1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/i915_drm.h>
37 
38 #include "i915_drv.h"
39 #include "i915_vgpu.h"
40 #include "i915_trace.h"
41 #include "intel_drv.h"
42 #include "intel_frontbuffer.h"
43 
44 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
45 
46 /**
47  * DOC: Global GTT views
48  *
49  * Background and previous state
50  *
51  * Historically objects could exists (be bound) in global GTT space only as
52  * singular instances with a view representing all of the object's backing pages
53  * in a linear fashion. This view will be called a normal view.
54  *
55  * To support multiple views of the same object, where the number of mapped
56  * pages is not equal to the backing store, or where the layout of the pages
57  * is not linear, concept of a GGTT view was added.
58  *
59  * One example of an alternative view is a stereo display driven by a single
60  * image. In this case we would have a framebuffer looking like this
61  * (2x2 pages):
62  *
63  *    12
64  *    34
65  *
66  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
67  * rendering. In contrast, fed to the display engine would be an alternative
68  * view which could look something like this:
69  *
70  *   1212
71  *   3434
72  *
73  * In this example both the size and layout of pages in the alternative view is
74  * different from the normal view.
75  *
76  * Implementation and usage
77  *
78  * GGTT views are implemented using VMAs and are distinguished via enum
79  * i915_ggtt_view_type and struct i915_ggtt_view.
80  *
81  * A new flavour of core GEM functions which work with GGTT bound objects were
82  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
83  * renaming  in large amounts of code. They take the struct i915_ggtt_view
84  * parameter encapsulating all metadata required to implement a view.
85  *
86  * As a helper for callers which are only interested in the normal view,
87  * globally const i915_ggtt_view_normal singleton instance exists. All old core
88  * GEM API functions, the ones not taking the view parameter, are operating on,
89  * or with the normal GGTT view.
90  *
91  * Code wanting to add or use a new GGTT view needs to:
92  *
93  * 1. Add a new enum with a suitable name.
94  * 2. Extend the metadata in the i915_ggtt_view structure if required.
95  * 3. Add support to i915_get_vma_pages().
96  *
97  * New views are required to build a scatter-gather table from within the
98  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
99  * exists for the lifetime of an VMA.
100  *
101  * Core API is designed to have copy semantics which means that passed in
102  * struct i915_ggtt_view does not need to be persistent (left around after
103  * calling the core API functions).
104  *
105  */
106 
107 static int
108 i915_get_ggtt_vma_pages(struct i915_vma *vma);
109 
110 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
111 {
112 	/*
113 	 * Note that as an uncached mmio write, this will flush the
114 	 * WCB of the writes into the GGTT before it triggers the invalidate.
115 	 */
116 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118 
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121 	gen6_ggtt_invalidate(dev_priv);
122 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124 
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127 	intel_gtt_chipset_flush();
128 }
129 
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132 	i915->ggtt.invalidate(i915);
133 }
134 
135 static int ppgtt_bind_vma(struct i915_vma *vma,
136 			  enum i915_cache_level cache_level,
137 			  u32 unused)
138 {
139 	u32 pte_flags;
140 	int err;
141 
142 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
143 		err = vma->vm->allocate_va_range(vma->vm,
144 						 vma->node.start, vma->size);
145 		if (err)
146 			return err;
147 	}
148 
149 	/* Applicable to VLV, and gen8+ */
150 	pte_flags = 0;
151 	if (i915_gem_object_is_readonly(vma->obj))
152 		pte_flags |= PTE_READ_ONLY;
153 
154 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
155 
156 	return 0;
157 }
158 
159 static void ppgtt_unbind_vma(struct i915_vma *vma)
160 {
161 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
162 }
163 
164 static int ppgtt_set_pages(struct i915_vma *vma)
165 {
166 	GEM_BUG_ON(vma->pages);
167 
168 	vma->pages = vma->obj->mm.pages;
169 
170 	vma->page_sizes = vma->obj->mm.page_sizes;
171 
172 	return 0;
173 }
174 
175 static void clear_pages(struct i915_vma *vma)
176 {
177 	GEM_BUG_ON(!vma->pages);
178 
179 	if (vma->pages != vma->obj->mm.pages) {
180 		sg_free_table(vma->pages);
181 		kfree(vma->pages);
182 	}
183 	vma->pages = NULL;
184 
185 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
186 }
187 
188 static u64 gen8_pte_encode(dma_addr_t addr,
189 			   enum i915_cache_level level,
190 			   u32 flags)
191 {
192 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
193 
194 	if (unlikely(flags & PTE_READ_ONLY))
195 		pte &= ~_PAGE_RW;
196 
197 	switch (level) {
198 	case I915_CACHE_NONE:
199 		pte |= PPAT_UNCACHED;
200 		break;
201 	case I915_CACHE_WT:
202 		pte |= PPAT_DISPLAY_ELLC;
203 		break;
204 	default:
205 		pte |= PPAT_CACHED;
206 		break;
207 	}
208 
209 	return pte;
210 }
211 
212 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
213 				  const enum i915_cache_level level)
214 {
215 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
216 	pde |= addr;
217 	if (level != I915_CACHE_NONE)
218 		pde |= PPAT_CACHED_PDE;
219 	else
220 		pde |= PPAT_UNCACHED;
221 	return pde;
222 }
223 
224 #define gen8_pdpe_encode gen8_pde_encode
225 #define gen8_pml4e_encode gen8_pde_encode
226 
227 static u64 snb_pte_encode(dma_addr_t addr,
228 			  enum i915_cache_level level,
229 			  u32 flags)
230 {
231 	gen6_pte_t pte = GEN6_PTE_VALID;
232 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
233 
234 	switch (level) {
235 	case I915_CACHE_L3_LLC:
236 	case I915_CACHE_LLC:
237 		pte |= GEN6_PTE_CACHE_LLC;
238 		break;
239 	case I915_CACHE_NONE:
240 		pte |= GEN6_PTE_UNCACHED;
241 		break;
242 	default:
243 		MISSING_CASE(level);
244 	}
245 
246 	return pte;
247 }
248 
249 static u64 ivb_pte_encode(dma_addr_t addr,
250 			  enum i915_cache_level level,
251 			  u32 flags)
252 {
253 	gen6_pte_t pte = GEN6_PTE_VALID;
254 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
255 
256 	switch (level) {
257 	case I915_CACHE_L3_LLC:
258 		pte |= GEN7_PTE_CACHE_L3_LLC;
259 		break;
260 	case I915_CACHE_LLC:
261 		pte |= GEN6_PTE_CACHE_LLC;
262 		break;
263 	case I915_CACHE_NONE:
264 		pte |= GEN6_PTE_UNCACHED;
265 		break;
266 	default:
267 		MISSING_CASE(level);
268 	}
269 
270 	return pte;
271 }
272 
273 static u64 byt_pte_encode(dma_addr_t addr,
274 			  enum i915_cache_level level,
275 			  u32 flags)
276 {
277 	gen6_pte_t pte = GEN6_PTE_VALID;
278 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
279 
280 	if (!(flags & PTE_READ_ONLY))
281 		pte |= BYT_PTE_WRITEABLE;
282 
283 	if (level != I915_CACHE_NONE)
284 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
285 
286 	return pte;
287 }
288 
289 static u64 hsw_pte_encode(dma_addr_t addr,
290 			  enum i915_cache_level level,
291 			  u32 flags)
292 {
293 	gen6_pte_t pte = GEN6_PTE_VALID;
294 	pte |= HSW_PTE_ADDR_ENCODE(addr);
295 
296 	if (level != I915_CACHE_NONE)
297 		pte |= HSW_WB_LLC_AGE3;
298 
299 	return pte;
300 }
301 
302 static u64 iris_pte_encode(dma_addr_t addr,
303 			   enum i915_cache_level level,
304 			   u32 flags)
305 {
306 	gen6_pte_t pte = GEN6_PTE_VALID;
307 	pte |= HSW_PTE_ADDR_ENCODE(addr);
308 
309 	switch (level) {
310 	case I915_CACHE_NONE:
311 		break;
312 	case I915_CACHE_WT:
313 		pte |= HSW_WT_ELLC_LLC_AGE3;
314 		break;
315 	default:
316 		pte |= HSW_WB_ELLC_LLC_AGE3;
317 		break;
318 	}
319 
320 	return pte;
321 }
322 
323 static void stash_init(struct pagestash *stash)
324 {
325 	pagevec_init(&stash->pvec);
326 	spin_lock_init(&stash->lock);
327 }
328 
329 static struct page *stash_pop_page(struct pagestash *stash)
330 {
331 	struct page *page = NULL;
332 
333 	spin_lock(&stash->lock);
334 	if (likely(stash->pvec.nr))
335 		page = stash->pvec.pages[--stash->pvec.nr];
336 	spin_unlock(&stash->lock);
337 
338 	return page;
339 }
340 
341 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
342 {
343 	int nr;
344 
345 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
346 
347 	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
348 	memcpy(stash->pvec.pages + stash->pvec.nr,
349 	       pvec->pages + pvec->nr - nr,
350 	       sizeof(pvec->pages[0]) * nr);
351 	stash->pvec.nr += nr;
352 
353 	spin_unlock(&stash->lock);
354 
355 	pvec->nr -= nr;
356 }
357 
358 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
359 {
360 	struct pagevec stack;
361 	struct page *page;
362 
363 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
364 		i915_gem_shrink_all(vm->i915);
365 
366 	page = stash_pop_page(&vm->free_pages);
367 	if (page)
368 		return page;
369 
370 	if (!vm->pt_kmap_wc)
371 		return alloc_page(gfp);
372 
373 	/* Look in our global stash of WC pages... */
374 	page = stash_pop_page(&vm->i915->mm.wc_stash);
375 	if (page)
376 		return page;
377 
378 	/*
379 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
380 	 *
381 	 * We have to be careful as page allocation may trigger the shrinker
382 	 * (via direct reclaim) which will fill up the WC stash underneath us.
383 	 * So we add our WB pages into a temporary pvec on the stack and merge
384 	 * them into the WC stash after all the allocations are complete.
385 	 */
386 	pagevec_init(&stack);
387 	do {
388 		struct page *page;
389 
390 		page = alloc_page(gfp);
391 		if (unlikely(!page))
392 			break;
393 
394 		stack.pages[stack.nr++] = page;
395 	} while (pagevec_space(&stack));
396 
397 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
398 		page = stack.pages[--stack.nr];
399 
400 		/* Merge spare WC pages to the global stash */
401 		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
402 
403 		/* Push any surplus WC pages onto the local VM stash */
404 		if (stack.nr)
405 			stash_push_pagevec(&vm->free_pages, &stack);
406 	}
407 
408 	/* Return unwanted leftovers */
409 	if (unlikely(stack.nr)) {
410 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
411 		__pagevec_release(&stack);
412 	}
413 
414 	return page;
415 }
416 
417 static void vm_free_pages_release(struct i915_address_space *vm,
418 				  bool immediate)
419 {
420 	struct pagevec *pvec = &vm->free_pages.pvec;
421 	struct pagevec stack;
422 
423 	lockdep_assert_held(&vm->free_pages.lock);
424 	GEM_BUG_ON(!pagevec_count(pvec));
425 
426 	if (vm->pt_kmap_wc) {
427 		/*
428 		 * When we use WC, first fill up the global stash and then
429 		 * only if full immediately free the overflow.
430 		 */
431 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
432 
433 		/*
434 		 * As we have made some room in the VM's free_pages,
435 		 * we can wait for it to fill again. Unless we are
436 		 * inside i915_address_space_fini() and must
437 		 * immediately release the pages!
438 		 */
439 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
440 			return;
441 
442 		/*
443 		 * We have to drop the lock to allow ourselves to sleep,
444 		 * so take a copy of the pvec and clear the stash for
445 		 * others to use it as we sleep.
446 		 */
447 		stack = *pvec;
448 		pagevec_reinit(pvec);
449 		spin_unlock(&vm->free_pages.lock);
450 
451 		pvec = &stack;
452 		set_pages_array_wb(pvec->pages, pvec->nr);
453 
454 		spin_lock(&vm->free_pages.lock);
455 	}
456 
457 	__pagevec_release(pvec);
458 }
459 
460 static void vm_free_page(struct i915_address_space *vm, struct page *page)
461 {
462 	/*
463 	 * On !llc, we need to change the pages back to WB. We only do so
464 	 * in bulk, so we rarely need to change the page attributes here,
465 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
466 	 * To make detection of the possible sleep more likely, use an
467 	 * unconditional might_sleep() for everybody.
468 	 */
469 	might_sleep();
470 	spin_lock(&vm->free_pages.lock);
471 	if (!pagevec_add(&vm->free_pages.pvec, page))
472 		vm_free_pages_release(vm, false);
473 	spin_unlock(&vm->free_pages.lock);
474 }
475 
476 static void i915_address_space_init(struct i915_address_space *vm, int subclass)
477 {
478 	/*
479 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
480 	 * Do a dummy acquire now under fs_reclaim so that any allocation
481 	 * attempt holding the lock is immediately reported by lockdep.
482 	 */
483 	mutex_init(&vm->mutex);
484 	lockdep_set_subclass(&vm->mutex, subclass);
485 	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
486 
487 	GEM_BUG_ON(!vm->total);
488 	drm_mm_init(&vm->mm, 0, vm->total);
489 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
490 
491 	stash_init(&vm->free_pages);
492 
493 	INIT_LIST_HEAD(&vm->unbound_list);
494 	INIT_LIST_HEAD(&vm->bound_list);
495 }
496 
497 static void i915_address_space_fini(struct i915_address_space *vm)
498 {
499 	spin_lock(&vm->free_pages.lock);
500 	if (pagevec_count(&vm->free_pages.pvec))
501 		vm_free_pages_release(vm, true);
502 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
503 	spin_unlock(&vm->free_pages.lock);
504 
505 	drm_mm_takedown(&vm->mm);
506 
507 	mutex_destroy(&vm->mutex);
508 }
509 
510 static int __setup_page_dma(struct i915_address_space *vm,
511 			    struct i915_page_dma *p,
512 			    gfp_t gfp)
513 {
514 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
515 	if (unlikely(!p->page))
516 		return -ENOMEM;
517 
518 	p->daddr = dma_map_page_attrs(vm->dma,
519 				      p->page, 0, PAGE_SIZE,
520 				      PCI_DMA_BIDIRECTIONAL,
521 				      DMA_ATTR_SKIP_CPU_SYNC |
522 				      DMA_ATTR_NO_WARN);
523 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
524 		vm_free_page(vm, p->page);
525 		return -ENOMEM;
526 	}
527 
528 	return 0;
529 }
530 
531 static int setup_page_dma(struct i915_address_space *vm,
532 			  struct i915_page_dma *p)
533 {
534 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
535 }
536 
537 static void cleanup_page_dma(struct i915_address_space *vm,
538 			     struct i915_page_dma *p)
539 {
540 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
541 	vm_free_page(vm, p->page);
542 }
543 
544 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
545 
546 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
547 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
548 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
549 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
550 
551 static void fill_page_dma(struct i915_address_space *vm,
552 			  struct i915_page_dma *p,
553 			  const u64 val)
554 {
555 	u64 * const vaddr = kmap_atomic(p->page);
556 
557 	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
558 
559 	kunmap_atomic(vaddr);
560 }
561 
562 static void fill_page_dma_32(struct i915_address_space *vm,
563 			     struct i915_page_dma *p,
564 			     const u32 v)
565 {
566 	fill_page_dma(vm, p, (u64)v << 32 | v);
567 }
568 
569 static int
570 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
571 {
572 	unsigned long size;
573 
574 	/*
575 	 * In order to utilize 64K pages for an object with a size < 2M, we will
576 	 * need to support a 64K scratch page, given that every 16th entry for a
577 	 * page-table operating in 64K mode must point to a properly aligned 64K
578 	 * region, including any PTEs which happen to point to scratch.
579 	 *
580 	 * This is only relevant for the 48b PPGTT where we support
581 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
582 	 * scratch (read-only) between all vm, we create one 64k scratch page
583 	 * for all.
584 	 */
585 	size = I915_GTT_PAGE_SIZE_4K;
586 	if (i915_vm_is_4lvl(vm) &&
587 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
588 		size = I915_GTT_PAGE_SIZE_64K;
589 		gfp |= __GFP_NOWARN;
590 	}
591 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
592 
593 	do {
594 		int order = get_order(size);
595 		struct page *page;
596 		dma_addr_t addr;
597 
598 		page = alloc_pages(gfp, order);
599 		if (unlikely(!page))
600 			goto skip;
601 
602 		addr = dma_map_page_attrs(vm->dma,
603 					  page, 0, size,
604 					  PCI_DMA_BIDIRECTIONAL,
605 					  DMA_ATTR_SKIP_CPU_SYNC |
606 					  DMA_ATTR_NO_WARN);
607 		if (unlikely(dma_mapping_error(vm->dma, addr)))
608 			goto free_page;
609 
610 		if (unlikely(!IS_ALIGNED(addr, size)))
611 			goto unmap_page;
612 
613 		vm->scratch_page.page = page;
614 		vm->scratch_page.daddr = addr;
615 		vm->scratch_order = order;
616 		return 0;
617 
618 unmap_page:
619 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
620 free_page:
621 		__free_pages(page, order);
622 skip:
623 		if (size == I915_GTT_PAGE_SIZE_4K)
624 			return -ENOMEM;
625 
626 		size = I915_GTT_PAGE_SIZE_4K;
627 		gfp &= ~__GFP_NOWARN;
628 	} while (1);
629 }
630 
631 static void cleanup_scratch_page(struct i915_address_space *vm)
632 {
633 	struct i915_page_dma *p = &vm->scratch_page;
634 	int order = vm->scratch_order;
635 
636 	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
637 		       PCI_DMA_BIDIRECTIONAL);
638 	__free_pages(p->page, order);
639 }
640 
641 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
642 {
643 	struct i915_page_table *pt;
644 
645 	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
646 	if (unlikely(!pt))
647 		return ERR_PTR(-ENOMEM);
648 
649 	if (unlikely(setup_px(vm, pt))) {
650 		kfree(pt);
651 		return ERR_PTR(-ENOMEM);
652 	}
653 
654 	pt->used_ptes = 0;
655 	return pt;
656 }
657 
658 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
659 {
660 	cleanup_px(vm, pt);
661 	kfree(pt);
662 }
663 
664 static void gen8_initialize_pt(struct i915_address_space *vm,
665 			       struct i915_page_table *pt)
666 {
667 	fill_px(vm, pt, vm->scratch_pte);
668 }
669 
670 static void gen6_initialize_pt(struct i915_address_space *vm,
671 			       struct i915_page_table *pt)
672 {
673 	fill32_px(vm, pt, vm->scratch_pte);
674 }
675 
676 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
677 {
678 	struct i915_page_directory *pd;
679 
680 	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
681 	if (unlikely(!pd))
682 		return ERR_PTR(-ENOMEM);
683 
684 	if (unlikely(setup_px(vm, pd))) {
685 		kfree(pd);
686 		return ERR_PTR(-ENOMEM);
687 	}
688 
689 	pd->used_pdes = 0;
690 	return pd;
691 }
692 
693 static void free_pd(struct i915_address_space *vm,
694 		    struct i915_page_directory *pd)
695 {
696 	cleanup_px(vm, pd);
697 	kfree(pd);
698 }
699 
700 static void gen8_initialize_pd(struct i915_address_space *vm,
701 			       struct i915_page_directory *pd)
702 {
703 	fill_px(vm, pd,
704 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
705 	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
706 }
707 
708 static int __pdp_init(struct i915_address_space *vm,
709 		      struct i915_page_directory_pointer *pdp)
710 {
711 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
712 
713 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
714 					    I915_GFP_ALLOW_FAIL);
715 	if (unlikely(!pdp->page_directory))
716 		return -ENOMEM;
717 
718 	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
719 
720 	return 0;
721 }
722 
723 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
724 {
725 	kfree(pdp->page_directory);
726 	pdp->page_directory = NULL;
727 }
728 
729 static struct i915_page_directory_pointer *
730 alloc_pdp(struct i915_address_space *vm)
731 {
732 	struct i915_page_directory_pointer *pdp;
733 	int ret = -ENOMEM;
734 
735 	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
736 
737 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
738 	if (!pdp)
739 		return ERR_PTR(-ENOMEM);
740 
741 	ret = __pdp_init(vm, pdp);
742 	if (ret)
743 		goto fail_bitmap;
744 
745 	ret = setup_px(vm, pdp);
746 	if (ret)
747 		goto fail_page_m;
748 
749 	return pdp;
750 
751 fail_page_m:
752 	__pdp_fini(pdp);
753 fail_bitmap:
754 	kfree(pdp);
755 
756 	return ERR_PTR(ret);
757 }
758 
759 static void free_pdp(struct i915_address_space *vm,
760 		     struct i915_page_directory_pointer *pdp)
761 {
762 	__pdp_fini(pdp);
763 
764 	if (!i915_vm_is_4lvl(vm))
765 		return;
766 
767 	cleanup_px(vm, pdp);
768 	kfree(pdp);
769 }
770 
771 static void gen8_initialize_pdp(struct i915_address_space *vm,
772 				struct i915_page_directory_pointer *pdp)
773 {
774 	gen8_ppgtt_pdpe_t scratch_pdpe;
775 
776 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
777 
778 	fill_px(vm, pdp, scratch_pdpe);
779 }
780 
781 static void gen8_initialize_pml4(struct i915_address_space *vm,
782 				 struct i915_pml4 *pml4)
783 {
784 	fill_px(vm, pml4,
785 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
786 	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
787 }
788 
789 /*
790  * PDE TLBs are a pain to invalidate on GEN8+. When we modify
791  * the page table structures, we mark them dirty so that
792  * context switching/execlist queuing code takes extra steps
793  * to ensure that tlbs are flushed.
794  */
795 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
796 {
797 	ppgtt->pd_dirty_engines = ALL_ENGINES;
798 }
799 
800 /* Removes entries from a single page table, releasing it if it's empty.
801  * Caller can use the return value to update higher-level entries.
802  */
803 static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
804 				struct i915_page_table *pt,
805 				u64 start, u64 length)
806 {
807 	unsigned int num_entries = gen8_pte_count(start, length);
808 	gen8_pte_t *vaddr;
809 
810 	GEM_BUG_ON(num_entries > pt->used_ptes);
811 
812 	pt->used_ptes -= num_entries;
813 	if (!pt->used_ptes)
814 		return true;
815 
816 	vaddr = kmap_atomic_px(pt);
817 	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
818 	kunmap_atomic(vaddr);
819 
820 	return false;
821 }
822 
823 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
824 			       struct i915_page_directory *pd,
825 			       struct i915_page_table *pt,
826 			       unsigned int pde)
827 {
828 	gen8_pde_t *vaddr;
829 
830 	pd->page_table[pde] = pt;
831 
832 	vaddr = kmap_atomic_px(pd);
833 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
834 	kunmap_atomic(vaddr);
835 }
836 
837 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
838 				struct i915_page_directory *pd,
839 				u64 start, u64 length)
840 {
841 	struct i915_page_table *pt;
842 	u32 pde;
843 
844 	gen8_for_each_pde(pt, pd, start, length, pde) {
845 		GEM_BUG_ON(pt == vm->scratch_pt);
846 
847 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
848 			continue;
849 
850 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
851 		GEM_BUG_ON(!pd->used_pdes);
852 		pd->used_pdes--;
853 
854 		free_pt(vm, pt);
855 	}
856 
857 	return !pd->used_pdes;
858 }
859 
860 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
861 				struct i915_page_directory_pointer *pdp,
862 				struct i915_page_directory *pd,
863 				unsigned int pdpe)
864 {
865 	gen8_ppgtt_pdpe_t *vaddr;
866 
867 	pdp->page_directory[pdpe] = pd;
868 	if (!i915_vm_is_4lvl(vm))
869 		return;
870 
871 	vaddr = kmap_atomic_px(pdp);
872 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
873 	kunmap_atomic(vaddr);
874 }
875 
876 /* Removes entries from a single page dir pointer, releasing it if it's empty.
877  * Caller can use the return value to update higher-level entries
878  */
879 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
880 				 struct i915_page_directory_pointer *pdp,
881 				 u64 start, u64 length)
882 {
883 	struct i915_page_directory *pd;
884 	unsigned int pdpe;
885 
886 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
887 		GEM_BUG_ON(pd == vm->scratch_pd);
888 
889 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
890 			continue;
891 
892 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
893 		GEM_BUG_ON(!pdp->used_pdpes);
894 		pdp->used_pdpes--;
895 
896 		free_pd(vm, pd);
897 	}
898 
899 	return !pdp->used_pdpes;
900 }
901 
902 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
903 				  u64 start, u64 length)
904 {
905 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
906 }
907 
908 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
909 				 struct i915_page_directory_pointer *pdp,
910 				 unsigned int pml4e)
911 {
912 	gen8_ppgtt_pml4e_t *vaddr;
913 
914 	pml4->pdps[pml4e] = pdp;
915 
916 	vaddr = kmap_atomic_px(pml4);
917 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
918 	kunmap_atomic(vaddr);
919 }
920 
921 /* Removes entries from a single pml4.
922  * This is the top-level structure in 4-level page tables used on gen8+.
923  * Empty entries are always scratch pml4e.
924  */
925 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
926 				  u64 start, u64 length)
927 {
928 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
929 	struct i915_pml4 *pml4 = &ppgtt->pml4;
930 	struct i915_page_directory_pointer *pdp;
931 	unsigned int pml4e;
932 
933 	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
934 
935 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
936 		GEM_BUG_ON(pdp == vm->scratch_pdp);
937 
938 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
939 			continue;
940 
941 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
942 
943 		free_pdp(vm, pdp);
944 	}
945 }
946 
947 static inline struct sgt_dma {
948 	struct scatterlist *sg;
949 	dma_addr_t dma, max;
950 } sgt_dma(struct i915_vma *vma) {
951 	struct scatterlist *sg = vma->pages->sgl;
952 	dma_addr_t addr = sg_dma_address(sg);
953 	return (struct sgt_dma) { sg, addr, addr + sg->length };
954 }
955 
956 struct gen8_insert_pte {
957 	u16 pml4e;
958 	u16 pdpe;
959 	u16 pde;
960 	u16 pte;
961 };
962 
963 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
964 {
965 	return (struct gen8_insert_pte) {
966 		 gen8_pml4e_index(start),
967 		 gen8_pdpe_index(start),
968 		 gen8_pde_index(start),
969 		 gen8_pte_index(start),
970 	};
971 }
972 
973 static __always_inline bool
974 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
975 			      struct i915_page_directory_pointer *pdp,
976 			      struct sgt_dma *iter,
977 			      struct gen8_insert_pte *idx,
978 			      enum i915_cache_level cache_level,
979 			      u32 flags)
980 {
981 	struct i915_page_directory *pd;
982 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
983 	gen8_pte_t *vaddr;
984 	bool ret;
985 
986 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
987 	pd = pdp->page_directory[idx->pdpe];
988 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
989 	do {
990 		vaddr[idx->pte] = pte_encode | iter->dma;
991 
992 		iter->dma += I915_GTT_PAGE_SIZE;
993 		if (iter->dma >= iter->max) {
994 			iter->sg = __sg_next(iter->sg);
995 			if (!iter->sg) {
996 				ret = false;
997 				break;
998 			}
999 
1000 			iter->dma = sg_dma_address(iter->sg);
1001 			iter->max = iter->dma + iter->sg->length;
1002 		}
1003 
1004 		if (++idx->pte == GEN8_PTES) {
1005 			idx->pte = 0;
1006 
1007 			if (++idx->pde == I915_PDES) {
1008 				idx->pde = 0;
1009 
1010 				/* Limited by sg length for 3lvl */
1011 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1012 					idx->pdpe = 0;
1013 					ret = true;
1014 					break;
1015 				}
1016 
1017 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1018 				pd = pdp->page_directory[idx->pdpe];
1019 			}
1020 
1021 			kunmap_atomic(vaddr);
1022 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1023 		}
1024 	} while (1);
1025 	kunmap_atomic(vaddr);
1026 
1027 	return ret;
1028 }
1029 
1030 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1031 				   struct i915_vma *vma,
1032 				   enum i915_cache_level cache_level,
1033 				   u32 flags)
1034 {
1035 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1036 	struct sgt_dma iter = sgt_dma(vma);
1037 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1038 
1039 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1040 				      cache_level, flags);
1041 
1042 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1043 }
1044 
1045 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1046 					   struct i915_page_directory_pointer **pdps,
1047 					   struct sgt_dma *iter,
1048 					   enum i915_cache_level cache_level,
1049 					   u32 flags)
1050 {
1051 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1052 	u64 start = vma->node.start;
1053 	dma_addr_t rem = iter->sg->length;
1054 
1055 	do {
1056 		struct gen8_insert_pte idx = gen8_insert_pte(start);
1057 		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1058 		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1059 		unsigned int page_size;
1060 		bool maybe_64K = false;
1061 		gen8_pte_t encode = pte_encode;
1062 		gen8_pte_t *vaddr;
1063 		u16 index, max;
1064 
1065 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1066 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1067 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1068 			index = idx.pde;
1069 			max = I915_PDES;
1070 			page_size = I915_GTT_PAGE_SIZE_2M;
1071 
1072 			encode |= GEN8_PDE_PS_2M;
1073 
1074 			vaddr = kmap_atomic_px(pd);
1075 		} else {
1076 			struct i915_page_table *pt = pd->page_table[idx.pde];
1077 
1078 			index = idx.pte;
1079 			max = GEN8_PTES;
1080 			page_size = I915_GTT_PAGE_SIZE;
1081 
1082 			if (!index &&
1083 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1084 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1085 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1086 			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1087 				maybe_64K = true;
1088 
1089 			vaddr = kmap_atomic_px(pt);
1090 		}
1091 
1092 		do {
1093 			GEM_BUG_ON(iter->sg->length < page_size);
1094 			vaddr[index++] = encode | iter->dma;
1095 
1096 			start += page_size;
1097 			iter->dma += page_size;
1098 			rem -= page_size;
1099 			if (iter->dma >= iter->max) {
1100 				iter->sg = __sg_next(iter->sg);
1101 				if (!iter->sg)
1102 					break;
1103 
1104 				rem = iter->sg->length;
1105 				iter->dma = sg_dma_address(iter->sg);
1106 				iter->max = iter->dma + rem;
1107 
1108 				if (maybe_64K && index < max &&
1109 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1110 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1111 				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1112 					maybe_64K = false;
1113 
1114 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1115 					break;
1116 			}
1117 		} while (rem >= page_size && index < max);
1118 
1119 		kunmap_atomic(vaddr);
1120 
1121 		/*
1122 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1123 		 * filled whole page-table with 64K entries, or filled part of
1124 		 * it and have reached the end of the sg table and we have
1125 		 * enough padding.
1126 		 */
1127 		if (maybe_64K &&
1128 		    (index == max ||
1129 		     (i915_vm_has_scratch_64K(vma->vm) &&
1130 		      !iter->sg && IS_ALIGNED(vma->node.start +
1131 					      vma->node.size,
1132 					      I915_GTT_PAGE_SIZE_2M)))) {
1133 			vaddr = kmap_atomic_px(pd);
1134 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1135 			kunmap_atomic(vaddr);
1136 			page_size = I915_GTT_PAGE_SIZE_64K;
1137 
1138 			/*
1139 			 * We write all 4K page entries, even when using 64K
1140 			 * pages. In order to verify that the HW isn't cheating
1141 			 * by using the 4K PTE instead of the 64K PTE, we want
1142 			 * to remove all the surplus entries. If the HW skipped
1143 			 * the 64K PTE, it will read/write into the scratch page
1144 			 * instead - which we detect as missing results during
1145 			 * selftests.
1146 			 */
1147 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1148 				u16 i;
1149 
1150 				encode = vma->vm->scratch_pte;
1151 				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1152 
1153 				for (i = 1; i < index; i += 16)
1154 					memset64(vaddr + i, encode, 15);
1155 
1156 				kunmap_atomic(vaddr);
1157 			}
1158 		}
1159 
1160 		vma->page_sizes.gtt |= page_size;
1161 	} while (iter->sg);
1162 }
1163 
1164 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1165 				   struct i915_vma *vma,
1166 				   enum i915_cache_level cache_level,
1167 				   u32 flags)
1168 {
1169 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1170 	struct sgt_dma iter = sgt_dma(vma);
1171 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1172 
1173 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1174 		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
1175 					       flags);
1176 	} else {
1177 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1178 
1179 		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1180 						     &iter, &idx, cache_level,
1181 						     flags))
1182 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1183 
1184 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1185 	}
1186 }
1187 
1188 static void gen8_free_page_tables(struct i915_address_space *vm,
1189 				  struct i915_page_directory *pd)
1190 {
1191 	int i;
1192 
1193 	for (i = 0; i < I915_PDES; i++) {
1194 		if (pd->page_table[i] != vm->scratch_pt)
1195 			free_pt(vm, pd->page_table[i]);
1196 	}
1197 }
1198 
1199 static int gen8_init_scratch(struct i915_address_space *vm)
1200 {
1201 	int ret;
1202 
1203 	/*
1204 	 * If everybody agrees to not to write into the scratch page,
1205 	 * we can reuse it for all vm, keeping contexts and processes separate.
1206 	 */
1207 	if (vm->has_read_only &&
1208 	    vm->i915->kernel_context &&
1209 	    vm->i915->kernel_context->ppgtt) {
1210 		struct i915_address_space *clone =
1211 			&vm->i915->kernel_context->ppgtt->vm;
1212 
1213 		GEM_BUG_ON(!clone->has_read_only);
1214 
1215 		vm->scratch_order = clone->scratch_order;
1216 		vm->scratch_pte = clone->scratch_pte;
1217 		vm->scratch_pt  = clone->scratch_pt;
1218 		vm->scratch_pd  = clone->scratch_pd;
1219 		vm->scratch_pdp = clone->scratch_pdp;
1220 		return 0;
1221 	}
1222 
1223 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1224 	if (ret)
1225 		return ret;
1226 
1227 	vm->scratch_pte =
1228 		gen8_pte_encode(vm->scratch_page.daddr,
1229 				I915_CACHE_LLC,
1230 				vm->has_read_only);
1231 
1232 	vm->scratch_pt = alloc_pt(vm);
1233 	if (IS_ERR(vm->scratch_pt)) {
1234 		ret = PTR_ERR(vm->scratch_pt);
1235 		goto free_scratch_page;
1236 	}
1237 
1238 	vm->scratch_pd = alloc_pd(vm);
1239 	if (IS_ERR(vm->scratch_pd)) {
1240 		ret = PTR_ERR(vm->scratch_pd);
1241 		goto free_pt;
1242 	}
1243 
1244 	if (i915_vm_is_4lvl(vm)) {
1245 		vm->scratch_pdp = alloc_pdp(vm);
1246 		if (IS_ERR(vm->scratch_pdp)) {
1247 			ret = PTR_ERR(vm->scratch_pdp);
1248 			goto free_pd;
1249 		}
1250 	}
1251 
1252 	gen8_initialize_pt(vm, vm->scratch_pt);
1253 	gen8_initialize_pd(vm, vm->scratch_pd);
1254 	if (i915_vm_is_4lvl(vm))
1255 		gen8_initialize_pdp(vm, vm->scratch_pdp);
1256 
1257 	return 0;
1258 
1259 free_pd:
1260 	free_pd(vm, vm->scratch_pd);
1261 free_pt:
1262 	free_pt(vm, vm->scratch_pt);
1263 free_scratch_page:
1264 	cleanup_scratch_page(vm);
1265 
1266 	return ret;
1267 }
1268 
1269 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1270 {
1271 	struct i915_address_space *vm = &ppgtt->vm;
1272 	struct drm_i915_private *dev_priv = vm->i915;
1273 	enum vgt_g2v_type msg;
1274 	int i;
1275 
1276 	if (i915_vm_is_4lvl(vm)) {
1277 		const u64 daddr = px_dma(&ppgtt->pml4);
1278 
1279 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1280 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1281 
1282 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1283 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1284 	} else {
1285 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1286 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1287 
1288 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1289 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1290 		}
1291 
1292 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1293 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1294 	}
1295 
1296 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1297 
1298 	return 0;
1299 }
1300 
1301 static void gen8_free_scratch(struct i915_address_space *vm)
1302 {
1303 	if (!vm->scratch_page.daddr)
1304 		return;
1305 
1306 	if (i915_vm_is_4lvl(vm))
1307 		free_pdp(vm, vm->scratch_pdp);
1308 	free_pd(vm, vm->scratch_pd);
1309 	free_pt(vm, vm->scratch_pt);
1310 	cleanup_scratch_page(vm);
1311 }
1312 
1313 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1314 				    struct i915_page_directory_pointer *pdp)
1315 {
1316 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1317 	int i;
1318 
1319 	for (i = 0; i < pdpes; i++) {
1320 		if (pdp->page_directory[i] == vm->scratch_pd)
1321 			continue;
1322 
1323 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1324 		free_pd(vm, pdp->page_directory[i]);
1325 	}
1326 
1327 	free_pdp(vm, pdp);
1328 }
1329 
1330 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1331 {
1332 	int i;
1333 
1334 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1335 		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1336 			continue;
1337 
1338 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1339 	}
1340 
1341 	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1342 }
1343 
1344 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1345 {
1346 	struct drm_i915_private *dev_priv = vm->i915;
1347 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1348 
1349 	if (intel_vgpu_active(dev_priv))
1350 		gen8_ppgtt_notify_vgt(ppgtt, false);
1351 
1352 	if (i915_vm_is_4lvl(vm))
1353 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1354 	else
1355 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1356 
1357 	gen8_free_scratch(vm);
1358 }
1359 
1360 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1361 			       struct i915_page_directory *pd,
1362 			       u64 start, u64 length)
1363 {
1364 	struct i915_page_table *pt;
1365 	u64 from = start;
1366 	unsigned int pde;
1367 
1368 	gen8_for_each_pde(pt, pd, start, length, pde) {
1369 		int count = gen8_pte_count(start, length);
1370 
1371 		if (pt == vm->scratch_pt) {
1372 			pd->used_pdes++;
1373 
1374 			pt = alloc_pt(vm);
1375 			if (IS_ERR(pt)) {
1376 				pd->used_pdes--;
1377 				goto unwind;
1378 			}
1379 
1380 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1381 				gen8_initialize_pt(vm, pt);
1382 
1383 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1384 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1385 		}
1386 
1387 		pt->used_ptes += count;
1388 	}
1389 	return 0;
1390 
1391 unwind:
1392 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1393 	return -ENOMEM;
1394 }
1395 
1396 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1397 				struct i915_page_directory_pointer *pdp,
1398 				u64 start, u64 length)
1399 {
1400 	struct i915_page_directory *pd;
1401 	u64 from = start;
1402 	unsigned int pdpe;
1403 	int ret;
1404 
1405 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1406 		if (pd == vm->scratch_pd) {
1407 			pdp->used_pdpes++;
1408 
1409 			pd = alloc_pd(vm);
1410 			if (IS_ERR(pd)) {
1411 				pdp->used_pdpes--;
1412 				goto unwind;
1413 			}
1414 
1415 			gen8_initialize_pd(vm, pd);
1416 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1417 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1418 		}
1419 
1420 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1421 		if (unlikely(ret))
1422 			goto unwind_pd;
1423 	}
1424 
1425 	return 0;
1426 
1427 unwind_pd:
1428 	if (!pd->used_pdes) {
1429 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1430 		GEM_BUG_ON(!pdp->used_pdpes);
1431 		pdp->used_pdpes--;
1432 		free_pd(vm, pd);
1433 	}
1434 unwind:
1435 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1436 	return -ENOMEM;
1437 }
1438 
1439 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1440 				 u64 start, u64 length)
1441 {
1442 	return gen8_ppgtt_alloc_pdp(vm,
1443 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1444 }
1445 
1446 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1447 				 u64 start, u64 length)
1448 {
1449 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1450 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1451 	struct i915_page_directory_pointer *pdp;
1452 	u64 from = start;
1453 	u32 pml4e;
1454 	int ret;
1455 
1456 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1457 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1458 			pdp = alloc_pdp(vm);
1459 			if (IS_ERR(pdp))
1460 				goto unwind;
1461 
1462 			gen8_initialize_pdp(vm, pdp);
1463 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1464 		}
1465 
1466 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1467 		if (unlikely(ret))
1468 			goto unwind_pdp;
1469 	}
1470 
1471 	return 0;
1472 
1473 unwind_pdp:
1474 	if (!pdp->used_pdpes) {
1475 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1476 		free_pdp(vm, pdp);
1477 	}
1478 unwind:
1479 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1480 	return -ENOMEM;
1481 }
1482 
1483 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1484 {
1485 	struct i915_address_space *vm = &ppgtt->vm;
1486 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1487 	struct i915_page_directory *pd;
1488 	u64 start = 0, length = ppgtt->vm.total;
1489 	u64 from = start;
1490 	unsigned int pdpe;
1491 
1492 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1493 		pd = alloc_pd(vm);
1494 		if (IS_ERR(pd))
1495 			goto unwind;
1496 
1497 		gen8_initialize_pd(vm, pd);
1498 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1499 		pdp->used_pdpes++;
1500 	}
1501 
1502 	pdp->used_pdpes++; /* never remove */
1503 	return 0;
1504 
1505 unwind:
1506 	start -= from;
1507 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1508 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1509 		free_pd(vm, pd);
1510 	}
1511 	pdp->used_pdpes = 0;
1512 	return -ENOMEM;
1513 }
1514 
1515 static void ppgtt_init(struct drm_i915_private *i915,
1516 		       struct i915_hw_ppgtt *ppgtt)
1517 {
1518 	kref_init(&ppgtt->ref);
1519 
1520 	ppgtt->vm.i915 = i915;
1521 	ppgtt->vm.dma = &i915->drm.pdev->dev;
1522 	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
1523 
1524 	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1525 
1526 	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1527 	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1528 	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1529 	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1530 }
1531 
1532 /*
1533  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1534  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1535  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1536  * space.
1537  *
1538  */
1539 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1540 {
1541 	struct i915_hw_ppgtt *ppgtt;
1542 	int err;
1543 
1544 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1545 	if (!ppgtt)
1546 		return ERR_PTR(-ENOMEM);
1547 
1548 	ppgtt_init(i915, ppgtt);
1549 
1550 	/*
1551 	 * From bdw, there is hw support for read-only pages in the PPGTT.
1552 	 *
1553 	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
1554 	 * for now.
1555 	 */
1556 	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1557 
1558 	/* There are only few exceptions for gen >=6. chv and bxt.
1559 	 * And we are not sure about the latter so play safe for now.
1560 	 */
1561 	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1562 		ppgtt->vm.pt_kmap_wc = true;
1563 
1564 	err = gen8_init_scratch(&ppgtt->vm);
1565 	if (err)
1566 		goto err_free;
1567 
1568 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1569 		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
1570 		if (err)
1571 			goto err_scratch;
1572 
1573 		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1574 
1575 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1576 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1577 		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1578 	} else {
1579 		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
1580 		if (err)
1581 			goto err_scratch;
1582 
1583 		if (intel_vgpu_active(i915)) {
1584 			err = gen8_preallocate_top_level_pdp(ppgtt);
1585 			if (err) {
1586 				__pdp_fini(&ppgtt->pdp);
1587 				goto err_scratch;
1588 			}
1589 		}
1590 
1591 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1592 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1593 		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1594 	}
1595 
1596 	if (intel_vgpu_active(i915))
1597 		gen8_ppgtt_notify_vgt(ppgtt, true);
1598 
1599 	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1600 
1601 	return ppgtt;
1602 
1603 err_scratch:
1604 	gen8_free_scratch(&ppgtt->vm);
1605 err_free:
1606 	kfree(ppgtt);
1607 	return ERR_PTR(err);
1608 }
1609 
1610 /* Write pde (index) from the page directory @pd to the page table @pt */
1611 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
1612 				  const unsigned int pde,
1613 				  const struct i915_page_table *pt)
1614 {
1615 	/* Caller needs to make sure the write completes if necessary */
1616 	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1617 		  ppgtt->pd_addr + pde);
1618 }
1619 
1620 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1621 {
1622 	struct intel_engine_cs *engine;
1623 	u32 ecochk, ecobits;
1624 	enum intel_engine_id id;
1625 
1626 	ecobits = I915_READ(GAC_ECO_BITS);
1627 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1628 
1629 	ecochk = I915_READ(GAM_ECOCHK);
1630 	if (IS_HASWELL(dev_priv)) {
1631 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1632 	} else {
1633 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1634 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1635 	}
1636 	I915_WRITE(GAM_ECOCHK, ecochk);
1637 
1638 	for_each_engine(engine, dev_priv, id) {
1639 		/* GFX_MODE is per-ring on gen7+ */
1640 		I915_WRITE(RING_MODE_GEN7(engine),
1641 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1642 	}
1643 }
1644 
1645 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1646 {
1647 	u32 ecochk, gab_ctl, ecobits;
1648 
1649 	ecobits = I915_READ(GAC_ECO_BITS);
1650 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1651 		   ECOBITS_PPGTT_CACHE64B);
1652 
1653 	gab_ctl = I915_READ(GAB_CTL);
1654 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1655 
1656 	ecochk = I915_READ(GAM_ECOCHK);
1657 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1658 
1659 	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
1660 		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1661 }
1662 
1663 /* PPGTT support for Sandybdrige/Gen6 and later */
1664 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1665 				   u64 start, u64 length)
1666 {
1667 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1668 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1669 	unsigned int pde = first_entry / GEN6_PTES;
1670 	unsigned int pte = first_entry % GEN6_PTES;
1671 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1672 	const gen6_pte_t scratch_pte = vm->scratch_pte;
1673 
1674 	while (num_entries) {
1675 		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1676 		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1677 		gen6_pte_t *vaddr;
1678 
1679 		GEM_BUG_ON(pt == vm->scratch_pt);
1680 
1681 		num_entries -= count;
1682 
1683 		GEM_BUG_ON(count > pt->used_ptes);
1684 		pt->used_ptes -= count;
1685 		if (!pt->used_ptes)
1686 			ppgtt->scan_for_unused_pt = true;
1687 
1688 		/*
1689 		 * Note that the hw doesn't support removing PDE on the fly
1690 		 * (they are cached inside the context with no means to
1691 		 * invalidate the cache), so we can only reset the PTE
1692 		 * entries back to scratch.
1693 		 */
1694 
1695 		vaddr = kmap_atomic_px(pt);
1696 		memset32(vaddr + pte, scratch_pte, count);
1697 		kunmap_atomic(vaddr);
1698 
1699 		pte = 0;
1700 	}
1701 }
1702 
1703 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1704 				      struct i915_vma *vma,
1705 				      enum i915_cache_level cache_level,
1706 				      u32 flags)
1707 {
1708 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1709 	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1710 	unsigned act_pt = first_entry / GEN6_PTES;
1711 	unsigned act_pte = first_entry % GEN6_PTES;
1712 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1713 	struct sgt_dma iter = sgt_dma(vma);
1714 	gen6_pte_t *vaddr;
1715 
1716 	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
1717 
1718 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1719 	do {
1720 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1721 
1722 		iter.dma += I915_GTT_PAGE_SIZE;
1723 		if (iter.dma == iter.max) {
1724 			iter.sg = __sg_next(iter.sg);
1725 			if (!iter.sg)
1726 				break;
1727 
1728 			iter.dma = sg_dma_address(iter.sg);
1729 			iter.max = iter.dma + iter.sg->length;
1730 		}
1731 
1732 		if (++act_pte == GEN6_PTES) {
1733 			kunmap_atomic(vaddr);
1734 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1735 			act_pte = 0;
1736 		}
1737 	} while (1);
1738 	kunmap_atomic(vaddr);
1739 
1740 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1741 }
1742 
1743 static int gen6_alloc_va_range(struct i915_address_space *vm,
1744 			       u64 start, u64 length)
1745 {
1746 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1747 	struct i915_page_table *pt;
1748 	u64 from = start;
1749 	unsigned int pde;
1750 	bool flush = false;
1751 
1752 	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1753 		const unsigned int count = gen6_pte_count(start, length);
1754 
1755 		if (pt == vm->scratch_pt) {
1756 			pt = alloc_pt(vm);
1757 			if (IS_ERR(pt))
1758 				goto unwind_out;
1759 
1760 			gen6_initialize_pt(vm, pt);
1761 			ppgtt->base.pd.page_table[pde] = pt;
1762 
1763 			if (i915_vma_is_bound(ppgtt->vma,
1764 					      I915_VMA_GLOBAL_BIND)) {
1765 				gen6_write_pde(ppgtt, pde, pt);
1766 				flush = true;
1767 			}
1768 
1769 			GEM_BUG_ON(pt->used_ptes);
1770 		}
1771 
1772 		pt->used_ptes += count;
1773 	}
1774 
1775 	if (flush) {
1776 		mark_tlbs_dirty(&ppgtt->base);
1777 		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1778 	}
1779 
1780 	return 0;
1781 
1782 unwind_out:
1783 	gen6_ppgtt_clear_range(vm, from, start - from);
1784 	return -ENOMEM;
1785 }
1786 
1787 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1788 {
1789 	struct i915_address_space * const vm = &ppgtt->base.vm;
1790 	struct i915_page_table *unused;
1791 	u32 pde;
1792 	int ret;
1793 
1794 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1795 	if (ret)
1796 		return ret;
1797 
1798 	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1799 					 I915_CACHE_NONE,
1800 					 PTE_READ_ONLY);
1801 
1802 	vm->scratch_pt = alloc_pt(vm);
1803 	if (IS_ERR(vm->scratch_pt)) {
1804 		cleanup_scratch_page(vm);
1805 		return PTR_ERR(vm->scratch_pt);
1806 	}
1807 
1808 	gen6_initialize_pt(vm, vm->scratch_pt);
1809 	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
1810 		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1811 
1812 	return 0;
1813 }
1814 
1815 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1816 {
1817 	free_pt(vm, vm->scratch_pt);
1818 	cleanup_scratch_page(vm);
1819 }
1820 
1821 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1822 {
1823 	struct i915_page_table *pt;
1824 	u32 pde;
1825 
1826 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1827 		if (pt != ppgtt->base.vm.scratch_pt)
1828 			free_pt(&ppgtt->base.vm, pt);
1829 }
1830 
1831 struct gen6_ppgtt_cleanup_work {
1832 	struct work_struct base;
1833 	struct i915_vma *vma;
1834 };
1835 
1836 static void gen6_ppgtt_cleanup_work(struct work_struct *wrk)
1837 {
1838 	struct gen6_ppgtt_cleanup_work *work =
1839 		container_of(wrk, typeof(*work), base);
1840 	/* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */
1841 	struct drm_i915_private *i915 = work->vma->vm->i915;
1842 
1843 	mutex_lock(&i915->drm.struct_mutex);
1844 	i915_vma_destroy(work->vma);
1845 	mutex_unlock(&i915->drm.struct_mutex);
1846 
1847 	kfree(work);
1848 }
1849 
1850 static int nop_set_pages(struct i915_vma *vma)
1851 {
1852 	return -ENODEV;
1853 }
1854 
1855 static void nop_clear_pages(struct i915_vma *vma)
1856 {
1857 }
1858 
1859 static int nop_bind(struct i915_vma *vma,
1860 		    enum i915_cache_level cache_level,
1861 		    u32 unused)
1862 {
1863 	return -ENODEV;
1864 }
1865 
1866 static void nop_unbind(struct i915_vma *vma)
1867 {
1868 }
1869 
1870 static const struct i915_vma_ops nop_vma_ops = {
1871 	.set_pages = nop_set_pages,
1872 	.clear_pages = nop_clear_pages,
1873 	.bind_vma = nop_bind,
1874 	.unbind_vma = nop_unbind,
1875 };
1876 
1877 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1878 {
1879 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1880 	struct gen6_ppgtt_cleanup_work *work = ppgtt->work;
1881 
1882 	/* FIXME remove the struct_mutex to bring the locking under control */
1883 	INIT_WORK(&work->base, gen6_ppgtt_cleanup_work);
1884 	work->vma = ppgtt->vma;
1885 	work->vma->ops = &nop_vma_ops;
1886 	schedule_work(&work->base);
1887 
1888 	gen6_ppgtt_free_pd(ppgtt);
1889 	gen6_ppgtt_free_scratch(vm);
1890 }
1891 
1892 static int pd_vma_set_pages(struct i915_vma *vma)
1893 {
1894 	vma->pages = ERR_PTR(-ENODEV);
1895 	return 0;
1896 }
1897 
1898 static void pd_vma_clear_pages(struct i915_vma *vma)
1899 {
1900 	GEM_BUG_ON(!vma->pages);
1901 
1902 	vma->pages = NULL;
1903 }
1904 
1905 static int pd_vma_bind(struct i915_vma *vma,
1906 		       enum i915_cache_level cache_level,
1907 		       u32 unused)
1908 {
1909 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1910 	struct gen6_hw_ppgtt *ppgtt = vma->private;
1911 	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1912 	struct i915_page_table *pt;
1913 	unsigned int pde;
1914 
1915 	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1916 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1917 
1918 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1919 		gen6_write_pde(ppgtt, pde, pt);
1920 
1921 	mark_tlbs_dirty(&ppgtt->base);
1922 	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1923 
1924 	return 0;
1925 }
1926 
1927 static void pd_vma_unbind(struct i915_vma *vma)
1928 {
1929 	struct gen6_hw_ppgtt *ppgtt = vma->private;
1930 	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
1931 	struct i915_page_table *pt;
1932 	unsigned int pde;
1933 
1934 	if (!ppgtt->scan_for_unused_pt)
1935 		return;
1936 
1937 	/* Free all no longer used page tables */
1938 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
1939 		if (pt->used_ptes || pt == scratch_pt)
1940 			continue;
1941 
1942 		free_pt(&ppgtt->base.vm, pt);
1943 		ppgtt->base.pd.page_table[pde] = scratch_pt;
1944 	}
1945 
1946 	ppgtt->scan_for_unused_pt = false;
1947 }
1948 
1949 static const struct i915_vma_ops pd_vma_ops = {
1950 	.set_pages = pd_vma_set_pages,
1951 	.clear_pages = pd_vma_clear_pages,
1952 	.bind_vma = pd_vma_bind,
1953 	.unbind_vma = pd_vma_unbind,
1954 };
1955 
1956 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
1957 {
1958 	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
1959 	struct i915_ggtt *ggtt = &i915->ggtt;
1960 	struct i915_vma *vma;
1961 
1962 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
1963 	GEM_BUG_ON(size > ggtt->vm.total);
1964 
1965 	vma = i915_vma_alloc();
1966 	if (!vma)
1967 		return ERR_PTR(-ENOMEM);
1968 
1969 	i915_active_init(i915, &vma->active, NULL);
1970 	INIT_ACTIVE_REQUEST(&vma->last_fence);
1971 
1972 	vma->vm = &ggtt->vm;
1973 	vma->ops = &pd_vma_ops;
1974 	vma->private = ppgtt;
1975 
1976 	vma->size = size;
1977 	vma->fence_size = size;
1978 	vma->flags = I915_VMA_GGTT;
1979 	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
1980 
1981 	INIT_LIST_HEAD(&vma->obj_link);
1982 
1983 	mutex_lock(&vma->vm->mutex);
1984 	list_add(&vma->vm_link, &vma->vm->unbound_list);
1985 	mutex_unlock(&vma->vm->mutex);
1986 
1987 	return vma;
1988 }
1989 
1990 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
1991 {
1992 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1993 	int err;
1994 
1995 	GEM_BUG_ON(ppgtt->base.vm.closed);
1996 
1997 	/*
1998 	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
1999 	 * which will be pinned into every active context.
2000 	 * (When vma->pin_count becomes atomic, I expect we will naturally
2001 	 * need a larger, unpacked, type and kill this redundancy.)
2002 	 */
2003 	if (ppgtt->pin_count++)
2004 		return 0;
2005 
2006 	/*
2007 	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2008 	 * allocator works in address space sizes, so it's multiplied by page
2009 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2010 	 */
2011 	err = i915_vma_pin(ppgtt->vma,
2012 			   0, GEN6_PD_ALIGN,
2013 			   PIN_GLOBAL | PIN_HIGH);
2014 	if (err)
2015 		goto unpin;
2016 
2017 	return 0;
2018 
2019 unpin:
2020 	ppgtt->pin_count = 0;
2021 	return err;
2022 }
2023 
2024 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
2025 {
2026 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2027 
2028 	GEM_BUG_ON(!ppgtt->pin_count);
2029 	if (--ppgtt->pin_count)
2030 		return;
2031 
2032 	i915_vma_unpin(ppgtt->vma);
2033 }
2034 
2035 void gen6_ppgtt_unpin_all(struct i915_hw_ppgtt *base)
2036 {
2037 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2038 
2039 	if (!ppgtt->pin_count)
2040 		return;
2041 
2042 	ppgtt->pin_count = 0;
2043 	i915_vma_unpin(ppgtt->vma);
2044 }
2045 
2046 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2047 {
2048 	struct i915_ggtt * const ggtt = &i915->ggtt;
2049 	struct gen6_hw_ppgtt *ppgtt;
2050 	int err;
2051 
2052 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2053 	if (!ppgtt)
2054 		return ERR_PTR(-ENOMEM);
2055 
2056 	ppgtt_init(i915, &ppgtt->base);
2057 
2058 	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2059 	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2060 	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2061 	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2062 
2063 	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2064 
2065 	ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL);
2066 	if (!ppgtt->work)
2067 		goto err_free;
2068 
2069 	err = gen6_ppgtt_init_scratch(ppgtt);
2070 	if (err)
2071 		goto err_work;
2072 
2073 	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2074 	if (IS_ERR(ppgtt->vma)) {
2075 		err = PTR_ERR(ppgtt->vma);
2076 		goto err_scratch;
2077 	}
2078 
2079 	return &ppgtt->base;
2080 
2081 err_scratch:
2082 	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2083 err_work:
2084 	kfree(ppgtt->work);
2085 err_free:
2086 	kfree(ppgtt);
2087 	return ERR_PTR(err);
2088 }
2089 
2090 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2091 {
2092 	/* This function is for gtt related workarounds. This function is
2093 	 * called on driver load and after a GPU reset, so you can place
2094 	 * workarounds here even if they get overwritten by GPU reset.
2095 	 */
2096 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2097 	if (IS_BROADWELL(dev_priv))
2098 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2099 	else if (IS_CHERRYVIEW(dev_priv))
2100 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2101 	else if (IS_GEN9_LP(dev_priv))
2102 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2103 	else if (INTEL_GEN(dev_priv) >= 9)
2104 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2105 
2106 	/*
2107 	 * To support 64K PTEs we need to first enable the use of the
2108 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2109 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2110 	 * shouldn't be needed after GEN10.
2111 	 *
2112 	 * 64K pages were first introduced from BDW+, although technically they
2113 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2114 	 * 32K pages, but we don't currently have any support for it in our
2115 	 * driver.
2116 	 */
2117 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2118 	    INTEL_GEN(dev_priv) <= 10)
2119 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2120 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2121 			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2122 }
2123 
2124 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2125 {
2126 	gtt_write_workarounds(dev_priv);
2127 
2128 	if (IS_GEN(dev_priv, 6))
2129 		gen6_ppgtt_enable(dev_priv);
2130 	else if (IS_GEN(dev_priv, 7))
2131 		gen7_ppgtt_enable(dev_priv);
2132 
2133 	return 0;
2134 }
2135 
2136 static struct i915_hw_ppgtt *
2137 __hw_ppgtt_create(struct drm_i915_private *i915)
2138 {
2139 	if (INTEL_GEN(i915) < 8)
2140 		return gen6_ppgtt_create(i915);
2141 	else
2142 		return gen8_ppgtt_create(i915);
2143 }
2144 
2145 struct i915_hw_ppgtt *
2146 i915_ppgtt_create(struct drm_i915_private *i915)
2147 {
2148 	struct i915_hw_ppgtt *ppgtt;
2149 
2150 	ppgtt = __hw_ppgtt_create(i915);
2151 	if (IS_ERR(ppgtt))
2152 		return ppgtt;
2153 
2154 	trace_i915_ppgtt_create(&ppgtt->vm);
2155 
2156 	return ppgtt;
2157 }
2158 
2159 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2160 {
2161 	struct list_head *phases[] = {
2162 		&vm->bound_list,
2163 		&vm->unbound_list,
2164 		NULL,
2165 	}, **phase;
2166 
2167 	vm->closed = true;
2168 	for (phase = phases; *phase; phase++) {
2169 		struct i915_vma *vma, *vn;
2170 
2171 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2172 			i915_vma_destroy(vma);
2173 	}
2174 }
2175 
2176 void i915_ppgtt_release(struct kref *kref)
2177 {
2178 	struct i915_hw_ppgtt *ppgtt =
2179 		container_of(kref, struct i915_hw_ppgtt, ref);
2180 
2181 	trace_i915_ppgtt_release(&ppgtt->vm);
2182 
2183 	ppgtt_destroy_vma(&ppgtt->vm);
2184 
2185 	GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
2186 	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2187 
2188 	ppgtt->vm.cleanup(&ppgtt->vm);
2189 	i915_address_space_fini(&ppgtt->vm);
2190 	kfree(ppgtt);
2191 }
2192 
2193 /* Certain Gen5 chipsets require require idling the GPU before
2194  * unmapping anything from the GTT when VT-d is enabled.
2195  */
2196 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2197 {
2198 	/* Query intel_iommu to see if we need the workaround. Presumably that
2199 	 * was loaded first.
2200 	 */
2201 	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2202 }
2203 
2204 static void gen6_check_faults(struct drm_i915_private *dev_priv)
2205 {
2206 	struct intel_engine_cs *engine;
2207 	enum intel_engine_id id;
2208 	u32 fault;
2209 
2210 	for_each_engine(engine, dev_priv, id) {
2211 		fault = I915_READ(RING_FAULT_REG(engine));
2212 		if (fault & RING_FAULT_VALID) {
2213 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2214 					 "\tAddr: 0x%08lx\n"
2215 					 "\tAddress space: %s\n"
2216 					 "\tSource ID: %d\n"
2217 					 "\tType: %d\n",
2218 					 fault & PAGE_MASK,
2219 					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2220 					 RING_FAULT_SRCID(fault),
2221 					 RING_FAULT_FAULT_TYPE(fault));
2222 		}
2223 	}
2224 }
2225 
2226 static void gen8_check_faults(struct drm_i915_private *dev_priv)
2227 {
2228 	u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2229 
2230 	if (fault & RING_FAULT_VALID) {
2231 		u32 fault_data0, fault_data1;
2232 		u64 fault_addr;
2233 
2234 		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2235 		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2236 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2237 			     ((u64)fault_data0 << 12);
2238 
2239 		DRM_DEBUG_DRIVER("Unexpected fault\n"
2240 				 "\tAddr: 0x%08x_%08x\n"
2241 				 "\tAddress space: %s\n"
2242 				 "\tEngine ID: %d\n"
2243 				 "\tSource ID: %d\n"
2244 				 "\tType: %d\n",
2245 				 upper_32_bits(fault_addr),
2246 				 lower_32_bits(fault_addr),
2247 				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2248 				 GEN8_RING_FAULT_ENGINE_ID(fault),
2249 				 RING_FAULT_SRCID(fault),
2250 				 RING_FAULT_FAULT_TYPE(fault));
2251 	}
2252 }
2253 
2254 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2255 {
2256 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
2257 	if (INTEL_GEN(dev_priv) >= 8)
2258 		gen8_check_faults(dev_priv);
2259 	else if (INTEL_GEN(dev_priv) >= 6)
2260 		gen6_check_faults(dev_priv);
2261 	else
2262 		return;
2263 
2264 	i915_clear_error_registers(dev_priv);
2265 }
2266 
2267 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2268 {
2269 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2270 
2271 	/* Don't bother messing with faults pre GEN6 as we have little
2272 	 * documentation supporting that it's a good idea.
2273 	 */
2274 	if (INTEL_GEN(dev_priv) < 6)
2275 		return;
2276 
2277 	i915_check_and_clear_faults(dev_priv);
2278 
2279 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2280 
2281 	i915_ggtt_invalidate(dev_priv);
2282 }
2283 
2284 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2285 			       struct sg_table *pages)
2286 {
2287 	do {
2288 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2289 				     pages->sgl, pages->nents,
2290 				     PCI_DMA_BIDIRECTIONAL,
2291 				     DMA_ATTR_NO_WARN))
2292 			return 0;
2293 
2294 		/*
2295 		 * If the DMA remap fails, one cause can be that we have
2296 		 * too many objects pinned in a small remapping table,
2297 		 * such as swiotlb. Incrementally purge all other objects and
2298 		 * try again - if there are no more pages to remove from
2299 		 * the DMA remapper, i915_gem_shrink will return 0.
2300 		 */
2301 		GEM_BUG_ON(obj->mm.pages == pages);
2302 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2303 				 obj->base.size >> PAGE_SHIFT, NULL,
2304 				 I915_SHRINK_BOUND |
2305 				 I915_SHRINK_UNBOUND));
2306 
2307 	return -ENOSPC;
2308 }
2309 
2310 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2311 {
2312 	writeq(pte, addr);
2313 }
2314 
2315 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2316 				  dma_addr_t addr,
2317 				  u64 offset,
2318 				  enum i915_cache_level level,
2319 				  u32 unused)
2320 {
2321 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2322 	gen8_pte_t __iomem *pte =
2323 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2324 
2325 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2326 
2327 	ggtt->invalidate(vm->i915);
2328 }
2329 
2330 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2331 				     struct i915_vma *vma,
2332 				     enum i915_cache_level level,
2333 				     u32 flags)
2334 {
2335 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2336 	struct sgt_iter sgt_iter;
2337 	gen8_pte_t __iomem *gtt_entries;
2338 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2339 	dma_addr_t addr;
2340 
2341 	/*
2342 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2343 	 * not to allow the user to override access to a read only page.
2344 	 */
2345 
2346 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2347 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2348 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2349 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2350 
2351 	/*
2352 	 * We want to flush the TLBs only after we're certain all the PTE
2353 	 * updates have finished.
2354 	 */
2355 	ggtt->invalidate(vm->i915);
2356 }
2357 
2358 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2359 				  dma_addr_t addr,
2360 				  u64 offset,
2361 				  enum i915_cache_level level,
2362 				  u32 flags)
2363 {
2364 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2365 	gen6_pte_t __iomem *pte =
2366 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2367 
2368 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2369 
2370 	ggtt->invalidate(vm->i915);
2371 }
2372 
2373 /*
2374  * Binds an object into the global gtt with the specified cache level. The object
2375  * will be accessible to the GPU via commands whose operands reference offsets
2376  * within the global GTT as well as accessible by the GPU through the GMADR
2377  * mapped BAR (dev_priv->mm.gtt->gtt).
2378  */
2379 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2380 				     struct i915_vma *vma,
2381 				     enum i915_cache_level level,
2382 				     u32 flags)
2383 {
2384 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2385 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2386 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2387 	struct sgt_iter iter;
2388 	dma_addr_t addr;
2389 	for_each_sgt_dma(addr, iter, vma->pages)
2390 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2391 
2392 	/*
2393 	 * We want to flush the TLBs only after we're certain all the PTE
2394 	 * updates have finished.
2395 	 */
2396 	ggtt->invalidate(vm->i915);
2397 }
2398 
2399 static void nop_clear_range(struct i915_address_space *vm,
2400 			    u64 start, u64 length)
2401 {
2402 }
2403 
2404 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2405 				  u64 start, u64 length)
2406 {
2407 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2408 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2409 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2410 	const gen8_pte_t scratch_pte = vm->scratch_pte;
2411 	gen8_pte_t __iomem *gtt_base =
2412 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2413 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2414 	int i;
2415 
2416 	if (WARN(num_entries > max_entries,
2417 		 "First entry = %d; Num entries = %d (max=%d)\n",
2418 		 first_entry, num_entries, max_entries))
2419 		num_entries = max_entries;
2420 
2421 	for (i = 0; i < num_entries; i++)
2422 		gen8_set_pte(&gtt_base[i], scratch_pte);
2423 }
2424 
2425 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2426 {
2427 	struct drm_i915_private *dev_priv = vm->i915;
2428 
2429 	/*
2430 	 * Make sure the internal GAM fifo has been cleared of all GTT
2431 	 * writes before exiting stop_machine(). This guarantees that
2432 	 * any aperture accesses waiting to start in another process
2433 	 * cannot back up behind the GTT writes causing a hang.
2434 	 * The register can be any arbitrary GAM register.
2435 	 */
2436 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2437 }
2438 
2439 struct insert_page {
2440 	struct i915_address_space *vm;
2441 	dma_addr_t addr;
2442 	u64 offset;
2443 	enum i915_cache_level level;
2444 };
2445 
2446 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2447 {
2448 	struct insert_page *arg = _arg;
2449 
2450 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2451 	bxt_vtd_ggtt_wa(arg->vm);
2452 
2453 	return 0;
2454 }
2455 
2456 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2457 					  dma_addr_t addr,
2458 					  u64 offset,
2459 					  enum i915_cache_level level,
2460 					  u32 unused)
2461 {
2462 	struct insert_page arg = { vm, addr, offset, level };
2463 
2464 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2465 }
2466 
2467 struct insert_entries {
2468 	struct i915_address_space *vm;
2469 	struct i915_vma *vma;
2470 	enum i915_cache_level level;
2471 	u32 flags;
2472 };
2473 
2474 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2475 {
2476 	struct insert_entries *arg = _arg;
2477 
2478 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2479 	bxt_vtd_ggtt_wa(arg->vm);
2480 
2481 	return 0;
2482 }
2483 
2484 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2485 					     struct i915_vma *vma,
2486 					     enum i915_cache_level level,
2487 					     u32 flags)
2488 {
2489 	struct insert_entries arg = { vm, vma, level, flags };
2490 
2491 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2492 }
2493 
2494 struct clear_range {
2495 	struct i915_address_space *vm;
2496 	u64 start;
2497 	u64 length;
2498 };
2499 
2500 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2501 {
2502 	struct clear_range *arg = _arg;
2503 
2504 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2505 	bxt_vtd_ggtt_wa(arg->vm);
2506 
2507 	return 0;
2508 }
2509 
2510 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2511 					  u64 start,
2512 					  u64 length)
2513 {
2514 	struct clear_range arg = { vm, start, length };
2515 
2516 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2517 }
2518 
2519 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2520 				  u64 start, u64 length)
2521 {
2522 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2523 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2524 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2525 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2526 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2527 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2528 	int i;
2529 
2530 	if (WARN(num_entries > max_entries,
2531 		 "First entry = %d; Num entries = %d (max=%d)\n",
2532 		 first_entry, num_entries, max_entries))
2533 		num_entries = max_entries;
2534 
2535 	scratch_pte = vm->scratch_pte;
2536 
2537 	for (i = 0; i < num_entries; i++)
2538 		iowrite32(scratch_pte, &gtt_base[i]);
2539 }
2540 
2541 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2542 				  dma_addr_t addr,
2543 				  u64 offset,
2544 				  enum i915_cache_level cache_level,
2545 				  u32 unused)
2546 {
2547 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2548 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2549 
2550 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2551 }
2552 
2553 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2554 				     struct i915_vma *vma,
2555 				     enum i915_cache_level cache_level,
2556 				     u32 unused)
2557 {
2558 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2559 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2560 
2561 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2562 				    flags);
2563 }
2564 
2565 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2566 				  u64 start, u64 length)
2567 {
2568 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2569 }
2570 
2571 static int ggtt_bind_vma(struct i915_vma *vma,
2572 			 enum i915_cache_level cache_level,
2573 			 u32 flags)
2574 {
2575 	struct drm_i915_private *i915 = vma->vm->i915;
2576 	struct drm_i915_gem_object *obj = vma->obj;
2577 	intel_wakeref_t wakeref;
2578 	u32 pte_flags;
2579 
2580 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2581 	pte_flags = 0;
2582 	if (i915_gem_object_is_readonly(obj))
2583 		pte_flags |= PTE_READ_ONLY;
2584 
2585 	with_intel_runtime_pm(i915, wakeref)
2586 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2587 
2588 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2589 
2590 	/*
2591 	 * Without aliasing PPGTT there's no difference between
2592 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2593 	 * upgrade to both bound if we bind either to avoid double-binding.
2594 	 */
2595 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2596 
2597 	return 0;
2598 }
2599 
2600 static void ggtt_unbind_vma(struct i915_vma *vma)
2601 {
2602 	struct drm_i915_private *i915 = vma->vm->i915;
2603 	intel_wakeref_t wakeref;
2604 
2605 	with_intel_runtime_pm(i915, wakeref)
2606 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2607 }
2608 
2609 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2610 				 enum i915_cache_level cache_level,
2611 				 u32 flags)
2612 {
2613 	struct drm_i915_private *i915 = vma->vm->i915;
2614 	u32 pte_flags;
2615 	int ret;
2616 
2617 	/* Currently applicable only to VLV */
2618 	pte_flags = 0;
2619 	if (i915_gem_object_is_readonly(vma->obj))
2620 		pte_flags |= PTE_READ_ONLY;
2621 
2622 	if (flags & I915_VMA_LOCAL_BIND) {
2623 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2624 
2625 		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2626 			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2627 							   vma->node.start,
2628 							   vma->size);
2629 			if (ret)
2630 				return ret;
2631 		}
2632 
2633 		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2634 					  pte_flags);
2635 	}
2636 
2637 	if (flags & I915_VMA_GLOBAL_BIND) {
2638 		intel_wakeref_t wakeref;
2639 
2640 		with_intel_runtime_pm(i915, wakeref) {
2641 			vma->vm->insert_entries(vma->vm, vma,
2642 						cache_level, pte_flags);
2643 		}
2644 	}
2645 
2646 	return 0;
2647 }
2648 
2649 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2650 {
2651 	struct drm_i915_private *i915 = vma->vm->i915;
2652 
2653 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2654 		struct i915_address_space *vm = vma->vm;
2655 		intel_wakeref_t wakeref;
2656 
2657 		with_intel_runtime_pm(i915, wakeref)
2658 			vm->clear_range(vm, vma->node.start, vma->size);
2659 	}
2660 
2661 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2662 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2663 
2664 		vm->clear_range(vm, vma->node.start, vma->size);
2665 	}
2666 }
2667 
2668 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2669 			       struct sg_table *pages)
2670 {
2671 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2672 	struct device *kdev = &dev_priv->drm.pdev->dev;
2673 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2674 
2675 	if (unlikely(ggtt->do_idle_maps)) {
2676 		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2677 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2678 			/* Wait a bit, in hopes it avoids the hang */
2679 			udelay(10);
2680 		}
2681 	}
2682 
2683 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2684 }
2685 
2686 static int ggtt_set_pages(struct i915_vma *vma)
2687 {
2688 	int ret;
2689 
2690 	GEM_BUG_ON(vma->pages);
2691 
2692 	ret = i915_get_ggtt_vma_pages(vma);
2693 	if (ret)
2694 		return ret;
2695 
2696 	vma->page_sizes = vma->obj->mm.page_sizes;
2697 
2698 	return 0;
2699 }
2700 
2701 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2702 				  unsigned long color,
2703 				  u64 *start,
2704 				  u64 *end)
2705 {
2706 	if (node->allocated && node->color != color)
2707 		*start += I915_GTT_PAGE_SIZE;
2708 
2709 	/* Also leave a space between the unallocated reserved node after the
2710 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2711 	 * to insert a guard page to prevent prefetches crossing over the
2712 	 * GTT boundary.
2713 	 */
2714 	node = list_next_entry(node, node_list);
2715 	if (node->color != color)
2716 		*end -= I915_GTT_PAGE_SIZE;
2717 }
2718 
2719 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2720 {
2721 	struct i915_ggtt *ggtt = &i915->ggtt;
2722 	struct i915_hw_ppgtt *ppgtt;
2723 	int err;
2724 
2725 	ppgtt = i915_ppgtt_create(i915);
2726 	if (IS_ERR(ppgtt))
2727 		return PTR_ERR(ppgtt);
2728 
2729 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2730 		err = -ENODEV;
2731 		goto err_ppgtt;
2732 	}
2733 
2734 	/*
2735 	 * Note we only pre-allocate as far as the end of the global
2736 	 * GTT. On 48b / 4-level page-tables, the difference is very,
2737 	 * very significant! We have to preallocate as GVT/vgpu does
2738 	 * not like the page directory disappearing.
2739 	 */
2740 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2741 	if (err)
2742 		goto err_ppgtt;
2743 
2744 	i915->mm.aliasing_ppgtt = ppgtt;
2745 
2746 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2747 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2748 
2749 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2750 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2751 
2752 	return 0;
2753 
2754 err_ppgtt:
2755 	i915_ppgtt_put(ppgtt);
2756 	return err;
2757 }
2758 
2759 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2760 {
2761 	struct i915_ggtt *ggtt = &i915->ggtt;
2762 	struct i915_hw_ppgtt *ppgtt;
2763 
2764 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2765 	if (!ppgtt)
2766 		return;
2767 
2768 	i915_ppgtt_put(ppgtt);
2769 
2770 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2771 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2772 }
2773 
2774 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2775 {
2776 	/* Let GEM Manage all of the aperture.
2777 	 *
2778 	 * However, leave one page at the end still bound to the scratch page.
2779 	 * There are a number of places where the hardware apparently prefetches
2780 	 * past the end of the object, and we've seen multiple hangs with the
2781 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2782 	 * aperture.  One page should be enough to keep any prefetching inside
2783 	 * of the aperture.
2784 	 */
2785 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2786 	unsigned long hole_start, hole_end;
2787 	struct drm_mm_node *entry;
2788 	int ret;
2789 
2790 	/*
2791 	 * GuC requires all resources that we're sharing with it to be placed in
2792 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
2793 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2794 	 * why.
2795 	 */
2796 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2797 			       intel_guc_reserved_gtt_size(&dev_priv->guc));
2798 
2799 	ret = intel_vgt_balloon(dev_priv);
2800 	if (ret)
2801 		return ret;
2802 
2803 	/* Reserve a mappable slot for our lockless error capture */
2804 	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2805 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2806 					  0, ggtt->mappable_end,
2807 					  DRM_MM_INSERT_LOW);
2808 	if (ret)
2809 		return ret;
2810 
2811 	if (USES_GUC(dev_priv)) {
2812 		ret = intel_guc_reserve_ggtt_top(&dev_priv->guc);
2813 		if (ret)
2814 			goto err_reserve;
2815 	}
2816 
2817 	/* Clear any non-preallocated blocks */
2818 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2819 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2820 			      hole_start, hole_end);
2821 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
2822 				     hole_end - hole_start);
2823 	}
2824 
2825 	/* And finally clear the reserved guard page */
2826 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2827 
2828 	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2829 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2830 		if (ret)
2831 			goto err_appgtt;
2832 	}
2833 
2834 	return 0;
2835 
2836 err_appgtt:
2837 	intel_guc_release_ggtt_top(&dev_priv->guc);
2838 err_reserve:
2839 	drm_mm_remove_node(&ggtt->error_capture);
2840 	return ret;
2841 }
2842 
2843 /**
2844  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2845  * @dev_priv: i915 device
2846  */
2847 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2848 {
2849 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2850 	struct i915_vma *vma, *vn;
2851 	struct pagevec *pvec;
2852 
2853 	ggtt->vm.closed = true;
2854 
2855 	mutex_lock(&dev_priv->drm.struct_mutex);
2856 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2857 
2858 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2859 		WARN_ON(i915_vma_unbind(vma));
2860 
2861 	if (drm_mm_node_allocated(&ggtt->error_capture))
2862 		drm_mm_remove_node(&ggtt->error_capture);
2863 
2864 	intel_guc_release_ggtt_top(&dev_priv->guc);
2865 
2866 	if (drm_mm_initialized(&ggtt->vm.mm)) {
2867 		intel_vgt_deballoon(dev_priv);
2868 		i915_address_space_fini(&ggtt->vm);
2869 	}
2870 
2871 	ggtt->vm.cleanup(&ggtt->vm);
2872 
2873 	pvec = &dev_priv->mm.wc_stash.pvec;
2874 	if (pvec->nr) {
2875 		set_pages_array_wb(pvec->pages, pvec->nr);
2876 		__pagevec_release(pvec);
2877 	}
2878 
2879 	mutex_unlock(&dev_priv->drm.struct_mutex);
2880 
2881 	arch_phys_wc_del(ggtt->mtrr);
2882 	io_mapping_fini(&ggtt->iomap);
2883 
2884 	i915_gem_cleanup_stolen(dev_priv);
2885 }
2886 
2887 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2888 {
2889 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2890 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2891 	return snb_gmch_ctl << 20;
2892 }
2893 
2894 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2895 {
2896 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2897 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2898 	if (bdw_gmch_ctl)
2899 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2900 
2901 #ifdef CONFIG_X86_32
2902 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2903 	if (bdw_gmch_ctl > 4)
2904 		bdw_gmch_ctl = 4;
2905 #endif
2906 
2907 	return bdw_gmch_ctl << 20;
2908 }
2909 
2910 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2911 {
2912 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2913 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2914 
2915 	if (gmch_ctrl)
2916 		return 1 << (20 + gmch_ctrl);
2917 
2918 	return 0;
2919 }
2920 
2921 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2922 {
2923 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2924 	struct pci_dev *pdev = dev_priv->drm.pdev;
2925 	phys_addr_t phys_addr;
2926 	int ret;
2927 
2928 	/* For Modern GENs the PTEs and register space are split in the BAR */
2929 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2930 
2931 	/*
2932 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2933 	 * will be dropped. For WC mappings in general we have 64 byte burst
2934 	 * writes when the WC buffer is flushed, so we can't use it, but have to
2935 	 * resort to an uncached mapping. The WC issue is easily caught by the
2936 	 * readback check when writing GTT PTE entries.
2937 	 */
2938 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2939 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2940 	else
2941 		ggtt->gsm = ioremap_wc(phys_addr, size);
2942 	if (!ggtt->gsm) {
2943 		DRM_ERROR("Failed to map the ggtt page table\n");
2944 		return -ENOMEM;
2945 	}
2946 
2947 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2948 	if (ret) {
2949 		DRM_ERROR("Scratch setup failed\n");
2950 		/* iounmap will also get called at remove, but meh */
2951 		iounmap(ggtt->gsm);
2952 		return ret;
2953 	}
2954 
2955 	ggtt->vm.scratch_pte =
2956 		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
2957 				    I915_CACHE_NONE, 0);
2958 
2959 	return 0;
2960 }
2961 
2962 static struct intel_ppat_entry *
2963 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
2964 {
2965 	struct intel_ppat_entry *entry = &ppat->entries[index];
2966 
2967 	GEM_BUG_ON(index >= ppat->max_entries);
2968 	GEM_BUG_ON(test_bit(index, ppat->used));
2969 
2970 	entry->ppat = ppat;
2971 	entry->value = value;
2972 	kref_init(&entry->ref);
2973 	set_bit(index, ppat->used);
2974 	set_bit(index, ppat->dirty);
2975 
2976 	return entry;
2977 }
2978 
2979 static void __free_ppat_entry(struct intel_ppat_entry *entry)
2980 {
2981 	struct intel_ppat *ppat = entry->ppat;
2982 	unsigned int index = entry - ppat->entries;
2983 
2984 	GEM_BUG_ON(index >= ppat->max_entries);
2985 	GEM_BUG_ON(!test_bit(index, ppat->used));
2986 
2987 	entry->value = ppat->clear_value;
2988 	clear_bit(index, ppat->used);
2989 	set_bit(index, ppat->dirty);
2990 }
2991 
2992 /**
2993  * intel_ppat_get - get a usable PPAT entry
2994  * @i915: i915 device instance
2995  * @value: the PPAT value required by the caller
2996  *
2997  * The function tries to search if there is an existing PPAT entry which
2998  * matches with the required value. If perfectly matched, the existing PPAT
2999  * entry will be used. If only partially matched, it will try to check if
3000  * there is any available PPAT index. If yes, it will allocate a new PPAT
3001  * index for the required entry and update the HW. If not, the partially
3002  * matched entry will be used.
3003  */
3004 const struct intel_ppat_entry *
3005 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3006 {
3007 	struct intel_ppat *ppat = &i915->ppat;
3008 	struct intel_ppat_entry *entry = NULL;
3009 	unsigned int scanned, best_score;
3010 	int i;
3011 
3012 	GEM_BUG_ON(!ppat->max_entries);
3013 
3014 	scanned = best_score = 0;
3015 	for_each_set_bit(i, ppat->used, ppat->max_entries) {
3016 		unsigned int score;
3017 
3018 		score = ppat->match(ppat->entries[i].value, value);
3019 		if (score > best_score) {
3020 			entry = &ppat->entries[i];
3021 			if (score == INTEL_PPAT_PERFECT_MATCH) {
3022 				kref_get(&entry->ref);
3023 				return entry;
3024 			}
3025 			best_score = score;
3026 		}
3027 		scanned++;
3028 	}
3029 
3030 	if (scanned == ppat->max_entries) {
3031 		if (!entry)
3032 			return ERR_PTR(-ENOSPC);
3033 
3034 		kref_get(&entry->ref);
3035 		return entry;
3036 	}
3037 
3038 	i = find_first_zero_bit(ppat->used, ppat->max_entries);
3039 	entry = __alloc_ppat_entry(ppat, i, value);
3040 	ppat->update_hw(i915);
3041 	return entry;
3042 }
3043 
3044 static void release_ppat(struct kref *kref)
3045 {
3046 	struct intel_ppat_entry *entry =
3047 		container_of(kref, struct intel_ppat_entry, ref);
3048 	struct drm_i915_private *i915 = entry->ppat->i915;
3049 
3050 	__free_ppat_entry(entry);
3051 	entry->ppat->update_hw(i915);
3052 }
3053 
3054 /**
3055  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3056  * @entry: an intel PPAT entry
3057  *
3058  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3059  * entry is dynamically allocated, its reference count will be decreased. Once
3060  * the reference count becomes into zero, the PPAT index becomes free again.
3061  */
3062 void intel_ppat_put(const struct intel_ppat_entry *entry)
3063 {
3064 	struct intel_ppat *ppat = entry->ppat;
3065 	unsigned int index = entry - ppat->entries;
3066 
3067 	GEM_BUG_ON(!ppat->max_entries);
3068 
3069 	kref_put(&ppat->entries[index].ref, release_ppat);
3070 }
3071 
3072 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3073 {
3074 	struct intel_ppat *ppat = &dev_priv->ppat;
3075 	int i;
3076 
3077 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3078 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3079 		clear_bit(i, ppat->dirty);
3080 	}
3081 }
3082 
3083 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3084 {
3085 	struct intel_ppat *ppat = &dev_priv->ppat;
3086 	u64 pat = 0;
3087 	int i;
3088 
3089 	for (i = 0; i < ppat->max_entries; i++)
3090 		pat |= GEN8_PPAT(i, ppat->entries[i].value);
3091 
3092 	bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3093 
3094 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3095 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3096 }
3097 
3098 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3099 {
3100 	unsigned int score = 0;
3101 	enum {
3102 		AGE_MATCH = BIT(0),
3103 		TC_MATCH = BIT(1),
3104 		CA_MATCH = BIT(2),
3105 	};
3106 
3107 	/* Cache attribute has to be matched. */
3108 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3109 		return 0;
3110 
3111 	score |= CA_MATCH;
3112 
3113 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3114 		score |= TC_MATCH;
3115 
3116 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3117 		score |= AGE_MATCH;
3118 
3119 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3120 		return INTEL_PPAT_PERFECT_MATCH;
3121 
3122 	return score;
3123 }
3124 
3125 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3126 {
3127 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3128 		INTEL_PPAT_PERFECT_MATCH : 0;
3129 }
3130 
3131 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3132 {
3133 	ppat->max_entries = 8;
3134 	ppat->update_hw = cnl_private_pat_update_hw;
3135 	ppat->match = bdw_private_pat_match;
3136 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3137 
3138 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3139 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3140 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3141 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3142 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3143 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3144 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3145 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3146 }
3147 
3148 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3149  * bits. When using advanced contexts each context stores its own PAT, but
3150  * writing this data shouldn't be harmful even in those cases. */
3151 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3152 {
3153 	ppat->max_entries = 8;
3154 	ppat->update_hw = bdw_private_pat_update_hw;
3155 	ppat->match = bdw_private_pat_match;
3156 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3157 
3158 	if (!HAS_PPGTT(ppat->i915)) {
3159 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3160 		 * so RTL will always use the value corresponding to
3161 		 * pat_sel = 000".
3162 		 * So let's disable cache for GGTT to avoid screen corruptions.
3163 		 * MOCS still can be used though.
3164 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3165 		 * before this patch, i.e. the same uncached + snooping access
3166 		 * like on gen6/7 seems to be in effect.
3167 		 * - So this just fixes blitter/render access. Again it looks
3168 		 * like it's not just uncached access, but uncached + snooping.
3169 		 * So we can still hold onto all our assumptions wrt cpu
3170 		 * clflushing on LLC machines.
3171 		 */
3172 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3173 		return;
3174 	}
3175 
3176 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3177 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3178 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3179 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3180 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3181 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3182 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3183 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3184 }
3185 
3186 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3187 {
3188 	ppat->max_entries = 8;
3189 	ppat->update_hw = bdw_private_pat_update_hw;
3190 	ppat->match = chv_private_pat_match;
3191 	ppat->clear_value = CHV_PPAT_SNOOP;
3192 
3193 	/*
3194 	 * Map WB on BDW to snooped on CHV.
3195 	 *
3196 	 * Only the snoop bit has meaning for CHV, the rest is
3197 	 * ignored.
3198 	 *
3199 	 * The hardware will never snoop for certain types of accesses:
3200 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3201 	 * - PPGTT page tables
3202 	 * - some other special cycles
3203 	 *
3204 	 * As with BDW, we also need to consider the following for GT accesses:
3205 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3206 	 * so RTL will always use the value corresponding to
3207 	 * pat_sel = 000".
3208 	 * Which means we must set the snoop bit in PAT entry 0
3209 	 * in order to keep the global status page working.
3210 	 */
3211 
3212 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3213 	__alloc_ppat_entry(ppat, 1, 0);
3214 	__alloc_ppat_entry(ppat, 2, 0);
3215 	__alloc_ppat_entry(ppat, 3, 0);
3216 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3217 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3218 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3219 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3220 }
3221 
3222 static void gen6_gmch_remove(struct i915_address_space *vm)
3223 {
3224 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3225 
3226 	iounmap(ggtt->gsm);
3227 	cleanup_scratch_page(vm);
3228 }
3229 
3230 static void setup_private_pat(struct drm_i915_private *dev_priv)
3231 {
3232 	struct intel_ppat *ppat = &dev_priv->ppat;
3233 	int i;
3234 
3235 	ppat->i915 = dev_priv;
3236 
3237 	if (INTEL_GEN(dev_priv) >= 10)
3238 		cnl_setup_private_ppat(ppat);
3239 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3240 		chv_setup_private_ppat(ppat);
3241 	else
3242 		bdw_setup_private_ppat(ppat);
3243 
3244 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3245 
3246 	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3247 		ppat->entries[i].value = ppat->clear_value;
3248 		ppat->entries[i].ppat = ppat;
3249 		set_bit(i, ppat->dirty);
3250 	}
3251 
3252 	ppat->update_hw(dev_priv);
3253 }
3254 
3255 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3256 {
3257 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3258 	struct pci_dev *pdev = dev_priv->drm.pdev;
3259 	unsigned int size;
3260 	u16 snb_gmch_ctl;
3261 	int err;
3262 
3263 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3264 	ggtt->gmadr =
3265 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3266 						 pci_resource_len(pdev, 2));
3267 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3268 
3269 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3270 	if (!err)
3271 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3272 	if (err)
3273 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3274 
3275 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3276 	if (IS_CHERRYVIEW(dev_priv))
3277 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3278 	else
3279 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3280 
3281 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3282 	ggtt->vm.cleanup = gen6_gmch_remove;
3283 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
3284 	ggtt->vm.clear_range = nop_clear_range;
3285 	if (intel_scanout_needs_vtd_wa(dev_priv))
3286 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3287 
3288 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3289 
3290 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3291 	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
3292 	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3293 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3294 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3295 		if (ggtt->vm.clear_range != nop_clear_range)
3296 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3297 
3298 		/* Prevent recursively calling stop_machine() and deadlocks. */
3299 		dev_info(dev_priv->drm.dev,
3300 			 "Disabling error capture for VT-d workaround\n");
3301 		i915_disable_error_state(dev_priv, -ENODEV);
3302 	}
3303 
3304 	ggtt->invalidate = gen6_ggtt_invalidate;
3305 
3306 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3307 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3308 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3309 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3310 
3311 	ggtt->vm.pte_encode = gen8_pte_encode;
3312 
3313 	setup_private_pat(dev_priv);
3314 
3315 	return ggtt_probe_common(ggtt, size);
3316 }
3317 
3318 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3319 {
3320 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3321 	struct pci_dev *pdev = dev_priv->drm.pdev;
3322 	unsigned int size;
3323 	u16 snb_gmch_ctl;
3324 	int err;
3325 
3326 	ggtt->gmadr =
3327 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3328 						 pci_resource_len(pdev, 2));
3329 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3330 
3331 	/* 64/512MB is the current min/max we actually know of, but this is just
3332 	 * a coarse sanity check.
3333 	 */
3334 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3335 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3336 		return -ENXIO;
3337 	}
3338 
3339 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3340 	if (!err)
3341 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3342 	if (err)
3343 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3344 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3345 
3346 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3347 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3348 
3349 	ggtt->vm.clear_range = nop_clear_range;
3350 	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3351 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3352 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
3353 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3354 	ggtt->vm.cleanup = gen6_gmch_remove;
3355 
3356 	ggtt->invalidate = gen6_ggtt_invalidate;
3357 
3358 	if (HAS_EDRAM(dev_priv))
3359 		ggtt->vm.pte_encode = iris_pte_encode;
3360 	else if (IS_HASWELL(dev_priv))
3361 		ggtt->vm.pte_encode = hsw_pte_encode;
3362 	else if (IS_VALLEYVIEW(dev_priv))
3363 		ggtt->vm.pte_encode = byt_pte_encode;
3364 	else if (INTEL_GEN(dev_priv) >= 7)
3365 		ggtt->vm.pte_encode = ivb_pte_encode;
3366 	else
3367 		ggtt->vm.pte_encode = snb_pte_encode;
3368 
3369 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3370 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3371 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3372 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3373 
3374 	return ggtt_probe_common(ggtt, size);
3375 }
3376 
3377 static void i915_gmch_remove(struct i915_address_space *vm)
3378 {
3379 	intel_gmch_remove();
3380 }
3381 
3382 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3383 {
3384 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3385 	phys_addr_t gmadr_base;
3386 	int ret;
3387 
3388 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3389 	if (!ret) {
3390 		DRM_ERROR("failed to set up gmch\n");
3391 		return -EIO;
3392 	}
3393 
3394 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3395 
3396 	ggtt->gmadr =
3397 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3398 						 ggtt->mappable_end);
3399 
3400 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3401 	ggtt->vm.insert_page = i915_ggtt_insert_page;
3402 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3403 	ggtt->vm.clear_range = i915_ggtt_clear_range;
3404 	ggtt->vm.cleanup = i915_gmch_remove;
3405 
3406 	ggtt->invalidate = gmch_ggtt_invalidate;
3407 
3408 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3409 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3410 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3411 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3412 
3413 	if (unlikely(ggtt->do_idle_maps))
3414 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3415 
3416 	return 0;
3417 }
3418 
3419 /**
3420  * i915_ggtt_probe_hw - Probe GGTT hardware location
3421  * @dev_priv: i915 device
3422  */
3423 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3424 {
3425 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3426 	int ret;
3427 
3428 	ggtt->vm.i915 = dev_priv;
3429 	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3430 
3431 	if (INTEL_GEN(dev_priv) <= 5)
3432 		ret = i915_gmch_probe(ggtt);
3433 	else if (INTEL_GEN(dev_priv) < 8)
3434 		ret = gen6_gmch_probe(ggtt);
3435 	else
3436 		ret = gen8_gmch_probe(ggtt);
3437 	if (ret)
3438 		return ret;
3439 
3440 	if ((ggtt->vm.total - 1) >> 32) {
3441 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3442 			  " of address space! Found %lldM!\n",
3443 			  ggtt->vm.total >> 20);
3444 		ggtt->vm.total = 1ULL << 32;
3445 		ggtt->mappable_end =
3446 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3447 	}
3448 
3449 	if (ggtt->mappable_end > ggtt->vm.total) {
3450 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3451 			  " aperture=%pa, total=%llx\n",
3452 			  &ggtt->mappable_end, ggtt->vm.total);
3453 		ggtt->mappable_end = ggtt->vm.total;
3454 	}
3455 
3456 	/* GMADR is the PCI mmio aperture into the global GTT. */
3457 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3458 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3459 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3460 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3461 	if (intel_vtd_active())
3462 		DRM_INFO("VT-d active for gfx access\n");
3463 
3464 	return 0;
3465 }
3466 
3467 /**
3468  * i915_ggtt_init_hw - Initialize GGTT hardware
3469  * @dev_priv: i915 device
3470  */
3471 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3472 {
3473 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3474 	int ret;
3475 
3476 	stash_init(&dev_priv->mm.wc_stash);
3477 
3478 	/* Note that we use page colouring to enforce a guard page at the
3479 	 * end of the address space. This is required as the CS may prefetch
3480 	 * beyond the end of the batch buffer, across the page boundary,
3481 	 * and beyond the end of the GTT if we do not provide a guard.
3482 	 */
3483 	mutex_lock(&dev_priv->drm.struct_mutex);
3484 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3485 
3486 	ggtt->vm.is_ggtt = true;
3487 
3488 	/* Only VLV supports read-only GGTT mappings */
3489 	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
3490 
3491 	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3492 		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3493 	mutex_unlock(&dev_priv->drm.struct_mutex);
3494 
3495 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3496 				dev_priv->ggtt.gmadr.start,
3497 				dev_priv->ggtt.mappable_end)) {
3498 		ret = -EIO;
3499 		goto out_gtt_cleanup;
3500 	}
3501 
3502 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3503 
3504 	/*
3505 	 * Initialise stolen early so that we may reserve preallocated
3506 	 * objects for the BIOS to KMS transition.
3507 	 */
3508 	ret = i915_gem_init_stolen(dev_priv);
3509 	if (ret)
3510 		goto out_gtt_cleanup;
3511 
3512 	return 0;
3513 
3514 out_gtt_cleanup:
3515 	ggtt->vm.cleanup(&ggtt->vm);
3516 	return ret;
3517 }
3518 
3519 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3520 {
3521 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3522 		return -EIO;
3523 
3524 	return 0;
3525 }
3526 
3527 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3528 {
3529 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3530 
3531 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3532 
3533 	i915_ggtt_invalidate(i915);
3534 }
3535 
3536 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3537 {
3538 	/* XXX Temporary pardon for error unload */
3539 	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
3540 		return;
3541 
3542 	/* We should only be called after i915_ggtt_enable_guc() */
3543 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3544 
3545 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3546 
3547 	i915_ggtt_invalidate(i915);
3548 }
3549 
3550 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3551 {
3552 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3553 	struct i915_vma *vma, *vn;
3554 
3555 	i915_check_and_clear_faults(dev_priv);
3556 
3557 	mutex_lock(&ggtt->vm.mutex);
3558 
3559 	/* First fill our portion of the GTT with scratch pages */
3560 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3561 	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3562 
3563 	/* clflush objects bound into the GGTT and rebind them. */
3564 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3565 		struct drm_i915_gem_object *obj = vma->obj;
3566 
3567 		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3568 			continue;
3569 
3570 		mutex_unlock(&ggtt->vm.mutex);
3571 
3572 		if (!i915_vma_unbind(vma))
3573 			goto lock;
3574 
3575 		WARN_ON(i915_vma_bind(vma,
3576 				      obj ? obj->cache_level : 0,
3577 				      PIN_UPDATE));
3578 		if (obj)
3579 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3580 
3581 lock:
3582 		mutex_lock(&ggtt->vm.mutex);
3583 	}
3584 
3585 	ggtt->vm.closed = false;
3586 	i915_ggtt_invalidate(dev_priv);
3587 
3588 	mutex_unlock(&ggtt->vm.mutex);
3589 
3590 	if (INTEL_GEN(dev_priv) >= 8) {
3591 		struct intel_ppat *ppat = &dev_priv->ppat;
3592 
3593 		bitmap_set(ppat->dirty, 0, ppat->max_entries);
3594 		dev_priv->ppat.update_hw(dev_priv);
3595 		return;
3596 	}
3597 }
3598 
3599 static struct scatterlist *
3600 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3601 	     unsigned int width, unsigned int height,
3602 	     unsigned int stride,
3603 	     struct sg_table *st, struct scatterlist *sg)
3604 {
3605 	unsigned int column, row;
3606 	unsigned int src_idx;
3607 
3608 	for (column = 0; column < width; column++) {
3609 		src_idx = stride * (height - 1) + column + offset;
3610 		for (row = 0; row < height; row++) {
3611 			st->nents++;
3612 			/* We don't need the pages, but need to initialize
3613 			 * the entries so the sg list can be happily traversed.
3614 			 * The only thing we need are DMA addresses.
3615 			 */
3616 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3617 			sg_dma_address(sg) =
3618 				i915_gem_object_get_dma_address(obj, src_idx);
3619 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3620 			sg = sg_next(sg);
3621 			src_idx -= stride;
3622 		}
3623 	}
3624 
3625 	return sg;
3626 }
3627 
3628 static noinline struct sg_table *
3629 intel_rotate_pages(struct intel_rotation_info *rot_info,
3630 		   struct drm_i915_gem_object *obj)
3631 {
3632 	unsigned int size = intel_rotation_info_size(rot_info);
3633 	struct sg_table *st;
3634 	struct scatterlist *sg;
3635 	int ret = -ENOMEM;
3636 	int i;
3637 
3638 	/* Allocate target SG list. */
3639 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3640 	if (!st)
3641 		goto err_st_alloc;
3642 
3643 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3644 	if (ret)
3645 		goto err_sg_alloc;
3646 
3647 	st->nents = 0;
3648 	sg = st->sgl;
3649 
3650 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3651 		sg = rotate_pages(obj, rot_info->plane[i].offset,
3652 				  rot_info->plane[i].width, rot_info->plane[i].height,
3653 				  rot_info->plane[i].stride, st, sg);
3654 	}
3655 
3656 	return st;
3657 
3658 err_sg_alloc:
3659 	kfree(st);
3660 err_st_alloc:
3661 
3662 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3663 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3664 
3665 	return ERR_PTR(ret);
3666 }
3667 
3668 static struct scatterlist *
3669 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3670 	    unsigned int width, unsigned int height,
3671 	    unsigned int stride,
3672 	    struct sg_table *st, struct scatterlist *sg)
3673 {
3674 	unsigned int row;
3675 
3676 	for (row = 0; row < height; row++) {
3677 		unsigned int left = width * I915_GTT_PAGE_SIZE;
3678 
3679 		while (left) {
3680 			dma_addr_t addr;
3681 			unsigned int length;
3682 
3683 			/* We don't need the pages, but need to initialize
3684 			 * the entries so the sg list can be happily traversed.
3685 			 * The only thing we need are DMA addresses.
3686 			 */
3687 
3688 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
3689 
3690 			length = min(left, length);
3691 
3692 			st->nents++;
3693 
3694 			sg_set_page(sg, NULL, length, 0);
3695 			sg_dma_address(sg) = addr;
3696 			sg_dma_len(sg) = length;
3697 			sg = sg_next(sg);
3698 
3699 			offset += length / I915_GTT_PAGE_SIZE;
3700 			left -= length;
3701 		}
3702 
3703 		offset += stride - width;
3704 	}
3705 
3706 	return sg;
3707 }
3708 
3709 static noinline struct sg_table *
3710 intel_remap_pages(struct intel_remapped_info *rem_info,
3711 		  struct drm_i915_gem_object *obj)
3712 {
3713 	unsigned int size = intel_remapped_info_size(rem_info);
3714 	struct sg_table *st;
3715 	struct scatterlist *sg;
3716 	int ret = -ENOMEM;
3717 	int i;
3718 
3719 	/* Allocate target SG list. */
3720 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3721 	if (!st)
3722 		goto err_st_alloc;
3723 
3724 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3725 	if (ret)
3726 		goto err_sg_alloc;
3727 
3728 	st->nents = 0;
3729 	sg = st->sgl;
3730 
3731 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
3732 		sg = remap_pages(obj, rem_info->plane[i].offset,
3733 				 rem_info->plane[i].width, rem_info->plane[i].height,
3734 				 rem_info->plane[i].stride, st, sg);
3735 	}
3736 
3737 	i915_sg_trim(st);
3738 
3739 	return st;
3740 
3741 err_sg_alloc:
3742 	kfree(st);
3743 err_st_alloc:
3744 
3745 	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3746 			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
3747 
3748 	return ERR_PTR(ret);
3749 }
3750 
3751 static noinline struct sg_table *
3752 intel_partial_pages(const struct i915_ggtt_view *view,
3753 		    struct drm_i915_gem_object *obj)
3754 {
3755 	struct sg_table *st;
3756 	struct scatterlist *sg, *iter;
3757 	unsigned int count = view->partial.size;
3758 	unsigned int offset;
3759 	int ret = -ENOMEM;
3760 
3761 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3762 	if (!st)
3763 		goto err_st_alloc;
3764 
3765 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3766 	if (ret)
3767 		goto err_sg_alloc;
3768 
3769 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3770 	GEM_BUG_ON(!iter);
3771 
3772 	sg = st->sgl;
3773 	st->nents = 0;
3774 	do {
3775 		unsigned int len;
3776 
3777 		len = min(iter->length - (offset << PAGE_SHIFT),
3778 			  count << PAGE_SHIFT);
3779 		sg_set_page(sg, NULL, len, 0);
3780 		sg_dma_address(sg) =
3781 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3782 		sg_dma_len(sg) = len;
3783 
3784 		st->nents++;
3785 		count -= len >> PAGE_SHIFT;
3786 		if (count == 0) {
3787 			sg_mark_end(sg);
3788 			i915_sg_trim(st); /* Drop any unused tail entries. */
3789 
3790 			return st;
3791 		}
3792 
3793 		sg = __sg_next(sg);
3794 		iter = __sg_next(iter);
3795 		offset = 0;
3796 	} while (1);
3797 
3798 err_sg_alloc:
3799 	kfree(st);
3800 err_st_alloc:
3801 	return ERR_PTR(ret);
3802 }
3803 
3804 static int
3805 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3806 {
3807 	int ret;
3808 
3809 	/* The vma->pages are only valid within the lifespan of the borrowed
3810 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3811 	 * must be the vma->pages. A simple rule is that vma->pages must only
3812 	 * be accessed when the obj->mm.pages are pinned.
3813 	 */
3814 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3815 
3816 	switch (vma->ggtt_view.type) {
3817 	default:
3818 		GEM_BUG_ON(vma->ggtt_view.type);
3819 		/* fall through */
3820 	case I915_GGTT_VIEW_NORMAL:
3821 		vma->pages = vma->obj->mm.pages;
3822 		return 0;
3823 
3824 	case I915_GGTT_VIEW_ROTATED:
3825 		vma->pages =
3826 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3827 		break;
3828 
3829 	case I915_GGTT_VIEW_REMAPPED:
3830 		vma->pages =
3831 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
3832 		break;
3833 
3834 	case I915_GGTT_VIEW_PARTIAL:
3835 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3836 		break;
3837 	}
3838 
3839 	ret = 0;
3840 	if (IS_ERR(vma->pages)) {
3841 		ret = PTR_ERR(vma->pages);
3842 		vma->pages = NULL;
3843 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3844 			  vma->ggtt_view.type, ret);
3845 	}
3846 	return ret;
3847 }
3848 
3849 /**
3850  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3851  * @vm: the &struct i915_address_space
3852  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3853  * @size: how much space to allocate inside the GTT,
3854  *        must be #I915_GTT_PAGE_SIZE aligned
3855  * @offset: where to insert inside the GTT,
3856  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3857  *          (@offset + @size) must fit within the address space
3858  * @color: color to apply to node, if this node is not from a VMA,
3859  *         color must be #I915_COLOR_UNEVICTABLE
3860  * @flags: control search and eviction behaviour
3861  *
3862  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3863  * the address space (using @size and @color). If the @node does not fit, it
3864  * tries to evict any overlapping nodes from the GTT, including any
3865  * neighbouring nodes if the colors do not match (to ensure guard pages between
3866  * differing domains). See i915_gem_evict_for_node() for the gory details
3867  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3868  * evicting active overlapping objects, and any overlapping node that is pinned
3869  * or marked as unevictable will also result in failure.
3870  *
3871  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3872  * asked to wait for eviction and interrupted.
3873  */
3874 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3875 			 struct drm_mm_node *node,
3876 			 u64 size, u64 offset, unsigned long color,
3877 			 unsigned int flags)
3878 {
3879 	int err;
3880 
3881 	GEM_BUG_ON(!size);
3882 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3883 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3884 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3885 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3886 	GEM_BUG_ON(drm_mm_node_allocated(node));
3887 
3888 	node->size = size;
3889 	node->start = offset;
3890 	node->color = color;
3891 
3892 	err = drm_mm_reserve_node(&vm->mm, node);
3893 	if (err != -ENOSPC)
3894 		return err;
3895 
3896 	if (flags & PIN_NOEVICT)
3897 		return -ENOSPC;
3898 
3899 	err = i915_gem_evict_for_node(vm, node, flags);
3900 	if (err == 0)
3901 		err = drm_mm_reserve_node(&vm->mm, node);
3902 
3903 	return err;
3904 }
3905 
3906 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3907 {
3908 	u64 range, addr;
3909 
3910 	GEM_BUG_ON(range_overflows(start, len, end));
3911 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3912 
3913 	range = round_down(end - len, align) - round_up(start, align);
3914 	if (range) {
3915 		if (sizeof(unsigned long) == sizeof(u64)) {
3916 			addr = get_random_long();
3917 		} else {
3918 			addr = get_random_int();
3919 			if (range > U32_MAX) {
3920 				addr <<= 32;
3921 				addr |= get_random_int();
3922 			}
3923 		}
3924 		div64_u64_rem(addr, range, &addr);
3925 		start += addr;
3926 	}
3927 
3928 	return round_up(start, align);
3929 }
3930 
3931 /**
3932  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3933  * @vm: the &struct i915_address_space
3934  * @node: the &struct drm_mm_node (typically i915_vma.node)
3935  * @size: how much space to allocate inside the GTT,
3936  *        must be #I915_GTT_PAGE_SIZE aligned
3937  * @alignment: required alignment of starting offset, may be 0 but
3938  *             if specified, this must be a power-of-two and at least
3939  *             #I915_GTT_MIN_ALIGNMENT
3940  * @color: color to apply to node
3941  * @start: start of any range restriction inside GTT (0 for all),
3942  *         must be #I915_GTT_PAGE_SIZE aligned
3943  * @end: end of any range restriction inside GTT (U64_MAX for all),
3944  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3945  * @flags: control search and eviction behaviour
3946  *
3947  * i915_gem_gtt_insert() first searches for an available hole into which
3948  * is can insert the node. The hole address is aligned to @alignment and
3949  * its @size must then fit entirely within the [@start, @end] bounds. The
3950  * nodes on either side of the hole must match @color, or else a guard page
3951  * will be inserted between the two nodes (or the node evicted). If no
3952  * suitable hole is found, first a victim is randomly selected and tested
3953  * for eviction, otherwise then the LRU list of objects within the GTT
3954  * is scanned to find the first set of replacement nodes to create the hole.
3955  * Those old overlapping nodes are evicted from the GTT (and so must be
3956  * rebound before any future use). Any node that is currently pinned cannot
3957  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3958  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3959  * searching for an eviction candidate. See i915_gem_evict_something() for
3960  * the gory details on the eviction algorithm.
3961  *
3962  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3963  * asked to wait for eviction and interrupted.
3964  */
3965 int i915_gem_gtt_insert(struct i915_address_space *vm,
3966 			struct drm_mm_node *node,
3967 			u64 size, u64 alignment, unsigned long color,
3968 			u64 start, u64 end, unsigned int flags)
3969 {
3970 	enum drm_mm_insert_mode mode;
3971 	u64 offset;
3972 	int err;
3973 
3974 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3975 	GEM_BUG_ON(!size);
3976 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3977 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3978 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3979 	GEM_BUG_ON(start >= end);
3980 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3981 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3982 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3983 	GEM_BUG_ON(drm_mm_node_allocated(node));
3984 
3985 	if (unlikely(range_overflows(start, size, end)))
3986 		return -ENOSPC;
3987 
3988 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3989 		return -ENOSPC;
3990 
3991 	mode = DRM_MM_INSERT_BEST;
3992 	if (flags & PIN_HIGH)
3993 		mode = DRM_MM_INSERT_HIGHEST;
3994 	if (flags & PIN_MAPPABLE)
3995 		mode = DRM_MM_INSERT_LOW;
3996 
3997 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3998 	 * so we know that we always have a minimum alignment of 4096.
3999 	 * The drm_mm range manager is optimised to return results
4000 	 * with zero alignment, so where possible use the optimal
4001 	 * path.
4002 	 */
4003 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
4004 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
4005 		alignment = 0;
4006 
4007 	err = drm_mm_insert_node_in_range(&vm->mm, node,
4008 					  size, alignment, color,
4009 					  start, end, mode);
4010 	if (err != -ENOSPC)
4011 		return err;
4012 
4013 	if (mode & DRM_MM_INSERT_ONCE) {
4014 		err = drm_mm_insert_node_in_range(&vm->mm, node,
4015 						  size, alignment, color,
4016 						  start, end,
4017 						  DRM_MM_INSERT_BEST);
4018 		if (err != -ENOSPC)
4019 			return err;
4020 	}
4021 
4022 	if (flags & PIN_NOEVICT)
4023 		return -ENOSPC;
4024 
4025 	/* No free space, pick a slot at random.
4026 	 *
4027 	 * There is a pathological case here using a GTT shared between
4028 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4029 	 *
4030 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4031 	 *         (64k objects)             (448k objects)
4032 	 *
4033 	 * Now imagine that the eviction LRU is ordered top-down (just because
4034 	 * pathology meets real life), and that we need to evict an object to
4035 	 * make room inside the aperture. The eviction scan then has to walk
4036 	 * the 448k list before it finds one within range. And now imagine that
4037 	 * it has to search for a new hole between every byte inside the memcpy,
4038 	 * for several simultaneous clients.
4039 	 *
4040 	 * On a full-ppgtt system, if we have run out of available space, there
4041 	 * will be lots and lots of objects in the eviction list! Again,
4042 	 * searching that LRU list may be slow if we are also applying any
4043 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
4044 	 * simplicity and similarilty between different GTT, try the single
4045 	 * random replacement first.
4046 	 */
4047 	offset = random_offset(start, end,
4048 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4049 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4050 	if (err != -ENOSPC)
4051 		return err;
4052 
4053 	/* Randomly selected placement is pinned, do a search */
4054 	err = i915_gem_evict_something(vm, size, alignment, color,
4055 				       start, end, flags);
4056 	if (err)
4057 		return err;
4058 
4059 	return drm_mm_insert_node_in_range(&vm->mm, node,
4060 					   size, alignment, color,
4061 					   start, end, DRM_MM_INSERT_EVICT);
4062 }
4063 
4064 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4065 #include "selftests/mock_gtt.c"
4066 #include "selftests/i915_gem_gtt.c"
4067 #endif
4068