1 /* 2 * Copyright © 2010 Daniel Vetter 3 * Copyright © 2011-2014 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 27 28 #include <linux/fault-inject.h> 29 #include <linux/log2.h> 30 #include <linux/random.h> 31 #include <linux/seq_file.h> 32 #include <linux/stop_machine.h> 33 34 #include <asm/set_memory.h> 35 36 #include <drm/drmP.h> 37 #include <drm/i915_drm.h> 38 39 #include "i915_drv.h" 40 #include "i915_vgpu.h" 41 #include "i915_trace.h" 42 #include "intel_drv.h" 43 #include "intel_frontbuffer.h" 44 45 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) 46 47 /** 48 * DOC: Global GTT views 49 * 50 * Background and previous state 51 * 52 * Historically objects could exists (be bound) in global GTT space only as 53 * singular instances with a view representing all of the object's backing pages 54 * in a linear fashion. This view will be called a normal view. 55 * 56 * To support multiple views of the same object, where the number of mapped 57 * pages is not equal to the backing store, or where the layout of the pages 58 * is not linear, concept of a GGTT view was added. 59 * 60 * One example of an alternative view is a stereo display driven by a single 61 * image. In this case we would have a framebuffer looking like this 62 * (2x2 pages): 63 * 64 * 12 65 * 34 66 * 67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU 68 * rendering. In contrast, fed to the display engine would be an alternative 69 * view which could look something like this: 70 * 71 * 1212 72 * 3434 73 * 74 * In this example both the size and layout of pages in the alternative view is 75 * different from the normal view. 76 * 77 * Implementation and usage 78 * 79 * GGTT views are implemented using VMAs and are distinguished via enum 80 * i915_ggtt_view_type and struct i915_ggtt_view. 81 * 82 * A new flavour of core GEM functions which work with GGTT bound objects were 83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid 84 * renaming in large amounts of code. They take the struct i915_ggtt_view 85 * parameter encapsulating all metadata required to implement a view. 86 * 87 * As a helper for callers which are only interested in the normal view, 88 * globally const i915_ggtt_view_normal singleton instance exists. All old core 89 * GEM API functions, the ones not taking the view parameter, are operating on, 90 * or with the normal GGTT view. 91 * 92 * Code wanting to add or use a new GGTT view needs to: 93 * 94 * 1. Add a new enum with a suitable name. 95 * 2. Extend the metadata in the i915_ggtt_view structure if required. 96 * 3. Add support to i915_get_vma_pages(). 97 * 98 * New views are required to build a scatter-gather table from within the 99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and 100 * exists for the lifetime of an VMA. 101 * 102 * Core API is designed to have copy semantics which means that passed in 103 * struct i915_ggtt_view does not need to be persistent (left around after 104 * calling the core API functions). 105 * 106 */ 107 108 static int 109 i915_get_ggtt_vma_pages(struct i915_vma *vma); 110 111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv) 112 { 113 /* 114 * Note that as an uncached mmio write, this will flush the 115 * WCB of the writes into the GGTT before it triggers the invalidate. 116 */ 117 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 118 } 119 120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv) 121 { 122 gen6_ggtt_invalidate(dev_priv); 123 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); 124 } 125 126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv) 127 { 128 intel_gtt_chipset_flush(); 129 } 130 131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915) 132 { 133 i915->ggtt.invalidate(i915); 134 } 135 136 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 137 int enable_ppgtt) 138 { 139 bool has_full_ppgtt; 140 bool has_full_48bit_ppgtt; 141 142 if (!dev_priv->info.has_aliasing_ppgtt) 143 return 0; 144 145 has_full_ppgtt = dev_priv->info.has_full_ppgtt; 146 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt; 147 148 if (intel_vgpu_active(dev_priv)) { 149 /* GVT-g has no support for 32bit ppgtt */ 150 has_full_ppgtt = false; 151 has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv); 152 } 153 154 /* 155 * We don't allow disabling PPGTT for gen9+ as it's a requirement for 156 * execlists, the sole mechanism available to submit work. 157 */ 158 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9) 159 return 0; 160 161 if (enable_ppgtt == 1) 162 return 1; 163 164 if (enable_ppgtt == 2 && has_full_ppgtt) 165 return 2; 166 167 if (enable_ppgtt == 3 && has_full_48bit_ppgtt) 168 return 3; 169 170 /* Disable ppgtt on SNB if VT-d is on. */ 171 if (IS_GEN6(dev_priv) && intel_vtd_active()) { 172 DRM_INFO("Disabling PPGTT because VT-d is on\n"); 173 return 0; 174 } 175 176 if (has_full_48bit_ppgtt) 177 return 3; 178 179 if (has_full_ppgtt) 180 return 2; 181 182 return 1; 183 } 184 185 static int ppgtt_bind_vma(struct i915_vma *vma, 186 enum i915_cache_level cache_level, 187 u32 unused) 188 { 189 u32 pte_flags; 190 int err; 191 192 if (!(vma->flags & I915_VMA_LOCAL_BIND)) { 193 err = vma->vm->allocate_va_range(vma->vm, 194 vma->node.start, vma->size); 195 if (err) 196 return err; 197 } 198 199 /* Applicable to VLV, and gen8+ */ 200 pte_flags = 0; 201 if (i915_gem_object_is_readonly(vma->obj)) 202 pte_flags |= PTE_READ_ONLY; 203 204 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 205 206 return 0; 207 } 208 209 static void ppgtt_unbind_vma(struct i915_vma *vma) 210 { 211 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 212 } 213 214 static int ppgtt_set_pages(struct i915_vma *vma) 215 { 216 GEM_BUG_ON(vma->pages); 217 218 vma->pages = vma->obj->mm.pages; 219 220 vma->page_sizes = vma->obj->mm.page_sizes; 221 222 return 0; 223 } 224 225 static void clear_pages(struct i915_vma *vma) 226 { 227 GEM_BUG_ON(!vma->pages); 228 229 if (vma->pages != vma->obj->mm.pages) { 230 sg_free_table(vma->pages); 231 kfree(vma->pages); 232 } 233 vma->pages = NULL; 234 235 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); 236 } 237 238 static gen8_pte_t gen8_pte_encode(dma_addr_t addr, 239 enum i915_cache_level level, 240 u32 flags) 241 { 242 gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW; 243 244 if (unlikely(flags & PTE_READ_ONLY)) 245 pte &= ~_PAGE_RW; 246 247 switch (level) { 248 case I915_CACHE_NONE: 249 pte |= PPAT_UNCACHED; 250 break; 251 case I915_CACHE_WT: 252 pte |= PPAT_DISPLAY_ELLC; 253 break; 254 default: 255 pte |= PPAT_CACHED; 256 break; 257 } 258 259 return pte; 260 } 261 262 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, 263 const enum i915_cache_level level) 264 { 265 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; 266 pde |= addr; 267 if (level != I915_CACHE_NONE) 268 pde |= PPAT_CACHED_PDE; 269 else 270 pde |= PPAT_UNCACHED; 271 return pde; 272 } 273 274 #define gen8_pdpe_encode gen8_pde_encode 275 #define gen8_pml4e_encode gen8_pde_encode 276 277 static gen6_pte_t snb_pte_encode(dma_addr_t addr, 278 enum i915_cache_level level, 279 u32 unused) 280 { 281 gen6_pte_t pte = GEN6_PTE_VALID; 282 pte |= GEN6_PTE_ADDR_ENCODE(addr); 283 284 switch (level) { 285 case I915_CACHE_L3_LLC: 286 case I915_CACHE_LLC: 287 pte |= GEN6_PTE_CACHE_LLC; 288 break; 289 case I915_CACHE_NONE: 290 pte |= GEN6_PTE_UNCACHED; 291 break; 292 default: 293 MISSING_CASE(level); 294 } 295 296 return pte; 297 } 298 299 static gen6_pte_t ivb_pte_encode(dma_addr_t addr, 300 enum i915_cache_level level, 301 u32 unused) 302 { 303 gen6_pte_t pte = GEN6_PTE_VALID; 304 pte |= GEN6_PTE_ADDR_ENCODE(addr); 305 306 switch (level) { 307 case I915_CACHE_L3_LLC: 308 pte |= GEN7_PTE_CACHE_L3_LLC; 309 break; 310 case I915_CACHE_LLC: 311 pte |= GEN6_PTE_CACHE_LLC; 312 break; 313 case I915_CACHE_NONE: 314 pte |= GEN6_PTE_UNCACHED; 315 break; 316 default: 317 MISSING_CASE(level); 318 } 319 320 return pte; 321 } 322 323 static gen6_pte_t byt_pte_encode(dma_addr_t addr, 324 enum i915_cache_level level, 325 u32 flags) 326 { 327 gen6_pte_t pte = GEN6_PTE_VALID; 328 pte |= GEN6_PTE_ADDR_ENCODE(addr); 329 330 if (!(flags & PTE_READ_ONLY)) 331 pte |= BYT_PTE_WRITEABLE; 332 333 if (level != I915_CACHE_NONE) 334 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 335 336 return pte; 337 } 338 339 static gen6_pte_t hsw_pte_encode(dma_addr_t addr, 340 enum i915_cache_level level, 341 u32 unused) 342 { 343 gen6_pte_t pte = GEN6_PTE_VALID; 344 pte |= HSW_PTE_ADDR_ENCODE(addr); 345 346 if (level != I915_CACHE_NONE) 347 pte |= HSW_WB_LLC_AGE3; 348 349 return pte; 350 } 351 352 static gen6_pte_t iris_pte_encode(dma_addr_t addr, 353 enum i915_cache_level level, 354 u32 unused) 355 { 356 gen6_pte_t pte = GEN6_PTE_VALID; 357 pte |= HSW_PTE_ADDR_ENCODE(addr); 358 359 switch (level) { 360 case I915_CACHE_NONE: 361 break; 362 case I915_CACHE_WT: 363 pte |= HSW_WT_ELLC_LLC_AGE3; 364 break; 365 default: 366 pte |= HSW_WB_ELLC_LLC_AGE3; 367 break; 368 } 369 370 return pte; 371 } 372 373 static void stash_init(struct pagestash *stash) 374 { 375 pagevec_init(&stash->pvec); 376 spin_lock_init(&stash->lock); 377 } 378 379 static struct page *stash_pop_page(struct pagestash *stash) 380 { 381 struct page *page = NULL; 382 383 spin_lock(&stash->lock); 384 if (likely(stash->pvec.nr)) 385 page = stash->pvec.pages[--stash->pvec.nr]; 386 spin_unlock(&stash->lock); 387 388 return page; 389 } 390 391 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec) 392 { 393 int nr; 394 395 spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING); 396 397 nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec)); 398 memcpy(stash->pvec.pages + stash->pvec.nr, 399 pvec->pages + pvec->nr - nr, 400 sizeof(pvec->pages[0]) * nr); 401 stash->pvec.nr += nr; 402 403 spin_unlock(&stash->lock); 404 405 pvec->nr -= nr; 406 } 407 408 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp) 409 { 410 struct pagevec stack; 411 struct page *page; 412 413 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 414 i915_gem_shrink_all(vm->i915); 415 416 page = stash_pop_page(&vm->free_pages); 417 if (page) 418 return page; 419 420 if (!vm->pt_kmap_wc) 421 return alloc_page(gfp); 422 423 /* Look in our global stash of WC pages... */ 424 page = stash_pop_page(&vm->i915->mm.wc_stash); 425 if (page) 426 return page; 427 428 /* 429 * Otherwise batch allocate pages to amortize cost of set_pages_wc. 430 * 431 * We have to be careful as page allocation may trigger the shrinker 432 * (via direct reclaim) which will fill up the WC stash underneath us. 433 * So we add our WB pages into a temporary pvec on the stack and merge 434 * them into the WC stash after all the allocations are complete. 435 */ 436 pagevec_init(&stack); 437 do { 438 struct page *page; 439 440 page = alloc_page(gfp); 441 if (unlikely(!page)) 442 break; 443 444 stack.pages[stack.nr++] = page; 445 } while (pagevec_space(&stack)); 446 447 if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) { 448 page = stack.pages[--stack.nr]; 449 450 /* Merge spare WC pages to the global stash */ 451 stash_push_pagevec(&vm->i915->mm.wc_stash, &stack); 452 453 /* Push any surplus WC pages onto the local VM stash */ 454 if (stack.nr) 455 stash_push_pagevec(&vm->free_pages, &stack); 456 } 457 458 /* Return unwanted leftovers */ 459 if (unlikely(stack.nr)) { 460 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr)); 461 __pagevec_release(&stack); 462 } 463 464 return page; 465 } 466 467 static void vm_free_pages_release(struct i915_address_space *vm, 468 bool immediate) 469 { 470 struct pagevec *pvec = &vm->free_pages.pvec; 471 struct pagevec stack; 472 473 lockdep_assert_held(&vm->free_pages.lock); 474 GEM_BUG_ON(!pagevec_count(pvec)); 475 476 if (vm->pt_kmap_wc) { 477 /* 478 * When we use WC, first fill up the global stash and then 479 * only if full immediately free the overflow. 480 */ 481 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec); 482 483 /* 484 * As we have made some room in the VM's free_pages, 485 * we can wait for it to fill again. Unless we are 486 * inside i915_address_space_fini() and must 487 * immediately release the pages! 488 */ 489 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1)) 490 return; 491 492 /* 493 * We have to drop the lock to allow ourselves to sleep, 494 * so take a copy of the pvec and clear the stash for 495 * others to use it as we sleep. 496 */ 497 stack = *pvec; 498 pagevec_reinit(pvec); 499 spin_unlock(&vm->free_pages.lock); 500 501 pvec = &stack; 502 set_pages_array_wb(pvec->pages, pvec->nr); 503 504 spin_lock(&vm->free_pages.lock); 505 } 506 507 __pagevec_release(pvec); 508 } 509 510 static void vm_free_page(struct i915_address_space *vm, struct page *page) 511 { 512 /* 513 * On !llc, we need to change the pages back to WB. We only do so 514 * in bulk, so we rarely need to change the page attributes here, 515 * but doing so requires a stop_machine() from deep inside arch/x86/mm. 516 * To make detection of the possible sleep more likely, use an 517 * unconditional might_sleep() for everybody. 518 */ 519 might_sleep(); 520 spin_lock(&vm->free_pages.lock); 521 if (!pagevec_add(&vm->free_pages.pvec, page)) 522 vm_free_pages_release(vm, false); 523 spin_unlock(&vm->free_pages.lock); 524 } 525 526 static void i915_address_space_init(struct i915_address_space *vm, 527 struct drm_i915_private *dev_priv) 528 { 529 /* 530 * The vm->mutex must be reclaim safe (for use in the shrinker). 531 * Do a dummy acquire now under fs_reclaim so that any allocation 532 * attempt holding the lock is immediately reported by lockdep. 533 */ 534 mutex_init(&vm->mutex); 535 i915_gem_shrinker_taints_mutex(&vm->mutex); 536 537 GEM_BUG_ON(!vm->total); 538 drm_mm_init(&vm->mm, 0, vm->total); 539 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 540 541 stash_init(&vm->free_pages); 542 543 INIT_LIST_HEAD(&vm->active_list); 544 INIT_LIST_HEAD(&vm->inactive_list); 545 INIT_LIST_HEAD(&vm->unbound_list); 546 } 547 548 static void i915_address_space_fini(struct i915_address_space *vm) 549 { 550 spin_lock(&vm->free_pages.lock); 551 if (pagevec_count(&vm->free_pages.pvec)) 552 vm_free_pages_release(vm, true); 553 GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec)); 554 spin_unlock(&vm->free_pages.lock); 555 556 drm_mm_takedown(&vm->mm); 557 558 mutex_destroy(&vm->mutex); 559 } 560 561 static int __setup_page_dma(struct i915_address_space *vm, 562 struct i915_page_dma *p, 563 gfp_t gfp) 564 { 565 p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL); 566 if (unlikely(!p->page)) 567 return -ENOMEM; 568 569 p->daddr = dma_map_page_attrs(vm->dma, 570 p->page, 0, PAGE_SIZE, 571 PCI_DMA_BIDIRECTIONAL, 572 DMA_ATTR_SKIP_CPU_SYNC | 573 DMA_ATTR_NO_WARN); 574 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) { 575 vm_free_page(vm, p->page); 576 return -ENOMEM; 577 } 578 579 return 0; 580 } 581 582 static int setup_page_dma(struct i915_address_space *vm, 583 struct i915_page_dma *p) 584 { 585 return __setup_page_dma(vm, p, __GFP_HIGHMEM); 586 } 587 588 static void cleanup_page_dma(struct i915_address_space *vm, 589 struct i915_page_dma *p) 590 { 591 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 592 vm_free_page(vm, p->page); 593 } 594 595 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page) 596 597 #define setup_px(vm, px) setup_page_dma((vm), px_base(px)) 598 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px)) 599 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v)) 600 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v)) 601 602 static void fill_page_dma(struct i915_address_space *vm, 603 struct i915_page_dma *p, 604 const u64 val) 605 { 606 u64 * const vaddr = kmap_atomic(p->page); 607 608 memset64(vaddr, val, PAGE_SIZE / sizeof(val)); 609 610 kunmap_atomic(vaddr); 611 } 612 613 static void fill_page_dma_32(struct i915_address_space *vm, 614 struct i915_page_dma *p, 615 const u32 v) 616 { 617 fill_page_dma(vm, p, (u64)v << 32 | v); 618 } 619 620 static int 621 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp) 622 { 623 unsigned long size; 624 625 /* 626 * In order to utilize 64K pages for an object with a size < 2M, we will 627 * need to support a 64K scratch page, given that every 16th entry for a 628 * page-table operating in 64K mode must point to a properly aligned 64K 629 * region, including any PTEs which happen to point to scratch. 630 * 631 * This is only relevant for the 48b PPGTT where we support 632 * huge-gtt-pages, see also i915_vma_insert(). 633 * 634 * TODO: we should really consider write-protecting the scratch-page and 635 * sharing between ppgtt 636 */ 637 size = I915_GTT_PAGE_SIZE_4K; 638 if (i915_vm_is_48bit(vm) && 639 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) { 640 size = I915_GTT_PAGE_SIZE_64K; 641 gfp |= __GFP_NOWARN; 642 } 643 gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL; 644 645 do { 646 int order = get_order(size); 647 struct page *page; 648 dma_addr_t addr; 649 650 page = alloc_pages(gfp, order); 651 if (unlikely(!page)) 652 goto skip; 653 654 addr = dma_map_page_attrs(vm->dma, 655 page, 0, size, 656 PCI_DMA_BIDIRECTIONAL, 657 DMA_ATTR_SKIP_CPU_SYNC | 658 DMA_ATTR_NO_WARN); 659 if (unlikely(dma_mapping_error(vm->dma, addr))) 660 goto free_page; 661 662 if (unlikely(!IS_ALIGNED(addr, size))) 663 goto unmap_page; 664 665 vm->scratch_page.page = page; 666 vm->scratch_page.daddr = addr; 667 vm->scratch_page.order = order; 668 return 0; 669 670 unmap_page: 671 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL); 672 free_page: 673 __free_pages(page, order); 674 skip: 675 if (size == I915_GTT_PAGE_SIZE_4K) 676 return -ENOMEM; 677 678 size = I915_GTT_PAGE_SIZE_4K; 679 gfp &= ~__GFP_NOWARN; 680 } while (1); 681 } 682 683 static void cleanup_scratch_page(struct i915_address_space *vm) 684 { 685 struct i915_page_dma *p = &vm->scratch_page; 686 687 dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT, 688 PCI_DMA_BIDIRECTIONAL); 689 __free_pages(p->page, p->order); 690 } 691 692 static struct i915_page_table *alloc_pt(struct i915_address_space *vm) 693 { 694 struct i915_page_table *pt; 695 696 pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL); 697 if (unlikely(!pt)) 698 return ERR_PTR(-ENOMEM); 699 700 if (unlikely(setup_px(vm, pt))) { 701 kfree(pt); 702 return ERR_PTR(-ENOMEM); 703 } 704 705 pt->used_ptes = 0; 706 return pt; 707 } 708 709 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt) 710 { 711 cleanup_px(vm, pt); 712 kfree(pt); 713 } 714 715 static void gen8_initialize_pt(struct i915_address_space *vm, 716 struct i915_page_table *pt) 717 { 718 fill_px(vm, pt, 719 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0)); 720 } 721 722 static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt, 723 struct i915_page_table *pt) 724 { 725 fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte); 726 } 727 728 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm) 729 { 730 struct i915_page_directory *pd; 731 732 pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL); 733 if (unlikely(!pd)) 734 return ERR_PTR(-ENOMEM); 735 736 if (unlikely(setup_px(vm, pd))) { 737 kfree(pd); 738 return ERR_PTR(-ENOMEM); 739 } 740 741 pd->used_pdes = 0; 742 return pd; 743 } 744 745 static void free_pd(struct i915_address_space *vm, 746 struct i915_page_directory *pd) 747 { 748 cleanup_px(vm, pd); 749 kfree(pd); 750 } 751 752 static void gen8_initialize_pd(struct i915_address_space *vm, 753 struct i915_page_directory *pd) 754 { 755 fill_px(vm, pd, 756 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC)); 757 memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES); 758 } 759 760 static int __pdp_init(struct i915_address_space *vm, 761 struct i915_page_directory_pointer *pdp) 762 { 763 const unsigned int pdpes = i915_pdpes_per_pdp(vm); 764 765 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory), 766 I915_GFP_ALLOW_FAIL); 767 if (unlikely(!pdp->page_directory)) 768 return -ENOMEM; 769 770 memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes); 771 772 return 0; 773 } 774 775 static void __pdp_fini(struct i915_page_directory_pointer *pdp) 776 { 777 kfree(pdp->page_directory); 778 pdp->page_directory = NULL; 779 } 780 781 static inline bool use_4lvl(const struct i915_address_space *vm) 782 { 783 return i915_vm_is_48bit(vm); 784 } 785 786 static struct i915_page_directory_pointer * 787 alloc_pdp(struct i915_address_space *vm) 788 { 789 struct i915_page_directory_pointer *pdp; 790 int ret = -ENOMEM; 791 792 GEM_BUG_ON(!use_4lvl(vm)); 793 794 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL); 795 if (!pdp) 796 return ERR_PTR(-ENOMEM); 797 798 ret = __pdp_init(vm, pdp); 799 if (ret) 800 goto fail_bitmap; 801 802 ret = setup_px(vm, pdp); 803 if (ret) 804 goto fail_page_m; 805 806 return pdp; 807 808 fail_page_m: 809 __pdp_fini(pdp); 810 fail_bitmap: 811 kfree(pdp); 812 813 return ERR_PTR(ret); 814 } 815 816 static void free_pdp(struct i915_address_space *vm, 817 struct i915_page_directory_pointer *pdp) 818 { 819 __pdp_fini(pdp); 820 821 if (!use_4lvl(vm)) 822 return; 823 824 cleanup_px(vm, pdp); 825 kfree(pdp); 826 } 827 828 static void gen8_initialize_pdp(struct i915_address_space *vm, 829 struct i915_page_directory_pointer *pdp) 830 { 831 gen8_ppgtt_pdpe_t scratch_pdpe; 832 833 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC); 834 835 fill_px(vm, pdp, scratch_pdpe); 836 } 837 838 static void gen8_initialize_pml4(struct i915_address_space *vm, 839 struct i915_pml4 *pml4) 840 { 841 fill_px(vm, pml4, 842 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC)); 843 memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4); 844 } 845 846 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify 847 * the page table structures, we mark them dirty so that 848 * context switching/execlist queuing code takes extra steps 849 * to ensure that tlbs are flushed. 850 */ 851 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) 852 { 853 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask; 854 } 855 856 /* Removes entries from a single page table, releasing it if it's empty. 857 * Caller can use the return value to update higher-level entries. 858 */ 859 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm, 860 struct i915_page_table *pt, 861 u64 start, u64 length) 862 { 863 unsigned int num_entries = gen8_pte_count(start, length); 864 unsigned int pte = gen8_pte_index(start); 865 unsigned int pte_end = pte + num_entries; 866 const gen8_pte_t scratch_pte = 867 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); 868 gen8_pte_t *vaddr; 869 870 GEM_BUG_ON(num_entries > pt->used_ptes); 871 872 pt->used_ptes -= num_entries; 873 if (!pt->used_ptes) 874 return true; 875 876 vaddr = kmap_atomic_px(pt); 877 while (pte < pte_end) 878 vaddr[pte++] = scratch_pte; 879 kunmap_atomic(vaddr); 880 881 return false; 882 } 883 884 static void gen8_ppgtt_set_pde(struct i915_address_space *vm, 885 struct i915_page_directory *pd, 886 struct i915_page_table *pt, 887 unsigned int pde) 888 { 889 gen8_pde_t *vaddr; 890 891 pd->page_table[pde] = pt; 892 893 vaddr = kmap_atomic_px(pd); 894 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC); 895 kunmap_atomic(vaddr); 896 } 897 898 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm, 899 struct i915_page_directory *pd, 900 u64 start, u64 length) 901 { 902 struct i915_page_table *pt; 903 u32 pde; 904 905 gen8_for_each_pde(pt, pd, start, length, pde) { 906 GEM_BUG_ON(pt == vm->scratch_pt); 907 908 if (!gen8_ppgtt_clear_pt(vm, pt, start, length)) 909 continue; 910 911 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde); 912 GEM_BUG_ON(!pd->used_pdes); 913 pd->used_pdes--; 914 915 free_pt(vm, pt); 916 } 917 918 return !pd->used_pdes; 919 } 920 921 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm, 922 struct i915_page_directory_pointer *pdp, 923 struct i915_page_directory *pd, 924 unsigned int pdpe) 925 { 926 gen8_ppgtt_pdpe_t *vaddr; 927 928 pdp->page_directory[pdpe] = pd; 929 if (!use_4lvl(vm)) 930 return; 931 932 vaddr = kmap_atomic_px(pdp); 933 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); 934 kunmap_atomic(vaddr); 935 } 936 937 /* Removes entries from a single page dir pointer, releasing it if it's empty. 938 * Caller can use the return value to update higher-level entries 939 */ 940 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm, 941 struct i915_page_directory_pointer *pdp, 942 u64 start, u64 length) 943 { 944 struct i915_page_directory *pd; 945 unsigned int pdpe; 946 947 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 948 GEM_BUG_ON(pd == vm->scratch_pd); 949 950 if (!gen8_ppgtt_clear_pd(vm, pd, start, length)) 951 continue; 952 953 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 954 GEM_BUG_ON(!pdp->used_pdpes); 955 pdp->used_pdpes--; 956 957 free_pd(vm, pd); 958 } 959 960 return !pdp->used_pdpes; 961 } 962 963 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm, 964 u64 start, u64 length) 965 { 966 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length); 967 } 968 969 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4, 970 struct i915_page_directory_pointer *pdp, 971 unsigned int pml4e) 972 { 973 gen8_ppgtt_pml4e_t *vaddr; 974 975 pml4->pdps[pml4e] = pdp; 976 977 vaddr = kmap_atomic_px(pml4); 978 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); 979 kunmap_atomic(vaddr); 980 } 981 982 /* Removes entries from a single pml4. 983 * This is the top-level structure in 4-level page tables used on gen8+. 984 * Empty entries are always scratch pml4e. 985 */ 986 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm, 987 u64 start, u64 length) 988 { 989 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 990 struct i915_pml4 *pml4 = &ppgtt->pml4; 991 struct i915_page_directory_pointer *pdp; 992 unsigned int pml4e; 993 994 GEM_BUG_ON(!use_4lvl(vm)); 995 996 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 997 GEM_BUG_ON(pdp == vm->scratch_pdp); 998 999 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length)) 1000 continue; 1001 1002 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); 1003 1004 free_pdp(vm, pdp); 1005 } 1006 } 1007 1008 static inline struct sgt_dma { 1009 struct scatterlist *sg; 1010 dma_addr_t dma, max; 1011 } sgt_dma(struct i915_vma *vma) { 1012 struct scatterlist *sg = vma->pages->sgl; 1013 dma_addr_t addr = sg_dma_address(sg); 1014 return (struct sgt_dma) { sg, addr, addr + sg->length }; 1015 } 1016 1017 struct gen8_insert_pte { 1018 u16 pml4e; 1019 u16 pdpe; 1020 u16 pde; 1021 u16 pte; 1022 }; 1023 1024 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start) 1025 { 1026 return (struct gen8_insert_pte) { 1027 gen8_pml4e_index(start), 1028 gen8_pdpe_index(start), 1029 gen8_pde_index(start), 1030 gen8_pte_index(start), 1031 }; 1032 } 1033 1034 static __always_inline bool 1035 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt, 1036 struct i915_page_directory_pointer *pdp, 1037 struct sgt_dma *iter, 1038 struct gen8_insert_pte *idx, 1039 enum i915_cache_level cache_level, 1040 u32 flags) 1041 { 1042 struct i915_page_directory *pd; 1043 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); 1044 gen8_pte_t *vaddr; 1045 bool ret; 1046 1047 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm)); 1048 pd = pdp->page_directory[idx->pdpe]; 1049 vaddr = kmap_atomic_px(pd->page_table[idx->pde]); 1050 do { 1051 vaddr[idx->pte] = pte_encode | iter->dma; 1052 1053 iter->dma += I915_GTT_PAGE_SIZE; 1054 if (iter->dma >= iter->max) { 1055 iter->sg = __sg_next(iter->sg); 1056 if (!iter->sg) { 1057 ret = false; 1058 break; 1059 } 1060 1061 iter->dma = sg_dma_address(iter->sg); 1062 iter->max = iter->dma + iter->sg->length; 1063 } 1064 1065 if (++idx->pte == GEN8_PTES) { 1066 idx->pte = 0; 1067 1068 if (++idx->pde == I915_PDES) { 1069 idx->pde = 0; 1070 1071 /* Limited by sg length for 3lvl */ 1072 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) { 1073 idx->pdpe = 0; 1074 ret = true; 1075 break; 1076 } 1077 1078 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm)); 1079 pd = pdp->page_directory[idx->pdpe]; 1080 } 1081 1082 kunmap_atomic(vaddr); 1083 vaddr = kmap_atomic_px(pd->page_table[idx->pde]); 1084 } 1085 } while (1); 1086 kunmap_atomic(vaddr); 1087 1088 return ret; 1089 } 1090 1091 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm, 1092 struct i915_vma *vma, 1093 enum i915_cache_level cache_level, 1094 u32 flags) 1095 { 1096 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1097 struct sgt_dma iter = sgt_dma(vma); 1098 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); 1099 1100 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx, 1101 cache_level, flags); 1102 1103 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 1104 } 1105 1106 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma, 1107 struct i915_page_directory_pointer **pdps, 1108 struct sgt_dma *iter, 1109 enum i915_cache_level cache_level, 1110 u32 flags) 1111 { 1112 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); 1113 u64 start = vma->node.start; 1114 dma_addr_t rem = iter->sg->length; 1115 1116 do { 1117 struct gen8_insert_pte idx = gen8_insert_pte(start); 1118 struct i915_page_directory_pointer *pdp = pdps[idx.pml4e]; 1119 struct i915_page_directory *pd = pdp->page_directory[idx.pdpe]; 1120 unsigned int page_size; 1121 bool maybe_64K = false; 1122 gen8_pte_t encode = pte_encode; 1123 gen8_pte_t *vaddr; 1124 u16 index, max; 1125 1126 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M && 1127 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) && 1128 rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) { 1129 index = idx.pde; 1130 max = I915_PDES; 1131 page_size = I915_GTT_PAGE_SIZE_2M; 1132 1133 encode |= GEN8_PDE_PS_2M; 1134 1135 vaddr = kmap_atomic_px(pd); 1136 } else { 1137 struct i915_page_table *pt = pd->page_table[idx.pde]; 1138 1139 index = idx.pte; 1140 max = GEN8_PTES; 1141 page_size = I915_GTT_PAGE_SIZE; 1142 1143 if (!index && 1144 vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K && 1145 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && 1146 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || 1147 rem >= (max - index) * I915_GTT_PAGE_SIZE)) 1148 maybe_64K = true; 1149 1150 vaddr = kmap_atomic_px(pt); 1151 } 1152 1153 do { 1154 GEM_BUG_ON(iter->sg->length < page_size); 1155 vaddr[index++] = encode | iter->dma; 1156 1157 start += page_size; 1158 iter->dma += page_size; 1159 rem -= page_size; 1160 if (iter->dma >= iter->max) { 1161 iter->sg = __sg_next(iter->sg); 1162 if (!iter->sg) 1163 break; 1164 1165 rem = iter->sg->length; 1166 iter->dma = sg_dma_address(iter->sg); 1167 iter->max = iter->dma + rem; 1168 1169 if (maybe_64K && index < max && 1170 !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && 1171 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || 1172 rem >= (max - index) * I915_GTT_PAGE_SIZE))) 1173 maybe_64K = false; 1174 1175 if (unlikely(!IS_ALIGNED(iter->dma, page_size))) 1176 break; 1177 } 1178 } while (rem >= page_size && index < max); 1179 1180 kunmap_atomic(vaddr); 1181 1182 /* 1183 * Is it safe to mark the 2M block as 64K? -- Either we have 1184 * filled whole page-table with 64K entries, or filled part of 1185 * it and have reached the end of the sg table and we have 1186 * enough padding. 1187 */ 1188 if (maybe_64K && 1189 (index == max || 1190 (i915_vm_has_scratch_64K(vma->vm) && 1191 !iter->sg && IS_ALIGNED(vma->node.start + 1192 vma->node.size, 1193 I915_GTT_PAGE_SIZE_2M)))) { 1194 vaddr = kmap_atomic_px(pd); 1195 vaddr[idx.pde] |= GEN8_PDE_IPS_64K; 1196 kunmap_atomic(vaddr); 1197 page_size = I915_GTT_PAGE_SIZE_64K; 1198 1199 /* 1200 * We write all 4K page entries, even when using 64K 1201 * pages. In order to verify that the HW isn't cheating 1202 * by using the 4K PTE instead of the 64K PTE, we want 1203 * to remove all the surplus entries. If the HW skipped 1204 * the 64K PTE, it will read/write into the scratch page 1205 * instead - which we detect as missing results during 1206 * selftests. 1207 */ 1208 if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) { 1209 u16 i; 1210 1211 encode = pte_encode | vma->vm->scratch_page.daddr; 1212 vaddr = kmap_atomic_px(pd->page_table[idx.pde]); 1213 1214 for (i = 1; i < index; i += 16) 1215 memset64(vaddr + i, encode, 15); 1216 1217 kunmap_atomic(vaddr); 1218 } 1219 } 1220 1221 vma->page_sizes.gtt |= page_size; 1222 } while (iter->sg); 1223 } 1224 1225 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm, 1226 struct i915_vma *vma, 1227 enum i915_cache_level cache_level, 1228 u32 flags) 1229 { 1230 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1231 struct sgt_dma iter = sgt_dma(vma); 1232 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps; 1233 1234 if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { 1235 gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level, 1236 flags); 1237 } else { 1238 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); 1239 1240 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], 1241 &iter, &idx, cache_level, 1242 flags)) 1243 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4); 1244 1245 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 1246 } 1247 } 1248 1249 static void gen8_free_page_tables(struct i915_address_space *vm, 1250 struct i915_page_directory *pd) 1251 { 1252 int i; 1253 1254 for (i = 0; i < I915_PDES; i++) { 1255 if (pd->page_table[i] != vm->scratch_pt) 1256 free_pt(vm, pd->page_table[i]); 1257 } 1258 } 1259 1260 static int gen8_init_scratch(struct i915_address_space *vm) 1261 { 1262 int ret; 1263 1264 ret = setup_scratch_page(vm, __GFP_HIGHMEM); 1265 if (ret) 1266 return ret; 1267 1268 vm->scratch_pt = alloc_pt(vm); 1269 if (IS_ERR(vm->scratch_pt)) { 1270 ret = PTR_ERR(vm->scratch_pt); 1271 goto free_scratch_page; 1272 } 1273 1274 vm->scratch_pd = alloc_pd(vm); 1275 if (IS_ERR(vm->scratch_pd)) { 1276 ret = PTR_ERR(vm->scratch_pd); 1277 goto free_pt; 1278 } 1279 1280 if (use_4lvl(vm)) { 1281 vm->scratch_pdp = alloc_pdp(vm); 1282 if (IS_ERR(vm->scratch_pdp)) { 1283 ret = PTR_ERR(vm->scratch_pdp); 1284 goto free_pd; 1285 } 1286 } 1287 1288 gen8_initialize_pt(vm, vm->scratch_pt); 1289 gen8_initialize_pd(vm, vm->scratch_pd); 1290 if (use_4lvl(vm)) 1291 gen8_initialize_pdp(vm, vm->scratch_pdp); 1292 1293 return 0; 1294 1295 free_pd: 1296 free_pd(vm, vm->scratch_pd); 1297 free_pt: 1298 free_pt(vm, vm->scratch_pt); 1299 free_scratch_page: 1300 cleanup_scratch_page(vm); 1301 1302 return ret; 1303 } 1304 1305 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create) 1306 { 1307 struct i915_address_space *vm = &ppgtt->vm; 1308 struct drm_i915_private *dev_priv = vm->i915; 1309 enum vgt_g2v_type msg; 1310 int i; 1311 1312 if (use_4lvl(vm)) { 1313 const u64 daddr = px_dma(&ppgtt->pml4); 1314 1315 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); 1316 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); 1317 1318 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : 1319 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); 1320 } else { 1321 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1322 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i); 1323 1324 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); 1325 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); 1326 } 1327 1328 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : 1329 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); 1330 } 1331 1332 I915_WRITE(vgtif_reg(g2v_notify), msg); 1333 1334 return 0; 1335 } 1336 1337 static void gen8_free_scratch(struct i915_address_space *vm) 1338 { 1339 if (use_4lvl(vm)) 1340 free_pdp(vm, vm->scratch_pdp); 1341 free_pd(vm, vm->scratch_pd); 1342 free_pt(vm, vm->scratch_pt); 1343 cleanup_scratch_page(vm); 1344 } 1345 1346 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm, 1347 struct i915_page_directory_pointer *pdp) 1348 { 1349 const unsigned int pdpes = i915_pdpes_per_pdp(vm); 1350 int i; 1351 1352 for (i = 0; i < pdpes; i++) { 1353 if (pdp->page_directory[i] == vm->scratch_pd) 1354 continue; 1355 1356 gen8_free_page_tables(vm, pdp->page_directory[i]); 1357 free_pd(vm, pdp->page_directory[i]); 1358 } 1359 1360 free_pdp(vm, pdp); 1361 } 1362 1363 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt) 1364 { 1365 int i; 1366 1367 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) { 1368 if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp) 1369 continue; 1370 1371 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]); 1372 } 1373 1374 cleanup_px(&ppgtt->vm, &ppgtt->pml4); 1375 } 1376 1377 static void gen8_ppgtt_cleanup(struct i915_address_space *vm) 1378 { 1379 struct drm_i915_private *dev_priv = vm->i915; 1380 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1381 1382 if (intel_vgpu_active(dev_priv)) 1383 gen8_ppgtt_notify_vgt(ppgtt, false); 1384 1385 if (use_4lvl(vm)) 1386 gen8_ppgtt_cleanup_4lvl(ppgtt); 1387 else 1388 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp); 1389 1390 gen8_free_scratch(vm); 1391 } 1392 1393 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm, 1394 struct i915_page_directory *pd, 1395 u64 start, u64 length) 1396 { 1397 struct i915_page_table *pt; 1398 u64 from = start; 1399 unsigned int pde; 1400 1401 gen8_for_each_pde(pt, pd, start, length, pde) { 1402 int count = gen8_pte_count(start, length); 1403 1404 if (pt == vm->scratch_pt) { 1405 pd->used_pdes++; 1406 1407 pt = alloc_pt(vm); 1408 if (IS_ERR(pt)) { 1409 pd->used_pdes--; 1410 goto unwind; 1411 } 1412 1413 if (count < GEN8_PTES || intel_vgpu_active(vm->i915)) 1414 gen8_initialize_pt(vm, pt); 1415 1416 gen8_ppgtt_set_pde(vm, pd, pt, pde); 1417 GEM_BUG_ON(pd->used_pdes > I915_PDES); 1418 } 1419 1420 pt->used_ptes += count; 1421 } 1422 return 0; 1423 1424 unwind: 1425 gen8_ppgtt_clear_pd(vm, pd, from, start - from); 1426 return -ENOMEM; 1427 } 1428 1429 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm, 1430 struct i915_page_directory_pointer *pdp, 1431 u64 start, u64 length) 1432 { 1433 struct i915_page_directory *pd; 1434 u64 from = start; 1435 unsigned int pdpe; 1436 int ret; 1437 1438 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1439 if (pd == vm->scratch_pd) { 1440 pdp->used_pdpes++; 1441 1442 pd = alloc_pd(vm); 1443 if (IS_ERR(pd)) { 1444 pdp->used_pdpes--; 1445 goto unwind; 1446 } 1447 1448 gen8_initialize_pd(vm, pd); 1449 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); 1450 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm)); 1451 1452 mark_tlbs_dirty(i915_vm_to_ppgtt(vm)); 1453 } 1454 1455 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length); 1456 if (unlikely(ret)) 1457 goto unwind_pd; 1458 } 1459 1460 return 0; 1461 1462 unwind_pd: 1463 if (!pd->used_pdes) { 1464 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 1465 GEM_BUG_ON(!pdp->used_pdpes); 1466 pdp->used_pdpes--; 1467 free_pd(vm, pd); 1468 } 1469 unwind: 1470 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from); 1471 return -ENOMEM; 1472 } 1473 1474 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm, 1475 u64 start, u64 length) 1476 { 1477 return gen8_ppgtt_alloc_pdp(vm, 1478 &i915_vm_to_ppgtt(vm)->pdp, start, length); 1479 } 1480 1481 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm, 1482 u64 start, u64 length) 1483 { 1484 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1485 struct i915_pml4 *pml4 = &ppgtt->pml4; 1486 struct i915_page_directory_pointer *pdp; 1487 u64 from = start; 1488 u32 pml4e; 1489 int ret; 1490 1491 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 1492 if (pml4->pdps[pml4e] == vm->scratch_pdp) { 1493 pdp = alloc_pdp(vm); 1494 if (IS_ERR(pdp)) 1495 goto unwind; 1496 1497 gen8_initialize_pdp(vm, pdp); 1498 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e); 1499 } 1500 1501 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length); 1502 if (unlikely(ret)) 1503 goto unwind_pdp; 1504 } 1505 1506 return 0; 1507 1508 unwind_pdp: 1509 if (!pdp->used_pdpes) { 1510 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); 1511 free_pdp(vm, pdp); 1512 } 1513 unwind: 1514 gen8_ppgtt_clear_4lvl(vm, from, start - from); 1515 return -ENOMEM; 1516 } 1517 1518 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt, 1519 struct i915_page_directory_pointer *pdp, 1520 u64 start, u64 length, 1521 gen8_pte_t scratch_pte, 1522 struct seq_file *m) 1523 { 1524 struct i915_address_space *vm = &ppgtt->vm; 1525 struct i915_page_directory *pd; 1526 u32 pdpe; 1527 1528 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1529 struct i915_page_table *pt; 1530 u64 pd_len = length; 1531 u64 pd_start = start; 1532 u32 pde; 1533 1534 if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd) 1535 continue; 1536 1537 seq_printf(m, "\tPDPE #%d\n", pdpe); 1538 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { 1539 u32 pte; 1540 gen8_pte_t *pt_vaddr; 1541 1542 if (pd->page_table[pde] == ppgtt->vm.scratch_pt) 1543 continue; 1544 1545 pt_vaddr = kmap_atomic_px(pt); 1546 for (pte = 0; pte < GEN8_PTES; pte += 4) { 1547 u64 va = (pdpe << GEN8_PDPE_SHIFT | 1548 pde << GEN8_PDE_SHIFT | 1549 pte << GEN8_PTE_SHIFT); 1550 int i; 1551 bool found = false; 1552 1553 for (i = 0; i < 4; i++) 1554 if (pt_vaddr[pte + i] != scratch_pte) 1555 found = true; 1556 if (!found) 1557 continue; 1558 1559 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte); 1560 for (i = 0; i < 4; i++) { 1561 if (pt_vaddr[pte + i] != scratch_pte) 1562 seq_printf(m, " %llx", pt_vaddr[pte + i]); 1563 else 1564 seq_puts(m, " SCRATCH "); 1565 } 1566 seq_puts(m, "\n"); 1567 } 1568 kunmap_atomic(pt_vaddr); 1569 } 1570 } 1571 } 1572 1573 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) 1574 { 1575 struct i915_address_space *vm = &ppgtt->vm; 1576 const gen8_pte_t scratch_pte = 1577 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); 1578 u64 start = 0, length = ppgtt->vm.total; 1579 1580 if (use_4lvl(vm)) { 1581 u64 pml4e; 1582 struct i915_pml4 *pml4 = &ppgtt->pml4; 1583 struct i915_page_directory_pointer *pdp; 1584 1585 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 1586 if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp) 1587 continue; 1588 1589 seq_printf(m, " PML4E #%llu\n", pml4e); 1590 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m); 1591 } 1592 } else { 1593 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m); 1594 } 1595 } 1596 1597 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt) 1598 { 1599 struct i915_address_space *vm = &ppgtt->vm; 1600 struct i915_page_directory_pointer *pdp = &ppgtt->pdp; 1601 struct i915_page_directory *pd; 1602 u64 start = 0, length = ppgtt->vm.total; 1603 u64 from = start; 1604 unsigned int pdpe; 1605 1606 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1607 pd = alloc_pd(vm); 1608 if (IS_ERR(pd)) 1609 goto unwind; 1610 1611 gen8_initialize_pd(vm, pd); 1612 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); 1613 pdp->used_pdpes++; 1614 } 1615 1616 pdp->used_pdpes++; /* never remove */ 1617 return 0; 1618 1619 unwind: 1620 start -= from; 1621 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) { 1622 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 1623 free_pd(vm, pd); 1624 } 1625 pdp->used_pdpes = 0; 1626 return -ENOMEM; 1627 } 1628 1629 /* 1630 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers 1631 * with a net effect resembling a 2-level page table in normal x86 terms. Each 1632 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address 1633 * space. 1634 * 1635 */ 1636 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915) 1637 { 1638 struct i915_hw_ppgtt *ppgtt; 1639 int err; 1640 1641 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); 1642 if (!ppgtt) 1643 return ERR_PTR(-ENOMEM); 1644 1645 kref_init(&ppgtt->ref); 1646 1647 ppgtt->vm.i915 = i915; 1648 ppgtt->vm.dma = &i915->drm.pdev->dev; 1649 1650 ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ? 1651 1ULL << 48 : 1652 1ULL << 32; 1653 1654 /* 1655 * From bdw, there is support for read-only pages in the PPGTT. 1656 * 1657 * XXX GVT is not honouring the lack of RW in the PTE bits. 1658 */ 1659 ppgtt->vm.has_read_only = !intel_vgpu_active(i915); 1660 1661 i915_address_space_init(&ppgtt->vm, i915); 1662 1663 /* There are only few exceptions for gen >=6. chv and bxt. 1664 * And we are not sure about the latter so play safe for now. 1665 */ 1666 if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915)) 1667 ppgtt->vm.pt_kmap_wc = true; 1668 1669 err = gen8_init_scratch(&ppgtt->vm); 1670 if (err) 1671 goto err_free; 1672 1673 if (use_4lvl(&ppgtt->vm)) { 1674 err = setup_px(&ppgtt->vm, &ppgtt->pml4); 1675 if (err) 1676 goto err_scratch; 1677 1678 gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4); 1679 1680 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl; 1681 ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl; 1682 ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl; 1683 } else { 1684 err = __pdp_init(&ppgtt->vm, &ppgtt->pdp); 1685 if (err) 1686 goto err_scratch; 1687 1688 if (intel_vgpu_active(i915)) { 1689 err = gen8_preallocate_top_level_pdp(ppgtt); 1690 if (err) { 1691 __pdp_fini(&ppgtt->pdp); 1692 goto err_scratch; 1693 } 1694 } 1695 1696 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl; 1697 ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl; 1698 ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl; 1699 } 1700 1701 if (intel_vgpu_active(i915)) 1702 gen8_ppgtt_notify_vgt(ppgtt, true); 1703 1704 ppgtt->vm.cleanup = gen8_ppgtt_cleanup; 1705 ppgtt->debug_dump = gen8_dump_ppgtt; 1706 1707 ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma; 1708 ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma; 1709 ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages; 1710 ppgtt->vm.vma_ops.clear_pages = clear_pages; 1711 1712 return ppgtt; 1713 1714 err_scratch: 1715 gen8_free_scratch(&ppgtt->vm); 1716 err_free: 1717 kfree(ppgtt); 1718 return ERR_PTR(err); 1719 } 1720 1721 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m) 1722 { 1723 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base); 1724 const gen6_pte_t scratch_pte = ppgtt->scratch_pte; 1725 struct i915_page_table *pt; 1726 u32 pte, pde; 1727 1728 gen6_for_all_pdes(pt, &base->pd, pde) { 1729 gen6_pte_t *vaddr; 1730 1731 if (pt == base->vm.scratch_pt) 1732 continue; 1733 1734 if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) { 1735 u32 expected = 1736 GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | 1737 GEN6_PDE_VALID; 1738 u32 pd_entry = readl(ppgtt->pd_addr + pde); 1739 1740 if (pd_entry != expected) 1741 seq_printf(m, 1742 "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", 1743 pde, 1744 pd_entry, 1745 expected); 1746 1747 seq_printf(m, "\tPDE: %x\n", pd_entry); 1748 } 1749 1750 vaddr = kmap_atomic_px(base->pd.page_table[pde]); 1751 for (pte = 0; pte < GEN6_PTES; pte += 4) { 1752 int i; 1753 1754 for (i = 0; i < 4; i++) 1755 if (vaddr[pte + i] != scratch_pte) 1756 break; 1757 if (i == 4) 1758 continue; 1759 1760 seq_printf(m, "\t\t(%03d, %04d) %08llx: ", 1761 pde, pte, 1762 (pde * GEN6_PTES + pte) * I915_GTT_PAGE_SIZE); 1763 for (i = 0; i < 4; i++) { 1764 if (vaddr[pte + i] != scratch_pte) 1765 seq_printf(m, " %08x", vaddr[pte + i]); 1766 else 1767 seq_puts(m, " SCRATCH"); 1768 } 1769 seq_puts(m, "\n"); 1770 } 1771 kunmap_atomic(vaddr); 1772 } 1773 } 1774 1775 /* Write pde (index) from the page directory @pd to the page table @pt */ 1776 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt, 1777 const unsigned int pde, 1778 const struct i915_page_table *pt) 1779 { 1780 /* Caller needs to make sure the write completes if necessary */ 1781 iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID, 1782 ppgtt->pd_addr + pde); 1783 } 1784 1785 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv) 1786 { 1787 struct intel_engine_cs *engine; 1788 enum intel_engine_id id; 1789 1790 for_each_engine(engine, dev_priv, id) { 1791 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ? 1792 GEN8_GFX_PPGTT_48B : 0; 1793 I915_WRITE(RING_MODE_GEN7(engine), 1794 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level)); 1795 } 1796 } 1797 1798 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv) 1799 { 1800 struct intel_engine_cs *engine; 1801 u32 ecochk, ecobits; 1802 enum intel_engine_id id; 1803 1804 ecobits = I915_READ(GAC_ECO_BITS); 1805 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); 1806 1807 ecochk = I915_READ(GAM_ECOCHK); 1808 if (IS_HASWELL(dev_priv)) { 1809 ecochk |= ECOCHK_PPGTT_WB_HSW; 1810 } else { 1811 ecochk |= ECOCHK_PPGTT_LLC_IVB; 1812 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; 1813 } 1814 I915_WRITE(GAM_ECOCHK, ecochk); 1815 1816 for_each_engine(engine, dev_priv, id) { 1817 /* GFX_MODE is per-ring on gen7+ */ 1818 I915_WRITE(RING_MODE_GEN7(engine), 1819 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1820 } 1821 } 1822 1823 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv) 1824 { 1825 u32 ecochk, gab_ctl, ecobits; 1826 1827 ecobits = I915_READ(GAC_ECO_BITS); 1828 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | 1829 ECOBITS_PPGTT_CACHE64B); 1830 1831 gab_ctl = I915_READ(GAB_CTL); 1832 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); 1833 1834 ecochk = I915_READ(GAM_ECOCHK); 1835 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); 1836 1837 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1838 } 1839 1840 /* PPGTT support for Sandybdrige/Gen6 and later */ 1841 static void gen6_ppgtt_clear_range(struct i915_address_space *vm, 1842 u64 start, u64 length) 1843 { 1844 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); 1845 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 1846 unsigned int pde = first_entry / GEN6_PTES; 1847 unsigned int pte = first_entry % GEN6_PTES; 1848 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 1849 const gen6_pte_t scratch_pte = ppgtt->scratch_pte; 1850 1851 while (num_entries) { 1852 struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++]; 1853 const unsigned int end = min(pte + num_entries, GEN6_PTES); 1854 const unsigned int count = end - pte; 1855 gen6_pte_t *vaddr; 1856 1857 GEM_BUG_ON(pt == vm->scratch_pt); 1858 1859 num_entries -= count; 1860 1861 GEM_BUG_ON(count > pt->used_ptes); 1862 pt->used_ptes -= count; 1863 if (!pt->used_ptes) 1864 ppgtt->scan_for_unused_pt = true; 1865 1866 /* 1867 * Note that the hw doesn't support removing PDE on the fly 1868 * (they are cached inside the context with no means to 1869 * invalidate the cache), so we can only reset the PTE 1870 * entries back to scratch. 1871 */ 1872 1873 vaddr = kmap_atomic_px(pt); 1874 do { 1875 vaddr[pte++] = scratch_pte; 1876 } while (pte < end); 1877 kunmap_atomic(vaddr); 1878 1879 pte = 0; 1880 } 1881 } 1882 1883 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, 1884 struct i915_vma *vma, 1885 enum i915_cache_level cache_level, 1886 u32 flags) 1887 { 1888 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1889 unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE; 1890 unsigned act_pt = first_entry / GEN6_PTES; 1891 unsigned act_pte = first_entry % GEN6_PTES; 1892 const u32 pte_encode = vm->pte_encode(0, cache_level, flags); 1893 struct sgt_dma iter = sgt_dma(vma); 1894 gen6_pte_t *vaddr; 1895 1896 GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt); 1897 1898 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]); 1899 do { 1900 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma); 1901 1902 iter.dma += I915_GTT_PAGE_SIZE; 1903 if (iter.dma == iter.max) { 1904 iter.sg = __sg_next(iter.sg); 1905 if (!iter.sg) 1906 break; 1907 1908 iter.dma = sg_dma_address(iter.sg); 1909 iter.max = iter.dma + iter.sg->length; 1910 } 1911 1912 if (++act_pte == GEN6_PTES) { 1913 kunmap_atomic(vaddr); 1914 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]); 1915 act_pte = 0; 1916 } 1917 } while (1); 1918 kunmap_atomic(vaddr); 1919 1920 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 1921 } 1922 1923 static int gen6_alloc_va_range(struct i915_address_space *vm, 1924 u64 start, u64 length) 1925 { 1926 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); 1927 struct i915_page_table *pt; 1928 u64 from = start; 1929 unsigned int pde; 1930 bool flush = false; 1931 1932 gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) { 1933 const unsigned int count = gen6_pte_count(start, length); 1934 1935 if (pt == vm->scratch_pt) { 1936 pt = alloc_pt(vm); 1937 if (IS_ERR(pt)) 1938 goto unwind_out; 1939 1940 gen6_initialize_pt(ppgtt, pt); 1941 ppgtt->base.pd.page_table[pde] = pt; 1942 1943 if (i915_vma_is_bound(ppgtt->vma, 1944 I915_VMA_GLOBAL_BIND)) { 1945 gen6_write_pde(ppgtt, pde, pt); 1946 flush = true; 1947 } 1948 1949 GEM_BUG_ON(pt->used_ptes); 1950 } 1951 1952 pt->used_ptes += count; 1953 } 1954 1955 if (flush) { 1956 mark_tlbs_dirty(&ppgtt->base); 1957 gen6_ggtt_invalidate(ppgtt->base.vm.i915); 1958 } 1959 1960 return 0; 1961 1962 unwind_out: 1963 gen6_ppgtt_clear_range(vm, from, start - from); 1964 return -ENOMEM; 1965 } 1966 1967 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt) 1968 { 1969 struct i915_address_space * const vm = &ppgtt->base.vm; 1970 struct i915_page_table *unused; 1971 u32 pde; 1972 int ret; 1973 1974 ret = setup_scratch_page(vm, __GFP_HIGHMEM); 1975 if (ret) 1976 return ret; 1977 1978 ppgtt->scratch_pte = 1979 vm->pte_encode(vm->scratch_page.daddr, 1980 I915_CACHE_NONE, PTE_READ_ONLY); 1981 1982 vm->scratch_pt = alloc_pt(vm); 1983 if (IS_ERR(vm->scratch_pt)) { 1984 cleanup_scratch_page(vm); 1985 return PTR_ERR(vm->scratch_pt); 1986 } 1987 1988 gen6_initialize_pt(ppgtt, vm->scratch_pt); 1989 gen6_for_all_pdes(unused, &ppgtt->base.pd, pde) 1990 ppgtt->base.pd.page_table[pde] = vm->scratch_pt; 1991 1992 return 0; 1993 } 1994 1995 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm) 1996 { 1997 free_pt(vm, vm->scratch_pt); 1998 cleanup_scratch_page(vm); 1999 } 2000 2001 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt) 2002 { 2003 struct i915_page_table *pt; 2004 u32 pde; 2005 2006 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) 2007 if (pt != ppgtt->base.vm.scratch_pt) 2008 free_pt(&ppgtt->base.vm, pt); 2009 } 2010 2011 static void gen6_ppgtt_cleanup(struct i915_address_space *vm) 2012 { 2013 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); 2014 2015 i915_vma_destroy(ppgtt->vma); 2016 2017 gen6_ppgtt_free_pd(ppgtt); 2018 gen6_ppgtt_free_scratch(vm); 2019 } 2020 2021 static int pd_vma_set_pages(struct i915_vma *vma) 2022 { 2023 vma->pages = ERR_PTR(-ENODEV); 2024 return 0; 2025 } 2026 2027 static void pd_vma_clear_pages(struct i915_vma *vma) 2028 { 2029 GEM_BUG_ON(!vma->pages); 2030 2031 vma->pages = NULL; 2032 } 2033 2034 static int pd_vma_bind(struct i915_vma *vma, 2035 enum i915_cache_level cache_level, 2036 u32 unused) 2037 { 2038 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm); 2039 struct gen6_hw_ppgtt *ppgtt = vma->private; 2040 u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE; 2041 struct i915_page_table *pt; 2042 unsigned int pde; 2043 2044 ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t); 2045 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset; 2046 2047 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) 2048 gen6_write_pde(ppgtt, pde, pt); 2049 2050 mark_tlbs_dirty(&ppgtt->base); 2051 gen6_ggtt_invalidate(ppgtt->base.vm.i915); 2052 2053 return 0; 2054 } 2055 2056 static void pd_vma_unbind(struct i915_vma *vma) 2057 { 2058 struct gen6_hw_ppgtt *ppgtt = vma->private; 2059 struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt; 2060 struct i915_page_table *pt; 2061 unsigned int pde; 2062 2063 if (!ppgtt->scan_for_unused_pt) 2064 return; 2065 2066 /* Free all no longer used page tables */ 2067 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) { 2068 if (pt->used_ptes || pt == scratch_pt) 2069 continue; 2070 2071 free_pt(&ppgtt->base.vm, pt); 2072 ppgtt->base.pd.page_table[pde] = scratch_pt; 2073 } 2074 2075 ppgtt->scan_for_unused_pt = false; 2076 } 2077 2078 static const struct i915_vma_ops pd_vma_ops = { 2079 .set_pages = pd_vma_set_pages, 2080 .clear_pages = pd_vma_clear_pages, 2081 .bind_vma = pd_vma_bind, 2082 .unbind_vma = pd_vma_unbind, 2083 }; 2084 2085 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size) 2086 { 2087 struct drm_i915_private *i915 = ppgtt->base.vm.i915; 2088 struct i915_ggtt *ggtt = &i915->ggtt; 2089 struct i915_vma *vma; 2090 2091 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 2092 GEM_BUG_ON(size > ggtt->vm.total); 2093 2094 vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL); 2095 if (!vma) 2096 return ERR_PTR(-ENOMEM); 2097 2098 init_request_active(&vma->last_fence, NULL); 2099 2100 vma->vm = &ggtt->vm; 2101 vma->ops = &pd_vma_ops; 2102 vma->private = ppgtt; 2103 2104 vma->active = RB_ROOT; 2105 2106 vma->size = size; 2107 vma->fence_size = size; 2108 vma->flags = I915_VMA_GGTT; 2109 vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */ 2110 2111 INIT_LIST_HEAD(&vma->obj_link); 2112 list_add(&vma->vm_link, &vma->vm->unbound_list); 2113 2114 return vma; 2115 } 2116 2117 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base) 2118 { 2119 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base); 2120 2121 /* 2122 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt 2123 * which will be pinned into every active context. 2124 * (When vma->pin_count becomes atomic, I expect we will naturally 2125 * need a larger, unpacked, type and kill this redundancy.) 2126 */ 2127 if (ppgtt->pin_count++) 2128 return 0; 2129 2130 /* 2131 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The 2132 * allocator works in address space sizes, so it's multiplied by page 2133 * size. We allocate at the top of the GTT to avoid fragmentation. 2134 */ 2135 return i915_vma_pin(ppgtt->vma, 2136 0, GEN6_PD_ALIGN, 2137 PIN_GLOBAL | PIN_HIGH); 2138 } 2139 2140 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base) 2141 { 2142 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base); 2143 2144 GEM_BUG_ON(!ppgtt->pin_count); 2145 if (--ppgtt->pin_count) 2146 return; 2147 2148 i915_vma_unpin(ppgtt->vma); 2149 } 2150 2151 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915) 2152 { 2153 struct i915_ggtt * const ggtt = &i915->ggtt; 2154 struct gen6_hw_ppgtt *ppgtt; 2155 int err; 2156 2157 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); 2158 if (!ppgtt) 2159 return ERR_PTR(-ENOMEM); 2160 2161 kref_init(&ppgtt->base.ref); 2162 2163 ppgtt->base.vm.i915 = i915; 2164 ppgtt->base.vm.dma = &i915->drm.pdev->dev; 2165 2166 ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE; 2167 2168 i915_address_space_init(&ppgtt->base.vm, i915); 2169 2170 ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range; 2171 ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range; 2172 ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries; 2173 ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup; 2174 ppgtt->base.debug_dump = gen6_dump_ppgtt; 2175 2176 ppgtt->base.vm.vma_ops.bind_vma = ppgtt_bind_vma; 2177 ppgtt->base.vm.vma_ops.unbind_vma = ppgtt_unbind_vma; 2178 ppgtt->base.vm.vma_ops.set_pages = ppgtt_set_pages; 2179 ppgtt->base.vm.vma_ops.clear_pages = clear_pages; 2180 2181 ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode; 2182 2183 err = gen6_ppgtt_init_scratch(ppgtt); 2184 if (err) 2185 goto err_free; 2186 2187 ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE); 2188 if (IS_ERR(ppgtt->vma)) { 2189 err = PTR_ERR(ppgtt->vma); 2190 goto err_scratch; 2191 } 2192 2193 return &ppgtt->base; 2194 2195 err_scratch: 2196 gen6_ppgtt_free_scratch(&ppgtt->base.vm); 2197 err_free: 2198 kfree(ppgtt); 2199 return ERR_PTR(err); 2200 } 2201 2202 static void gtt_write_workarounds(struct drm_i915_private *dev_priv) 2203 { 2204 /* This function is for gtt related workarounds. This function is 2205 * called on driver load and after a GPU reset, so you can place 2206 * workarounds here even if they get overwritten by GPU reset. 2207 */ 2208 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ 2209 if (IS_BROADWELL(dev_priv)) 2210 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 2211 else if (IS_CHERRYVIEW(dev_priv)) 2212 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 2213 else if (IS_GEN9_LP(dev_priv)) 2214 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 2215 else if (INTEL_GEN(dev_priv) >= 9) 2216 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 2217 2218 /* 2219 * To support 64K PTEs we need to first enable the use of the 2220 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical 2221 * mmio, otherwise the page-walker will simply ignore the IPS bit. This 2222 * shouldn't be needed after GEN10. 2223 * 2224 * 64K pages were first introduced from BDW+, although technically they 2225 * only *work* from gen9+. For pre-BDW we instead have the option for 2226 * 32K pages, but we don't currently have any support for it in our 2227 * driver. 2228 */ 2229 if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) && 2230 INTEL_GEN(dev_priv) <= 10) 2231 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA, 2232 I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) | 2233 GAMW_ECO_ENABLE_64K_IPS_FIELD); 2234 } 2235 2236 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv) 2237 { 2238 gtt_write_workarounds(dev_priv); 2239 2240 /* In the case of execlists, PPGTT is enabled by the context descriptor 2241 * and the PDPs are contained within the context itself. We don't 2242 * need to do anything here. */ 2243 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) 2244 return 0; 2245 2246 if (!USES_PPGTT(dev_priv)) 2247 return 0; 2248 2249 if (IS_GEN6(dev_priv)) 2250 gen6_ppgtt_enable(dev_priv); 2251 else if (IS_GEN7(dev_priv)) 2252 gen7_ppgtt_enable(dev_priv); 2253 else if (INTEL_GEN(dev_priv) >= 8) 2254 gen8_ppgtt_enable(dev_priv); 2255 else 2256 MISSING_CASE(INTEL_GEN(dev_priv)); 2257 2258 return 0; 2259 } 2260 2261 static struct i915_hw_ppgtt * 2262 __hw_ppgtt_create(struct drm_i915_private *i915) 2263 { 2264 if (INTEL_GEN(i915) < 8) 2265 return gen6_ppgtt_create(i915); 2266 else 2267 return gen8_ppgtt_create(i915); 2268 } 2269 2270 struct i915_hw_ppgtt * 2271 i915_ppgtt_create(struct drm_i915_private *i915, 2272 struct drm_i915_file_private *fpriv) 2273 { 2274 struct i915_hw_ppgtt *ppgtt; 2275 2276 ppgtt = __hw_ppgtt_create(i915); 2277 if (IS_ERR(ppgtt)) 2278 return ppgtt; 2279 2280 ppgtt->vm.file = fpriv; 2281 2282 trace_i915_ppgtt_create(&ppgtt->vm); 2283 2284 return ppgtt; 2285 } 2286 2287 void i915_ppgtt_close(struct i915_address_space *vm) 2288 { 2289 GEM_BUG_ON(vm->closed); 2290 vm->closed = true; 2291 } 2292 2293 static void ppgtt_destroy_vma(struct i915_address_space *vm) 2294 { 2295 struct list_head *phases[] = { 2296 &vm->active_list, 2297 &vm->inactive_list, 2298 &vm->unbound_list, 2299 NULL, 2300 }, **phase; 2301 2302 vm->closed = true; 2303 for (phase = phases; *phase; phase++) { 2304 struct i915_vma *vma, *vn; 2305 2306 list_for_each_entry_safe(vma, vn, *phase, vm_link) 2307 i915_vma_destroy(vma); 2308 } 2309 } 2310 2311 void i915_ppgtt_release(struct kref *kref) 2312 { 2313 struct i915_hw_ppgtt *ppgtt = 2314 container_of(kref, struct i915_hw_ppgtt, ref); 2315 2316 trace_i915_ppgtt_release(&ppgtt->vm); 2317 2318 ppgtt_destroy_vma(&ppgtt->vm); 2319 2320 GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list)); 2321 GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list)); 2322 GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list)); 2323 2324 ppgtt->vm.cleanup(&ppgtt->vm); 2325 i915_address_space_fini(&ppgtt->vm); 2326 kfree(ppgtt); 2327 } 2328 2329 /* Certain Gen5 chipsets require require idling the GPU before 2330 * unmapping anything from the GTT when VT-d is enabled. 2331 */ 2332 static bool needs_idle_maps(struct drm_i915_private *dev_priv) 2333 { 2334 /* Query intel_iommu to see if we need the workaround. Presumably that 2335 * was loaded first. 2336 */ 2337 return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active(); 2338 } 2339 2340 static void gen6_check_faults(struct drm_i915_private *dev_priv) 2341 { 2342 struct intel_engine_cs *engine; 2343 enum intel_engine_id id; 2344 u32 fault; 2345 2346 for_each_engine(engine, dev_priv, id) { 2347 fault = I915_READ(RING_FAULT_REG(engine)); 2348 if (fault & RING_FAULT_VALID) { 2349 DRM_DEBUG_DRIVER("Unexpected fault\n" 2350 "\tAddr: 0x%08lx\n" 2351 "\tAddress space: %s\n" 2352 "\tSource ID: %d\n" 2353 "\tType: %d\n", 2354 fault & PAGE_MASK, 2355 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", 2356 RING_FAULT_SRCID(fault), 2357 RING_FAULT_FAULT_TYPE(fault)); 2358 } 2359 } 2360 } 2361 2362 static void gen8_check_faults(struct drm_i915_private *dev_priv) 2363 { 2364 u32 fault = I915_READ(GEN8_RING_FAULT_REG); 2365 2366 if (fault & RING_FAULT_VALID) { 2367 u32 fault_data0, fault_data1; 2368 u64 fault_addr; 2369 2370 fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0); 2371 fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1); 2372 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 2373 ((u64)fault_data0 << 12); 2374 2375 DRM_DEBUG_DRIVER("Unexpected fault\n" 2376 "\tAddr: 0x%08x_%08x\n" 2377 "\tAddress space: %s\n" 2378 "\tEngine ID: %d\n" 2379 "\tSource ID: %d\n" 2380 "\tType: %d\n", 2381 upper_32_bits(fault_addr), 2382 lower_32_bits(fault_addr), 2383 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 2384 GEN8_RING_FAULT_ENGINE_ID(fault), 2385 RING_FAULT_SRCID(fault), 2386 RING_FAULT_FAULT_TYPE(fault)); 2387 } 2388 } 2389 2390 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv) 2391 { 2392 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 2393 if (INTEL_GEN(dev_priv) >= 8) 2394 gen8_check_faults(dev_priv); 2395 else if (INTEL_GEN(dev_priv) >= 6) 2396 gen6_check_faults(dev_priv); 2397 else 2398 return; 2399 2400 i915_clear_error_registers(dev_priv); 2401 } 2402 2403 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv) 2404 { 2405 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2406 2407 /* Don't bother messing with faults pre GEN6 as we have little 2408 * documentation supporting that it's a good idea. 2409 */ 2410 if (INTEL_GEN(dev_priv) < 6) 2411 return; 2412 2413 i915_check_and_clear_faults(dev_priv); 2414 2415 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); 2416 2417 i915_ggtt_invalidate(dev_priv); 2418 } 2419 2420 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, 2421 struct sg_table *pages) 2422 { 2423 do { 2424 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev, 2425 pages->sgl, pages->nents, 2426 PCI_DMA_BIDIRECTIONAL, 2427 DMA_ATTR_NO_WARN)) 2428 return 0; 2429 2430 /* If the DMA remap fails, one cause can be that we have 2431 * too many objects pinned in a small remapping table, 2432 * such as swiotlb. Incrementally purge all other objects and 2433 * try again - if there are no more pages to remove from 2434 * the DMA remapper, i915_gem_shrink will return 0. 2435 */ 2436 GEM_BUG_ON(obj->mm.pages == pages); 2437 } while (i915_gem_shrink(to_i915(obj->base.dev), 2438 obj->base.size >> PAGE_SHIFT, NULL, 2439 I915_SHRINK_BOUND | 2440 I915_SHRINK_UNBOUND | 2441 I915_SHRINK_ACTIVE)); 2442 2443 return -ENOSPC; 2444 } 2445 2446 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 2447 { 2448 writeq(pte, addr); 2449 } 2450 2451 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 2452 dma_addr_t addr, 2453 u64 offset, 2454 enum i915_cache_level level, 2455 u32 unused) 2456 { 2457 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2458 gen8_pte_t __iomem *pte = 2459 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 2460 2461 gen8_set_pte(pte, gen8_pte_encode(addr, level, 0)); 2462 2463 ggtt->invalidate(vm->i915); 2464 } 2465 2466 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 2467 struct i915_vma *vma, 2468 enum i915_cache_level level, 2469 u32 flags) 2470 { 2471 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2472 struct sgt_iter sgt_iter; 2473 gen8_pte_t __iomem *gtt_entries; 2474 const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0); 2475 dma_addr_t addr; 2476 2477 /* 2478 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 2479 * not to allow the user to override access to a read only page. 2480 */ 2481 2482 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm; 2483 gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE; 2484 for_each_sgt_dma(addr, sgt_iter, vma->pages) 2485 gen8_set_pte(gtt_entries++, pte_encode | addr); 2486 2487 /* 2488 * We want to flush the TLBs only after we're certain all the PTE 2489 * updates have finished. 2490 */ 2491 ggtt->invalidate(vm->i915); 2492 } 2493 2494 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 2495 dma_addr_t addr, 2496 u64 offset, 2497 enum i915_cache_level level, 2498 u32 flags) 2499 { 2500 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2501 gen6_pte_t __iomem *pte = 2502 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 2503 2504 iowrite32(vm->pte_encode(addr, level, flags), pte); 2505 2506 ggtt->invalidate(vm->i915); 2507 } 2508 2509 /* 2510 * Binds an object into the global gtt with the specified cache level. The object 2511 * will be accessible to the GPU via commands whose operands reference offsets 2512 * within the global GTT as well as accessible by the GPU through the GMADR 2513 * mapped BAR (dev_priv->mm.gtt->gtt). 2514 */ 2515 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 2516 struct i915_vma *vma, 2517 enum i915_cache_level level, 2518 u32 flags) 2519 { 2520 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2521 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm; 2522 unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE; 2523 struct sgt_iter iter; 2524 dma_addr_t addr; 2525 for_each_sgt_dma(addr, iter, vma->pages) 2526 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]); 2527 2528 /* 2529 * We want to flush the TLBs only after we're certain all the PTE 2530 * updates have finished. 2531 */ 2532 ggtt->invalidate(vm->i915); 2533 } 2534 2535 static void nop_clear_range(struct i915_address_space *vm, 2536 u64 start, u64 length) 2537 { 2538 } 2539 2540 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 2541 u64 start, u64 length) 2542 { 2543 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2544 unsigned first_entry = start / I915_GTT_PAGE_SIZE; 2545 unsigned num_entries = length / I915_GTT_PAGE_SIZE; 2546 const gen8_pte_t scratch_pte = 2547 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); 2548 gen8_pte_t __iomem *gtt_base = 2549 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 2550 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 2551 int i; 2552 2553 if (WARN(num_entries > max_entries, 2554 "First entry = %d; Num entries = %d (max=%d)\n", 2555 first_entry, num_entries, max_entries)) 2556 num_entries = max_entries; 2557 2558 for (i = 0; i < num_entries; i++) 2559 gen8_set_pte(>t_base[i], scratch_pte); 2560 } 2561 2562 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 2563 { 2564 struct drm_i915_private *dev_priv = vm->i915; 2565 2566 /* 2567 * Make sure the internal GAM fifo has been cleared of all GTT 2568 * writes before exiting stop_machine(). This guarantees that 2569 * any aperture accesses waiting to start in another process 2570 * cannot back up behind the GTT writes causing a hang. 2571 * The register can be any arbitrary GAM register. 2572 */ 2573 POSTING_READ(GFX_FLSH_CNTL_GEN6); 2574 } 2575 2576 struct insert_page { 2577 struct i915_address_space *vm; 2578 dma_addr_t addr; 2579 u64 offset; 2580 enum i915_cache_level level; 2581 }; 2582 2583 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 2584 { 2585 struct insert_page *arg = _arg; 2586 2587 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 2588 bxt_vtd_ggtt_wa(arg->vm); 2589 2590 return 0; 2591 } 2592 2593 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 2594 dma_addr_t addr, 2595 u64 offset, 2596 enum i915_cache_level level, 2597 u32 unused) 2598 { 2599 struct insert_page arg = { vm, addr, offset, level }; 2600 2601 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 2602 } 2603 2604 struct insert_entries { 2605 struct i915_address_space *vm; 2606 struct i915_vma *vma; 2607 enum i915_cache_level level; 2608 u32 flags; 2609 }; 2610 2611 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 2612 { 2613 struct insert_entries *arg = _arg; 2614 2615 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags); 2616 bxt_vtd_ggtt_wa(arg->vm); 2617 2618 return 0; 2619 } 2620 2621 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 2622 struct i915_vma *vma, 2623 enum i915_cache_level level, 2624 u32 flags) 2625 { 2626 struct insert_entries arg = { vm, vma, level, flags }; 2627 2628 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 2629 } 2630 2631 struct clear_range { 2632 struct i915_address_space *vm; 2633 u64 start; 2634 u64 length; 2635 }; 2636 2637 static int bxt_vtd_ggtt_clear_range__cb(void *_arg) 2638 { 2639 struct clear_range *arg = _arg; 2640 2641 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length); 2642 bxt_vtd_ggtt_wa(arg->vm); 2643 2644 return 0; 2645 } 2646 2647 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm, 2648 u64 start, 2649 u64 length) 2650 { 2651 struct clear_range arg = { vm, start, length }; 2652 2653 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL); 2654 } 2655 2656 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 2657 u64 start, u64 length) 2658 { 2659 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2660 unsigned first_entry = start / I915_GTT_PAGE_SIZE; 2661 unsigned num_entries = length / I915_GTT_PAGE_SIZE; 2662 gen6_pte_t scratch_pte, __iomem *gtt_base = 2663 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 2664 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 2665 int i; 2666 2667 if (WARN(num_entries > max_entries, 2668 "First entry = %d; Num entries = %d (max=%d)\n", 2669 first_entry, num_entries, max_entries)) 2670 num_entries = max_entries; 2671 2672 scratch_pte = vm->pte_encode(vm->scratch_page.daddr, 2673 I915_CACHE_LLC, 0); 2674 2675 for (i = 0; i < num_entries; i++) 2676 iowrite32(scratch_pte, >t_base[i]); 2677 } 2678 2679 static void i915_ggtt_insert_page(struct i915_address_space *vm, 2680 dma_addr_t addr, 2681 u64 offset, 2682 enum i915_cache_level cache_level, 2683 u32 unused) 2684 { 2685 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 2686 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 2687 2688 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); 2689 } 2690 2691 static void i915_ggtt_insert_entries(struct i915_address_space *vm, 2692 struct i915_vma *vma, 2693 enum i915_cache_level cache_level, 2694 u32 unused) 2695 { 2696 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 2697 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 2698 2699 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT, 2700 flags); 2701 } 2702 2703 static void i915_ggtt_clear_range(struct i915_address_space *vm, 2704 u64 start, u64 length) 2705 { 2706 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); 2707 } 2708 2709 static int ggtt_bind_vma(struct i915_vma *vma, 2710 enum i915_cache_level cache_level, 2711 u32 flags) 2712 { 2713 struct drm_i915_private *i915 = vma->vm->i915; 2714 struct drm_i915_gem_object *obj = vma->obj; 2715 u32 pte_flags; 2716 2717 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 2718 pte_flags = 0; 2719 if (i915_gem_object_is_readonly(obj)) 2720 pte_flags |= PTE_READ_ONLY; 2721 2722 intel_runtime_pm_get(i915); 2723 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 2724 intel_runtime_pm_put(i915); 2725 2726 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 2727 2728 /* 2729 * Without aliasing PPGTT there's no difference between 2730 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally 2731 * upgrade to both bound if we bind either to avoid double-binding. 2732 */ 2733 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 2734 2735 return 0; 2736 } 2737 2738 static void ggtt_unbind_vma(struct i915_vma *vma) 2739 { 2740 struct drm_i915_private *i915 = vma->vm->i915; 2741 2742 intel_runtime_pm_get(i915); 2743 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 2744 intel_runtime_pm_put(i915); 2745 } 2746 2747 static int aliasing_gtt_bind_vma(struct i915_vma *vma, 2748 enum i915_cache_level cache_level, 2749 u32 flags) 2750 { 2751 struct drm_i915_private *i915 = vma->vm->i915; 2752 u32 pte_flags; 2753 int ret; 2754 2755 /* Currently applicable only to VLV */ 2756 pte_flags = 0; 2757 if (i915_gem_object_is_readonly(vma->obj)) 2758 pte_flags |= PTE_READ_ONLY; 2759 2760 if (flags & I915_VMA_LOCAL_BIND) { 2761 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt; 2762 2763 if (!(vma->flags & I915_VMA_LOCAL_BIND)) { 2764 ret = appgtt->vm.allocate_va_range(&appgtt->vm, 2765 vma->node.start, 2766 vma->size); 2767 if (ret) 2768 return ret; 2769 } 2770 2771 appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level, 2772 pte_flags); 2773 } 2774 2775 if (flags & I915_VMA_GLOBAL_BIND) { 2776 intel_runtime_pm_get(i915); 2777 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 2778 intel_runtime_pm_put(i915); 2779 } 2780 2781 return 0; 2782 } 2783 2784 static void aliasing_gtt_unbind_vma(struct i915_vma *vma) 2785 { 2786 struct drm_i915_private *i915 = vma->vm->i915; 2787 2788 if (vma->flags & I915_VMA_GLOBAL_BIND) { 2789 intel_runtime_pm_get(i915); 2790 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 2791 intel_runtime_pm_put(i915); 2792 } 2793 2794 if (vma->flags & I915_VMA_LOCAL_BIND) { 2795 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm; 2796 2797 vm->clear_range(vm, vma->node.start, vma->size); 2798 } 2799 } 2800 2801 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, 2802 struct sg_table *pages) 2803 { 2804 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2805 struct device *kdev = &dev_priv->drm.pdev->dev; 2806 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2807 2808 if (unlikely(ggtt->do_idle_maps)) { 2809 if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) { 2810 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); 2811 /* Wait a bit, in hopes it avoids the hang */ 2812 udelay(10); 2813 } 2814 } 2815 2816 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL); 2817 } 2818 2819 static int ggtt_set_pages(struct i915_vma *vma) 2820 { 2821 int ret; 2822 2823 GEM_BUG_ON(vma->pages); 2824 2825 ret = i915_get_ggtt_vma_pages(vma); 2826 if (ret) 2827 return ret; 2828 2829 vma->page_sizes = vma->obj->mm.page_sizes; 2830 2831 return 0; 2832 } 2833 2834 static void i915_gtt_color_adjust(const struct drm_mm_node *node, 2835 unsigned long color, 2836 u64 *start, 2837 u64 *end) 2838 { 2839 if (node->allocated && node->color != color) 2840 *start += I915_GTT_PAGE_SIZE; 2841 2842 /* Also leave a space between the unallocated reserved node after the 2843 * GTT and any objects within the GTT, i.e. we use the color adjustment 2844 * to insert a guard page to prevent prefetches crossing over the 2845 * GTT boundary. 2846 */ 2847 node = list_next_entry(node, node_list); 2848 if (node->color != color) 2849 *end -= I915_GTT_PAGE_SIZE; 2850 } 2851 2852 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915) 2853 { 2854 struct i915_ggtt *ggtt = &i915->ggtt; 2855 struct i915_hw_ppgtt *ppgtt; 2856 int err; 2857 2858 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM)); 2859 if (IS_ERR(ppgtt)) 2860 return PTR_ERR(ppgtt); 2861 2862 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 2863 err = -ENODEV; 2864 goto err_ppgtt; 2865 } 2866 2867 /* 2868 * Note we only pre-allocate as far as the end of the global 2869 * GTT. On 48b / 4-level page-tables, the difference is very, 2870 * very significant! We have to preallocate as GVT/vgpu does 2871 * not like the page directory disappearing. 2872 */ 2873 err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total); 2874 if (err) 2875 goto err_ppgtt; 2876 2877 i915->mm.aliasing_ppgtt = ppgtt; 2878 2879 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma); 2880 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 2881 2882 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma); 2883 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 2884 2885 return 0; 2886 2887 err_ppgtt: 2888 i915_ppgtt_put(ppgtt); 2889 return err; 2890 } 2891 2892 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915) 2893 { 2894 struct i915_ggtt *ggtt = &i915->ggtt; 2895 struct i915_hw_ppgtt *ppgtt; 2896 2897 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt); 2898 if (!ppgtt) 2899 return; 2900 2901 i915_ppgtt_put(ppgtt); 2902 2903 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 2904 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 2905 } 2906 2907 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) 2908 { 2909 /* Let GEM Manage all of the aperture. 2910 * 2911 * However, leave one page at the end still bound to the scratch page. 2912 * There are a number of places where the hardware apparently prefetches 2913 * past the end of the object, and we've seen multiple hangs with the 2914 * GPU head pointer stuck in a batchbuffer bound at the last page of the 2915 * aperture. One page should be enough to keep any prefetching inside 2916 * of the aperture. 2917 */ 2918 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2919 unsigned long hole_start, hole_end; 2920 struct drm_mm_node *entry; 2921 int ret; 2922 2923 /* 2924 * GuC requires all resources that we're sharing with it to be placed in 2925 * non-WOPCM memory. If GuC is not present or not in use we still need a 2926 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 2927 * why. 2928 */ 2929 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 2930 intel_guc_reserved_gtt_size(&dev_priv->guc)); 2931 2932 ret = intel_vgt_balloon(dev_priv); 2933 if (ret) 2934 return ret; 2935 2936 /* Reserve a mappable slot for our lockless error capture */ 2937 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture, 2938 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 2939 0, ggtt->mappable_end, 2940 DRM_MM_INSERT_LOW); 2941 if (ret) 2942 return ret; 2943 2944 /* Clear any non-preallocated blocks */ 2945 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 2946 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", 2947 hole_start, hole_end); 2948 ggtt->vm.clear_range(&ggtt->vm, hole_start, 2949 hole_end - hole_start); 2950 } 2951 2952 /* And finally clear the reserved guard page */ 2953 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 2954 2955 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) { 2956 ret = i915_gem_init_aliasing_ppgtt(dev_priv); 2957 if (ret) 2958 goto err; 2959 } 2960 2961 return 0; 2962 2963 err: 2964 drm_mm_remove_node(&ggtt->error_capture); 2965 return ret; 2966 } 2967 2968 /** 2969 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization 2970 * @dev_priv: i915 device 2971 */ 2972 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) 2973 { 2974 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2975 struct i915_vma *vma, *vn; 2976 struct pagevec *pvec; 2977 2978 ggtt->vm.closed = true; 2979 2980 mutex_lock(&dev_priv->drm.struct_mutex); 2981 i915_gem_fini_aliasing_ppgtt(dev_priv); 2982 2983 GEM_BUG_ON(!list_empty(&ggtt->vm.active_list)); 2984 list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) 2985 WARN_ON(i915_vma_unbind(vma)); 2986 2987 if (drm_mm_node_allocated(&ggtt->error_capture)) 2988 drm_mm_remove_node(&ggtt->error_capture); 2989 2990 if (drm_mm_initialized(&ggtt->vm.mm)) { 2991 intel_vgt_deballoon(dev_priv); 2992 i915_address_space_fini(&ggtt->vm); 2993 } 2994 2995 ggtt->vm.cleanup(&ggtt->vm); 2996 2997 pvec = &dev_priv->mm.wc_stash.pvec; 2998 if (pvec->nr) { 2999 set_pages_array_wb(pvec->pages, pvec->nr); 3000 __pagevec_release(pvec); 3001 } 3002 3003 mutex_unlock(&dev_priv->drm.struct_mutex); 3004 3005 arch_phys_wc_del(ggtt->mtrr); 3006 io_mapping_fini(&ggtt->iomap); 3007 3008 i915_gem_cleanup_stolen(dev_priv); 3009 } 3010 3011 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 3012 { 3013 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 3014 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 3015 return snb_gmch_ctl << 20; 3016 } 3017 3018 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 3019 { 3020 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 3021 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 3022 if (bdw_gmch_ctl) 3023 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 3024 3025 #ifdef CONFIG_X86_32 3026 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 3027 if (bdw_gmch_ctl > 4) 3028 bdw_gmch_ctl = 4; 3029 #endif 3030 3031 return bdw_gmch_ctl << 20; 3032 } 3033 3034 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 3035 { 3036 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 3037 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 3038 3039 if (gmch_ctrl) 3040 return 1 << (20 + gmch_ctrl); 3041 3042 return 0; 3043 } 3044 3045 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 3046 { 3047 struct drm_i915_private *dev_priv = ggtt->vm.i915; 3048 struct pci_dev *pdev = dev_priv->drm.pdev; 3049 phys_addr_t phys_addr; 3050 int ret; 3051 3052 /* For Modern GENs the PTEs and register space are split in the BAR */ 3053 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; 3054 3055 /* 3056 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range 3057 * will be dropped. For WC mappings in general we have 64 byte burst 3058 * writes when the WC buffer is flushed, so we can't use it, but have to 3059 * resort to an uncached mapping. The WC issue is easily caught by the 3060 * readback check when writing GTT PTE entries. 3061 */ 3062 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) 3063 ggtt->gsm = ioremap_nocache(phys_addr, size); 3064 else 3065 ggtt->gsm = ioremap_wc(phys_addr, size); 3066 if (!ggtt->gsm) { 3067 DRM_ERROR("Failed to map the ggtt page table\n"); 3068 return -ENOMEM; 3069 } 3070 3071 ret = setup_scratch_page(&ggtt->vm, GFP_DMA32); 3072 if (ret) { 3073 DRM_ERROR("Scratch setup failed\n"); 3074 /* iounmap will also get called at remove, but meh */ 3075 iounmap(ggtt->gsm); 3076 return ret; 3077 } 3078 3079 return 0; 3080 } 3081 3082 static struct intel_ppat_entry * 3083 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value) 3084 { 3085 struct intel_ppat_entry *entry = &ppat->entries[index]; 3086 3087 GEM_BUG_ON(index >= ppat->max_entries); 3088 GEM_BUG_ON(test_bit(index, ppat->used)); 3089 3090 entry->ppat = ppat; 3091 entry->value = value; 3092 kref_init(&entry->ref); 3093 set_bit(index, ppat->used); 3094 set_bit(index, ppat->dirty); 3095 3096 return entry; 3097 } 3098 3099 static void __free_ppat_entry(struct intel_ppat_entry *entry) 3100 { 3101 struct intel_ppat *ppat = entry->ppat; 3102 unsigned int index = entry - ppat->entries; 3103 3104 GEM_BUG_ON(index >= ppat->max_entries); 3105 GEM_BUG_ON(!test_bit(index, ppat->used)); 3106 3107 entry->value = ppat->clear_value; 3108 clear_bit(index, ppat->used); 3109 set_bit(index, ppat->dirty); 3110 } 3111 3112 /** 3113 * intel_ppat_get - get a usable PPAT entry 3114 * @i915: i915 device instance 3115 * @value: the PPAT value required by the caller 3116 * 3117 * The function tries to search if there is an existing PPAT entry which 3118 * matches with the required value. If perfectly matched, the existing PPAT 3119 * entry will be used. If only partially matched, it will try to check if 3120 * there is any available PPAT index. If yes, it will allocate a new PPAT 3121 * index for the required entry and update the HW. If not, the partially 3122 * matched entry will be used. 3123 */ 3124 const struct intel_ppat_entry * 3125 intel_ppat_get(struct drm_i915_private *i915, u8 value) 3126 { 3127 struct intel_ppat *ppat = &i915->ppat; 3128 struct intel_ppat_entry *entry = NULL; 3129 unsigned int scanned, best_score; 3130 int i; 3131 3132 GEM_BUG_ON(!ppat->max_entries); 3133 3134 scanned = best_score = 0; 3135 for_each_set_bit(i, ppat->used, ppat->max_entries) { 3136 unsigned int score; 3137 3138 score = ppat->match(ppat->entries[i].value, value); 3139 if (score > best_score) { 3140 entry = &ppat->entries[i]; 3141 if (score == INTEL_PPAT_PERFECT_MATCH) { 3142 kref_get(&entry->ref); 3143 return entry; 3144 } 3145 best_score = score; 3146 } 3147 scanned++; 3148 } 3149 3150 if (scanned == ppat->max_entries) { 3151 if (!entry) 3152 return ERR_PTR(-ENOSPC); 3153 3154 kref_get(&entry->ref); 3155 return entry; 3156 } 3157 3158 i = find_first_zero_bit(ppat->used, ppat->max_entries); 3159 entry = __alloc_ppat_entry(ppat, i, value); 3160 ppat->update_hw(i915); 3161 return entry; 3162 } 3163 3164 static void release_ppat(struct kref *kref) 3165 { 3166 struct intel_ppat_entry *entry = 3167 container_of(kref, struct intel_ppat_entry, ref); 3168 struct drm_i915_private *i915 = entry->ppat->i915; 3169 3170 __free_ppat_entry(entry); 3171 entry->ppat->update_hw(i915); 3172 } 3173 3174 /** 3175 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get() 3176 * @entry: an intel PPAT entry 3177 * 3178 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the 3179 * entry is dynamically allocated, its reference count will be decreased. Once 3180 * the reference count becomes into zero, the PPAT index becomes free again. 3181 */ 3182 void intel_ppat_put(const struct intel_ppat_entry *entry) 3183 { 3184 struct intel_ppat *ppat = entry->ppat; 3185 unsigned int index = entry - ppat->entries; 3186 3187 GEM_BUG_ON(!ppat->max_entries); 3188 3189 kref_put(&ppat->entries[index].ref, release_ppat); 3190 } 3191 3192 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv) 3193 { 3194 struct intel_ppat *ppat = &dev_priv->ppat; 3195 int i; 3196 3197 for_each_set_bit(i, ppat->dirty, ppat->max_entries) { 3198 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value); 3199 clear_bit(i, ppat->dirty); 3200 } 3201 } 3202 3203 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv) 3204 { 3205 struct intel_ppat *ppat = &dev_priv->ppat; 3206 u64 pat = 0; 3207 int i; 3208 3209 for (i = 0; i < ppat->max_entries; i++) 3210 pat |= GEN8_PPAT(i, ppat->entries[i].value); 3211 3212 bitmap_clear(ppat->dirty, 0, ppat->max_entries); 3213 3214 I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 3215 I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 3216 } 3217 3218 static unsigned int bdw_private_pat_match(u8 src, u8 dst) 3219 { 3220 unsigned int score = 0; 3221 enum { 3222 AGE_MATCH = BIT(0), 3223 TC_MATCH = BIT(1), 3224 CA_MATCH = BIT(2), 3225 }; 3226 3227 /* Cache attribute has to be matched. */ 3228 if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst)) 3229 return 0; 3230 3231 score |= CA_MATCH; 3232 3233 if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst)) 3234 score |= TC_MATCH; 3235 3236 if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst)) 3237 score |= AGE_MATCH; 3238 3239 if (score == (AGE_MATCH | TC_MATCH | CA_MATCH)) 3240 return INTEL_PPAT_PERFECT_MATCH; 3241 3242 return score; 3243 } 3244 3245 static unsigned int chv_private_pat_match(u8 src, u8 dst) 3246 { 3247 return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ? 3248 INTEL_PPAT_PERFECT_MATCH : 0; 3249 } 3250 3251 static void cnl_setup_private_ppat(struct intel_ppat *ppat) 3252 { 3253 ppat->max_entries = 8; 3254 ppat->update_hw = cnl_private_pat_update_hw; 3255 ppat->match = bdw_private_pat_match; 3256 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); 3257 3258 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); 3259 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); 3260 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); 3261 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); 3262 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 3263 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 3264 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 3265 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 3266 } 3267 3268 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 3269 * bits. When using advanced contexts each context stores its own PAT, but 3270 * writing this data shouldn't be harmful even in those cases. */ 3271 static void bdw_setup_private_ppat(struct intel_ppat *ppat) 3272 { 3273 ppat->max_entries = 8; 3274 ppat->update_hw = bdw_private_pat_update_hw; 3275 ppat->match = bdw_private_pat_match; 3276 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); 3277 3278 if (!USES_PPGTT(ppat->i915)) { 3279 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, 3280 * so RTL will always use the value corresponding to 3281 * pat_sel = 000". 3282 * So let's disable cache for GGTT to avoid screen corruptions. 3283 * MOCS still can be used though. 3284 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work 3285 * before this patch, i.e. the same uncached + snooping access 3286 * like on gen6/7 seems to be in effect. 3287 * - So this just fixes blitter/render access. Again it looks 3288 * like it's not just uncached access, but uncached + snooping. 3289 * So we can still hold onto all our assumptions wrt cpu 3290 * clflushing on LLC machines. 3291 */ 3292 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC); 3293 return; 3294 } 3295 3296 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */ 3297 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */ 3298 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */ 3299 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */ 3300 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 3301 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 3302 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 3303 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 3304 } 3305 3306 static void chv_setup_private_ppat(struct intel_ppat *ppat) 3307 { 3308 ppat->max_entries = 8; 3309 ppat->update_hw = bdw_private_pat_update_hw; 3310 ppat->match = chv_private_pat_match; 3311 ppat->clear_value = CHV_PPAT_SNOOP; 3312 3313 /* 3314 * Map WB on BDW to snooped on CHV. 3315 * 3316 * Only the snoop bit has meaning for CHV, the rest is 3317 * ignored. 3318 * 3319 * The hardware will never snoop for certain types of accesses: 3320 * - CPU GTT (GMADR->GGTT->no snoop->memory) 3321 * - PPGTT page tables 3322 * - some other special cycles 3323 * 3324 * As with BDW, we also need to consider the following for GT accesses: 3325 * "For GGTT, there is NO pat_sel[2:0] from the entry, 3326 * so RTL will always use the value corresponding to 3327 * pat_sel = 000". 3328 * Which means we must set the snoop bit in PAT entry 0 3329 * in order to keep the global status page working. 3330 */ 3331 3332 __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP); 3333 __alloc_ppat_entry(ppat, 1, 0); 3334 __alloc_ppat_entry(ppat, 2, 0); 3335 __alloc_ppat_entry(ppat, 3, 0); 3336 __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP); 3337 __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP); 3338 __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP); 3339 __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP); 3340 } 3341 3342 static void gen6_gmch_remove(struct i915_address_space *vm) 3343 { 3344 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 3345 3346 iounmap(ggtt->gsm); 3347 cleanup_scratch_page(vm); 3348 } 3349 3350 static void setup_private_pat(struct drm_i915_private *dev_priv) 3351 { 3352 struct intel_ppat *ppat = &dev_priv->ppat; 3353 int i; 3354 3355 ppat->i915 = dev_priv; 3356 3357 if (INTEL_GEN(dev_priv) >= 10) 3358 cnl_setup_private_ppat(ppat); 3359 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) 3360 chv_setup_private_ppat(ppat); 3361 else 3362 bdw_setup_private_ppat(ppat); 3363 3364 GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES); 3365 3366 for_each_clear_bit(i, ppat->used, ppat->max_entries) { 3367 ppat->entries[i].value = ppat->clear_value; 3368 ppat->entries[i].ppat = ppat; 3369 set_bit(i, ppat->dirty); 3370 } 3371 3372 ppat->update_hw(dev_priv); 3373 } 3374 3375 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 3376 { 3377 struct drm_i915_private *dev_priv = ggtt->vm.i915; 3378 struct pci_dev *pdev = dev_priv->drm.pdev; 3379 unsigned int size; 3380 u16 snb_gmch_ctl; 3381 int err; 3382 3383 /* TODO: We're not aware of mappable constraints on gen8 yet */ 3384 ggtt->gmadr = 3385 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), 3386 pci_resource_len(pdev, 2)); 3387 ggtt->mappable_end = resource_size(&ggtt->gmadr); 3388 3389 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39)); 3390 if (!err) 3391 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); 3392 if (err) 3393 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); 3394 3395 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 3396 if (IS_CHERRYVIEW(dev_priv)) 3397 size = chv_get_total_gtt_size(snb_gmch_ctl); 3398 else 3399 size = gen8_get_total_gtt_size(snb_gmch_ctl); 3400 3401 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 3402 ggtt->vm.cleanup = gen6_gmch_remove; 3403 ggtt->vm.insert_page = gen8_ggtt_insert_page; 3404 ggtt->vm.clear_range = nop_clear_range; 3405 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv)) 3406 ggtt->vm.clear_range = gen8_ggtt_clear_range; 3407 3408 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 3409 3410 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */ 3411 if (intel_ggtt_update_needs_vtd_wa(dev_priv)) { 3412 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 3413 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 3414 if (ggtt->vm.clear_range != nop_clear_range) 3415 ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL; 3416 3417 /* Prevent recursively calling stop_machine() and deadlocks. */ 3418 dev_info(dev_priv->drm.dev, 3419 "Disabling error capture for VT-d workaround\n"); 3420 i915_disable_error_state(dev_priv, -ENODEV); 3421 } 3422 3423 ggtt->invalidate = gen6_ggtt_invalidate; 3424 3425 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 3426 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 3427 ggtt->vm.vma_ops.set_pages = ggtt_set_pages; 3428 ggtt->vm.vma_ops.clear_pages = clear_pages; 3429 3430 setup_private_pat(dev_priv); 3431 3432 return ggtt_probe_common(ggtt, size); 3433 } 3434 3435 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 3436 { 3437 struct drm_i915_private *dev_priv = ggtt->vm.i915; 3438 struct pci_dev *pdev = dev_priv->drm.pdev; 3439 unsigned int size; 3440 u16 snb_gmch_ctl; 3441 int err; 3442 3443 ggtt->gmadr = 3444 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), 3445 pci_resource_len(pdev, 2)); 3446 ggtt->mappable_end = resource_size(&ggtt->gmadr); 3447 3448 /* 64/512MB is the current min/max we actually know of, but this is just 3449 * a coarse sanity check. 3450 */ 3451 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { 3452 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end); 3453 return -ENXIO; 3454 } 3455 3456 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); 3457 if (!err) 3458 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); 3459 if (err) 3460 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); 3461 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 3462 3463 size = gen6_get_total_gtt_size(snb_gmch_ctl); 3464 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 3465 3466 ggtt->vm.clear_range = gen6_ggtt_clear_range; 3467 ggtt->vm.insert_page = gen6_ggtt_insert_page; 3468 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 3469 ggtt->vm.cleanup = gen6_gmch_remove; 3470 3471 ggtt->invalidate = gen6_ggtt_invalidate; 3472 3473 if (HAS_EDRAM(dev_priv)) 3474 ggtt->vm.pte_encode = iris_pte_encode; 3475 else if (IS_HASWELL(dev_priv)) 3476 ggtt->vm.pte_encode = hsw_pte_encode; 3477 else if (IS_VALLEYVIEW(dev_priv)) 3478 ggtt->vm.pte_encode = byt_pte_encode; 3479 else if (INTEL_GEN(dev_priv) >= 7) 3480 ggtt->vm.pte_encode = ivb_pte_encode; 3481 else 3482 ggtt->vm.pte_encode = snb_pte_encode; 3483 3484 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 3485 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 3486 ggtt->vm.vma_ops.set_pages = ggtt_set_pages; 3487 ggtt->vm.vma_ops.clear_pages = clear_pages; 3488 3489 return ggtt_probe_common(ggtt, size); 3490 } 3491 3492 static void i915_gmch_remove(struct i915_address_space *vm) 3493 { 3494 intel_gmch_remove(); 3495 } 3496 3497 static int i915_gmch_probe(struct i915_ggtt *ggtt) 3498 { 3499 struct drm_i915_private *dev_priv = ggtt->vm.i915; 3500 phys_addr_t gmadr_base; 3501 int ret; 3502 3503 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); 3504 if (!ret) { 3505 DRM_ERROR("failed to set up gmch\n"); 3506 return -EIO; 3507 } 3508 3509 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end); 3510 3511 ggtt->gmadr = 3512 (struct resource) DEFINE_RES_MEM(gmadr_base, 3513 ggtt->mappable_end); 3514 3515 ggtt->do_idle_maps = needs_idle_maps(dev_priv); 3516 ggtt->vm.insert_page = i915_ggtt_insert_page; 3517 ggtt->vm.insert_entries = i915_ggtt_insert_entries; 3518 ggtt->vm.clear_range = i915_ggtt_clear_range; 3519 ggtt->vm.cleanup = i915_gmch_remove; 3520 3521 ggtt->invalidate = gmch_ggtt_invalidate; 3522 3523 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 3524 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 3525 ggtt->vm.vma_ops.set_pages = ggtt_set_pages; 3526 ggtt->vm.vma_ops.clear_pages = clear_pages; 3527 3528 if (unlikely(ggtt->do_idle_maps)) 3529 DRM_INFO("applying Ironlake quirks for intel_iommu\n"); 3530 3531 return 0; 3532 } 3533 3534 /** 3535 * i915_ggtt_probe_hw - Probe GGTT hardware location 3536 * @dev_priv: i915 device 3537 */ 3538 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) 3539 { 3540 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3541 int ret; 3542 3543 ggtt->vm.i915 = dev_priv; 3544 ggtt->vm.dma = &dev_priv->drm.pdev->dev; 3545 3546 if (INTEL_GEN(dev_priv) <= 5) 3547 ret = i915_gmch_probe(ggtt); 3548 else if (INTEL_GEN(dev_priv) < 8) 3549 ret = gen6_gmch_probe(ggtt); 3550 else 3551 ret = gen8_gmch_probe(ggtt); 3552 if (ret) 3553 return ret; 3554 3555 /* Trim the GGTT to fit the GuC mappable upper range (when enabled). 3556 * This is easier than doing range restriction on the fly, as we 3557 * currently don't have any bits spare to pass in this upper 3558 * restriction! 3559 */ 3560 if (USES_GUC(dev_priv)) { 3561 ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP); 3562 ggtt->mappable_end = 3563 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 3564 } 3565 3566 if ((ggtt->vm.total - 1) >> 32) { 3567 DRM_ERROR("We never expected a Global GTT with more than 32bits" 3568 " of address space! Found %lldM!\n", 3569 ggtt->vm.total >> 20); 3570 ggtt->vm.total = 1ULL << 32; 3571 ggtt->mappable_end = 3572 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 3573 } 3574 3575 if (ggtt->mappable_end > ggtt->vm.total) { 3576 DRM_ERROR("mappable aperture extends past end of GGTT," 3577 " aperture=%pa, total=%llx\n", 3578 &ggtt->mappable_end, ggtt->vm.total); 3579 ggtt->mappable_end = ggtt->vm.total; 3580 } 3581 3582 /* GMADR is the PCI mmio aperture into the global GTT. */ 3583 DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20); 3584 DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20); 3585 DRM_DEBUG_DRIVER("DSM size = %lluM\n", 3586 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 3587 if (intel_vtd_active()) 3588 DRM_INFO("VT-d active for gfx access\n"); 3589 3590 return 0; 3591 } 3592 3593 /** 3594 * i915_ggtt_init_hw - Initialize GGTT hardware 3595 * @dev_priv: i915 device 3596 */ 3597 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) 3598 { 3599 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3600 int ret; 3601 3602 stash_init(&dev_priv->mm.wc_stash); 3603 3604 /* Note that we use page colouring to enforce a guard page at the 3605 * end of the address space. This is required as the CS may prefetch 3606 * beyond the end of the batch buffer, across the page boundary, 3607 * and beyond the end of the GTT if we do not provide a guard. 3608 */ 3609 mutex_lock(&dev_priv->drm.struct_mutex); 3610 i915_address_space_init(&ggtt->vm, dev_priv); 3611 3612 ggtt->vm.is_ggtt = true; 3613 3614 /* Only VLV supports read-only GGTT mappings */ 3615 ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv); 3616 3617 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv)) 3618 ggtt->vm.mm.color_adjust = i915_gtt_color_adjust; 3619 mutex_unlock(&dev_priv->drm.struct_mutex); 3620 3621 if (!io_mapping_init_wc(&dev_priv->ggtt.iomap, 3622 dev_priv->ggtt.gmadr.start, 3623 dev_priv->ggtt.mappable_end)) { 3624 ret = -EIO; 3625 goto out_gtt_cleanup; 3626 } 3627 3628 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end); 3629 3630 /* 3631 * Initialise stolen early so that we may reserve preallocated 3632 * objects for the BIOS to KMS transition. 3633 */ 3634 ret = i915_gem_init_stolen(dev_priv); 3635 if (ret) 3636 goto out_gtt_cleanup; 3637 3638 return 0; 3639 3640 out_gtt_cleanup: 3641 ggtt->vm.cleanup(&ggtt->vm); 3642 return ret; 3643 } 3644 3645 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) 3646 { 3647 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) 3648 return -EIO; 3649 3650 return 0; 3651 } 3652 3653 void i915_ggtt_enable_guc(struct drm_i915_private *i915) 3654 { 3655 GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate); 3656 3657 i915->ggtt.invalidate = guc_ggtt_invalidate; 3658 3659 i915_ggtt_invalidate(i915); 3660 } 3661 3662 void i915_ggtt_disable_guc(struct drm_i915_private *i915) 3663 { 3664 /* XXX Temporary pardon for error unload */ 3665 if (i915->ggtt.invalidate == gen6_ggtt_invalidate) 3666 return; 3667 3668 /* We should only be called after i915_ggtt_enable_guc() */ 3669 GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate); 3670 3671 i915->ggtt.invalidate = gen6_ggtt_invalidate; 3672 3673 i915_ggtt_invalidate(i915); 3674 } 3675 3676 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv) 3677 { 3678 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3679 struct i915_vma *vma, *vn; 3680 3681 i915_check_and_clear_faults(dev_priv); 3682 3683 /* First fill our portion of the GTT with scratch pages */ 3684 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); 3685 3686 ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */ 3687 3688 /* clflush objects bound into the GGTT and rebind them. */ 3689 GEM_BUG_ON(!list_empty(&ggtt->vm.active_list)); 3690 list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) { 3691 struct drm_i915_gem_object *obj = vma->obj; 3692 3693 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) 3694 continue; 3695 3696 if (!i915_vma_unbind(vma)) 3697 continue; 3698 3699 WARN_ON(i915_vma_bind(vma, 3700 obj ? obj->cache_level : 0, 3701 PIN_UPDATE)); 3702 if (obj) 3703 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); 3704 } 3705 3706 ggtt->vm.closed = false; 3707 i915_ggtt_invalidate(dev_priv); 3708 3709 if (INTEL_GEN(dev_priv) >= 8) { 3710 struct intel_ppat *ppat = &dev_priv->ppat; 3711 3712 bitmap_set(ppat->dirty, 0, ppat->max_entries); 3713 dev_priv->ppat.update_hw(dev_priv); 3714 return; 3715 } 3716 } 3717 3718 static struct scatterlist * 3719 rotate_pages(const dma_addr_t *in, unsigned int offset, 3720 unsigned int width, unsigned int height, 3721 unsigned int stride, 3722 struct sg_table *st, struct scatterlist *sg) 3723 { 3724 unsigned int column, row; 3725 unsigned int src_idx; 3726 3727 for (column = 0; column < width; column++) { 3728 src_idx = stride * (height - 1) + column; 3729 for (row = 0; row < height; row++) { 3730 st->nents++; 3731 /* We don't need the pages, but need to initialize 3732 * the entries so the sg list can be happily traversed. 3733 * The only thing we need are DMA addresses. 3734 */ 3735 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); 3736 sg_dma_address(sg) = in[offset + src_idx]; 3737 sg_dma_len(sg) = I915_GTT_PAGE_SIZE; 3738 sg = sg_next(sg); 3739 src_idx -= stride; 3740 } 3741 } 3742 3743 return sg; 3744 } 3745 3746 static noinline struct sg_table * 3747 intel_rotate_pages(struct intel_rotation_info *rot_info, 3748 struct drm_i915_gem_object *obj) 3749 { 3750 const unsigned long n_pages = obj->base.size / I915_GTT_PAGE_SIZE; 3751 unsigned int size = intel_rotation_info_size(rot_info); 3752 struct sgt_iter sgt_iter; 3753 dma_addr_t dma_addr; 3754 unsigned long i; 3755 dma_addr_t *page_addr_list; 3756 struct sg_table *st; 3757 struct scatterlist *sg; 3758 int ret = -ENOMEM; 3759 3760 /* Allocate a temporary list of source pages for random access. */ 3761 page_addr_list = kvmalloc_array(n_pages, 3762 sizeof(dma_addr_t), 3763 GFP_KERNEL); 3764 if (!page_addr_list) 3765 return ERR_PTR(ret); 3766 3767 /* Allocate target SG list. */ 3768 st = kmalloc(sizeof(*st), GFP_KERNEL); 3769 if (!st) 3770 goto err_st_alloc; 3771 3772 ret = sg_alloc_table(st, size, GFP_KERNEL); 3773 if (ret) 3774 goto err_sg_alloc; 3775 3776 /* Populate source page list from the object. */ 3777 i = 0; 3778 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages) 3779 page_addr_list[i++] = dma_addr; 3780 3781 GEM_BUG_ON(i != n_pages); 3782 st->nents = 0; 3783 sg = st->sgl; 3784 3785 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { 3786 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset, 3787 rot_info->plane[i].width, rot_info->plane[i].height, 3788 rot_info->plane[i].stride, st, sg); 3789 } 3790 3791 kvfree(page_addr_list); 3792 3793 return st; 3794 3795 err_sg_alloc: 3796 kfree(st); 3797 err_st_alloc: 3798 kvfree(page_addr_list); 3799 3800 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 3801 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); 3802 3803 return ERR_PTR(ret); 3804 } 3805 3806 static noinline struct sg_table * 3807 intel_partial_pages(const struct i915_ggtt_view *view, 3808 struct drm_i915_gem_object *obj) 3809 { 3810 struct sg_table *st; 3811 struct scatterlist *sg, *iter; 3812 unsigned int count = view->partial.size; 3813 unsigned int offset; 3814 int ret = -ENOMEM; 3815 3816 st = kmalloc(sizeof(*st), GFP_KERNEL); 3817 if (!st) 3818 goto err_st_alloc; 3819 3820 ret = sg_alloc_table(st, count, GFP_KERNEL); 3821 if (ret) 3822 goto err_sg_alloc; 3823 3824 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); 3825 GEM_BUG_ON(!iter); 3826 3827 sg = st->sgl; 3828 st->nents = 0; 3829 do { 3830 unsigned int len; 3831 3832 len = min(iter->length - (offset << PAGE_SHIFT), 3833 count << PAGE_SHIFT); 3834 sg_set_page(sg, NULL, len, 0); 3835 sg_dma_address(sg) = 3836 sg_dma_address(iter) + (offset << PAGE_SHIFT); 3837 sg_dma_len(sg) = len; 3838 3839 st->nents++; 3840 count -= len >> PAGE_SHIFT; 3841 if (count == 0) { 3842 sg_mark_end(sg); 3843 return st; 3844 } 3845 3846 sg = __sg_next(sg); 3847 iter = __sg_next(iter); 3848 offset = 0; 3849 } while (1); 3850 3851 err_sg_alloc: 3852 kfree(st); 3853 err_st_alloc: 3854 return ERR_PTR(ret); 3855 } 3856 3857 static int 3858 i915_get_ggtt_vma_pages(struct i915_vma *vma) 3859 { 3860 int ret; 3861 3862 /* The vma->pages are only valid within the lifespan of the borrowed 3863 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 3864 * must be the vma->pages. A simple rule is that vma->pages must only 3865 * be accessed when the obj->mm.pages are pinned. 3866 */ 3867 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 3868 3869 switch (vma->ggtt_view.type) { 3870 default: 3871 GEM_BUG_ON(vma->ggtt_view.type); 3872 /* fall through */ 3873 case I915_GGTT_VIEW_NORMAL: 3874 vma->pages = vma->obj->mm.pages; 3875 return 0; 3876 3877 case I915_GGTT_VIEW_ROTATED: 3878 vma->pages = 3879 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); 3880 break; 3881 3882 case I915_GGTT_VIEW_PARTIAL: 3883 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); 3884 break; 3885 } 3886 3887 ret = 0; 3888 if (unlikely(IS_ERR(vma->pages))) { 3889 ret = PTR_ERR(vma->pages); 3890 vma->pages = NULL; 3891 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", 3892 vma->ggtt_view.type, ret); 3893 } 3894 return ret; 3895 } 3896 3897 /** 3898 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT) 3899 * @vm: the &struct i915_address_space 3900 * @node: the &struct drm_mm_node (typically i915_vma.mode) 3901 * @size: how much space to allocate inside the GTT, 3902 * must be #I915_GTT_PAGE_SIZE aligned 3903 * @offset: where to insert inside the GTT, 3904 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node 3905 * (@offset + @size) must fit within the address space 3906 * @color: color to apply to node, if this node is not from a VMA, 3907 * color must be #I915_COLOR_UNEVICTABLE 3908 * @flags: control search and eviction behaviour 3909 * 3910 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside 3911 * the address space (using @size and @color). If the @node does not fit, it 3912 * tries to evict any overlapping nodes from the GTT, including any 3913 * neighbouring nodes if the colors do not match (to ensure guard pages between 3914 * differing domains). See i915_gem_evict_for_node() for the gory details 3915 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on 3916 * evicting active overlapping objects, and any overlapping node that is pinned 3917 * or marked as unevictable will also result in failure. 3918 * 3919 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if 3920 * asked to wait for eviction and interrupted. 3921 */ 3922 int i915_gem_gtt_reserve(struct i915_address_space *vm, 3923 struct drm_mm_node *node, 3924 u64 size, u64 offset, unsigned long color, 3925 unsigned int flags) 3926 { 3927 int err; 3928 3929 GEM_BUG_ON(!size); 3930 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 3931 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT)); 3932 GEM_BUG_ON(range_overflows(offset, size, vm->total)); 3933 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); 3934 GEM_BUG_ON(drm_mm_node_allocated(node)); 3935 3936 node->size = size; 3937 node->start = offset; 3938 node->color = color; 3939 3940 err = drm_mm_reserve_node(&vm->mm, node); 3941 if (err != -ENOSPC) 3942 return err; 3943 3944 if (flags & PIN_NOEVICT) 3945 return -ENOSPC; 3946 3947 err = i915_gem_evict_for_node(vm, node, flags); 3948 if (err == 0) 3949 err = drm_mm_reserve_node(&vm->mm, node); 3950 3951 return err; 3952 } 3953 3954 static u64 random_offset(u64 start, u64 end, u64 len, u64 align) 3955 { 3956 u64 range, addr; 3957 3958 GEM_BUG_ON(range_overflows(start, len, end)); 3959 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align)); 3960 3961 range = round_down(end - len, align) - round_up(start, align); 3962 if (range) { 3963 if (sizeof(unsigned long) == sizeof(u64)) { 3964 addr = get_random_long(); 3965 } else { 3966 addr = get_random_int(); 3967 if (range > U32_MAX) { 3968 addr <<= 32; 3969 addr |= get_random_int(); 3970 } 3971 } 3972 div64_u64_rem(addr, range, &addr); 3973 start += addr; 3974 } 3975 3976 return round_up(start, align); 3977 } 3978 3979 /** 3980 * i915_gem_gtt_insert - insert a node into an address_space (GTT) 3981 * @vm: the &struct i915_address_space 3982 * @node: the &struct drm_mm_node (typically i915_vma.node) 3983 * @size: how much space to allocate inside the GTT, 3984 * must be #I915_GTT_PAGE_SIZE aligned 3985 * @alignment: required alignment of starting offset, may be 0 but 3986 * if specified, this must be a power-of-two and at least 3987 * #I915_GTT_MIN_ALIGNMENT 3988 * @color: color to apply to node 3989 * @start: start of any range restriction inside GTT (0 for all), 3990 * must be #I915_GTT_PAGE_SIZE aligned 3991 * @end: end of any range restriction inside GTT (U64_MAX for all), 3992 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX 3993 * @flags: control search and eviction behaviour 3994 * 3995 * i915_gem_gtt_insert() first searches for an available hole into which 3996 * is can insert the node. The hole address is aligned to @alignment and 3997 * its @size must then fit entirely within the [@start, @end] bounds. The 3998 * nodes on either side of the hole must match @color, or else a guard page 3999 * will be inserted between the two nodes (or the node evicted). If no 4000 * suitable hole is found, first a victim is randomly selected and tested 4001 * for eviction, otherwise then the LRU list of objects within the GTT 4002 * is scanned to find the first set of replacement nodes to create the hole. 4003 * Those old overlapping nodes are evicted from the GTT (and so must be 4004 * rebound before any future use). Any node that is currently pinned cannot 4005 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently 4006 * active and #PIN_NONBLOCK is specified, that node is also skipped when 4007 * searching for an eviction candidate. See i915_gem_evict_something() for 4008 * the gory details on the eviction algorithm. 4009 * 4010 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if 4011 * asked to wait for eviction and interrupted. 4012 */ 4013 int i915_gem_gtt_insert(struct i915_address_space *vm, 4014 struct drm_mm_node *node, 4015 u64 size, u64 alignment, unsigned long color, 4016 u64 start, u64 end, unsigned int flags) 4017 { 4018 enum drm_mm_insert_mode mode; 4019 u64 offset; 4020 int err; 4021 4022 lockdep_assert_held(&vm->i915->drm.struct_mutex); 4023 GEM_BUG_ON(!size); 4024 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 4025 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 4026 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 4027 GEM_BUG_ON(start >= end); 4028 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 4029 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 4030 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); 4031 GEM_BUG_ON(drm_mm_node_allocated(node)); 4032 4033 if (unlikely(range_overflows(start, size, end))) 4034 return -ENOSPC; 4035 4036 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment))) 4037 return -ENOSPC; 4038 4039 mode = DRM_MM_INSERT_BEST; 4040 if (flags & PIN_HIGH) 4041 mode = DRM_MM_INSERT_HIGHEST; 4042 if (flags & PIN_MAPPABLE) 4043 mode = DRM_MM_INSERT_LOW; 4044 4045 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, 4046 * so we know that we always have a minimum alignment of 4096. 4047 * The drm_mm range manager is optimised to return results 4048 * with zero alignment, so where possible use the optimal 4049 * path. 4050 */ 4051 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE); 4052 if (alignment <= I915_GTT_MIN_ALIGNMENT) 4053 alignment = 0; 4054 4055 err = drm_mm_insert_node_in_range(&vm->mm, node, 4056 size, alignment, color, 4057 start, end, mode); 4058 if (err != -ENOSPC) 4059 return err; 4060 4061 if (mode & DRM_MM_INSERT_ONCE) { 4062 err = drm_mm_insert_node_in_range(&vm->mm, node, 4063 size, alignment, color, 4064 start, end, 4065 DRM_MM_INSERT_BEST); 4066 if (err != -ENOSPC) 4067 return err; 4068 } 4069 4070 if (flags & PIN_NOEVICT) 4071 return -ENOSPC; 4072 4073 /* No free space, pick a slot at random. 4074 * 4075 * There is a pathological case here using a GTT shared between 4076 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt): 4077 * 4078 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->| 4079 * (64k objects) (448k objects) 4080 * 4081 * Now imagine that the eviction LRU is ordered top-down (just because 4082 * pathology meets real life), and that we need to evict an object to 4083 * make room inside the aperture. The eviction scan then has to walk 4084 * the 448k list before it finds one within range. And now imagine that 4085 * it has to search for a new hole between every byte inside the memcpy, 4086 * for several simultaneous clients. 4087 * 4088 * On a full-ppgtt system, if we have run out of available space, there 4089 * will be lots and lots of objects in the eviction list! Again, 4090 * searching that LRU list may be slow if we are also applying any 4091 * range restrictions (e.g. restriction to low 4GiB) and so, for 4092 * simplicity and similarilty between different GTT, try the single 4093 * random replacement first. 4094 */ 4095 offset = random_offset(start, end, 4096 size, alignment ?: I915_GTT_MIN_ALIGNMENT); 4097 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags); 4098 if (err != -ENOSPC) 4099 return err; 4100 4101 /* Randomly selected placement is pinned, do a search */ 4102 err = i915_gem_evict_something(vm, size, alignment, color, 4103 start, end, flags); 4104 if (err) 4105 return err; 4106 4107 return drm_mm_insert_node_in_range(&vm->mm, node, 4108 size, alignment, color, 4109 start, end, DRM_MM_INSERT_EVICT); 4110 } 4111 4112 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4113 #include "selftests/mock_gtt.c" 4114 #include "selftests/i915_gem_gtt.c" 4115 #endif 4116