1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 #include <asm/smp.h>
36 
37 #include <drm/i915_drm.h>
38 
39 #include "display/intel_frontbuffer.h"
40 #include "gt/intel_gt.h"
41 #include "gt/intel_gt_requests.h"
42 
43 #include "i915_drv.h"
44 #include "i915_scatterlist.h"
45 #include "i915_trace.h"
46 #include "i915_vgpu.h"
47 
48 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
49 
50 #if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
51 #define DBG(...) trace_printk(__VA_ARGS__)
52 #else
53 #define DBG(...)
54 #endif
55 
56 /**
57  * DOC: Global GTT views
58  *
59  * Background and previous state
60  *
61  * Historically objects could exists (be bound) in global GTT space only as
62  * singular instances with a view representing all of the object's backing pages
63  * in a linear fashion. This view will be called a normal view.
64  *
65  * To support multiple views of the same object, where the number of mapped
66  * pages is not equal to the backing store, or where the layout of the pages
67  * is not linear, concept of a GGTT view was added.
68  *
69  * One example of an alternative view is a stereo display driven by a single
70  * image. In this case we would have a framebuffer looking like this
71  * (2x2 pages):
72  *
73  *    12
74  *    34
75  *
76  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
77  * rendering. In contrast, fed to the display engine would be an alternative
78  * view which could look something like this:
79  *
80  *   1212
81  *   3434
82  *
83  * In this example both the size and layout of pages in the alternative view is
84  * different from the normal view.
85  *
86  * Implementation and usage
87  *
88  * GGTT views are implemented using VMAs and are distinguished via enum
89  * i915_ggtt_view_type and struct i915_ggtt_view.
90  *
91  * A new flavour of core GEM functions which work with GGTT bound objects were
92  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
93  * renaming  in large amounts of code. They take the struct i915_ggtt_view
94  * parameter encapsulating all metadata required to implement a view.
95  *
96  * As a helper for callers which are only interested in the normal view,
97  * globally const i915_ggtt_view_normal singleton instance exists. All old core
98  * GEM API functions, the ones not taking the view parameter, are operating on,
99  * or with the normal GGTT view.
100  *
101  * Code wanting to add or use a new GGTT view needs to:
102  *
103  * 1. Add a new enum with a suitable name.
104  * 2. Extend the metadata in the i915_ggtt_view structure if required.
105  * 3. Add support to i915_get_vma_pages().
106  *
107  * New views are required to build a scatter-gather table from within the
108  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
109  * exists for the lifetime of an VMA.
110  *
111  * Core API is designed to have copy semantics which means that passed in
112  * struct i915_ggtt_view does not need to be persistent (left around after
113  * calling the core API functions).
114  *
115  */
116 
117 #define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt)
118 
119 static int
120 i915_get_ggtt_vma_pages(struct i915_vma *vma);
121 
122 static void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
123 {
124 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
125 
126 	/*
127 	 * Note that as an uncached mmio write, this will flush the
128 	 * WCB of the writes into the GGTT before it triggers the invalidate.
129 	 */
130 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
131 }
132 
133 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
134 {
135 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
136 	struct drm_i915_private *i915 = ggtt->vm.i915;
137 
138 	gen6_ggtt_invalidate(ggtt);
139 
140 	if (INTEL_GEN(i915) >= 12)
141 		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
142 				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
143 	else
144 		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
145 }
146 
147 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
148 {
149 	intel_gtt_chipset_flush();
150 }
151 
152 static int ppgtt_bind_vma(struct i915_vma *vma,
153 			  enum i915_cache_level cache_level,
154 			  u32 flags)
155 {
156 	u32 pte_flags;
157 	int err;
158 
159 	if (flags & I915_VMA_ALLOC) {
160 		err = vma->vm->allocate_va_range(vma->vm,
161 						 vma->node.start, vma->size);
162 		if (err)
163 			return err;
164 
165 		set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
166 	}
167 
168 	/* Applicable to VLV, and gen8+ */
169 	pte_flags = 0;
170 	if (i915_gem_object_is_readonly(vma->obj))
171 		pte_flags |= PTE_READ_ONLY;
172 
173 	GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma)));
174 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
175 	wmb();
176 
177 	return 0;
178 }
179 
180 static void ppgtt_unbind_vma(struct i915_vma *vma)
181 {
182 	if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma)))
183 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
184 }
185 
186 static int ppgtt_set_pages(struct i915_vma *vma)
187 {
188 	GEM_BUG_ON(vma->pages);
189 
190 	vma->pages = vma->obj->mm.pages;
191 
192 	vma->page_sizes = vma->obj->mm.page_sizes;
193 
194 	return 0;
195 }
196 
197 static void clear_pages(struct i915_vma *vma)
198 {
199 	GEM_BUG_ON(!vma->pages);
200 
201 	if (vma->pages != vma->obj->mm.pages) {
202 		sg_free_table(vma->pages);
203 		kfree(vma->pages);
204 	}
205 	vma->pages = NULL;
206 
207 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
208 }
209 
210 static u64 gen8_pte_encode(dma_addr_t addr,
211 			   enum i915_cache_level level,
212 			   u32 flags)
213 {
214 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
215 
216 	if (unlikely(flags & PTE_READ_ONLY))
217 		pte &= ~_PAGE_RW;
218 
219 	switch (level) {
220 	case I915_CACHE_NONE:
221 		pte |= PPAT_UNCACHED;
222 		break;
223 	case I915_CACHE_WT:
224 		pte |= PPAT_DISPLAY_ELLC;
225 		break;
226 	default:
227 		pte |= PPAT_CACHED;
228 		break;
229 	}
230 
231 	return pte;
232 }
233 
234 static u64 gen8_pde_encode(const dma_addr_t addr,
235 			   const enum i915_cache_level level)
236 {
237 	u64 pde = _PAGE_PRESENT | _PAGE_RW;
238 	pde |= addr;
239 	if (level != I915_CACHE_NONE)
240 		pde |= PPAT_CACHED_PDE;
241 	else
242 		pde |= PPAT_UNCACHED;
243 	return pde;
244 }
245 
246 static u64 snb_pte_encode(dma_addr_t addr,
247 			  enum i915_cache_level level,
248 			  u32 flags)
249 {
250 	gen6_pte_t pte = GEN6_PTE_VALID;
251 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
252 
253 	switch (level) {
254 	case I915_CACHE_L3_LLC:
255 	case I915_CACHE_LLC:
256 		pte |= GEN6_PTE_CACHE_LLC;
257 		break;
258 	case I915_CACHE_NONE:
259 		pte |= GEN6_PTE_UNCACHED;
260 		break;
261 	default:
262 		MISSING_CASE(level);
263 	}
264 
265 	return pte;
266 }
267 
268 static u64 ivb_pte_encode(dma_addr_t addr,
269 			  enum i915_cache_level level,
270 			  u32 flags)
271 {
272 	gen6_pte_t pte = GEN6_PTE_VALID;
273 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
274 
275 	switch (level) {
276 	case I915_CACHE_L3_LLC:
277 		pte |= GEN7_PTE_CACHE_L3_LLC;
278 		break;
279 	case I915_CACHE_LLC:
280 		pte |= GEN6_PTE_CACHE_LLC;
281 		break;
282 	case I915_CACHE_NONE:
283 		pte |= GEN6_PTE_UNCACHED;
284 		break;
285 	default:
286 		MISSING_CASE(level);
287 	}
288 
289 	return pte;
290 }
291 
292 static u64 byt_pte_encode(dma_addr_t addr,
293 			  enum i915_cache_level level,
294 			  u32 flags)
295 {
296 	gen6_pte_t pte = GEN6_PTE_VALID;
297 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
298 
299 	if (!(flags & PTE_READ_ONLY))
300 		pte |= BYT_PTE_WRITEABLE;
301 
302 	if (level != I915_CACHE_NONE)
303 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
304 
305 	return pte;
306 }
307 
308 static u64 hsw_pte_encode(dma_addr_t addr,
309 			  enum i915_cache_level level,
310 			  u32 flags)
311 {
312 	gen6_pte_t pte = GEN6_PTE_VALID;
313 	pte |= HSW_PTE_ADDR_ENCODE(addr);
314 
315 	if (level != I915_CACHE_NONE)
316 		pte |= HSW_WB_LLC_AGE3;
317 
318 	return pte;
319 }
320 
321 static u64 iris_pte_encode(dma_addr_t addr,
322 			   enum i915_cache_level level,
323 			   u32 flags)
324 {
325 	gen6_pte_t pte = GEN6_PTE_VALID;
326 	pte |= HSW_PTE_ADDR_ENCODE(addr);
327 
328 	switch (level) {
329 	case I915_CACHE_NONE:
330 		break;
331 	case I915_CACHE_WT:
332 		pte |= HSW_WT_ELLC_LLC_AGE3;
333 		break;
334 	default:
335 		pte |= HSW_WB_ELLC_LLC_AGE3;
336 		break;
337 	}
338 
339 	return pte;
340 }
341 
342 static void stash_init(struct pagestash *stash)
343 {
344 	pagevec_init(&stash->pvec);
345 	spin_lock_init(&stash->lock);
346 }
347 
348 static struct page *stash_pop_page(struct pagestash *stash)
349 {
350 	struct page *page = NULL;
351 
352 	spin_lock(&stash->lock);
353 	if (likely(stash->pvec.nr))
354 		page = stash->pvec.pages[--stash->pvec.nr];
355 	spin_unlock(&stash->lock);
356 
357 	return page;
358 }
359 
360 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
361 {
362 	unsigned int nr;
363 
364 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
365 
366 	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
367 	memcpy(stash->pvec.pages + stash->pvec.nr,
368 	       pvec->pages + pvec->nr - nr,
369 	       sizeof(pvec->pages[0]) * nr);
370 	stash->pvec.nr += nr;
371 
372 	spin_unlock(&stash->lock);
373 
374 	pvec->nr -= nr;
375 }
376 
377 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
378 {
379 	struct pagevec stack;
380 	struct page *page;
381 
382 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
383 		i915_gem_shrink_all(vm->i915);
384 
385 	page = stash_pop_page(&vm->free_pages);
386 	if (page)
387 		return page;
388 
389 	if (!vm->pt_kmap_wc)
390 		return alloc_page(gfp);
391 
392 	/* Look in our global stash of WC pages... */
393 	page = stash_pop_page(&vm->i915->mm.wc_stash);
394 	if (page)
395 		return page;
396 
397 	/*
398 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
399 	 *
400 	 * We have to be careful as page allocation may trigger the shrinker
401 	 * (via direct reclaim) which will fill up the WC stash underneath us.
402 	 * So we add our WB pages into a temporary pvec on the stack and merge
403 	 * them into the WC stash after all the allocations are complete.
404 	 */
405 	pagevec_init(&stack);
406 	do {
407 		struct page *page;
408 
409 		page = alloc_page(gfp);
410 		if (unlikely(!page))
411 			break;
412 
413 		stack.pages[stack.nr++] = page;
414 	} while (pagevec_space(&stack));
415 
416 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
417 		page = stack.pages[--stack.nr];
418 
419 		/* Merge spare WC pages to the global stash */
420 		if (stack.nr)
421 			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
422 
423 		/* Push any surplus WC pages onto the local VM stash */
424 		if (stack.nr)
425 			stash_push_pagevec(&vm->free_pages, &stack);
426 	}
427 
428 	/* Return unwanted leftovers */
429 	if (unlikely(stack.nr)) {
430 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
431 		__pagevec_release(&stack);
432 	}
433 
434 	return page;
435 }
436 
437 static void vm_free_pages_release(struct i915_address_space *vm,
438 				  bool immediate)
439 {
440 	struct pagevec *pvec = &vm->free_pages.pvec;
441 	struct pagevec stack;
442 
443 	lockdep_assert_held(&vm->free_pages.lock);
444 	GEM_BUG_ON(!pagevec_count(pvec));
445 
446 	if (vm->pt_kmap_wc) {
447 		/*
448 		 * When we use WC, first fill up the global stash and then
449 		 * only if full immediately free the overflow.
450 		 */
451 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
452 
453 		/*
454 		 * As we have made some room in the VM's free_pages,
455 		 * we can wait for it to fill again. Unless we are
456 		 * inside i915_address_space_fini() and must
457 		 * immediately release the pages!
458 		 */
459 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
460 			return;
461 
462 		/*
463 		 * We have to drop the lock to allow ourselves to sleep,
464 		 * so take a copy of the pvec and clear the stash for
465 		 * others to use it as we sleep.
466 		 */
467 		stack = *pvec;
468 		pagevec_reinit(pvec);
469 		spin_unlock(&vm->free_pages.lock);
470 
471 		pvec = &stack;
472 		set_pages_array_wb(pvec->pages, pvec->nr);
473 
474 		spin_lock(&vm->free_pages.lock);
475 	}
476 
477 	__pagevec_release(pvec);
478 }
479 
480 static void vm_free_page(struct i915_address_space *vm, struct page *page)
481 {
482 	/*
483 	 * On !llc, we need to change the pages back to WB. We only do so
484 	 * in bulk, so we rarely need to change the page attributes here,
485 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
486 	 * To make detection of the possible sleep more likely, use an
487 	 * unconditional might_sleep() for everybody.
488 	 */
489 	might_sleep();
490 	spin_lock(&vm->free_pages.lock);
491 	while (!pagevec_space(&vm->free_pages.pvec))
492 		vm_free_pages_release(vm, false);
493 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
494 	pagevec_add(&vm->free_pages.pvec, page);
495 	spin_unlock(&vm->free_pages.lock);
496 }
497 
498 static void i915_address_space_fini(struct i915_address_space *vm)
499 {
500 	spin_lock(&vm->free_pages.lock);
501 	if (pagevec_count(&vm->free_pages.pvec))
502 		vm_free_pages_release(vm, true);
503 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
504 	spin_unlock(&vm->free_pages.lock);
505 
506 	drm_mm_takedown(&vm->mm);
507 
508 	mutex_destroy(&vm->mutex);
509 }
510 
511 void __i915_vm_close(struct i915_address_space *vm)
512 {
513 	struct i915_vma *vma, *vn;
514 
515 	mutex_lock(&vm->mutex);
516 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
517 		struct drm_i915_gem_object *obj = vma->obj;
518 
519 		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
520 		if (!kref_get_unless_zero(&obj->base.refcount))
521 			continue;
522 
523 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
524 		WARN_ON(__i915_vma_unbind(vma));
525 		i915_vma_destroy(vma);
526 
527 		i915_gem_object_put(obj);
528 	}
529 	GEM_BUG_ON(!list_empty(&vm->bound_list));
530 	mutex_unlock(&vm->mutex);
531 }
532 
533 static void __i915_vm_release(struct work_struct *work)
534 {
535 	struct i915_address_space *vm =
536 		container_of(work, struct i915_address_space, rcu.work);
537 
538 	vm->cleanup(vm);
539 	i915_address_space_fini(vm);
540 
541 	kfree(vm);
542 }
543 
544 void i915_vm_release(struct kref *kref)
545 {
546 	struct i915_address_space *vm =
547 		container_of(kref, struct i915_address_space, ref);
548 
549 	GEM_BUG_ON(i915_is_ggtt(vm));
550 	trace_i915_ppgtt_release(vm);
551 
552 	queue_rcu_work(vm->i915->wq, &vm->rcu);
553 }
554 
555 static void i915_address_space_init(struct i915_address_space *vm, int subclass)
556 {
557 	kref_init(&vm->ref);
558 	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
559 	atomic_set(&vm->open, 1);
560 
561 	/*
562 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
563 	 * Do a dummy acquire now under fs_reclaim so that any allocation
564 	 * attempt holding the lock is immediately reported by lockdep.
565 	 */
566 	mutex_init(&vm->mutex);
567 	lockdep_set_subclass(&vm->mutex, subclass);
568 	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
569 
570 	GEM_BUG_ON(!vm->total);
571 	drm_mm_init(&vm->mm, 0, vm->total);
572 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
573 
574 	stash_init(&vm->free_pages);
575 
576 	INIT_LIST_HEAD(&vm->bound_list);
577 }
578 
579 static int __setup_page_dma(struct i915_address_space *vm,
580 			    struct i915_page_dma *p,
581 			    gfp_t gfp)
582 {
583 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
584 	if (unlikely(!p->page))
585 		return -ENOMEM;
586 
587 	p->daddr = dma_map_page_attrs(vm->dma,
588 				      p->page, 0, PAGE_SIZE,
589 				      PCI_DMA_BIDIRECTIONAL,
590 				      DMA_ATTR_SKIP_CPU_SYNC |
591 				      DMA_ATTR_NO_WARN);
592 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
593 		vm_free_page(vm, p->page);
594 		return -ENOMEM;
595 	}
596 
597 	return 0;
598 }
599 
600 static int setup_page_dma(struct i915_address_space *vm,
601 			  struct i915_page_dma *p)
602 {
603 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
604 }
605 
606 static void cleanup_page_dma(struct i915_address_space *vm,
607 			     struct i915_page_dma *p)
608 {
609 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
610 	vm_free_page(vm, p->page);
611 }
612 
613 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
614 
615 static void
616 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
617 {
618 	kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
619 }
620 
621 #define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
622 #define fill32_px(px, v) do {						\
623 	u64 v__ = lower_32_bits(v);					\
624 	fill_px((px), v__ << 32 | v__);					\
625 } while (0)
626 
627 static int
628 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
629 {
630 	unsigned long size;
631 
632 	/*
633 	 * In order to utilize 64K pages for an object with a size < 2M, we will
634 	 * need to support a 64K scratch page, given that every 16th entry for a
635 	 * page-table operating in 64K mode must point to a properly aligned 64K
636 	 * region, including any PTEs which happen to point to scratch.
637 	 *
638 	 * This is only relevant for the 48b PPGTT where we support
639 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
640 	 * scratch (read-only) between all vm, we create one 64k scratch page
641 	 * for all.
642 	 */
643 	size = I915_GTT_PAGE_SIZE_4K;
644 	if (i915_vm_is_4lvl(vm) &&
645 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
646 		size = I915_GTT_PAGE_SIZE_64K;
647 		gfp |= __GFP_NOWARN;
648 	}
649 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
650 
651 	do {
652 		unsigned int order = get_order(size);
653 		struct page *page;
654 		dma_addr_t addr;
655 
656 		page = alloc_pages(gfp, order);
657 		if (unlikely(!page))
658 			goto skip;
659 
660 		addr = dma_map_page_attrs(vm->dma,
661 					  page, 0, size,
662 					  PCI_DMA_BIDIRECTIONAL,
663 					  DMA_ATTR_SKIP_CPU_SYNC |
664 					  DMA_ATTR_NO_WARN);
665 		if (unlikely(dma_mapping_error(vm->dma, addr)))
666 			goto free_page;
667 
668 		if (unlikely(!IS_ALIGNED(addr, size)))
669 			goto unmap_page;
670 
671 		vm->scratch[0].base.page = page;
672 		vm->scratch[0].base.daddr = addr;
673 		vm->scratch_order = order;
674 		return 0;
675 
676 unmap_page:
677 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
678 free_page:
679 		__free_pages(page, order);
680 skip:
681 		if (size == I915_GTT_PAGE_SIZE_4K)
682 			return -ENOMEM;
683 
684 		size = I915_GTT_PAGE_SIZE_4K;
685 		gfp &= ~__GFP_NOWARN;
686 	} while (1);
687 }
688 
689 static void cleanup_scratch_page(struct i915_address_space *vm)
690 {
691 	struct i915_page_dma *p = px_base(&vm->scratch[0]);
692 	unsigned int order = vm->scratch_order;
693 
694 	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
695 		       PCI_DMA_BIDIRECTIONAL);
696 	__free_pages(p->page, order);
697 }
698 
699 static void free_scratch(struct i915_address_space *vm)
700 {
701 	int i;
702 
703 	if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
704 		return;
705 
706 	for (i = 1; i <= vm->top; i++) {
707 		if (!px_dma(&vm->scratch[i]))
708 			break;
709 		cleanup_page_dma(vm, px_base(&vm->scratch[i]));
710 	}
711 
712 	cleanup_scratch_page(vm);
713 }
714 
715 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
716 {
717 	struct i915_page_table *pt;
718 
719 	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
720 	if (unlikely(!pt))
721 		return ERR_PTR(-ENOMEM);
722 
723 	if (unlikely(setup_page_dma(vm, &pt->base))) {
724 		kfree(pt);
725 		return ERR_PTR(-ENOMEM);
726 	}
727 
728 	atomic_set(&pt->used, 0);
729 	return pt;
730 }
731 
732 static struct i915_page_directory *__alloc_pd(size_t sz)
733 {
734 	struct i915_page_directory *pd;
735 
736 	pd = kzalloc(sz, I915_GFP_ALLOW_FAIL);
737 	if (unlikely(!pd))
738 		return NULL;
739 
740 	spin_lock_init(&pd->lock);
741 	return pd;
742 }
743 
744 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
745 {
746 	struct i915_page_directory *pd;
747 
748 	pd = __alloc_pd(sizeof(*pd));
749 	if (unlikely(!pd))
750 		return ERR_PTR(-ENOMEM);
751 
752 	if (unlikely(setup_page_dma(vm, px_base(pd)))) {
753 		kfree(pd);
754 		return ERR_PTR(-ENOMEM);
755 	}
756 
757 	return pd;
758 }
759 
760 static void free_pd(struct i915_address_space *vm, struct i915_page_dma *pd)
761 {
762 	cleanup_page_dma(vm, pd);
763 	kfree(pd);
764 }
765 
766 #define free_px(vm, px) free_pd(vm, px_base(px))
767 
768 static inline void
769 write_dma_entry(struct i915_page_dma * const pdma,
770 		const unsigned short idx,
771 		const u64 encoded_entry)
772 {
773 	u64 * const vaddr = kmap_atomic(pdma->page);
774 
775 	vaddr[idx] = encoded_entry;
776 	kunmap_atomic(vaddr);
777 }
778 
779 static inline void
780 __set_pd_entry(struct i915_page_directory * const pd,
781 	       const unsigned short idx,
782 	       struct i915_page_dma * const to,
783 	       u64 (*encode)(const dma_addr_t, const enum i915_cache_level))
784 {
785 	/* Each thread pre-pins the pd, and we may have a thread per pde. */
786 	GEM_BUG_ON(atomic_read(px_used(pd)) > 2 * ARRAY_SIZE(pd->entry));
787 
788 	atomic_inc(px_used(pd));
789 	pd->entry[idx] = to;
790 	write_dma_entry(px_base(pd), idx, encode(to->daddr, I915_CACHE_LLC));
791 }
792 
793 #define set_pd_entry(pd, idx, to) \
794 	__set_pd_entry((pd), (idx), px_base(to), gen8_pde_encode)
795 
796 static inline void
797 clear_pd_entry(struct i915_page_directory * const pd,
798 	       const unsigned short idx,
799 	       const struct i915_page_scratch * const scratch)
800 {
801 	GEM_BUG_ON(atomic_read(px_used(pd)) == 0);
802 
803 	write_dma_entry(px_base(pd), idx, scratch->encode);
804 	pd->entry[idx] = NULL;
805 	atomic_dec(px_used(pd));
806 }
807 
808 static bool
809 release_pd_entry(struct i915_page_directory * const pd,
810 		 const unsigned short idx,
811 		 struct i915_page_table * const pt,
812 		 const struct i915_page_scratch * const scratch)
813 {
814 	bool free = false;
815 
816 	if (atomic_add_unless(&pt->used, -1, 1))
817 		return false;
818 
819 	spin_lock(&pd->lock);
820 	if (atomic_dec_and_test(&pt->used)) {
821 		clear_pd_entry(pd, idx, scratch);
822 		free = true;
823 	}
824 	spin_unlock(&pd->lock);
825 
826 	return free;
827 }
828 
829 static void gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
830 {
831 	struct drm_i915_private *dev_priv = ppgtt->vm.i915;
832 	enum vgt_g2v_type msg;
833 	int i;
834 
835 	if (create)
836 		atomic_inc(px_used(ppgtt->pd)); /* never remove */
837 	else
838 		atomic_dec(px_used(ppgtt->pd));
839 
840 	mutex_lock(&dev_priv->vgpu.lock);
841 
842 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
843 		const u64 daddr = px_dma(ppgtt->pd);
844 
845 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
846 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
847 
848 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
849 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
850 	} else {
851 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
852 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
853 
854 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
855 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
856 		}
857 
858 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
859 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
860 	}
861 
862 	/* g2v_notify atomically (via hv trap) consumes the message packet. */
863 	I915_WRITE(vgtif_reg(g2v_notify), msg);
864 
865 	mutex_unlock(&dev_priv->vgpu.lock);
866 }
867 
868 /* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */
869 #define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */
870 #define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE))
871 #define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64))
872 #define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES))
873 #define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl))
874 #define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl))
875 #define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl))
876 
877 static inline unsigned int
878 gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx)
879 {
880 	const int shift = gen8_pd_shift(lvl);
881 	const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
882 
883 	GEM_BUG_ON(start >= end);
884 	end += ~mask >> gen8_pd_shift(1);
885 
886 	*idx = i915_pde_index(start, shift);
887 	if ((start ^ end) & mask)
888 		return GEN8_PDES - *idx;
889 	else
890 		return i915_pde_index(end, shift) - *idx;
891 }
892 
893 static inline bool gen8_pd_contains(u64 start, u64 end, int lvl)
894 {
895 	const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
896 
897 	GEM_BUG_ON(start >= end);
898 	return (start ^ end) & mask && (start & ~mask) == 0;
899 }
900 
901 static inline unsigned int gen8_pt_count(u64 start, u64 end)
902 {
903 	GEM_BUG_ON(start >= end);
904 	if ((start ^ end) >> gen8_pd_shift(1))
905 		return GEN8_PDES - (start & (GEN8_PDES - 1));
906 	else
907 		return end - start;
908 }
909 
910 static inline unsigned int gen8_pd_top_count(const struct i915_address_space *vm)
911 {
912 	unsigned int shift = __gen8_pte_shift(vm->top);
913 	return (vm->total + (1ull << shift) - 1) >> shift;
914 }
915 
916 static inline struct i915_page_directory *
917 gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx)
918 {
919 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
920 
921 	if (vm->top == 2)
922 		return ppgtt->pd;
923 	else
924 		return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top));
925 }
926 
927 static inline struct i915_page_directory *
928 gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr)
929 {
930 	return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT);
931 }
932 
933 static void __gen8_ppgtt_cleanup(struct i915_address_space *vm,
934 				 struct i915_page_directory *pd,
935 				 int count, int lvl)
936 {
937 	if (lvl) {
938 		void **pde = pd->entry;
939 
940 		do {
941 			if (!*pde)
942 				continue;
943 
944 			__gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1);
945 		} while (pde++, --count);
946 	}
947 
948 	free_px(vm, pd);
949 }
950 
951 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
952 {
953 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
954 
955 	if (intel_vgpu_active(vm->i915))
956 		gen8_ppgtt_notify_vgt(ppgtt, false);
957 
958 	__gen8_ppgtt_cleanup(vm, ppgtt->pd, gen8_pd_top_count(vm), vm->top);
959 	free_scratch(vm);
960 }
961 
962 static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm,
963 			      struct i915_page_directory * const pd,
964 			      u64 start, const u64 end, int lvl)
965 {
966 	const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
967 	unsigned int idx, len;
968 
969 	GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
970 
971 	len = gen8_pd_range(start, end, lvl--, &idx);
972 	DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
973 	    __func__, vm, lvl + 1, start, end,
974 	    idx, len, atomic_read(px_used(pd)));
975 	GEM_BUG_ON(!len || len >= atomic_read(px_used(pd)));
976 
977 	do {
978 		struct i915_page_table *pt = pd->entry[idx];
979 
980 		if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) &&
981 		    gen8_pd_contains(start, end, lvl)) {
982 			DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n",
983 			    __func__, vm, lvl + 1, idx, start, end);
984 			clear_pd_entry(pd, idx, scratch);
985 			__gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl);
986 			start += (u64)I915_PDES << gen8_pd_shift(lvl);
987 			continue;
988 		}
989 
990 		if (lvl) {
991 			start = __gen8_ppgtt_clear(vm, as_pd(pt),
992 						   start, end, lvl);
993 		} else {
994 			unsigned int count;
995 			u64 *vaddr;
996 
997 			count = gen8_pt_count(start, end);
998 			DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } removing pte\n",
999 			    __func__, vm, lvl, start, end,
1000 			    gen8_pd_index(start, 0), count,
1001 			    atomic_read(&pt->used));
1002 			GEM_BUG_ON(!count || count >= atomic_read(&pt->used));
1003 
1004 			vaddr = kmap_atomic_px(pt);
1005 			memset64(vaddr + gen8_pd_index(start, 0),
1006 				 vm->scratch[0].encode,
1007 				 count);
1008 			kunmap_atomic(vaddr);
1009 
1010 			atomic_sub(count, &pt->used);
1011 			start += count;
1012 		}
1013 
1014 		if (release_pd_entry(pd, idx, pt, scratch))
1015 			free_px(vm, pt);
1016 	} while (idx++, --len);
1017 
1018 	return start;
1019 }
1020 
1021 static void gen8_ppgtt_clear(struct i915_address_space *vm,
1022 			     u64 start, u64 length)
1023 {
1024 	GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1025 	GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1026 	GEM_BUG_ON(range_overflows(start, length, vm->total));
1027 
1028 	start >>= GEN8_PTE_SHIFT;
1029 	length >>= GEN8_PTE_SHIFT;
1030 	GEM_BUG_ON(length == 0);
1031 
1032 	__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1033 			   start, start + length, vm->top);
1034 }
1035 
1036 static int __gen8_ppgtt_alloc(struct i915_address_space * const vm,
1037 			      struct i915_page_directory * const pd,
1038 			      u64 * const start, const u64 end, int lvl)
1039 {
1040 	const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
1041 	struct i915_page_table *alloc = NULL;
1042 	unsigned int idx, len;
1043 	int ret = 0;
1044 
1045 	GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
1046 
1047 	len = gen8_pd_range(*start, end, lvl--, &idx);
1048 	DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
1049 	    __func__, vm, lvl + 1, *start, end,
1050 	    idx, len, atomic_read(px_used(pd)));
1051 	GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1));
1052 
1053 	spin_lock(&pd->lock);
1054 	GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */
1055 	do {
1056 		struct i915_page_table *pt = pd->entry[idx];
1057 
1058 		if (!pt) {
1059 			spin_unlock(&pd->lock);
1060 
1061 			DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n",
1062 			    __func__, vm, lvl + 1, idx);
1063 
1064 			pt = fetch_and_zero(&alloc);
1065 			if (lvl) {
1066 				if (!pt) {
1067 					pt = &alloc_pd(vm)->pt;
1068 					if (IS_ERR(pt)) {
1069 						ret = PTR_ERR(pt);
1070 						goto out;
1071 					}
1072 				}
1073 
1074 				fill_px(pt, vm->scratch[lvl].encode);
1075 			} else {
1076 				if (!pt) {
1077 					pt = alloc_pt(vm);
1078 					if (IS_ERR(pt)) {
1079 						ret = PTR_ERR(pt);
1080 						goto out;
1081 					}
1082 				}
1083 
1084 				if (intel_vgpu_active(vm->i915) ||
1085 				    gen8_pt_count(*start, end) < I915_PDES)
1086 					fill_px(pt, vm->scratch[lvl].encode);
1087 			}
1088 
1089 			spin_lock(&pd->lock);
1090 			if (likely(!pd->entry[idx]))
1091 				set_pd_entry(pd, idx, pt);
1092 			else
1093 				alloc = pt, pt = pd->entry[idx];
1094 		}
1095 
1096 		if (lvl) {
1097 			atomic_inc(&pt->used);
1098 			spin_unlock(&pd->lock);
1099 
1100 			ret = __gen8_ppgtt_alloc(vm, as_pd(pt),
1101 						 start, end, lvl);
1102 			if (unlikely(ret)) {
1103 				if (release_pd_entry(pd, idx, pt, scratch))
1104 					free_px(vm, pt);
1105 				goto out;
1106 			}
1107 
1108 			spin_lock(&pd->lock);
1109 			atomic_dec(&pt->used);
1110 			GEM_BUG_ON(!atomic_read(&pt->used));
1111 		} else {
1112 			unsigned int count = gen8_pt_count(*start, end);
1113 
1114 			DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } inserting pte\n",
1115 			    __func__, vm, lvl, *start, end,
1116 			    gen8_pd_index(*start, 0), count,
1117 			    atomic_read(&pt->used));
1118 
1119 			atomic_add(count, &pt->used);
1120 			/* All other pdes may be simultaneously removed */
1121 			GEM_BUG_ON(atomic_read(&pt->used) > 2 * I915_PDES);
1122 			*start += count;
1123 		}
1124 	} while (idx++, --len);
1125 	spin_unlock(&pd->lock);
1126 out:
1127 	if (alloc)
1128 		free_px(vm, alloc);
1129 	return ret;
1130 }
1131 
1132 static int gen8_ppgtt_alloc(struct i915_address_space *vm,
1133 			    u64 start, u64 length)
1134 {
1135 	u64 from;
1136 	int err;
1137 
1138 	GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1139 	GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1140 	GEM_BUG_ON(range_overflows(start, length, vm->total));
1141 
1142 	start >>= GEN8_PTE_SHIFT;
1143 	length >>= GEN8_PTE_SHIFT;
1144 	GEM_BUG_ON(length == 0);
1145 	from = start;
1146 
1147 	err = __gen8_ppgtt_alloc(vm, i915_vm_to_ppgtt(vm)->pd,
1148 				 &start, start + length, vm->top);
1149 	if (unlikely(err && from != start))
1150 		__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1151 				   from, start, vm->top);
1152 
1153 	return err;
1154 }
1155 
1156 static inline struct sgt_dma {
1157 	struct scatterlist *sg;
1158 	dma_addr_t dma, max;
1159 } sgt_dma(struct i915_vma *vma) {
1160 	struct scatterlist *sg = vma->pages->sgl;
1161 	dma_addr_t addr = sg_dma_address(sg);
1162 	return (struct sgt_dma) { sg, addr, addr + sg->length };
1163 }
1164 
1165 static __always_inline u64
1166 gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt,
1167 		      struct i915_page_directory *pdp,
1168 		      struct sgt_dma *iter,
1169 		      u64 idx,
1170 		      enum i915_cache_level cache_level,
1171 		      u32 flags)
1172 {
1173 	struct i915_page_directory *pd;
1174 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1175 	gen8_pte_t *vaddr;
1176 
1177 	pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2));
1178 	vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1179 	do {
1180 		GEM_BUG_ON(iter->sg->length < I915_GTT_PAGE_SIZE);
1181 		vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma;
1182 
1183 		iter->dma += I915_GTT_PAGE_SIZE;
1184 		if (iter->dma >= iter->max) {
1185 			iter->sg = __sg_next(iter->sg);
1186 			if (!iter->sg) {
1187 				idx = 0;
1188 				break;
1189 			}
1190 
1191 			iter->dma = sg_dma_address(iter->sg);
1192 			iter->max = iter->dma + iter->sg->length;
1193 		}
1194 
1195 		if (gen8_pd_index(++idx, 0) == 0) {
1196 			if (gen8_pd_index(idx, 1) == 0) {
1197 				/* Limited by sg length for 3lvl */
1198 				if (gen8_pd_index(idx, 2) == 0)
1199 					break;
1200 
1201 				pd = pdp->entry[gen8_pd_index(idx, 2)];
1202 			}
1203 
1204 			kunmap_atomic(vaddr);
1205 			vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1206 		}
1207 	} while (1);
1208 	kunmap_atomic(vaddr);
1209 
1210 	return idx;
1211 }
1212 
1213 static void gen8_ppgtt_insert_huge(struct i915_vma *vma,
1214 				   struct sgt_dma *iter,
1215 				   enum i915_cache_level cache_level,
1216 				   u32 flags)
1217 {
1218 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1219 	u64 start = vma->node.start;
1220 	dma_addr_t rem = iter->sg->length;
1221 
1222 	GEM_BUG_ON(!i915_vm_is_4lvl(vma->vm));
1223 
1224 	do {
1225 		struct i915_page_directory * const pdp =
1226 			gen8_pdp_for_page_address(vma->vm, start);
1227 		struct i915_page_directory * const pd =
1228 			i915_pd_entry(pdp, __gen8_pte_index(start, 2));
1229 		gen8_pte_t encode = pte_encode;
1230 		unsigned int maybe_64K = -1;
1231 		unsigned int page_size;
1232 		gen8_pte_t *vaddr;
1233 		u16 index;
1234 
1235 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1236 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1237 		    rem >= I915_GTT_PAGE_SIZE_2M &&
1238 		    !__gen8_pte_index(start, 0)) {
1239 			index = __gen8_pte_index(start, 1);
1240 			encode |= GEN8_PDE_PS_2M;
1241 			page_size = I915_GTT_PAGE_SIZE_2M;
1242 
1243 			vaddr = kmap_atomic_px(pd);
1244 		} else {
1245 			struct i915_page_table *pt =
1246 				i915_pt_entry(pd, __gen8_pte_index(start, 1));
1247 
1248 			index = __gen8_pte_index(start, 0);
1249 			page_size = I915_GTT_PAGE_SIZE;
1250 
1251 			if (!index &&
1252 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1253 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1254 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1255 			     rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))
1256 				maybe_64K = __gen8_pte_index(start, 1);
1257 
1258 			vaddr = kmap_atomic_px(pt);
1259 		}
1260 
1261 		do {
1262 			GEM_BUG_ON(iter->sg->length < page_size);
1263 			vaddr[index++] = encode | iter->dma;
1264 
1265 			start += page_size;
1266 			iter->dma += page_size;
1267 			rem -= page_size;
1268 			if (iter->dma >= iter->max) {
1269 				iter->sg = __sg_next(iter->sg);
1270 				if (!iter->sg)
1271 					break;
1272 
1273 				rem = iter->sg->length;
1274 				iter->dma = sg_dma_address(iter->sg);
1275 				iter->max = iter->dma + rem;
1276 
1277 				if (maybe_64K != -1 && index < I915_PDES &&
1278 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1279 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1280 				       rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)))
1281 					maybe_64K = -1;
1282 
1283 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1284 					break;
1285 			}
1286 		} while (rem >= page_size && index < I915_PDES);
1287 
1288 		kunmap_atomic(vaddr);
1289 
1290 		/*
1291 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1292 		 * filled whole page-table with 64K entries, or filled part of
1293 		 * it and have reached the end of the sg table and we have
1294 		 * enough padding.
1295 		 */
1296 		if (maybe_64K != -1 &&
1297 		    (index == I915_PDES ||
1298 		     (i915_vm_has_scratch_64K(vma->vm) &&
1299 		      !iter->sg && IS_ALIGNED(vma->node.start +
1300 					      vma->node.size,
1301 					      I915_GTT_PAGE_SIZE_2M)))) {
1302 			vaddr = kmap_atomic_px(pd);
1303 			vaddr[maybe_64K] |= GEN8_PDE_IPS_64K;
1304 			kunmap_atomic(vaddr);
1305 			page_size = I915_GTT_PAGE_SIZE_64K;
1306 
1307 			/*
1308 			 * We write all 4K page entries, even when using 64K
1309 			 * pages. In order to verify that the HW isn't cheating
1310 			 * by using the 4K PTE instead of the 64K PTE, we want
1311 			 * to remove all the surplus entries. If the HW skipped
1312 			 * the 64K PTE, it will read/write into the scratch page
1313 			 * instead - which we detect as missing results during
1314 			 * selftests.
1315 			 */
1316 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1317 				u16 i;
1318 
1319 				encode = vma->vm->scratch[0].encode;
1320 				vaddr = kmap_atomic_px(i915_pt_entry(pd, maybe_64K));
1321 
1322 				for (i = 1; i < index; i += 16)
1323 					memset64(vaddr + i, encode, 15);
1324 
1325 				kunmap_atomic(vaddr);
1326 			}
1327 		}
1328 
1329 		vma->page_sizes.gtt |= page_size;
1330 	} while (iter->sg);
1331 }
1332 
1333 static void gen8_ppgtt_insert(struct i915_address_space *vm,
1334 			      struct i915_vma *vma,
1335 			      enum i915_cache_level cache_level,
1336 			      u32 flags)
1337 {
1338 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
1339 	struct sgt_dma iter = sgt_dma(vma);
1340 
1341 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1342 		gen8_ppgtt_insert_huge(vma, &iter, cache_level, flags);
1343 	} else  {
1344 		u64 idx = vma->node.start >> GEN8_PTE_SHIFT;
1345 
1346 		do {
1347 			struct i915_page_directory * const pdp =
1348 				gen8_pdp_for_page_index(vm, idx);
1349 
1350 			idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx,
1351 						    cache_level, flags);
1352 		} while (idx);
1353 
1354 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1355 	}
1356 }
1357 
1358 static int gen8_init_scratch(struct i915_address_space *vm)
1359 {
1360 	int ret;
1361 	int i;
1362 
1363 	/*
1364 	 * If everybody agrees to not to write into the scratch page,
1365 	 * we can reuse it for all vm, keeping contexts and processes separate.
1366 	 */
1367 	if (vm->has_read_only &&
1368 	    vm->i915->kernel_context &&
1369 	    vm->i915->kernel_context->vm) {
1370 		struct i915_address_space *clone =
1371 			rcu_dereference_protected(vm->i915->kernel_context->vm,
1372 						  true); /* static */
1373 
1374 		GEM_BUG_ON(!clone->has_read_only);
1375 
1376 		vm->scratch_order = clone->scratch_order;
1377 		memcpy(vm->scratch, clone->scratch, sizeof(vm->scratch));
1378 		px_dma(&vm->scratch[0]) = 0; /* no xfer of ownership */
1379 		return 0;
1380 	}
1381 
1382 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1383 	if (ret)
1384 		return ret;
1385 
1386 	vm->scratch[0].encode =
1387 		gen8_pte_encode(px_dma(&vm->scratch[0]),
1388 				I915_CACHE_LLC, vm->has_read_only);
1389 
1390 	for (i = 1; i <= vm->top; i++) {
1391 		if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[i]))))
1392 			goto free_scratch;
1393 
1394 		fill_px(&vm->scratch[i], vm->scratch[i - 1].encode);
1395 		vm->scratch[i].encode =
1396 			gen8_pde_encode(px_dma(&vm->scratch[i]),
1397 					I915_CACHE_LLC);
1398 	}
1399 
1400 	return 0;
1401 
1402 free_scratch:
1403 	free_scratch(vm);
1404 	return -ENOMEM;
1405 }
1406 
1407 static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1408 {
1409 	struct i915_address_space *vm = &ppgtt->vm;
1410 	struct i915_page_directory *pd = ppgtt->pd;
1411 	unsigned int idx;
1412 
1413 	GEM_BUG_ON(vm->top != 2);
1414 	GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES);
1415 
1416 	for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) {
1417 		struct i915_page_directory *pde;
1418 
1419 		pde = alloc_pd(vm);
1420 		if (IS_ERR(pde))
1421 			return PTR_ERR(pde);
1422 
1423 		fill_px(pde, vm->scratch[1].encode);
1424 		set_pd_entry(pd, idx, pde);
1425 		atomic_inc(px_used(pde)); /* keep pinned */
1426 	}
1427 	wmb();
1428 
1429 	return 0;
1430 }
1431 
1432 static void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt)
1433 {
1434 	struct drm_i915_private *i915 = gt->i915;
1435 
1436 	ppgtt->vm.gt = gt;
1437 	ppgtt->vm.i915 = i915;
1438 	ppgtt->vm.dma = &i915->drm.pdev->dev;
1439 	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
1440 
1441 	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1442 
1443 	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1444 	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1445 	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1446 	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1447 }
1448 
1449 static struct i915_page_directory *
1450 gen8_alloc_top_pd(struct i915_address_space *vm)
1451 {
1452 	const unsigned int count = gen8_pd_top_count(vm);
1453 	struct i915_page_directory *pd;
1454 
1455 	GEM_BUG_ON(count > ARRAY_SIZE(pd->entry));
1456 
1457 	pd = __alloc_pd(offsetof(typeof(*pd), entry[count]));
1458 	if (unlikely(!pd))
1459 		return ERR_PTR(-ENOMEM);
1460 
1461 	if (unlikely(setup_page_dma(vm, px_base(pd)))) {
1462 		kfree(pd);
1463 		return ERR_PTR(-ENOMEM);
1464 	}
1465 
1466 	fill_page_dma(px_base(pd), vm->scratch[vm->top].encode, count);
1467 	atomic_inc(px_used(pd)); /* mark as pinned */
1468 	return pd;
1469 }
1470 
1471 /*
1472  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1473  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1474  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1475  * space.
1476  *
1477  */
1478 static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1479 {
1480 	struct i915_ppgtt *ppgtt;
1481 	int err;
1482 
1483 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1484 	if (!ppgtt)
1485 		return ERR_PTR(-ENOMEM);
1486 
1487 	ppgtt_init(ppgtt, &i915->gt);
1488 	ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2;
1489 
1490 	/*
1491 	 * From bdw, there is hw support for read-only pages in the PPGTT.
1492 	 *
1493 	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
1494 	 * for now.
1495 	 *
1496 	 * Gen12 has inherited the same read-only fault issue from gen11.
1497 	 */
1498 	ppgtt->vm.has_read_only = !IS_GEN_RANGE(i915, 11, 12);
1499 
1500 	/* There are only few exceptions for gen >=6. chv and bxt.
1501 	 * And we are not sure about the latter so play safe for now.
1502 	 */
1503 	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1504 		ppgtt->vm.pt_kmap_wc = true;
1505 
1506 	err = gen8_init_scratch(&ppgtt->vm);
1507 	if (err)
1508 		goto err_free;
1509 
1510 	ppgtt->pd = gen8_alloc_top_pd(&ppgtt->vm);
1511 	if (IS_ERR(ppgtt->pd)) {
1512 		err = PTR_ERR(ppgtt->pd);
1513 		goto err_free_scratch;
1514 	}
1515 
1516 	if (!i915_vm_is_4lvl(&ppgtt->vm)) {
1517 		err = gen8_preallocate_top_level_pdp(ppgtt);
1518 		if (err)
1519 			goto err_free_pd;
1520 	}
1521 
1522 	ppgtt->vm.bind_async_flags = I915_VMA_LOCAL_BIND;
1523 	ppgtt->vm.insert_entries = gen8_ppgtt_insert;
1524 	ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc;
1525 	ppgtt->vm.clear_range = gen8_ppgtt_clear;
1526 
1527 	if (intel_vgpu_active(i915))
1528 		gen8_ppgtt_notify_vgt(ppgtt, true);
1529 
1530 	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1531 
1532 	return ppgtt;
1533 
1534 err_free_pd:
1535 	__gen8_ppgtt_cleanup(&ppgtt->vm, ppgtt->pd,
1536 			     gen8_pd_top_count(&ppgtt->vm), ppgtt->vm.top);
1537 err_free_scratch:
1538 	free_scratch(&ppgtt->vm);
1539 err_free:
1540 	kfree(ppgtt);
1541 	return ERR_PTR(err);
1542 }
1543 
1544 /* Write pde (index) from the page directory @pd to the page table @pt */
1545 static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
1546 				  const unsigned int pde,
1547 				  const struct i915_page_table *pt)
1548 {
1549 	/* Caller needs to make sure the write completes if necessary */
1550 	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1551 		  ppgtt->pd_addr + pde);
1552 }
1553 
1554 static void gen7_ppgtt_enable(struct intel_gt *gt)
1555 {
1556 	struct drm_i915_private *i915 = gt->i915;
1557 	struct intel_uncore *uncore = gt->uncore;
1558 	struct intel_engine_cs *engine;
1559 	enum intel_engine_id id;
1560 	u32 ecochk;
1561 
1562 	intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B);
1563 
1564 	ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
1565 	if (IS_HASWELL(i915)) {
1566 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1567 	} else {
1568 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1569 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1570 	}
1571 	intel_uncore_write(uncore, GAM_ECOCHK, ecochk);
1572 
1573 	for_each_engine(engine, gt, id) {
1574 		/* GFX_MODE is per-ring on gen7+ */
1575 		ENGINE_WRITE(engine,
1576 			     RING_MODE_GEN7,
1577 			     _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1578 	}
1579 }
1580 
1581 static void gen6_ppgtt_enable(struct intel_gt *gt)
1582 {
1583 	struct intel_uncore *uncore = gt->uncore;
1584 
1585 	intel_uncore_rmw(uncore,
1586 			 GAC_ECO_BITS,
1587 			 0,
1588 			 ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B);
1589 
1590 	intel_uncore_rmw(uncore,
1591 			 GAB_CTL,
1592 			 0,
1593 			 GAB_CTL_CONT_AFTER_PAGEFAULT);
1594 
1595 	intel_uncore_rmw(uncore,
1596 			 GAM_ECOCHK,
1597 			 0,
1598 			 ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1599 
1600 	if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */
1601 		intel_uncore_write(uncore,
1602 				   GFX_MODE,
1603 				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1604 }
1605 
1606 /* PPGTT support for Sandybdrige/Gen6 and later */
1607 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1608 				   u64 start, u64 length)
1609 {
1610 	struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1611 	const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1612 	const gen6_pte_t scratch_pte = vm->scratch[0].encode;
1613 	unsigned int pde = first_entry / GEN6_PTES;
1614 	unsigned int pte = first_entry % GEN6_PTES;
1615 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1616 
1617 	while (num_entries) {
1618 		struct i915_page_table * const pt =
1619 			i915_pt_entry(ppgtt->base.pd, pde++);
1620 		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1621 		gen6_pte_t *vaddr;
1622 
1623 		GEM_BUG_ON(px_base(pt) == px_base(&vm->scratch[1]));
1624 
1625 		num_entries -= count;
1626 
1627 		GEM_BUG_ON(count > atomic_read(&pt->used));
1628 		if (!atomic_sub_return(count, &pt->used))
1629 			ppgtt->scan_for_unused_pt = true;
1630 
1631 		/*
1632 		 * Note that the hw doesn't support removing PDE on the fly
1633 		 * (they are cached inside the context with no means to
1634 		 * invalidate the cache), so we can only reset the PTE
1635 		 * entries back to scratch.
1636 		 */
1637 
1638 		vaddr = kmap_atomic_px(pt);
1639 		memset32(vaddr + pte, scratch_pte, count);
1640 		kunmap_atomic(vaddr);
1641 
1642 		pte = 0;
1643 	}
1644 }
1645 
1646 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1647 				      struct i915_vma *vma,
1648 				      enum i915_cache_level cache_level,
1649 				      u32 flags)
1650 {
1651 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1652 	struct i915_page_directory * const pd = ppgtt->pd;
1653 	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1654 	unsigned act_pt = first_entry / GEN6_PTES;
1655 	unsigned act_pte = first_entry % GEN6_PTES;
1656 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1657 	struct sgt_dma iter = sgt_dma(vma);
1658 	gen6_pte_t *vaddr;
1659 
1660 	GEM_BUG_ON(pd->entry[act_pt] == &vm->scratch[1]);
1661 
1662 	vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1663 	do {
1664 		GEM_BUG_ON(iter.sg->length < I915_GTT_PAGE_SIZE);
1665 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1666 
1667 		iter.dma += I915_GTT_PAGE_SIZE;
1668 		if (iter.dma == iter.max) {
1669 			iter.sg = __sg_next(iter.sg);
1670 			if (!iter.sg)
1671 				break;
1672 
1673 			iter.dma = sg_dma_address(iter.sg);
1674 			iter.max = iter.dma + iter.sg->length;
1675 		}
1676 
1677 		if (++act_pte == GEN6_PTES) {
1678 			kunmap_atomic(vaddr);
1679 			vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1680 			act_pte = 0;
1681 		}
1682 	} while (1);
1683 	kunmap_atomic(vaddr);
1684 
1685 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1686 }
1687 
1688 static int gen6_alloc_va_range(struct i915_address_space *vm,
1689 			       u64 start, u64 length)
1690 {
1691 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1692 	struct i915_page_directory * const pd = ppgtt->base.pd;
1693 	struct i915_page_table *pt, *alloc = NULL;
1694 	intel_wakeref_t wakeref;
1695 	u64 from = start;
1696 	unsigned int pde;
1697 	bool flush = false;
1698 	int ret = 0;
1699 
1700 	wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1701 
1702 	spin_lock(&pd->lock);
1703 	gen6_for_each_pde(pt, pd, start, length, pde) {
1704 		const unsigned int count = gen6_pte_count(start, length);
1705 
1706 		if (px_base(pt) == px_base(&vm->scratch[1])) {
1707 			spin_unlock(&pd->lock);
1708 
1709 			pt = fetch_and_zero(&alloc);
1710 			if (!pt)
1711 				pt = alloc_pt(vm);
1712 			if (IS_ERR(pt)) {
1713 				ret = PTR_ERR(pt);
1714 				goto unwind_out;
1715 			}
1716 
1717 			fill32_px(pt, vm->scratch[0].encode);
1718 
1719 			spin_lock(&pd->lock);
1720 			if (pd->entry[pde] == &vm->scratch[1]) {
1721 				pd->entry[pde] = pt;
1722 				if (i915_vma_is_bound(ppgtt->vma,
1723 						      I915_VMA_GLOBAL_BIND)) {
1724 					gen6_write_pde(ppgtt, pde, pt);
1725 					flush = true;
1726 				}
1727 			} else {
1728 				alloc = pt;
1729 				pt = pd->entry[pde];
1730 			}
1731 		}
1732 
1733 		atomic_add(count, &pt->used);
1734 	}
1735 	spin_unlock(&pd->lock);
1736 
1737 	if (flush)
1738 		gen6_ggtt_invalidate(vm->gt->ggtt);
1739 
1740 	goto out;
1741 
1742 unwind_out:
1743 	gen6_ppgtt_clear_range(vm, from, start - from);
1744 out:
1745 	if (alloc)
1746 		free_px(vm, alloc);
1747 	intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1748 	return ret;
1749 }
1750 
1751 static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1752 {
1753 	struct i915_address_space * const vm = &ppgtt->base.vm;
1754 	struct i915_page_directory * const pd = ppgtt->base.pd;
1755 	int ret;
1756 
1757 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1758 	if (ret)
1759 		return ret;
1760 
1761 	vm->scratch[0].encode =
1762 		vm->pte_encode(px_dma(&vm->scratch[0]),
1763 			       I915_CACHE_NONE, PTE_READ_ONLY);
1764 
1765 	if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[1])))) {
1766 		cleanup_scratch_page(vm);
1767 		return -ENOMEM;
1768 	}
1769 
1770 	fill32_px(&vm->scratch[1], vm->scratch[0].encode);
1771 	memset_p(pd->entry, &vm->scratch[1], I915_PDES);
1772 
1773 	return 0;
1774 }
1775 
1776 static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1777 {
1778 	struct i915_page_directory * const pd = ppgtt->base.pd;
1779 	struct i915_page_dma * const scratch =
1780 		px_base(&ppgtt->base.vm.scratch[1]);
1781 	struct i915_page_table *pt;
1782 	u32 pde;
1783 
1784 	gen6_for_all_pdes(pt, pd, pde)
1785 		if (px_base(pt) != scratch)
1786 			free_px(&ppgtt->base.vm, pt);
1787 }
1788 
1789 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1790 {
1791 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1792 
1793 	i915_vma_destroy(ppgtt->vma);
1794 
1795 	gen6_ppgtt_free_pd(ppgtt);
1796 	free_scratch(vm);
1797 
1798 	mutex_destroy(&ppgtt->pin_mutex);
1799 	kfree(ppgtt->base.pd);
1800 }
1801 
1802 static int pd_vma_set_pages(struct i915_vma *vma)
1803 {
1804 	vma->pages = ERR_PTR(-ENODEV);
1805 	return 0;
1806 }
1807 
1808 static void pd_vma_clear_pages(struct i915_vma *vma)
1809 {
1810 	GEM_BUG_ON(!vma->pages);
1811 
1812 	vma->pages = NULL;
1813 }
1814 
1815 static int pd_vma_bind(struct i915_vma *vma,
1816 		       enum i915_cache_level cache_level,
1817 		       u32 unused)
1818 {
1819 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1820 	struct gen6_ppgtt *ppgtt = vma->private;
1821 	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1822 	struct i915_page_table *pt;
1823 	unsigned int pde;
1824 
1825 	px_base(ppgtt->base.pd)->ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1826 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1827 
1828 	gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
1829 		gen6_write_pde(ppgtt, pde, pt);
1830 
1831 	gen6_ggtt_invalidate(ggtt);
1832 
1833 	return 0;
1834 }
1835 
1836 static void pd_vma_unbind(struct i915_vma *vma)
1837 {
1838 	struct gen6_ppgtt *ppgtt = vma->private;
1839 	struct i915_page_directory * const pd = ppgtt->base.pd;
1840 	struct i915_page_dma * const scratch =
1841 		px_base(&ppgtt->base.vm.scratch[1]);
1842 	struct i915_page_table *pt;
1843 	unsigned int pde;
1844 
1845 	if (!ppgtt->scan_for_unused_pt)
1846 		return;
1847 
1848 	/* Free all no longer used page tables */
1849 	gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
1850 		if (px_base(pt) == scratch || atomic_read(&pt->used))
1851 			continue;
1852 
1853 		free_px(&ppgtt->base.vm, pt);
1854 		pd->entry[pde] = scratch;
1855 	}
1856 
1857 	ppgtt->scan_for_unused_pt = false;
1858 }
1859 
1860 static const struct i915_vma_ops pd_vma_ops = {
1861 	.set_pages = pd_vma_set_pages,
1862 	.clear_pages = pd_vma_clear_pages,
1863 	.bind_vma = pd_vma_bind,
1864 	.unbind_vma = pd_vma_unbind,
1865 };
1866 
1867 static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
1868 {
1869 	struct i915_ggtt *ggtt = ppgtt->base.vm.gt->ggtt;
1870 	struct i915_vma *vma;
1871 
1872 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
1873 	GEM_BUG_ON(size > ggtt->vm.total);
1874 
1875 	vma = i915_vma_alloc();
1876 	if (!vma)
1877 		return ERR_PTR(-ENOMEM);
1878 
1879 	i915_active_init(&vma->active, NULL, NULL);
1880 
1881 	mutex_init(&vma->pages_mutex);
1882 	vma->vm = i915_vm_get(&ggtt->vm);
1883 	vma->ops = &pd_vma_ops;
1884 	vma->private = ppgtt;
1885 
1886 	vma->size = size;
1887 	vma->fence_size = size;
1888 	atomic_set(&vma->flags, I915_VMA_GGTT);
1889 	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
1890 
1891 	INIT_LIST_HEAD(&vma->obj_link);
1892 	INIT_LIST_HEAD(&vma->closed_link);
1893 
1894 	return vma;
1895 }
1896 
1897 int gen6_ppgtt_pin(struct i915_ppgtt *base)
1898 {
1899 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1900 	int err = 0;
1901 
1902 	GEM_BUG_ON(!atomic_read(&ppgtt->base.vm.open));
1903 
1904 	/*
1905 	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
1906 	 * which will be pinned into every active context.
1907 	 * (When vma->pin_count becomes atomic, I expect we will naturally
1908 	 * need a larger, unpacked, type and kill this redundancy.)
1909 	 */
1910 	if (atomic_add_unless(&ppgtt->pin_count, 1, 0))
1911 		return 0;
1912 
1913 	if (mutex_lock_interruptible(&ppgtt->pin_mutex))
1914 		return -EINTR;
1915 
1916 	/*
1917 	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1918 	 * allocator works in address space sizes, so it's multiplied by page
1919 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1920 	 */
1921 	if (!atomic_read(&ppgtt->pin_count)) {
1922 		err = i915_vma_pin(ppgtt->vma,
1923 				   0, GEN6_PD_ALIGN,
1924 				   PIN_GLOBAL | PIN_HIGH);
1925 	}
1926 	if (!err)
1927 		atomic_inc(&ppgtt->pin_count);
1928 	mutex_unlock(&ppgtt->pin_mutex);
1929 
1930 	return err;
1931 }
1932 
1933 void gen6_ppgtt_unpin(struct i915_ppgtt *base)
1934 {
1935 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1936 
1937 	GEM_BUG_ON(!atomic_read(&ppgtt->pin_count));
1938 	if (atomic_dec_and_test(&ppgtt->pin_count))
1939 		i915_vma_unpin(ppgtt->vma);
1940 }
1941 
1942 void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
1943 {
1944 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1945 
1946 	if (!atomic_read(&ppgtt->pin_count))
1947 		return;
1948 
1949 	i915_vma_unpin(ppgtt->vma);
1950 	atomic_set(&ppgtt->pin_count, 0);
1951 }
1952 
1953 static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1954 {
1955 	struct i915_ggtt * const ggtt = &i915->ggtt;
1956 	struct gen6_ppgtt *ppgtt;
1957 	int err;
1958 
1959 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1960 	if (!ppgtt)
1961 		return ERR_PTR(-ENOMEM);
1962 
1963 	mutex_init(&ppgtt->pin_mutex);
1964 
1965 	ppgtt_init(&ppgtt->base, &i915->gt);
1966 	ppgtt->base.vm.top = 1;
1967 
1968 	ppgtt->base.vm.bind_async_flags = I915_VMA_LOCAL_BIND;
1969 	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
1970 	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
1971 	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
1972 	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
1973 
1974 	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
1975 
1976 	ppgtt->base.pd = __alloc_pd(sizeof(*ppgtt->base.pd));
1977 	if (!ppgtt->base.pd) {
1978 		err = -ENOMEM;
1979 		goto err_free;
1980 	}
1981 
1982 	err = gen6_ppgtt_init_scratch(ppgtt);
1983 	if (err)
1984 		goto err_pd;
1985 
1986 	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
1987 	if (IS_ERR(ppgtt->vma)) {
1988 		err = PTR_ERR(ppgtt->vma);
1989 		goto err_scratch;
1990 	}
1991 
1992 	return &ppgtt->base;
1993 
1994 err_scratch:
1995 	free_scratch(&ppgtt->base.vm);
1996 err_pd:
1997 	kfree(ppgtt->base.pd);
1998 err_free:
1999 	kfree(ppgtt);
2000 	return ERR_PTR(err);
2001 }
2002 
2003 static void gtt_write_workarounds(struct intel_gt *gt)
2004 {
2005 	struct drm_i915_private *i915 = gt->i915;
2006 	struct intel_uncore *uncore = gt->uncore;
2007 
2008 	/* This function is for gtt related workarounds. This function is
2009 	 * called on driver load and after a GPU reset, so you can place
2010 	 * workarounds here even if they get overwritten by GPU reset.
2011 	 */
2012 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2013 	if (IS_BROADWELL(i915))
2014 		intel_uncore_write(uncore,
2015 				   GEN8_L3_LRA_1_GPGPU,
2016 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2017 	else if (IS_CHERRYVIEW(i915))
2018 		intel_uncore_write(uncore,
2019 				   GEN8_L3_LRA_1_GPGPU,
2020 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2021 	else if (IS_GEN9_LP(i915))
2022 		intel_uncore_write(uncore,
2023 				   GEN8_L3_LRA_1_GPGPU,
2024 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2025 	else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
2026 		intel_uncore_write(uncore,
2027 				   GEN8_L3_LRA_1_GPGPU,
2028 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2029 
2030 	/*
2031 	 * To support 64K PTEs we need to first enable the use of the
2032 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2033 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2034 	 * shouldn't be needed after GEN10.
2035 	 *
2036 	 * 64K pages were first introduced from BDW+, although technically they
2037 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2038 	 * 32K pages, but we don't currently have any support for it in our
2039 	 * driver.
2040 	 */
2041 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
2042 	    INTEL_GEN(i915) <= 10)
2043 		intel_uncore_rmw(uncore,
2044 				 GEN8_GAMW_ECO_DEV_RW_IA,
2045 				 0,
2046 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2047 
2048 	if (IS_GEN_RANGE(i915, 8, 11)) {
2049 		bool can_use_gtt_cache = true;
2050 
2051 		/*
2052 		 * According to the BSpec if we use 2M/1G pages then we also
2053 		 * need to disable the GTT cache. At least on BDW we can see
2054 		 * visual corruption when using 2M pages, and not disabling the
2055 		 * GTT cache.
2056 		 */
2057 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
2058 			can_use_gtt_cache = false;
2059 
2060 		/* WaGttCachingOffByDefault */
2061 		intel_uncore_write(uncore,
2062 				   HSW_GTT_CACHE_EN,
2063 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
2064 		WARN_ON_ONCE(can_use_gtt_cache &&
2065 			     intel_uncore_read(uncore,
2066 					       HSW_GTT_CACHE_EN) == 0);
2067 	}
2068 }
2069 
2070 int i915_ppgtt_init_hw(struct intel_gt *gt)
2071 {
2072 	struct drm_i915_private *i915 = gt->i915;
2073 
2074 	gtt_write_workarounds(gt);
2075 
2076 	if (IS_GEN(i915, 6))
2077 		gen6_ppgtt_enable(gt);
2078 	else if (IS_GEN(i915, 7))
2079 		gen7_ppgtt_enable(gt);
2080 
2081 	return 0;
2082 }
2083 
2084 static struct i915_ppgtt *
2085 __ppgtt_create(struct drm_i915_private *i915)
2086 {
2087 	if (INTEL_GEN(i915) < 8)
2088 		return gen6_ppgtt_create(i915);
2089 	else
2090 		return gen8_ppgtt_create(i915);
2091 }
2092 
2093 struct i915_ppgtt *
2094 i915_ppgtt_create(struct drm_i915_private *i915)
2095 {
2096 	struct i915_ppgtt *ppgtt;
2097 
2098 	ppgtt = __ppgtt_create(i915);
2099 	if (IS_ERR(ppgtt))
2100 		return ppgtt;
2101 
2102 	trace_i915_ppgtt_create(&ppgtt->vm);
2103 
2104 	return ppgtt;
2105 }
2106 
2107 /* Certain Gen5 chipsets require require idling the GPU before
2108  * unmapping anything from the GTT when VT-d is enabled.
2109  */
2110 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2111 {
2112 	/* Query intel_iommu to see if we need the workaround. Presumably that
2113 	 * was loaded first.
2114 	 */
2115 	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2116 }
2117 
2118 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
2119 {
2120 	struct drm_i915_private *i915 = ggtt->vm.i915;
2121 
2122 	/* Don't bother messing with faults pre GEN6 as we have little
2123 	 * documentation supporting that it's a good idea.
2124 	 */
2125 	if (INTEL_GEN(i915) < 6)
2126 		return;
2127 
2128 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
2129 
2130 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2131 
2132 	ggtt->invalidate(ggtt);
2133 }
2134 
2135 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
2136 {
2137 	ggtt_suspend_mappings(&i915->ggtt);
2138 }
2139 
2140 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2141 			       struct sg_table *pages)
2142 {
2143 	do {
2144 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2145 				     pages->sgl, pages->nents,
2146 				     PCI_DMA_BIDIRECTIONAL,
2147 				     DMA_ATTR_NO_WARN))
2148 			return 0;
2149 
2150 		/*
2151 		 * If the DMA remap fails, one cause can be that we have
2152 		 * too many objects pinned in a small remapping table,
2153 		 * such as swiotlb. Incrementally purge all other objects and
2154 		 * try again - if there are no more pages to remove from
2155 		 * the DMA remapper, i915_gem_shrink will return 0.
2156 		 */
2157 		GEM_BUG_ON(obj->mm.pages == pages);
2158 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2159 				 obj->base.size >> PAGE_SHIFT, NULL,
2160 				 I915_SHRINK_BOUND |
2161 				 I915_SHRINK_UNBOUND));
2162 
2163 	return -ENOSPC;
2164 }
2165 
2166 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2167 {
2168 	writeq(pte, addr);
2169 }
2170 
2171 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2172 				  dma_addr_t addr,
2173 				  u64 offset,
2174 				  enum i915_cache_level level,
2175 				  u32 unused)
2176 {
2177 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2178 	gen8_pte_t __iomem *pte =
2179 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2180 
2181 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2182 
2183 	ggtt->invalidate(ggtt);
2184 }
2185 
2186 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2187 				     struct i915_vma *vma,
2188 				     enum i915_cache_level level,
2189 				     u32 flags)
2190 {
2191 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2192 	struct sgt_iter sgt_iter;
2193 	gen8_pte_t __iomem *gtt_entries;
2194 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2195 	dma_addr_t addr;
2196 
2197 	/*
2198 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2199 	 * not to allow the user to override access to a read only page.
2200 	 */
2201 
2202 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2203 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2204 	for_each_sgt_daddr(addr, sgt_iter, vma->pages)
2205 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2206 
2207 	/*
2208 	 * We want to flush the TLBs only after we're certain all the PTE
2209 	 * updates have finished.
2210 	 */
2211 	ggtt->invalidate(ggtt);
2212 }
2213 
2214 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2215 				  dma_addr_t addr,
2216 				  u64 offset,
2217 				  enum i915_cache_level level,
2218 				  u32 flags)
2219 {
2220 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2221 	gen6_pte_t __iomem *pte =
2222 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2223 
2224 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2225 
2226 	ggtt->invalidate(ggtt);
2227 }
2228 
2229 /*
2230  * Binds an object into the global gtt with the specified cache level. The object
2231  * will be accessible to the GPU via commands whose operands reference offsets
2232  * within the global GTT as well as accessible by the GPU through the GMADR
2233  * mapped BAR (dev_priv->mm.gtt->gtt).
2234  */
2235 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2236 				     struct i915_vma *vma,
2237 				     enum i915_cache_level level,
2238 				     u32 flags)
2239 {
2240 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2241 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2242 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2243 	struct sgt_iter iter;
2244 	dma_addr_t addr;
2245 	for_each_sgt_daddr(addr, iter, vma->pages)
2246 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2247 
2248 	/*
2249 	 * We want to flush the TLBs only after we're certain all the PTE
2250 	 * updates have finished.
2251 	 */
2252 	ggtt->invalidate(ggtt);
2253 }
2254 
2255 static void nop_clear_range(struct i915_address_space *vm,
2256 			    u64 start, u64 length)
2257 {
2258 }
2259 
2260 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2261 				  u64 start, u64 length)
2262 {
2263 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2264 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2265 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2266 	const gen8_pte_t scratch_pte = vm->scratch[0].encode;
2267 	gen8_pte_t __iomem *gtt_base =
2268 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2269 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2270 	int i;
2271 
2272 	if (WARN(num_entries > max_entries,
2273 		 "First entry = %d; Num entries = %d (max=%d)\n",
2274 		 first_entry, num_entries, max_entries))
2275 		num_entries = max_entries;
2276 
2277 	for (i = 0; i < num_entries; i++)
2278 		gen8_set_pte(&gtt_base[i], scratch_pte);
2279 }
2280 
2281 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2282 {
2283 	struct drm_i915_private *dev_priv = vm->i915;
2284 
2285 	/*
2286 	 * Make sure the internal GAM fifo has been cleared of all GTT
2287 	 * writes before exiting stop_machine(). This guarantees that
2288 	 * any aperture accesses waiting to start in another process
2289 	 * cannot back up behind the GTT writes causing a hang.
2290 	 * The register can be any arbitrary GAM register.
2291 	 */
2292 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2293 }
2294 
2295 struct insert_page {
2296 	struct i915_address_space *vm;
2297 	dma_addr_t addr;
2298 	u64 offset;
2299 	enum i915_cache_level level;
2300 };
2301 
2302 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2303 {
2304 	struct insert_page *arg = _arg;
2305 
2306 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2307 	bxt_vtd_ggtt_wa(arg->vm);
2308 
2309 	return 0;
2310 }
2311 
2312 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2313 					  dma_addr_t addr,
2314 					  u64 offset,
2315 					  enum i915_cache_level level,
2316 					  u32 unused)
2317 {
2318 	struct insert_page arg = { vm, addr, offset, level };
2319 
2320 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2321 }
2322 
2323 struct insert_entries {
2324 	struct i915_address_space *vm;
2325 	struct i915_vma *vma;
2326 	enum i915_cache_level level;
2327 	u32 flags;
2328 };
2329 
2330 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2331 {
2332 	struct insert_entries *arg = _arg;
2333 
2334 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2335 	bxt_vtd_ggtt_wa(arg->vm);
2336 
2337 	return 0;
2338 }
2339 
2340 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2341 					     struct i915_vma *vma,
2342 					     enum i915_cache_level level,
2343 					     u32 flags)
2344 {
2345 	struct insert_entries arg = { vm, vma, level, flags };
2346 
2347 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2348 }
2349 
2350 struct clear_range {
2351 	struct i915_address_space *vm;
2352 	u64 start;
2353 	u64 length;
2354 };
2355 
2356 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2357 {
2358 	struct clear_range *arg = _arg;
2359 
2360 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2361 	bxt_vtd_ggtt_wa(arg->vm);
2362 
2363 	return 0;
2364 }
2365 
2366 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2367 					  u64 start,
2368 					  u64 length)
2369 {
2370 	struct clear_range arg = { vm, start, length };
2371 
2372 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2373 }
2374 
2375 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2376 				  u64 start, u64 length)
2377 {
2378 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2379 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2380 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2381 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2382 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2383 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2384 	int i;
2385 
2386 	if (WARN(num_entries > max_entries,
2387 		 "First entry = %d; Num entries = %d (max=%d)\n",
2388 		 first_entry, num_entries, max_entries))
2389 		num_entries = max_entries;
2390 
2391 	scratch_pte = vm->scratch[0].encode;
2392 	for (i = 0; i < num_entries; i++)
2393 		iowrite32(scratch_pte, &gtt_base[i]);
2394 }
2395 
2396 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2397 				  dma_addr_t addr,
2398 				  u64 offset,
2399 				  enum i915_cache_level cache_level,
2400 				  u32 unused)
2401 {
2402 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2403 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2404 
2405 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2406 }
2407 
2408 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2409 				     struct i915_vma *vma,
2410 				     enum i915_cache_level cache_level,
2411 				     u32 unused)
2412 {
2413 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2414 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2415 
2416 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2417 				    flags);
2418 }
2419 
2420 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2421 				  u64 start, u64 length)
2422 {
2423 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2424 }
2425 
2426 static int ggtt_bind_vma(struct i915_vma *vma,
2427 			 enum i915_cache_level cache_level,
2428 			 u32 flags)
2429 {
2430 	struct drm_i915_private *i915 = vma->vm->i915;
2431 	struct drm_i915_gem_object *obj = vma->obj;
2432 	intel_wakeref_t wakeref;
2433 	u32 pte_flags;
2434 
2435 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2436 	pte_flags = 0;
2437 	if (i915_gem_object_is_readonly(obj))
2438 		pte_flags |= PTE_READ_ONLY;
2439 
2440 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2441 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2442 
2443 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2444 
2445 	/*
2446 	 * Without aliasing PPGTT there's no difference between
2447 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2448 	 * upgrade to both bound if we bind either to avoid double-binding.
2449 	 */
2450 	atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
2451 
2452 	return 0;
2453 }
2454 
2455 static void ggtt_unbind_vma(struct i915_vma *vma)
2456 {
2457 	struct drm_i915_private *i915 = vma->vm->i915;
2458 	intel_wakeref_t wakeref;
2459 
2460 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2461 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2462 }
2463 
2464 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2465 				 enum i915_cache_level cache_level,
2466 				 u32 flags)
2467 {
2468 	struct drm_i915_private *i915 = vma->vm->i915;
2469 	u32 pte_flags;
2470 	int ret;
2471 
2472 	/* Currently applicable only to VLV */
2473 	pte_flags = 0;
2474 	if (i915_gem_object_is_readonly(vma->obj))
2475 		pte_flags |= PTE_READ_ONLY;
2476 
2477 	if (flags & I915_VMA_LOCAL_BIND) {
2478 		struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
2479 
2480 		if (flags & I915_VMA_ALLOC) {
2481 			ret = alias->vm.allocate_va_range(&alias->vm,
2482 							  vma->node.start,
2483 							  vma->size);
2484 			if (ret)
2485 				return ret;
2486 
2487 			set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
2488 		}
2489 
2490 		GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
2491 				     __i915_vma_flags(vma)));
2492 		alias->vm.insert_entries(&alias->vm, vma,
2493 					 cache_level, pte_flags);
2494 	}
2495 
2496 	if (flags & I915_VMA_GLOBAL_BIND) {
2497 		intel_wakeref_t wakeref;
2498 
2499 		with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2500 			vma->vm->insert_entries(vma->vm, vma,
2501 						cache_level, pte_flags);
2502 		}
2503 	}
2504 
2505 	return 0;
2506 }
2507 
2508 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2509 {
2510 	struct drm_i915_private *i915 = vma->vm->i915;
2511 
2512 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
2513 		struct i915_address_space *vm = vma->vm;
2514 		intel_wakeref_t wakeref;
2515 
2516 		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2517 			vm->clear_range(vm, vma->node.start, vma->size);
2518 	}
2519 
2520 	if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
2521 		struct i915_address_space *vm =
2522 			&i915_vm_to_ggtt(vma->vm)->alias->vm;
2523 
2524 		vm->clear_range(vm, vma->node.start, vma->size);
2525 	}
2526 }
2527 
2528 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2529 			       struct sg_table *pages)
2530 {
2531 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2532 	struct device *kdev = &dev_priv->drm.pdev->dev;
2533 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2534 
2535 	if (unlikely(ggtt->do_idle_maps)) {
2536 		/* XXX This does not prevent more requests being submitted! */
2537 		if (intel_gt_retire_requests_timeout(ggtt->vm.gt,
2538 						     -MAX_SCHEDULE_TIMEOUT)) {
2539 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2540 			/* Wait a bit, in hopes it avoids the hang */
2541 			udelay(10);
2542 		}
2543 	}
2544 
2545 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2546 }
2547 
2548 static int ggtt_set_pages(struct i915_vma *vma)
2549 {
2550 	int ret;
2551 
2552 	GEM_BUG_ON(vma->pages);
2553 
2554 	ret = i915_get_ggtt_vma_pages(vma);
2555 	if (ret)
2556 		return ret;
2557 
2558 	vma->page_sizes = vma->obj->mm.page_sizes;
2559 
2560 	return 0;
2561 }
2562 
2563 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
2564 				   unsigned long color,
2565 				   u64 *start,
2566 				   u64 *end)
2567 {
2568 	if (i915_node_color_differs(node, color))
2569 		*start += I915_GTT_PAGE_SIZE;
2570 
2571 	/* Also leave a space between the unallocated reserved node after the
2572 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2573 	 * to insert a guard page to prevent prefetches crossing over the
2574 	 * GTT boundary.
2575 	 */
2576 	node = list_next_entry(node, node_list);
2577 	if (node->color != color)
2578 		*end -= I915_GTT_PAGE_SIZE;
2579 }
2580 
2581 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
2582 {
2583 	struct i915_ppgtt *ppgtt;
2584 	int err;
2585 
2586 	ppgtt = i915_ppgtt_create(ggtt->vm.i915);
2587 	if (IS_ERR(ppgtt))
2588 		return PTR_ERR(ppgtt);
2589 
2590 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2591 		err = -ENODEV;
2592 		goto err_ppgtt;
2593 	}
2594 
2595 	/*
2596 	 * Note we only pre-allocate as far as the end of the global
2597 	 * GTT. On 48b / 4-level page-tables, the difference is very,
2598 	 * very significant! We have to preallocate as GVT/vgpu does
2599 	 * not like the page directory disappearing.
2600 	 */
2601 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2602 	if (err)
2603 		goto err_ppgtt;
2604 
2605 	ggtt->alias = ppgtt;
2606 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
2607 
2608 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2609 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2610 
2611 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2612 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2613 
2614 	return 0;
2615 
2616 err_ppgtt:
2617 	i915_vm_put(&ppgtt->vm);
2618 	return err;
2619 }
2620 
2621 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
2622 {
2623 	struct i915_ppgtt *ppgtt;
2624 
2625 	ppgtt = fetch_and_zero(&ggtt->alias);
2626 	if (!ppgtt)
2627 		return;
2628 
2629 	i915_vm_put(&ppgtt->vm);
2630 
2631 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2632 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2633 }
2634 
2635 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
2636 {
2637 	u64 size;
2638 	int ret;
2639 
2640 	if (!USES_GUC(ggtt->vm.i915))
2641 		return 0;
2642 
2643 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
2644 	size = ggtt->vm.total - GUC_GGTT_TOP;
2645 
2646 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
2647 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
2648 				   PIN_NOEVICT);
2649 	if (ret)
2650 		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
2651 
2652 	return ret;
2653 }
2654 
2655 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
2656 {
2657 	if (drm_mm_node_allocated(&ggtt->uc_fw))
2658 		drm_mm_remove_node(&ggtt->uc_fw);
2659 }
2660 
2661 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
2662 {
2663 	ggtt_release_guc_top(ggtt);
2664 	if (drm_mm_node_allocated(&ggtt->error_capture))
2665 		drm_mm_remove_node(&ggtt->error_capture);
2666 }
2667 
2668 static int init_ggtt(struct i915_ggtt *ggtt)
2669 {
2670 	/* Let GEM Manage all of the aperture.
2671 	 *
2672 	 * However, leave one page at the end still bound to the scratch page.
2673 	 * There are a number of places where the hardware apparently prefetches
2674 	 * past the end of the object, and we've seen multiple hangs with the
2675 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2676 	 * aperture.  One page should be enough to keep any prefetching inside
2677 	 * of the aperture.
2678 	 */
2679 	unsigned long hole_start, hole_end;
2680 	struct drm_mm_node *entry;
2681 	int ret;
2682 
2683 	/*
2684 	 * GuC requires all resources that we're sharing with it to be placed in
2685 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
2686 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2687 	 * why.
2688 	 */
2689 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2690 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
2691 
2692 	ret = intel_vgt_balloon(ggtt);
2693 	if (ret)
2694 		return ret;
2695 
2696 	if (ggtt->mappable_end) {
2697 		/* Reserve a mappable slot for our lockless error capture */
2698 		ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2699 						  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2700 						  0, ggtt->mappable_end,
2701 						  DRM_MM_INSERT_LOW);
2702 		if (ret)
2703 			return ret;
2704 	}
2705 
2706 	/*
2707 	 * The upper portion of the GuC address space has a sizeable hole
2708 	 * (several MB) that is inaccessible by GuC. Reserve this range within
2709 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
2710 	 */
2711 	ret = ggtt_reserve_guc_top(ggtt);
2712 	if (ret)
2713 		goto err;
2714 
2715 	/* Clear any non-preallocated blocks */
2716 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2717 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2718 			      hole_start, hole_end);
2719 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
2720 				     hole_end - hole_start);
2721 	}
2722 
2723 	/* And finally clear the reserved guard page */
2724 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2725 
2726 	return 0;
2727 
2728 err:
2729 	cleanup_init_ggtt(ggtt);
2730 	return ret;
2731 }
2732 
2733 int i915_init_ggtt(struct drm_i915_private *i915)
2734 {
2735 	int ret;
2736 
2737 	ret = init_ggtt(&i915->ggtt);
2738 	if (ret)
2739 		return ret;
2740 
2741 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
2742 		ret = init_aliasing_ppgtt(&i915->ggtt);
2743 		if (ret)
2744 			cleanup_init_ggtt(&i915->ggtt);
2745 	}
2746 
2747 	return 0;
2748 }
2749 
2750 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
2751 {
2752 	struct i915_vma *vma, *vn;
2753 
2754 	atomic_set(&ggtt->vm.open, 0);
2755 
2756 	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
2757 	flush_workqueue(ggtt->vm.i915->wq);
2758 
2759 	mutex_lock(&ggtt->vm.mutex);
2760 
2761 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2762 		WARN_ON(__i915_vma_unbind(vma));
2763 
2764 	if (drm_mm_node_allocated(&ggtt->error_capture))
2765 		drm_mm_remove_node(&ggtt->error_capture);
2766 
2767 	ggtt_release_guc_top(ggtt);
2768 	intel_vgt_deballoon(ggtt);
2769 
2770 	ggtt->vm.cleanup(&ggtt->vm);
2771 
2772 	mutex_unlock(&ggtt->vm.mutex);
2773 	i915_address_space_fini(&ggtt->vm);
2774 
2775 	arch_phys_wc_del(ggtt->mtrr);
2776 
2777 	if (ggtt->iomap.size)
2778 		io_mapping_fini(&ggtt->iomap);
2779 }
2780 
2781 /**
2782  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
2783  * @i915: i915 device
2784  */
2785 void i915_ggtt_driver_release(struct drm_i915_private *i915)
2786 {
2787 	struct pagevec *pvec;
2788 
2789 	fini_aliasing_ppgtt(&i915->ggtt);
2790 
2791 	ggtt_cleanup_hw(&i915->ggtt);
2792 
2793 	pvec = &i915->mm.wc_stash.pvec;
2794 	if (pvec->nr) {
2795 		set_pages_array_wb(pvec->pages, pvec->nr);
2796 		__pagevec_release(pvec);
2797 	}
2798 }
2799 
2800 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2801 {
2802 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2803 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2804 	return snb_gmch_ctl << 20;
2805 }
2806 
2807 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2808 {
2809 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2810 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2811 	if (bdw_gmch_ctl)
2812 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2813 
2814 #ifdef CONFIG_X86_32
2815 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2816 	if (bdw_gmch_ctl > 4)
2817 		bdw_gmch_ctl = 4;
2818 #endif
2819 
2820 	return bdw_gmch_ctl << 20;
2821 }
2822 
2823 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2824 {
2825 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2826 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2827 
2828 	if (gmch_ctrl)
2829 		return 1 << (20 + gmch_ctrl);
2830 
2831 	return 0;
2832 }
2833 
2834 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2835 {
2836 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2837 	struct pci_dev *pdev = dev_priv->drm.pdev;
2838 	phys_addr_t phys_addr;
2839 	int ret;
2840 
2841 	/* For Modern GENs the PTEs and register space are split in the BAR */
2842 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2843 
2844 	/*
2845 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2846 	 * will be dropped. For WC mappings in general we have 64 byte burst
2847 	 * writes when the WC buffer is flushed, so we can't use it, but have to
2848 	 * resort to an uncached mapping. The WC issue is easily caught by the
2849 	 * readback check when writing GTT PTE entries.
2850 	 */
2851 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2852 		ggtt->gsm = ioremap(phys_addr, size);
2853 	else
2854 		ggtt->gsm = ioremap_wc(phys_addr, size);
2855 	if (!ggtt->gsm) {
2856 		DRM_ERROR("Failed to map the ggtt page table\n");
2857 		return -ENOMEM;
2858 	}
2859 
2860 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2861 	if (ret) {
2862 		DRM_ERROR("Scratch setup failed\n");
2863 		/* iounmap will also get called at remove, but meh */
2864 		iounmap(ggtt->gsm);
2865 		return ret;
2866 	}
2867 
2868 	ggtt->vm.scratch[0].encode =
2869 		ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
2870 				    I915_CACHE_NONE, 0);
2871 
2872 	return 0;
2873 }
2874 
2875 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
2876 {
2877 	/* TGL doesn't support LLC or AGE settings */
2878 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
2879 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
2880 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
2881 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
2882 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
2883 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
2884 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
2885 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
2886 }
2887 
2888 static void cnl_setup_private_ppat(struct intel_uncore *uncore)
2889 {
2890 	intel_uncore_write(uncore,
2891 			   GEN10_PAT_INDEX(0),
2892 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
2893 	intel_uncore_write(uncore,
2894 			   GEN10_PAT_INDEX(1),
2895 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
2896 	intel_uncore_write(uncore,
2897 			   GEN10_PAT_INDEX(2),
2898 			   GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
2899 	intel_uncore_write(uncore,
2900 			   GEN10_PAT_INDEX(3),
2901 			   GEN8_PPAT_UC);
2902 	intel_uncore_write(uncore,
2903 			   GEN10_PAT_INDEX(4),
2904 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
2905 	intel_uncore_write(uncore,
2906 			   GEN10_PAT_INDEX(5),
2907 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
2908 	intel_uncore_write(uncore,
2909 			   GEN10_PAT_INDEX(6),
2910 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
2911 	intel_uncore_write(uncore,
2912 			   GEN10_PAT_INDEX(7),
2913 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2914 }
2915 
2916 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2917  * bits. When using advanced contexts each context stores its own PAT, but
2918  * writing this data shouldn't be harmful even in those cases. */
2919 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
2920 {
2921 	u64 pat;
2922 
2923 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
2924 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
2925 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |	/* for scanout with eLLC */
2926 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
2927 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2928 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2929 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2930 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2931 
2932 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2933 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2934 }
2935 
2936 static void chv_setup_private_ppat(struct intel_uncore *uncore)
2937 {
2938 	u64 pat;
2939 
2940 	/*
2941 	 * Map WB on BDW to snooped on CHV.
2942 	 *
2943 	 * Only the snoop bit has meaning for CHV, the rest is
2944 	 * ignored.
2945 	 *
2946 	 * The hardware will never snoop for certain types of accesses:
2947 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2948 	 * - PPGTT page tables
2949 	 * - some other special cycles
2950 	 *
2951 	 * As with BDW, we also need to consider the following for GT accesses:
2952 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2953 	 * so RTL will always use the value corresponding to
2954 	 * pat_sel = 000".
2955 	 * Which means we must set the snoop bit in PAT entry 0
2956 	 * in order to keep the global status page working.
2957 	 */
2958 
2959 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2960 	      GEN8_PPAT(1, 0) |
2961 	      GEN8_PPAT(2, 0) |
2962 	      GEN8_PPAT(3, 0) |
2963 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2964 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2965 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2966 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2967 
2968 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2969 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2970 }
2971 
2972 static void gen6_gmch_remove(struct i915_address_space *vm)
2973 {
2974 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2975 
2976 	iounmap(ggtt->gsm);
2977 	cleanup_scratch_page(vm);
2978 }
2979 
2980 static void setup_private_pat(struct intel_uncore *uncore)
2981 {
2982 	struct drm_i915_private *i915 = uncore->i915;
2983 
2984 	GEM_BUG_ON(INTEL_GEN(i915) < 8);
2985 
2986 	if (INTEL_GEN(i915) >= 12)
2987 		tgl_setup_private_ppat(uncore);
2988 	else if (INTEL_GEN(i915) >= 10)
2989 		cnl_setup_private_ppat(uncore);
2990 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
2991 		chv_setup_private_ppat(uncore);
2992 	else
2993 		bdw_setup_private_ppat(uncore);
2994 }
2995 
2996 static struct resource pci_resource(struct pci_dev *pdev, int bar)
2997 {
2998 	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
2999 					       pci_resource_len(pdev, bar));
3000 }
3001 
3002 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3003 {
3004 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3005 	struct pci_dev *pdev = dev_priv->drm.pdev;
3006 	unsigned int size;
3007 	u16 snb_gmch_ctl;
3008 	int err;
3009 
3010 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3011 	if (!IS_DGFX(dev_priv)) {
3012 		ggtt->gmadr = pci_resource(pdev, 2);
3013 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
3014 	}
3015 
3016 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3017 	if (!err)
3018 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3019 	if (err)
3020 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3021 
3022 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3023 	if (IS_CHERRYVIEW(dev_priv))
3024 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3025 	else
3026 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3027 
3028 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3029 	ggtt->vm.cleanup = gen6_gmch_remove;
3030 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
3031 	ggtt->vm.clear_range = nop_clear_range;
3032 	if (intel_scanout_needs_vtd_wa(dev_priv))
3033 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3034 
3035 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3036 
3037 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3038 	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
3039 	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3040 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3041 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3042 		if (ggtt->vm.clear_range != nop_clear_range)
3043 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3044 	}
3045 
3046 	ggtt->invalidate = gen6_ggtt_invalidate;
3047 
3048 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3049 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3050 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3051 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3052 
3053 	ggtt->vm.pte_encode = gen8_pte_encode;
3054 
3055 	setup_private_pat(ggtt->vm.gt->uncore);
3056 
3057 	return ggtt_probe_common(ggtt, size);
3058 }
3059 
3060 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3061 {
3062 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3063 	struct pci_dev *pdev = dev_priv->drm.pdev;
3064 	unsigned int size;
3065 	u16 snb_gmch_ctl;
3066 	int err;
3067 
3068 	ggtt->gmadr =
3069 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3070 						 pci_resource_len(pdev, 2));
3071 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3072 
3073 	/* 64/512MB is the current min/max we actually know of, but this is just
3074 	 * a coarse sanity check.
3075 	 */
3076 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3077 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3078 		return -ENXIO;
3079 	}
3080 
3081 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3082 	if (!err)
3083 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3084 	if (err)
3085 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3086 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3087 
3088 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3089 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3090 
3091 	ggtt->vm.clear_range = nop_clear_range;
3092 	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3093 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3094 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
3095 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3096 	ggtt->vm.cleanup = gen6_gmch_remove;
3097 
3098 	ggtt->invalidate = gen6_ggtt_invalidate;
3099 
3100 	if (HAS_EDRAM(dev_priv))
3101 		ggtt->vm.pte_encode = iris_pte_encode;
3102 	else if (IS_HASWELL(dev_priv))
3103 		ggtt->vm.pte_encode = hsw_pte_encode;
3104 	else if (IS_VALLEYVIEW(dev_priv))
3105 		ggtt->vm.pte_encode = byt_pte_encode;
3106 	else if (INTEL_GEN(dev_priv) >= 7)
3107 		ggtt->vm.pte_encode = ivb_pte_encode;
3108 	else
3109 		ggtt->vm.pte_encode = snb_pte_encode;
3110 
3111 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3112 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3113 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3114 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3115 
3116 	return ggtt_probe_common(ggtt, size);
3117 }
3118 
3119 static void i915_gmch_remove(struct i915_address_space *vm)
3120 {
3121 	intel_gmch_remove();
3122 }
3123 
3124 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3125 {
3126 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3127 	phys_addr_t gmadr_base;
3128 	int ret;
3129 
3130 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3131 	if (!ret) {
3132 		DRM_ERROR("failed to set up gmch\n");
3133 		return -EIO;
3134 	}
3135 
3136 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3137 
3138 	ggtt->gmadr =
3139 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3140 						 ggtt->mappable_end);
3141 
3142 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3143 	ggtt->vm.insert_page = i915_ggtt_insert_page;
3144 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3145 	ggtt->vm.clear_range = i915_ggtt_clear_range;
3146 	ggtt->vm.cleanup = i915_gmch_remove;
3147 
3148 	ggtt->invalidate = gmch_ggtt_invalidate;
3149 
3150 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3151 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3152 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3153 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3154 
3155 	if (unlikely(ggtt->do_idle_maps))
3156 		dev_notice(dev_priv->drm.dev,
3157 			   "Applying Ironlake quirks for intel_iommu\n");
3158 
3159 	return 0;
3160 }
3161 
3162 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
3163 {
3164 	struct drm_i915_private *i915 = gt->i915;
3165 	int ret;
3166 
3167 	ggtt->vm.gt = gt;
3168 	ggtt->vm.i915 = i915;
3169 	ggtt->vm.dma = &i915->drm.pdev->dev;
3170 
3171 	if (INTEL_GEN(i915) <= 5)
3172 		ret = i915_gmch_probe(ggtt);
3173 	else if (INTEL_GEN(i915) < 8)
3174 		ret = gen6_gmch_probe(ggtt);
3175 	else
3176 		ret = gen8_gmch_probe(ggtt);
3177 	if (ret)
3178 		return ret;
3179 
3180 	if ((ggtt->vm.total - 1) >> 32) {
3181 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3182 			  " of address space! Found %lldM!\n",
3183 			  ggtt->vm.total >> 20);
3184 		ggtt->vm.total = 1ULL << 32;
3185 		ggtt->mappable_end =
3186 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3187 	}
3188 
3189 	if (ggtt->mappable_end > ggtt->vm.total) {
3190 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3191 			  " aperture=%pa, total=%llx\n",
3192 			  &ggtt->mappable_end, ggtt->vm.total);
3193 		ggtt->mappable_end = ggtt->vm.total;
3194 	}
3195 
3196 	/* GMADR is the PCI mmio aperture into the global GTT. */
3197 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3198 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3199 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3200 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3201 
3202 	return 0;
3203 }
3204 
3205 /**
3206  * i915_ggtt_probe_hw - Probe GGTT hardware location
3207  * @i915: i915 device
3208  */
3209 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
3210 {
3211 	int ret;
3212 
3213 	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
3214 	if (ret)
3215 		return ret;
3216 
3217 	if (intel_vtd_active())
3218 		dev_info(i915->drm.dev, "VT-d active for gfx access\n");
3219 
3220 	return 0;
3221 }
3222 
3223 static int ggtt_init_hw(struct i915_ggtt *ggtt)
3224 {
3225 	struct drm_i915_private *i915 = ggtt->vm.i915;
3226 
3227 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3228 
3229 	ggtt->vm.is_ggtt = true;
3230 
3231 	/* Only VLV supports read-only GGTT mappings */
3232 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
3233 
3234 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
3235 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
3236 
3237 	if (ggtt->mappable_end) {
3238 		if (!io_mapping_init_wc(&ggtt->iomap,
3239 					ggtt->gmadr.start,
3240 					ggtt->mappable_end)) {
3241 			ggtt->vm.cleanup(&ggtt->vm);
3242 			return -EIO;
3243 		}
3244 
3245 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
3246 					      ggtt->mappable_end);
3247 	}
3248 
3249 	i915_ggtt_init_fences(ggtt);
3250 
3251 	return 0;
3252 }
3253 
3254 /**
3255  * i915_ggtt_init_hw - Initialize GGTT hardware
3256  * @dev_priv: i915 device
3257  */
3258 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3259 {
3260 	int ret;
3261 
3262 	stash_init(&dev_priv->mm.wc_stash);
3263 
3264 	/* Note that we use page colouring to enforce a guard page at the
3265 	 * end of the address space. This is required as the CS may prefetch
3266 	 * beyond the end of the batch buffer, across the page boundary,
3267 	 * and beyond the end of the GTT if we do not provide a guard.
3268 	 */
3269 	ret = ggtt_init_hw(&dev_priv->ggtt);
3270 	if (ret)
3271 		return ret;
3272 
3273 	return 0;
3274 }
3275 
3276 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3277 {
3278 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3279 		return -EIO;
3280 
3281 	return 0;
3282 }
3283 
3284 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
3285 {
3286 	GEM_BUG_ON(ggtt->invalidate != gen6_ggtt_invalidate);
3287 
3288 	ggtt->invalidate = guc_ggtt_invalidate;
3289 
3290 	ggtt->invalidate(ggtt);
3291 }
3292 
3293 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
3294 {
3295 	/* XXX Temporary pardon for error unload */
3296 	if (ggtt->invalidate == gen6_ggtt_invalidate)
3297 		return;
3298 
3299 	/* We should only be called after i915_ggtt_enable_guc() */
3300 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
3301 
3302 	ggtt->invalidate = gen6_ggtt_invalidate;
3303 
3304 	ggtt->invalidate(ggtt);
3305 }
3306 
3307 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
3308 {
3309 	struct i915_vma *vma;
3310 	bool flush = false;
3311 	int open;
3312 
3313 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
3314 
3315 	mutex_lock(&ggtt->vm.mutex);
3316 
3317 	/* First fill our portion of the GTT with scratch pages */
3318 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3319 
3320 	/* Skip rewriting PTE on VMA unbind. */
3321 	open = atomic_xchg(&ggtt->vm.open, 0);
3322 
3323 	/* clflush objects bound into the GGTT and rebind them. */
3324 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
3325 		struct drm_i915_gem_object *obj = vma->obj;
3326 
3327 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
3328 			continue;
3329 
3330 		clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
3331 		WARN_ON(i915_vma_bind(vma,
3332 				      obj ? obj->cache_level : 0,
3333 				      PIN_GLOBAL, NULL));
3334 		if (obj) { /* only used during resume => exclusive access */
3335 			flush |= fetch_and_zero(&obj->write_domain);
3336 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
3337 		}
3338 	}
3339 
3340 	atomic_set(&ggtt->vm.open, open);
3341 	ggtt->invalidate(ggtt);
3342 
3343 	mutex_unlock(&ggtt->vm.mutex);
3344 
3345 	if (flush)
3346 		wbinvd_on_all_cpus();
3347 }
3348 
3349 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
3350 {
3351 	struct i915_ggtt *ggtt = &i915->ggtt;
3352 
3353 	ggtt_restore_mappings(ggtt);
3354 
3355 	if (INTEL_GEN(i915) >= 8)
3356 		setup_private_pat(ggtt->vm.gt->uncore);
3357 }
3358 
3359 static struct scatterlist *
3360 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3361 	     unsigned int width, unsigned int height,
3362 	     unsigned int stride,
3363 	     struct sg_table *st, struct scatterlist *sg)
3364 {
3365 	unsigned int column, row;
3366 	unsigned int src_idx;
3367 
3368 	for (column = 0; column < width; column++) {
3369 		src_idx = stride * (height - 1) + column + offset;
3370 		for (row = 0; row < height; row++) {
3371 			st->nents++;
3372 			/* We don't need the pages, but need to initialize
3373 			 * the entries so the sg list can be happily traversed.
3374 			 * The only thing we need are DMA addresses.
3375 			 */
3376 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3377 			sg_dma_address(sg) =
3378 				i915_gem_object_get_dma_address(obj, src_idx);
3379 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3380 			sg = sg_next(sg);
3381 			src_idx -= stride;
3382 		}
3383 	}
3384 
3385 	return sg;
3386 }
3387 
3388 static noinline struct sg_table *
3389 intel_rotate_pages(struct intel_rotation_info *rot_info,
3390 		   struct drm_i915_gem_object *obj)
3391 {
3392 	unsigned int size = intel_rotation_info_size(rot_info);
3393 	struct sg_table *st;
3394 	struct scatterlist *sg;
3395 	int ret = -ENOMEM;
3396 	int i;
3397 
3398 	/* Allocate target SG list. */
3399 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3400 	if (!st)
3401 		goto err_st_alloc;
3402 
3403 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3404 	if (ret)
3405 		goto err_sg_alloc;
3406 
3407 	st->nents = 0;
3408 	sg = st->sgl;
3409 
3410 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3411 		sg = rotate_pages(obj, rot_info->plane[i].offset,
3412 				  rot_info->plane[i].width, rot_info->plane[i].height,
3413 				  rot_info->plane[i].stride, st, sg);
3414 	}
3415 
3416 	return st;
3417 
3418 err_sg_alloc:
3419 	kfree(st);
3420 err_st_alloc:
3421 
3422 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3423 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3424 
3425 	return ERR_PTR(ret);
3426 }
3427 
3428 static struct scatterlist *
3429 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3430 	    unsigned int width, unsigned int height,
3431 	    unsigned int stride,
3432 	    struct sg_table *st, struct scatterlist *sg)
3433 {
3434 	unsigned int row;
3435 
3436 	for (row = 0; row < height; row++) {
3437 		unsigned int left = width * I915_GTT_PAGE_SIZE;
3438 
3439 		while (left) {
3440 			dma_addr_t addr;
3441 			unsigned int length;
3442 
3443 			/* We don't need the pages, but need to initialize
3444 			 * the entries so the sg list can be happily traversed.
3445 			 * The only thing we need are DMA addresses.
3446 			 */
3447 
3448 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
3449 
3450 			length = min(left, length);
3451 
3452 			st->nents++;
3453 
3454 			sg_set_page(sg, NULL, length, 0);
3455 			sg_dma_address(sg) = addr;
3456 			sg_dma_len(sg) = length;
3457 			sg = sg_next(sg);
3458 
3459 			offset += length / I915_GTT_PAGE_SIZE;
3460 			left -= length;
3461 		}
3462 
3463 		offset += stride - width;
3464 	}
3465 
3466 	return sg;
3467 }
3468 
3469 static noinline struct sg_table *
3470 intel_remap_pages(struct intel_remapped_info *rem_info,
3471 		  struct drm_i915_gem_object *obj)
3472 {
3473 	unsigned int size = intel_remapped_info_size(rem_info);
3474 	struct sg_table *st;
3475 	struct scatterlist *sg;
3476 	int ret = -ENOMEM;
3477 	int i;
3478 
3479 	/* Allocate target SG list. */
3480 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3481 	if (!st)
3482 		goto err_st_alloc;
3483 
3484 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3485 	if (ret)
3486 		goto err_sg_alloc;
3487 
3488 	st->nents = 0;
3489 	sg = st->sgl;
3490 
3491 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
3492 		sg = remap_pages(obj, rem_info->plane[i].offset,
3493 				 rem_info->plane[i].width, rem_info->plane[i].height,
3494 				 rem_info->plane[i].stride, st, sg);
3495 	}
3496 
3497 	i915_sg_trim(st);
3498 
3499 	return st;
3500 
3501 err_sg_alloc:
3502 	kfree(st);
3503 err_st_alloc:
3504 
3505 	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3506 			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
3507 
3508 	return ERR_PTR(ret);
3509 }
3510 
3511 static noinline struct sg_table *
3512 intel_partial_pages(const struct i915_ggtt_view *view,
3513 		    struct drm_i915_gem_object *obj)
3514 {
3515 	struct sg_table *st;
3516 	struct scatterlist *sg, *iter;
3517 	unsigned int count = view->partial.size;
3518 	unsigned int offset;
3519 	int ret = -ENOMEM;
3520 
3521 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3522 	if (!st)
3523 		goto err_st_alloc;
3524 
3525 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3526 	if (ret)
3527 		goto err_sg_alloc;
3528 
3529 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3530 	GEM_BUG_ON(!iter);
3531 
3532 	sg = st->sgl;
3533 	st->nents = 0;
3534 	do {
3535 		unsigned int len;
3536 
3537 		len = min(iter->length - (offset << PAGE_SHIFT),
3538 			  count << PAGE_SHIFT);
3539 		sg_set_page(sg, NULL, len, 0);
3540 		sg_dma_address(sg) =
3541 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3542 		sg_dma_len(sg) = len;
3543 
3544 		st->nents++;
3545 		count -= len >> PAGE_SHIFT;
3546 		if (count == 0) {
3547 			sg_mark_end(sg);
3548 			i915_sg_trim(st); /* Drop any unused tail entries. */
3549 
3550 			return st;
3551 		}
3552 
3553 		sg = __sg_next(sg);
3554 		iter = __sg_next(iter);
3555 		offset = 0;
3556 	} while (1);
3557 
3558 err_sg_alloc:
3559 	kfree(st);
3560 err_st_alloc:
3561 	return ERR_PTR(ret);
3562 }
3563 
3564 static int
3565 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3566 {
3567 	int ret;
3568 
3569 	/* The vma->pages are only valid within the lifespan of the borrowed
3570 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3571 	 * must be the vma->pages. A simple rule is that vma->pages must only
3572 	 * be accessed when the obj->mm.pages are pinned.
3573 	 */
3574 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3575 
3576 	switch (vma->ggtt_view.type) {
3577 	default:
3578 		GEM_BUG_ON(vma->ggtt_view.type);
3579 		/* fall through */
3580 	case I915_GGTT_VIEW_NORMAL:
3581 		vma->pages = vma->obj->mm.pages;
3582 		return 0;
3583 
3584 	case I915_GGTT_VIEW_ROTATED:
3585 		vma->pages =
3586 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3587 		break;
3588 
3589 	case I915_GGTT_VIEW_REMAPPED:
3590 		vma->pages =
3591 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
3592 		break;
3593 
3594 	case I915_GGTT_VIEW_PARTIAL:
3595 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3596 		break;
3597 	}
3598 
3599 	ret = 0;
3600 	if (IS_ERR(vma->pages)) {
3601 		ret = PTR_ERR(vma->pages);
3602 		vma->pages = NULL;
3603 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3604 			  vma->ggtt_view.type, ret);
3605 	}
3606 	return ret;
3607 }
3608 
3609 /**
3610  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3611  * @vm: the &struct i915_address_space
3612  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3613  * @size: how much space to allocate inside the GTT,
3614  *        must be #I915_GTT_PAGE_SIZE aligned
3615  * @offset: where to insert inside the GTT,
3616  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3617  *          (@offset + @size) must fit within the address space
3618  * @color: color to apply to node, if this node is not from a VMA,
3619  *         color must be #I915_COLOR_UNEVICTABLE
3620  * @flags: control search and eviction behaviour
3621  *
3622  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3623  * the address space (using @size and @color). If the @node does not fit, it
3624  * tries to evict any overlapping nodes from the GTT, including any
3625  * neighbouring nodes if the colors do not match (to ensure guard pages between
3626  * differing domains). See i915_gem_evict_for_node() for the gory details
3627  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3628  * evicting active overlapping objects, and any overlapping node that is pinned
3629  * or marked as unevictable will also result in failure.
3630  *
3631  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3632  * asked to wait for eviction and interrupted.
3633  */
3634 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3635 			 struct drm_mm_node *node,
3636 			 u64 size, u64 offset, unsigned long color,
3637 			 unsigned int flags)
3638 {
3639 	int err;
3640 
3641 	GEM_BUG_ON(!size);
3642 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3643 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3644 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3645 	GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3646 	GEM_BUG_ON(drm_mm_node_allocated(node));
3647 
3648 	node->size = size;
3649 	node->start = offset;
3650 	node->color = color;
3651 
3652 	err = drm_mm_reserve_node(&vm->mm, node);
3653 	if (err != -ENOSPC)
3654 		return err;
3655 
3656 	if (flags & PIN_NOEVICT)
3657 		return -ENOSPC;
3658 
3659 	err = i915_gem_evict_for_node(vm, node, flags);
3660 	if (err == 0)
3661 		err = drm_mm_reserve_node(&vm->mm, node);
3662 
3663 	return err;
3664 }
3665 
3666 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3667 {
3668 	u64 range, addr;
3669 
3670 	GEM_BUG_ON(range_overflows(start, len, end));
3671 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3672 
3673 	range = round_down(end - len, align) - round_up(start, align);
3674 	if (range) {
3675 		if (sizeof(unsigned long) == sizeof(u64)) {
3676 			addr = get_random_long();
3677 		} else {
3678 			addr = get_random_int();
3679 			if (range > U32_MAX) {
3680 				addr <<= 32;
3681 				addr |= get_random_int();
3682 			}
3683 		}
3684 		div64_u64_rem(addr, range, &addr);
3685 		start += addr;
3686 	}
3687 
3688 	return round_up(start, align);
3689 }
3690 
3691 /**
3692  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3693  * @vm: the &struct i915_address_space
3694  * @node: the &struct drm_mm_node (typically i915_vma.node)
3695  * @size: how much space to allocate inside the GTT,
3696  *        must be #I915_GTT_PAGE_SIZE aligned
3697  * @alignment: required alignment of starting offset, may be 0 but
3698  *             if specified, this must be a power-of-two and at least
3699  *             #I915_GTT_MIN_ALIGNMENT
3700  * @color: color to apply to node
3701  * @start: start of any range restriction inside GTT (0 for all),
3702  *         must be #I915_GTT_PAGE_SIZE aligned
3703  * @end: end of any range restriction inside GTT (U64_MAX for all),
3704  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3705  * @flags: control search and eviction behaviour
3706  *
3707  * i915_gem_gtt_insert() first searches for an available hole into which
3708  * is can insert the node. The hole address is aligned to @alignment and
3709  * its @size must then fit entirely within the [@start, @end] bounds. The
3710  * nodes on either side of the hole must match @color, or else a guard page
3711  * will be inserted between the two nodes (or the node evicted). If no
3712  * suitable hole is found, first a victim is randomly selected and tested
3713  * for eviction, otherwise then the LRU list of objects within the GTT
3714  * is scanned to find the first set of replacement nodes to create the hole.
3715  * Those old overlapping nodes are evicted from the GTT (and so must be
3716  * rebound before any future use). Any node that is currently pinned cannot
3717  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3718  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3719  * searching for an eviction candidate. See i915_gem_evict_something() for
3720  * the gory details on the eviction algorithm.
3721  *
3722  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3723  * asked to wait for eviction and interrupted.
3724  */
3725 int i915_gem_gtt_insert(struct i915_address_space *vm,
3726 			struct drm_mm_node *node,
3727 			u64 size, u64 alignment, unsigned long color,
3728 			u64 start, u64 end, unsigned int flags)
3729 {
3730 	enum drm_mm_insert_mode mode;
3731 	u64 offset;
3732 	int err;
3733 
3734 	lockdep_assert_held(&vm->mutex);
3735 
3736 	GEM_BUG_ON(!size);
3737 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3738 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3739 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3740 	GEM_BUG_ON(start >= end);
3741 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3742 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3743 	GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3744 	GEM_BUG_ON(drm_mm_node_allocated(node));
3745 
3746 	if (unlikely(range_overflows(start, size, end)))
3747 		return -ENOSPC;
3748 
3749 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3750 		return -ENOSPC;
3751 
3752 	mode = DRM_MM_INSERT_BEST;
3753 	if (flags & PIN_HIGH)
3754 		mode = DRM_MM_INSERT_HIGHEST;
3755 	if (flags & PIN_MAPPABLE)
3756 		mode = DRM_MM_INSERT_LOW;
3757 
3758 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3759 	 * so we know that we always have a minimum alignment of 4096.
3760 	 * The drm_mm range manager is optimised to return results
3761 	 * with zero alignment, so where possible use the optimal
3762 	 * path.
3763 	 */
3764 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3765 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3766 		alignment = 0;
3767 
3768 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3769 					  size, alignment, color,
3770 					  start, end, mode);
3771 	if (err != -ENOSPC)
3772 		return err;
3773 
3774 	if (mode & DRM_MM_INSERT_ONCE) {
3775 		err = drm_mm_insert_node_in_range(&vm->mm, node,
3776 						  size, alignment, color,
3777 						  start, end,
3778 						  DRM_MM_INSERT_BEST);
3779 		if (err != -ENOSPC)
3780 			return err;
3781 	}
3782 
3783 	if (flags & PIN_NOEVICT)
3784 		return -ENOSPC;
3785 
3786 	/*
3787 	 * No free space, pick a slot at random.
3788 	 *
3789 	 * There is a pathological case here using a GTT shared between
3790 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3791 	 *
3792 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3793 	 *         (64k objects)             (448k objects)
3794 	 *
3795 	 * Now imagine that the eviction LRU is ordered top-down (just because
3796 	 * pathology meets real life), and that we need to evict an object to
3797 	 * make room inside the aperture. The eviction scan then has to walk
3798 	 * the 448k list before it finds one within range. And now imagine that
3799 	 * it has to search for a new hole between every byte inside the memcpy,
3800 	 * for several simultaneous clients.
3801 	 *
3802 	 * On a full-ppgtt system, if we have run out of available space, there
3803 	 * will be lots and lots of objects in the eviction list! Again,
3804 	 * searching that LRU list may be slow if we are also applying any
3805 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
3806 	 * simplicity and similarilty between different GTT, try the single
3807 	 * random replacement first.
3808 	 */
3809 	offset = random_offset(start, end,
3810 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3811 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3812 	if (err != -ENOSPC)
3813 		return err;
3814 
3815 	if (flags & PIN_NOSEARCH)
3816 		return -ENOSPC;
3817 
3818 	/* Randomly selected placement is pinned, do a search */
3819 	err = i915_gem_evict_something(vm, size, alignment, color,
3820 				       start, end, flags);
3821 	if (err)
3822 		return err;
3823 
3824 	return drm_mm_insert_node_in_range(&vm->mm, node,
3825 					   size, alignment, color,
3826 					   start, end, DRM_MM_INSERT_EVICT);
3827 }
3828 
3829 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3830 #include "selftests/mock_gtt.c"
3831 #include "selftests/i915_gem_gtt.c"
3832 #endif
3833