1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32 
33 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
34 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
35 
36 bool intel_enable_ppgtt(struct drm_device *dev, bool full)
37 {
38 	if (i915.enable_ppgtt == 0)
39 		return false;
40 
41 	if (i915.enable_ppgtt == 1 && full)
42 		return false;
43 
44 	return true;
45 }
46 
47 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
48 {
49 	if (enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
50 		return 0;
51 
52 	if (enable_ppgtt == 1)
53 		return 1;
54 
55 	if (enable_ppgtt == 2 && HAS_PPGTT(dev))
56 		return 2;
57 
58 #ifdef CONFIG_INTEL_IOMMU
59 	/* Disable ppgtt on SNB if VT-d is on. */
60 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
61 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
62 		return 0;
63 	}
64 #endif
65 
66 	/* Early VLV doesn't have this */
67 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
68 	    dev->pdev->revision < 0xb) {
69 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
70 		return 0;
71 	}
72 
73 	return HAS_ALIASING_PPGTT(dev) ? 1 : 0;
74 }
75 
76 
77 static void ppgtt_bind_vma(struct i915_vma *vma,
78 			   enum i915_cache_level cache_level,
79 			   u32 flags);
80 static void ppgtt_unbind_vma(struct i915_vma *vma);
81 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
82 
83 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
84 					     enum i915_cache_level level,
85 					     bool valid)
86 {
87 	gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
88 	pte |= addr;
89 
90 	switch (level) {
91 	case I915_CACHE_NONE:
92 		pte |= PPAT_UNCACHED_INDEX;
93 		break;
94 	case I915_CACHE_WT:
95 		pte |= PPAT_DISPLAY_ELLC_INDEX;
96 		break;
97 	default:
98 		pte |= PPAT_CACHED_INDEX;
99 		break;
100 	}
101 
102 	return pte;
103 }
104 
105 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
106 					     dma_addr_t addr,
107 					     enum i915_cache_level level)
108 {
109 	gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
110 	pde |= addr;
111 	if (level != I915_CACHE_NONE)
112 		pde |= PPAT_CACHED_PDE_INDEX;
113 	else
114 		pde |= PPAT_UNCACHED_INDEX;
115 	return pde;
116 }
117 
118 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
119 				     enum i915_cache_level level,
120 				     bool valid, u32 unused)
121 {
122 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
123 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
124 
125 	switch (level) {
126 	case I915_CACHE_L3_LLC:
127 	case I915_CACHE_LLC:
128 		pte |= GEN6_PTE_CACHE_LLC;
129 		break;
130 	case I915_CACHE_NONE:
131 		pte |= GEN6_PTE_UNCACHED;
132 		break;
133 	default:
134 		WARN_ON(1);
135 	}
136 
137 	return pte;
138 }
139 
140 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
141 				     enum i915_cache_level level,
142 				     bool valid, u32 unused)
143 {
144 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
145 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
146 
147 	switch (level) {
148 	case I915_CACHE_L3_LLC:
149 		pte |= GEN7_PTE_CACHE_L3_LLC;
150 		break;
151 	case I915_CACHE_LLC:
152 		pte |= GEN6_PTE_CACHE_LLC;
153 		break;
154 	case I915_CACHE_NONE:
155 		pte |= GEN6_PTE_UNCACHED;
156 		break;
157 	default:
158 		WARN_ON(1);
159 	}
160 
161 	return pte;
162 }
163 
164 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
165 				     enum i915_cache_level level,
166 				     bool valid, u32 flags)
167 {
168 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
169 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
170 
171 	/* Mark the page as writeable.  Other platforms don't have a
172 	 * setting for read-only/writable, so this matches that behavior.
173 	 */
174 	if (!(flags & PTE_READ_ONLY))
175 		pte |= BYT_PTE_WRITEABLE;
176 
177 	if (level != I915_CACHE_NONE)
178 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
179 
180 	return pte;
181 }
182 
183 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
184 				     enum i915_cache_level level,
185 				     bool valid, u32 unused)
186 {
187 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
188 	pte |= HSW_PTE_ADDR_ENCODE(addr);
189 
190 	if (level != I915_CACHE_NONE)
191 		pte |= HSW_WB_LLC_AGE3;
192 
193 	return pte;
194 }
195 
196 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
197 				      enum i915_cache_level level,
198 				      bool valid, u32 unused)
199 {
200 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
201 	pte |= HSW_PTE_ADDR_ENCODE(addr);
202 
203 	switch (level) {
204 	case I915_CACHE_NONE:
205 		break;
206 	case I915_CACHE_WT:
207 		pte |= HSW_WT_ELLC_LLC_AGE3;
208 		break;
209 	default:
210 		pte |= HSW_WB_ELLC_LLC_AGE3;
211 		break;
212 	}
213 
214 	return pte;
215 }
216 
217 /* Broadwell Page Directory Pointer Descriptors */
218 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
219 			   uint64_t val, bool synchronous)
220 {
221 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
222 	int ret;
223 
224 	BUG_ON(entry >= 4);
225 
226 	if (synchronous) {
227 		I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
228 		I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
229 		return 0;
230 	}
231 
232 	ret = intel_ring_begin(ring, 6);
233 	if (ret)
234 		return ret;
235 
236 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
237 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
238 	intel_ring_emit(ring, (u32)(val >> 32));
239 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
240 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
241 	intel_ring_emit(ring, (u32)(val));
242 	intel_ring_advance(ring);
243 
244 	return 0;
245 }
246 
247 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
248 			  struct intel_engine_cs *ring,
249 			  bool synchronous)
250 {
251 	int i, ret;
252 
253 	/* bit of a hack to find the actual last used pd */
254 	int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
255 
256 	for (i = used_pd - 1; i >= 0; i--) {
257 		dma_addr_t addr = ppgtt->pd_dma_addr[i];
258 		ret = gen8_write_pdp(ring, i, addr, synchronous);
259 		if (ret)
260 			return ret;
261 	}
262 
263 	return 0;
264 }
265 
266 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
267 				   uint64_t start,
268 				   uint64_t length,
269 				   bool use_scratch)
270 {
271 	struct i915_hw_ppgtt *ppgtt =
272 		container_of(vm, struct i915_hw_ppgtt, base);
273 	gen8_gtt_pte_t *pt_vaddr, scratch_pte;
274 	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
275 	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
276 	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
277 	unsigned num_entries = length >> PAGE_SHIFT;
278 	unsigned last_pte, i;
279 
280 	scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
281 				      I915_CACHE_LLC, use_scratch);
282 
283 	while (num_entries) {
284 		struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
285 
286 		last_pte = pte + num_entries;
287 		if (last_pte > GEN8_PTES_PER_PAGE)
288 			last_pte = GEN8_PTES_PER_PAGE;
289 
290 		pt_vaddr = kmap_atomic(page_table);
291 
292 		for (i = pte; i < last_pte; i++) {
293 			pt_vaddr[i] = scratch_pte;
294 			num_entries--;
295 		}
296 
297 		if (!HAS_LLC(ppgtt->base.dev))
298 			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
299 		kunmap_atomic(pt_vaddr);
300 
301 		pte = 0;
302 		if (++pde == GEN8_PDES_PER_PAGE) {
303 			pdpe++;
304 			pde = 0;
305 		}
306 	}
307 }
308 
309 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
310 				      struct sg_table *pages,
311 				      uint64_t start,
312 				      enum i915_cache_level cache_level, u32 unused)
313 {
314 	struct i915_hw_ppgtt *ppgtt =
315 		container_of(vm, struct i915_hw_ppgtt, base);
316 	gen8_gtt_pte_t *pt_vaddr;
317 	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
318 	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
319 	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
320 	struct sg_page_iter sg_iter;
321 
322 	pt_vaddr = NULL;
323 
324 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
325 		if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
326 			break;
327 
328 		if (pt_vaddr == NULL)
329 			pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
330 
331 		pt_vaddr[pte] =
332 			gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
333 					cache_level, true);
334 		if (++pte == GEN8_PTES_PER_PAGE) {
335 			if (!HAS_LLC(ppgtt->base.dev))
336 				drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
337 			kunmap_atomic(pt_vaddr);
338 			pt_vaddr = NULL;
339 			if (++pde == GEN8_PDES_PER_PAGE) {
340 				pdpe++;
341 				pde = 0;
342 			}
343 			pte = 0;
344 		}
345 	}
346 	if (pt_vaddr) {
347 		if (!HAS_LLC(ppgtt->base.dev))
348 			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
349 		kunmap_atomic(pt_vaddr);
350 	}
351 }
352 
353 static void gen8_free_page_tables(struct page **pt_pages)
354 {
355 	int i;
356 
357 	if (pt_pages == NULL)
358 		return;
359 
360 	for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
361 		if (pt_pages[i])
362 			__free_pages(pt_pages[i], 0);
363 }
364 
365 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
366 {
367 	int i;
368 
369 	for (i = 0; i < ppgtt->num_pd_pages; i++) {
370 		gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
371 		kfree(ppgtt->gen8_pt_pages[i]);
372 		kfree(ppgtt->gen8_pt_dma_addr[i]);
373 	}
374 
375 	__free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
376 }
377 
378 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
379 {
380 	struct pci_dev *hwdev = ppgtt->base.dev->pdev;
381 	int i, j;
382 
383 	for (i = 0; i < ppgtt->num_pd_pages; i++) {
384 		/* TODO: In the future we'll support sparse mappings, so this
385 		 * will have to change. */
386 		if (!ppgtt->pd_dma_addr[i])
387 			continue;
388 
389 		pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
390 			       PCI_DMA_BIDIRECTIONAL);
391 
392 		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
393 			dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
394 			if (addr)
395 				pci_unmap_page(hwdev, addr, PAGE_SIZE,
396 					       PCI_DMA_BIDIRECTIONAL);
397 		}
398 	}
399 }
400 
401 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
402 {
403 	struct i915_hw_ppgtt *ppgtt =
404 		container_of(vm, struct i915_hw_ppgtt, base);
405 
406 	list_del(&vm->global_link);
407 	drm_mm_takedown(&vm->mm);
408 
409 	gen8_ppgtt_unmap_pages(ppgtt);
410 	gen8_ppgtt_free(ppgtt);
411 }
412 
413 static struct page **__gen8_alloc_page_tables(void)
414 {
415 	struct page **pt_pages;
416 	int i;
417 
418 	pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
419 	if (!pt_pages)
420 		return ERR_PTR(-ENOMEM);
421 
422 	for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
423 		pt_pages[i] = alloc_page(GFP_KERNEL);
424 		if (!pt_pages[i])
425 			goto bail;
426 	}
427 
428 	return pt_pages;
429 
430 bail:
431 	gen8_free_page_tables(pt_pages);
432 	kfree(pt_pages);
433 	return ERR_PTR(-ENOMEM);
434 }
435 
436 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
437 					   const int max_pdp)
438 {
439 	struct page **pt_pages[GEN8_LEGACY_PDPS];
440 	int i, ret;
441 
442 	for (i = 0; i < max_pdp; i++) {
443 		pt_pages[i] = __gen8_alloc_page_tables();
444 		if (IS_ERR(pt_pages[i])) {
445 			ret = PTR_ERR(pt_pages[i]);
446 			goto unwind_out;
447 		}
448 	}
449 
450 	/* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
451 	 * "atomic" - for cleanup purposes.
452 	 */
453 	for (i = 0; i < max_pdp; i++)
454 		ppgtt->gen8_pt_pages[i] = pt_pages[i];
455 
456 	return 0;
457 
458 unwind_out:
459 	while (i--) {
460 		gen8_free_page_tables(pt_pages[i]);
461 		kfree(pt_pages[i]);
462 	}
463 
464 	return ret;
465 }
466 
467 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
468 {
469 	int i;
470 
471 	for (i = 0; i < ppgtt->num_pd_pages; i++) {
472 		ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
473 						     sizeof(dma_addr_t),
474 						     GFP_KERNEL);
475 		if (!ppgtt->gen8_pt_dma_addr[i])
476 			return -ENOMEM;
477 	}
478 
479 	return 0;
480 }
481 
482 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
483 						const int max_pdp)
484 {
485 	ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
486 	if (!ppgtt->pd_pages)
487 		return -ENOMEM;
488 
489 	ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
490 	BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
491 
492 	return 0;
493 }
494 
495 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
496 			    const int max_pdp)
497 {
498 	int ret;
499 
500 	ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
501 	if (ret)
502 		return ret;
503 
504 	ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
505 	if (ret) {
506 		__free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
507 		return ret;
508 	}
509 
510 	ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
511 
512 	ret = gen8_ppgtt_allocate_dma(ppgtt);
513 	if (ret)
514 		gen8_ppgtt_free(ppgtt);
515 
516 	return ret;
517 }
518 
519 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
520 					     const int pd)
521 {
522 	dma_addr_t pd_addr;
523 	int ret;
524 
525 	pd_addr = pci_map_page(ppgtt->base.dev->pdev,
526 			       &ppgtt->pd_pages[pd], 0,
527 			       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
528 
529 	ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
530 	if (ret)
531 		return ret;
532 
533 	ppgtt->pd_dma_addr[pd] = pd_addr;
534 
535 	return 0;
536 }
537 
538 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
539 					const int pd,
540 					const int pt)
541 {
542 	dma_addr_t pt_addr;
543 	struct page *p;
544 	int ret;
545 
546 	p = ppgtt->gen8_pt_pages[pd][pt];
547 	pt_addr = pci_map_page(ppgtt->base.dev->pdev,
548 			       p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
549 	ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
550 	if (ret)
551 		return ret;
552 
553 	ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
554 
555 	return 0;
556 }
557 
558 /**
559  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
560  * with a net effect resembling a 2-level page table in normal x86 terms. Each
561  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
562  * space.
563  *
564  * FIXME: split allocation into smaller pieces. For now we only ever do this
565  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
566  * TODO: Do something with the size parameter
567  */
568 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
569 {
570 	const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
571 	const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
572 	int i, j, ret;
573 
574 	if (size % (1<<30))
575 		DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
576 
577 	/* 1. Do all our allocations for page directories and page tables. */
578 	ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
579 	if (ret)
580 		return ret;
581 
582 	/*
583 	 * 2. Create DMA mappings for the page directories and page tables.
584 	 */
585 	for (i = 0; i < max_pdp; i++) {
586 		ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
587 		if (ret)
588 			goto bail;
589 
590 		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
591 			ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
592 			if (ret)
593 				goto bail;
594 		}
595 	}
596 
597 	/*
598 	 * 3. Map all the page directory entires to point to the page tables
599 	 * we've allocated.
600 	 *
601 	 * For now, the PPGTT helper functions all require that the PDEs are
602 	 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
603 	 * will never need to touch the PDEs again.
604 	 */
605 	for (i = 0; i < max_pdp; i++) {
606 		gen8_ppgtt_pde_t *pd_vaddr;
607 		pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
608 		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
609 			dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
610 			pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
611 						      I915_CACHE_LLC);
612 		}
613 		if (!HAS_LLC(ppgtt->base.dev))
614 			drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
615 		kunmap_atomic(pd_vaddr);
616 	}
617 
618 	ppgtt->enable = gen8_ppgtt_enable;
619 	ppgtt->switch_mm = gen8_mm_switch;
620 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
621 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
622 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
623 	ppgtt->base.start = 0;
624 	ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
625 
626 	ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
627 
628 	DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
629 			 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
630 	DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
631 			 ppgtt->num_pd_entries,
632 			 (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
633 	return 0;
634 
635 bail:
636 	gen8_ppgtt_unmap_pages(ppgtt);
637 	gen8_ppgtt_free(ppgtt);
638 	return ret;
639 }
640 
641 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
642 {
643 	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
644 	struct i915_address_space *vm = &ppgtt->base;
645 	gen6_gtt_pte_t __iomem *pd_addr;
646 	gen6_gtt_pte_t scratch_pte;
647 	uint32_t pd_entry;
648 	int pte, pde;
649 
650 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
651 
652 	pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
653 		ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
654 
655 	seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
656 		   ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
657 	for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
658 		u32 expected;
659 		gen6_gtt_pte_t *pt_vaddr;
660 		dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
661 		pd_entry = readl(pd_addr + pde);
662 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
663 
664 		if (pd_entry != expected)
665 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
666 				   pde,
667 				   pd_entry,
668 				   expected);
669 		seq_printf(m, "\tPDE: %x\n", pd_entry);
670 
671 		pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
672 		for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
673 			unsigned long va =
674 				(pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
675 				(pte * PAGE_SIZE);
676 			int i;
677 			bool found = false;
678 			for (i = 0; i < 4; i++)
679 				if (pt_vaddr[pte + i] != scratch_pte)
680 					found = true;
681 			if (!found)
682 				continue;
683 
684 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
685 			for (i = 0; i < 4; i++) {
686 				if (pt_vaddr[pte + i] != scratch_pte)
687 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
688 				else
689 					seq_puts(m, "  SCRATCH ");
690 			}
691 			seq_puts(m, "\n");
692 		}
693 		kunmap_atomic(pt_vaddr);
694 	}
695 }
696 
697 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
698 {
699 	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
700 	gen6_gtt_pte_t __iomem *pd_addr;
701 	uint32_t pd_entry;
702 	int i;
703 
704 	WARN_ON(ppgtt->pd_offset & 0x3f);
705 	pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
706 		ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
707 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
708 		dma_addr_t pt_addr;
709 
710 		pt_addr = ppgtt->pt_dma_addr[i];
711 		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
712 		pd_entry |= GEN6_PDE_VALID;
713 
714 		writel(pd_entry, pd_addr + i);
715 	}
716 	readl(pd_addr);
717 }
718 
719 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
720 {
721 	BUG_ON(ppgtt->pd_offset & 0x3f);
722 
723 	return (ppgtt->pd_offset / 64) << 16;
724 }
725 
726 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
727 			 struct intel_engine_cs *ring,
728 			 bool synchronous)
729 {
730 	struct drm_device *dev = ppgtt->base.dev;
731 	struct drm_i915_private *dev_priv = dev->dev_private;
732 	int ret;
733 
734 	/* If we're in reset, we can assume the GPU is sufficiently idle to
735 	 * manually frob these bits. Ideally we could use the ring functions,
736 	 * except our error handling makes it quite difficult (can't use
737 	 * intel_ring_begin, ring->flush, or intel_ring_advance)
738 	 *
739 	 * FIXME: We should try not to special case reset
740 	 */
741 	if (synchronous ||
742 	    i915_reset_in_progress(&dev_priv->gpu_error)) {
743 		WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
744 		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
745 		I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
746 		POSTING_READ(RING_PP_DIR_BASE(ring));
747 		return 0;
748 	}
749 
750 	/* NB: TLBs must be flushed and invalidated before a switch */
751 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
752 	if (ret)
753 		return ret;
754 
755 	ret = intel_ring_begin(ring, 6);
756 	if (ret)
757 		return ret;
758 
759 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
760 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
761 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
762 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
763 	intel_ring_emit(ring, get_pd_offset(ppgtt));
764 	intel_ring_emit(ring, MI_NOOP);
765 	intel_ring_advance(ring);
766 
767 	return 0;
768 }
769 
770 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
771 			  struct intel_engine_cs *ring,
772 			  bool synchronous)
773 {
774 	struct drm_device *dev = ppgtt->base.dev;
775 	struct drm_i915_private *dev_priv = dev->dev_private;
776 	int ret;
777 
778 	/* If we're in reset, we can assume the GPU is sufficiently idle to
779 	 * manually frob these bits. Ideally we could use the ring functions,
780 	 * except our error handling makes it quite difficult (can't use
781 	 * intel_ring_begin, ring->flush, or intel_ring_advance)
782 	 *
783 	 * FIXME: We should try not to special case reset
784 	 */
785 	if (synchronous ||
786 	    i915_reset_in_progress(&dev_priv->gpu_error)) {
787 		WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
788 		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
789 		I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
790 		POSTING_READ(RING_PP_DIR_BASE(ring));
791 		return 0;
792 	}
793 
794 	/* NB: TLBs must be flushed and invalidated before a switch */
795 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
796 	if (ret)
797 		return ret;
798 
799 	ret = intel_ring_begin(ring, 6);
800 	if (ret)
801 		return ret;
802 
803 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
804 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
805 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
806 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
807 	intel_ring_emit(ring, get_pd_offset(ppgtt));
808 	intel_ring_emit(ring, MI_NOOP);
809 	intel_ring_advance(ring);
810 
811 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
812 	if (ring->id != RCS) {
813 		ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
814 		if (ret)
815 			return ret;
816 	}
817 
818 	return 0;
819 }
820 
821 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
822 			  struct intel_engine_cs *ring,
823 			  bool synchronous)
824 {
825 	struct drm_device *dev = ppgtt->base.dev;
826 	struct drm_i915_private *dev_priv = dev->dev_private;
827 
828 	if (!synchronous)
829 		return 0;
830 
831 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
832 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
833 
834 	POSTING_READ(RING_PP_DIR_DCLV(ring));
835 
836 	return 0;
837 }
838 
839 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
840 {
841 	struct drm_device *dev = ppgtt->base.dev;
842 	struct drm_i915_private *dev_priv = dev->dev_private;
843 	struct intel_engine_cs *ring;
844 	int j, ret;
845 
846 	for_each_ring(ring, dev_priv, j) {
847 		I915_WRITE(RING_MODE_GEN7(ring),
848 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
849 
850 		/* We promise to do a switch later with FULL PPGTT. If this is
851 		 * aliasing, this is the one and only switch we'll do */
852 		if (USES_FULL_PPGTT(dev))
853 			continue;
854 
855 		ret = ppgtt->switch_mm(ppgtt, ring, true);
856 		if (ret)
857 			goto err_out;
858 	}
859 
860 	return 0;
861 
862 err_out:
863 	for_each_ring(ring, dev_priv, j)
864 		I915_WRITE(RING_MODE_GEN7(ring),
865 			   _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
866 	return ret;
867 }
868 
869 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
870 {
871 	struct drm_device *dev = ppgtt->base.dev;
872 	struct drm_i915_private *dev_priv = dev->dev_private;
873 	struct intel_engine_cs *ring;
874 	uint32_t ecochk, ecobits;
875 	int i;
876 
877 	ecobits = I915_READ(GAC_ECO_BITS);
878 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
879 
880 	ecochk = I915_READ(GAM_ECOCHK);
881 	if (IS_HASWELL(dev)) {
882 		ecochk |= ECOCHK_PPGTT_WB_HSW;
883 	} else {
884 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
885 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
886 	}
887 	I915_WRITE(GAM_ECOCHK, ecochk);
888 
889 	for_each_ring(ring, dev_priv, i) {
890 		int ret;
891 		/* GFX_MODE is per-ring on gen7+ */
892 		I915_WRITE(RING_MODE_GEN7(ring),
893 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
894 
895 		/* We promise to do a switch later with FULL PPGTT. If this is
896 		 * aliasing, this is the one and only switch we'll do */
897 		if (USES_FULL_PPGTT(dev))
898 			continue;
899 
900 		ret = ppgtt->switch_mm(ppgtt, ring, true);
901 		if (ret)
902 			return ret;
903 	}
904 
905 	return 0;
906 }
907 
908 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
909 {
910 	struct drm_device *dev = ppgtt->base.dev;
911 	struct drm_i915_private *dev_priv = dev->dev_private;
912 	struct intel_engine_cs *ring;
913 	uint32_t ecochk, gab_ctl, ecobits;
914 	int i;
915 
916 	ecobits = I915_READ(GAC_ECO_BITS);
917 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
918 		   ECOBITS_PPGTT_CACHE64B);
919 
920 	gab_ctl = I915_READ(GAB_CTL);
921 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
922 
923 	ecochk = I915_READ(GAM_ECOCHK);
924 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
925 
926 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
927 
928 	for_each_ring(ring, dev_priv, i) {
929 		int ret = ppgtt->switch_mm(ppgtt, ring, true);
930 		if (ret)
931 			return ret;
932 	}
933 
934 	return 0;
935 }
936 
937 /* PPGTT support for Sandybdrige/Gen6 and later */
938 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
939 				   uint64_t start,
940 				   uint64_t length,
941 				   bool use_scratch)
942 {
943 	struct i915_hw_ppgtt *ppgtt =
944 		container_of(vm, struct i915_hw_ppgtt, base);
945 	gen6_gtt_pte_t *pt_vaddr, scratch_pte;
946 	unsigned first_entry = start >> PAGE_SHIFT;
947 	unsigned num_entries = length >> PAGE_SHIFT;
948 	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
949 	unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
950 	unsigned last_pte, i;
951 
952 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
953 
954 	while (num_entries) {
955 		last_pte = first_pte + num_entries;
956 		if (last_pte > I915_PPGTT_PT_ENTRIES)
957 			last_pte = I915_PPGTT_PT_ENTRIES;
958 
959 		pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
960 
961 		for (i = first_pte; i < last_pte; i++)
962 			pt_vaddr[i] = scratch_pte;
963 
964 		kunmap_atomic(pt_vaddr);
965 
966 		num_entries -= last_pte - first_pte;
967 		first_pte = 0;
968 		act_pt++;
969 	}
970 }
971 
972 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
973 				      struct sg_table *pages,
974 				      uint64_t start,
975 				      enum i915_cache_level cache_level, u32 flags)
976 {
977 	struct i915_hw_ppgtt *ppgtt =
978 		container_of(vm, struct i915_hw_ppgtt, base);
979 	gen6_gtt_pte_t *pt_vaddr;
980 	unsigned first_entry = start >> PAGE_SHIFT;
981 	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
982 	unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
983 	struct sg_page_iter sg_iter;
984 
985 	pt_vaddr = NULL;
986 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
987 		if (pt_vaddr == NULL)
988 			pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
989 
990 		pt_vaddr[act_pte] =
991 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
992 				       cache_level, true, flags);
993 
994 		if (++act_pte == I915_PPGTT_PT_ENTRIES) {
995 			kunmap_atomic(pt_vaddr);
996 			pt_vaddr = NULL;
997 			act_pt++;
998 			act_pte = 0;
999 		}
1000 	}
1001 	if (pt_vaddr)
1002 		kunmap_atomic(pt_vaddr);
1003 }
1004 
1005 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
1006 {
1007 	int i;
1008 
1009 	if (ppgtt->pt_dma_addr) {
1010 		for (i = 0; i < ppgtt->num_pd_entries; i++)
1011 			pci_unmap_page(ppgtt->base.dev->pdev,
1012 				       ppgtt->pt_dma_addr[i],
1013 				       4096, PCI_DMA_BIDIRECTIONAL);
1014 	}
1015 }
1016 
1017 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1018 {
1019 	int i;
1020 
1021 	kfree(ppgtt->pt_dma_addr);
1022 	for (i = 0; i < ppgtt->num_pd_entries; i++)
1023 		__free_page(ppgtt->pt_pages[i]);
1024 	kfree(ppgtt->pt_pages);
1025 }
1026 
1027 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1028 {
1029 	struct i915_hw_ppgtt *ppgtt =
1030 		container_of(vm, struct i915_hw_ppgtt, base);
1031 
1032 	list_del(&vm->global_link);
1033 	drm_mm_takedown(&ppgtt->base.mm);
1034 	drm_mm_remove_node(&ppgtt->node);
1035 
1036 	gen6_ppgtt_unmap_pages(ppgtt);
1037 	gen6_ppgtt_free(ppgtt);
1038 }
1039 
1040 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1041 {
1042 	struct drm_device *dev = ppgtt->base.dev;
1043 	struct drm_i915_private *dev_priv = dev->dev_private;
1044 	bool retried = false;
1045 	int ret;
1046 
1047 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1048 	 * allocator works in address space sizes, so it's multiplied by page
1049 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1050 	 */
1051 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1052 alloc:
1053 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1054 						  &ppgtt->node, GEN6_PD_SIZE,
1055 						  GEN6_PD_ALIGN, 0,
1056 						  0, dev_priv->gtt.base.total,
1057 						  DRM_MM_TOPDOWN);
1058 	if (ret == -ENOSPC && !retried) {
1059 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1060 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
1061 					       I915_CACHE_NONE,
1062 					       0, dev_priv->gtt.base.total,
1063 					       0);
1064 		if (ret)
1065 			return ret;
1066 
1067 		retried = true;
1068 		goto alloc;
1069 	}
1070 
1071 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1072 		DRM_DEBUG("Forced to use aperture for PDEs\n");
1073 
1074 	ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1075 	return ret;
1076 }
1077 
1078 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1079 {
1080 	int i;
1081 
1082 	ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1083 				  GFP_KERNEL);
1084 
1085 	if (!ppgtt->pt_pages)
1086 		return -ENOMEM;
1087 
1088 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
1089 		ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1090 		if (!ppgtt->pt_pages[i]) {
1091 			gen6_ppgtt_free(ppgtt);
1092 			return -ENOMEM;
1093 		}
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1100 {
1101 	int ret;
1102 
1103 	ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1104 	if (ret)
1105 		return ret;
1106 
1107 	ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1108 	if (ret) {
1109 		drm_mm_remove_node(&ppgtt->node);
1110 		return ret;
1111 	}
1112 
1113 	ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1114 				     GFP_KERNEL);
1115 	if (!ppgtt->pt_dma_addr) {
1116 		drm_mm_remove_node(&ppgtt->node);
1117 		gen6_ppgtt_free(ppgtt);
1118 		return -ENOMEM;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1125 {
1126 	struct drm_device *dev = ppgtt->base.dev;
1127 	int i;
1128 
1129 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
1130 		dma_addr_t pt_addr;
1131 
1132 		pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1133 				       PCI_DMA_BIDIRECTIONAL);
1134 
1135 		if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1136 			gen6_ppgtt_unmap_pages(ppgtt);
1137 			return -EIO;
1138 		}
1139 
1140 		ppgtt->pt_dma_addr[i] = pt_addr;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1147 {
1148 	struct drm_device *dev = ppgtt->base.dev;
1149 	struct drm_i915_private *dev_priv = dev->dev_private;
1150 	int ret;
1151 
1152 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1153 	if (IS_GEN6(dev)) {
1154 		ppgtt->enable = gen6_ppgtt_enable;
1155 		ppgtt->switch_mm = gen6_mm_switch;
1156 	} else if (IS_HASWELL(dev)) {
1157 		ppgtt->enable = gen7_ppgtt_enable;
1158 		ppgtt->switch_mm = hsw_mm_switch;
1159 	} else if (IS_GEN7(dev)) {
1160 		ppgtt->enable = gen7_ppgtt_enable;
1161 		ppgtt->switch_mm = gen7_mm_switch;
1162 	} else
1163 		BUG();
1164 
1165 	ret = gen6_ppgtt_alloc(ppgtt);
1166 	if (ret)
1167 		return ret;
1168 
1169 	ret = gen6_ppgtt_setup_page_tables(ppgtt);
1170 	if (ret) {
1171 		gen6_ppgtt_free(ppgtt);
1172 		return ret;
1173 	}
1174 
1175 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1176 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1177 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1178 	ppgtt->base.start = 0;
1179 	ppgtt->base.total =  ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1180 	ppgtt->debug_dump = gen6_dump_ppgtt;
1181 
1182 	ppgtt->pd_offset =
1183 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1184 
1185 	ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1186 
1187 	DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1188 			 ppgtt->node.size >> 20,
1189 			 ppgtt->node.start / PAGE_SIZE);
1190 
1191 	return 0;
1192 }
1193 
1194 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1195 {
1196 	struct drm_i915_private *dev_priv = dev->dev_private;
1197 	int ret = 0;
1198 
1199 	ppgtt->base.dev = dev;
1200 	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1201 
1202 	if (INTEL_INFO(dev)->gen < 8)
1203 		ret = gen6_ppgtt_init(ppgtt);
1204 	else if (IS_GEN8(dev))
1205 		ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1206 	else
1207 		BUG();
1208 
1209 	if (!ret) {
1210 		struct drm_i915_private *dev_priv = dev->dev_private;
1211 		kref_init(&ppgtt->ref);
1212 		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1213 			    ppgtt->base.total);
1214 		i915_init_vm(dev_priv, &ppgtt->base);
1215 		if (INTEL_INFO(dev)->gen < 8) {
1216 			gen6_write_pdes(ppgtt);
1217 			DRM_DEBUG("Adding PPGTT at offset %x\n",
1218 				  ppgtt->pd_offset << 10);
1219 		}
1220 	}
1221 
1222 	return ret;
1223 }
1224 
1225 static void
1226 ppgtt_bind_vma(struct i915_vma *vma,
1227 	       enum i915_cache_level cache_level,
1228 	       u32 flags)
1229 {
1230 	/* Currently applicable only to VLV */
1231 	if (vma->obj->gt_ro)
1232 		flags |= PTE_READ_ONLY;
1233 
1234 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1235 				cache_level, flags);
1236 }
1237 
1238 static void ppgtt_unbind_vma(struct i915_vma *vma)
1239 {
1240 	vma->vm->clear_range(vma->vm,
1241 			     vma->node.start,
1242 			     vma->obj->base.size,
1243 			     true);
1244 }
1245 
1246 extern int intel_iommu_gfx_mapped;
1247 /* Certain Gen5 chipsets require require idling the GPU before
1248  * unmapping anything from the GTT when VT-d is enabled.
1249  */
1250 static inline bool needs_idle_maps(struct drm_device *dev)
1251 {
1252 #ifdef CONFIG_INTEL_IOMMU
1253 	/* Query intel_iommu to see if we need the workaround. Presumably that
1254 	 * was loaded first.
1255 	 */
1256 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1257 		return true;
1258 #endif
1259 	return false;
1260 }
1261 
1262 static bool do_idling(struct drm_i915_private *dev_priv)
1263 {
1264 	bool ret = dev_priv->mm.interruptible;
1265 
1266 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
1267 		dev_priv->mm.interruptible = false;
1268 		if (i915_gpu_idle(dev_priv->dev)) {
1269 			DRM_ERROR("Couldn't idle GPU\n");
1270 			/* Wait a bit, in hopes it avoids the hang */
1271 			udelay(10);
1272 		}
1273 	}
1274 
1275 	return ret;
1276 }
1277 
1278 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1279 {
1280 	if (unlikely(dev_priv->gtt.do_idle_maps))
1281 		dev_priv->mm.interruptible = interruptible;
1282 }
1283 
1284 void i915_check_and_clear_faults(struct drm_device *dev)
1285 {
1286 	struct drm_i915_private *dev_priv = dev->dev_private;
1287 	struct intel_engine_cs *ring;
1288 	int i;
1289 
1290 	if (INTEL_INFO(dev)->gen < 6)
1291 		return;
1292 
1293 	for_each_ring(ring, dev_priv, i) {
1294 		u32 fault_reg;
1295 		fault_reg = I915_READ(RING_FAULT_REG(ring));
1296 		if (fault_reg & RING_FAULT_VALID) {
1297 			DRM_DEBUG_DRIVER("Unexpected fault\n"
1298 					 "\tAddr: 0x%08lx\\n"
1299 					 "\tAddress space: %s\n"
1300 					 "\tSource ID: %d\n"
1301 					 "\tType: %d\n",
1302 					 fault_reg & PAGE_MASK,
1303 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1304 					 RING_FAULT_SRCID(fault_reg),
1305 					 RING_FAULT_FAULT_TYPE(fault_reg));
1306 			I915_WRITE(RING_FAULT_REG(ring),
1307 				   fault_reg & ~RING_FAULT_VALID);
1308 		}
1309 	}
1310 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1311 }
1312 
1313 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1314 {
1315 	struct drm_i915_private *dev_priv = dev->dev_private;
1316 
1317 	/* Don't bother messing with faults pre GEN6 as we have little
1318 	 * documentation supporting that it's a good idea.
1319 	 */
1320 	if (INTEL_INFO(dev)->gen < 6)
1321 		return;
1322 
1323 	i915_check_and_clear_faults(dev);
1324 
1325 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1326 				       dev_priv->gtt.base.start,
1327 				       dev_priv->gtt.base.total,
1328 				       true);
1329 }
1330 
1331 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1332 {
1333 	struct drm_i915_private *dev_priv = dev->dev_private;
1334 	struct drm_i915_gem_object *obj;
1335 	struct i915_address_space *vm;
1336 
1337 	i915_check_and_clear_faults(dev);
1338 
1339 	/* First fill our portion of the GTT with scratch pages */
1340 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1341 				       dev_priv->gtt.base.start,
1342 				       dev_priv->gtt.base.total,
1343 				       true);
1344 
1345 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1346 		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1347 							   &dev_priv->gtt.base);
1348 		if (!vma)
1349 			continue;
1350 
1351 		i915_gem_clflush_object(obj, obj->pin_display);
1352 		/* The bind_vma code tries to be smart about tracking mappings.
1353 		 * Unfortunately above, we've just wiped out the mappings
1354 		 * without telling our object about it. So we need to fake it.
1355 		 */
1356 		obj->has_global_gtt_mapping = 0;
1357 		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1358 	}
1359 
1360 
1361 	if (INTEL_INFO(dev)->gen >= 8) {
1362 		if (IS_CHERRYVIEW(dev))
1363 			chv_setup_private_ppat(dev_priv);
1364 		else
1365 			bdw_setup_private_ppat(dev_priv);
1366 
1367 		return;
1368 	}
1369 
1370 	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1371 		/* TODO: Perhaps it shouldn't be gen6 specific */
1372 		if (i915_is_ggtt(vm)) {
1373 			if (dev_priv->mm.aliasing_ppgtt)
1374 				gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1375 			continue;
1376 		}
1377 
1378 		gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1379 	}
1380 
1381 	i915_gem_chipset_flush(dev);
1382 }
1383 
1384 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1385 {
1386 	if (obj->has_dma_mapping)
1387 		return 0;
1388 
1389 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
1390 			obj->pages->sgl, obj->pages->nents,
1391 			PCI_DMA_BIDIRECTIONAL))
1392 		return -ENOSPC;
1393 
1394 	return 0;
1395 }
1396 
1397 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1398 {
1399 #ifdef writeq
1400 	writeq(pte, addr);
1401 #else
1402 	iowrite32((u32)pte, addr);
1403 	iowrite32(pte >> 32, addr + 4);
1404 #endif
1405 }
1406 
1407 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1408 				     struct sg_table *st,
1409 				     uint64_t start,
1410 				     enum i915_cache_level level, u32 unused)
1411 {
1412 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1413 	unsigned first_entry = start >> PAGE_SHIFT;
1414 	gen8_gtt_pte_t __iomem *gtt_entries =
1415 		(gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1416 	int i = 0;
1417 	struct sg_page_iter sg_iter;
1418 	dma_addr_t addr = 0; /* shut up gcc */
1419 
1420 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1421 		addr = sg_dma_address(sg_iter.sg) +
1422 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
1423 		gen8_set_pte(&gtt_entries[i],
1424 			     gen8_pte_encode(addr, level, true));
1425 		i++;
1426 	}
1427 
1428 	/*
1429 	 * XXX: This serves as a posting read to make sure that the PTE has
1430 	 * actually been updated. There is some concern that even though
1431 	 * registers and PTEs are within the same BAR that they are potentially
1432 	 * of NUMA access patterns. Therefore, even with the way we assume
1433 	 * hardware should work, we must keep this posting read for paranoia.
1434 	 */
1435 	if (i != 0)
1436 		WARN_ON(readq(&gtt_entries[i-1])
1437 			!= gen8_pte_encode(addr, level, true));
1438 
1439 	/* This next bit makes the above posting read even more important. We
1440 	 * want to flush the TLBs only after we're certain all the PTE updates
1441 	 * have finished.
1442 	 */
1443 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1444 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1445 }
1446 
1447 /*
1448  * Binds an object into the global gtt with the specified cache level. The object
1449  * will be accessible to the GPU via commands whose operands reference offsets
1450  * within the global GTT as well as accessible by the GPU through the GMADR
1451  * mapped BAR (dev_priv->mm.gtt->gtt).
1452  */
1453 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1454 				     struct sg_table *st,
1455 				     uint64_t start,
1456 				     enum i915_cache_level level, u32 flags)
1457 {
1458 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1459 	unsigned first_entry = start >> PAGE_SHIFT;
1460 	gen6_gtt_pte_t __iomem *gtt_entries =
1461 		(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1462 	int i = 0;
1463 	struct sg_page_iter sg_iter;
1464 	dma_addr_t addr = 0;
1465 
1466 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1467 		addr = sg_page_iter_dma_address(&sg_iter);
1468 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1469 		i++;
1470 	}
1471 
1472 	/* XXX: This serves as a posting read to make sure that the PTE has
1473 	 * actually been updated. There is some concern that even though
1474 	 * registers and PTEs are within the same BAR that they are potentially
1475 	 * of NUMA access patterns. Therefore, even with the way we assume
1476 	 * hardware should work, we must keep this posting read for paranoia.
1477 	 */
1478 	if (i != 0) {
1479 		unsigned long gtt = readl(&gtt_entries[i-1]);
1480 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1481 	}
1482 
1483 	/* This next bit makes the above posting read even more important. We
1484 	 * want to flush the TLBs only after we're certain all the PTE updates
1485 	 * have finished.
1486 	 */
1487 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1488 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1489 }
1490 
1491 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1492 				  uint64_t start,
1493 				  uint64_t length,
1494 				  bool use_scratch)
1495 {
1496 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1497 	unsigned first_entry = start >> PAGE_SHIFT;
1498 	unsigned num_entries = length >> PAGE_SHIFT;
1499 	gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1500 		(gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1501 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1502 	int i;
1503 
1504 	if (WARN(num_entries > max_entries,
1505 		 "First entry = %d; Num entries = %d (max=%d)\n",
1506 		 first_entry, num_entries, max_entries))
1507 		num_entries = max_entries;
1508 
1509 	scratch_pte = gen8_pte_encode(vm->scratch.addr,
1510 				      I915_CACHE_LLC,
1511 				      use_scratch);
1512 	for (i = 0; i < num_entries; i++)
1513 		gen8_set_pte(&gtt_base[i], scratch_pte);
1514 	readl(gtt_base);
1515 }
1516 
1517 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1518 				  uint64_t start,
1519 				  uint64_t length,
1520 				  bool use_scratch)
1521 {
1522 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1523 	unsigned first_entry = start >> PAGE_SHIFT;
1524 	unsigned num_entries = length >> PAGE_SHIFT;
1525 	gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1526 		(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1527 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1528 	int i;
1529 
1530 	if (WARN(num_entries > max_entries,
1531 		 "First entry = %d; Num entries = %d (max=%d)\n",
1532 		 first_entry, num_entries, max_entries))
1533 		num_entries = max_entries;
1534 
1535 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1536 
1537 	for (i = 0; i < num_entries; i++)
1538 		iowrite32(scratch_pte, &gtt_base[i]);
1539 	readl(gtt_base);
1540 }
1541 
1542 
1543 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1544 			       enum i915_cache_level cache_level,
1545 			       u32 unused)
1546 {
1547 	const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1548 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1549 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1550 
1551 	BUG_ON(!i915_is_ggtt(vma->vm));
1552 	intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1553 	vma->obj->has_global_gtt_mapping = 1;
1554 }
1555 
1556 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1557 				  uint64_t start,
1558 				  uint64_t length,
1559 				  bool unused)
1560 {
1561 	unsigned first_entry = start >> PAGE_SHIFT;
1562 	unsigned num_entries = length >> PAGE_SHIFT;
1563 	intel_gtt_clear_range(first_entry, num_entries);
1564 }
1565 
1566 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1567 {
1568 	const unsigned int first = vma->node.start >> PAGE_SHIFT;
1569 	const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1570 
1571 	BUG_ON(!i915_is_ggtt(vma->vm));
1572 	vma->obj->has_global_gtt_mapping = 0;
1573 	intel_gtt_clear_range(first, size);
1574 }
1575 
1576 static void ggtt_bind_vma(struct i915_vma *vma,
1577 			  enum i915_cache_level cache_level,
1578 			  u32 flags)
1579 {
1580 	struct drm_device *dev = vma->vm->dev;
1581 	struct drm_i915_private *dev_priv = dev->dev_private;
1582 	struct drm_i915_gem_object *obj = vma->obj;
1583 
1584 	/* Currently applicable only to VLV */
1585 	if (obj->gt_ro)
1586 		flags |= PTE_READ_ONLY;
1587 
1588 	/* If there is no aliasing PPGTT, or the caller needs a global mapping,
1589 	 * or we have a global mapping already but the cacheability flags have
1590 	 * changed, set the global PTEs.
1591 	 *
1592 	 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1593 	 * instead if none of the above hold true.
1594 	 *
1595 	 * NB: A global mapping should only be needed for special regions like
1596 	 * "gtt mappable", SNB errata, or if specified via special execbuf
1597 	 * flags. At all other times, the GPU will use the aliasing PPGTT.
1598 	 */
1599 	if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1600 		if (!obj->has_global_gtt_mapping ||
1601 		    (cache_level != obj->cache_level)) {
1602 			vma->vm->insert_entries(vma->vm, obj->pages,
1603 						vma->node.start,
1604 						cache_level, flags);
1605 			obj->has_global_gtt_mapping = 1;
1606 		}
1607 	}
1608 
1609 	if (dev_priv->mm.aliasing_ppgtt &&
1610 	    (!obj->has_aliasing_ppgtt_mapping ||
1611 	     (cache_level != obj->cache_level))) {
1612 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1613 		appgtt->base.insert_entries(&appgtt->base,
1614 					    vma->obj->pages,
1615 					    vma->node.start,
1616 					    cache_level, flags);
1617 		vma->obj->has_aliasing_ppgtt_mapping = 1;
1618 	}
1619 }
1620 
1621 static void ggtt_unbind_vma(struct i915_vma *vma)
1622 {
1623 	struct drm_device *dev = vma->vm->dev;
1624 	struct drm_i915_private *dev_priv = dev->dev_private;
1625 	struct drm_i915_gem_object *obj = vma->obj;
1626 
1627 	if (obj->has_global_gtt_mapping) {
1628 		vma->vm->clear_range(vma->vm,
1629 				     vma->node.start,
1630 				     obj->base.size,
1631 				     true);
1632 		obj->has_global_gtt_mapping = 0;
1633 	}
1634 
1635 	if (obj->has_aliasing_ppgtt_mapping) {
1636 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1637 		appgtt->base.clear_range(&appgtt->base,
1638 					 vma->node.start,
1639 					 obj->base.size,
1640 					 true);
1641 		obj->has_aliasing_ppgtt_mapping = 0;
1642 	}
1643 }
1644 
1645 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1646 {
1647 	struct drm_device *dev = obj->base.dev;
1648 	struct drm_i915_private *dev_priv = dev->dev_private;
1649 	bool interruptible;
1650 
1651 	interruptible = do_idling(dev_priv);
1652 
1653 	if (!obj->has_dma_mapping)
1654 		dma_unmap_sg(&dev->pdev->dev,
1655 			     obj->pages->sgl, obj->pages->nents,
1656 			     PCI_DMA_BIDIRECTIONAL);
1657 
1658 	undo_idling(dev_priv, interruptible);
1659 }
1660 
1661 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1662 				  unsigned long color,
1663 				  unsigned long *start,
1664 				  unsigned long *end)
1665 {
1666 	if (node->color != color)
1667 		*start += 4096;
1668 
1669 	if (!list_empty(&node->node_list)) {
1670 		node = list_entry(node->node_list.next,
1671 				  struct drm_mm_node,
1672 				  node_list);
1673 		if (node->allocated && node->color != color)
1674 			*end -= 4096;
1675 	}
1676 }
1677 
1678 void i915_gem_setup_global_gtt(struct drm_device *dev,
1679 			       unsigned long start,
1680 			       unsigned long mappable_end,
1681 			       unsigned long end)
1682 {
1683 	/* Let GEM Manage all of the aperture.
1684 	 *
1685 	 * However, leave one page at the end still bound to the scratch page.
1686 	 * There are a number of places where the hardware apparently prefetches
1687 	 * past the end of the object, and we've seen multiple hangs with the
1688 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1689 	 * aperture.  One page should be enough to keep any prefetching inside
1690 	 * of the aperture.
1691 	 */
1692 	struct drm_i915_private *dev_priv = dev->dev_private;
1693 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1694 	struct drm_mm_node *entry;
1695 	struct drm_i915_gem_object *obj;
1696 	unsigned long hole_start, hole_end;
1697 
1698 	BUG_ON(mappable_end > end);
1699 
1700 	/* Subtract the guard page ... */
1701 	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1702 	if (!HAS_LLC(dev))
1703 		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1704 
1705 	/* Mark any preallocated objects as occupied */
1706 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1707 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1708 		int ret;
1709 		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1710 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
1711 
1712 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
1713 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1714 		if (ret)
1715 			DRM_DEBUG_KMS("Reservation failed\n");
1716 		obj->has_global_gtt_mapping = 1;
1717 	}
1718 
1719 	dev_priv->gtt.base.start = start;
1720 	dev_priv->gtt.base.total = end - start;
1721 
1722 	/* Clear any non-preallocated blocks */
1723 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1724 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1725 			      hole_start, hole_end);
1726 		ggtt_vm->clear_range(ggtt_vm, hole_start,
1727 				     hole_end - hole_start, true);
1728 	}
1729 
1730 	/* And finally clear the reserved guard page */
1731 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1732 }
1733 
1734 void i915_gem_init_global_gtt(struct drm_device *dev)
1735 {
1736 	struct drm_i915_private *dev_priv = dev->dev_private;
1737 	unsigned long gtt_size, mappable_size;
1738 
1739 	gtt_size = dev_priv->gtt.base.total;
1740 	mappable_size = dev_priv->gtt.mappable_end;
1741 
1742 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1743 }
1744 
1745 static int setup_scratch_page(struct drm_device *dev)
1746 {
1747 	struct drm_i915_private *dev_priv = dev->dev_private;
1748 	struct page *page;
1749 	dma_addr_t dma_addr;
1750 
1751 	page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1752 	if (page == NULL)
1753 		return -ENOMEM;
1754 	get_page(page);
1755 	set_pages_uc(page, 1);
1756 
1757 #ifdef CONFIG_INTEL_IOMMU
1758 	dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1759 				PCI_DMA_BIDIRECTIONAL);
1760 	if (pci_dma_mapping_error(dev->pdev, dma_addr))
1761 		return -EINVAL;
1762 #else
1763 	dma_addr = page_to_phys(page);
1764 #endif
1765 	dev_priv->gtt.base.scratch.page = page;
1766 	dev_priv->gtt.base.scratch.addr = dma_addr;
1767 
1768 	return 0;
1769 }
1770 
1771 static void teardown_scratch_page(struct drm_device *dev)
1772 {
1773 	struct drm_i915_private *dev_priv = dev->dev_private;
1774 	struct page *page = dev_priv->gtt.base.scratch.page;
1775 
1776 	set_pages_wb(page, 1);
1777 	pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1778 		       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1779 	put_page(page);
1780 	__free_page(page);
1781 }
1782 
1783 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1784 {
1785 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1786 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1787 	return snb_gmch_ctl << 20;
1788 }
1789 
1790 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1791 {
1792 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1793 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1794 	if (bdw_gmch_ctl)
1795 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1796 
1797 #ifdef CONFIG_X86_32
1798 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
1799 	if (bdw_gmch_ctl > 4)
1800 		bdw_gmch_ctl = 4;
1801 #endif
1802 
1803 	return bdw_gmch_ctl << 20;
1804 }
1805 
1806 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1807 {
1808 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1809 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1810 
1811 	if (gmch_ctrl)
1812 		return 1 << (20 + gmch_ctrl);
1813 
1814 	return 0;
1815 }
1816 
1817 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1818 {
1819 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1820 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1821 	return snb_gmch_ctl << 25; /* 32 MB units */
1822 }
1823 
1824 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1825 {
1826 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1827 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1828 	return bdw_gmch_ctl << 25; /* 32 MB units */
1829 }
1830 
1831 static size_t chv_get_stolen_size(u16 gmch_ctrl)
1832 {
1833 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
1834 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
1835 
1836 	/*
1837 	 * 0x0  to 0x10: 32MB increments starting at 0MB
1838 	 * 0x11 to 0x16: 4MB increments starting at 8MB
1839 	 * 0x17 to 0x1d: 4MB increments start at 36MB
1840 	 */
1841 	if (gmch_ctrl < 0x11)
1842 		return gmch_ctrl << 25;
1843 	else if (gmch_ctrl < 0x17)
1844 		return (gmch_ctrl - 0x11 + 2) << 22;
1845 	else
1846 		return (gmch_ctrl - 0x17 + 9) << 22;
1847 }
1848 
1849 static int ggtt_probe_common(struct drm_device *dev,
1850 			     size_t gtt_size)
1851 {
1852 	struct drm_i915_private *dev_priv = dev->dev_private;
1853 	phys_addr_t gtt_phys_addr;
1854 	int ret;
1855 
1856 	/* For Modern GENs the PTEs and register space are split in the BAR */
1857 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1858 		(pci_resource_len(dev->pdev, 0) / 2);
1859 
1860 	dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1861 	if (!dev_priv->gtt.gsm) {
1862 		DRM_ERROR("Failed to map the gtt page table\n");
1863 		return -ENOMEM;
1864 	}
1865 
1866 	ret = setup_scratch_page(dev);
1867 	if (ret) {
1868 		DRM_ERROR("Scratch setup failed\n");
1869 		/* iounmap will also get called at remove, but meh */
1870 		iounmap(dev_priv->gtt.gsm);
1871 	}
1872 
1873 	return ret;
1874 }
1875 
1876 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1877  * bits. When using advanced contexts each context stores its own PAT, but
1878  * writing this data shouldn't be harmful even in those cases. */
1879 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
1880 {
1881 	uint64_t pat;
1882 
1883 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1884 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1885 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1886 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1887 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1888 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1889 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1890 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1891 
1892 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1893 	 * write would work. */
1894 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
1895 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1896 }
1897 
1898 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
1899 {
1900 	uint64_t pat;
1901 
1902 	/*
1903 	 * Map WB on BDW to snooped on CHV.
1904 	 *
1905 	 * Only the snoop bit has meaning for CHV, the rest is
1906 	 * ignored.
1907 	 *
1908 	 * Note that the harware enforces snooping for all page
1909 	 * table accesses. The snoop bit is actually ignored for
1910 	 * PDEs.
1911 	 */
1912 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1913 	      GEN8_PPAT(1, 0) |
1914 	      GEN8_PPAT(2, 0) |
1915 	      GEN8_PPAT(3, 0) |
1916 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1917 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1918 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1919 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
1920 
1921 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
1922 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1923 }
1924 
1925 static int gen8_gmch_probe(struct drm_device *dev,
1926 			   size_t *gtt_total,
1927 			   size_t *stolen,
1928 			   phys_addr_t *mappable_base,
1929 			   unsigned long *mappable_end)
1930 {
1931 	struct drm_i915_private *dev_priv = dev->dev_private;
1932 	unsigned int gtt_size;
1933 	u16 snb_gmch_ctl;
1934 	int ret;
1935 
1936 	/* TODO: We're not aware of mappable constraints on gen8 yet */
1937 	*mappable_base = pci_resource_start(dev->pdev, 2);
1938 	*mappable_end = pci_resource_len(dev->pdev, 2);
1939 
1940 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1941 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1942 
1943 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1944 
1945 	if (IS_CHERRYVIEW(dev)) {
1946 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
1947 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
1948 	} else {
1949 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
1950 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1951 	}
1952 
1953 	*gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1954 
1955 	if (IS_CHERRYVIEW(dev))
1956 		chv_setup_private_ppat(dev_priv);
1957 	else
1958 		bdw_setup_private_ppat(dev_priv);
1959 
1960 	ret = ggtt_probe_common(dev, gtt_size);
1961 
1962 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1963 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1964 
1965 	return ret;
1966 }
1967 
1968 static int gen6_gmch_probe(struct drm_device *dev,
1969 			   size_t *gtt_total,
1970 			   size_t *stolen,
1971 			   phys_addr_t *mappable_base,
1972 			   unsigned long *mappable_end)
1973 {
1974 	struct drm_i915_private *dev_priv = dev->dev_private;
1975 	unsigned int gtt_size;
1976 	u16 snb_gmch_ctl;
1977 	int ret;
1978 
1979 	*mappable_base = pci_resource_start(dev->pdev, 2);
1980 	*mappable_end = pci_resource_len(dev->pdev, 2);
1981 
1982 	/* 64/512MB is the current min/max we actually know of, but this is just
1983 	 * a coarse sanity check.
1984 	 */
1985 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1986 		DRM_ERROR("Unknown GMADR size (%lx)\n",
1987 			  dev_priv->gtt.mappable_end);
1988 		return -ENXIO;
1989 	}
1990 
1991 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1992 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1993 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1994 
1995 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
1996 
1997 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1998 	*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1999 
2000 	ret = ggtt_probe_common(dev, gtt_size);
2001 
2002 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2003 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2004 
2005 	return ret;
2006 }
2007 
2008 static void gen6_gmch_remove(struct i915_address_space *vm)
2009 {
2010 
2011 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2012 
2013 	if (drm_mm_initialized(&vm->mm)) {
2014 		drm_mm_takedown(&vm->mm);
2015 		list_del(&vm->global_link);
2016 	}
2017 	iounmap(gtt->gsm);
2018 	teardown_scratch_page(vm->dev);
2019 }
2020 
2021 static int i915_gmch_probe(struct drm_device *dev,
2022 			   size_t *gtt_total,
2023 			   size_t *stolen,
2024 			   phys_addr_t *mappable_base,
2025 			   unsigned long *mappable_end)
2026 {
2027 	struct drm_i915_private *dev_priv = dev->dev_private;
2028 	int ret;
2029 
2030 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2031 	if (!ret) {
2032 		DRM_ERROR("failed to set up gmch\n");
2033 		return -EIO;
2034 	}
2035 
2036 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2037 
2038 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2039 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2040 
2041 	if (unlikely(dev_priv->gtt.do_idle_maps))
2042 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2043 
2044 	return 0;
2045 }
2046 
2047 static void i915_gmch_remove(struct i915_address_space *vm)
2048 {
2049 	if (drm_mm_initialized(&vm->mm)) {
2050 		drm_mm_takedown(&vm->mm);
2051 		list_del(&vm->global_link);
2052 	}
2053 	intel_gmch_remove();
2054 }
2055 
2056 int i915_gem_gtt_init(struct drm_device *dev)
2057 {
2058 	struct drm_i915_private *dev_priv = dev->dev_private;
2059 	struct i915_gtt *gtt = &dev_priv->gtt;
2060 	int ret;
2061 
2062 	if (INTEL_INFO(dev)->gen <= 5) {
2063 		gtt->gtt_probe = i915_gmch_probe;
2064 		gtt->base.cleanup = i915_gmch_remove;
2065 	} else if (INTEL_INFO(dev)->gen < 8) {
2066 		gtt->gtt_probe = gen6_gmch_probe;
2067 		gtt->base.cleanup = gen6_gmch_remove;
2068 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
2069 			gtt->base.pte_encode = iris_pte_encode;
2070 		else if (IS_HASWELL(dev))
2071 			gtt->base.pte_encode = hsw_pte_encode;
2072 		else if (IS_VALLEYVIEW(dev))
2073 			gtt->base.pte_encode = byt_pte_encode;
2074 		else if (INTEL_INFO(dev)->gen >= 7)
2075 			gtt->base.pte_encode = ivb_pte_encode;
2076 		else
2077 			gtt->base.pte_encode = snb_pte_encode;
2078 	} else {
2079 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2080 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2081 	}
2082 
2083 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2084 			     &gtt->mappable_base, &gtt->mappable_end);
2085 	if (ret)
2086 		return ret;
2087 
2088 	gtt->base.dev = dev;
2089 
2090 	/* GMADR is the PCI mmio aperture into the global GTT. */
2091 	DRM_INFO("Memory usable by graphics device = %zdM\n",
2092 		 gtt->base.total >> 20);
2093 	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2094 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2095 #ifdef CONFIG_INTEL_IOMMU
2096 	if (intel_iommu_gfx_mapped)
2097 		DRM_INFO("VT-d active for gfx access\n");
2098 #endif
2099 	/*
2100 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2101 	 * user's requested state against the hardware/driver capabilities.  We
2102 	 * do this now so that we can print out any log messages once rather
2103 	 * than every time we check intel_enable_ppgtt().
2104 	 */
2105 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2106 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2107 
2108 	return 0;
2109 }
2110 
2111 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2112 					      struct i915_address_space *vm)
2113 {
2114 	struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2115 	if (vma == NULL)
2116 		return ERR_PTR(-ENOMEM);
2117 
2118 	INIT_LIST_HEAD(&vma->vma_link);
2119 	INIT_LIST_HEAD(&vma->mm_list);
2120 	INIT_LIST_HEAD(&vma->exec_list);
2121 	vma->vm = vm;
2122 	vma->obj = obj;
2123 
2124 	switch (INTEL_INFO(vm->dev)->gen) {
2125 	case 8:
2126 	case 7:
2127 	case 6:
2128 		if (i915_is_ggtt(vm)) {
2129 			vma->unbind_vma = ggtt_unbind_vma;
2130 			vma->bind_vma = ggtt_bind_vma;
2131 		} else {
2132 			vma->unbind_vma = ppgtt_unbind_vma;
2133 			vma->bind_vma = ppgtt_bind_vma;
2134 		}
2135 		break;
2136 	case 5:
2137 	case 4:
2138 	case 3:
2139 	case 2:
2140 		BUG_ON(!i915_is_ggtt(vm));
2141 		vma->unbind_vma = i915_ggtt_unbind_vma;
2142 		vma->bind_vma = i915_ggtt_bind_vma;
2143 		break;
2144 	default:
2145 		BUG();
2146 	}
2147 
2148 	/* Keep GGTT vmas first to make debug easier */
2149 	if (i915_is_ggtt(vm))
2150 		list_add(&vma->vma_link, &obj->vma_list);
2151 	else
2152 		list_add_tail(&vma->vma_link, &obj->vma_list);
2153 
2154 	return vma;
2155 }
2156 
2157 struct i915_vma *
2158 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2159 				  struct i915_address_space *vm)
2160 {
2161 	struct i915_vma *vma;
2162 
2163 	vma = i915_gem_obj_to_vma(obj, vm);
2164 	if (!vma)
2165 		vma = __i915_gem_vma_create(obj, vm);
2166 
2167 	return vma;
2168 }
2169