xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem_gtt.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/* Note that as an uncached mmio write, this should flush the
114 	 * WCB of the writes into the GGTT before it triggers the invalidate.
115 	 */
116 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118 
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121 	gen6_ggtt_invalidate(dev_priv);
122 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124 
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127 	intel_gtt_chipset_flush();
128 }
129 
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132 	i915->ggtt.invalidate(i915);
133 }
134 
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136 			       	int enable_ppgtt)
137 {
138 	bool has_full_ppgtt;
139 	bool has_full_48bit_ppgtt;
140 
141 	if (!dev_priv->info.has_aliasing_ppgtt)
142 		return 0;
143 
144 	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
145 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
146 
147 	if (intel_vgpu_active(dev_priv)) {
148 		/* GVT-g has no support for 32bit ppgtt */
149 		has_full_ppgtt = false;
150 		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
151 	}
152 
153 	/*
154 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
155 	 * execlists, the sole mechanism available to submit work.
156 	 */
157 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
158 		return 0;
159 
160 	if (enable_ppgtt == 1)
161 		return 1;
162 
163 	if (enable_ppgtt == 2 && has_full_ppgtt)
164 		return 2;
165 
166 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
167 		return 3;
168 
169 	/* Disable ppgtt on SNB if VT-d is on. */
170 	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
171 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
172 		return 0;
173 	}
174 
175 	/* Early VLV doesn't have this */
176 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
177 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
178 		return 0;
179 	}
180 
181 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
182 		if (has_full_48bit_ppgtt)
183 			return 3;
184 
185 		if (has_full_ppgtt)
186 			return 2;
187 	}
188 
189 	return 1;
190 }
191 
192 static int ppgtt_bind_vma(struct i915_vma *vma,
193 			  enum i915_cache_level cache_level,
194 			  u32 unused)
195 {
196 	u32 pte_flags;
197 	int ret;
198 
199 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
200 		ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
201 						 vma->size);
202 		if (ret)
203 			return ret;
204 	}
205 
206 	/* Currently applicable only to VLV */
207 	pte_flags = 0;
208 	if (vma->obj->gt_ro)
209 		pte_flags |= PTE_READ_ONLY;
210 
211 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
212 
213 	return 0;
214 }
215 
216 static void ppgtt_unbind_vma(struct i915_vma *vma)
217 {
218 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
219 }
220 
221 static int ppgtt_set_pages(struct i915_vma *vma)
222 {
223 	GEM_BUG_ON(vma->pages);
224 
225 	vma->pages = vma->obj->mm.pages;
226 
227 	vma->page_sizes = vma->obj->mm.page_sizes;
228 
229 	return 0;
230 }
231 
232 static void clear_pages(struct i915_vma *vma)
233 {
234 	GEM_BUG_ON(!vma->pages);
235 
236 	if (vma->pages != vma->obj->mm.pages) {
237 		sg_free_table(vma->pages);
238 		kfree(vma->pages);
239 	}
240 	vma->pages = NULL;
241 
242 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
243 }
244 
245 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
246 				  enum i915_cache_level level)
247 {
248 	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
249 	pte |= addr;
250 
251 	switch (level) {
252 	case I915_CACHE_NONE:
253 		pte |= PPAT_UNCACHED;
254 		break;
255 	case I915_CACHE_WT:
256 		pte |= PPAT_DISPLAY_ELLC;
257 		break;
258 	default:
259 		pte |= PPAT_CACHED;
260 		break;
261 	}
262 
263 	return pte;
264 }
265 
266 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
267 				  const enum i915_cache_level level)
268 {
269 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
270 	pde |= addr;
271 	if (level != I915_CACHE_NONE)
272 		pde |= PPAT_CACHED_PDE;
273 	else
274 		pde |= PPAT_UNCACHED;
275 	return pde;
276 }
277 
278 #define gen8_pdpe_encode gen8_pde_encode
279 #define gen8_pml4e_encode gen8_pde_encode
280 
281 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
282 				 enum i915_cache_level level,
283 				 u32 unused)
284 {
285 	gen6_pte_t pte = GEN6_PTE_VALID;
286 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
287 
288 	switch (level) {
289 	case I915_CACHE_L3_LLC:
290 	case I915_CACHE_LLC:
291 		pte |= GEN6_PTE_CACHE_LLC;
292 		break;
293 	case I915_CACHE_NONE:
294 		pte |= GEN6_PTE_UNCACHED;
295 		break;
296 	default:
297 		MISSING_CASE(level);
298 	}
299 
300 	return pte;
301 }
302 
303 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
304 				 enum i915_cache_level level,
305 				 u32 unused)
306 {
307 	gen6_pte_t pte = GEN6_PTE_VALID;
308 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
309 
310 	switch (level) {
311 	case I915_CACHE_L3_LLC:
312 		pte |= GEN7_PTE_CACHE_L3_LLC;
313 		break;
314 	case I915_CACHE_LLC:
315 		pte |= GEN6_PTE_CACHE_LLC;
316 		break;
317 	case I915_CACHE_NONE:
318 		pte |= GEN6_PTE_UNCACHED;
319 		break;
320 	default:
321 		MISSING_CASE(level);
322 	}
323 
324 	return pte;
325 }
326 
327 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
328 				 enum i915_cache_level level,
329 				 u32 flags)
330 {
331 	gen6_pte_t pte = GEN6_PTE_VALID;
332 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
333 
334 	if (!(flags & PTE_READ_ONLY))
335 		pte |= BYT_PTE_WRITEABLE;
336 
337 	if (level != I915_CACHE_NONE)
338 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
339 
340 	return pte;
341 }
342 
343 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
344 				 enum i915_cache_level level,
345 				 u32 unused)
346 {
347 	gen6_pte_t pte = GEN6_PTE_VALID;
348 	pte |= HSW_PTE_ADDR_ENCODE(addr);
349 
350 	if (level != I915_CACHE_NONE)
351 		pte |= HSW_WB_LLC_AGE3;
352 
353 	return pte;
354 }
355 
356 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
357 				  enum i915_cache_level level,
358 				  u32 unused)
359 {
360 	gen6_pte_t pte = GEN6_PTE_VALID;
361 	pte |= HSW_PTE_ADDR_ENCODE(addr);
362 
363 	switch (level) {
364 	case I915_CACHE_NONE:
365 		break;
366 	case I915_CACHE_WT:
367 		pte |= HSW_WT_ELLC_LLC_AGE3;
368 		break;
369 	default:
370 		pte |= HSW_WB_ELLC_LLC_AGE3;
371 		break;
372 	}
373 
374 	return pte;
375 }
376 
377 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
378 {
379 	struct pagevec *pvec = &vm->free_pages;
380 	struct pagevec stash;
381 
382 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
383 		i915_gem_shrink_all(vm->i915);
384 
385 	if (likely(pvec->nr))
386 		return pvec->pages[--pvec->nr];
387 
388 	if (!vm->pt_kmap_wc)
389 		return alloc_page(gfp);
390 
391 	/* A placeholder for a specific mutex to guard the WC stash */
392 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
393 
394 	/* Look in our global stash of WC pages... */
395 	pvec = &vm->i915->mm.wc_stash;
396 	if (likely(pvec->nr))
397 		return pvec->pages[--pvec->nr];
398 
399 	/*
400 	 * Otherwise batch allocate pages to amoritize cost of set_pages_wc.
401 	 *
402 	 * We have to be careful as page allocation may trigger the shrinker
403 	 * (via direct reclaim) which will fill up the WC stash underneath us.
404 	 * So we add our WB pages into a temporary pvec on the stack and merge
405 	 * them into the WC stash after all the allocations are complete.
406 	 */
407 	pagevec_init(&stash);
408 	do {
409 		struct page *page;
410 
411 		page = alloc_page(gfp);
412 		if (unlikely(!page))
413 			break;
414 
415 		stash.pages[stash.nr++] = page;
416 	} while (stash.nr < pagevec_space(pvec));
417 
418 	if (stash.nr) {
419 		int nr = min_t(int, stash.nr, pagevec_space(pvec));
420 		struct page **pages = stash.pages + stash.nr - nr;
421 
422 		if (nr && !set_pages_array_wc(pages, nr)) {
423 			memcpy(pvec->pages + pvec->nr,
424 			       pages, sizeof(pages[0]) * nr);
425 			pvec->nr += nr;
426 			stash.nr -= nr;
427 		}
428 
429 		pagevec_release(&stash);
430 	}
431 
432 	return likely(pvec->nr) ? pvec->pages[--pvec->nr] : NULL;
433 }
434 
435 static void vm_free_pages_release(struct i915_address_space *vm,
436 				  bool immediate)
437 {
438 	struct pagevec *pvec = &vm->free_pages;
439 
440 	GEM_BUG_ON(!pagevec_count(pvec));
441 
442 	if (vm->pt_kmap_wc) {
443 		struct pagevec *stash = &vm->i915->mm.wc_stash;
444 
445 		/* When we use WC, first fill up the global stash and then
446 		 * only if full immediately free the overflow.
447 		 */
448 
449 		lockdep_assert_held(&vm->i915->drm.struct_mutex);
450 		if (pagevec_space(stash)) {
451 			do {
452 				stash->pages[stash->nr++] =
453 					pvec->pages[--pvec->nr];
454 				if (!pvec->nr)
455 					return;
456 			} while (pagevec_space(stash));
457 
458 			/* As we have made some room in the VM's free_pages,
459 			 * we can wait for it to fill again. Unless we are
460 			 * inside i915_address_space_fini() and must
461 			 * immediately release the pages!
462 			 */
463 			if (!immediate)
464 				return;
465 		}
466 
467 		set_pages_array_wb(pvec->pages, pvec->nr);
468 	}
469 
470 	__pagevec_release(pvec);
471 }
472 
473 static void vm_free_page(struct i915_address_space *vm, struct page *page)
474 {
475 	/*
476 	 * On !llc, we need to change the pages back to WB. We only do so
477 	 * in bulk, so we rarely need to change the page attributes here,
478 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
479 	 * To make detection of the possible sleep more likely, use an
480 	 * unconditional might_sleep() for everybody.
481 	 */
482 	might_sleep();
483 	if (!pagevec_add(&vm->free_pages, page))
484 		vm_free_pages_release(vm, false);
485 }
486 
487 static int __setup_page_dma(struct i915_address_space *vm,
488 			    struct i915_page_dma *p,
489 			    gfp_t gfp)
490 {
491 	p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
492 	if (unlikely(!p->page))
493 		return -ENOMEM;
494 
495 	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
496 				PCI_DMA_BIDIRECTIONAL);
497 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
498 		vm_free_page(vm, p->page);
499 		return -ENOMEM;
500 	}
501 
502 	return 0;
503 }
504 
505 static int setup_page_dma(struct i915_address_space *vm,
506 			  struct i915_page_dma *p)
507 {
508 	return __setup_page_dma(vm, p, I915_GFP_DMA);
509 }
510 
511 static void cleanup_page_dma(struct i915_address_space *vm,
512 			     struct i915_page_dma *p)
513 {
514 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
515 	vm_free_page(vm, p->page);
516 }
517 
518 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
519 
520 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
521 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
522 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
523 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
524 
525 static void fill_page_dma(struct i915_address_space *vm,
526 			  struct i915_page_dma *p,
527 			  const u64 val)
528 {
529 	u64 * const vaddr = kmap_atomic(p->page);
530 
531 	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
532 
533 	kunmap_atomic(vaddr);
534 }
535 
536 static void fill_page_dma_32(struct i915_address_space *vm,
537 			     struct i915_page_dma *p,
538 			     const u32 v)
539 {
540 	fill_page_dma(vm, p, (u64)v << 32 | v);
541 }
542 
543 static int
544 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
545 {
546 	unsigned long size;
547 
548 	/*
549 	 * In order to utilize 64K pages for an object with a size < 2M, we will
550 	 * need to support a 64K scratch page, given that every 16th entry for a
551 	 * page-table operating in 64K mode must point to a properly aligned 64K
552 	 * region, including any PTEs which happen to point to scratch.
553 	 *
554 	 * This is only relevant for the 48b PPGTT where we support
555 	 * huge-gtt-pages, see also i915_vma_insert().
556 	 *
557 	 * TODO: we should really consider write-protecting the scratch-page and
558 	 * sharing between ppgtt
559 	 */
560 	size = I915_GTT_PAGE_SIZE_4K;
561 	if (i915_vm_is_48bit(vm) &&
562 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
563 		size = I915_GTT_PAGE_SIZE_64K;
564 		gfp |= __GFP_NOWARN;
565 	}
566 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
567 
568 	do {
569 		int order = get_order(size);
570 		struct page *page;
571 		dma_addr_t addr;
572 
573 		page = alloc_pages(gfp, order);
574 		if (unlikely(!page))
575 			goto skip;
576 
577 		addr = dma_map_page(vm->dma, page, 0, size,
578 				    PCI_DMA_BIDIRECTIONAL);
579 		if (unlikely(dma_mapping_error(vm->dma, addr)))
580 			goto free_page;
581 
582 		if (unlikely(!IS_ALIGNED(addr, size)))
583 			goto unmap_page;
584 
585 		vm->scratch_page.page = page;
586 		vm->scratch_page.daddr = addr;
587 		vm->scratch_page.order = order;
588 		return 0;
589 
590 unmap_page:
591 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
592 free_page:
593 		__free_pages(page, order);
594 skip:
595 		if (size == I915_GTT_PAGE_SIZE_4K)
596 			return -ENOMEM;
597 
598 		size = I915_GTT_PAGE_SIZE_4K;
599 		gfp &= ~__GFP_NOWARN;
600 	} while (1);
601 }
602 
603 static void cleanup_scratch_page(struct i915_address_space *vm)
604 {
605 	struct i915_page_dma *p = &vm->scratch_page;
606 
607 	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
608 		       PCI_DMA_BIDIRECTIONAL);
609 	__free_pages(p->page, p->order);
610 }
611 
612 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
613 {
614 	struct i915_page_table *pt;
615 
616 	pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
617 	if (unlikely(!pt))
618 		return ERR_PTR(-ENOMEM);
619 
620 	if (unlikely(setup_px(vm, pt))) {
621 		kfree(pt);
622 		return ERR_PTR(-ENOMEM);
623 	}
624 
625 	pt->used_ptes = 0;
626 	return pt;
627 }
628 
629 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
630 {
631 	cleanup_px(vm, pt);
632 	kfree(pt);
633 }
634 
635 static void gen8_initialize_pt(struct i915_address_space *vm,
636 			       struct i915_page_table *pt)
637 {
638 	fill_px(vm, pt,
639 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
640 }
641 
642 static void gen6_initialize_pt(struct i915_address_space *vm,
643 			       struct i915_page_table *pt)
644 {
645 	fill32_px(vm, pt,
646 		  vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
647 }
648 
649 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
650 {
651 	struct i915_page_directory *pd;
652 
653 	pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
654 	if (unlikely(!pd))
655 		return ERR_PTR(-ENOMEM);
656 
657 	if (unlikely(setup_px(vm, pd))) {
658 		kfree(pd);
659 		return ERR_PTR(-ENOMEM);
660 	}
661 
662 	pd->used_pdes = 0;
663 	return pd;
664 }
665 
666 static void free_pd(struct i915_address_space *vm,
667 		    struct i915_page_directory *pd)
668 {
669 	cleanup_px(vm, pd);
670 	kfree(pd);
671 }
672 
673 static void gen8_initialize_pd(struct i915_address_space *vm,
674 			       struct i915_page_directory *pd)
675 {
676 	fill_px(vm, pd,
677 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
678 	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
679 }
680 
681 static int __pdp_init(struct i915_address_space *vm,
682 		      struct i915_page_directory_pointer *pdp)
683 {
684 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
685 
686 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
687 					    GFP_KERNEL | __GFP_NOWARN);
688 	if (unlikely(!pdp->page_directory))
689 		return -ENOMEM;
690 
691 	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
692 
693 	return 0;
694 }
695 
696 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
697 {
698 	kfree(pdp->page_directory);
699 	pdp->page_directory = NULL;
700 }
701 
702 static inline bool use_4lvl(const struct i915_address_space *vm)
703 {
704 	return i915_vm_is_48bit(vm);
705 }
706 
707 static struct i915_page_directory_pointer *
708 alloc_pdp(struct i915_address_space *vm)
709 {
710 	struct i915_page_directory_pointer *pdp;
711 	int ret = -ENOMEM;
712 
713 	GEM_BUG_ON(!use_4lvl(vm));
714 
715 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
716 	if (!pdp)
717 		return ERR_PTR(-ENOMEM);
718 
719 	ret = __pdp_init(vm, pdp);
720 	if (ret)
721 		goto fail_bitmap;
722 
723 	ret = setup_px(vm, pdp);
724 	if (ret)
725 		goto fail_page_m;
726 
727 	return pdp;
728 
729 fail_page_m:
730 	__pdp_fini(pdp);
731 fail_bitmap:
732 	kfree(pdp);
733 
734 	return ERR_PTR(ret);
735 }
736 
737 static void free_pdp(struct i915_address_space *vm,
738 		     struct i915_page_directory_pointer *pdp)
739 {
740 	__pdp_fini(pdp);
741 
742 	if (!use_4lvl(vm))
743 		return;
744 
745 	cleanup_px(vm, pdp);
746 	kfree(pdp);
747 }
748 
749 static void gen8_initialize_pdp(struct i915_address_space *vm,
750 				struct i915_page_directory_pointer *pdp)
751 {
752 	gen8_ppgtt_pdpe_t scratch_pdpe;
753 
754 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
755 
756 	fill_px(vm, pdp, scratch_pdpe);
757 }
758 
759 static void gen8_initialize_pml4(struct i915_address_space *vm,
760 				 struct i915_pml4 *pml4)
761 {
762 	fill_px(vm, pml4,
763 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
764 	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
765 }
766 
767 /* Broadwell Page Directory Pointer Descriptors */
768 static int gen8_write_pdp(struct i915_request *rq,
769 			  unsigned entry,
770 			  dma_addr_t addr)
771 {
772 	struct intel_engine_cs *engine = rq->engine;
773 	u32 *cs;
774 
775 	BUG_ON(entry >= 4);
776 
777 	cs = intel_ring_begin(rq, 6);
778 	if (IS_ERR(cs))
779 		return PTR_ERR(cs);
780 
781 	*cs++ = MI_LOAD_REGISTER_IMM(1);
782 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
783 	*cs++ = upper_32_bits(addr);
784 	*cs++ = MI_LOAD_REGISTER_IMM(1);
785 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
786 	*cs++ = lower_32_bits(addr);
787 	intel_ring_advance(rq, cs);
788 
789 	return 0;
790 }
791 
792 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
793 			       struct i915_request *rq)
794 {
795 	int i, ret;
796 
797 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
798 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
799 
800 		ret = gen8_write_pdp(rq, i, pd_daddr);
801 		if (ret)
802 			return ret;
803 	}
804 
805 	return 0;
806 }
807 
808 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
809 			       struct i915_request *rq)
810 {
811 	return gen8_write_pdp(rq, 0, px_dma(&ppgtt->pml4));
812 }
813 
814 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
815  * the page table structures, we mark them dirty so that
816  * context switching/execlist queuing code takes extra steps
817  * to ensure that tlbs are flushed.
818  */
819 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
820 {
821 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
822 }
823 
824 /* Removes entries from a single page table, releasing it if it's empty.
825  * Caller can use the return value to update higher-level entries.
826  */
827 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
828 				struct i915_page_table *pt,
829 				u64 start, u64 length)
830 {
831 	unsigned int num_entries = gen8_pte_count(start, length);
832 	unsigned int pte = gen8_pte_index(start);
833 	unsigned int pte_end = pte + num_entries;
834 	const gen8_pte_t scratch_pte =
835 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
836 	gen8_pte_t *vaddr;
837 
838 	GEM_BUG_ON(num_entries > pt->used_ptes);
839 
840 	pt->used_ptes -= num_entries;
841 	if (!pt->used_ptes)
842 		return true;
843 
844 	vaddr = kmap_atomic_px(pt);
845 	while (pte < pte_end)
846 		vaddr[pte++] = scratch_pte;
847 	kunmap_atomic(vaddr);
848 
849 	return false;
850 }
851 
852 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
853 			       struct i915_page_directory *pd,
854 			       struct i915_page_table *pt,
855 			       unsigned int pde)
856 {
857 	gen8_pde_t *vaddr;
858 
859 	pd->page_table[pde] = pt;
860 
861 	vaddr = kmap_atomic_px(pd);
862 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
863 	kunmap_atomic(vaddr);
864 }
865 
866 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
867 				struct i915_page_directory *pd,
868 				u64 start, u64 length)
869 {
870 	struct i915_page_table *pt;
871 	u32 pde;
872 
873 	gen8_for_each_pde(pt, pd, start, length, pde) {
874 		GEM_BUG_ON(pt == vm->scratch_pt);
875 
876 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
877 			continue;
878 
879 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
880 		GEM_BUG_ON(!pd->used_pdes);
881 		pd->used_pdes--;
882 
883 		free_pt(vm, pt);
884 	}
885 
886 	return !pd->used_pdes;
887 }
888 
889 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
890 				struct i915_page_directory_pointer *pdp,
891 				struct i915_page_directory *pd,
892 				unsigned int pdpe)
893 {
894 	gen8_ppgtt_pdpe_t *vaddr;
895 
896 	pdp->page_directory[pdpe] = pd;
897 	if (!use_4lvl(vm))
898 		return;
899 
900 	vaddr = kmap_atomic_px(pdp);
901 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
902 	kunmap_atomic(vaddr);
903 }
904 
905 /* Removes entries from a single page dir pointer, releasing it if it's empty.
906  * Caller can use the return value to update higher-level entries
907  */
908 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
909 				 struct i915_page_directory_pointer *pdp,
910 				 u64 start, u64 length)
911 {
912 	struct i915_page_directory *pd;
913 	unsigned int pdpe;
914 
915 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
916 		GEM_BUG_ON(pd == vm->scratch_pd);
917 
918 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
919 			continue;
920 
921 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
922 		GEM_BUG_ON(!pdp->used_pdpes);
923 		pdp->used_pdpes--;
924 
925 		free_pd(vm, pd);
926 	}
927 
928 	return !pdp->used_pdpes;
929 }
930 
931 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
932 				  u64 start, u64 length)
933 {
934 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
935 }
936 
937 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
938 				 struct i915_page_directory_pointer *pdp,
939 				 unsigned int pml4e)
940 {
941 	gen8_ppgtt_pml4e_t *vaddr;
942 
943 	pml4->pdps[pml4e] = pdp;
944 
945 	vaddr = kmap_atomic_px(pml4);
946 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
947 	kunmap_atomic(vaddr);
948 }
949 
950 /* Removes entries from a single pml4.
951  * This is the top-level structure in 4-level page tables used on gen8+.
952  * Empty entries are always scratch pml4e.
953  */
954 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
955 				  u64 start, u64 length)
956 {
957 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
958 	struct i915_pml4 *pml4 = &ppgtt->pml4;
959 	struct i915_page_directory_pointer *pdp;
960 	unsigned int pml4e;
961 
962 	GEM_BUG_ON(!use_4lvl(vm));
963 
964 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
965 		GEM_BUG_ON(pdp == vm->scratch_pdp);
966 
967 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
968 			continue;
969 
970 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
971 
972 		free_pdp(vm, pdp);
973 	}
974 }
975 
976 static inline struct sgt_dma {
977 	struct scatterlist *sg;
978 	dma_addr_t dma, max;
979 } sgt_dma(struct i915_vma *vma) {
980 	struct scatterlist *sg = vma->pages->sgl;
981 	dma_addr_t addr = sg_dma_address(sg);
982 	return (struct sgt_dma) { sg, addr, addr + sg->length };
983 }
984 
985 struct gen8_insert_pte {
986 	u16 pml4e;
987 	u16 pdpe;
988 	u16 pde;
989 	u16 pte;
990 };
991 
992 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
993 {
994 	return (struct gen8_insert_pte) {
995 		 gen8_pml4e_index(start),
996 		 gen8_pdpe_index(start),
997 		 gen8_pde_index(start),
998 		 gen8_pte_index(start),
999 	};
1000 }
1001 
1002 static __always_inline bool
1003 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1004 			      struct i915_page_directory_pointer *pdp,
1005 			      struct sgt_dma *iter,
1006 			      struct gen8_insert_pte *idx,
1007 			      enum i915_cache_level cache_level)
1008 {
1009 	struct i915_page_directory *pd;
1010 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1011 	gen8_pte_t *vaddr;
1012 	bool ret;
1013 
1014 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1015 	pd = pdp->page_directory[idx->pdpe];
1016 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1017 	do {
1018 		vaddr[idx->pte] = pte_encode | iter->dma;
1019 
1020 		iter->dma += PAGE_SIZE;
1021 		if (iter->dma >= iter->max) {
1022 			iter->sg = __sg_next(iter->sg);
1023 			if (!iter->sg) {
1024 				ret = false;
1025 				break;
1026 			}
1027 
1028 			iter->dma = sg_dma_address(iter->sg);
1029 			iter->max = iter->dma + iter->sg->length;
1030 		}
1031 
1032 		if (++idx->pte == GEN8_PTES) {
1033 			idx->pte = 0;
1034 
1035 			if (++idx->pde == I915_PDES) {
1036 				idx->pde = 0;
1037 
1038 				/* Limited by sg length for 3lvl */
1039 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1040 					idx->pdpe = 0;
1041 					ret = true;
1042 					break;
1043 				}
1044 
1045 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1046 				pd = pdp->page_directory[idx->pdpe];
1047 			}
1048 
1049 			kunmap_atomic(vaddr);
1050 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1051 		}
1052 	} while (1);
1053 	kunmap_atomic(vaddr);
1054 
1055 	return ret;
1056 }
1057 
1058 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1059 				   struct i915_vma *vma,
1060 				   enum i915_cache_level cache_level,
1061 				   u32 unused)
1062 {
1063 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1064 	struct sgt_dma iter = sgt_dma(vma);
1065 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1066 
1067 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1068 				      cache_level);
1069 
1070 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1071 }
1072 
1073 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1074 					   struct i915_page_directory_pointer **pdps,
1075 					   struct sgt_dma *iter,
1076 					   enum i915_cache_level cache_level)
1077 {
1078 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1079 	u64 start = vma->node.start;
1080 	dma_addr_t rem = iter->sg->length;
1081 
1082 	do {
1083 		struct gen8_insert_pte idx = gen8_insert_pte(start);
1084 		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1085 		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1086 		unsigned int page_size;
1087 		bool maybe_64K = false;
1088 		gen8_pte_t encode = pte_encode;
1089 		gen8_pte_t *vaddr;
1090 		u16 index, max;
1091 
1092 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1093 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1094 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1095 			index = idx.pde;
1096 			max = I915_PDES;
1097 			page_size = I915_GTT_PAGE_SIZE_2M;
1098 
1099 			encode |= GEN8_PDE_PS_2M;
1100 
1101 			vaddr = kmap_atomic_px(pd);
1102 		} else {
1103 			struct i915_page_table *pt = pd->page_table[idx.pde];
1104 
1105 			index = idx.pte;
1106 			max = GEN8_PTES;
1107 			page_size = I915_GTT_PAGE_SIZE;
1108 
1109 			if (!index &&
1110 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1111 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1112 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1113 			     rem >= (max - index) << PAGE_SHIFT))
1114 				maybe_64K = true;
1115 
1116 			vaddr = kmap_atomic_px(pt);
1117 		}
1118 
1119 		do {
1120 			GEM_BUG_ON(iter->sg->length < page_size);
1121 			vaddr[index++] = encode | iter->dma;
1122 
1123 			start += page_size;
1124 			iter->dma += page_size;
1125 			rem -= page_size;
1126 			if (iter->dma >= iter->max) {
1127 				iter->sg = __sg_next(iter->sg);
1128 				if (!iter->sg)
1129 					break;
1130 
1131 				rem = iter->sg->length;
1132 				iter->dma = sg_dma_address(iter->sg);
1133 				iter->max = iter->dma + rem;
1134 
1135 				if (maybe_64K && index < max &&
1136 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1137 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1138 				       rem >= (max - index) << PAGE_SHIFT)))
1139 					maybe_64K = false;
1140 
1141 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1142 					break;
1143 			}
1144 		} while (rem >= page_size && index < max);
1145 
1146 		kunmap_atomic(vaddr);
1147 
1148 		/*
1149 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1150 		 * filled whole page-table with 64K entries, or filled part of
1151 		 * it and have reached the end of the sg table and we have
1152 		 * enough padding.
1153 		 */
1154 		if (maybe_64K &&
1155 		    (index == max ||
1156 		     (i915_vm_has_scratch_64K(vma->vm) &&
1157 		      !iter->sg && IS_ALIGNED(vma->node.start +
1158 					      vma->node.size,
1159 					      I915_GTT_PAGE_SIZE_2M)))) {
1160 			vaddr = kmap_atomic_px(pd);
1161 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1162 			kunmap_atomic(vaddr);
1163 			page_size = I915_GTT_PAGE_SIZE_64K;
1164 		}
1165 
1166 		vma->page_sizes.gtt |= page_size;
1167 	} while (iter->sg);
1168 }
1169 
1170 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1171 				   struct i915_vma *vma,
1172 				   enum i915_cache_level cache_level,
1173 				   u32 unused)
1174 {
1175 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1176 	struct sgt_dma iter = sgt_dma(vma);
1177 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1178 
1179 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1180 		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
1181 	} else {
1182 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1183 
1184 		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1185 						     &iter, &idx, cache_level))
1186 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1187 
1188 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1189 	}
1190 }
1191 
1192 static void gen8_free_page_tables(struct i915_address_space *vm,
1193 				  struct i915_page_directory *pd)
1194 {
1195 	int i;
1196 
1197 	if (!px_page(pd))
1198 		return;
1199 
1200 	for (i = 0; i < I915_PDES; i++) {
1201 		if (pd->page_table[i] != vm->scratch_pt)
1202 			free_pt(vm, pd->page_table[i]);
1203 	}
1204 }
1205 
1206 static int gen8_init_scratch(struct i915_address_space *vm)
1207 {
1208 	int ret;
1209 
1210 	ret = setup_scratch_page(vm, I915_GFP_DMA);
1211 	if (ret)
1212 		return ret;
1213 
1214 	vm->scratch_pt = alloc_pt(vm);
1215 	if (IS_ERR(vm->scratch_pt)) {
1216 		ret = PTR_ERR(vm->scratch_pt);
1217 		goto free_scratch_page;
1218 	}
1219 
1220 	vm->scratch_pd = alloc_pd(vm);
1221 	if (IS_ERR(vm->scratch_pd)) {
1222 		ret = PTR_ERR(vm->scratch_pd);
1223 		goto free_pt;
1224 	}
1225 
1226 	if (use_4lvl(vm)) {
1227 		vm->scratch_pdp = alloc_pdp(vm);
1228 		if (IS_ERR(vm->scratch_pdp)) {
1229 			ret = PTR_ERR(vm->scratch_pdp);
1230 			goto free_pd;
1231 		}
1232 	}
1233 
1234 	gen8_initialize_pt(vm, vm->scratch_pt);
1235 	gen8_initialize_pd(vm, vm->scratch_pd);
1236 	if (use_4lvl(vm))
1237 		gen8_initialize_pdp(vm, vm->scratch_pdp);
1238 
1239 	return 0;
1240 
1241 free_pd:
1242 	free_pd(vm, vm->scratch_pd);
1243 free_pt:
1244 	free_pt(vm, vm->scratch_pt);
1245 free_scratch_page:
1246 	cleanup_scratch_page(vm);
1247 
1248 	return ret;
1249 }
1250 
1251 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1252 {
1253 	struct i915_address_space *vm = &ppgtt->base;
1254 	struct drm_i915_private *dev_priv = vm->i915;
1255 	enum vgt_g2v_type msg;
1256 	int i;
1257 
1258 	if (use_4lvl(vm)) {
1259 		const u64 daddr = px_dma(&ppgtt->pml4);
1260 
1261 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1262 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1263 
1264 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1265 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1266 	} else {
1267 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1268 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1269 
1270 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1271 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1272 		}
1273 
1274 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1275 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1276 	}
1277 
1278 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1279 
1280 	return 0;
1281 }
1282 
1283 static void gen8_free_scratch(struct i915_address_space *vm)
1284 {
1285 	if (use_4lvl(vm))
1286 		free_pdp(vm, vm->scratch_pdp);
1287 	free_pd(vm, vm->scratch_pd);
1288 	free_pt(vm, vm->scratch_pt);
1289 	cleanup_scratch_page(vm);
1290 }
1291 
1292 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1293 				    struct i915_page_directory_pointer *pdp)
1294 {
1295 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1296 	int i;
1297 
1298 	for (i = 0; i < pdpes; i++) {
1299 		if (pdp->page_directory[i] == vm->scratch_pd)
1300 			continue;
1301 
1302 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1303 		free_pd(vm, pdp->page_directory[i]);
1304 	}
1305 
1306 	free_pdp(vm, pdp);
1307 }
1308 
1309 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1310 {
1311 	int i;
1312 
1313 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1314 		if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1315 			continue;
1316 
1317 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1318 	}
1319 
1320 	cleanup_px(&ppgtt->base, &ppgtt->pml4);
1321 }
1322 
1323 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1324 {
1325 	struct drm_i915_private *dev_priv = vm->i915;
1326 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1327 
1328 	if (intel_vgpu_active(dev_priv))
1329 		gen8_ppgtt_notify_vgt(ppgtt, false);
1330 
1331 	if (use_4lvl(vm))
1332 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1333 	else
1334 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1335 
1336 	gen8_free_scratch(vm);
1337 }
1338 
1339 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1340 			       struct i915_page_directory *pd,
1341 			       u64 start, u64 length)
1342 {
1343 	struct i915_page_table *pt;
1344 	u64 from = start;
1345 	unsigned int pde;
1346 
1347 	gen8_for_each_pde(pt, pd, start, length, pde) {
1348 		int count = gen8_pte_count(start, length);
1349 
1350 		if (pt == vm->scratch_pt) {
1351 			pd->used_pdes++;
1352 
1353 			pt = alloc_pt(vm);
1354 			if (IS_ERR(pt)) {
1355 				pd->used_pdes--;
1356 				goto unwind;
1357 			}
1358 
1359 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1360 				gen8_initialize_pt(vm, pt);
1361 
1362 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1363 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1364 		}
1365 
1366 		pt->used_ptes += count;
1367 	}
1368 	return 0;
1369 
1370 unwind:
1371 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1372 	return -ENOMEM;
1373 }
1374 
1375 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1376 				struct i915_page_directory_pointer *pdp,
1377 				u64 start, u64 length)
1378 {
1379 	struct i915_page_directory *pd;
1380 	u64 from = start;
1381 	unsigned int pdpe;
1382 	int ret;
1383 
1384 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1385 		if (pd == vm->scratch_pd) {
1386 			pdp->used_pdpes++;
1387 
1388 			pd = alloc_pd(vm);
1389 			if (IS_ERR(pd)) {
1390 				pdp->used_pdpes--;
1391 				goto unwind;
1392 			}
1393 
1394 			gen8_initialize_pd(vm, pd);
1395 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1396 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1397 
1398 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1399 		}
1400 
1401 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1402 		if (unlikely(ret))
1403 			goto unwind_pd;
1404 	}
1405 
1406 	return 0;
1407 
1408 unwind_pd:
1409 	if (!pd->used_pdes) {
1410 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1411 		GEM_BUG_ON(!pdp->used_pdpes);
1412 		pdp->used_pdpes--;
1413 		free_pd(vm, pd);
1414 	}
1415 unwind:
1416 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1417 	return -ENOMEM;
1418 }
1419 
1420 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1421 				 u64 start, u64 length)
1422 {
1423 	return gen8_ppgtt_alloc_pdp(vm,
1424 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1425 }
1426 
1427 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1428 				 u64 start, u64 length)
1429 {
1430 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1431 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1432 	struct i915_page_directory_pointer *pdp;
1433 	u64 from = start;
1434 	u32 pml4e;
1435 	int ret;
1436 
1437 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1438 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1439 			pdp = alloc_pdp(vm);
1440 			if (IS_ERR(pdp))
1441 				goto unwind;
1442 
1443 			gen8_initialize_pdp(vm, pdp);
1444 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1445 		}
1446 
1447 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1448 		if (unlikely(ret))
1449 			goto unwind_pdp;
1450 	}
1451 
1452 	return 0;
1453 
1454 unwind_pdp:
1455 	if (!pdp->used_pdpes) {
1456 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1457 		free_pdp(vm, pdp);
1458 	}
1459 unwind:
1460 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1461 	return -ENOMEM;
1462 }
1463 
1464 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1465 			  struct i915_page_directory_pointer *pdp,
1466 			  u64 start, u64 length,
1467 			  gen8_pte_t scratch_pte,
1468 			  struct seq_file *m)
1469 {
1470 	struct i915_address_space *vm = &ppgtt->base;
1471 	struct i915_page_directory *pd;
1472 	u32 pdpe;
1473 
1474 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1475 		struct i915_page_table *pt;
1476 		u64 pd_len = length;
1477 		u64 pd_start = start;
1478 		u32 pde;
1479 
1480 		if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1481 			continue;
1482 
1483 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1484 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1485 			u32 pte;
1486 			gen8_pte_t *pt_vaddr;
1487 
1488 			if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1489 				continue;
1490 
1491 			pt_vaddr = kmap_atomic_px(pt);
1492 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1493 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1494 					  pde << GEN8_PDE_SHIFT |
1495 					  pte << GEN8_PTE_SHIFT);
1496 				int i;
1497 				bool found = false;
1498 
1499 				for (i = 0; i < 4; i++)
1500 					if (pt_vaddr[pte + i] != scratch_pte)
1501 						found = true;
1502 				if (!found)
1503 					continue;
1504 
1505 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1506 				for (i = 0; i < 4; i++) {
1507 					if (pt_vaddr[pte + i] != scratch_pte)
1508 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1509 					else
1510 						seq_puts(m, "  SCRATCH ");
1511 				}
1512 				seq_puts(m, "\n");
1513 			}
1514 			kunmap_atomic(pt_vaddr);
1515 		}
1516 	}
1517 }
1518 
1519 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1520 {
1521 	struct i915_address_space *vm = &ppgtt->base;
1522 	const gen8_pte_t scratch_pte =
1523 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1524 	u64 start = 0, length = ppgtt->base.total;
1525 
1526 	if (use_4lvl(vm)) {
1527 		u64 pml4e;
1528 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1529 		struct i915_page_directory_pointer *pdp;
1530 
1531 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1532 			if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1533 				continue;
1534 
1535 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1536 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1537 		}
1538 	} else {
1539 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1540 	}
1541 }
1542 
1543 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1544 {
1545 	struct i915_address_space *vm = &ppgtt->base;
1546 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1547 	struct i915_page_directory *pd;
1548 	u64 start = 0, length = ppgtt->base.total;
1549 	u64 from = start;
1550 	unsigned int pdpe;
1551 
1552 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1553 		pd = alloc_pd(vm);
1554 		if (IS_ERR(pd))
1555 			goto unwind;
1556 
1557 		gen8_initialize_pd(vm, pd);
1558 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1559 		pdp->used_pdpes++;
1560 	}
1561 
1562 	pdp->used_pdpes++; /* never remove */
1563 	return 0;
1564 
1565 unwind:
1566 	start -= from;
1567 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1568 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1569 		free_pd(vm, pd);
1570 	}
1571 	pdp->used_pdpes = 0;
1572 	return -ENOMEM;
1573 }
1574 
1575 /*
1576  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1577  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1578  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1579  * space.
1580  *
1581  */
1582 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1583 {
1584 	struct i915_address_space *vm = &ppgtt->base;
1585 	struct drm_i915_private *dev_priv = vm->i915;
1586 	int ret;
1587 
1588 	ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1589 		1ULL << 48 :
1590 		1ULL << 32;
1591 
1592 	/* There are only few exceptions for gen >=6. chv and bxt.
1593 	 * And we are not sure about the latter so play safe for now.
1594 	 */
1595 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1596 		ppgtt->base.pt_kmap_wc = true;
1597 
1598 	ret = gen8_init_scratch(&ppgtt->base);
1599 	if (ret) {
1600 		ppgtt->base.total = 0;
1601 		return ret;
1602 	}
1603 
1604 	if (use_4lvl(vm)) {
1605 		ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1606 		if (ret)
1607 			goto free_scratch;
1608 
1609 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1610 
1611 		ppgtt->switch_mm = gen8_mm_switch_4lvl;
1612 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1613 		ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1614 		ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1615 	} else {
1616 		ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1617 		if (ret)
1618 			goto free_scratch;
1619 
1620 		if (intel_vgpu_active(dev_priv)) {
1621 			ret = gen8_preallocate_top_level_pdp(ppgtt);
1622 			if (ret) {
1623 				__pdp_fini(&ppgtt->pdp);
1624 				goto free_scratch;
1625 			}
1626 		}
1627 
1628 		ppgtt->switch_mm = gen8_mm_switch_3lvl;
1629 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1630 		ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1631 		ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1632 	}
1633 
1634 	if (intel_vgpu_active(dev_priv))
1635 		gen8_ppgtt_notify_vgt(ppgtt, true);
1636 
1637 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1638 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1639 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1640 	ppgtt->base.set_pages = ppgtt_set_pages;
1641 	ppgtt->base.clear_pages = clear_pages;
1642 	ppgtt->debug_dump = gen8_dump_ppgtt;
1643 
1644 	return 0;
1645 
1646 free_scratch:
1647 	gen8_free_scratch(&ppgtt->base);
1648 	return ret;
1649 }
1650 
1651 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1652 {
1653 	struct i915_address_space *vm = &ppgtt->base;
1654 	struct i915_page_table *unused;
1655 	gen6_pte_t scratch_pte;
1656 	u32 pd_entry, pte, pde;
1657 	u32 start = 0, length = ppgtt->base.total;
1658 
1659 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1660 				     I915_CACHE_LLC, 0);
1661 
1662 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1663 		u32 expected;
1664 		gen6_pte_t *pt_vaddr;
1665 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1666 		pd_entry = readl(ppgtt->pd_addr + pde);
1667 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1668 
1669 		if (pd_entry != expected)
1670 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1671 				   pde,
1672 				   pd_entry,
1673 				   expected);
1674 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1675 
1676 		pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1677 
1678 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1679 			unsigned long va =
1680 				(pde * PAGE_SIZE * GEN6_PTES) +
1681 				(pte * PAGE_SIZE);
1682 			int i;
1683 			bool found = false;
1684 			for (i = 0; i < 4; i++)
1685 				if (pt_vaddr[pte + i] != scratch_pte)
1686 					found = true;
1687 			if (!found)
1688 				continue;
1689 
1690 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1691 			for (i = 0; i < 4; i++) {
1692 				if (pt_vaddr[pte + i] != scratch_pte)
1693 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1694 				else
1695 					seq_puts(m, "  SCRATCH ");
1696 			}
1697 			seq_puts(m, "\n");
1698 		}
1699 		kunmap_atomic(pt_vaddr);
1700 	}
1701 }
1702 
1703 /* Write pde (index) from the page directory @pd to the page table @pt */
1704 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1705 				  const unsigned int pde,
1706 				  const struct i915_page_table *pt)
1707 {
1708 	/* Caller needs to make sure the write completes if necessary */
1709 	writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1710 		       ppgtt->pd_addr + pde);
1711 }
1712 
1713 /* Write all the page tables found in the ppgtt structure to incrementing page
1714  * directories. */
1715 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1716 				  u32 start, u32 length)
1717 {
1718 	struct i915_page_table *pt;
1719 	unsigned int pde;
1720 
1721 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1722 		gen6_write_pde(ppgtt, pde, pt);
1723 
1724 	mark_tlbs_dirty(ppgtt);
1725 	wmb();
1726 }
1727 
1728 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1729 {
1730 	GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1731 	return ppgtt->pd.base.ggtt_offset << 10;
1732 }
1733 
1734 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1735 			 struct i915_request *rq)
1736 {
1737 	struct intel_engine_cs *engine = rq->engine;
1738 	u32 *cs;
1739 
1740 	/* NB: TLBs must be flushed and invalidated before a switch */
1741 	cs = intel_ring_begin(rq, 6);
1742 	if (IS_ERR(cs))
1743 		return PTR_ERR(cs);
1744 
1745 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1746 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1747 	*cs++ = PP_DIR_DCLV_2G;
1748 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1749 	*cs++ = get_pd_offset(ppgtt);
1750 	*cs++ = MI_NOOP;
1751 	intel_ring_advance(rq, cs);
1752 
1753 	return 0;
1754 }
1755 
1756 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1757 			  struct i915_request *rq)
1758 {
1759 	struct intel_engine_cs *engine = rq->engine;
1760 	u32 *cs;
1761 
1762 	/* NB: TLBs must be flushed and invalidated before a switch */
1763 	cs = intel_ring_begin(rq, 6);
1764 	if (IS_ERR(cs))
1765 		return PTR_ERR(cs);
1766 
1767 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1768 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1769 	*cs++ = PP_DIR_DCLV_2G;
1770 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1771 	*cs++ = get_pd_offset(ppgtt);
1772 	*cs++ = MI_NOOP;
1773 	intel_ring_advance(rq, cs);
1774 
1775 	return 0;
1776 }
1777 
1778 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1779 			  struct i915_request *rq)
1780 {
1781 	struct intel_engine_cs *engine = rq->engine;
1782 	struct drm_i915_private *dev_priv = rq->i915;
1783 
1784 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1785 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1786 	return 0;
1787 }
1788 
1789 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1790 {
1791 	struct intel_engine_cs *engine;
1792 	enum intel_engine_id id;
1793 
1794 	for_each_engine(engine, dev_priv, id) {
1795 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1796 				 GEN8_GFX_PPGTT_48B : 0;
1797 		I915_WRITE(RING_MODE_GEN7(engine),
1798 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1799 	}
1800 }
1801 
1802 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1803 {
1804 	struct intel_engine_cs *engine;
1805 	u32 ecochk, ecobits;
1806 	enum intel_engine_id id;
1807 
1808 	ecobits = I915_READ(GAC_ECO_BITS);
1809 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1810 
1811 	ecochk = I915_READ(GAM_ECOCHK);
1812 	if (IS_HASWELL(dev_priv)) {
1813 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1814 	} else {
1815 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1816 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1817 	}
1818 	I915_WRITE(GAM_ECOCHK, ecochk);
1819 
1820 	for_each_engine(engine, dev_priv, id) {
1821 		/* GFX_MODE is per-ring on gen7+ */
1822 		I915_WRITE(RING_MODE_GEN7(engine),
1823 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1824 	}
1825 }
1826 
1827 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1828 {
1829 	u32 ecochk, gab_ctl, ecobits;
1830 
1831 	ecobits = I915_READ(GAC_ECO_BITS);
1832 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1833 		   ECOBITS_PPGTT_CACHE64B);
1834 
1835 	gab_ctl = I915_READ(GAB_CTL);
1836 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1837 
1838 	ecochk = I915_READ(GAM_ECOCHK);
1839 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1840 
1841 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1842 }
1843 
1844 /* PPGTT support for Sandybdrige/Gen6 and later */
1845 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1846 				   u64 start, u64 length)
1847 {
1848 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1849 	unsigned int first_entry = start >> PAGE_SHIFT;
1850 	unsigned int pde = first_entry / GEN6_PTES;
1851 	unsigned int pte = first_entry % GEN6_PTES;
1852 	unsigned int num_entries = length >> PAGE_SHIFT;
1853 	gen6_pte_t scratch_pte =
1854 		vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1855 
1856 	while (num_entries) {
1857 		struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1858 		unsigned int end = min(pte + num_entries, GEN6_PTES);
1859 		gen6_pte_t *vaddr;
1860 
1861 		num_entries -= end - pte;
1862 
1863 		/* Note that the hw doesn't support removing PDE on the fly
1864 		 * (they are cached inside the context with no means to
1865 		 * invalidate the cache), so we can only reset the PTE
1866 		 * entries back to scratch.
1867 		 */
1868 
1869 		vaddr = kmap_atomic_px(pt);
1870 		do {
1871 			vaddr[pte++] = scratch_pte;
1872 		} while (pte < end);
1873 		kunmap_atomic(vaddr);
1874 
1875 		pte = 0;
1876 	}
1877 }
1878 
1879 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1880 				      struct i915_vma *vma,
1881 				      enum i915_cache_level cache_level,
1882 				      u32 flags)
1883 {
1884 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1885 	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1886 	unsigned act_pt = first_entry / GEN6_PTES;
1887 	unsigned act_pte = first_entry % GEN6_PTES;
1888 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1889 	struct sgt_dma iter = sgt_dma(vma);
1890 	gen6_pte_t *vaddr;
1891 
1892 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1893 	do {
1894 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1895 
1896 		iter.dma += PAGE_SIZE;
1897 		if (iter.dma == iter.max) {
1898 			iter.sg = __sg_next(iter.sg);
1899 			if (!iter.sg)
1900 				break;
1901 
1902 			iter.dma = sg_dma_address(iter.sg);
1903 			iter.max = iter.dma + iter.sg->length;
1904 		}
1905 
1906 		if (++act_pte == GEN6_PTES) {
1907 			kunmap_atomic(vaddr);
1908 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1909 			act_pte = 0;
1910 		}
1911 	} while (1);
1912 	kunmap_atomic(vaddr);
1913 
1914 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1915 }
1916 
1917 static int gen6_alloc_va_range(struct i915_address_space *vm,
1918 			       u64 start, u64 length)
1919 {
1920 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1921 	struct i915_page_table *pt;
1922 	u64 from = start;
1923 	unsigned int pde;
1924 	bool flush = false;
1925 
1926 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1927 		if (pt == vm->scratch_pt) {
1928 			pt = alloc_pt(vm);
1929 			if (IS_ERR(pt))
1930 				goto unwind_out;
1931 
1932 			gen6_initialize_pt(vm, pt);
1933 			ppgtt->pd.page_table[pde] = pt;
1934 			gen6_write_pde(ppgtt, pde, pt);
1935 			flush = true;
1936 		}
1937 	}
1938 
1939 	if (flush) {
1940 		mark_tlbs_dirty(ppgtt);
1941 		wmb();
1942 	}
1943 
1944 	return 0;
1945 
1946 unwind_out:
1947 	gen6_ppgtt_clear_range(vm, from, start);
1948 	return -ENOMEM;
1949 }
1950 
1951 static int gen6_init_scratch(struct i915_address_space *vm)
1952 {
1953 	int ret;
1954 
1955 	ret = setup_scratch_page(vm, I915_GFP_DMA);
1956 	if (ret)
1957 		return ret;
1958 
1959 	vm->scratch_pt = alloc_pt(vm);
1960 	if (IS_ERR(vm->scratch_pt)) {
1961 		cleanup_scratch_page(vm);
1962 		return PTR_ERR(vm->scratch_pt);
1963 	}
1964 
1965 	gen6_initialize_pt(vm, vm->scratch_pt);
1966 
1967 	return 0;
1968 }
1969 
1970 static void gen6_free_scratch(struct i915_address_space *vm)
1971 {
1972 	free_pt(vm, vm->scratch_pt);
1973 	cleanup_scratch_page(vm);
1974 }
1975 
1976 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1977 {
1978 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1979 	struct i915_page_directory *pd = &ppgtt->pd;
1980 	struct i915_page_table *pt;
1981 	u32 pde;
1982 
1983 	drm_mm_remove_node(&ppgtt->node);
1984 
1985 	gen6_for_all_pdes(pt, pd, pde)
1986 		if (pt != vm->scratch_pt)
1987 			free_pt(vm, pt);
1988 
1989 	gen6_free_scratch(vm);
1990 }
1991 
1992 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1993 {
1994 	struct i915_address_space *vm = &ppgtt->base;
1995 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1996 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1997 	int ret;
1998 
1999 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2000 	 * allocator works in address space sizes, so it's multiplied by page
2001 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2002 	 */
2003 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2004 
2005 	ret = gen6_init_scratch(vm);
2006 	if (ret)
2007 		return ret;
2008 
2009 	ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
2010 				  GEN6_PD_SIZE, GEN6_PD_ALIGN,
2011 				  I915_COLOR_UNEVICTABLE,
2012 				  0, ggtt->base.total,
2013 				  PIN_HIGH);
2014 	if (ret)
2015 		goto err_out;
2016 
2017 	if (ppgtt->node.start < ggtt->mappable_end)
2018 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2019 
2020 	ppgtt->pd.base.ggtt_offset =
2021 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2022 
2023 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2024 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2025 
2026 	return 0;
2027 
2028 err_out:
2029 	gen6_free_scratch(vm);
2030 	return ret;
2031 }
2032 
2033 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2034 {
2035 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2036 }
2037 
2038 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2039 				  u64 start, u64 length)
2040 {
2041 	struct i915_page_table *unused;
2042 	u32 pde;
2043 
2044 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2045 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2046 }
2047 
2048 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2049 {
2050 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
2051 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2052 	int ret;
2053 
2054 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2055 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2056 		ppgtt->switch_mm = gen6_mm_switch;
2057 	else if (IS_HASWELL(dev_priv))
2058 		ppgtt->switch_mm = hsw_mm_switch;
2059 	else if (IS_GEN7(dev_priv))
2060 		ppgtt->switch_mm = gen7_mm_switch;
2061 	else
2062 		BUG();
2063 
2064 	ret = gen6_ppgtt_alloc(ppgtt);
2065 	if (ret)
2066 		return ret;
2067 
2068 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2069 
2070 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2071 	gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
2072 
2073 	ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
2074 	if (ret) {
2075 		gen6_ppgtt_cleanup(&ppgtt->base);
2076 		return ret;
2077 	}
2078 
2079 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2080 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2081 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2082 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2083 	ppgtt->base.set_pages = ppgtt_set_pages;
2084 	ppgtt->base.clear_pages = clear_pages;
2085 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2086 	ppgtt->debug_dump = gen6_dump_ppgtt;
2087 
2088 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2089 			 ppgtt->node.size >> 20,
2090 			 ppgtt->node.start / PAGE_SIZE);
2091 
2092 	DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
2093 			 ppgtt->pd.base.ggtt_offset << 10);
2094 
2095 	return 0;
2096 }
2097 
2098 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2099 			   struct drm_i915_private *dev_priv)
2100 {
2101 	ppgtt->base.i915 = dev_priv;
2102 	ppgtt->base.dma = &dev_priv->drm.pdev->dev;
2103 
2104 	if (INTEL_GEN(dev_priv) < 8)
2105 		return gen6_ppgtt_init(ppgtt);
2106 	else
2107 		return gen8_ppgtt_init(ppgtt);
2108 }
2109 
2110 static void i915_address_space_init(struct i915_address_space *vm,
2111 				    struct drm_i915_private *dev_priv,
2112 				    const char *name)
2113 {
2114 	i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2115 
2116 	drm_mm_init(&vm->mm, 0, vm->total);
2117 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
2118 
2119 	INIT_LIST_HEAD(&vm->active_list);
2120 	INIT_LIST_HEAD(&vm->inactive_list);
2121 	INIT_LIST_HEAD(&vm->unbound_list);
2122 
2123 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2124 	pagevec_init(&vm->free_pages);
2125 }
2126 
2127 static void i915_address_space_fini(struct i915_address_space *vm)
2128 {
2129 	if (pagevec_count(&vm->free_pages))
2130 		vm_free_pages_release(vm, true);
2131 
2132 	i915_gem_timeline_fini(&vm->timeline);
2133 	drm_mm_takedown(&vm->mm);
2134 	list_del(&vm->global_link);
2135 }
2136 
2137 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2138 {
2139 	/* This function is for gtt related workarounds. This function is
2140 	 * called on driver load and after a GPU reset, so you can place
2141 	 * workarounds here even if they get overwritten by GPU reset.
2142 	 */
2143 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl */
2144 	if (IS_BROADWELL(dev_priv))
2145 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2146 	else if (IS_CHERRYVIEW(dev_priv))
2147 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2148 	else if (IS_GEN9_BC(dev_priv) || IS_GEN10(dev_priv))
2149 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2150 	else if (IS_GEN9_LP(dev_priv))
2151 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2152 
2153 	/*
2154 	 * To support 64K PTEs we need to first enable the use of the
2155 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2156 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2157 	 * shouldn't be needed after GEN10.
2158 	 *
2159 	 * 64K pages were first introduced from BDW+, although technically they
2160 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2161 	 * 32K pages, but we don't currently have any support for it in our
2162 	 * driver.
2163 	 */
2164 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2165 	    INTEL_GEN(dev_priv) <= 10)
2166 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2167 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2168 			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2169 }
2170 
2171 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2172 {
2173 	gtt_write_workarounds(dev_priv);
2174 
2175 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2176 	 * and the PDPs are contained within the context itself.  We don't
2177 	 * need to do anything here. */
2178 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2179 		return 0;
2180 
2181 	if (!USES_PPGTT(dev_priv))
2182 		return 0;
2183 
2184 	if (IS_GEN6(dev_priv))
2185 		gen6_ppgtt_enable(dev_priv);
2186 	else if (IS_GEN7(dev_priv))
2187 		gen7_ppgtt_enable(dev_priv);
2188 	else if (INTEL_GEN(dev_priv) >= 8)
2189 		gen8_ppgtt_enable(dev_priv);
2190 	else
2191 		MISSING_CASE(INTEL_GEN(dev_priv));
2192 
2193 	return 0;
2194 }
2195 
2196 struct i915_hw_ppgtt *
2197 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2198 		  struct drm_i915_file_private *fpriv,
2199 		  const char *name)
2200 {
2201 	struct i915_hw_ppgtt *ppgtt;
2202 	int ret;
2203 
2204 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2205 	if (!ppgtt)
2206 		return ERR_PTR(-ENOMEM);
2207 
2208 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
2209 	if (ret) {
2210 		kfree(ppgtt);
2211 		return ERR_PTR(ret);
2212 	}
2213 
2214 	kref_init(&ppgtt->ref);
2215 	i915_address_space_init(&ppgtt->base, dev_priv, name);
2216 	ppgtt->base.file = fpriv;
2217 
2218 	trace_i915_ppgtt_create(&ppgtt->base);
2219 
2220 	return ppgtt;
2221 }
2222 
2223 void i915_ppgtt_close(struct i915_address_space *vm)
2224 {
2225 	struct list_head *phases[] = {
2226 		&vm->active_list,
2227 		&vm->inactive_list,
2228 		&vm->unbound_list,
2229 		NULL,
2230 	}, **phase;
2231 
2232 	GEM_BUG_ON(vm->closed);
2233 	vm->closed = true;
2234 
2235 	for (phase = phases; *phase; phase++) {
2236 		struct i915_vma *vma, *vn;
2237 
2238 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2239 			if (!i915_vma_is_closed(vma))
2240 				i915_vma_close(vma);
2241 	}
2242 }
2243 
2244 void i915_ppgtt_release(struct kref *kref)
2245 {
2246 	struct i915_hw_ppgtt *ppgtt =
2247 		container_of(kref, struct i915_hw_ppgtt, ref);
2248 
2249 	trace_i915_ppgtt_release(&ppgtt->base);
2250 
2251 	/* vmas should already be unbound and destroyed */
2252 	GEM_BUG_ON(!list_empty(&ppgtt->base.active_list));
2253 	GEM_BUG_ON(!list_empty(&ppgtt->base.inactive_list));
2254 	GEM_BUG_ON(!list_empty(&ppgtt->base.unbound_list));
2255 
2256 	ppgtt->base.cleanup(&ppgtt->base);
2257 	i915_address_space_fini(&ppgtt->base);
2258 	kfree(ppgtt);
2259 }
2260 
2261 /* Certain Gen5 chipsets require require idling the GPU before
2262  * unmapping anything from the GTT when VT-d is enabled.
2263  */
2264 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2265 {
2266 	/* Query intel_iommu to see if we need the workaround. Presumably that
2267 	 * was loaded first.
2268 	 */
2269 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2270 }
2271 
2272 static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2273 {
2274 	struct intel_engine_cs *engine;
2275 	enum intel_engine_id id;
2276 	u32 fault;
2277 
2278 	for_each_engine(engine, dev_priv, id) {
2279 		fault = I915_READ(RING_FAULT_REG(engine));
2280 		if (fault & RING_FAULT_VALID) {
2281 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2282 					 "\tAddr: 0x%08lx\n"
2283 					 "\tAddress space: %s\n"
2284 					 "\tSource ID: %d\n"
2285 					 "\tType: %d\n",
2286 					 fault & PAGE_MASK,
2287 					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2288 					 RING_FAULT_SRCID(fault),
2289 					 RING_FAULT_FAULT_TYPE(fault));
2290 			I915_WRITE(RING_FAULT_REG(engine),
2291 				   fault & ~RING_FAULT_VALID);
2292 		}
2293 	}
2294 
2295 	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2296 }
2297 
2298 static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
2299 {
2300 	u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2301 
2302 	if (fault & RING_FAULT_VALID) {
2303 		u32 fault_data0, fault_data1;
2304 		u64 fault_addr;
2305 
2306 		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2307 		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2308 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2309 			     ((u64)fault_data0 << 12);
2310 
2311 		DRM_DEBUG_DRIVER("Unexpected fault\n"
2312 				 "\tAddr: 0x%08x_%08x\n"
2313 				 "\tAddress space: %s\n"
2314 				 "\tEngine ID: %d\n"
2315 				 "\tSource ID: %d\n"
2316 				 "\tType: %d\n",
2317 				 upper_32_bits(fault_addr),
2318 				 lower_32_bits(fault_addr),
2319 				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2320 				 GEN8_RING_FAULT_ENGINE_ID(fault),
2321 				 RING_FAULT_SRCID(fault),
2322 				 RING_FAULT_FAULT_TYPE(fault));
2323 		I915_WRITE(GEN8_RING_FAULT_REG,
2324 			   fault & ~RING_FAULT_VALID);
2325 	}
2326 
2327 	POSTING_READ(GEN8_RING_FAULT_REG);
2328 }
2329 
2330 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2331 {
2332 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
2333 	if (INTEL_GEN(dev_priv) >= 8)
2334 		gen8_check_and_clear_faults(dev_priv);
2335 	else if (INTEL_GEN(dev_priv) >= 6)
2336 		gen6_check_and_clear_faults(dev_priv);
2337 	else
2338 		return;
2339 }
2340 
2341 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2342 {
2343 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2344 
2345 	/* Don't bother messing with faults pre GEN6 as we have little
2346 	 * documentation supporting that it's a good idea.
2347 	 */
2348 	if (INTEL_GEN(dev_priv) < 6)
2349 		return;
2350 
2351 	i915_check_and_clear_faults(dev_priv);
2352 
2353 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2354 
2355 	i915_ggtt_invalidate(dev_priv);
2356 }
2357 
2358 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2359 			       struct sg_table *pages)
2360 {
2361 	do {
2362 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2363 				     pages->sgl, pages->nents,
2364 				     PCI_DMA_BIDIRECTIONAL,
2365 				     DMA_ATTR_NO_WARN))
2366 			return 0;
2367 
2368 		/* If the DMA remap fails, one cause can be that we have
2369 		 * too many objects pinned in a small remapping table,
2370 		 * such as swiotlb. Incrementally purge all other objects and
2371 		 * try again - if there are no more pages to remove from
2372 		 * the DMA remapper, i915_gem_shrink will return 0.
2373 		 */
2374 		GEM_BUG_ON(obj->mm.pages == pages);
2375 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2376 				 obj->base.size >> PAGE_SHIFT, NULL,
2377 				 I915_SHRINK_BOUND |
2378 				 I915_SHRINK_UNBOUND |
2379 				 I915_SHRINK_ACTIVE));
2380 
2381 	return -ENOSPC;
2382 }
2383 
2384 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2385 {
2386 	writeq(pte, addr);
2387 }
2388 
2389 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2390 				  dma_addr_t addr,
2391 				  u64 offset,
2392 				  enum i915_cache_level level,
2393 				  u32 unused)
2394 {
2395 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2396 	gen8_pte_t __iomem *pte =
2397 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2398 
2399 	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2400 
2401 	ggtt->invalidate(vm->i915);
2402 }
2403 
2404 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2405 				     struct i915_vma *vma,
2406 				     enum i915_cache_level level,
2407 				     u32 unused)
2408 {
2409 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2410 	struct sgt_iter sgt_iter;
2411 	gen8_pte_t __iomem *gtt_entries;
2412 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2413 	dma_addr_t addr;
2414 
2415 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2416 	gtt_entries += vma->node.start >> PAGE_SHIFT;
2417 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2418 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2419 
2420 	wmb();
2421 
2422 	/* This next bit makes the above posting read even more important. We
2423 	 * want to flush the TLBs only after we're certain all the PTE updates
2424 	 * have finished.
2425 	 */
2426 	ggtt->invalidate(vm->i915);
2427 }
2428 
2429 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2430 				  dma_addr_t addr,
2431 				  u64 offset,
2432 				  enum i915_cache_level level,
2433 				  u32 flags)
2434 {
2435 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2436 	gen6_pte_t __iomem *pte =
2437 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2438 
2439 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2440 
2441 	ggtt->invalidate(vm->i915);
2442 }
2443 
2444 /*
2445  * Binds an object into the global gtt with the specified cache level. The object
2446  * will be accessible to the GPU via commands whose operands reference offsets
2447  * within the global GTT as well as accessible by the GPU through the GMADR
2448  * mapped BAR (dev_priv->mm.gtt->gtt).
2449  */
2450 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2451 				     struct i915_vma *vma,
2452 				     enum i915_cache_level level,
2453 				     u32 flags)
2454 {
2455 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2456 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2457 	unsigned int i = vma->node.start >> PAGE_SHIFT;
2458 	struct sgt_iter iter;
2459 	dma_addr_t addr;
2460 	for_each_sgt_dma(addr, iter, vma->pages)
2461 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2462 	wmb();
2463 
2464 	/* This next bit makes the above posting read even more important. We
2465 	 * want to flush the TLBs only after we're certain all the PTE updates
2466 	 * have finished.
2467 	 */
2468 	ggtt->invalidate(vm->i915);
2469 }
2470 
2471 static void nop_clear_range(struct i915_address_space *vm,
2472 			    u64 start, u64 length)
2473 {
2474 }
2475 
2476 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2477 				  u64 start, u64 length)
2478 {
2479 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2480 	unsigned first_entry = start >> PAGE_SHIFT;
2481 	unsigned num_entries = length >> PAGE_SHIFT;
2482 	const gen8_pte_t scratch_pte =
2483 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2484 	gen8_pte_t __iomem *gtt_base =
2485 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2486 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2487 	int i;
2488 
2489 	if (WARN(num_entries > max_entries,
2490 		 "First entry = %d; Num entries = %d (max=%d)\n",
2491 		 first_entry, num_entries, max_entries))
2492 		num_entries = max_entries;
2493 
2494 	for (i = 0; i < num_entries; i++)
2495 		gen8_set_pte(&gtt_base[i], scratch_pte);
2496 }
2497 
2498 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2499 {
2500 	struct drm_i915_private *dev_priv = vm->i915;
2501 
2502 	/*
2503 	 * Make sure the internal GAM fifo has been cleared of all GTT
2504 	 * writes before exiting stop_machine(). This guarantees that
2505 	 * any aperture accesses waiting to start in another process
2506 	 * cannot back up behind the GTT writes causing a hang.
2507 	 * The register can be any arbitrary GAM register.
2508 	 */
2509 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2510 }
2511 
2512 struct insert_page {
2513 	struct i915_address_space *vm;
2514 	dma_addr_t addr;
2515 	u64 offset;
2516 	enum i915_cache_level level;
2517 };
2518 
2519 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2520 {
2521 	struct insert_page *arg = _arg;
2522 
2523 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2524 	bxt_vtd_ggtt_wa(arg->vm);
2525 
2526 	return 0;
2527 }
2528 
2529 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2530 					  dma_addr_t addr,
2531 					  u64 offset,
2532 					  enum i915_cache_level level,
2533 					  u32 unused)
2534 {
2535 	struct insert_page arg = { vm, addr, offset, level };
2536 
2537 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2538 }
2539 
2540 struct insert_entries {
2541 	struct i915_address_space *vm;
2542 	struct i915_vma *vma;
2543 	enum i915_cache_level level;
2544 };
2545 
2546 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2547 {
2548 	struct insert_entries *arg = _arg;
2549 
2550 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2551 	bxt_vtd_ggtt_wa(arg->vm);
2552 
2553 	return 0;
2554 }
2555 
2556 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2557 					     struct i915_vma *vma,
2558 					     enum i915_cache_level level,
2559 					     u32 unused)
2560 {
2561 	struct insert_entries arg = { vm, vma, level };
2562 
2563 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2564 }
2565 
2566 struct clear_range {
2567 	struct i915_address_space *vm;
2568 	u64 start;
2569 	u64 length;
2570 };
2571 
2572 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2573 {
2574 	struct clear_range *arg = _arg;
2575 
2576 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2577 	bxt_vtd_ggtt_wa(arg->vm);
2578 
2579 	return 0;
2580 }
2581 
2582 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2583 					  u64 start,
2584 					  u64 length)
2585 {
2586 	struct clear_range arg = { vm, start, length };
2587 
2588 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2589 }
2590 
2591 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2592 				  u64 start, u64 length)
2593 {
2594 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2595 	unsigned first_entry = start >> PAGE_SHIFT;
2596 	unsigned num_entries = length >> PAGE_SHIFT;
2597 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2598 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2599 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2600 	int i;
2601 
2602 	if (WARN(num_entries > max_entries,
2603 		 "First entry = %d; Num entries = %d (max=%d)\n",
2604 		 first_entry, num_entries, max_entries))
2605 		num_entries = max_entries;
2606 
2607 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2608 				     I915_CACHE_LLC, 0);
2609 
2610 	for (i = 0; i < num_entries; i++)
2611 		iowrite32(scratch_pte, &gtt_base[i]);
2612 }
2613 
2614 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2615 				  dma_addr_t addr,
2616 				  u64 offset,
2617 				  enum i915_cache_level cache_level,
2618 				  u32 unused)
2619 {
2620 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2621 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2622 
2623 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2624 }
2625 
2626 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2627 				     struct i915_vma *vma,
2628 				     enum i915_cache_level cache_level,
2629 				     u32 unused)
2630 {
2631 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2632 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2633 
2634 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2635 				    flags);
2636 }
2637 
2638 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2639 				  u64 start, u64 length)
2640 {
2641 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2642 }
2643 
2644 static int ggtt_bind_vma(struct i915_vma *vma,
2645 			 enum i915_cache_level cache_level,
2646 			 u32 flags)
2647 {
2648 	struct drm_i915_private *i915 = vma->vm->i915;
2649 	struct drm_i915_gem_object *obj = vma->obj;
2650 	u32 pte_flags;
2651 
2652 	/* Currently applicable only to VLV */
2653 	pte_flags = 0;
2654 	if (obj->gt_ro)
2655 		pte_flags |= PTE_READ_ONLY;
2656 
2657 	intel_runtime_pm_get(i915);
2658 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2659 	intel_runtime_pm_put(i915);
2660 
2661 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2662 
2663 	/*
2664 	 * Without aliasing PPGTT there's no difference between
2665 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2666 	 * upgrade to both bound if we bind either to avoid double-binding.
2667 	 */
2668 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2669 
2670 	return 0;
2671 }
2672 
2673 static void ggtt_unbind_vma(struct i915_vma *vma)
2674 {
2675 	struct drm_i915_private *i915 = vma->vm->i915;
2676 
2677 	intel_runtime_pm_get(i915);
2678 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2679 	intel_runtime_pm_put(i915);
2680 }
2681 
2682 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2683 				 enum i915_cache_level cache_level,
2684 				 u32 flags)
2685 {
2686 	struct drm_i915_private *i915 = vma->vm->i915;
2687 	u32 pte_flags;
2688 	int ret;
2689 
2690 	/* Currently applicable only to VLV */
2691 	pte_flags = 0;
2692 	if (vma->obj->gt_ro)
2693 		pte_flags |= PTE_READ_ONLY;
2694 
2695 	if (flags & I915_VMA_LOCAL_BIND) {
2696 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2697 
2698 		if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2699 		    appgtt->base.allocate_va_range) {
2700 			ret = appgtt->base.allocate_va_range(&appgtt->base,
2701 							     vma->node.start,
2702 							     vma->size);
2703 			if (ret)
2704 				return ret;
2705 		}
2706 
2707 		appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2708 					    pte_flags);
2709 	}
2710 
2711 	if (flags & I915_VMA_GLOBAL_BIND) {
2712 		intel_runtime_pm_get(i915);
2713 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2714 		intel_runtime_pm_put(i915);
2715 	}
2716 
2717 	return 0;
2718 }
2719 
2720 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2721 {
2722 	struct drm_i915_private *i915 = vma->vm->i915;
2723 
2724 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2725 		intel_runtime_pm_get(i915);
2726 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2727 		intel_runtime_pm_put(i915);
2728 	}
2729 
2730 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2731 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2732 
2733 		vm->clear_range(vm, vma->node.start, vma->size);
2734 	}
2735 }
2736 
2737 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2738 			       struct sg_table *pages)
2739 {
2740 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2741 	struct device *kdev = &dev_priv->drm.pdev->dev;
2742 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2743 
2744 	if (unlikely(ggtt->do_idle_maps)) {
2745 		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2746 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2747 			/* Wait a bit, in hopes it avoids the hang */
2748 			udelay(10);
2749 		}
2750 	}
2751 
2752 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2753 }
2754 
2755 static int ggtt_set_pages(struct i915_vma *vma)
2756 {
2757 	int ret;
2758 
2759 	GEM_BUG_ON(vma->pages);
2760 
2761 	ret = i915_get_ggtt_vma_pages(vma);
2762 	if (ret)
2763 		return ret;
2764 
2765 	vma->page_sizes = vma->obj->mm.page_sizes;
2766 
2767 	return 0;
2768 }
2769 
2770 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2771 				  unsigned long color,
2772 				  u64 *start,
2773 				  u64 *end)
2774 {
2775 	if (node->allocated && node->color != color)
2776 		*start += I915_GTT_PAGE_SIZE;
2777 
2778 	/* Also leave a space between the unallocated reserved node after the
2779 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2780 	 * to insert a guard page to prevent prefetches crossing over the
2781 	 * GTT boundary.
2782 	 */
2783 	node = list_next_entry(node, node_list);
2784 	if (node->color != color)
2785 		*end -= I915_GTT_PAGE_SIZE;
2786 }
2787 
2788 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2789 {
2790 	struct i915_ggtt *ggtt = &i915->ggtt;
2791 	struct i915_hw_ppgtt *ppgtt;
2792 	int err;
2793 
2794 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2795 	if (IS_ERR(ppgtt))
2796 		return PTR_ERR(ppgtt);
2797 
2798 	if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2799 		err = -ENODEV;
2800 		goto err_ppgtt;
2801 	}
2802 
2803 	if (ppgtt->base.allocate_va_range) {
2804 		/* Note we only pre-allocate as far as the end of the global
2805 		 * GTT. On 48b / 4-level page-tables, the difference is very,
2806 		 * very significant! We have to preallocate as GVT/vgpu does
2807 		 * not like the page directory disappearing.
2808 		 */
2809 		err = ppgtt->base.allocate_va_range(&ppgtt->base,
2810 						    0, ggtt->base.total);
2811 		if (err)
2812 			goto err_ppgtt;
2813 	}
2814 
2815 	i915->mm.aliasing_ppgtt = ppgtt;
2816 
2817 	GEM_BUG_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2818 	ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2819 
2820 	GEM_BUG_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2821 	ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2822 
2823 	return 0;
2824 
2825 err_ppgtt:
2826 	i915_ppgtt_put(ppgtt);
2827 	return err;
2828 }
2829 
2830 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2831 {
2832 	struct i915_ggtt *ggtt = &i915->ggtt;
2833 	struct i915_hw_ppgtt *ppgtt;
2834 
2835 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2836 	if (!ppgtt)
2837 		return;
2838 
2839 	i915_ppgtt_put(ppgtt);
2840 
2841 	ggtt->base.bind_vma = ggtt_bind_vma;
2842 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2843 }
2844 
2845 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2846 {
2847 	/* Let GEM Manage all of the aperture.
2848 	 *
2849 	 * However, leave one page at the end still bound to the scratch page.
2850 	 * There are a number of places where the hardware apparently prefetches
2851 	 * past the end of the object, and we've seen multiple hangs with the
2852 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2853 	 * aperture.  One page should be enough to keep any prefetching inside
2854 	 * of the aperture.
2855 	 */
2856 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2857 	unsigned long hole_start, hole_end;
2858 	struct drm_mm_node *entry;
2859 	int ret;
2860 
2861 	ret = intel_vgt_balloon(dev_priv);
2862 	if (ret)
2863 		return ret;
2864 
2865 	/* Reserve a mappable slot for our lockless error capture */
2866 	ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2867 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2868 					  0, ggtt->mappable_end,
2869 					  DRM_MM_INSERT_LOW);
2870 	if (ret)
2871 		return ret;
2872 
2873 	/* Clear any non-preallocated blocks */
2874 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2875 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2876 			      hole_start, hole_end);
2877 		ggtt->base.clear_range(&ggtt->base, hole_start,
2878 				       hole_end - hole_start);
2879 	}
2880 
2881 	/* And finally clear the reserved guard page */
2882 	ggtt->base.clear_range(&ggtt->base,
2883 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2884 
2885 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2886 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2887 		if (ret)
2888 			goto err;
2889 	}
2890 
2891 	return 0;
2892 
2893 err:
2894 	drm_mm_remove_node(&ggtt->error_capture);
2895 	return ret;
2896 }
2897 
2898 /**
2899  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2900  * @dev_priv: i915 device
2901  */
2902 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2903 {
2904 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2905 	struct i915_vma *vma, *vn;
2906 	struct pagevec *pvec;
2907 
2908 	ggtt->base.closed = true;
2909 
2910 	mutex_lock(&dev_priv->drm.struct_mutex);
2911 	GEM_BUG_ON(!list_empty(&ggtt->base.active_list));
2912 	list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2913 		WARN_ON(i915_vma_unbind(vma));
2914 	mutex_unlock(&dev_priv->drm.struct_mutex);
2915 
2916 	i915_gem_cleanup_stolen(&dev_priv->drm);
2917 
2918 	mutex_lock(&dev_priv->drm.struct_mutex);
2919 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2920 
2921 	if (drm_mm_node_allocated(&ggtt->error_capture))
2922 		drm_mm_remove_node(&ggtt->error_capture);
2923 
2924 	if (drm_mm_initialized(&ggtt->base.mm)) {
2925 		intel_vgt_deballoon(dev_priv);
2926 		i915_address_space_fini(&ggtt->base);
2927 	}
2928 
2929 	ggtt->base.cleanup(&ggtt->base);
2930 
2931 	pvec = &dev_priv->mm.wc_stash;
2932 	if (pvec->nr) {
2933 		set_pages_array_wb(pvec->pages, pvec->nr);
2934 		__pagevec_release(pvec);
2935 	}
2936 
2937 	mutex_unlock(&dev_priv->drm.struct_mutex);
2938 
2939 	arch_phys_wc_del(ggtt->mtrr);
2940 	io_mapping_fini(&ggtt->iomap);
2941 }
2942 
2943 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2944 {
2945 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2946 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2947 	return snb_gmch_ctl << 20;
2948 }
2949 
2950 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2951 {
2952 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2953 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2954 	if (bdw_gmch_ctl)
2955 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2956 
2957 #ifdef CONFIG_X86_32
2958 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2959 	if (bdw_gmch_ctl > 4)
2960 		bdw_gmch_ctl = 4;
2961 #endif
2962 
2963 	return bdw_gmch_ctl << 20;
2964 }
2965 
2966 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2967 {
2968 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2969 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2970 
2971 	if (gmch_ctrl)
2972 		return 1 << (20 + gmch_ctrl);
2973 
2974 	return 0;
2975 }
2976 
2977 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2978 {
2979 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2980 	struct pci_dev *pdev = dev_priv->drm.pdev;
2981 	phys_addr_t phys_addr;
2982 	int ret;
2983 
2984 	/* For Modern GENs the PTEs and register space are split in the BAR */
2985 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2986 
2987 	/*
2988 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2989 	 * will be dropped. For WC mappings in general we have 64 byte burst
2990 	 * writes when the WC buffer is flushed, so we can't use it, but have to
2991 	 * resort to an uncached mapping. The WC issue is easily caught by the
2992 	 * readback check when writing GTT PTE entries.
2993 	 */
2994 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2995 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2996 	else
2997 		ggtt->gsm = ioremap_wc(phys_addr, size);
2998 	if (!ggtt->gsm) {
2999 		DRM_ERROR("Failed to map the ggtt page table\n");
3000 		return -ENOMEM;
3001 	}
3002 
3003 	ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
3004 	if (ret) {
3005 		DRM_ERROR("Scratch setup failed\n");
3006 		/* iounmap will also get called at remove, but meh */
3007 		iounmap(ggtt->gsm);
3008 		return ret;
3009 	}
3010 
3011 	return 0;
3012 }
3013 
3014 static struct intel_ppat_entry *
3015 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3016 {
3017 	struct intel_ppat_entry *entry = &ppat->entries[index];
3018 
3019 	GEM_BUG_ON(index >= ppat->max_entries);
3020 	GEM_BUG_ON(test_bit(index, ppat->used));
3021 
3022 	entry->ppat = ppat;
3023 	entry->value = value;
3024 	kref_init(&entry->ref);
3025 	set_bit(index, ppat->used);
3026 	set_bit(index, ppat->dirty);
3027 
3028 	return entry;
3029 }
3030 
3031 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3032 {
3033 	struct intel_ppat *ppat = entry->ppat;
3034 	unsigned int index = entry - ppat->entries;
3035 
3036 	GEM_BUG_ON(index >= ppat->max_entries);
3037 	GEM_BUG_ON(!test_bit(index, ppat->used));
3038 
3039 	entry->value = ppat->clear_value;
3040 	clear_bit(index, ppat->used);
3041 	set_bit(index, ppat->dirty);
3042 }
3043 
3044 /**
3045  * intel_ppat_get - get a usable PPAT entry
3046  * @i915: i915 device instance
3047  * @value: the PPAT value required by the caller
3048  *
3049  * The function tries to search if there is an existing PPAT entry which
3050  * matches with the required value. If perfectly matched, the existing PPAT
3051  * entry will be used. If only partially matched, it will try to check if
3052  * there is any available PPAT index. If yes, it will allocate a new PPAT
3053  * index for the required entry and update the HW. If not, the partially
3054  * matched entry will be used.
3055  */
3056 const struct intel_ppat_entry *
3057 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3058 {
3059 	struct intel_ppat *ppat = &i915->ppat;
3060 	struct intel_ppat_entry *entry = NULL;
3061 	unsigned int scanned, best_score;
3062 	int i;
3063 
3064 	GEM_BUG_ON(!ppat->max_entries);
3065 
3066 	scanned = best_score = 0;
3067 	for_each_set_bit(i, ppat->used, ppat->max_entries) {
3068 		unsigned int score;
3069 
3070 		score = ppat->match(ppat->entries[i].value, value);
3071 		if (score > best_score) {
3072 			entry = &ppat->entries[i];
3073 			if (score == INTEL_PPAT_PERFECT_MATCH) {
3074 				kref_get(&entry->ref);
3075 				return entry;
3076 			}
3077 			best_score = score;
3078 		}
3079 		scanned++;
3080 	}
3081 
3082 	if (scanned == ppat->max_entries) {
3083 		if (!entry)
3084 			return ERR_PTR(-ENOSPC);
3085 
3086 		kref_get(&entry->ref);
3087 		return entry;
3088 	}
3089 
3090 	i = find_first_zero_bit(ppat->used, ppat->max_entries);
3091 	entry = __alloc_ppat_entry(ppat, i, value);
3092 	ppat->update_hw(i915);
3093 	return entry;
3094 }
3095 
3096 static void release_ppat(struct kref *kref)
3097 {
3098 	struct intel_ppat_entry *entry =
3099 		container_of(kref, struct intel_ppat_entry, ref);
3100 	struct drm_i915_private *i915 = entry->ppat->i915;
3101 
3102 	__free_ppat_entry(entry);
3103 	entry->ppat->update_hw(i915);
3104 }
3105 
3106 /**
3107  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3108  * @entry: an intel PPAT entry
3109  *
3110  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3111  * entry is dynamically allocated, its reference count will be decreased. Once
3112  * the reference count becomes into zero, the PPAT index becomes free again.
3113  */
3114 void intel_ppat_put(const struct intel_ppat_entry *entry)
3115 {
3116 	struct intel_ppat *ppat = entry->ppat;
3117 	unsigned int index = entry - ppat->entries;
3118 
3119 	GEM_BUG_ON(!ppat->max_entries);
3120 
3121 	kref_put(&ppat->entries[index].ref, release_ppat);
3122 }
3123 
3124 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3125 {
3126 	struct intel_ppat *ppat = &dev_priv->ppat;
3127 	int i;
3128 
3129 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3130 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3131 		clear_bit(i, ppat->dirty);
3132 	}
3133 }
3134 
3135 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3136 {
3137 	struct intel_ppat *ppat = &dev_priv->ppat;
3138 	u64 pat = 0;
3139 	int i;
3140 
3141 	for (i = 0; i < ppat->max_entries; i++)
3142 		pat |= GEN8_PPAT(i, ppat->entries[i].value);
3143 
3144 	bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3145 
3146 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3147 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3148 }
3149 
3150 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3151 {
3152 	unsigned int score = 0;
3153 	enum {
3154 		AGE_MATCH = BIT(0),
3155 		TC_MATCH = BIT(1),
3156 		CA_MATCH = BIT(2),
3157 	};
3158 
3159 	/* Cache attribute has to be matched. */
3160 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3161 		return 0;
3162 
3163 	score |= CA_MATCH;
3164 
3165 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3166 		score |= TC_MATCH;
3167 
3168 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3169 		score |= AGE_MATCH;
3170 
3171 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3172 		return INTEL_PPAT_PERFECT_MATCH;
3173 
3174 	return score;
3175 }
3176 
3177 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3178 {
3179 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3180 		INTEL_PPAT_PERFECT_MATCH : 0;
3181 }
3182 
3183 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3184 {
3185 	ppat->max_entries = 8;
3186 	ppat->update_hw = cnl_private_pat_update_hw;
3187 	ppat->match = bdw_private_pat_match;
3188 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3189 
3190 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3191 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3192 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3193 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3194 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3195 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3196 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3197 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3198 }
3199 
3200 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3201  * bits. When using advanced contexts each context stores its own PAT, but
3202  * writing this data shouldn't be harmful even in those cases. */
3203 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3204 {
3205 	ppat->max_entries = 8;
3206 	ppat->update_hw = bdw_private_pat_update_hw;
3207 	ppat->match = bdw_private_pat_match;
3208 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3209 
3210 	if (!USES_PPGTT(ppat->i915)) {
3211 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3212 		 * so RTL will always use the value corresponding to
3213 		 * pat_sel = 000".
3214 		 * So let's disable cache for GGTT to avoid screen corruptions.
3215 		 * MOCS still can be used though.
3216 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3217 		 * before this patch, i.e. the same uncached + snooping access
3218 		 * like on gen6/7 seems to be in effect.
3219 		 * - So this just fixes blitter/render access. Again it looks
3220 		 * like it's not just uncached access, but uncached + snooping.
3221 		 * So we can still hold onto all our assumptions wrt cpu
3222 		 * clflushing on LLC machines.
3223 		 */
3224 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3225 		return;
3226 	}
3227 
3228 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3229 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3230 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3231 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3232 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3233 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3234 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3235 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3236 }
3237 
3238 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3239 {
3240 	ppat->max_entries = 8;
3241 	ppat->update_hw = bdw_private_pat_update_hw;
3242 	ppat->match = chv_private_pat_match;
3243 	ppat->clear_value = CHV_PPAT_SNOOP;
3244 
3245 	/*
3246 	 * Map WB on BDW to snooped on CHV.
3247 	 *
3248 	 * Only the snoop bit has meaning for CHV, the rest is
3249 	 * ignored.
3250 	 *
3251 	 * The hardware will never snoop for certain types of accesses:
3252 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3253 	 * - PPGTT page tables
3254 	 * - some other special cycles
3255 	 *
3256 	 * As with BDW, we also need to consider the following for GT accesses:
3257 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3258 	 * so RTL will always use the value corresponding to
3259 	 * pat_sel = 000".
3260 	 * Which means we must set the snoop bit in PAT entry 0
3261 	 * in order to keep the global status page working.
3262 	 */
3263 
3264 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3265 	__alloc_ppat_entry(ppat, 1, 0);
3266 	__alloc_ppat_entry(ppat, 2, 0);
3267 	__alloc_ppat_entry(ppat, 3, 0);
3268 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3269 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3270 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3271 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3272 }
3273 
3274 static void gen6_gmch_remove(struct i915_address_space *vm)
3275 {
3276 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3277 
3278 	iounmap(ggtt->gsm);
3279 	cleanup_scratch_page(vm);
3280 }
3281 
3282 static void setup_private_pat(struct drm_i915_private *dev_priv)
3283 {
3284 	struct intel_ppat *ppat = &dev_priv->ppat;
3285 	int i;
3286 
3287 	ppat->i915 = dev_priv;
3288 
3289 	if (INTEL_GEN(dev_priv) >= 10)
3290 		cnl_setup_private_ppat(ppat);
3291 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3292 		chv_setup_private_ppat(ppat);
3293 	else
3294 		bdw_setup_private_ppat(ppat);
3295 
3296 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3297 
3298 	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3299 		ppat->entries[i].value = ppat->clear_value;
3300 		ppat->entries[i].ppat = ppat;
3301 		set_bit(i, ppat->dirty);
3302 	}
3303 
3304 	ppat->update_hw(dev_priv);
3305 }
3306 
3307 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3308 {
3309 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3310 	struct pci_dev *pdev = dev_priv->drm.pdev;
3311 	unsigned int size;
3312 	u16 snb_gmch_ctl;
3313 	int err;
3314 
3315 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3316 	ggtt->gmadr =
3317 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3318 						 pci_resource_len(pdev, 2));
3319 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3320 
3321 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3322 	if (!err)
3323 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3324 	if (err)
3325 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3326 
3327 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3328 
3329 	if (INTEL_GEN(dev_priv) >= 9) {
3330 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3331 	} else if (IS_CHERRYVIEW(dev_priv)) {
3332 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3333 	} else {
3334 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3335 	}
3336 
3337 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3338 	ggtt->base.cleanup = gen6_gmch_remove;
3339 	ggtt->base.bind_vma = ggtt_bind_vma;
3340 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3341 	ggtt->base.set_pages = ggtt_set_pages;
3342 	ggtt->base.clear_pages = clear_pages;
3343 	ggtt->base.insert_page = gen8_ggtt_insert_page;
3344 	ggtt->base.clear_range = nop_clear_range;
3345 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3346 		ggtt->base.clear_range = gen8_ggtt_clear_range;
3347 
3348 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3349 
3350 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3351 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3352 		ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3353 		ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3354 		if (ggtt->base.clear_range != nop_clear_range)
3355 			ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3356 	}
3357 
3358 	ggtt->invalidate = gen6_ggtt_invalidate;
3359 
3360 	setup_private_pat(dev_priv);
3361 
3362 	return ggtt_probe_common(ggtt, size);
3363 }
3364 
3365 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3366 {
3367 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3368 	struct pci_dev *pdev = dev_priv->drm.pdev;
3369 	unsigned int size;
3370 	u16 snb_gmch_ctl;
3371 	int err;
3372 
3373 	ggtt->gmadr =
3374 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3375 						 pci_resource_len(pdev, 2));
3376 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3377 
3378 	/* 64/512MB is the current min/max we actually know of, but this is just
3379 	 * a coarse sanity check.
3380 	 */
3381 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3382 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3383 		return -ENXIO;
3384 	}
3385 
3386 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3387 	if (!err)
3388 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3389 	if (err)
3390 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3391 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3392 
3393 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3394 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3395 
3396 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3397 	ggtt->base.insert_page = gen6_ggtt_insert_page;
3398 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3399 	ggtt->base.bind_vma = ggtt_bind_vma;
3400 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3401 	ggtt->base.set_pages = ggtt_set_pages;
3402 	ggtt->base.clear_pages = clear_pages;
3403 	ggtt->base.cleanup = gen6_gmch_remove;
3404 
3405 	ggtt->invalidate = gen6_ggtt_invalidate;
3406 
3407 	if (HAS_EDRAM(dev_priv))
3408 		ggtt->base.pte_encode = iris_pte_encode;
3409 	else if (IS_HASWELL(dev_priv))
3410 		ggtt->base.pte_encode = hsw_pte_encode;
3411 	else if (IS_VALLEYVIEW(dev_priv))
3412 		ggtt->base.pte_encode = byt_pte_encode;
3413 	else if (INTEL_GEN(dev_priv) >= 7)
3414 		ggtt->base.pte_encode = ivb_pte_encode;
3415 	else
3416 		ggtt->base.pte_encode = snb_pte_encode;
3417 
3418 	return ggtt_probe_common(ggtt, size);
3419 }
3420 
3421 static void i915_gmch_remove(struct i915_address_space *vm)
3422 {
3423 	intel_gmch_remove();
3424 }
3425 
3426 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3427 {
3428 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3429 	phys_addr_t gmadr_base;
3430 	int ret;
3431 
3432 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3433 	if (!ret) {
3434 		DRM_ERROR("failed to set up gmch\n");
3435 		return -EIO;
3436 	}
3437 
3438 	intel_gtt_get(&ggtt->base.total,
3439 		      &gmadr_base,
3440 		      &ggtt->mappable_end);
3441 
3442 	ggtt->gmadr =
3443 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3444 						 ggtt->mappable_end);
3445 
3446 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3447 	ggtt->base.insert_page = i915_ggtt_insert_page;
3448 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3449 	ggtt->base.clear_range = i915_ggtt_clear_range;
3450 	ggtt->base.bind_vma = ggtt_bind_vma;
3451 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3452 	ggtt->base.set_pages = ggtt_set_pages;
3453 	ggtt->base.clear_pages = clear_pages;
3454 	ggtt->base.cleanup = i915_gmch_remove;
3455 
3456 	ggtt->invalidate = gmch_ggtt_invalidate;
3457 
3458 	if (unlikely(ggtt->do_idle_maps))
3459 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3460 
3461 	return 0;
3462 }
3463 
3464 /**
3465  * i915_ggtt_probe_hw - Probe GGTT hardware location
3466  * @dev_priv: i915 device
3467  */
3468 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3469 {
3470 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3471 	int ret;
3472 
3473 	ggtt->base.i915 = dev_priv;
3474 	ggtt->base.dma = &dev_priv->drm.pdev->dev;
3475 
3476 	if (INTEL_GEN(dev_priv) <= 5)
3477 		ret = i915_gmch_probe(ggtt);
3478 	else if (INTEL_GEN(dev_priv) < 8)
3479 		ret = gen6_gmch_probe(ggtt);
3480 	else
3481 		ret = gen8_gmch_probe(ggtt);
3482 	if (ret)
3483 		return ret;
3484 
3485 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3486 	 * This is easier than doing range restriction on the fly, as we
3487 	 * currently don't have any bits spare to pass in this upper
3488 	 * restriction!
3489 	 */
3490 	if (USES_GUC(dev_priv)) {
3491 		ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3492 		ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3493 	}
3494 
3495 	if ((ggtt->base.total - 1) >> 32) {
3496 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3497 			  " of address space! Found %lldM!\n",
3498 			  ggtt->base.total >> 20);
3499 		ggtt->base.total = 1ULL << 32;
3500 		ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3501 	}
3502 
3503 	if (ggtt->mappable_end > ggtt->base.total) {
3504 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3505 			  " aperture=%pa, total=%llx\n",
3506 			  &ggtt->mappable_end, ggtt->base.total);
3507 		ggtt->mappable_end = ggtt->base.total;
3508 	}
3509 
3510 	/* GMADR is the PCI mmio aperture into the global GTT. */
3511 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->base.total >> 20);
3512 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3513 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3514 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3515 	if (intel_vtd_active())
3516 		DRM_INFO("VT-d active for gfx access\n");
3517 
3518 	return 0;
3519 }
3520 
3521 /**
3522  * i915_ggtt_init_hw - Initialize GGTT hardware
3523  * @dev_priv: i915 device
3524  */
3525 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3526 {
3527 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3528 	int ret;
3529 
3530 	INIT_LIST_HEAD(&dev_priv->vm_list);
3531 
3532 	/* Note that we use page colouring to enforce a guard page at the
3533 	 * end of the address space. This is required as the CS may prefetch
3534 	 * beyond the end of the batch buffer, across the page boundary,
3535 	 * and beyond the end of the GTT if we do not provide a guard.
3536 	 */
3537 	mutex_lock(&dev_priv->drm.struct_mutex);
3538 	i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3539 	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3540 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3541 	mutex_unlock(&dev_priv->drm.struct_mutex);
3542 
3543 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3544 				dev_priv->ggtt.gmadr.start,
3545 				dev_priv->ggtt.mappable_end)) {
3546 		ret = -EIO;
3547 		goto out_gtt_cleanup;
3548 	}
3549 
3550 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3551 
3552 	/*
3553 	 * Initialise stolen early so that we may reserve preallocated
3554 	 * objects for the BIOS to KMS transition.
3555 	 */
3556 	ret = i915_gem_init_stolen(dev_priv);
3557 	if (ret)
3558 		goto out_gtt_cleanup;
3559 
3560 	return 0;
3561 
3562 out_gtt_cleanup:
3563 	ggtt->base.cleanup(&ggtt->base);
3564 	return ret;
3565 }
3566 
3567 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3568 {
3569 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3570 		return -EIO;
3571 
3572 	return 0;
3573 }
3574 
3575 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3576 {
3577 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3578 
3579 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3580 
3581 	i915_ggtt_invalidate(i915);
3582 }
3583 
3584 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3585 {
3586 	/* We should only be called after i915_ggtt_enable_guc() */
3587 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3588 
3589 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3590 
3591 	i915_ggtt_invalidate(i915);
3592 }
3593 
3594 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3595 {
3596 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3597 	struct drm_i915_gem_object *obj, *on;
3598 
3599 	i915_check_and_clear_faults(dev_priv);
3600 
3601 	/* First fill our portion of the GTT with scratch pages */
3602 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3603 
3604 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3605 
3606 	/* clflush objects bound into the GGTT and rebind them. */
3607 	list_for_each_entry_safe(obj, on, &dev_priv->mm.bound_list, mm.link) {
3608 		bool ggtt_bound = false;
3609 		struct i915_vma *vma;
3610 
3611 		for_each_ggtt_vma(vma, obj) {
3612 			if (!i915_vma_unbind(vma))
3613 				continue;
3614 
3615 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3616 					      PIN_UPDATE));
3617 			ggtt_bound = true;
3618 		}
3619 
3620 		if (ggtt_bound)
3621 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3622 	}
3623 
3624 	ggtt->base.closed = false;
3625 
3626 	if (INTEL_GEN(dev_priv) >= 8) {
3627 		struct intel_ppat *ppat = &dev_priv->ppat;
3628 
3629 		bitmap_set(ppat->dirty, 0, ppat->max_entries);
3630 		dev_priv->ppat.update_hw(dev_priv);
3631 		return;
3632 	}
3633 
3634 	if (USES_PPGTT(dev_priv)) {
3635 		struct i915_address_space *vm;
3636 
3637 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3638 			struct i915_hw_ppgtt *ppgtt;
3639 
3640 			if (i915_is_ggtt(vm))
3641 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3642 			else
3643 				ppgtt = i915_vm_to_ppgtt(vm);
3644 
3645 			gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3646 		}
3647 	}
3648 
3649 	i915_ggtt_invalidate(dev_priv);
3650 }
3651 
3652 static struct scatterlist *
3653 rotate_pages(const dma_addr_t *in, unsigned int offset,
3654 	     unsigned int width, unsigned int height,
3655 	     unsigned int stride,
3656 	     struct sg_table *st, struct scatterlist *sg)
3657 {
3658 	unsigned int column, row;
3659 	unsigned int src_idx;
3660 
3661 	for (column = 0; column < width; column++) {
3662 		src_idx = stride * (height - 1) + column;
3663 		for (row = 0; row < height; row++) {
3664 			st->nents++;
3665 			/* We don't need the pages, but need to initialize
3666 			 * the entries so the sg list can be happily traversed.
3667 			 * The only thing we need are DMA addresses.
3668 			 */
3669 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3670 			sg_dma_address(sg) = in[offset + src_idx];
3671 			sg_dma_len(sg) = PAGE_SIZE;
3672 			sg = sg_next(sg);
3673 			src_idx -= stride;
3674 		}
3675 	}
3676 
3677 	return sg;
3678 }
3679 
3680 static noinline struct sg_table *
3681 intel_rotate_pages(struct intel_rotation_info *rot_info,
3682 		   struct drm_i915_gem_object *obj)
3683 {
3684 	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3685 	unsigned int size = intel_rotation_info_size(rot_info);
3686 	struct sgt_iter sgt_iter;
3687 	dma_addr_t dma_addr;
3688 	unsigned long i;
3689 	dma_addr_t *page_addr_list;
3690 	struct sg_table *st;
3691 	struct scatterlist *sg;
3692 	int ret = -ENOMEM;
3693 
3694 	/* Allocate a temporary list of source pages for random access. */
3695 	page_addr_list = kvmalloc_array(n_pages,
3696 					sizeof(dma_addr_t),
3697 					GFP_KERNEL);
3698 	if (!page_addr_list)
3699 		return ERR_PTR(ret);
3700 
3701 	/* Allocate target SG list. */
3702 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3703 	if (!st)
3704 		goto err_st_alloc;
3705 
3706 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3707 	if (ret)
3708 		goto err_sg_alloc;
3709 
3710 	/* Populate source page list from the object. */
3711 	i = 0;
3712 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3713 		page_addr_list[i++] = dma_addr;
3714 
3715 	GEM_BUG_ON(i != n_pages);
3716 	st->nents = 0;
3717 	sg = st->sgl;
3718 
3719 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3720 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3721 				  rot_info->plane[i].width, rot_info->plane[i].height,
3722 				  rot_info->plane[i].stride, st, sg);
3723 	}
3724 
3725 	kvfree(page_addr_list);
3726 
3727 	return st;
3728 
3729 err_sg_alloc:
3730 	kfree(st);
3731 err_st_alloc:
3732 	kvfree(page_addr_list);
3733 
3734 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3735 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3736 
3737 	return ERR_PTR(ret);
3738 }
3739 
3740 static noinline struct sg_table *
3741 intel_partial_pages(const struct i915_ggtt_view *view,
3742 		    struct drm_i915_gem_object *obj)
3743 {
3744 	struct sg_table *st;
3745 	struct scatterlist *sg, *iter;
3746 	unsigned int count = view->partial.size;
3747 	unsigned int offset;
3748 	int ret = -ENOMEM;
3749 
3750 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3751 	if (!st)
3752 		goto err_st_alloc;
3753 
3754 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3755 	if (ret)
3756 		goto err_sg_alloc;
3757 
3758 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3759 	GEM_BUG_ON(!iter);
3760 
3761 	sg = st->sgl;
3762 	st->nents = 0;
3763 	do {
3764 		unsigned int len;
3765 
3766 		len = min(iter->length - (offset << PAGE_SHIFT),
3767 			  count << PAGE_SHIFT);
3768 		sg_set_page(sg, NULL, len, 0);
3769 		sg_dma_address(sg) =
3770 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3771 		sg_dma_len(sg) = len;
3772 
3773 		st->nents++;
3774 		count -= len >> PAGE_SHIFT;
3775 		if (count == 0) {
3776 			sg_mark_end(sg);
3777 			return st;
3778 		}
3779 
3780 		sg = __sg_next(sg);
3781 		iter = __sg_next(iter);
3782 		offset = 0;
3783 	} while (1);
3784 
3785 err_sg_alloc:
3786 	kfree(st);
3787 err_st_alloc:
3788 	return ERR_PTR(ret);
3789 }
3790 
3791 static int
3792 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3793 {
3794 	int ret;
3795 
3796 	/* The vma->pages are only valid within the lifespan of the borrowed
3797 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3798 	 * must be the vma->pages. A simple rule is that vma->pages must only
3799 	 * be accessed when the obj->mm.pages are pinned.
3800 	 */
3801 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3802 
3803 	switch (vma->ggtt_view.type) {
3804 	default:
3805 		GEM_BUG_ON(vma->ggtt_view.type);
3806 		/* fall through */
3807 	case I915_GGTT_VIEW_NORMAL:
3808 		vma->pages = vma->obj->mm.pages;
3809 		return 0;
3810 
3811 	case I915_GGTT_VIEW_ROTATED:
3812 		vma->pages =
3813 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3814 		break;
3815 
3816 	case I915_GGTT_VIEW_PARTIAL:
3817 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3818 		break;
3819 	}
3820 
3821 	ret = 0;
3822 	if (unlikely(IS_ERR(vma->pages))) {
3823 		ret = PTR_ERR(vma->pages);
3824 		vma->pages = NULL;
3825 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3826 			  vma->ggtt_view.type, ret);
3827 	}
3828 	return ret;
3829 }
3830 
3831 /**
3832  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3833  * @vm: the &struct i915_address_space
3834  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3835  * @size: how much space to allocate inside the GTT,
3836  *        must be #I915_GTT_PAGE_SIZE aligned
3837  * @offset: where to insert inside the GTT,
3838  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3839  *          (@offset + @size) must fit within the address space
3840  * @color: color to apply to node, if this node is not from a VMA,
3841  *         color must be #I915_COLOR_UNEVICTABLE
3842  * @flags: control search and eviction behaviour
3843  *
3844  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3845  * the address space (using @size and @color). If the @node does not fit, it
3846  * tries to evict any overlapping nodes from the GTT, including any
3847  * neighbouring nodes if the colors do not match (to ensure guard pages between
3848  * differing domains). See i915_gem_evict_for_node() for the gory details
3849  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3850  * evicting active overlapping objects, and any overlapping node that is pinned
3851  * or marked as unevictable will also result in failure.
3852  *
3853  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3854  * asked to wait for eviction and interrupted.
3855  */
3856 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3857 			 struct drm_mm_node *node,
3858 			 u64 size, u64 offset, unsigned long color,
3859 			 unsigned int flags)
3860 {
3861 	int err;
3862 
3863 	GEM_BUG_ON(!size);
3864 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3865 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3866 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3867 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3868 	GEM_BUG_ON(drm_mm_node_allocated(node));
3869 
3870 	node->size = size;
3871 	node->start = offset;
3872 	node->color = color;
3873 
3874 	err = drm_mm_reserve_node(&vm->mm, node);
3875 	if (err != -ENOSPC)
3876 		return err;
3877 
3878 	if (flags & PIN_NOEVICT)
3879 		return -ENOSPC;
3880 
3881 	err = i915_gem_evict_for_node(vm, node, flags);
3882 	if (err == 0)
3883 		err = drm_mm_reserve_node(&vm->mm, node);
3884 
3885 	return err;
3886 }
3887 
3888 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3889 {
3890 	u64 range, addr;
3891 
3892 	GEM_BUG_ON(range_overflows(start, len, end));
3893 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3894 
3895 	range = round_down(end - len, align) - round_up(start, align);
3896 	if (range) {
3897 		if (sizeof(unsigned long) == sizeof(u64)) {
3898 			addr = get_random_long();
3899 		} else {
3900 			addr = get_random_int();
3901 			if (range > U32_MAX) {
3902 				addr <<= 32;
3903 				addr |= get_random_int();
3904 			}
3905 		}
3906 		div64_u64_rem(addr, range, &addr);
3907 		start += addr;
3908 	}
3909 
3910 	return round_up(start, align);
3911 }
3912 
3913 /**
3914  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3915  * @vm: the &struct i915_address_space
3916  * @node: the &struct drm_mm_node (typically i915_vma.node)
3917  * @size: how much space to allocate inside the GTT,
3918  *        must be #I915_GTT_PAGE_SIZE aligned
3919  * @alignment: required alignment of starting offset, may be 0 but
3920  *             if specified, this must be a power-of-two and at least
3921  *             #I915_GTT_MIN_ALIGNMENT
3922  * @color: color to apply to node
3923  * @start: start of any range restriction inside GTT (0 for all),
3924  *         must be #I915_GTT_PAGE_SIZE aligned
3925  * @end: end of any range restriction inside GTT (U64_MAX for all),
3926  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3927  * @flags: control search and eviction behaviour
3928  *
3929  * i915_gem_gtt_insert() first searches for an available hole into which
3930  * is can insert the node. The hole address is aligned to @alignment and
3931  * its @size must then fit entirely within the [@start, @end] bounds. The
3932  * nodes on either side of the hole must match @color, or else a guard page
3933  * will be inserted between the two nodes (or the node evicted). If no
3934  * suitable hole is found, first a victim is randomly selected and tested
3935  * for eviction, otherwise then the LRU list of objects within the GTT
3936  * is scanned to find the first set of replacement nodes to create the hole.
3937  * Those old overlapping nodes are evicted from the GTT (and so must be
3938  * rebound before any future use). Any node that is currently pinned cannot
3939  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3940  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3941  * searching for an eviction candidate. See i915_gem_evict_something() for
3942  * the gory details on the eviction algorithm.
3943  *
3944  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3945  * asked to wait for eviction and interrupted.
3946  */
3947 int i915_gem_gtt_insert(struct i915_address_space *vm,
3948 			struct drm_mm_node *node,
3949 			u64 size, u64 alignment, unsigned long color,
3950 			u64 start, u64 end, unsigned int flags)
3951 {
3952 	enum drm_mm_insert_mode mode;
3953 	u64 offset;
3954 	int err;
3955 
3956 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3957 	GEM_BUG_ON(!size);
3958 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3959 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3960 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3961 	GEM_BUG_ON(start >= end);
3962 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3963 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3964 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3965 	GEM_BUG_ON(drm_mm_node_allocated(node));
3966 
3967 	if (unlikely(range_overflows(start, size, end)))
3968 		return -ENOSPC;
3969 
3970 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3971 		return -ENOSPC;
3972 
3973 	mode = DRM_MM_INSERT_BEST;
3974 	if (flags & PIN_HIGH)
3975 		mode = DRM_MM_INSERT_HIGH;
3976 	if (flags & PIN_MAPPABLE)
3977 		mode = DRM_MM_INSERT_LOW;
3978 
3979 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3980 	 * so we know that we always have a minimum alignment of 4096.
3981 	 * The drm_mm range manager is optimised to return results
3982 	 * with zero alignment, so where possible use the optimal
3983 	 * path.
3984 	 */
3985 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3986 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3987 		alignment = 0;
3988 
3989 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3990 					  size, alignment, color,
3991 					  start, end, mode);
3992 	if (err != -ENOSPC)
3993 		return err;
3994 
3995 	if (flags & PIN_NOEVICT)
3996 		return -ENOSPC;
3997 
3998 	/* No free space, pick a slot at random.
3999 	 *
4000 	 * There is a pathological case here using a GTT shared between
4001 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4002 	 *
4003 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4004 	 *         (64k objects)             (448k objects)
4005 	 *
4006 	 * Now imagine that the eviction LRU is ordered top-down (just because
4007 	 * pathology meets real life), and that we need to evict an object to
4008 	 * make room inside the aperture. The eviction scan then has to walk
4009 	 * the 448k list before it finds one within range. And now imagine that
4010 	 * it has to search for a new hole between every byte inside the memcpy,
4011 	 * for several simultaneous clients.
4012 	 *
4013 	 * On a full-ppgtt system, if we have run out of available space, there
4014 	 * will be lots and lots of objects in the eviction list! Again,
4015 	 * searching that LRU list may be slow if we are also applying any
4016 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
4017 	 * simplicity and similarilty between different GTT, try the single
4018 	 * random replacement first.
4019 	 */
4020 	offset = random_offset(start, end,
4021 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4022 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4023 	if (err != -ENOSPC)
4024 		return err;
4025 
4026 	/* Randomly selected placement is pinned, do a search */
4027 	err = i915_gem_evict_something(vm, size, alignment, color,
4028 				       start, end, flags);
4029 	if (err)
4030 		return err;
4031 
4032 	return drm_mm_insert_node_in_range(&vm->mm, node,
4033 					   size, alignment, color,
4034 					   start, end, DRM_MM_INSERT_EVICT);
4035 }
4036 
4037 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4038 #include "selftests/mock_gtt.c"
4039 #include "selftests/i915_gem_gtt.c"
4040 #endif
4041