught by the
2723 	 * readback check when writing GTT PTE entries.
2724 	 */
2725 	if (IS_GEN9_LP(dev_priv))
2726 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2727 	else
2728 		ggtt->gsm = ioremap_wc(phys_addr, size);
2729 	if (!ggtt->gsm) {
2730 		DRM_ERROR("Failed to map the ggtt page table\n");
2731 		return -ENOMEM;
2732 	}
2733 
2734 	ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2735 	if (ret) {
2736 		DRM_ERROR("Scratch setup failed\n");
2737 		/* iounmap will also get called at remove, but meh */
2738 		iounmap(ggtt->gsm);
2739 		return ret;
2740 	}
2741 
2742 	return 0;
2743 }
2744 
2745 static void cnl_setup_private_ppat(struct drm_i915_private *dev_priv)
2746 {
2747 	/* XXX: spec is unclear if this is still needed for CNL+ */
2748 	if (!USES_PPGTT(dev_priv)) {
2749 		I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_UC);
2750 		return;
2751 	}
2752 
2753 	I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC);
2754 	I915_WRITE(GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
2755 	I915_WRITE(GEN10_PAT_INDEX(2), GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
2756 	I915_WRITE(GEN10_PAT_INDEX(3), GEN8_PPAT_UC);
2757 	I915_WRITE(GEN10_PAT_INDEX(4), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
2758 	I915_WRITE(GEN10_PAT_INDEX(5), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
2759 	I915_WRITE(GEN10_PAT_INDEX(6), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
2760 	I915_WRITE(GEN10_PAT_INDEX(7), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2761 }
2762 
2763 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2764  * bits. When using advanced contexts each context stores its own PAT, but
2765  * writing this data shouldn't be harmful even in those cases. */
2766 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2767 {
2768 	u64 pat;
2769 
2770 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2771 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2772 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2773 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2774 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2775 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2776 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2777 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2778 
2779 	if (!USES_PPGTT(dev_priv))
2780 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2781 		 * so RTL will always use the value corresponding to
2782 		 * pat_sel = 000".
2783 		 * So let's disable cache for GGTT to avoid screen corruptions.
2784 		 * MOCS still can be used though.
2785 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2786 		 * before this patch, i.e. the same uncached + snooping access
2787 		 * like on gen6/7 seems to be in effect.
2788 		 * - So this just fixes blitter/render access. Again it looks
2789 		 * like it's not just uncached access, but uncached + snooping.
2790 		 * So we can still hold onto all our assumptions wrt cpu
2791 		 * clflushing on LLC machines.
2792 		 */
2793 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2794 
2795 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2796 	 * write would work. */
2797 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2798 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2799 }
2800 
2801 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2802 {
2803 	u64 pat;
2804 
2805 	/*
2806 	 * Map WB on BDW to snooped on CHV.
2807 	 *
2808 	 * Only the snoop bit has meaning for CHV, the rest is
2809 	 * ignored.
2810 	 *
2811 	 * The hardware will never snoop for certain types of accesses:
2812 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2813 	 * - PPGTT page tables
2814 	 * - some other special cycles
2815 	 *
2816 	 * As with BDW, we also need to consider the following for GT accesses:
2817 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2818 	 * so RTL will always use the value corresponding to
2819 	 * pat_sel = 000".
2820 	 * Which means we must set the snoop bit in PAT entry 0
2821 	 * in order to keep the global status page working.
2822 	 */
2823 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2824 	      GEN8_PPAT(1, 0) |
2825 	      GEN8_PPAT(2, 0) |
2826 	      GEN8_PPAT(3, 0) |
2827 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2828 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2829 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2830 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2831 
2832 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2833 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2834 }
2835 
2836 static void gen6_gmch_remove(struct i915_address_space *vm)
2837 {
2838 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2839 
2840 	iounmap(ggtt->gsm);
2841 	cleanup_scratch_page(vm);
2842 }
2843 
2844 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2845 {
2846 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2847 	struct pci_dev *pdev = dev_priv->drm.pdev;
2848 	unsigned int size;
2849 	u16 snb_gmch_ctl;
2850 	int err;
2851 
2852 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2853 	ggtt->mappable_base = pci_resource_start(pdev, 2);
2854 	ggtt->mappable_end = pci_resource_len(pdev, 2);
2855 
2856 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
2857 	if (!err)
2858 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2859 	if (err)
2860 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2861 
2862 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2863 
2864 	if (INTEL_GEN(dev_priv) >= 9) {
2865 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
2866 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
2867 	} else if (IS_CHERRYVIEW(dev_priv)) {
2868 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
2869 		size = chv_get_total_gtt_size(snb_gmch_ctl);
2870 	} else {
2871 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
2872 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
2873 	}
2874 
2875 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2876 
2877 	if (INTEL_GEN(dev_priv) >= 10)
2878 		cnl_setup_private_ppat(dev_priv);
2879 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2880 		chv_setup_private_ppat(dev_priv);
2881 	else
2882 		bdw_setup_private_ppat(dev_priv);
2883 
2884 	ggtt->base.cleanup = gen6_gmch_remove;
2885 	ggtt->base.bind_vma = ggtt_bind_vma;
2886 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2887 	ggtt->base.insert_page = gen8_ggtt_insert_page;
2888 	ggtt->base.clear_range = nop_clear_range;
2889 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
2890 		ggtt->base.clear_range = gen8_ggtt_clear_range;
2891 
2892 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
2893 
2894 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
2895 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
2896 		ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
2897 		ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
2898 		if (ggtt->base.clear_range != nop_clear_range)
2899 			ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
2900 	}
2901 
2902 	ggtt->invalidate = gen6_ggtt_invalidate;
2903 
2904 	return ggtt_probe_common(ggtt, size);
2905 }
2906 
2907 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
2908 {
2909 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2910 	struct pci_dev *pdev = dev_priv->drm.pdev;
2911 	unsigned int size;
2912 	u16 snb_gmch_ctl;
2913 	int err;
2914 
2915 	ggtt->mappable_base = pci_resource_start(pdev, 2);
2916 	ggtt->mappable_end = pci_resource_len(pdev, 2);
2917 
2918 	/* 64/512MB is the current min/max we actually know of, but this is just
2919 	 * a coarse sanity check.
2920 	 */
2921 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
2922 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
2923 		return -ENXIO;
2924 	}
2925 
2926 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2927 	if (!err)
2928 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
2929 	if (err)
2930 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2931 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2932 
2933 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
2934 
2935 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
2936 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2937 
2938 	ggtt->base.clear_range = gen6_ggtt_clear_range;
2939 	ggtt->base.insert_page = gen6_ggtt_insert_page;
2940 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
2941 	ggtt->base.bind_vma = ggtt_bind_vma;
2942 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2943 	ggtt->base.cleanup = gen6_gmch_remove;
2944 
2945 	ggtt->invalidate = gen6_ggtt_invalidate;
2946 
2947 	if (HAS_EDRAM(dev_priv))
2948 		ggtt->base.pte_encode = iris_pte_encode;
2949 	else if (IS_HASWELL(dev_priv))
2950 		ggtt->base.pte_encode = hsw_pte_encode;
2951 	else if (IS_VALLEYVIEW(dev_priv))
2952 		ggtt->base.pte_encode = byt_pte_encode;
2953 	else if (INTEL_GEN(dev_priv) >= 7)
2954 		ggtt->base.pte_encode = ivb_pte_encode;
2955 	else
2956 		ggtt->base.pte_encode = snb_pte_encode;
2957 
2958 	return ggtt_probe_common(ggtt, size);
2959 }
2960 
2961 static void i915_gmch_remove(struct i915_address_space *vm)
2962 {
2963 	intel_gmch_remove();
2964 }
2965 
2966 static int i915_gmch_probe(struct i915_ggtt *ggtt)
2967 {
2968 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2969 	int ret;
2970 
2971 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
2972 	if (!ret) {
2973 		DRM_ERROR("failed to set up gmch\n");
2974 		return -EIO;
2975 	}
2976 
2977 	intel_gtt_get(&ggtt->base.total,
2978 		      &ggtt->stolen_size,
2979 		      &ggtt->mappable_base,
2980 		      &ggtt->mappable_end);
2981 
2982 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
2983 	ggtt->base.insert_page = i915_ggtt_insert_page;
2984 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
2985 	ggtt->base.clear_range = i915_ggtt_clear_range;
2986 	ggtt->base.bind_vma = ggtt_bind_vma;
2987 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2988 	ggtt->base.cleanup = i915_gmch_remove;
2989 
2990 	ggtt->invalidate = gmch_ggtt_invalidate;
2991 
2992 	if (unlikely(ggtt->do_idle_maps))
2993 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2994 
2995 	return 0;
2996 }
2997 
2998 /**
2999  * i915_ggtt_probe_hw - Probe GGTT hardware location
3000  * @dev_priv: i915 device
3001  */
3002 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3003 {
3004 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3005 	int ret;
3006 
3007 	ggtt->base.i915 = dev_priv;
3008 	ggtt->base.dma = &dev_priv->drm.pdev->dev;
3009 
3010 	if (INTEL_GEN(dev_priv) <= 5)
3011 		ret = i915_gmch_probe(ggtt);
3012 	else if (INTEL_GEN(dev_priv) < 8)
3013 		ret = gen6_gmch_probe(ggtt);
3014 	else
3015 		ret = gen8_gmch_probe(ggtt);
3016 	if (ret)
3017 		return ret;
3018 
3019 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3020 	 * This is easier than doing range restriction on the fly, as we
3021 	 * currently don't have any bits spare to pass in this upper
3022 	 * restriction!
3023 	 */
3024 	if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
3025 		ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3026 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3027 	}
3028 
3029 	if ((ggtt->base.total - 1) >> 32) {
3030 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3031 			  " of address space! Found %lldM!\n",
3032 			  ggtt->base.total >> 20);
3033 		ggtt->base.total = 1ULL << 32;
3034 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3035 	}
3036 
3037 	if (ggtt->mappable_end > ggtt->base.total) {
3038 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3039 			  " aperture=%llx, total=%llx\n",
3040 			  ggtt->mappable_end, ggtt->base.total);
3041 		ggtt->mappable_end = ggtt->base.total;
3042 	}
3043 
3044 	/* GMADR is the PCI mmio aperture into the global GTT. */
3045 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3046 		 ggtt->base.total >> 20);
3047 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3048 	DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
3049 	if (intel_vtd_active())
3050 		DRM_INFO("VT-d active for gfx access\n");
3051 
3052 	return 0;
3053 }
3054 
3055 /**
3056  * i915_ggtt_init_hw - Initialize GGTT hardware
3057  * @dev_priv: i915 device
3058  */
3059 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3060 {
3061 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3062 	int ret;
3063 
3064 	INIT_LIST_HEAD(&dev_priv->vm_list);
3065 
3066 	/* Note that we use page colouring to enforce a guard page at the
3067 	 * end of the address space. This is required as the CS may prefetch
3068 	 * beyond the end of the batch buffer, across the page boundary,
3069 	 * and beyond the end of the GTT if we do not provide a guard.
3070 	 */
3071 	mutex_lock(&dev_priv->drm.struct_mutex);
3072 	i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3073 	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3074 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3075 	mutex_unlock(&dev_priv->drm.struct_mutex);
3076 
3077 	if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3078 				dev_priv->ggtt.mappable_base,
3079 				dev_priv->ggtt.mappable_end)) {
3080 		ret = -EIO;
3081 		goto out_gtt_cleanup;
3082 	}
3083 
3084 	ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3085 
3086 	/*
3087 	 * Initialise stolen early so that we may reserve preallocated
3088 	 * objects for the BIOS to KMS transition.
3089 	 */
3090 	ret = i915_gem_init_stolen(dev_priv);
3091 	if (ret)
3092 		goto out_gtt_cleanup;
3093 
3094 	return 0;
3095 
3096 out_gtt_cleanup:
3097 	ggtt->base.cleanup(&ggtt->base);
3098 	return ret;
3099 }
3100 
3101 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3102 {
3103 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3104 		return -EIO;
3105 
3106 	return 0;
3107 }
3108 
3109 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3110 {
3111 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3112 
3113 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3114 }
3115 
3116 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3117 {
3118 	/* We should only be called after i915_ggtt_enable_guc() */
3119 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3120 
3121 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3122 }
3123 
3124 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3125 {
3126 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3127 	struct drm_i915_gem_object *obj, *on;
3128 
3129 	i915_check_and_clear_faults(dev_priv);
3130 
3131 	/* First fill our portion of the GTT with scratch pages */
3132 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3133 
3134 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3135 
3136 	/* clflush objects bound into the GGTT and rebind them. */
3137 	list_for_each_entry_safe(obj, on,
3138 				 &dev_priv->mm.bound_list, global_link) {
3139 		bool ggtt_bound = false;
3140 		struct i915_vma *vma;
3141 
3142 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3143 			if (vma->vm != &ggtt->base)
3144 				continue;
3145 
3146 			if (!i915_vma_unbind(vma))
3147 				continue;
3148 
3149 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3150 					      PIN_UPDATE));
3151 			ggtt_bound = true;
3152 		}
3153 
3154 		if (ggtt_bound)
3155 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3156 	}
3157 
3158 	ggtt->base.closed = false;
3159 
3160 	if (INTEL_GEN(dev_priv) >= 8) {
3161 		if (INTEL_GEN(dev_priv) >= 10)
3162 			cnl_setup_private_ppat(dev_priv);
3163 		else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3164 			chv_setup_private_ppat(dev_priv);
3165 		else
3166 			bdw_setup_private_ppat(dev_priv);
3167 
3168 		return;
3169 	}
3170 
3171 	if (USES_PPGTT(dev_priv)) {
3172 		struct i915_address_space *vm;
3173 
3174 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3175 			struct i915_hw_ppgtt *ppgtt;
3176 
3177 			if (i915_is_ggtt(vm))
3178 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3179 			else
3180 				ppgtt = i915_vm_to_ppgtt(vm);
3181 
3182 			gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3183 		}
3184 	}
3185 
3186 	i915_ggtt_invalidate(dev_priv);
3187 }
3188 
3189 static struct scatterlist *
3190 rotate_pages(const dma_addr_t *in, unsigned int offset,
3191 	     unsigned int width, unsigned int height,
3192 	     unsigned int stride,
3193 	     struct sg_table *st, struct scatterlist *sg)
3194 {
3195 	unsigned int column, row;
3196 	unsigned int src_idx;
3197 
3198 	for (column = 0; column < width; column++) {
3199 		src_idx = stride * (height - 1) + column;
3200 		for (row = 0; row < height; row++) {
3201 			st->nents++;
3202 			/* We don't need the pages, but need to initialize
3203 			 * the entries so the sg list can be happily traversed.
3204 			 * The only thing we need are DMA addresses.
3205 			 */
3206 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3207 			sg_dma_address(sg) = in[offset + src_idx];
3208 			sg_dma_len(sg) = PAGE_SIZE;
3209 			sg = sg_next(sg);
3210 			src_idx -= stride;
3211 		}
3212 	}
3213 
3214 	return sg;
3215 }
3216 
3217 static noinline struct sg_table *
3218 intel_rotate_pages(struct intel_rotation_info *rot_info,
3219 		   struct drm_i915_gem_object *obj)
3220 {
3221 	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3222 	unsigned int size = intel_rotation_info_size(rot_info);
3223 	struct sgt_iter sgt_iter;
3224 	dma_addr_t dma_addr;
3225 	unsigned long i;
3226 	dma_addr_t *page_addr_list;
3227 	struct sg_table *st;
3228 	struct scatterlist *sg;
3229 	int ret = -ENOMEM;
3230 
3231 	/* Allocate a temporary list of source pages for random access. */
3232 	page_addr_list = kvmalloc_array(n_pages,
3233 					sizeof(dma_addr_t),
3234 					GFP_KERNEL);
3235 	if (!page_addr_list)
3236 		return ERR_PTR(ret);
3237 
3238 	/* Allocate target SG list. */
3239 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3240 	if (!st)
3241 		goto err_st_alloc;
3242 
3243 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3244 	if (ret)
3245 		goto err_sg_alloc;
3246 
3247 	/* Populate source page list from the object. */
3248 	i = 0;
3249 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3250 		page_addr_list[i++] = dma_addr;
3251 
3252 	GEM_BUG_ON(i != n_pages);
3253 	st->nents = 0;
3254 	sg = st->sgl;
3255 
3256 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3257 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3258 				  rot_info->plane[i].width, rot_info->plane[i].height,
3259 				  rot_info->plane[i].stride, st, sg);
3260 	}
3261 
3262 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3263 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3264 
3265 	kvfree(page_addr_list);
3266 
3267 	return st;
3268 
3269 err_sg_alloc:
3270 	kfree(st);
3271 err_st_alloc:
3272 	kvfree(page_addr_list);
3273 
3274 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3275 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3276 
3277 	return ERR_PTR(ret);
3278 }
3279 
3280 static noinline struct sg_table *
3281 intel_partial_pages(const struct i915_ggtt_view *view,
3282 		    struct drm_i915_gem_object *obj)
3283 {
3284 	struct sg_table *st;
3285 	struct scatterlist *sg, *iter;
3286 	unsigned int count = view->partial.size;
3287 	unsigned int offset;
3288 	int ret = -ENOMEM;
3289 
3290 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3291 	if (!st)
3292 		goto err_st_alloc;
3293 
3294 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3295 	if (ret)
3296 		goto err_sg_alloc;
3297 
3298 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3299 	GEM_BUG_ON(!iter);
3300 
3301 	sg = st->sgl;
3302 	st->nents = 0;
3303 	do {
3304 		unsigned int len;
3305 
3306 		len = min(iter->length - (offset << PAGE_SHIFT),
3307 			  count << PAGE_SHIFT);
3308 		sg_set_page(sg, NULL, len, 0);
3309 		sg_dma_address(sg) =
3310 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3311 		sg_dma_len(sg) = len;
3312 
3313 		st->nents++;
3314 		count -= len >> PAGE_SHIFT;
3315 		if (count == 0) {
3316 			sg_mark_end(sg);
3317 			return st;
3318 		}
3319 
3320 		sg = __sg_next(sg);
3321 		iter = __sg_next(iter);
3322 		offset = 0;
3323 	} while (1);
3324 
3325 err_sg_alloc:
3326 	kfree(st);
3327 err_st_alloc:
3328 	return ERR_PTR(ret);
3329 }
3330 
3331 static int
3332 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3333 {
3334 	int ret;
3335 
3336 	/* The vma->pages are only valid within the lifespan of the borrowed
3337 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3338 	 * must be the vma->pages. A simple rule is that vma->pages must only
3339 	 * be accessed when the obj->mm.pages are pinned.
3340 	 */
3341 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3342 
3343 	switch (vma->ggtt_view.type) {
3344 	case I915_GGTT_VIEW_NORMAL:
3345 		vma->pages = vma->obj->mm.pages;
3346 		return 0;
3347 
3348 	case I915_GGTT_VIEW_ROTATED:
3349 		vma->pages =
3350 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3351 		break;
3352 
3353 	case I915_GGTT_VIEW_PARTIAL:
3354 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3355 		break;
3356 
3357 	default:
3358 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3359 			  vma->ggtt_view.type);
3360 		return -EINVAL;
3361 	}
3362 
3363 	ret = 0;
3364 	if (unlikely(IS_ERR(vma->pages))) {
3365 		ret = PTR_ERR(vma->pages);
3366 		vma->pages = NULL;
3367 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3368 			  vma->ggtt_view.type, ret);
3369 	}
3370 	return ret;
3371 }
3372 
3373 /**
3374  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3375  * @vm: the &struct i915_address_space
3376  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3377  * @size: how much space to allocate inside the GTT,
3378  *        must be #I915_GTT_PAGE_SIZE aligned
3379  * @offset: where to insert inside the GTT,
3380  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3381  *          (@offset + @size) must fit within the address space
3382  * @color: color to apply to node, if this node is not from a VMA,
3383  *         color must be #I915_COLOR_UNEVICTABLE
3384  * @flags: control search and eviction behaviour
3385  *
3386  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3387  * the address space (using @size and @color). If the @node does not fit, it
3388  * tries to evict any overlapping nodes from the GTT, including any
3389  * neighbouring nodes if the colors do not match (to ensure guard pages between
3390  * differing domains). See i915_gem_evict_for_node() for the gory details
3391  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3392  * evicting active overlapping objects, and any overlapping node that is pinned
3393  * or marked as unevictable will also result in failure.
3394  *
3395  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3396  * asked to wait for eviction and interrupted.
3397  */
3398 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3399 			 struct drm_mm_node *node,
3400 			 u64 size, u64 offset, unsigned long color,
3401 			 unsigned int flags)
3402 {
3403 	int err;
3404 
3405 	GEM_BUG_ON(!size);
3406 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3407 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3408 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3409 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3410 	GEM_BUG_ON(drm_mm_node_allocated(node));
3411 
3412 	node->size = size;
3413 	node->start = offset;
3414 	node->color = color;
3415 
3416 	err = drm_mm_reserve_node(&vm->mm, node);
3417 	if (err != -ENOSPC)
3418 		return err;
3419 
3420 	if (flags & PIN_NOEVICT)
3421 		return -ENOSPC;
3422 
3423 	err = i915_gem_evict_for_node(vm, node, flags);
3424 	if (err == 0)
3425 		err = drm_mm_reserve_node(&vm->mm, node);
3426 
3427 	return err;
3428 }
3429 
3430 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3431 {
3432 	u64 range, addr;
3433 
3434 	GEM_BUG_ON(range_overflows(start, len, end));
3435 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3436 
3437 	range = round_down(end - len, align) - round_up(start, align);
3438 	if (range) {
3439 		if (sizeof(unsigned long) == sizeof(u64)) {
3440 			addr = get_random_long();
3441 		} else {
3442 			addr = get_random_int();
3443 			if (range > U32_MAX) {
3444 				addr <<= 32;
3445 				addr |= get_random_int();
3446 			}
3447 		}
3448 		div64_u64_rem(addr, range, &addr);
3449 		start += addr;
3450 	}
3451 
3452 	return round_up(start, align);
3453 }
3454 
3455 /**
3456  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3457  * @vm: the &struct i915_address_space
3458  * @node: the &struct drm_mm_node (typically i915_vma.node)
3459  * @size: how much space to allocate inside the GTT,
3460  *        must be #I915_GTT_PAGE_SIZE aligned
3461  * @alignment: required alignment of starting offset, may be 0 but
3462  *             if specified, this must be a power-of-two and at least
3463  *             #I915_GTT_MIN_ALIGNMENT
3464  * @color: color to apply to node
3465  * @start: start of any range restriction inside GTT (0 for all),
3466  *         must be #I915_GTT_PAGE_SIZE aligned
3467  * @end: end of any range restriction inside GTT (U64_MAX for all),
3468  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3469  * @flags: control search and eviction behaviour
3470  *
3471  * i915_gem_gtt_insert() first searches for an available hole into which
3472  * is can insert the node. The hole address is aligned to @alignment and
3473  * its @size must then fit entirely within the [@start, @end] bounds. The
3474  * nodes on either side of the hole must match @color, or else a guard page
3475  * will be inserted between the two nodes (or the node evicted). If no
3476  * suitable hole is found, first a victim is randomly selected and tested
3477  * for eviction, otherwise then the LRU list of objects within the GTT
3478  * is scanned to find the first set of replacement nodes to create the hole.
3479  * Those old overlapping nodes are evicted from the GTT (and so must be
3480  * rebound before any future use). Any node that is currently pinned cannot
3481  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3482  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3483  * searching for an eviction candidate. See i915_gem_evict_something() for
3484  * the gory details on the eviction algorithm.
3485  *
3486  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3487  * asked to wait for eviction and interrupted.
3488  */
3489 int i915_gem_gtt_insert(struct i915_address_space *vm,
3490 			struct drm_mm_node *node,
3491 			u64 size, u64 alignment, unsigned long color,
3492 			u64 start, u64 end, unsigned int flags)
3493 {
3494 	enum drm_mm_insert_mode mode;
3495 	u64 offset;
3496 	int err;
3497 
3498 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3499 	GEM_BUG_ON(!size);
3500 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3501 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3502 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3503 	GEM_BUG_ON(start >= end);
3504 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3505 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3506 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3507 	GEM_BUG_ON(drm_mm_node_allocated(node));
3508 
3509 	if (unlikely(range_overflows(start, size, end)))
3510 		return -ENOSPC;
3511 
3512 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3513 		return -ENOSPC;
3514 
3515 	mode = DRM_MM_INSERT_BEST;
3516 	if (flags & PIN_HIGH)
3517 		mode = DRM_MM_INSERT_HIGH;
3518 	if (flags & PIN_MAPPABLE)
3519 		mode = DRM_MM_INSERT_LOW;
3520 
3521 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3522 	 * so we know that we always have a minimum alignment of 4096.
3523 	 * The drm_mm range manager is optimised to return results
3524 	 * with zero alignment, so where possible use the optimal
3525 	 * path.
3526 	 */
3527 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3528 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3529 		alignment = 0;
3530 
3531 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3532 					  size, alignment, color,
3533 					  start, end, mode);
3534 	if (err != -ENOSPC)
3535 		return err;
3536 
3537 	if (flags & PIN_NOEVICT)
3538 		return -ENOSPC;
3539 
3540 	/* No free space, pick a slot at random.
3541 	 *
3542 	 * There is a pathological case here using a GTT shared between
3543 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3544 	 *
3545 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3546 	 *         (64k objects)             (448k objects)
3547 	 *
3548 	 * Now imagine that the eviction LRU is ordered top-down (just because
3549 	 * pathology meets real life), and that we need to evict an object to
3550 	 * make room inside the aperture. The eviction scan then has to walk
3551 	 * the 448k list before it finds one within range. And now imagine that
3552 	 * it has to search for a new hole between every byte inside the memcpy,
3553 	 * for several simultaneous clients.
3554 	 *
3555 	 * On a full-ppgtt system, if we have run out of available space, there
3556 	 * will be lots and lots of objects in the eviction list! Again,
3557 	 * searching that LRU list may be slow if we are also applying any
3558 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
3559 	 * simplicity and similarilty between different GTT, try the single
3560 	 * random replacement first.
3561 	 */
3562 	offset = random_offset(start, end,
3563 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3564 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3565 	if (err != -ENOSPC)
3566 		return err;
3567 
3568 	/* Randomly selected placement is pinned, do a search */
3569 	err = i915_gem_evict_something(vm, size, alignment, color,
3570 				       start, end, flags);
3571 	if (err)
3572 		return err;
3573 
3574 	return drm_mm_insert_node_in_range(&vm->mm, node,
3575 					   size, alignment, color,
3576 					   start, end, DRM_MM_INSERT_EVICT);
3577 }
3578 
3579 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3580 #include "selftests/mock_gtt.c"
3581 #include "selftests/i915_gem_gtt.c"
3582 #endif
3583