1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94 
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97 
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100         .type = I915_GGTT_VIEW_ROTATED
101 };
102 
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105 	bool has_aliasing_ppgtt;
106 	bool has_full_ppgtt;
107 
108 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110 
111 	if (intel_vgpu_active(dev))
112 		has_full_ppgtt = false; /* emulation is too hard */
113 
114 	/*
115 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 	 * execlists, the sole mechanism available to submit work.
117 	 */
118 	if (INTEL_INFO(dev)->gen < 9 &&
119 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120 		return 0;
121 
122 	if (enable_ppgtt == 1)
123 		return 1;
124 
125 	if (enable_ppgtt == 2 && has_full_ppgtt)
126 		return 2;
127 
128 #ifdef CONFIG_INTEL_IOMMU
129 	/* Disable ppgtt on SNB if VT-d is on. */
130 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
132 		return 0;
133 	}
134 #endif
135 
136 	/* Early VLV doesn't have this */
137 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138 	    dev->pdev->revision < 0xb) {
139 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140 		return 0;
141 	}
142 
143 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144 		return 2;
145 	else
146 		return has_aliasing_ppgtt ? 1 : 0;
147 }
148 
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150 			  enum i915_cache_level cache_level,
151 			  u32 unused)
152 {
153 	u32 pte_flags = 0;
154 
155 	/* Currently applicable only to VLV */
156 	if (vma->obj->gt_ro)
157 		pte_flags |= PTE_READ_ONLY;
158 
159 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160 				cache_level, pte_flags);
161 
162 	return 0;
163 }
164 
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167 	vma->vm->clear_range(vma->vm,
168 			     vma->node.start,
169 			     vma->obj->base.size,
170 			     true);
171 }
172 
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174 				  enum i915_cache_level level,
175 				  bool valid)
176 {
177 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178 	pte |= addr;
179 
180 	switch (level) {
181 	case I915_CACHE_NONE:
182 		pte |= PPAT_UNCACHED_INDEX;
183 		break;
184 	case I915_CACHE_WT:
185 		pte |= PPAT_DISPLAY_ELLC_INDEX;
186 		break;
187 	default:
188 		pte |= PPAT_CACHED_INDEX;
189 		break;
190 	}
191 
192 	return pte;
193 }
194 
195 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
196 				  const enum i915_cache_level level)
197 {
198 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
199 	pde |= addr;
200 	if (level != I915_CACHE_NONE)
201 		pde |= PPAT_CACHED_PDE_INDEX;
202 	else
203 		pde |= PPAT_UNCACHED_INDEX;
204 	return pde;
205 }
206 
207 #define gen8_pdpe_encode gen8_pde_encode
208 #define gen8_pml4e_encode gen8_pde_encode
209 
210 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
211 				 enum i915_cache_level level,
212 				 bool valid, u32 unused)
213 {
214 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
215 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
216 
217 	switch (level) {
218 	case I915_CACHE_L3_LLC:
219 	case I915_CACHE_LLC:
220 		pte |= GEN6_PTE_CACHE_LLC;
221 		break;
222 	case I915_CACHE_NONE:
223 		pte |= GEN6_PTE_UNCACHED;
224 		break;
225 	default:
226 		MISSING_CASE(level);
227 	}
228 
229 	return pte;
230 }
231 
232 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
233 				 enum i915_cache_level level,
234 				 bool valid, u32 unused)
235 {
236 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
237 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
238 
239 	switch (level) {
240 	case I915_CACHE_L3_LLC:
241 		pte |= GEN7_PTE_CACHE_L3_LLC;
242 		break;
243 	case I915_CACHE_LLC:
244 		pte |= GEN6_PTE_CACHE_LLC;
245 		break;
246 	case I915_CACHE_NONE:
247 		pte |= GEN6_PTE_UNCACHED;
248 		break;
249 	default:
250 		MISSING_CASE(level);
251 	}
252 
253 	return pte;
254 }
255 
256 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
257 				 enum i915_cache_level level,
258 				 bool valid, u32 flags)
259 {
260 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
261 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
262 
263 	if (!(flags & PTE_READ_ONLY))
264 		pte |= BYT_PTE_WRITEABLE;
265 
266 	if (level != I915_CACHE_NONE)
267 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
268 
269 	return pte;
270 }
271 
272 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
273 				 enum i915_cache_level level,
274 				 bool valid, u32 unused)
275 {
276 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
277 	pte |= HSW_PTE_ADDR_ENCODE(addr);
278 
279 	if (level != I915_CACHE_NONE)
280 		pte |= HSW_WB_LLC_AGE3;
281 
282 	return pte;
283 }
284 
285 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
286 				  enum i915_cache_level level,
287 				  bool valid, u32 unused)
288 {
289 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
290 	pte |= HSW_PTE_ADDR_ENCODE(addr);
291 
292 	switch (level) {
293 	case I915_CACHE_NONE:
294 		break;
295 	case I915_CACHE_WT:
296 		pte |= HSW_WT_ELLC_LLC_AGE3;
297 		break;
298 	default:
299 		pte |= HSW_WB_ELLC_LLC_AGE3;
300 		break;
301 	}
302 
303 	return pte;
304 }
305 
306 static int __setup_page_dma(struct drm_device *dev,
307 			    struct i915_page_dma *p, gfp_t flags)
308 {
309 	struct device *device = &dev->pdev->dev;
310 
311 	p->page = alloc_page(flags);
312 	if (!p->page)
313 		return -ENOMEM;
314 
315 	p->daddr = dma_map_page(device,
316 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
317 
318 	if (dma_mapping_error(device, p->daddr)) {
319 		__free_page(p->page);
320 		return -EINVAL;
321 	}
322 
323 	return 0;
324 }
325 
326 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
327 {
328 	return __setup_page_dma(dev, p, GFP_KERNEL);
329 }
330 
331 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
332 {
333 	if (WARN_ON(!p->page))
334 		return;
335 
336 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
337 	__free_page(p->page);
338 	memset(p, 0, sizeof(*p));
339 }
340 
341 static void *kmap_page_dma(struct i915_page_dma *p)
342 {
343 	return kmap_atomic(p->page);
344 }
345 
346 /* We use the flushing unmap only with ppgtt structures:
347  * page directories, page tables and scratch pages.
348  */
349 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
350 {
351 	/* There are only few exceptions for gen >=6. chv and bxt.
352 	 * And we are not sure about the latter so play safe for now.
353 	 */
354 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
355 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
356 
357 	kunmap_atomic(vaddr);
358 }
359 
360 #define kmap_px(px) kmap_page_dma(px_base(px))
361 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
362 
363 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
364 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
365 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
366 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
367 
368 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
369 			  const uint64_t val)
370 {
371 	int i;
372 	uint64_t * const vaddr = kmap_page_dma(p);
373 
374 	for (i = 0; i < 512; i++)
375 		vaddr[i] = val;
376 
377 	kunmap_page_dma(dev, vaddr);
378 }
379 
380 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
381 			     const uint32_t val32)
382 {
383 	uint64_t v = val32;
384 
385 	v = v << 32 | val32;
386 
387 	fill_page_dma(dev, p, v);
388 }
389 
390 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
391 {
392 	struct i915_page_scratch *sp;
393 	int ret;
394 
395 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
396 	if (sp == NULL)
397 		return ERR_PTR(-ENOMEM);
398 
399 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
400 	if (ret) {
401 		kfree(sp);
402 		return ERR_PTR(ret);
403 	}
404 
405 	set_pages_uc(px_page(sp), 1);
406 
407 	return sp;
408 }
409 
410 static void free_scratch_page(struct drm_device *dev,
411 			      struct i915_page_scratch *sp)
412 {
413 	set_pages_wb(px_page(sp), 1);
414 
415 	cleanup_px(dev, sp);
416 	kfree(sp);
417 }
418 
419 static struct i915_page_table *alloc_pt(struct drm_device *dev)
420 {
421 	struct i915_page_table *pt;
422 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
423 		GEN8_PTES : GEN6_PTES;
424 	int ret = -ENOMEM;
425 
426 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
427 	if (!pt)
428 		return ERR_PTR(-ENOMEM);
429 
430 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
431 				GFP_KERNEL);
432 
433 	if (!pt->used_ptes)
434 		goto fail_bitmap;
435 
436 	ret = setup_px(dev, pt);
437 	if (ret)
438 		goto fail_page_m;
439 
440 	return pt;
441 
442 fail_page_m:
443 	kfree(pt->used_ptes);
444 fail_bitmap:
445 	kfree(pt);
446 
447 	return ERR_PTR(ret);
448 }
449 
450 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
451 {
452 	cleanup_px(dev, pt);
453 	kfree(pt->used_ptes);
454 	kfree(pt);
455 }
456 
457 static void gen8_initialize_pt(struct i915_address_space *vm,
458 			       struct i915_page_table *pt)
459 {
460 	gen8_pte_t scratch_pte;
461 
462 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
463 				      I915_CACHE_LLC, true);
464 
465 	fill_px(vm->dev, pt, scratch_pte);
466 }
467 
468 static void gen6_initialize_pt(struct i915_address_space *vm,
469 			       struct i915_page_table *pt)
470 {
471 	gen6_pte_t scratch_pte;
472 
473 	WARN_ON(px_dma(vm->scratch_page) == 0);
474 
475 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
476 				     I915_CACHE_LLC, true, 0);
477 
478 	fill32_px(vm->dev, pt, scratch_pte);
479 }
480 
481 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
482 {
483 	struct i915_page_directory *pd;
484 	int ret = -ENOMEM;
485 
486 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
487 	if (!pd)
488 		return ERR_PTR(-ENOMEM);
489 
490 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
491 				sizeof(*pd->used_pdes), GFP_KERNEL);
492 	if (!pd->used_pdes)
493 		goto fail_bitmap;
494 
495 	ret = setup_px(dev, pd);
496 	if (ret)
497 		goto fail_page_m;
498 
499 	return pd;
500 
501 fail_page_m:
502 	kfree(pd->used_pdes);
503 fail_bitmap:
504 	kfree(pd);
505 
506 	return ERR_PTR(ret);
507 }
508 
509 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
510 {
511 	if (px_page(pd)) {
512 		cleanup_px(dev, pd);
513 		kfree(pd->used_pdes);
514 		kfree(pd);
515 	}
516 }
517 
518 static void gen8_initialize_pd(struct i915_address_space *vm,
519 			       struct i915_page_directory *pd)
520 {
521 	gen8_pde_t scratch_pde;
522 
523 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
524 
525 	fill_px(vm->dev, pd, scratch_pde);
526 }
527 
528 static int __pdp_init(struct drm_device *dev,
529 		      struct i915_page_directory_pointer *pdp)
530 {
531 	size_t pdpes = I915_PDPES_PER_PDP(dev);
532 
533 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
534 				  sizeof(unsigned long),
535 				  GFP_KERNEL);
536 	if (!pdp->used_pdpes)
537 		return -ENOMEM;
538 
539 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
540 				      GFP_KERNEL);
541 	if (!pdp->page_directory) {
542 		kfree(pdp->used_pdpes);
543 		/* the PDP might be the statically allocated top level. Keep it
544 		 * as clean as possible */
545 		pdp->used_pdpes = NULL;
546 		return -ENOMEM;
547 	}
548 
549 	return 0;
550 }
551 
552 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
553 {
554 	kfree(pdp->used_pdpes);
555 	kfree(pdp->page_directory);
556 	pdp->page_directory = NULL;
557 }
558 
559 static struct
560 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
561 {
562 	struct i915_page_directory_pointer *pdp;
563 	int ret = -ENOMEM;
564 
565 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
566 
567 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
568 	if (!pdp)
569 		return ERR_PTR(-ENOMEM);
570 
571 	ret = __pdp_init(dev, pdp);
572 	if (ret)
573 		goto fail_bitmap;
574 
575 	ret = setup_px(dev, pdp);
576 	if (ret)
577 		goto fail_page_m;
578 
579 	return pdp;
580 
581 fail_page_m:
582 	__pdp_fini(pdp);
583 fail_bitmap:
584 	kfree(pdp);
585 
586 	return ERR_PTR(ret);
587 }
588 
589 static void free_pdp(struct drm_device *dev,
590 		     struct i915_page_directory_pointer *pdp)
591 {
592 	__pdp_fini(pdp);
593 	if (USES_FULL_48BIT_PPGTT(dev)) {
594 		cleanup_px(dev, pdp);
595 		kfree(pdp);
596 	}
597 }
598 
599 static void gen8_initialize_pdp(struct i915_address_space *vm,
600 				struct i915_page_directory_pointer *pdp)
601 {
602 	gen8_ppgtt_pdpe_t scratch_pdpe;
603 
604 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
605 
606 	fill_px(vm->dev, pdp, scratch_pdpe);
607 }
608 
609 static void gen8_initialize_pml4(struct i915_address_space *vm,
610 				 struct i915_pml4 *pml4)
611 {
612 	gen8_ppgtt_pml4e_t scratch_pml4e;
613 
614 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
615 					  I915_CACHE_LLC);
616 
617 	fill_px(vm->dev, pml4, scratch_pml4e);
618 }
619 
620 static void
621 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
622 			  struct i915_page_directory_pointer *pdp,
623 			  struct i915_page_directory *pd,
624 			  int index)
625 {
626 	gen8_ppgtt_pdpe_t *page_directorypo;
627 
628 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
629 		return;
630 
631 	page_directorypo = kmap_px(pdp);
632 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
633 	kunmap_px(ppgtt, page_directorypo);
634 }
635 
636 static void
637 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
638 				  struct i915_pml4 *pml4,
639 				  struct i915_page_directory_pointer *pdp,
640 				  int index)
641 {
642 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
643 
644 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
645 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
646 	kunmap_px(ppgtt, pagemap);
647 }
648 
649 /* Broadwell Page Directory Pointer Descriptors */
650 static int gen8_write_pdp(struct drm_i915_gem_request *req,
651 			  unsigned entry,
652 			  dma_addr_t addr)
653 {
654 	struct intel_engine_cs *ring = req->ring;
655 	int ret;
656 
657 	BUG_ON(entry >= 4);
658 
659 	ret = intel_ring_begin(req, 6);
660 	if (ret)
661 		return ret;
662 
663 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
664 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
665 	intel_ring_emit(ring, upper_32_bits(addr));
666 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
667 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
668 	intel_ring_emit(ring, lower_32_bits(addr));
669 	intel_ring_advance(ring);
670 
671 	return 0;
672 }
673 
674 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
675 				 struct drm_i915_gem_request *req)
676 {
677 	int i, ret;
678 
679 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
680 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
681 
682 		ret = gen8_write_pdp(req, i, pd_daddr);
683 		if (ret)
684 			return ret;
685 	}
686 
687 	return 0;
688 }
689 
690 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
691 			      struct drm_i915_gem_request *req)
692 {
693 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
694 }
695 
696 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
697 				       struct i915_page_directory_pointer *pdp,
698 				       uint64_t start,
699 				       uint64_t length,
700 				       gen8_pte_t scratch_pte)
701 {
702 	struct i915_hw_ppgtt *ppgtt =
703 		container_of(vm, struct i915_hw_ppgtt, base);
704 	gen8_pte_t *pt_vaddr;
705 	unsigned pdpe = gen8_pdpe_index(start);
706 	unsigned pde = gen8_pde_index(start);
707 	unsigned pte = gen8_pte_index(start);
708 	unsigned num_entries = length >> PAGE_SHIFT;
709 	unsigned last_pte, i;
710 
711 	if (WARN_ON(!pdp))
712 		return;
713 
714 	while (num_entries) {
715 		struct i915_page_directory *pd;
716 		struct i915_page_table *pt;
717 
718 		if (WARN_ON(!pdp->page_directory[pdpe]))
719 			break;
720 
721 		pd = pdp->page_directory[pdpe];
722 
723 		if (WARN_ON(!pd->page_table[pde]))
724 			break;
725 
726 		pt = pd->page_table[pde];
727 
728 		if (WARN_ON(!px_page(pt)))
729 			break;
730 
731 		last_pte = pte + num_entries;
732 		if (last_pte > GEN8_PTES)
733 			last_pte = GEN8_PTES;
734 
735 		pt_vaddr = kmap_px(pt);
736 
737 		for (i = pte; i < last_pte; i++) {
738 			pt_vaddr[i] = scratch_pte;
739 			num_entries--;
740 		}
741 
742 		kunmap_px(ppgtt, pt);
743 
744 		pte = 0;
745 		if (++pde == I915_PDES) {
746 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
747 				break;
748 			pde = 0;
749 		}
750 	}
751 }
752 
753 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
754 				   uint64_t start,
755 				   uint64_t length,
756 				   bool use_scratch)
757 {
758 	struct i915_hw_ppgtt *ppgtt =
759 		container_of(vm, struct i915_hw_ppgtt, base);
760 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
761 						 I915_CACHE_LLC, use_scratch);
762 
763 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
764 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
765 					   scratch_pte);
766 	} else {
767 		uint64_t templ4, pml4e;
768 		struct i915_page_directory_pointer *pdp;
769 
770 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
771 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
772 						   scratch_pte);
773 		}
774 	}
775 }
776 
777 static void
778 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
779 			      struct i915_page_directory_pointer *pdp,
780 			      struct sg_page_iter *sg_iter,
781 			      uint64_t start,
782 			      enum i915_cache_level cache_level)
783 {
784 	struct i915_hw_ppgtt *ppgtt =
785 		container_of(vm, struct i915_hw_ppgtt, base);
786 	gen8_pte_t *pt_vaddr;
787 	unsigned pdpe = gen8_pdpe_index(start);
788 	unsigned pde = gen8_pde_index(start);
789 	unsigned pte = gen8_pte_index(start);
790 
791 	pt_vaddr = NULL;
792 
793 	while (__sg_page_iter_next(sg_iter)) {
794 		if (pt_vaddr == NULL) {
795 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
796 			struct i915_page_table *pt = pd->page_table[pde];
797 			pt_vaddr = kmap_px(pt);
798 		}
799 
800 		pt_vaddr[pte] =
801 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
802 					cache_level, true);
803 		if (++pte == GEN8_PTES) {
804 			kunmap_px(ppgtt, pt_vaddr);
805 			pt_vaddr = NULL;
806 			if (++pde == I915_PDES) {
807 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
808 					break;
809 				pde = 0;
810 			}
811 			pte = 0;
812 		}
813 	}
814 
815 	if (pt_vaddr)
816 		kunmap_px(ppgtt, pt_vaddr);
817 }
818 
819 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
820 				      struct sg_table *pages,
821 				      uint64_t start,
822 				      enum i915_cache_level cache_level,
823 				      u32 unused)
824 {
825 	struct i915_hw_ppgtt *ppgtt =
826 		container_of(vm, struct i915_hw_ppgtt, base);
827 	struct sg_page_iter sg_iter;
828 
829 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
830 
831 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
832 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
833 					      cache_level);
834 	} else {
835 		struct i915_page_directory_pointer *pdp;
836 		uint64_t templ4, pml4e;
837 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
838 
839 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
840 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
841 						      start, cache_level);
842 		}
843 	}
844 }
845 
846 static void gen8_free_page_tables(struct drm_device *dev,
847 				  struct i915_page_directory *pd)
848 {
849 	int i;
850 
851 	if (!px_page(pd))
852 		return;
853 
854 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
855 		if (WARN_ON(!pd->page_table[i]))
856 			continue;
857 
858 		free_pt(dev, pd->page_table[i]);
859 		pd->page_table[i] = NULL;
860 	}
861 }
862 
863 static int gen8_init_scratch(struct i915_address_space *vm)
864 {
865 	struct drm_device *dev = vm->dev;
866 
867 	vm->scratch_page = alloc_scratch_page(dev);
868 	if (IS_ERR(vm->scratch_page))
869 		return PTR_ERR(vm->scratch_page);
870 
871 	vm->scratch_pt = alloc_pt(dev);
872 	if (IS_ERR(vm->scratch_pt)) {
873 		free_scratch_page(dev, vm->scratch_page);
874 		return PTR_ERR(vm->scratch_pt);
875 	}
876 
877 	vm->scratch_pd = alloc_pd(dev);
878 	if (IS_ERR(vm->scratch_pd)) {
879 		free_pt(dev, vm->scratch_pt);
880 		free_scratch_page(dev, vm->scratch_page);
881 		return PTR_ERR(vm->scratch_pd);
882 	}
883 
884 	if (USES_FULL_48BIT_PPGTT(dev)) {
885 		vm->scratch_pdp = alloc_pdp(dev);
886 		if (IS_ERR(vm->scratch_pdp)) {
887 			free_pd(dev, vm->scratch_pd);
888 			free_pt(dev, vm->scratch_pt);
889 			free_scratch_page(dev, vm->scratch_page);
890 			return PTR_ERR(vm->scratch_pdp);
891 		}
892 	}
893 
894 	gen8_initialize_pt(vm, vm->scratch_pt);
895 	gen8_initialize_pd(vm, vm->scratch_pd);
896 	if (USES_FULL_48BIT_PPGTT(dev))
897 		gen8_initialize_pdp(vm, vm->scratch_pdp);
898 
899 	return 0;
900 }
901 
902 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
903 {
904 	enum vgt_g2v_type msg;
905 	struct drm_device *dev = ppgtt->base.dev;
906 	struct drm_i915_private *dev_priv = dev->dev_private;
907 	unsigned int offset = vgtif_reg(pdp0_lo);
908 	int i;
909 
910 	if (USES_FULL_48BIT_PPGTT(dev)) {
911 		u64 daddr = px_dma(&ppgtt->pml4);
912 
913 		I915_WRITE(offset, lower_32_bits(daddr));
914 		I915_WRITE(offset + 4, upper_32_bits(daddr));
915 
916 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
917 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
918 	} else {
919 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
920 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
921 
922 			I915_WRITE(offset, lower_32_bits(daddr));
923 			I915_WRITE(offset + 4, upper_32_bits(daddr));
924 
925 			offset += 8;
926 		}
927 
928 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
929 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
930 	}
931 
932 	I915_WRITE(vgtif_reg(g2v_notify), msg);
933 
934 	return 0;
935 }
936 
937 static void gen8_free_scratch(struct i915_address_space *vm)
938 {
939 	struct drm_device *dev = vm->dev;
940 
941 	if (USES_FULL_48BIT_PPGTT(dev))
942 		free_pdp(dev, vm->scratch_pdp);
943 	free_pd(dev, vm->scratch_pd);
944 	free_pt(dev, vm->scratch_pt);
945 	free_scratch_page(dev, vm->scratch_page);
946 }
947 
948 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
949 				    struct i915_page_directory_pointer *pdp)
950 {
951 	int i;
952 
953 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
954 		if (WARN_ON(!pdp->page_directory[i]))
955 			continue;
956 
957 		gen8_free_page_tables(dev, pdp->page_directory[i]);
958 		free_pd(dev, pdp->page_directory[i]);
959 	}
960 
961 	free_pdp(dev, pdp);
962 }
963 
964 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
965 {
966 	int i;
967 
968 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
969 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
970 			continue;
971 
972 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
973 	}
974 
975 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
976 }
977 
978 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
979 {
980 	struct i915_hw_ppgtt *ppgtt =
981 		container_of(vm, struct i915_hw_ppgtt, base);
982 
983 	if (intel_vgpu_active(vm->dev))
984 		gen8_ppgtt_notify_vgt(ppgtt, false);
985 
986 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
987 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
988 	else
989 		gen8_ppgtt_cleanup_4lvl(ppgtt);
990 
991 	gen8_free_scratch(vm);
992 }
993 
994 /**
995  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
996  * @vm:	Master vm structure.
997  * @pd:	Page directory for this address range.
998  * @start:	Starting virtual address to begin allocations.
999  * @length:	Size of the allocations.
1000  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1001  *		caller to free on error.
1002  *
1003  * Allocate the required number of page tables. Extremely similar to
1004  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1005  * the page directory boundary (instead of the page directory pointer). That
1006  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1007  * possible, and likely that the caller will need to use multiple calls of this
1008  * function to achieve the appropriate allocation.
1009  *
1010  * Return: 0 if success; negative error code otherwise.
1011  */
1012 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1013 				     struct i915_page_directory *pd,
1014 				     uint64_t start,
1015 				     uint64_t length,
1016 				     unsigned long *new_pts)
1017 {
1018 	struct drm_device *dev = vm->dev;
1019 	struct i915_page_table *pt;
1020 	uint64_t temp;
1021 	uint32_t pde;
1022 
1023 	gen8_for_each_pde(pt, pd, start, length, temp, pde) {
1024 		/* Don't reallocate page tables */
1025 		if (test_bit(pde, pd->used_pdes)) {
1026 			/* Scratch is never allocated this way */
1027 			WARN_ON(pt == vm->scratch_pt);
1028 			continue;
1029 		}
1030 
1031 		pt = alloc_pt(dev);
1032 		if (IS_ERR(pt))
1033 			goto unwind_out;
1034 
1035 		gen8_initialize_pt(vm, pt);
1036 		pd->page_table[pde] = pt;
1037 		__set_bit(pde, new_pts);
1038 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1039 	}
1040 
1041 	return 0;
1042 
1043 unwind_out:
1044 	for_each_set_bit(pde, new_pts, I915_PDES)
1045 		free_pt(dev, pd->page_table[pde]);
1046 
1047 	return -ENOMEM;
1048 }
1049 
1050 /**
1051  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1052  * @vm:	Master vm structure.
1053  * @pdp:	Page directory pointer for this address range.
1054  * @start:	Starting virtual address to begin allocations.
1055  * @length:	Size of the allocations.
1056  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1057  *		caller to free on error.
1058  *
1059  * Allocate the required number of page directories starting at the pde index of
1060  * @start, and ending at the pde index @start + @length. This function will skip
1061  * over already allocated page directories within the range, and only allocate
1062  * new ones, setting the appropriate pointer within the pdp as well as the
1063  * correct position in the bitmap @new_pds.
1064  *
1065  * The function will only allocate the pages within the range for a give page
1066  * directory pointer. In other words, if @start + @length straddles a virtually
1067  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1068  * required by the caller, This is not currently possible, and the BUG in the
1069  * code will prevent it.
1070  *
1071  * Return: 0 if success; negative error code otherwise.
1072  */
1073 static int
1074 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1075 				  struct i915_page_directory_pointer *pdp,
1076 				  uint64_t start,
1077 				  uint64_t length,
1078 				  unsigned long *new_pds)
1079 {
1080 	struct drm_device *dev = vm->dev;
1081 	struct i915_page_directory *pd;
1082 	uint64_t temp;
1083 	uint32_t pdpe;
1084 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1085 
1086 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1087 
1088 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1089 		if (test_bit(pdpe, pdp->used_pdpes))
1090 			continue;
1091 
1092 		pd = alloc_pd(dev);
1093 		if (IS_ERR(pd))
1094 			goto unwind_out;
1095 
1096 		gen8_initialize_pd(vm, pd);
1097 		pdp->page_directory[pdpe] = pd;
1098 		__set_bit(pdpe, new_pds);
1099 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1100 	}
1101 
1102 	return 0;
1103 
1104 unwind_out:
1105 	for_each_set_bit(pdpe, new_pds, pdpes)
1106 		free_pd(dev, pdp->page_directory[pdpe]);
1107 
1108 	return -ENOMEM;
1109 }
1110 
1111 /**
1112  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1113  * @vm:	Master vm structure.
1114  * @pml4:	Page map level 4 for this address range.
1115  * @start:	Starting virtual address to begin allocations.
1116  * @length:	Size of the allocations.
1117  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1118  *		caller to free on error.
1119  *
1120  * Allocate the required number of page directory pointers. Extremely similar to
1121  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1122  * The main difference is here we are limited by the pml4 boundary (instead of
1123  * the page directory pointer).
1124  *
1125  * Return: 0 if success; negative error code otherwise.
1126  */
1127 static int
1128 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1129 				  struct i915_pml4 *pml4,
1130 				  uint64_t start,
1131 				  uint64_t length,
1132 				  unsigned long *new_pdps)
1133 {
1134 	struct drm_device *dev = vm->dev;
1135 	struct i915_page_directory_pointer *pdp;
1136 	uint64_t temp;
1137 	uint32_t pml4e;
1138 
1139 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1140 
1141 	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1142 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1143 			pdp = alloc_pdp(dev);
1144 			if (IS_ERR(pdp))
1145 				goto unwind_out;
1146 
1147 			gen8_initialize_pdp(vm, pdp);
1148 			pml4->pdps[pml4e] = pdp;
1149 			__set_bit(pml4e, new_pdps);
1150 			trace_i915_page_directory_pointer_entry_alloc(vm,
1151 								      pml4e,
1152 								      start,
1153 								      GEN8_PML4E_SHIFT);
1154 		}
1155 	}
1156 
1157 	return 0;
1158 
1159 unwind_out:
1160 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1161 		free_pdp(dev, pml4->pdps[pml4e]);
1162 
1163 	return -ENOMEM;
1164 }
1165 
1166 static void
1167 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1168 {
1169 	kfree(new_pts);
1170 	kfree(new_pds);
1171 }
1172 
1173 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1174  * of these are based on the number of PDPEs in the system.
1175  */
1176 static
1177 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1178 					 unsigned long **new_pts,
1179 					 uint32_t pdpes)
1180 {
1181 	unsigned long *pds;
1182 	unsigned long *pts;
1183 
1184 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1185 	if (!pds)
1186 		return -ENOMEM;
1187 
1188 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1189 		      GFP_TEMPORARY);
1190 	if (!pts)
1191 		goto err_out;
1192 
1193 	*new_pds = pds;
1194 	*new_pts = pts;
1195 
1196 	return 0;
1197 
1198 err_out:
1199 	free_gen8_temp_bitmaps(pds, pts);
1200 	return -ENOMEM;
1201 }
1202 
1203 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1204  * the page table structures, we mark them dirty so that
1205  * context switching/execlist queuing code takes extra steps
1206  * to ensure that tlbs are flushed.
1207  */
1208 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1209 {
1210 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1211 }
1212 
1213 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1214 				    struct i915_page_directory_pointer *pdp,
1215 				    uint64_t start,
1216 				    uint64_t length)
1217 {
1218 	struct i915_hw_ppgtt *ppgtt =
1219 		container_of(vm, struct i915_hw_ppgtt, base);
1220 	unsigned long *new_page_dirs, *new_page_tables;
1221 	struct drm_device *dev = vm->dev;
1222 	struct i915_page_directory *pd;
1223 	const uint64_t orig_start = start;
1224 	const uint64_t orig_length = length;
1225 	uint64_t temp;
1226 	uint32_t pdpe;
1227 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1228 	int ret;
1229 
1230 	/* Wrap is never okay since we can only represent 48b, and we don't
1231 	 * actually use the other side of the canonical address space.
1232 	 */
1233 	if (WARN_ON(start + length < start))
1234 		return -ENODEV;
1235 
1236 	if (WARN_ON(start + length > vm->total))
1237 		return -ENODEV;
1238 
1239 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1240 	if (ret)
1241 		return ret;
1242 
1243 	/* Do the allocations first so we can easily bail out */
1244 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1245 						new_page_dirs);
1246 	if (ret) {
1247 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1248 		return ret;
1249 	}
1250 
1251 	/* For every page directory referenced, allocate page tables */
1252 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1253 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1254 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1255 		if (ret)
1256 			goto err_out;
1257 	}
1258 
1259 	start = orig_start;
1260 	length = orig_length;
1261 
1262 	/* Allocations have completed successfully, so set the bitmaps, and do
1263 	 * the mappings. */
1264 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1265 		gen8_pde_t *const page_directory = kmap_px(pd);
1266 		struct i915_page_table *pt;
1267 		uint64_t pd_len = length;
1268 		uint64_t pd_start = start;
1269 		uint32_t pde;
1270 
1271 		/* Every pd should be allocated, we just did that above. */
1272 		WARN_ON(!pd);
1273 
1274 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1275 			/* Same reasoning as pd */
1276 			WARN_ON(!pt);
1277 			WARN_ON(!pd_len);
1278 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1279 
1280 			/* Set our used ptes within the page table */
1281 			bitmap_set(pt->used_ptes,
1282 				   gen8_pte_index(pd_start),
1283 				   gen8_pte_count(pd_start, pd_len));
1284 
1285 			/* Our pde is now pointing to the pagetable, pt */
1286 			__set_bit(pde, pd->used_pdes);
1287 
1288 			/* Map the PDE to the page table */
1289 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1290 							      I915_CACHE_LLC);
1291 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1292 							gen8_pte_index(start),
1293 							gen8_pte_count(start, length),
1294 							GEN8_PTES);
1295 
1296 			/* NB: We haven't yet mapped ptes to pages. At this
1297 			 * point we're still relying on insert_entries() */
1298 		}
1299 
1300 		kunmap_px(ppgtt, page_directory);
1301 		__set_bit(pdpe, pdp->used_pdpes);
1302 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1303 	}
1304 
1305 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1306 	mark_tlbs_dirty(ppgtt);
1307 	return 0;
1308 
1309 err_out:
1310 	while (pdpe--) {
1311 		for_each_set_bit(temp, new_page_tables + pdpe *
1312 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1313 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1314 	}
1315 
1316 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1317 		free_pd(dev, pdp->page_directory[pdpe]);
1318 
1319 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1320 	mark_tlbs_dirty(ppgtt);
1321 	return ret;
1322 }
1323 
1324 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1325 				    struct i915_pml4 *pml4,
1326 				    uint64_t start,
1327 				    uint64_t length)
1328 {
1329 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1330 	struct i915_hw_ppgtt *ppgtt =
1331 			container_of(vm, struct i915_hw_ppgtt, base);
1332 	struct i915_page_directory_pointer *pdp;
1333 	uint64_t temp, pml4e;
1334 	int ret = 0;
1335 
1336 	/* Do the pml4 allocations first, so we don't need to track the newly
1337 	 * allocated tables below the pdp */
1338 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1339 
1340 	/* The pagedirectory and pagetable allocations are done in the shared 3
1341 	 * and 4 level code. Just allocate the pdps.
1342 	 */
1343 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1344 						new_pdps);
1345 	if (ret)
1346 		return ret;
1347 
1348 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1349 	     "The allocation has spanned more than 512GB. "
1350 	     "It is highly likely this is incorrect.");
1351 
1352 	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1353 		WARN_ON(!pdp);
1354 
1355 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1356 		if (ret)
1357 			goto err_out;
1358 
1359 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1360 	}
1361 
1362 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1363 		  GEN8_PML4ES_PER_PML4);
1364 
1365 	return 0;
1366 
1367 err_out:
1368 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1369 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1370 
1371 	return ret;
1372 }
1373 
1374 static int gen8_alloc_va_range(struct i915_address_space *vm,
1375 			       uint64_t start, uint64_t length)
1376 {
1377 	struct i915_hw_ppgtt *ppgtt =
1378 		container_of(vm, struct i915_hw_ppgtt, base);
1379 
1380 	if (USES_FULL_48BIT_PPGTT(vm->dev))
1381 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1382 	else
1383 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1384 }
1385 
1386 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1387 			  uint64_t start, uint64_t length,
1388 			  gen8_pte_t scratch_pte,
1389 			  struct seq_file *m)
1390 {
1391 	struct i915_page_directory *pd;
1392 	uint64_t temp;
1393 	uint32_t pdpe;
1394 
1395 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1396 		struct i915_page_table *pt;
1397 		uint64_t pd_len = length;
1398 		uint64_t pd_start = start;
1399 		uint32_t pde;
1400 
1401 		if (!test_bit(pdpe, pdp->used_pdpes))
1402 			continue;
1403 
1404 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1405 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1406 			uint32_t  pte;
1407 			gen8_pte_t *pt_vaddr;
1408 
1409 			if (!test_bit(pde, pd->used_pdes))
1410 				continue;
1411 
1412 			pt_vaddr = kmap_px(pt);
1413 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1414 				uint64_t va =
1415 					(pdpe << GEN8_PDPE_SHIFT) |
1416 					(pde << GEN8_PDE_SHIFT) |
1417 					(pte << GEN8_PTE_SHIFT);
1418 				int i;
1419 				bool found = false;
1420 
1421 				for (i = 0; i < 4; i++)
1422 					if (pt_vaddr[pte + i] != scratch_pte)
1423 						found = true;
1424 				if (!found)
1425 					continue;
1426 
1427 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1428 				for (i = 0; i < 4; i++) {
1429 					if (pt_vaddr[pte + i] != scratch_pte)
1430 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1431 					else
1432 						seq_puts(m, "  SCRATCH ");
1433 				}
1434 				seq_puts(m, "\n");
1435 			}
1436 			/* don't use kunmap_px, it could trigger
1437 			 * an unnecessary flush.
1438 			 */
1439 			kunmap_atomic(pt_vaddr);
1440 		}
1441 	}
1442 }
1443 
1444 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1445 {
1446 	struct i915_address_space *vm = &ppgtt->base;
1447 	uint64_t start = ppgtt->base.start;
1448 	uint64_t length = ppgtt->base.total;
1449 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1450 						 I915_CACHE_LLC, true);
1451 
1452 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1453 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1454 	} else {
1455 		uint64_t templ4, pml4e;
1456 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1457 		struct i915_page_directory_pointer *pdp;
1458 
1459 		gen8_for_each_pml4e(pdp, pml4, start, length, templ4, pml4e) {
1460 			if (!test_bit(pml4e, pml4->used_pml4es))
1461 				continue;
1462 
1463 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1464 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1465 		}
1466 	}
1467 }
1468 
1469 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1470 {
1471 	unsigned long *new_page_dirs, *new_page_tables;
1472 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1473 	int ret;
1474 
1475 	/* We allocate temp bitmap for page tables for no gain
1476 	 * but as this is for init only, lets keep the things simple
1477 	 */
1478 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1479 	if (ret)
1480 		return ret;
1481 
1482 	/* Allocate for all pdps regardless of how the ppgtt
1483 	 * was defined.
1484 	 */
1485 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1486 						0, 1ULL << 32,
1487 						new_page_dirs);
1488 	if (!ret)
1489 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1490 
1491 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1492 
1493 	return ret;
1494 }
1495 
1496 /*
1497  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1498  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1499  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1500  * space.
1501  *
1502  */
1503 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1504 {
1505 	int ret;
1506 
1507 	ret = gen8_init_scratch(&ppgtt->base);
1508 	if (ret)
1509 		return ret;
1510 
1511 	ppgtt->base.start = 0;
1512 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1513 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1514 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1515 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1516 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1517 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1518 	ppgtt->debug_dump = gen8_dump_ppgtt;
1519 
1520 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1521 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1522 		if (ret)
1523 			goto free_scratch;
1524 
1525 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1526 
1527 		ppgtt->base.total = 1ULL << 48;
1528 		ppgtt->switch_mm = gen8_48b_mm_switch;
1529 	} else {
1530 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1531 		if (ret)
1532 			goto free_scratch;
1533 
1534 		ppgtt->base.total = 1ULL << 32;
1535 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1536 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1537 							      0, 0,
1538 							      GEN8_PML4E_SHIFT);
1539 
1540 		if (intel_vgpu_active(ppgtt->base.dev)) {
1541 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1542 			if (ret)
1543 				goto free_scratch;
1544 		}
1545 	}
1546 
1547 	if (intel_vgpu_active(ppgtt->base.dev))
1548 		gen8_ppgtt_notify_vgt(ppgtt, true);
1549 
1550 	return 0;
1551 
1552 free_scratch:
1553 	gen8_free_scratch(&ppgtt->base);
1554 	return ret;
1555 }
1556 
1557 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1558 {
1559 	struct i915_address_space *vm = &ppgtt->base;
1560 	struct i915_page_table *unused;
1561 	gen6_pte_t scratch_pte;
1562 	uint32_t pd_entry;
1563 	uint32_t  pte, pde, temp;
1564 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1565 
1566 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1567 				     I915_CACHE_LLC, true, 0);
1568 
1569 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1570 		u32 expected;
1571 		gen6_pte_t *pt_vaddr;
1572 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1573 		pd_entry = readl(ppgtt->pd_addr + pde);
1574 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1575 
1576 		if (pd_entry != expected)
1577 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1578 				   pde,
1579 				   pd_entry,
1580 				   expected);
1581 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1582 
1583 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1584 
1585 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1586 			unsigned long va =
1587 				(pde * PAGE_SIZE * GEN6_PTES) +
1588 				(pte * PAGE_SIZE);
1589 			int i;
1590 			bool found = false;
1591 			for (i = 0; i < 4; i++)
1592 				if (pt_vaddr[pte + i] != scratch_pte)
1593 					found = true;
1594 			if (!found)
1595 				continue;
1596 
1597 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1598 			for (i = 0; i < 4; i++) {
1599 				if (pt_vaddr[pte + i] != scratch_pte)
1600 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1601 				else
1602 					seq_puts(m, "  SCRATCH ");
1603 			}
1604 			seq_puts(m, "\n");
1605 		}
1606 		kunmap_px(ppgtt, pt_vaddr);
1607 	}
1608 }
1609 
1610 /* Write pde (index) from the page directory @pd to the page table @pt */
1611 static void gen6_write_pde(struct i915_page_directory *pd,
1612 			    const int pde, struct i915_page_table *pt)
1613 {
1614 	/* Caller needs to make sure the write completes if necessary */
1615 	struct i915_hw_ppgtt *ppgtt =
1616 		container_of(pd, struct i915_hw_ppgtt, pd);
1617 	u32 pd_entry;
1618 
1619 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1620 	pd_entry |= GEN6_PDE_VALID;
1621 
1622 	writel(pd_entry, ppgtt->pd_addr + pde);
1623 }
1624 
1625 /* Write all the page tables found in the ppgtt structure to incrementing page
1626  * directories. */
1627 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1628 				  struct i915_page_directory *pd,
1629 				  uint32_t start, uint32_t length)
1630 {
1631 	struct i915_page_table *pt;
1632 	uint32_t pde, temp;
1633 
1634 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
1635 		gen6_write_pde(pd, pde, pt);
1636 
1637 	/* Make sure write is complete before other code can use this page
1638 	 * table. Also require for WC mapped PTEs */
1639 	readl(dev_priv->gtt.gsm);
1640 }
1641 
1642 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1643 {
1644 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1645 
1646 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1647 }
1648 
1649 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1650 			 struct drm_i915_gem_request *req)
1651 {
1652 	struct intel_engine_cs *ring = req->ring;
1653 	int ret;
1654 
1655 	/* NB: TLBs must be flushed and invalidated before a switch */
1656 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1657 	if (ret)
1658 		return ret;
1659 
1660 	ret = intel_ring_begin(req, 6);
1661 	if (ret)
1662 		return ret;
1663 
1664 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1665 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1666 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1667 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1668 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1669 	intel_ring_emit(ring, MI_NOOP);
1670 	intel_ring_advance(ring);
1671 
1672 	return 0;
1673 }
1674 
1675 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1676 			  struct drm_i915_gem_request *req)
1677 {
1678 	struct intel_engine_cs *ring = req->ring;
1679 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1680 
1681 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1682 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1683 	return 0;
1684 }
1685 
1686 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1687 			  struct drm_i915_gem_request *req)
1688 {
1689 	struct intel_engine_cs *ring = req->ring;
1690 	int ret;
1691 
1692 	/* NB: TLBs must be flushed and invalidated before a switch */
1693 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1694 	if (ret)
1695 		return ret;
1696 
1697 	ret = intel_ring_begin(req, 6);
1698 	if (ret)
1699 		return ret;
1700 
1701 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1702 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1703 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1704 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1705 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1706 	intel_ring_emit(ring, MI_NOOP);
1707 	intel_ring_advance(ring);
1708 
1709 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1710 	if (ring->id != RCS) {
1711 		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1712 		if (ret)
1713 			return ret;
1714 	}
1715 
1716 	return 0;
1717 }
1718 
1719 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1720 			  struct drm_i915_gem_request *req)
1721 {
1722 	struct intel_engine_cs *ring = req->ring;
1723 	struct drm_device *dev = ppgtt->base.dev;
1724 	struct drm_i915_private *dev_priv = dev->dev_private;
1725 
1726 
1727 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1728 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1729 
1730 	POSTING_READ(RING_PP_DIR_DCLV(ring));
1731 
1732 	return 0;
1733 }
1734 
1735 static void gen8_ppgtt_enable(struct drm_device *dev)
1736 {
1737 	struct drm_i915_private *dev_priv = dev->dev_private;
1738 	struct intel_engine_cs *ring;
1739 	int j;
1740 
1741 	for_each_ring(ring, dev_priv, j) {
1742 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1743 		I915_WRITE(RING_MODE_GEN7(ring),
1744 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1745 	}
1746 }
1747 
1748 static void gen7_ppgtt_enable(struct drm_device *dev)
1749 {
1750 	struct drm_i915_private *dev_priv = dev->dev_private;
1751 	struct intel_engine_cs *ring;
1752 	uint32_t ecochk, ecobits;
1753 	int i;
1754 
1755 	ecobits = I915_READ(GAC_ECO_BITS);
1756 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1757 
1758 	ecochk = I915_READ(GAM_ECOCHK);
1759 	if (IS_HASWELL(dev)) {
1760 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1761 	} else {
1762 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1763 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1764 	}
1765 	I915_WRITE(GAM_ECOCHK, ecochk);
1766 
1767 	for_each_ring(ring, dev_priv, i) {
1768 		/* GFX_MODE is per-ring on gen7+ */
1769 		I915_WRITE(RING_MODE_GEN7(ring),
1770 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1771 	}
1772 }
1773 
1774 static void gen6_ppgtt_enable(struct drm_device *dev)
1775 {
1776 	struct drm_i915_private *dev_priv = dev->dev_private;
1777 	uint32_t ecochk, gab_ctl, ecobits;
1778 
1779 	ecobits = I915_READ(GAC_ECO_BITS);
1780 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1781 		   ECOBITS_PPGTT_CACHE64B);
1782 
1783 	gab_ctl = I915_READ(GAB_CTL);
1784 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1785 
1786 	ecochk = I915_READ(GAM_ECOCHK);
1787 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1788 
1789 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1790 }
1791 
1792 /* PPGTT support for Sandybdrige/Gen6 and later */
1793 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1794 				   uint64_t start,
1795 				   uint64_t length,
1796 				   bool use_scratch)
1797 {
1798 	struct i915_hw_ppgtt *ppgtt =
1799 		container_of(vm, struct i915_hw_ppgtt, base);
1800 	gen6_pte_t *pt_vaddr, scratch_pte;
1801 	unsigned first_entry = start >> PAGE_SHIFT;
1802 	unsigned num_entries = length >> PAGE_SHIFT;
1803 	unsigned act_pt = first_entry / GEN6_PTES;
1804 	unsigned first_pte = first_entry % GEN6_PTES;
1805 	unsigned last_pte, i;
1806 
1807 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1808 				     I915_CACHE_LLC, true, 0);
1809 
1810 	while (num_entries) {
1811 		last_pte = first_pte + num_entries;
1812 		if (last_pte > GEN6_PTES)
1813 			last_pte = GEN6_PTES;
1814 
1815 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1816 
1817 		for (i = first_pte; i < last_pte; i++)
1818 			pt_vaddr[i] = scratch_pte;
1819 
1820 		kunmap_px(ppgtt, pt_vaddr);
1821 
1822 		num_entries -= last_pte - first_pte;
1823 		first_pte = 0;
1824 		act_pt++;
1825 	}
1826 }
1827 
1828 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1829 				      struct sg_table *pages,
1830 				      uint64_t start,
1831 				      enum i915_cache_level cache_level, u32 flags)
1832 {
1833 	struct i915_hw_ppgtt *ppgtt =
1834 		container_of(vm, struct i915_hw_ppgtt, base);
1835 	gen6_pte_t *pt_vaddr;
1836 	unsigned first_entry = start >> PAGE_SHIFT;
1837 	unsigned act_pt = first_entry / GEN6_PTES;
1838 	unsigned act_pte = first_entry % GEN6_PTES;
1839 	struct sg_page_iter sg_iter;
1840 
1841 	pt_vaddr = NULL;
1842 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1843 		if (pt_vaddr == NULL)
1844 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1845 
1846 		pt_vaddr[act_pte] =
1847 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1848 				       cache_level, true, flags);
1849 
1850 		if (++act_pte == GEN6_PTES) {
1851 			kunmap_px(ppgtt, pt_vaddr);
1852 			pt_vaddr = NULL;
1853 			act_pt++;
1854 			act_pte = 0;
1855 		}
1856 	}
1857 	if (pt_vaddr)
1858 		kunmap_px(ppgtt, pt_vaddr);
1859 }
1860 
1861 static int gen6_alloc_va_range(struct i915_address_space *vm,
1862 			       uint64_t start_in, uint64_t length_in)
1863 {
1864 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1865 	struct drm_device *dev = vm->dev;
1866 	struct drm_i915_private *dev_priv = dev->dev_private;
1867 	struct i915_hw_ppgtt *ppgtt =
1868 				container_of(vm, struct i915_hw_ppgtt, base);
1869 	struct i915_page_table *pt;
1870 	uint32_t start, length, start_save, length_save;
1871 	uint32_t pde, temp;
1872 	int ret;
1873 
1874 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1875 		return -ENODEV;
1876 
1877 	start = start_save = start_in;
1878 	length = length_save = length_in;
1879 
1880 	bitmap_zero(new_page_tables, I915_PDES);
1881 
1882 	/* The allocation is done in two stages so that we can bail out with
1883 	 * minimal amount of pain. The first stage finds new page tables that
1884 	 * need allocation. The second stage marks use ptes within the page
1885 	 * tables.
1886 	 */
1887 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1888 		if (pt != vm->scratch_pt) {
1889 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1890 			continue;
1891 		}
1892 
1893 		/* We've already allocated a page table */
1894 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1895 
1896 		pt = alloc_pt(dev);
1897 		if (IS_ERR(pt)) {
1898 			ret = PTR_ERR(pt);
1899 			goto unwind_out;
1900 		}
1901 
1902 		gen6_initialize_pt(vm, pt);
1903 
1904 		ppgtt->pd.page_table[pde] = pt;
1905 		__set_bit(pde, new_page_tables);
1906 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1907 	}
1908 
1909 	start = start_save;
1910 	length = length_save;
1911 
1912 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1913 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1914 
1915 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1916 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1917 			   gen6_pte_count(start, length));
1918 
1919 		if (__test_and_clear_bit(pde, new_page_tables))
1920 			gen6_write_pde(&ppgtt->pd, pde, pt);
1921 
1922 		trace_i915_page_table_entry_map(vm, pde, pt,
1923 					 gen6_pte_index(start),
1924 					 gen6_pte_count(start, length),
1925 					 GEN6_PTES);
1926 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1927 				GEN6_PTES);
1928 	}
1929 
1930 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1931 
1932 	/* Make sure write is complete before other code can use this page
1933 	 * table. Also require for WC mapped PTEs */
1934 	readl(dev_priv->gtt.gsm);
1935 
1936 	mark_tlbs_dirty(ppgtt);
1937 	return 0;
1938 
1939 unwind_out:
1940 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1941 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1942 
1943 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1944 		free_pt(vm->dev, pt);
1945 	}
1946 
1947 	mark_tlbs_dirty(ppgtt);
1948 	return ret;
1949 }
1950 
1951 static int gen6_init_scratch(struct i915_address_space *vm)
1952 {
1953 	struct drm_device *dev = vm->dev;
1954 
1955 	vm->scratch_page = alloc_scratch_page(dev);
1956 	if (IS_ERR(vm->scratch_page))
1957 		return PTR_ERR(vm->scratch_page);
1958 
1959 	vm->scratch_pt = alloc_pt(dev);
1960 	if (IS_ERR(vm->scratch_pt)) {
1961 		free_scratch_page(dev, vm->scratch_page);
1962 		return PTR_ERR(vm->scratch_pt);
1963 	}
1964 
1965 	gen6_initialize_pt(vm, vm->scratch_pt);
1966 
1967 	return 0;
1968 }
1969 
1970 static void gen6_free_scratch(struct i915_address_space *vm)
1971 {
1972 	struct drm_device *dev = vm->dev;
1973 
1974 	free_pt(dev, vm->scratch_pt);
1975 	free_scratch_page(dev, vm->scratch_page);
1976 }
1977 
1978 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1979 {
1980 	struct i915_hw_ppgtt *ppgtt =
1981 		container_of(vm, struct i915_hw_ppgtt, base);
1982 	struct i915_page_table *pt;
1983 	uint32_t pde;
1984 
1985 	drm_mm_remove_node(&ppgtt->node);
1986 
1987 	gen6_for_all_pdes(pt, ppgtt, pde) {
1988 		if (pt != vm->scratch_pt)
1989 			free_pt(ppgtt->base.dev, pt);
1990 	}
1991 
1992 	gen6_free_scratch(vm);
1993 }
1994 
1995 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1996 {
1997 	struct i915_address_space *vm = &ppgtt->base;
1998 	struct drm_device *dev = ppgtt->base.dev;
1999 	struct drm_i915_private *dev_priv = dev->dev_private;
2000 	bool retried = false;
2001 	int ret;
2002 
2003 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2004 	 * allocator works in address space sizes, so it's multiplied by page
2005 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2006 	 */
2007 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2008 
2009 	ret = gen6_init_scratch(vm);
2010 	if (ret)
2011 		return ret;
2012 
2013 alloc:
2014 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2015 						  &ppgtt->node, GEN6_PD_SIZE,
2016 						  GEN6_PD_ALIGN, 0,
2017 						  0, dev_priv->gtt.base.total,
2018 						  DRM_MM_TOPDOWN);
2019 	if (ret == -ENOSPC && !retried) {
2020 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2021 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2022 					       I915_CACHE_NONE,
2023 					       0, dev_priv->gtt.base.total,
2024 					       0);
2025 		if (ret)
2026 			goto err_out;
2027 
2028 		retried = true;
2029 		goto alloc;
2030 	}
2031 
2032 	if (ret)
2033 		goto err_out;
2034 
2035 
2036 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2037 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2038 
2039 	return 0;
2040 
2041 err_out:
2042 	gen6_free_scratch(vm);
2043 	return ret;
2044 }
2045 
2046 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2047 {
2048 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2049 }
2050 
2051 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2052 				  uint64_t start, uint64_t length)
2053 {
2054 	struct i915_page_table *unused;
2055 	uint32_t pde, temp;
2056 
2057 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2058 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2059 }
2060 
2061 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2062 {
2063 	struct drm_device *dev = ppgtt->base.dev;
2064 	struct drm_i915_private *dev_priv = dev->dev_private;
2065 	int ret;
2066 
2067 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2068 	if (IS_GEN6(dev)) {
2069 		ppgtt->switch_mm = gen6_mm_switch;
2070 	} else if (IS_HASWELL(dev)) {
2071 		ppgtt->switch_mm = hsw_mm_switch;
2072 	} else if (IS_GEN7(dev)) {
2073 		ppgtt->switch_mm = gen7_mm_switch;
2074 	} else
2075 		BUG();
2076 
2077 	if (intel_vgpu_active(dev))
2078 		ppgtt->switch_mm = vgpu_mm_switch;
2079 
2080 	ret = gen6_ppgtt_alloc(ppgtt);
2081 	if (ret)
2082 		return ret;
2083 
2084 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2085 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2086 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2087 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2088 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2089 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2090 	ppgtt->base.start = 0;
2091 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2092 	ppgtt->debug_dump = gen6_dump_ppgtt;
2093 
2094 	ppgtt->pd.base.ggtt_offset =
2095 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2096 
2097 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2098 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2099 
2100 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2101 
2102 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2103 
2104 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2105 			 ppgtt->node.size >> 20,
2106 			 ppgtt->node.start / PAGE_SIZE);
2107 
2108 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2109 		  ppgtt->pd.base.ggtt_offset << 10);
2110 
2111 	return 0;
2112 }
2113 
2114 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2115 {
2116 	ppgtt->base.dev = dev;
2117 
2118 	if (INTEL_INFO(dev)->gen < 8)
2119 		return gen6_ppgtt_init(ppgtt);
2120 	else
2121 		return gen8_ppgtt_init(ppgtt);
2122 }
2123 
2124 static void i915_address_space_init(struct i915_address_space *vm,
2125 				    struct drm_i915_private *dev_priv)
2126 {
2127 	drm_mm_init(&vm->mm, vm->start, vm->total);
2128 	vm->dev = dev_priv->dev;
2129 	INIT_LIST_HEAD(&vm->active_list);
2130 	INIT_LIST_HEAD(&vm->inactive_list);
2131 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2132 }
2133 
2134 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2135 {
2136 	struct drm_i915_private *dev_priv = dev->dev_private;
2137 	int ret = 0;
2138 
2139 	ret = __hw_ppgtt_init(dev, ppgtt);
2140 	if (ret == 0) {
2141 		kref_init(&ppgtt->ref);
2142 		i915_address_space_init(&ppgtt->base, dev_priv);
2143 	}
2144 
2145 	return ret;
2146 }
2147 
2148 int i915_ppgtt_init_hw(struct drm_device *dev)
2149 {
2150 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2151 	 * and the PDPs are contained within the context itself.  We don't
2152 	 * need to do anything here. */
2153 	if (i915.enable_execlists)
2154 		return 0;
2155 
2156 	if (!USES_PPGTT(dev))
2157 		return 0;
2158 
2159 	if (IS_GEN6(dev))
2160 		gen6_ppgtt_enable(dev);
2161 	else if (IS_GEN7(dev))
2162 		gen7_ppgtt_enable(dev);
2163 	else if (INTEL_INFO(dev)->gen >= 8)
2164 		gen8_ppgtt_enable(dev);
2165 	else
2166 		MISSING_CASE(INTEL_INFO(dev)->gen);
2167 
2168 	return 0;
2169 }
2170 
2171 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2172 {
2173 	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2174 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2175 
2176 	if (i915.enable_execlists)
2177 		return 0;
2178 
2179 	if (!ppgtt)
2180 		return 0;
2181 
2182 	return ppgtt->switch_mm(ppgtt, req);
2183 }
2184 
2185 struct i915_hw_ppgtt *
2186 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2187 {
2188 	struct i915_hw_ppgtt *ppgtt;
2189 	int ret;
2190 
2191 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2192 	if (!ppgtt)
2193 		return ERR_PTR(-ENOMEM);
2194 
2195 	ret = i915_ppgtt_init(dev, ppgtt);
2196 	if (ret) {
2197 		kfree(ppgtt);
2198 		return ERR_PTR(ret);
2199 	}
2200 
2201 	ppgtt->file_priv = fpriv;
2202 
2203 	trace_i915_ppgtt_create(&ppgtt->base);
2204 
2205 	return ppgtt;
2206 }
2207 
2208 void  i915_ppgtt_release(struct kref *kref)
2209 {
2210 	struct i915_hw_ppgtt *ppgtt =
2211 		container_of(kref, struct i915_hw_ppgtt, ref);
2212 
2213 	trace_i915_ppgtt_release(&ppgtt->base);
2214 
2215 	/* vmas should already be unbound */
2216 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2217 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2218 
2219 	list_del(&ppgtt->base.global_link);
2220 	drm_mm_takedown(&ppgtt->base.mm);
2221 
2222 	ppgtt->base.cleanup(&ppgtt->base);
2223 	kfree(ppgtt);
2224 }
2225 
2226 extern int intel_iommu_gfx_mapped;
2227 /* Certain Gen5 chipsets require require idling the GPU before
2228  * unmapping anything from the GTT when VT-d is enabled.
2229  */
2230 static bool needs_idle_maps(struct drm_device *dev)
2231 {
2232 #ifdef CONFIG_INTEL_IOMMU
2233 	/* Query intel_iommu to see if we need the workaround. Presumably that
2234 	 * was loaded first.
2235 	 */
2236 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2237 		return true;
2238 #endif
2239 	return false;
2240 }
2241 
2242 static bool do_idling(struct drm_i915_private *dev_priv)
2243 {
2244 	bool ret = dev_priv->mm.interruptible;
2245 
2246 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
2247 		dev_priv->mm.interruptible = false;
2248 		if (i915_gpu_idle(dev_priv->dev)) {
2249 			DRM_ERROR("Couldn't idle GPU\n");
2250 			/* Wait a bit, in hopes it avoids the hang */
2251 			udelay(10);
2252 		}
2253 	}
2254 
2255 	return ret;
2256 }
2257 
2258 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2259 {
2260 	if (unlikely(dev_priv->gtt.do_idle_maps))
2261 		dev_priv->mm.interruptible = interruptible;
2262 }
2263 
2264 void i915_check_and_clear_faults(struct drm_device *dev)
2265 {
2266 	struct drm_i915_private *dev_priv = dev->dev_private;
2267 	struct intel_engine_cs *ring;
2268 	int i;
2269 
2270 	if (INTEL_INFO(dev)->gen < 6)
2271 		return;
2272 
2273 	for_each_ring(ring, dev_priv, i) {
2274 		u32 fault_reg;
2275 		fault_reg = I915_READ(RING_FAULT_REG(ring));
2276 		if (fault_reg & RING_FAULT_VALID) {
2277 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2278 					 "\tAddr: 0x%08lx\n"
2279 					 "\tAddress space: %s\n"
2280 					 "\tSource ID: %d\n"
2281 					 "\tType: %d\n",
2282 					 fault_reg & PAGE_MASK,
2283 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2284 					 RING_FAULT_SRCID(fault_reg),
2285 					 RING_FAULT_FAULT_TYPE(fault_reg));
2286 			I915_WRITE(RING_FAULT_REG(ring),
2287 				   fault_reg & ~RING_FAULT_VALID);
2288 		}
2289 	}
2290 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2291 }
2292 
2293 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2294 {
2295 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2296 		intel_gtt_chipset_flush();
2297 	} else {
2298 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2299 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2300 	}
2301 }
2302 
2303 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2304 {
2305 	struct drm_i915_private *dev_priv = dev->dev_private;
2306 
2307 	/* Don't bother messing with faults pre GEN6 as we have little
2308 	 * documentation supporting that it's a good idea.
2309 	 */
2310 	if (INTEL_INFO(dev)->gen < 6)
2311 		return;
2312 
2313 	i915_check_and_clear_faults(dev);
2314 
2315 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2316 				       dev_priv->gtt.base.start,
2317 				       dev_priv->gtt.base.total,
2318 				       true);
2319 
2320 	i915_ggtt_flush(dev_priv);
2321 }
2322 
2323 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2324 {
2325 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2326 			obj->pages->sgl, obj->pages->nents,
2327 			PCI_DMA_BIDIRECTIONAL))
2328 		return -ENOSPC;
2329 
2330 	return 0;
2331 }
2332 
2333 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2334 {
2335 #ifdef writeq
2336 	writeq(pte, addr);
2337 #else
2338 	iowrite32((u32)pte, addr);
2339 	iowrite32(pte >> 32, addr + 4);
2340 #endif
2341 }
2342 
2343 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2344 				     struct sg_table *st,
2345 				     uint64_t start,
2346 				     enum i915_cache_level level, u32 unused)
2347 {
2348 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2349 	unsigned first_entry = start >> PAGE_SHIFT;
2350 	gen8_pte_t __iomem *gtt_entries =
2351 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2352 	int i = 0;
2353 	struct sg_page_iter sg_iter;
2354 	dma_addr_t addr = 0; /* shut up gcc */
2355 
2356 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2357 		addr = sg_dma_address(sg_iter.sg) +
2358 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
2359 		gen8_set_pte(&gtt_entries[i],
2360 			     gen8_pte_encode(addr, level, true));
2361 		i++;
2362 	}
2363 
2364 	/*
2365 	 * XXX: This serves as a posting read to make sure that the PTE has
2366 	 * actually been updated. There is some concern that even though
2367 	 * registers and PTEs are within the same BAR that they are potentially
2368 	 * of NUMA access patterns. Therefore, even with the way we assume
2369 	 * hardware should work, we must keep this posting read for paranoia.
2370 	 */
2371 	if (i != 0)
2372 		WARN_ON(readq(&gtt_entries[i-1])
2373 			!= gen8_pte_encode(addr, level, true));
2374 
2375 	/* This next bit makes the above posting read even more important. We
2376 	 * want to flush the TLBs only after we're certain all the PTE updates
2377 	 * have finished.
2378 	 */
2379 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2380 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2381 }
2382 
2383 /*
2384  * Binds an object into the global gtt with the specified cache level. The object
2385  * will be accessible to the GPU via commands whose operands reference offsets
2386  * within the global GTT as well as accessible by the GPU through the GMADR
2387  * mapped BAR (dev_priv->mm.gtt->gtt).
2388  */
2389 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2390 				     struct sg_table *st,
2391 				     uint64_t start,
2392 				     enum i915_cache_level level, u32 flags)
2393 {
2394 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2395 	unsigned first_entry = start >> PAGE_SHIFT;
2396 	gen6_pte_t __iomem *gtt_entries =
2397 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2398 	int i = 0;
2399 	struct sg_page_iter sg_iter;
2400 	dma_addr_t addr = 0;
2401 
2402 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2403 		addr = sg_page_iter_dma_address(&sg_iter);
2404 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2405 		i++;
2406 	}
2407 
2408 	/* XXX: This serves as a posting read to make sure that the PTE has
2409 	 * actually been updated. There is some concern that even though
2410 	 * registers and PTEs are within the same BAR that they are potentially
2411 	 * of NUMA access patterns. Therefore, even with the way we assume
2412 	 * hardware should work, we must keep this posting read for paranoia.
2413 	 */
2414 	if (i != 0) {
2415 		unsigned long gtt = readl(&gtt_entries[i-1]);
2416 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2417 	}
2418 
2419 	/* This next bit makes the above posting read even more important. We
2420 	 * want to flush the TLBs only after we're certain all the PTE updates
2421 	 * have finished.
2422 	 */
2423 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2424 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2425 }
2426 
2427 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2428 				  uint64_t start,
2429 				  uint64_t length,
2430 				  bool use_scratch)
2431 {
2432 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2433 	unsigned first_entry = start >> PAGE_SHIFT;
2434 	unsigned num_entries = length >> PAGE_SHIFT;
2435 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2436 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2437 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2438 	int i;
2439 
2440 	if (WARN(num_entries > max_entries,
2441 		 "First entry = %d; Num entries = %d (max=%d)\n",
2442 		 first_entry, num_entries, max_entries))
2443 		num_entries = max_entries;
2444 
2445 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2446 				      I915_CACHE_LLC,
2447 				      use_scratch);
2448 	for (i = 0; i < num_entries; i++)
2449 		gen8_set_pte(&gtt_base[i], scratch_pte);
2450 	readl(gtt_base);
2451 }
2452 
2453 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2454 				  uint64_t start,
2455 				  uint64_t length,
2456 				  bool use_scratch)
2457 {
2458 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2459 	unsigned first_entry = start >> PAGE_SHIFT;
2460 	unsigned num_entries = length >> PAGE_SHIFT;
2461 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2462 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2463 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2464 	int i;
2465 
2466 	if (WARN(num_entries > max_entries,
2467 		 "First entry = %d; Num entries = %d (max=%d)\n",
2468 		 first_entry, num_entries, max_entries))
2469 		num_entries = max_entries;
2470 
2471 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2472 				     I915_CACHE_LLC, use_scratch, 0);
2473 
2474 	for (i = 0; i < num_entries; i++)
2475 		iowrite32(scratch_pte, &gtt_base[i]);
2476 	readl(gtt_base);
2477 }
2478 
2479 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2480 				     struct sg_table *pages,
2481 				     uint64_t start,
2482 				     enum i915_cache_level cache_level, u32 unused)
2483 {
2484 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2485 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2486 
2487 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2488 
2489 }
2490 
2491 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2492 				  uint64_t start,
2493 				  uint64_t length,
2494 				  bool unused)
2495 {
2496 	unsigned first_entry = start >> PAGE_SHIFT;
2497 	unsigned num_entries = length >> PAGE_SHIFT;
2498 	intel_gtt_clear_range(first_entry, num_entries);
2499 }
2500 
2501 static int ggtt_bind_vma(struct i915_vma *vma,
2502 			 enum i915_cache_level cache_level,
2503 			 u32 flags)
2504 {
2505 	struct drm_i915_gem_object *obj = vma->obj;
2506 	u32 pte_flags = 0;
2507 	int ret;
2508 
2509 	ret = i915_get_ggtt_vma_pages(vma);
2510 	if (ret)
2511 		return ret;
2512 
2513 	/* Currently applicable only to VLV */
2514 	if (obj->gt_ro)
2515 		pte_flags |= PTE_READ_ONLY;
2516 
2517 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2518 				vma->node.start,
2519 				cache_level, pte_flags);
2520 
2521 	/*
2522 	 * Without aliasing PPGTT there's no difference between
2523 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2524 	 * upgrade to both bound if we bind either to avoid double-binding.
2525 	 */
2526 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2527 
2528 	return 0;
2529 }
2530 
2531 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2532 				 enum i915_cache_level cache_level,
2533 				 u32 flags)
2534 {
2535 	struct drm_device *dev = vma->vm->dev;
2536 	struct drm_i915_private *dev_priv = dev->dev_private;
2537 	struct drm_i915_gem_object *obj = vma->obj;
2538 	struct sg_table *pages = obj->pages;
2539 	u32 pte_flags = 0;
2540 	int ret;
2541 
2542 	ret = i915_get_ggtt_vma_pages(vma);
2543 	if (ret)
2544 		return ret;
2545 	pages = vma->ggtt_view.pages;
2546 
2547 	/* Currently applicable only to VLV */
2548 	if (obj->gt_ro)
2549 		pte_flags |= PTE_READ_ONLY;
2550 
2551 
2552 	if (flags & GLOBAL_BIND) {
2553 		vma->vm->insert_entries(vma->vm, pages,
2554 					vma->node.start,
2555 					cache_level, pte_flags);
2556 	}
2557 
2558 	if (flags & LOCAL_BIND) {
2559 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2560 		appgtt->base.insert_entries(&appgtt->base, pages,
2561 					    vma->node.start,
2562 					    cache_level, pte_flags);
2563 	}
2564 
2565 	return 0;
2566 }
2567 
2568 static void ggtt_unbind_vma(struct i915_vma *vma)
2569 {
2570 	struct drm_device *dev = vma->vm->dev;
2571 	struct drm_i915_private *dev_priv = dev->dev_private;
2572 	struct drm_i915_gem_object *obj = vma->obj;
2573 	const uint64_t size = min_t(uint64_t,
2574 				    obj->base.size,
2575 				    vma->node.size);
2576 
2577 	if (vma->bound & GLOBAL_BIND) {
2578 		vma->vm->clear_range(vma->vm,
2579 				     vma->node.start,
2580 				     size,
2581 				     true);
2582 	}
2583 
2584 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2585 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2586 
2587 		appgtt->base.clear_range(&appgtt->base,
2588 					 vma->node.start,
2589 					 size,
2590 					 true);
2591 	}
2592 }
2593 
2594 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2595 {
2596 	struct drm_device *dev = obj->base.dev;
2597 	struct drm_i915_private *dev_priv = dev->dev_private;
2598 	bool interruptible;
2599 
2600 	interruptible = do_idling(dev_priv);
2601 
2602 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2603 		     PCI_DMA_BIDIRECTIONAL);
2604 
2605 	undo_idling(dev_priv, interruptible);
2606 }
2607 
2608 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2609 				  unsigned long color,
2610 				  u64 *start,
2611 				  u64 *end)
2612 {
2613 	if (node->color != color)
2614 		*start += 4096;
2615 
2616 	if (!list_empty(&node->node_list)) {
2617 		node = list_entry(node->node_list.next,
2618 				  struct drm_mm_node,
2619 				  node_list);
2620 		if (node->allocated && node->color != color)
2621 			*end -= 4096;
2622 	}
2623 }
2624 
2625 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2626 				     u64 start,
2627 				     u64 mappable_end,
2628 				     u64 end)
2629 {
2630 	/* Let GEM Manage all of the aperture.
2631 	 *
2632 	 * However, leave one page at the end still bound to the scratch page.
2633 	 * There are a number of places where the hardware apparently prefetches
2634 	 * past the end of the object, and we've seen multiple hangs with the
2635 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2636 	 * aperture.  One page should be enough to keep any prefetching inside
2637 	 * of the aperture.
2638 	 */
2639 	struct drm_i915_private *dev_priv = dev->dev_private;
2640 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2641 	struct drm_mm_node *entry;
2642 	struct drm_i915_gem_object *obj;
2643 	unsigned long hole_start, hole_end;
2644 	int ret;
2645 
2646 	BUG_ON(mappable_end > end);
2647 
2648 	ggtt_vm->start = start;
2649 
2650 	/* Subtract the guard page before address space initialization to
2651 	 * shrink the range used by drm_mm */
2652 	ggtt_vm->total = end - start - PAGE_SIZE;
2653 	i915_address_space_init(ggtt_vm, dev_priv);
2654 	ggtt_vm->total += PAGE_SIZE;
2655 
2656 	if (intel_vgpu_active(dev)) {
2657 		ret = intel_vgt_balloon(dev);
2658 		if (ret)
2659 			return ret;
2660 	}
2661 
2662 	if (!HAS_LLC(dev))
2663 		ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2664 
2665 	/* Mark any preallocated objects as occupied */
2666 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2667 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2668 
2669 		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2670 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2671 
2672 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2673 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2674 		if (ret) {
2675 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2676 			return ret;
2677 		}
2678 		vma->bound |= GLOBAL_BIND;
2679 		__i915_vma_set_map_and_fenceable(vma);
2680 		list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2681 	}
2682 
2683 	/* Clear any non-preallocated blocks */
2684 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2685 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2686 			      hole_start, hole_end);
2687 		ggtt_vm->clear_range(ggtt_vm, hole_start,
2688 				     hole_end - hole_start, true);
2689 	}
2690 
2691 	/* And finally clear the reserved guard page */
2692 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2693 
2694 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2695 		struct i915_hw_ppgtt *ppgtt;
2696 
2697 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2698 		if (!ppgtt)
2699 			return -ENOMEM;
2700 
2701 		ret = __hw_ppgtt_init(dev, ppgtt);
2702 		if (ret) {
2703 			ppgtt->base.cleanup(&ppgtt->base);
2704 			kfree(ppgtt);
2705 			return ret;
2706 		}
2707 
2708 		if (ppgtt->base.allocate_va_range)
2709 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2710 							    ppgtt->base.total);
2711 		if (ret) {
2712 			ppgtt->base.cleanup(&ppgtt->base);
2713 			kfree(ppgtt);
2714 			return ret;
2715 		}
2716 
2717 		ppgtt->base.clear_range(&ppgtt->base,
2718 					ppgtt->base.start,
2719 					ppgtt->base.total,
2720 					true);
2721 
2722 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2723 		WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2724 		dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2725 	}
2726 
2727 	return 0;
2728 }
2729 
2730 void i915_gem_init_global_gtt(struct drm_device *dev)
2731 {
2732 	struct drm_i915_private *dev_priv = dev->dev_private;
2733 	u64 gtt_size, mappable_size;
2734 
2735 	gtt_size = dev_priv->gtt.base.total;
2736 	mappable_size = dev_priv->gtt.mappable_end;
2737 
2738 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2739 }
2740 
2741 void i915_global_gtt_cleanup(struct drm_device *dev)
2742 {
2743 	struct drm_i915_private *dev_priv = dev->dev_private;
2744 	struct i915_address_space *vm = &dev_priv->gtt.base;
2745 
2746 	if (dev_priv->mm.aliasing_ppgtt) {
2747 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2748 
2749 		ppgtt->base.cleanup(&ppgtt->base);
2750 	}
2751 
2752 	if (drm_mm_initialized(&vm->mm)) {
2753 		if (intel_vgpu_active(dev))
2754 			intel_vgt_deballoon();
2755 
2756 		drm_mm_takedown(&vm->mm);
2757 		list_del(&vm->global_link);
2758 	}
2759 
2760 	vm->cleanup(vm);
2761 }
2762 
2763 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2764 {
2765 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2766 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2767 	return snb_gmch_ctl << 20;
2768 }
2769 
2770 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2771 {
2772 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2773 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2774 	if (bdw_gmch_ctl)
2775 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2776 
2777 #ifdef CONFIG_X86_32
2778 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2779 	if (bdw_gmch_ctl > 4)
2780 		bdw_gmch_ctl = 4;
2781 #endif
2782 
2783 	return bdw_gmch_ctl << 20;
2784 }
2785 
2786 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2787 {
2788 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2789 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2790 
2791 	if (gmch_ctrl)
2792 		return 1 << (20 + gmch_ctrl);
2793 
2794 	return 0;
2795 }
2796 
2797 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2798 {
2799 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2800 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2801 	return snb_gmch_ctl << 25; /* 32 MB units */
2802 }
2803 
2804 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2805 {
2806 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2807 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2808 	return bdw_gmch_ctl << 25; /* 32 MB units */
2809 }
2810 
2811 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2812 {
2813 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2814 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2815 
2816 	/*
2817 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2818 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2819 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2820 	 */
2821 	if (gmch_ctrl < 0x11)
2822 		return gmch_ctrl << 25;
2823 	else if (gmch_ctrl < 0x17)
2824 		return (gmch_ctrl - 0x11 + 2) << 22;
2825 	else
2826 		return (gmch_ctrl - 0x17 + 9) << 22;
2827 }
2828 
2829 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2830 {
2831 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2832 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2833 
2834 	if (gen9_gmch_ctl < 0xf0)
2835 		return gen9_gmch_ctl << 25; /* 32 MB units */
2836 	else
2837 		/* 4MB increments starting at 0xf0 for 4MB */
2838 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2839 }
2840 
2841 static int ggtt_probe_common(struct drm_device *dev,
2842 			     size_t gtt_size)
2843 {
2844 	struct drm_i915_private *dev_priv = dev->dev_private;
2845 	struct i915_page_scratch *scratch_page;
2846 	phys_addr_t gtt_phys_addr;
2847 
2848 	/* For Modern GENs the PTEs and register space are split in the BAR */
2849 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2850 		(pci_resource_len(dev->pdev, 0) / 2);
2851 
2852 	/*
2853 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2854 	 * dropped. For WC mappings in general we have 64 byte burst writes
2855 	 * when the WC buffer is flushed, so we can't use it, but have to
2856 	 * resort to an uncached mapping. The WC issue is easily caught by the
2857 	 * readback check when writing GTT PTE entries.
2858 	 */
2859 	if (IS_BROXTON(dev))
2860 		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2861 	else
2862 		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2863 	if (!dev_priv->gtt.gsm) {
2864 		DRM_ERROR("Failed to map the gtt page table\n");
2865 		return -ENOMEM;
2866 	}
2867 
2868 	scratch_page = alloc_scratch_page(dev);
2869 	if (IS_ERR(scratch_page)) {
2870 		DRM_ERROR("Scratch setup failed\n");
2871 		/* iounmap will also get called at remove, but meh */
2872 		iounmap(dev_priv->gtt.gsm);
2873 		return PTR_ERR(scratch_page);
2874 	}
2875 
2876 	dev_priv->gtt.base.scratch_page = scratch_page;
2877 
2878 	return 0;
2879 }
2880 
2881 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2882  * bits. When using advanced contexts each context stores its own PAT, but
2883  * writing this data shouldn't be harmful even in those cases. */
2884 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2885 {
2886 	uint64_t pat;
2887 
2888 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2889 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2890 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2891 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2892 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2893 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2894 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2895 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2896 
2897 	if (!USES_PPGTT(dev_priv->dev))
2898 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2899 		 * so RTL will always use the value corresponding to
2900 		 * pat_sel = 000".
2901 		 * So let's disable cache for GGTT to avoid screen corruptions.
2902 		 * MOCS still can be used though.
2903 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2904 		 * before this patch, i.e. the same uncached + snooping access
2905 		 * like on gen6/7 seems to be in effect.
2906 		 * - So this just fixes blitter/render access. Again it looks
2907 		 * like it's not just uncached access, but uncached + snooping.
2908 		 * So we can still hold onto all our assumptions wrt cpu
2909 		 * clflushing on LLC machines.
2910 		 */
2911 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2912 
2913 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2914 	 * write would work. */
2915 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2916 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2917 }
2918 
2919 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2920 {
2921 	uint64_t pat;
2922 
2923 	/*
2924 	 * Map WB on BDW to snooped on CHV.
2925 	 *
2926 	 * Only the snoop bit has meaning for CHV, the rest is
2927 	 * ignored.
2928 	 *
2929 	 * The hardware will never snoop for certain types of accesses:
2930 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2931 	 * - PPGTT page tables
2932 	 * - some other special cycles
2933 	 *
2934 	 * As with BDW, we also need to consider the following for GT accesses:
2935 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2936 	 * so RTL will always use the value corresponding to
2937 	 * pat_sel = 000".
2938 	 * Which means we must set the snoop bit in PAT entry 0
2939 	 * in order to keep the global status page working.
2940 	 */
2941 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2942 	      GEN8_PPAT(1, 0) |
2943 	      GEN8_PPAT(2, 0) |
2944 	      GEN8_PPAT(3, 0) |
2945 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2946 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2947 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2948 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2949 
2950 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2951 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2952 }
2953 
2954 static int gen8_gmch_probe(struct drm_device *dev,
2955 			   u64 *gtt_total,
2956 			   size_t *stolen,
2957 			   phys_addr_t *mappable_base,
2958 			   u64 *mappable_end)
2959 {
2960 	struct drm_i915_private *dev_priv = dev->dev_private;
2961 	u64 gtt_size;
2962 	u16 snb_gmch_ctl;
2963 	int ret;
2964 
2965 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2966 	*mappable_base = pci_resource_start(dev->pdev, 2);
2967 	*mappable_end = pci_resource_len(dev->pdev, 2);
2968 
2969 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2970 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2971 
2972 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2973 
2974 	if (INTEL_INFO(dev)->gen >= 9) {
2975 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
2976 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2977 	} else if (IS_CHERRYVIEW(dev)) {
2978 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
2979 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2980 	} else {
2981 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
2982 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2983 	}
2984 
2985 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2986 
2987 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2988 		chv_setup_private_ppat(dev_priv);
2989 	else
2990 		bdw_setup_private_ppat(dev_priv);
2991 
2992 	ret = ggtt_probe_common(dev, gtt_size);
2993 
2994 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2995 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2996 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2997 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2998 
2999 	return ret;
3000 }
3001 
3002 static int gen6_gmch_probe(struct drm_device *dev,
3003 			   u64 *gtt_total,
3004 			   size_t *stolen,
3005 			   phys_addr_t *mappable_base,
3006 			   u64 *mappable_end)
3007 {
3008 	struct drm_i915_private *dev_priv = dev->dev_private;
3009 	unsigned int gtt_size;
3010 	u16 snb_gmch_ctl;
3011 	int ret;
3012 
3013 	*mappable_base = pci_resource_start(dev->pdev, 2);
3014 	*mappable_end = pci_resource_len(dev->pdev, 2);
3015 
3016 	/* 64/512MB is the current min/max we actually know of, but this is just
3017 	 * a coarse sanity check.
3018 	 */
3019 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3020 		DRM_ERROR("Unknown GMADR size (%llx)\n",
3021 			  dev_priv->gtt.mappable_end);
3022 		return -ENXIO;
3023 	}
3024 
3025 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3026 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3027 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3028 
3029 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
3030 
3031 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3032 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3033 
3034 	ret = ggtt_probe_common(dev, gtt_size);
3035 
3036 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3037 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3038 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3039 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3040 
3041 	return ret;
3042 }
3043 
3044 static void gen6_gmch_remove(struct i915_address_space *vm)
3045 {
3046 
3047 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3048 
3049 	iounmap(gtt->gsm);
3050 	free_scratch_page(vm->dev, vm->scratch_page);
3051 }
3052 
3053 static int i915_gmch_probe(struct drm_device *dev,
3054 			   u64 *gtt_total,
3055 			   size_t *stolen,
3056 			   phys_addr_t *mappable_base,
3057 			   u64 *mappable_end)
3058 {
3059 	struct drm_i915_private *dev_priv = dev->dev_private;
3060 	int ret;
3061 
3062 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3063 	if (!ret) {
3064 		DRM_ERROR("failed to set up gmch\n");
3065 		return -EIO;
3066 	}
3067 
3068 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3069 
3070 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3071 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3072 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3073 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3074 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3075 
3076 	if (unlikely(dev_priv->gtt.do_idle_maps))
3077 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3078 
3079 	return 0;
3080 }
3081 
3082 static void i915_gmch_remove(struct i915_address_space *vm)
3083 {
3084 	intel_gmch_remove();
3085 }
3086 
3087 int i915_gem_gtt_init(struct drm_device *dev)
3088 {
3089 	struct drm_i915_private *dev_priv = dev->dev_private;
3090 	struct i915_gtt *gtt = &dev_priv->gtt;
3091 	int ret;
3092 
3093 	if (INTEL_INFO(dev)->gen <= 5) {
3094 		gtt->gtt_probe = i915_gmch_probe;
3095 		gtt->base.cleanup = i915_gmch_remove;
3096 	} else if (INTEL_INFO(dev)->gen < 8) {
3097 		gtt->gtt_probe = gen6_gmch_probe;
3098 		gtt->base.cleanup = gen6_gmch_remove;
3099 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
3100 			gtt->base.pte_encode = iris_pte_encode;
3101 		else if (IS_HASWELL(dev))
3102 			gtt->base.pte_encode = hsw_pte_encode;
3103 		else if (IS_VALLEYVIEW(dev))
3104 			gtt->base.pte_encode = byt_pte_encode;
3105 		else if (INTEL_INFO(dev)->gen >= 7)
3106 			gtt->base.pte_encode = ivb_pte_encode;
3107 		else
3108 			gtt->base.pte_encode = snb_pte_encode;
3109 	} else {
3110 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3111 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3112 	}
3113 
3114 	gtt->base.dev = dev;
3115 
3116 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3117 			     &gtt->mappable_base, &gtt->mappable_end);
3118 	if (ret)
3119 		return ret;
3120 
3121 	/* GMADR is the PCI mmio aperture into the global GTT. */
3122 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3123 		 gtt->base.total >> 20);
3124 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
3125 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3126 #ifdef CONFIG_INTEL_IOMMU
3127 	if (intel_iommu_gfx_mapped)
3128 		DRM_INFO("VT-d active for gfx access\n");
3129 #endif
3130 	/*
3131 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3132 	 * user's requested state against the hardware/driver capabilities.  We
3133 	 * do this now so that we can print out any log messages once rather
3134 	 * than every time we check intel_enable_ppgtt().
3135 	 */
3136 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3137 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3138 
3139 	return 0;
3140 }
3141 
3142 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3143 {
3144 	struct drm_i915_private *dev_priv = dev->dev_private;
3145 	struct drm_i915_gem_object *obj;
3146 	struct i915_address_space *vm;
3147 	struct i915_vma *vma;
3148 	bool flush;
3149 
3150 	i915_check_and_clear_faults(dev);
3151 
3152 	/* First fill our portion of the GTT with scratch pages */
3153 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3154 				       dev_priv->gtt.base.start,
3155 				       dev_priv->gtt.base.total,
3156 				       true);
3157 
3158 	/* Cache flush objects bound into GGTT and rebind them. */
3159 	vm = &dev_priv->gtt.base;
3160 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3161 		flush = false;
3162 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3163 			if (vma->vm != vm)
3164 				continue;
3165 
3166 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3167 					      PIN_UPDATE));
3168 
3169 			flush = true;
3170 		}
3171 
3172 		if (flush)
3173 			i915_gem_clflush_object(obj, obj->pin_display);
3174 	}
3175 
3176 	if (INTEL_INFO(dev)->gen >= 8) {
3177 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3178 			chv_setup_private_ppat(dev_priv);
3179 		else
3180 			bdw_setup_private_ppat(dev_priv);
3181 
3182 		return;
3183 	}
3184 
3185 	if (USES_PPGTT(dev)) {
3186 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3187 			/* TODO: Perhaps it shouldn't be gen6 specific */
3188 
3189 			struct i915_hw_ppgtt *ppgtt =
3190 					container_of(vm, struct i915_hw_ppgtt,
3191 						     base);
3192 
3193 			if (i915_is_ggtt(vm))
3194 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3195 
3196 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3197 					      0, ppgtt->base.total);
3198 		}
3199 	}
3200 
3201 	i915_ggtt_flush(dev_priv);
3202 }
3203 
3204 static struct i915_vma *
3205 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3206 		      struct i915_address_space *vm,
3207 		      const struct i915_ggtt_view *ggtt_view)
3208 {
3209 	struct i915_vma *vma;
3210 
3211 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3212 		return ERR_PTR(-EINVAL);
3213 
3214 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3215 	if (vma == NULL)
3216 		return ERR_PTR(-ENOMEM);
3217 
3218 	INIT_LIST_HEAD(&vma->vma_link);
3219 	INIT_LIST_HEAD(&vma->mm_list);
3220 	INIT_LIST_HEAD(&vma->exec_list);
3221 	vma->vm = vm;
3222 	vma->obj = obj;
3223 
3224 	if (i915_is_ggtt(vm))
3225 		vma->ggtt_view = *ggtt_view;
3226 
3227 	list_add_tail(&vma->vma_link, &obj->vma_list);
3228 	if (!i915_is_ggtt(vm))
3229 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3230 
3231 	return vma;
3232 }
3233 
3234 struct i915_vma *
3235 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3236 				  struct i915_address_space *vm)
3237 {
3238 	struct i915_vma *vma;
3239 
3240 	vma = i915_gem_obj_to_vma(obj, vm);
3241 	if (!vma)
3242 		vma = __i915_gem_vma_create(obj, vm,
3243 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3244 
3245 	return vma;
3246 }
3247 
3248 struct i915_vma *
3249 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3250 				       const struct i915_ggtt_view *view)
3251 {
3252 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3253 	struct i915_vma *vma;
3254 
3255 	if (WARN_ON(!view))
3256 		return ERR_PTR(-EINVAL);
3257 
3258 	vma = i915_gem_obj_to_ggtt_view(obj, view);
3259 
3260 	if (IS_ERR(vma))
3261 		return vma;
3262 
3263 	if (!vma)
3264 		vma = __i915_gem_vma_create(obj, ggtt, view);
3265 
3266 	return vma;
3267 
3268 }
3269 
3270 static struct scatterlist *
3271 rotate_pages(dma_addr_t *in, unsigned int offset,
3272 	     unsigned int width, unsigned int height,
3273 	     struct sg_table *st, struct scatterlist *sg)
3274 {
3275 	unsigned int column, row;
3276 	unsigned int src_idx;
3277 
3278 	if (!sg) {
3279 		st->nents = 0;
3280 		sg = st->sgl;
3281 	}
3282 
3283 	for (column = 0; column < width; column++) {
3284 		src_idx = width * (height - 1) + column;
3285 		for (row = 0; row < height; row++) {
3286 			st->nents++;
3287 			/* We don't need the pages, but need to initialize
3288 			 * the entries so the sg list can be happily traversed.
3289 			 * The only thing we need are DMA addresses.
3290 			 */
3291 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3292 			sg_dma_address(sg) = in[offset + src_idx];
3293 			sg_dma_len(sg) = PAGE_SIZE;
3294 			sg = sg_next(sg);
3295 			src_idx -= width;
3296 		}
3297 	}
3298 
3299 	return sg;
3300 }
3301 
3302 static struct sg_table *
3303 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3304 			  struct drm_i915_gem_object *obj)
3305 {
3306 	struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
3307 	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3308 	unsigned int size_pages_uv;
3309 	struct sg_page_iter sg_iter;
3310 	unsigned long i;
3311 	dma_addr_t *page_addr_list;
3312 	struct sg_table *st;
3313 	unsigned int uv_start_page;
3314 	struct scatterlist *sg;
3315 	int ret = -ENOMEM;
3316 
3317 	/* Allocate a temporary list of source pages for random access. */
3318 	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3319 				       sizeof(dma_addr_t));
3320 	if (!page_addr_list)
3321 		return ERR_PTR(ret);
3322 
3323 	/* Account for UV plane with NV12. */
3324 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3325 		size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3326 	else
3327 		size_pages_uv = 0;
3328 
3329 	/* Allocate target SG list. */
3330 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3331 	if (!st)
3332 		goto err_st_alloc;
3333 
3334 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3335 	if (ret)
3336 		goto err_sg_alloc;
3337 
3338 	/* Populate source page list from the object. */
3339 	i = 0;
3340 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3341 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3342 		i++;
3343 	}
3344 
3345 	/* Rotate the pages. */
3346 	sg = rotate_pages(page_addr_list, 0,
3347 		     rot_info->width_pages, rot_info->height_pages,
3348 		     st, NULL);
3349 
3350 	/* Append the UV plane if NV12. */
3351 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3352 		uv_start_page = size_pages;
3353 
3354 		/* Check for tile-row un-alignment. */
3355 		if (offset_in_page(rot_info->uv_offset))
3356 			uv_start_page--;
3357 
3358 		rot_info->uv_start_page = uv_start_page;
3359 
3360 		rotate_pages(page_addr_list, uv_start_page,
3361 			     rot_info->width_pages_uv,
3362 			     rot_info->height_pages_uv,
3363 			     st, sg);
3364 	}
3365 
3366 	DRM_DEBUG_KMS(
3367 		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3368 		      obj->base.size, rot_info->pitch, rot_info->height,
3369 		      rot_info->pixel_format, rot_info->width_pages,
3370 		      rot_info->height_pages, size_pages + size_pages_uv,
3371 		      size_pages);
3372 
3373 	drm_free_large(page_addr_list);
3374 
3375 	return st;
3376 
3377 err_sg_alloc:
3378 	kfree(st);
3379 err_st_alloc:
3380 	drm_free_large(page_addr_list);
3381 
3382 	DRM_DEBUG_KMS(
3383 		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3384 		      obj->base.size, ret, rot_info->pitch, rot_info->height,
3385 		      rot_info->pixel_format, rot_info->width_pages,
3386 		      rot_info->height_pages, size_pages + size_pages_uv,
3387 		      size_pages);
3388 	return ERR_PTR(ret);
3389 }
3390 
3391 static struct sg_table *
3392 intel_partial_pages(const struct i915_ggtt_view *view,
3393 		    struct drm_i915_gem_object *obj)
3394 {
3395 	struct sg_table *st;
3396 	struct scatterlist *sg;
3397 	struct sg_page_iter obj_sg_iter;
3398 	int ret = -ENOMEM;
3399 
3400 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3401 	if (!st)
3402 		goto err_st_alloc;
3403 
3404 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3405 	if (ret)
3406 		goto err_sg_alloc;
3407 
3408 	sg = st->sgl;
3409 	st->nents = 0;
3410 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3411 		view->params.partial.offset)
3412 	{
3413 		if (st->nents >= view->params.partial.size)
3414 			break;
3415 
3416 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3417 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3418 		sg_dma_len(sg) = PAGE_SIZE;
3419 
3420 		sg = sg_next(sg);
3421 		st->nents++;
3422 	}
3423 
3424 	return st;
3425 
3426 err_sg_alloc:
3427 	kfree(st);
3428 err_st_alloc:
3429 	return ERR_PTR(ret);
3430 }
3431 
3432 static int
3433 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3434 {
3435 	int ret = 0;
3436 
3437 	if (vma->ggtt_view.pages)
3438 		return 0;
3439 
3440 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3441 		vma->ggtt_view.pages = vma->obj->pages;
3442 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3443 		vma->ggtt_view.pages =
3444 			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3445 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3446 		vma->ggtt_view.pages =
3447 			intel_partial_pages(&vma->ggtt_view, vma->obj);
3448 	else
3449 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3450 			  vma->ggtt_view.type);
3451 
3452 	if (!vma->ggtt_view.pages) {
3453 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3454 			  vma->ggtt_view.type);
3455 		ret = -EINVAL;
3456 	} else if (IS_ERR(vma->ggtt_view.pages)) {
3457 		ret = PTR_ERR(vma->ggtt_view.pages);
3458 		vma->ggtt_view.pages = NULL;
3459 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3460 			  vma->ggtt_view.type, ret);
3461 	}
3462 
3463 	return ret;
3464 }
3465 
3466 /**
3467  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3468  * @vma: VMA to map
3469  * @cache_level: mapping cache level
3470  * @flags: flags like global or local mapping
3471  *
3472  * DMA addresses are taken from the scatter-gather table of this object (or of
3473  * this VMA in case of non-default GGTT views) and PTE entries set up.
3474  * Note that DMA addresses are also the only part of the SG table we care about.
3475  */
3476 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3477 		  u32 flags)
3478 {
3479 	int ret;
3480 	u32 bind_flags;
3481 
3482 	if (WARN_ON(flags == 0))
3483 		return -EINVAL;
3484 
3485 	bind_flags = 0;
3486 	if (flags & PIN_GLOBAL)
3487 		bind_flags |= GLOBAL_BIND;
3488 	if (flags & PIN_USER)
3489 		bind_flags |= LOCAL_BIND;
3490 
3491 	if (flags & PIN_UPDATE)
3492 		bind_flags |= vma->bound;
3493 	else
3494 		bind_flags &= ~vma->bound;
3495 
3496 	if (bind_flags == 0)
3497 		return 0;
3498 
3499 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3500 		trace_i915_va_alloc(vma->vm,
3501 				    vma->node.start,
3502 				    vma->node.size,
3503 				    VM_TO_TRACE_NAME(vma->vm));
3504 
3505 		/* XXX: i915_vma_pin() will fix this +- hack */
3506 		vma->pin_count++;
3507 		ret = vma->vm->allocate_va_range(vma->vm,
3508 						 vma->node.start,
3509 						 vma->node.size);
3510 		vma->pin_count--;
3511 		if (ret)
3512 			return ret;
3513 	}
3514 
3515 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3516 	if (ret)
3517 		return ret;
3518 
3519 	vma->bound |= bind_flags;
3520 
3521 	return 0;
3522 }
3523 
3524 /**
3525  * i915_ggtt_view_size - Get the size of a GGTT view.
3526  * @obj: Object the view is of.
3527  * @view: The view in question.
3528  *
3529  * @return The size of the GGTT view in bytes.
3530  */
3531 size_t
3532 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3533 		    const struct i915_ggtt_view *view)
3534 {
3535 	if (view->type == I915_GGTT_VIEW_NORMAL) {
3536 		return obj->base.size;
3537 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3538 		return view->rotation_info.size;
3539 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3540 		return view->params.partial.size << PAGE_SHIFT;
3541 	} else {
3542 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3543 		return obj->base.size;
3544 	}
3545 }
3546