1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: Global GTT views
37  *
38  * Background and previous state
39  *
40  * Historically objects could exists (be bound) in global GTT space only as
41  * singular instances with a view representing all of the object's backing pages
42  * in a linear fashion. This view will be called a normal view.
43  *
44  * To support multiple views of the same object, where the number of mapped
45  * pages is not equal to the backing store, or where the layout of the pages
46  * is not linear, concept of a GGTT view was added.
47  *
48  * One example of an alternative view is a stereo display driven by a single
49  * image. In this case we would have a framebuffer looking like this
50  * (2x2 pages):
51  *
52  *    12
53  *    34
54  *
55  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56  * rendering. In contrast, fed to the display engine would be an alternative
57  * view which could look something like this:
58  *
59  *   1212
60  *   3434
61  *
62  * In this example both the size and layout of pages in the alternative view is
63  * different from the normal view.
64  *
65  * Implementation and usage
66  *
67  * GGTT views are implemented using VMAs and are distinguished via enum
68  * i915_ggtt_view_type and struct i915_ggtt_view.
69  *
70  * A new flavour of core GEM functions which work with GGTT bound objects were
71  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72  * renaming  in large amounts of code. They take the struct i915_ggtt_view
73  * parameter encapsulating all metadata required to implement a view.
74  *
75  * As a helper for callers which are only interested in the normal view,
76  * globally const i915_ggtt_view_normal singleton instance exists. All old core
77  * GEM API functions, the ones not taking the view parameter, are operating on,
78  * or with the normal GGTT view.
79  *
80  * Code wanting to add or use a new GGTT view needs to:
81  *
82  * 1. Add a new enum with a suitable name.
83  * 2. Extend the metadata in the i915_ggtt_view structure if required.
84  * 3. Add support to i915_get_vma_pages().
85  *
86  * New views are required to build a scatter-gather table from within the
87  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88  * exists for the lifetime of an VMA.
89  *
90  * Core API is designed to have copy semantics which means that passed in
91  * struct i915_ggtt_view does not need to be persistent (left around after
92  * calling the core API functions).
93  *
94  */
95 
96 static int
97 i915_get_ggtt_vma_pages(struct i915_vma *vma);
98 
99 const struct i915_ggtt_view i915_ggtt_view_normal = {
100 	.type = I915_GGTT_VIEW_NORMAL,
101 };
102 const struct i915_ggtt_view i915_ggtt_view_rotated = {
103 	.type = I915_GGTT_VIEW_ROTATED,
104 };
105 
106 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
107 {
108 	bool has_aliasing_ppgtt;
109 	bool has_full_ppgtt;
110 	bool has_full_48bit_ppgtt;
111 
112 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
113 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
114 	has_full_48bit_ppgtt = IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9;
115 
116 	if (intel_vgpu_active(dev))
117 		has_full_ppgtt = false; /* emulation is too hard */
118 
119 	/*
120 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
121 	 * execlists, the sole mechanism available to submit work.
122 	 */
123 	if (INTEL_INFO(dev)->gen < 9 &&
124 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
125 		return 0;
126 
127 	if (enable_ppgtt == 1)
128 		return 1;
129 
130 	if (enable_ppgtt == 2 && has_full_ppgtt)
131 		return 2;
132 
133 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
134 		return 3;
135 
136 #ifdef CONFIG_INTEL_IOMMU
137 	/* Disable ppgtt on SNB if VT-d is on. */
138 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
139 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
140 		return 0;
141 	}
142 #endif
143 
144 	/* Early VLV doesn't have this */
145 	if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) {
146 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
147 		return 0;
148 	}
149 
150 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
151 		return has_full_48bit_ppgtt ? 3 : 2;
152 	else
153 		return has_aliasing_ppgtt ? 1 : 0;
154 }
155 
156 static int ppgtt_bind_vma(struct i915_vma *vma,
157 			  enum i915_cache_level cache_level,
158 			  u32 unused)
159 {
160 	u32 pte_flags = 0;
161 
162 	/* Currently applicable only to VLV */
163 	if (vma->obj->gt_ro)
164 		pte_flags |= PTE_READ_ONLY;
165 
166 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
167 				cache_level, pte_flags);
168 
169 	return 0;
170 }
171 
172 static void ppgtt_unbind_vma(struct i915_vma *vma)
173 {
174 	vma->vm->clear_range(vma->vm,
175 			     vma->node.start,
176 			     vma->obj->base.size,
177 			     true);
178 }
179 
180 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
181 				  enum i915_cache_level level,
182 				  bool valid)
183 {
184 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
185 	pte |= addr;
186 
187 	switch (level) {
188 	case I915_CACHE_NONE:
189 		pte |= PPAT_UNCACHED_INDEX;
190 		break;
191 	case I915_CACHE_WT:
192 		pte |= PPAT_DISPLAY_ELLC_INDEX;
193 		break;
194 	default:
195 		pte |= PPAT_CACHED_INDEX;
196 		break;
197 	}
198 
199 	return pte;
200 }
201 
202 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
203 				  const enum i915_cache_level level)
204 {
205 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
206 	pde |= addr;
207 	if (level != I915_CACHE_NONE)
208 		pde |= PPAT_CACHED_PDE_INDEX;
209 	else
210 		pde |= PPAT_UNCACHED_INDEX;
211 	return pde;
212 }
213 
214 #define gen8_pdpe_encode gen8_pde_encode
215 #define gen8_pml4e_encode gen8_pde_encode
216 
217 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
218 				 enum i915_cache_level level,
219 				 bool valid, u32 unused)
220 {
221 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
222 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
223 
224 	switch (level) {
225 	case I915_CACHE_L3_LLC:
226 	case I915_CACHE_LLC:
227 		pte |= GEN6_PTE_CACHE_LLC;
228 		break;
229 	case I915_CACHE_NONE:
230 		pte |= GEN6_PTE_UNCACHED;
231 		break;
232 	default:
233 		MISSING_CASE(level);
234 	}
235 
236 	return pte;
237 }
238 
239 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
240 				 enum i915_cache_level level,
241 				 bool valid, u32 unused)
242 {
243 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
244 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
245 
246 	switch (level) {
247 	case I915_CACHE_L3_LLC:
248 		pte |= GEN7_PTE_CACHE_L3_LLC;
249 		break;
250 	case I915_CACHE_LLC:
251 		pte |= GEN6_PTE_CACHE_LLC;
252 		break;
253 	case I915_CACHE_NONE:
254 		pte |= GEN6_PTE_UNCACHED;
255 		break;
256 	default:
257 		MISSING_CASE(level);
258 	}
259 
260 	return pte;
261 }
262 
263 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
264 				 enum i915_cache_level level,
265 				 bool valid, u32 flags)
266 {
267 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
268 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
269 
270 	if (!(flags & PTE_READ_ONLY))
271 		pte |= BYT_PTE_WRITEABLE;
272 
273 	if (level != I915_CACHE_NONE)
274 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
275 
276 	return pte;
277 }
278 
279 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
280 				 enum i915_cache_level level,
281 				 bool valid, u32 unused)
282 {
283 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
284 	pte |= HSW_PTE_ADDR_ENCODE(addr);
285 
286 	if (level != I915_CACHE_NONE)
287 		pte |= HSW_WB_LLC_AGE3;
288 
289 	return pte;
290 }
291 
292 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
293 				  enum i915_cache_level level,
294 				  bool valid, u32 unused)
295 {
296 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
297 	pte |= HSW_PTE_ADDR_ENCODE(addr);
298 
299 	switch (level) {
300 	case I915_CACHE_NONE:
301 		break;
302 	case I915_CACHE_WT:
303 		pte |= HSW_WT_ELLC_LLC_AGE3;
304 		break;
305 	default:
306 		pte |= HSW_WB_ELLC_LLC_AGE3;
307 		break;
308 	}
309 
310 	return pte;
311 }
312 
313 static int __setup_page_dma(struct drm_device *dev,
314 			    struct i915_page_dma *p, gfp_t flags)
315 {
316 	struct device *device = &dev->pdev->dev;
317 
318 	p->page = alloc_page(flags);
319 	if (!p->page)
320 		return -ENOMEM;
321 
322 	p->daddr = dma_map_page(device,
323 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
324 
325 	if (dma_mapping_error(device, p->daddr)) {
326 		__free_page(p->page);
327 		return -EINVAL;
328 	}
329 
330 	return 0;
331 }
332 
333 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
334 {
335 	return __setup_page_dma(dev, p, GFP_KERNEL);
336 }
337 
338 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
339 {
340 	if (WARN_ON(!p->page))
341 		return;
342 
343 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
344 	__free_page(p->page);
345 	memset(p, 0, sizeof(*p));
346 }
347 
348 static void *kmap_page_dma(struct i915_page_dma *p)
349 {
350 	return kmap_atomic(p->page);
351 }
352 
353 /* We use the flushing unmap only with ppgtt structures:
354  * page directories, page tables and scratch pages.
355  */
356 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
357 {
358 	/* There are only few exceptions for gen >=6. chv and bxt.
359 	 * And we are not sure about the latter so play safe for now.
360 	 */
361 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
362 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
363 
364 	kunmap_atomic(vaddr);
365 }
366 
367 #define kmap_px(px) kmap_page_dma(px_base(px))
368 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
369 
370 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
371 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
372 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
373 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
374 
375 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
376 			  const uint64_t val)
377 {
378 	int i;
379 	uint64_t * const vaddr = kmap_page_dma(p);
380 
381 	for (i = 0; i < 512; i++)
382 		vaddr[i] = val;
383 
384 	kunmap_page_dma(dev, vaddr);
385 }
386 
387 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
388 			     const uint32_t val32)
389 {
390 	uint64_t v = val32;
391 
392 	v = v << 32 | val32;
393 
394 	fill_page_dma(dev, p, v);
395 }
396 
397 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
398 {
399 	struct i915_page_scratch *sp;
400 	int ret;
401 
402 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
403 	if (sp == NULL)
404 		return ERR_PTR(-ENOMEM);
405 
406 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
407 	if (ret) {
408 		kfree(sp);
409 		return ERR_PTR(ret);
410 	}
411 
412 	set_pages_uc(px_page(sp), 1);
413 
414 	return sp;
415 }
416 
417 static void free_scratch_page(struct drm_device *dev,
418 			      struct i915_page_scratch *sp)
419 {
420 	set_pages_wb(px_page(sp), 1);
421 
422 	cleanup_px(dev, sp);
423 	kfree(sp);
424 }
425 
426 static struct i915_page_table *alloc_pt(struct drm_device *dev)
427 {
428 	struct i915_page_table *pt;
429 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
430 		GEN8_PTES : GEN6_PTES;
431 	int ret = -ENOMEM;
432 
433 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
434 	if (!pt)
435 		return ERR_PTR(-ENOMEM);
436 
437 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
438 				GFP_KERNEL);
439 
440 	if (!pt->used_ptes)
441 		goto fail_bitmap;
442 
443 	ret = setup_px(dev, pt);
444 	if (ret)
445 		goto fail_page_m;
446 
447 	return pt;
448 
449 fail_page_m:
450 	kfree(pt->used_ptes);
451 fail_bitmap:
452 	kfree(pt);
453 
454 	return ERR_PTR(ret);
455 }
456 
457 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
458 {
459 	cleanup_px(dev, pt);
460 	kfree(pt->used_ptes);
461 	kfree(pt);
462 }
463 
464 static void gen8_initialize_pt(struct i915_address_space *vm,
465 			       struct i915_page_table *pt)
466 {
467 	gen8_pte_t scratch_pte;
468 
469 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
470 				      I915_CACHE_LLC, true);
471 
472 	fill_px(vm->dev, pt, scratch_pte);
473 }
474 
475 static void gen6_initialize_pt(struct i915_address_space *vm,
476 			       struct i915_page_table *pt)
477 {
478 	gen6_pte_t scratch_pte;
479 
480 	WARN_ON(px_dma(vm->scratch_page) == 0);
481 
482 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
483 				     I915_CACHE_LLC, true, 0);
484 
485 	fill32_px(vm->dev, pt, scratch_pte);
486 }
487 
488 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
489 {
490 	struct i915_page_directory *pd;
491 	int ret = -ENOMEM;
492 
493 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
494 	if (!pd)
495 		return ERR_PTR(-ENOMEM);
496 
497 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
498 				sizeof(*pd->used_pdes), GFP_KERNEL);
499 	if (!pd->used_pdes)
500 		goto fail_bitmap;
501 
502 	ret = setup_px(dev, pd);
503 	if (ret)
504 		goto fail_page_m;
505 
506 	return pd;
507 
508 fail_page_m:
509 	kfree(pd->used_pdes);
510 fail_bitmap:
511 	kfree(pd);
512 
513 	return ERR_PTR(ret);
514 }
515 
516 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
517 {
518 	if (px_page(pd)) {
519 		cleanup_px(dev, pd);
520 		kfree(pd->used_pdes);
521 		kfree(pd);
522 	}
523 }
524 
525 static void gen8_initialize_pd(struct i915_address_space *vm,
526 			       struct i915_page_directory *pd)
527 {
528 	gen8_pde_t scratch_pde;
529 
530 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
531 
532 	fill_px(vm->dev, pd, scratch_pde);
533 }
534 
535 static int __pdp_init(struct drm_device *dev,
536 		      struct i915_page_directory_pointer *pdp)
537 {
538 	size_t pdpes = I915_PDPES_PER_PDP(dev);
539 
540 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
541 				  sizeof(unsigned long),
542 				  GFP_KERNEL);
543 	if (!pdp->used_pdpes)
544 		return -ENOMEM;
545 
546 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
547 				      GFP_KERNEL);
548 	if (!pdp->page_directory) {
549 		kfree(pdp->used_pdpes);
550 		/* the PDP might be the statically allocated top level. Keep it
551 		 * as clean as possible */
552 		pdp->used_pdpes = NULL;
553 		return -ENOMEM;
554 	}
555 
556 	return 0;
557 }
558 
559 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
560 {
561 	kfree(pdp->used_pdpes);
562 	kfree(pdp->page_directory);
563 	pdp->page_directory = NULL;
564 }
565 
566 static struct
567 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
568 {
569 	struct i915_page_directory_pointer *pdp;
570 	int ret = -ENOMEM;
571 
572 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
573 
574 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
575 	if (!pdp)
576 		return ERR_PTR(-ENOMEM);
577 
578 	ret = __pdp_init(dev, pdp);
579 	if (ret)
580 		goto fail_bitmap;
581 
582 	ret = setup_px(dev, pdp);
583 	if (ret)
584 		goto fail_page_m;
585 
586 	return pdp;
587 
588 fail_page_m:
589 	__pdp_fini(pdp);
590 fail_bitmap:
591 	kfree(pdp);
592 
593 	return ERR_PTR(ret);
594 }
595 
596 static void free_pdp(struct drm_device *dev,
597 		     struct i915_page_directory_pointer *pdp)
598 {
599 	__pdp_fini(pdp);
600 	if (USES_FULL_48BIT_PPGTT(dev)) {
601 		cleanup_px(dev, pdp);
602 		kfree(pdp);
603 	}
604 }
605 
606 static void gen8_initialize_pdp(struct i915_address_space *vm,
607 				struct i915_page_directory_pointer *pdp)
608 {
609 	gen8_ppgtt_pdpe_t scratch_pdpe;
610 
611 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
612 
613 	fill_px(vm->dev, pdp, scratch_pdpe);
614 }
615 
616 static void gen8_initialize_pml4(struct i915_address_space *vm,
617 				 struct i915_pml4 *pml4)
618 {
619 	gen8_ppgtt_pml4e_t scratch_pml4e;
620 
621 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
622 					  I915_CACHE_LLC);
623 
624 	fill_px(vm->dev, pml4, scratch_pml4e);
625 }
626 
627 static void
628 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
629 			  struct i915_page_directory_pointer *pdp,
630 			  struct i915_page_directory *pd,
631 			  int index)
632 {
633 	gen8_ppgtt_pdpe_t *page_directorypo;
634 
635 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
636 		return;
637 
638 	page_directorypo = kmap_px(pdp);
639 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
640 	kunmap_px(ppgtt, page_directorypo);
641 }
642 
643 static void
644 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
645 				  struct i915_pml4 *pml4,
646 				  struct i915_page_directory_pointer *pdp,
647 				  int index)
648 {
649 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
650 
651 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
652 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
653 	kunmap_px(ppgtt, pagemap);
654 }
655 
656 /* Broadwell Page Directory Pointer Descriptors */
657 static int gen8_write_pdp(struct drm_i915_gem_request *req,
658 			  unsigned entry,
659 			  dma_addr_t addr)
660 {
661 	struct intel_engine_cs *ring = req->ring;
662 	int ret;
663 
664 	BUG_ON(entry >= 4);
665 
666 	ret = intel_ring_begin(req, 6);
667 	if (ret)
668 		return ret;
669 
670 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
671 	intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(ring, entry));
672 	intel_ring_emit(ring, upper_32_bits(addr));
673 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
674 	intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(ring, entry));
675 	intel_ring_emit(ring, lower_32_bits(addr));
676 	intel_ring_advance(ring);
677 
678 	return 0;
679 }
680 
681 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
682 				 struct drm_i915_gem_request *req)
683 {
684 	int i, ret;
685 
686 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
687 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
688 
689 		ret = gen8_write_pdp(req, i, pd_daddr);
690 		if (ret)
691 			return ret;
692 	}
693 
694 	return 0;
695 }
696 
697 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
698 			      struct drm_i915_gem_request *req)
699 {
700 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
701 }
702 
703 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
704 				       struct i915_page_directory_pointer *pdp,
705 				       uint64_t start,
706 				       uint64_t length,
707 				       gen8_pte_t scratch_pte)
708 {
709 	struct i915_hw_ppgtt *ppgtt =
710 		container_of(vm, struct i915_hw_ppgtt, base);
711 	gen8_pte_t *pt_vaddr;
712 	unsigned pdpe = gen8_pdpe_index(start);
713 	unsigned pde = gen8_pde_index(start);
714 	unsigned pte = gen8_pte_index(start);
715 	unsigned num_entries = length >> PAGE_SHIFT;
716 	unsigned last_pte, i;
717 
718 	if (WARN_ON(!pdp))
719 		return;
720 
721 	while (num_entries) {
722 		struct i915_page_directory *pd;
723 		struct i915_page_table *pt;
724 
725 		if (WARN_ON(!pdp->page_directory[pdpe]))
726 			break;
727 
728 		pd = pdp->page_directory[pdpe];
729 
730 		if (WARN_ON(!pd->page_table[pde]))
731 			break;
732 
733 		pt = pd->page_table[pde];
734 
735 		if (WARN_ON(!px_page(pt)))
736 			break;
737 
738 		last_pte = pte + num_entries;
739 		if (last_pte > GEN8_PTES)
740 			last_pte = GEN8_PTES;
741 
742 		pt_vaddr = kmap_px(pt);
743 
744 		for (i = pte; i < last_pte; i++) {
745 			pt_vaddr[i] = scratch_pte;
746 			num_entries--;
747 		}
748 
749 		kunmap_px(ppgtt, pt);
750 
751 		pte = 0;
752 		if (++pde == I915_PDES) {
753 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
754 				break;
755 			pde = 0;
756 		}
757 	}
758 }
759 
760 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
761 				   uint64_t start,
762 				   uint64_t length,
763 				   bool use_scratch)
764 {
765 	struct i915_hw_ppgtt *ppgtt =
766 		container_of(vm, struct i915_hw_ppgtt, base);
767 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
768 						 I915_CACHE_LLC, use_scratch);
769 
770 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
771 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
772 					   scratch_pte);
773 	} else {
774 		uint64_t pml4e;
775 		struct i915_page_directory_pointer *pdp;
776 
777 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
778 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
779 						   scratch_pte);
780 		}
781 	}
782 }
783 
784 static void
785 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
786 			      struct i915_page_directory_pointer *pdp,
787 			      struct sg_page_iter *sg_iter,
788 			      uint64_t start,
789 			      enum i915_cache_level cache_level)
790 {
791 	struct i915_hw_ppgtt *ppgtt =
792 		container_of(vm, struct i915_hw_ppgtt, base);
793 	gen8_pte_t *pt_vaddr;
794 	unsigned pdpe = gen8_pdpe_index(start);
795 	unsigned pde = gen8_pde_index(start);
796 	unsigned pte = gen8_pte_index(start);
797 
798 	pt_vaddr = NULL;
799 
800 	while (__sg_page_iter_next(sg_iter)) {
801 		if (pt_vaddr == NULL) {
802 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
803 			struct i915_page_table *pt = pd->page_table[pde];
804 			pt_vaddr = kmap_px(pt);
805 		}
806 
807 		pt_vaddr[pte] =
808 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
809 					cache_level, true);
810 		if (++pte == GEN8_PTES) {
811 			kunmap_px(ppgtt, pt_vaddr);
812 			pt_vaddr = NULL;
813 			if (++pde == I915_PDES) {
814 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
815 					break;
816 				pde = 0;
817 			}
818 			pte = 0;
819 		}
820 	}
821 
822 	if (pt_vaddr)
823 		kunmap_px(ppgtt, pt_vaddr);
824 }
825 
826 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
827 				      struct sg_table *pages,
828 				      uint64_t start,
829 				      enum i915_cache_level cache_level,
830 				      u32 unused)
831 {
832 	struct i915_hw_ppgtt *ppgtt =
833 		container_of(vm, struct i915_hw_ppgtt, base);
834 	struct sg_page_iter sg_iter;
835 
836 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
837 
838 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
839 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
840 					      cache_level);
841 	} else {
842 		struct i915_page_directory_pointer *pdp;
843 		uint64_t pml4e;
844 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
845 
846 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
847 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
848 						      start, cache_level);
849 		}
850 	}
851 }
852 
853 static void gen8_free_page_tables(struct drm_device *dev,
854 				  struct i915_page_directory *pd)
855 {
856 	int i;
857 
858 	if (!px_page(pd))
859 		return;
860 
861 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
862 		if (WARN_ON(!pd->page_table[i]))
863 			continue;
864 
865 		free_pt(dev, pd->page_table[i]);
866 		pd->page_table[i] = NULL;
867 	}
868 }
869 
870 static int gen8_init_scratch(struct i915_address_space *vm)
871 {
872 	struct drm_device *dev = vm->dev;
873 
874 	vm->scratch_page = alloc_scratch_page(dev);
875 	if (IS_ERR(vm->scratch_page))
876 		return PTR_ERR(vm->scratch_page);
877 
878 	vm->scratch_pt = alloc_pt(dev);
879 	if (IS_ERR(vm->scratch_pt)) {
880 		free_scratch_page(dev, vm->scratch_page);
881 		return PTR_ERR(vm->scratch_pt);
882 	}
883 
884 	vm->scratch_pd = alloc_pd(dev);
885 	if (IS_ERR(vm->scratch_pd)) {
886 		free_pt(dev, vm->scratch_pt);
887 		free_scratch_page(dev, vm->scratch_page);
888 		return PTR_ERR(vm->scratch_pd);
889 	}
890 
891 	if (USES_FULL_48BIT_PPGTT(dev)) {
892 		vm->scratch_pdp = alloc_pdp(dev);
893 		if (IS_ERR(vm->scratch_pdp)) {
894 			free_pd(dev, vm->scratch_pd);
895 			free_pt(dev, vm->scratch_pt);
896 			free_scratch_page(dev, vm->scratch_page);
897 			return PTR_ERR(vm->scratch_pdp);
898 		}
899 	}
900 
901 	gen8_initialize_pt(vm, vm->scratch_pt);
902 	gen8_initialize_pd(vm, vm->scratch_pd);
903 	if (USES_FULL_48BIT_PPGTT(dev))
904 		gen8_initialize_pdp(vm, vm->scratch_pdp);
905 
906 	return 0;
907 }
908 
909 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
910 {
911 	enum vgt_g2v_type msg;
912 	struct drm_device *dev = ppgtt->base.dev;
913 	struct drm_i915_private *dev_priv = dev->dev_private;
914 	int i;
915 
916 	if (USES_FULL_48BIT_PPGTT(dev)) {
917 		u64 daddr = px_dma(&ppgtt->pml4);
918 
919 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
920 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
921 
922 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
923 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
924 	} else {
925 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
926 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
927 
928 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
929 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
930 		}
931 
932 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
933 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
934 	}
935 
936 	I915_WRITE(vgtif_reg(g2v_notify), msg);
937 
938 	return 0;
939 }
940 
941 static void gen8_free_scratch(struct i915_address_space *vm)
942 {
943 	struct drm_device *dev = vm->dev;
944 
945 	if (USES_FULL_48BIT_PPGTT(dev))
946 		free_pdp(dev, vm->scratch_pdp);
947 	free_pd(dev, vm->scratch_pd);
948 	free_pt(dev, vm->scratch_pt);
949 	free_scratch_page(dev, vm->scratch_page);
950 }
951 
952 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
953 				    struct i915_page_directory_pointer *pdp)
954 {
955 	int i;
956 
957 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
958 		if (WARN_ON(!pdp->page_directory[i]))
959 			continue;
960 
961 		gen8_free_page_tables(dev, pdp->page_directory[i]);
962 		free_pd(dev, pdp->page_directory[i]);
963 	}
964 
965 	free_pdp(dev, pdp);
966 }
967 
968 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
969 {
970 	int i;
971 
972 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
973 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
974 			continue;
975 
976 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
977 	}
978 
979 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
980 }
981 
982 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
983 {
984 	struct i915_hw_ppgtt *ppgtt =
985 		container_of(vm, struct i915_hw_ppgtt, base);
986 
987 	if (intel_vgpu_active(vm->dev))
988 		gen8_ppgtt_notify_vgt(ppgtt, false);
989 
990 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
991 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
992 	else
993 		gen8_ppgtt_cleanup_4lvl(ppgtt);
994 
995 	gen8_free_scratch(vm);
996 }
997 
998 /**
999  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1000  * @vm:	Master vm structure.
1001  * @pd:	Page directory for this address range.
1002  * @start:	Starting virtual address to begin allocations.
1003  * @length:	Size of the allocations.
1004  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1005  *		caller to free on error.
1006  *
1007  * Allocate the required number of page tables. Extremely similar to
1008  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1009  * the page directory boundary (instead of the page directory pointer). That
1010  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1011  * possible, and likely that the caller will need to use multiple calls of this
1012  * function to achieve the appropriate allocation.
1013  *
1014  * Return: 0 if success; negative error code otherwise.
1015  */
1016 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1017 				     struct i915_page_directory *pd,
1018 				     uint64_t start,
1019 				     uint64_t length,
1020 				     unsigned long *new_pts)
1021 {
1022 	struct drm_device *dev = vm->dev;
1023 	struct i915_page_table *pt;
1024 	uint32_t pde;
1025 
1026 	gen8_for_each_pde(pt, pd, start, length, pde) {
1027 		/* Don't reallocate page tables */
1028 		if (test_bit(pde, pd->used_pdes)) {
1029 			/* Scratch is never allocated this way */
1030 			WARN_ON(pt == vm->scratch_pt);
1031 			continue;
1032 		}
1033 
1034 		pt = alloc_pt(dev);
1035 		if (IS_ERR(pt))
1036 			goto unwind_out;
1037 
1038 		gen8_initialize_pt(vm, pt);
1039 		pd->page_table[pde] = pt;
1040 		__set_bit(pde, new_pts);
1041 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1042 	}
1043 
1044 	return 0;
1045 
1046 unwind_out:
1047 	for_each_set_bit(pde, new_pts, I915_PDES)
1048 		free_pt(dev, pd->page_table[pde]);
1049 
1050 	return -ENOMEM;
1051 }
1052 
1053 /**
1054  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1055  * @vm:	Master vm structure.
1056  * @pdp:	Page directory pointer for this address range.
1057  * @start:	Starting virtual address to begin allocations.
1058  * @length:	Size of the allocations.
1059  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1060  *		caller to free on error.
1061  *
1062  * Allocate the required number of page directories starting at the pde index of
1063  * @start, and ending at the pde index @start + @length. This function will skip
1064  * over already allocated page directories within the range, and only allocate
1065  * new ones, setting the appropriate pointer within the pdp as well as the
1066  * correct position in the bitmap @new_pds.
1067  *
1068  * The function will only allocate the pages within the range for a give page
1069  * directory pointer. In other words, if @start + @length straddles a virtually
1070  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1071  * required by the caller, This is not currently possible, and the BUG in the
1072  * code will prevent it.
1073  *
1074  * Return: 0 if success; negative error code otherwise.
1075  */
1076 static int
1077 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1078 				  struct i915_page_directory_pointer *pdp,
1079 				  uint64_t start,
1080 				  uint64_t length,
1081 				  unsigned long *new_pds)
1082 {
1083 	struct drm_device *dev = vm->dev;
1084 	struct i915_page_directory *pd;
1085 	uint32_t pdpe;
1086 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1087 
1088 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1089 
1090 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1091 		if (test_bit(pdpe, pdp->used_pdpes))
1092 			continue;
1093 
1094 		pd = alloc_pd(dev);
1095 		if (IS_ERR(pd))
1096 			goto unwind_out;
1097 
1098 		gen8_initialize_pd(vm, pd);
1099 		pdp->page_directory[pdpe] = pd;
1100 		__set_bit(pdpe, new_pds);
1101 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1102 	}
1103 
1104 	return 0;
1105 
1106 unwind_out:
1107 	for_each_set_bit(pdpe, new_pds, pdpes)
1108 		free_pd(dev, pdp->page_directory[pdpe]);
1109 
1110 	return -ENOMEM;
1111 }
1112 
1113 /**
1114  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1115  * @vm:	Master vm structure.
1116  * @pml4:	Page map level 4 for this address range.
1117  * @start:	Starting virtual address to begin allocations.
1118  * @length:	Size of the allocations.
1119  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1120  *		caller to free on error.
1121  *
1122  * Allocate the required number of page directory pointers. Extremely similar to
1123  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1124  * The main difference is here we are limited by the pml4 boundary (instead of
1125  * the page directory pointer).
1126  *
1127  * Return: 0 if success; negative error code otherwise.
1128  */
1129 static int
1130 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1131 				  struct i915_pml4 *pml4,
1132 				  uint64_t start,
1133 				  uint64_t length,
1134 				  unsigned long *new_pdps)
1135 {
1136 	struct drm_device *dev = vm->dev;
1137 	struct i915_page_directory_pointer *pdp;
1138 	uint32_t pml4e;
1139 
1140 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1141 
1142 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1143 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1144 			pdp = alloc_pdp(dev);
1145 			if (IS_ERR(pdp))
1146 				goto unwind_out;
1147 
1148 			gen8_initialize_pdp(vm, pdp);
1149 			pml4->pdps[pml4e] = pdp;
1150 			__set_bit(pml4e, new_pdps);
1151 			trace_i915_page_directory_pointer_entry_alloc(vm,
1152 								      pml4e,
1153 								      start,
1154 								      GEN8_PML4E_SHIFT);
1155 		}
1156 	}
1157 
1158 	return 0;
1159 
1160 unwind_out:
1161 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1162 		free_pdp(dev, pml4->pdps[pml4e]);
1163 
1164 	return -ENOMEM;
1165 }
1166 
1167 static void
1168 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1169 {
1170 	kfree(new_pts);
1171 	kfree(new_pds);
1172 }
1173 
1174 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1175  * of these are based on the number of PDPEs in the system.
1176  */
1177 static
1178 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1179 					 unsigned long **new_pts,
1180 					 uint32_t pdpes)
1181 {
1182 	unsigned long *pds;
1183 	unsigned long *pts;
1184 
1185 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1186 	if (!pds)
1187 		return -ENOMEM;
1188 
1189 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1190 		      GFP_TEMPORARY);
1191 	if (!pts)
1192 		goto err_out;
1193 
1194 	*new_pds = pds;
1195 	*new_pts = pts;
1196 
1197 	return 0;
1198 
1199 err_out:
1200 	free_gen8_temp_bitmaps(pds, pts);
1201 	return -ENOMEM;
1202 }
1203 
1204 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1205  * the page table structures, we mark them dirty so that
1206  * context switching/execlist queuing code takes extra steps
1207  * to ensure that tlbs are flushed.
1208  */
1209 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1210 {
1211 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1212 }
1213 
1214 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1215 				    struct i915_page_directory_pointer *pdp,
1216 				    uint64_t start,
1217 				    uint64_t length)
1218 {
1219 	struct i915_hw_ppgtt *ppgtt =
1220 		container_of(vm, struct i915_hw_ppgtt, base);
1221 	unsigned long *new_page_dirs, *new_page_tables;
1222 	struct drm_device *dev = vm->dev;
1223 	struct i915_page_directory *pd;
1224 	const uint64_t orig_start = start;
1225 	const uint64_t orig_length = length;
1226 	uint32_t pdpe;
1227 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1228 	int ret;
1229 
1230 	/* Wrap is never okay since we can only represent 48b, and we don't
1231 	 * actually use the other side of the canonical address space.
1232 	 */
1233 	if (WARN_ON(start + length < start))
1234 		return -ENODEV;
1235 
1236 	if (WARN_ON(start + length > vm->total))
1237 		return -ENODEV;
1238 
1239 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1240 	if (ret)
1241 		return ret;
1242 
1243 	/* Do the allocations first so we can easily bail out */
1244 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1245 						new_page_dirs);
1246 	if (ret) {
1247 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1248 		return ret;
1249 	}
1250 
1251 	/* For every page directory referenced, allocate page tables */
1252 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1253 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1254 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1255 		if (ret)
1256 			goto err_out;
1257 	}
1258 
1259 	start = orig_start;
1260 	length = orig_length;
1261 
1262 	/* Allocations have completed successfully, so set the bitmaps, and do
1263 	 * the mappings. */
1264 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1265 		gen8_pde_t *const page_directory = kmap_px(pd);
1266 		struct i915_page_table *pt;
1267 		uint64_t pd_len = length;
1268 		uint64_t pd_start = start;
1269 		uint32_t pde;
1270 
1271 		/* Every pd should be allocated, we just did that above. */
1272 		WARN_ON(!pd);
1273 
1274 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1275 			/* Same reasoning as pd */
1276 			WARN_ON(!pt);
1277 			WARN_ON(!pd_len);
1278 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1279 
1280 			/* Set our used ptes within the page table */
1281 			bitmap_set(pt->used_ptes,
1282 				   gen8_pte_index(pd_start),
1283 				   gen8_pte_count(pd_start, pd_len));
1284 
1285 			/* Our pde is now pointing to the pagetable, pt */
1286 			__set_bit(pde, pd->used_pdes);
1287 
1288 			/* Map the PDE to the page table */
1289 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1290 							      I915_CACHE_LLC);
1291 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1292 							gen8_pte_index(start),
1293 							gen8_pte_count(start, length),
1294 							GEN8_PTES);
1295 
1296 			/* NB: We haven't yet mapped ptes to pages. At this
1297 			 * point we're still relying on insert_entries() */
1298 		}
1299 
1300 		kunmap_px(ppgtt, page_directory);
1301 		__set_bit(pdpe, pdp->used_pdpes);
1302 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1303 	}
1304 
1305 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1306 	mark_tlbs_dirty(ppgtt);
1307 	return 0;
1308 
1309 err_out:
1310 	while (pdpe--) {
1311 		unsigned long temp;
1312 
1313 		for_each_set_bit(temp, new_page_tables + pdpe *
1314 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1315 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1316 	}
1317 
1318 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1319 		free_pd(dev, pdp->page_directory[pdpe]);
1320 
1321 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1322 	mark_tlbs_dirty(ppgtt);
1323 	return ret;
1324 }
1325 
1326 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1327 				    struct i915_pml4 *pml4,
1328 				    uint64_t start,
1329 				    uint64_t length)
1330 {
1331 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1332 	struct i915_hw_ppgtt *ppgtt =
1333 			container_of(vm, struct i915_hw_ppgtt, base);
1334 	struct i915_page_directory_pointer *pdp;
1335 	uint64_t pml4e;
1336 	int ret = 0;
1337 
1338 	/* Do the pml4 allocations first, so we don't need to track the newly
1339 	 * allocated tables below the pdp */
1340 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1341 
1342 	/* The pagedirectory and pagetable allocations are done in the shared 3
1343 	 * and 4 level code. Just allocate the pdps.
1344 	 */
1345 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1346 						new_pdps);
1347 	if (ret)
1348 		return ret;
1349 
1350 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1351 	     "The allocation has spanned more than 512GB. "
1352 	     "It is highly likely this is incorrect.");
1353 
1354 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1355 		WARN_ON(!pdp);
1356 
1357 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1358 		if (ret)
1359 			goto err_out;
1360 
1361 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1362 	}
1363 
1364 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1365 		  GEN8_PML4ES_PER_PML4);
1366 
1367 	return 0;
1368 
1369 err_out:
1370 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1371 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1372 
1373 	return ret;
1374 }
1375 
1376 static int gen8_alloc_va_range(struct i915_address_space *vm,
1377 			       uint64_t start, uint64_t length)
1378 {
1379 	struct i915_hw_ppgtt *ppgtt =
1380 		container_of(vm, struct i915_hw_ppgtt, base);
1381 
1382 	if (USES_FULL_48BIT_PPGTT(vm->dev))
1383 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1384 	else
1385 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1386 }
1387 
1388 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1389 			  uint64_t start, uint64_t length,
1390 			  gen8_pte_t scratch_pte,
1391 			  struct seq_file *m)
1392 {
1393 	struct i915_page_directory *pd;
1394 	uint32_t pdpe;
1395 
1396 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1397 		struct i915_page_table *pt;
1398 		uint64_t pd_len = length;
1399 		uint64_t pd_start = start;
1400 		uint32_t pde;
1401 
1402 		if (!test_bit(pdpe, pdp->used_pdpes))
1403 			continue;
1404 
1405 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1406 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1407 			uint32_t  pte;
1408 			gen8_pte_t *pt_vaddr;
1409 
1410 			if (!test_bit(pde, pd->used_pdes))
1411 				continue;
1412 
1413 			pt_vaddr = kmap_px(pt);
1414 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1415 				uint64_t va =
1416 					(pdpe << GEN8_PDPE_SHIFT) |
1417 					(pde << GEN8_PDE_SHIFT) |
1418 					(pte << GEN8_PTE_SHIFT);
1419 				int i;
1420 				bool found = false;
1421 
1422 				for (i = 0; i < 4; i++)
1423 					if (pt_vaddr[pte + i] != scratch_pte)
1424 						found = true;
1425 				if (!found)
1426 					continue;
1427 
1428 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1429 				for (i = 0; i < 4; i++) {
1430 					if (pt_vaddr[pte + i] != scratch_pte)
1431 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1432 					else
1433 						seq_puts(m, "  SCRATCH ");
1434 				}
1435 				seq_puts(m, "\n");
1436 			}
1437 			/* don't use kunmap_px, it could trigger
1438 			 * an unnecessary flush.
1439 			 */
1440 			kunmap_atomic(pt_vaddr);
1441 		}
1442 	}
1443 }
1444 
1445 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1446 {
1447 	struct i915_address_space *vm = &ppgtt->base;
1448 	uint64_t start = ppgtt->base.start;
1449 	uint64_t length = ppgtt->base.total;
1450 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1451 						 I915_CACHE_LLC, true);
1452 
1453 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1454 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1455 	} else {
1456 		uint64_t pml4e;
1457 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1458 		struct i915_page_directory_pointer *pdp;
1459 
1460 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1461 			if (!test_bit(pml4e, pml4->used_pml4es))
1462 				continue;
1463 
1464 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1465 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1466 		}
1467 	}
1468 }
1469 
1470 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1471 {
1472 	unsigned long *new_page_dirs, *new_page_tables;
1473 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1474 	int ret;
1475 
1476 	/* We allocate temp bitmap for page tables for no gain
1477 	 * but as this is for init only, lets keep the things simple
1478 	 */
1479 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1480 	if (ret)
1481 		return ret;
1482 
1483 	/* Allocate for all pdps regardless of how the ppgtt
1484 	 * was defined.
1485 	 */
1486 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1487 						0, 1ULL << 32,
1488 						new_page_dirs);
1489 	if (!ret)
1490 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1491 
1492 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1493 
1494 	return ret;
1495 }
1496 
1497 /*
1498  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1499  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1500  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1501  * space.
1502  *
1503  */
1504 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1505 {
1506 	int ret;
1507 
1508 	ret = gen8_init_scratch(&ppgtt->base);
1509 	if (ret)
1510 		return ret;
1511 
1512 	ppgtt->base.start = 0;
1513 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1514 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1515 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1516 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1517 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1518 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1519 	ppgtt->debug_dump = gen8_dump_ppgtt;
1520 
1521 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1522 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1523 		if (ret)
1524 			goto free_scratch;
1525 
1526 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1527 
1528 		ppgtt->base.total = 1ULL << 48;
1529 		ppgtt->switch_mm = gen8_48b_mm_switch;
1530 	} else {
1531 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1532 		if (ret)
1533 			goto free_scratch;
1534 
1535 		ppgtt->base.total = 1ULL << 32;
1536 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1537 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1538 							      0, 0,
1539 							      GEN8_PML4E_SHIFT);
1540 
1541 		if (intel_vgpu_active(ppgtt->base.dev)) {
1542 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1543 			if (ret)
1544 				goto free_scratch;
1545 		}
1546 	}
1547 
1548 	if (intel_vgpu_active(ppgtt->base.dev))
1549 		gen8_ppgtt_notify_vgt(ppgtt, true);
1550 
1551 	return 0;
1552 
1553 free_scratch:
1554 	gen8_free_scratch(&ppgtt->base);
1555 	return ret;
1556 }
1557 
1558 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1559 {
1560 	struct i915_address_space *vm = &ppgtt->base;
1561 	struct i915_page_table *unused;
1562 	gen6_pte_t scratch_pte;
1563 	uint32_t pd_entry;
1564 	uint32_t  pte, pde, temp;
1565 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1566 
1567 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1568 				     I915_CACHE_LLC, true, 0);
1569 
1570 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1571 		u32 expected;
1572 		gen6_pte_t *pt_vaddr;
1573 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1574 		pd_entry = readl(ppgtt->pd_addr + pde);
1575 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1576 
1577 		if (pd_entry != expected)
1578 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1579 				   pde,
1580 				   pd_entry,
1581 				   expected);
1582 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1583 
1584 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1585 
1586 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1587 			unsigned long va =
1588 				(pde * PAGE_SIZE * GEN6_PTES) +
1589 				(pte * PAGE_SIZE);
1590 			int i;
1591 			bool found = false;
1592 			for (i = 0; i < 4; i++)
1593 				if (pt_vaddr[pte + i] != scratch_pte)
1594 					found = true;
1595 			if (!found)
1596 				continue;
1597 
1598 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1599 			for (i = 0; i < 4; i++) {
1600 				if (pt_vaddr[pte + i] != scratch_pte)
1601 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1602 				else
1603 					seq_puts(m, "  SCRATCH ");
1604 			}
1605 			seq_puts(m, "\n");
1606 		}
1607 		kunmap_px(ppgtt, pt_vaddr);
1608 	}
1609 }
1610 
1611 /* Write pde (index) from the page directory @pd to the page table @pt */
1612 static void gen6_write_pde(struct i915_page_directory *pd,
1613 			    const int pde, struct i915_page_table *pt)
1614 {
1615 	/* Caller needs to make sure the write completes if necessary */
1616 	struct i915_hw_ppgtt *ppgtt =
1617 		container_of(pd, struct i915_hw_ppgtt, pd);
1618 	u32 pd_entry;
1619 
1620 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1621 	pd_entry |= GEN6_PDE_VALID;
1622 
1623 	writel(pd_entry, ppgtt->pd_addr + pde);
1624 }
1625 
1626 /* Write all the page tables found in the ppgtt structure to incrementing page
1627  * directories. */
1628 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1629 				  struct i915_page_directory *pd,
1630 				  uint32_t start, uint32_t length)
1631 {
1632 	struct i915_page_table *pt;
1633 	uint32_t pde, temp;
1634 
1635 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
1636 		gen6_write_pde(pd, pde, pt);
1637 
1638 	/* Make sure write is complete before other code can use this page
1639 	 * table. Also require for WC mapped PTEs */
1640 	readl(dev_priv->gtt.gsm);
1641 }
1642 
1643 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1644 {
1645 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1646 
1647 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1648 }
1649 
1650 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1651 			 struct drm_i915_gem_request *req)
1652 {
1653 	struct intel_engine_cs *ring = req->ring;
1654 	int ret;
1655 
1656 	/* NB: TLBs must be flushed and invalidated before a switch */
1657 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1658 	if (ret)
1659 		return ret;
1660 
1661 	ret = intel_ring_begin(req, 6);
1662 	if (ret)
1663 		return ret;
1664 
1665 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1666 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
1667 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1668 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
1669 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1670 	intel_ring_emit(ring, MI_NOOP);
1671 	intel_ring_advance(ring);
1672 
1673 	return 0;
1674 }
1675 
1676 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1677 			  struct drm_i915_gem_request *req)
1678 {
1679 	struct intel_engine_cs *ring = req->ring;
1680 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1681 
1682 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1683 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1684 	return 0;
1685 }
1686 
1687 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1688 			  struct drm_i915_gem_request *req)
1689 {
1690 	struct intel_engine_cs *ring = req->ring;
1691 	int ret;
1692 
1693 	/* NB: TLBs must be flushed and invalidated before a switch */
1694 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1695 	if (ret)
1696 		return ret;
1697 
1698 	ret = intel_ring_begin(req, 6);
1699 	if (ret)
1700 		return ret;
1701 
1702 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1703 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
1704 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1705 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
1706 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1707 	intel_ring_emit(ring, MI_NOOP);
1708 	intel_ring_advance(ring);
1709 
1710 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1711 	if (ring->id != RCS) {
1712 		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1713 		if (ret)
1714 			return ret;
1715 	}
1716 
1717 	return 0;
1718 }
1719 
1720 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1721 			  struct drm_i915_gem_request *req)
1722 {
1723 	struct intel_engine_cs *ring = req->ring;
1724 	struct drm_device *dev = ppgtt->base.dev;
1725 	struct drm_i915_private *dev_priv = dev->dev_private;
1726 
1727 
1728 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1729 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1730 
1731 	POSTING_READ(RING_PP_DIR_DCLV(ring));
1732 
1733 	return 0;
1734 }
1735 
1736 static void gen8_ppgtt_enable(struct drm_device *dev)
1737 {
1738 	struct drm_i915_private *dev_priv = dev->dev_private;
1739 	struct intel_engine_cs *ring;
1740 	int j;
1741 
1742 	for_each_ring(ring, dev_priv, j) {
1743 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1744 		I915_WRITE(RING_MODE_GEN7(ring),
1745 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1746 	}
1747 }
1748 
1749 static void gen7_ppgtt_enable(struct drm_device *dev)
1750 {
1751 	struct drm_i915_private *dev_priv = dev->dev_private;
1752 	struct intel_engine_cs *ring;
1753 	uint32_t ecochk, ecobits;
1754 	int i;
1755 
1756 	ecobits = I915_READ(GAC_ECO_BITS);
1757 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1758 
1759 	ecochk = I915_READ(GAM_ECOCHK);
1760 	if (IS_HASWELL(dev)) {
1761 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1762 	} else {
1763 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1764 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1765 	}
1766 	I915_WRITE(GAM_ECOCHK, ecochk);
1767 
1768 	for_each_ring(ring, dev_priv, i) {
1769 		/* GFX_MODE is per-ring on gen7+ */
1770 		I915_WRITE(RING_MODE_GEN7(ring),
1771 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1772 	}
1773 }
1774 
1775 static void gen6_ppgtt_enable(struct drm_device *dev)
1776 {
1777 	struct drm_i915_private *dev_priv = dev->dev_private;
1778 	uint32_t ecochk, gab_ctl, ecobits;
1779 
1780 	ecobits = I915_READ(GAC_ECO_BITS);
1781 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1782 		   ECOBITS_PPGTT_CACHE64B);
1783 
1784 	gab_ctl = I915_READ(GAB_CTL);
1785 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1786 
1787 	ecochk = I915_READ(GAM_ECOCHK);
1788 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1789 
1790 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1791 }
1792 
1793 /* PPGTT support for Sandybdrige/Gen6 and later */
1794 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1795 				   uint64_t start,
1796 				   uint64_t length,
1797 				   bool use_scratch)
1798 {
1799 	struct i915_hw_ppgtt *ppgtt =
1800 		container_of(vm, struct i915_hw_ppgtt, base);
1801 	gen6_pte_t *pt_vaddr, scratch_pte;
1802 	unsigned first_entry = start >> PAGE_SHIFT;
1803 	unsigned num_entries = length >> PAGE_SHIFT;
1804 	unsigned act_pt = first_entry / GEN6_PTES;
1805 	unsigned first_pte = first_entry % GEN6_PTES;
1806 	unsigned last_pte, i;
1807 
1808 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1809 				     I915_CACHE_LLC, true, 0);
1810 
1811 	while (num_entries) {
1812 		last_pte = first_pte + num_entries;
1813 		if (last_pte > GEN6_PTES)
1814 			last_pte = GEN6_PTES;
1815 
1816 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1817 
1818 		for (i = first_pte; i < last_pte; i++)
1819 			pt_vaddr[i] = scratch_pte;
1820 
1821 		kunmap_px(ppgtt, pt_vaddr);
1822 
1823 		num_entries -= last_pte - first_pte;
1824 		first_pte = 0;
1825 		act_pt++;
1826 	}
1827 }
1828 
1829 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1830 				      struct sg_table *pages,
1831 				      uint64_t start,
1832 				      enum i915_cache_level cache_level, u32 flags)
1833 {
1834 	struct i915_hw_ppgtt *ppgtt =
1835 		container_of(vm, struct i915_hw_ppgtt, base);
1836 	gen6_pte_t *pt_vaddr;
1837 	unsigned first_entry = start >> PAGE_SHIFT;
1838 	unsigned act_pt = first_entry / GEN6_PTES;
1839 	unsigned act_pte = first_entry % GEN6_PTES;
1840 	struct sg_page_iter sg_iter;
1841 
1842 	pt_vaddr = NULL;
1843 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1844 		if (pt_vaddr == NULL)
1845 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1846 
1847 		pt_vaddr[act_pte] =
1848 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1849 				       cache_level, true, flags);
1850 
1851 		if (++act_pte == GEN6_PTES) {
1852 			kunmap_px(ppgtt, pt_vaddr);
1853 			pt_vaddr = NULL;
1854 			act_pt++;
1855 			act_pte = 0;
1856 		}
1857 	}
1858 	if (pt_vaddr)
1859 		kunmap_px(ppgtt, pt_vaddr);
1860 }
1861 
1862 static int gen6_alloc_va_range(struct i915_address_space *vm,
1863 			       uint64_t start_in, uint64_t length_in)
1864 {
1865 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1866 	struct drm_device *dev = vm->dev;
1867 	struct drm_i915_private *dev_priv = dev->dev_private;
1868 	struct i915_hw_ppgtt *ppgtt =
1869 				container_of(vm, struct i915_hw_ppgtt, base);
1870 	struct i915_page_table *pt;
1871 	uint32_t start, length, start_save, length_save;
1872 	uint32_t pde, temp;
1873 	int ret;
1874 
1875 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1876 		return -ENODEV;
1877 
1878 	start = start_save = start_in;
1879 	length = length_save = length_in;
1880 
1881 	bitmap_zero(new_page_tables, I915_PDES);
1882 
1883 	/* The allocation is done in two stages so that we can bail out with
1884 	 * minimal amount of pain. The first stage finds new page tables that
1885 	 * need allocation. The second stage marks use ptes within the page
1886 	 * tables.
1887 	 */
1888 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1889 		if (pt != vm->scratch_pt) {
1890 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1891 			continue;
1892 		}
1893 
1894 		/* We've already allocated a page table */
1895 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1896 
1897 		pt = alloc_pt(dev);
1898 		if (IS_ERR(pt)) {
1899 			ret = PTR_ERR(pt);
1900 			goto unwind_out;
1901 		}
1902 
1903 		gen6_initialize_pt(vm, pt);
1904 
1905 		ppgtt->pd.page_table[pde] = pt;
1906 		__set_bit(pde, new_page_tables);
1907 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1908 	}
1909 
1910 	start = start_save;
1911 	length = length_save;
1912 
1913 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1914 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1915 
1916 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1917 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1918 			   gen6_pte_count(start, length));
1919 
1920 		if (__test_and_clear_bit(pde, new_page_tables))
1921 			gen6_write_pde(&ppgtt->pd, pde, pt);
1922 
1923 		trace_i915_page_table_entry_map(vm, pde, pt,
1924 					 gen6_pte_index(start),
1925 					 gen6_pte_count(start, length),
1926 					 GEN6_PTES);
1927 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1928 				GEN6_PTES);
1929 	}
1930 
1931 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1932 
1933 	/* Make sure write is complete before other code can use this page
1934 	 * table. Also require for WC mapped PTEs */
1935 	readl(dev_priv->gtt.gsm);
1936 
1937 	mark_tlbs_dirty(ppgtt);
1938 	return 0;
1939 
1940 unwind_out:
1941 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1942 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1943 
1944 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1945 		free_pt(vm->dev, pt);
1946 	}
1947 
1948 	mark_tlbs_dirty(ppgtt);
1949 	return ret;
1950 }
1951 
1952 static int gen6_init_scratch(struct i915_address_space *vm)
1953 {
1954 	struct drm_device *dev = vm->dev;
1955 
1956 	vm->scratch_page = alloc_scratch_page(dev);
1957 	if (IS_ERR(vm->scratch_page))
1958 		return PTR_ERR(vm->scratch_page);
1959 
1960 	vm->scratch_pt = alloc_pt(dev);
1961 	if (IS_ERR(vm->scratch_pt)) {
1962 		free_scratch_page(dev, vm->scratch_page);
1963 		return PTR_ERR(vm->scratch_pt);
1964 	}
1965 
1966 	gen6_initialize_pt(vm, vm->scratch_pt);
1967 
1968 	return 0;
1969 }
1970 
1971 static void gen6_free_scratch(struct i915_address_space *vm)
1972 {
1973 	struct drm_device *dev = vm->dev;
1974 
1975 	free_pt(dev, vm->scratch_pt);
1976 	free_scratch_page(dev, vm->scratch_page);
1977 }
1978 
1979 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1980 {
1981 	struct i915_hw_ppgtt *ppgtt =
1982 		container_of(vm, struct i915_hw_ppgtt, base);
1983 	struct i915_page_table *pt;
1984 	uint32_t pde;
1985 
1986 	drm_mm_remove_node(&ppgtt->node);
1987 
1988 	gen6_for_all_pdes(pt, ppgtt, pde) {
1989 		if (pt != vm->scratch_pt)
1990 			free_pt(ppgtt->base.dev, pt);
1991 	}
1992 
1993 	gen6_free_scratch(vm);
1994 }
1995 
1996 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1997 {
1998 	struct i915_address_space *vm = &ppgtt->base;
1999 	struct drm_device *dev = ppgtt->base.dev;
2000 	struct drm_i915_private *dev_priv = dev->dev_private;
2001 	bool retried = false;
2002 	int ret;
2003 
2004 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2005 	 * allocator works in address space sizes, so it's multiplied by page
2006 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2007 	 */
2008 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2009 
2010 	ret = gen6_init_scratch(vm);
2011 	if (ret)
2012 		return ret;
2013 
2014 alloc:
2015 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2016 						  &ppgtt->node, GEN6_PD_SIZE,
2017 						  GEN6_PD_ALIGN, 0,
2018 						  0, dev_priv->gtt.base.total,
2019 						  DRM_MM_TOPDOWN);
2020 	if (ret == -ENOSPC && !retried) {
2021 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2022 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2023 					       I915_CACHE_NONE,
2024 					       0, dev_priv->gtt.base.total,
2025 					       0);
2026 		if (ret)
2027 			goto err_out;
2028 
2029 		retried = true;
2030 		goto alloc;
2031 	}
2032 
2033 	if (ret)
2034 		goto err_out;
2035 
2036 
2037 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2038 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2039 
2040 	return 0;
2041 
2042 err_out:
2043 	gen6_free_scratch(vm);
2044 	return ret;
2045 }
2046 
2047 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2048 {
2049 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2050 }
2051 
2052 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2053 				  uint64_t start, uint64_t length)
2054 {
2055 	struct i915_page_table *unused;
2056 	uint32_t pde, temp;
2057 
2058 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2059 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2060 }
2061 
2062 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2063 {
2064 	struct drm_device *dev = ppgtt->base.dev;
2065 	struct drm_i915_private *dev_priv = dev->dev_private;
2066 	int ret;
2067 
2068 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2069 	if (IS_GEN6(dev)) {
2070 		ppgtt->switch_mm = gen6_mm_switch;
2071 	} else if (IS_HASWELL(dev)) {
2072 		ppgtt->switch_mm = hsw_mm_switch;
2073 	} else if (IS_GEN7(dev)) {
2074 		ppgtt->switch_mm = gen7_mm_switch;
2075 	} else
2076 		BUG();
2077 
2078 	if (intel_vgpu_active(dev))
2079 		ppgtt->switch_mm = vgpu_mm_switch;
2080 
2081 	ret = gen6_ppgtt_alloc(ppgtt);
2082 	if (ret)
2083 		return ret;
2084 
2085 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2086 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2087 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2088 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2089 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2090 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2091 	ppgtt->base.start = 0;
2092 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2093 	ppgtt->debug_dump = gen6_dump_ppgtt;
2094 
2095 	ppgtt->pd.base.ggtt_offset =
2096 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2097 
2098 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2099 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2100 
2101 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2102 
2103 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2104 
2105 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2106 			 ppgtt->node.size >> 20,
2107 			 ppgtt->node.start / PAGE_SIZE);
2108 
2109 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2110 		  ppgtt->pd.base.ggtt_offset << 10);
2111 
2112 	return 0;
2113 }
2114 
2115 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2116 {
2117 	ppgtt->base.dev = dev;
2118 
2119 	if (INTEL_INFO(dev)->gen < 8)
2120 		return gen6_ppgtt_init(ppgtt);
2121 	else
2122 		return gen8_ppgtt_init(ppgtt);
2123 }
2124 
2125 static void i915_address_space_init(struct i915_address_space *vm,
2126 				    struct drm_i915_private *dev_priv)
2127 {
2128 	drm_mm_init(&vm->mm, vm->start, vm->total);
2129 	vm->dev = dev_priv->dev;
2130 	INIT_LIST_HEAD(&vm->active_list);
2131 	INIT_LIST_HEAD(&vm->inactive_list);
2132 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2133 }
2134 
2135 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2136 {
2137 	struct drm_i915_private *dev_priv = dev->dev_private;
2138 	int ret = 0;
2139 
2140 	ret = __hw_ppgtt_init(dev, ppgtt);
2141 	if (ret == 0) {
2142 		kref_init(&ppgtt->ref);
2143 		i915_address_space_init(&ppgtt->base, dev_priv);
2144 	}
2145 
2146 	return ret;
2147 }
2148 
2149 int i915_ppgtt_init_hw(struct drm_device *dev)
2150 {
2151 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2152 	 * and the PDPs are contained within the context itself.  We don't
2153 	 * need to do anything here. */
2154 	if (i915.enable_execlists)
2155 		return 0;
2156 
2157 	if (!USES_PPGTT(dev))
2158 		return 0;
2159 
2160 	if (IS_GEN6(dev))
2161 		gen6_ppgtt_enable(dev);
2162 	else if (IS_GEN7(dev))
2163 		gen7_ppgtt_enable(dev);
2164 	else if (INTEL_INFO(dev)->gen >= 8)
2165 		gen8_ppgtt_enable(dev);
2166 	else
2167 		MISSING_CASE(INTEL_INFO(dev)->gen);
2168 
2169 	return 0;
2170 }
2171 
2172 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2173 {
2174 	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2175 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2176 
2177 	if (i915.enable_execlists)
2178 		return 0;
2179 
2180 	if (!ppgtt)
2181 		return 0;
2182 
2183 	return ppgtt->switch_mm(ppgtt, req);
2184 }
2185 
2186 struct i915_hw_ppgtt *
2187 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2188 {
2189 	struct i915_hw_ppgtt *ppgtt;
2190 	int ret;
2191 
2192 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2193 	if (!ppgtt)
2194 		return ERR_PTR(-ENOMEM);
2195 
2196 	ret = i915_ppgtt_init(dev, ppgtt);
2197 	if (ret) {
2198 		kfree(ppgtt);
2199 		return ERR_PTR(ret);
2200 	}
2201 
2202 	ppgtt->file_priv = fpriv;
2203 
2204 	trace_i915_ppgtt_create(&ppgtt->base);
2205 
2206 	return ppgtt;
2207 }
2208 
2209 void  i915_ppgtt_release(struct kref *kref)
2210 {
2211 	struct i915_hw_ppgtt *ppgtt =
2212 		container_of(kref, struct i915_hw_ppgtt, ref);
2213 
2214 	trace_i915_ppgtt_release(&ppgtt->base);
2215 
2216 	/* vmas should already be unbound */
2217 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2218 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2219 
2220 	list_del(&ppgtt->base.global_link);
2221 	drm_mm_takedown(&ppgtt->base.mm);
2222 
2223 	ppgtt->base.cleanup(&ppgtt->base);
2224 	kfree(ppgtt);
2225 }
2226 
2227 extern int intel_iommu_gfx_mapped;
2228 /* Certain Gen5 chipsets require require idling the GPU before
2229  * unmapping anything from the GTT when VT-d is enabled.
2230  */
2231 static bool needs_idle_maps(struct drm_device *dev)
2232 {
2233 #ifdef CONFIG_INTEL_IOMMU
2234 	/* Query intel_iommu to see if we need the workaround. Presumably that
2235 	 * was loaded first.
2236 	 */
2237 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2238 		return true;
2239 #endif
2240 	return false;
2241 }
2242 
2243 static bool do_idling(struct drm_i915_private *dev_priv)
2244 {
2245 	bool ret = dev_priv->mm.interruptible;
2246 
2247 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
2248 		dev_priv->mm.interruptible = false;
2249 		if (i915_gpu_idle(dev_priv->dev)) {
2250 			DRM_ERROR("Couldn't idle GPU\n");
2251 			/* Wait a bit, in hopes it avoids the hang */
2252 			udelay(10);
2253 		}
2254 	}
2255 
2256 	return ret;
2257 }
2258 
2259 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2260 {
2261 	if (unlikely(dev_priv->gtt.do_idle_maps))
2262 		dev_priv->mm.interruptible = interruptible;
2263 }
2264 
2265 void i915_check_and_clear_faults(struct drm_device *dev)
2266 {
2267 	struct drm_i915_private *dev_priv = dev->dev_private;
2268 	struct intel_engine_cs *ring;
2269 	int i;
2270 
2271 	if (INTEL_INFO(dev)->gen < 6)
2272 		return;
2273 
2274 	for_each_ring(ring, dev_priv, i) {
2275 		u32 fault_reg;
2276 		fault_reg = I915_READ(RING_FAULT_REG(ring));
2277 		if (fault_reg & RING_FAULT_VALID) {
2278 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2279 					 "\tAddr: 0x%08lx\n"
2280 					 "\tAddress space: %s\n"
2281 					 "\tSource ID: %d\n"
2282 					 "\tType: %d\n",
2283 					 fault_reg & PAGE_MASK,
2284 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2285 					 RING_FAULT_SRCID(fault_reg),
2286 					 RING_FAULT_FAULT_TYPE(fault_reg));
2287 			I915_WRITE(RING_FAULT_REG(ring),
2288 				   fault_reg & ~RING_FAULT_VALID);
2289 		}
2290 	}
2291 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2292 }
2293 
2294 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2295 {
2296 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2297 		intel_gtt_chipset_flush();
2298 	} else {
2299 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2300 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2301 	}
2302 }
2303 
2304 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2305 {
2306 	struct drm_i915_private *dev_priv = dev->dev_private;
2307 
2308 	/* Don't bother messing with faults pre GEN6 as we have little
2309 	 * documentation supporting that it's a good idea.
2310 	 */
2311 	if (INTEL_INFO(dev)->gen < 6)
2312 		return;
2313 
2314 	i915_check_and_clear_faults(dev);
2315 
2316 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2317 				       dev_priv->gtt.base.start,
2318 				       dev_priv->gtt.base.total,
2319 				       true);
2320 
2321 	i915_ggtt_flush(dev_priv);
2322 }
2323 
2324 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2325 {
2326 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2327 			obj->pages->sgl, obj->pages->nents,
2328 			PCI_DMA_BIDIRECTIONAL))
2329 		return -ENOSPC;
2330 
2331 	return 0;
2332 }
2333 
2334 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2335 {
2336 #ifdef writeq
2337 	writeq(pte, addr);
2338 #else
2339 	iowrite32((u32)pte, addr);
2340 	iowrite32(pte >> 32, addr + 4);
2341 #endif
2342 }
2343 
2344 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2345 				     struct sg_table *st,
2346 				     uint64_t start,
2347 				     enum i915_cache_level level, u32 unused)
2348 {
2349 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2350 	unsigned first_entry = start >> PAGE_SHIFT;
2351 	gen8_pte_t __iomem *gtt_entries =
2352 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2353 	int i = 0;
2354 	struct sg_page_iter sg_iter;
2355 	dma_addr_t addr = 0; /* shut up gcc */
2356 	int rpm_atomic_seq;
2357 
2358 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2359 
2360 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2361 		addr = sg_dma_address(sg_iter.sg) +
2362 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
2363 		gen8_set_pte(&gtt_entries[i],
2364 			     gen8_pte_encode(addr, level, true));
2365 		i++;
2366 	}
2367 
2368 	/*
2369 	 * XXX: This serves as a posting read to make sure that the PTE has
2370 	 * actually been updated. There is some concern that even though
2371 	 * registers and PTEs are within the same BAR that they are potentially
2372 	 * of NUMA access patterns. Therefore, even with the way we assume
2373 	 * hardware should work, we must keep this posting read for paranoia.
2374 	 */
2375 	if (i != 0)
2376 		WARN_ON(readq(&gtt_entries[i-1])
2377 			!= gen8_pte_encode(addr, level, true));
2378 
2379 	/* This next bit makes the above posting read even more important. We
2380 	 * want to flush the TLBs only after we're certain all the PTE updates
2381 	 * have finished.
2382 	 */
2383 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2384 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2385 
2386 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2387 }
2388 
2389 struct insert_entries {
2390 	struct i915_address_space *vm;
2391 	struct sg_table *st;
2392 	uint64_t start;
2393 	enum i915_cache_level level;
2394 	u32 flags;
2395 };
2396 
2397 static int gen8_ggtt_insert_entries__cb(void *_arg)
2398 {
2399 	struct insert_entries *arg = _arg;
2400 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2401 				 arg->start, arg->level, arg->flags);
2402 	return 0;
2403 }
2404 
2405 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2406 					  struct sg_table *st,
2407 					  uint64_t start,
2408 					  enum i915_cache_level level,
2409 					  u32 flags)
2410 {
2411 	struct insert_entries arg = { vm, st, start, level, flags };
2412 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2413 }
2414 
2415 /*
2416  * Binds an object into the global gtt with the specified cache level. The object
2417  * will be accessible to the GPU via commands whose operands reference offsets
2418  * within the global GTT as well as accessible by the GPU through the GMADR
2419  * mapped BAR (dev_priv->mm.gtt->gtt).
2420  */
2421 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2422 				     struct sg_table *st,
2423 				     uint64_t start,
2424 				     enum i915_cache_level level, u32 flags)
2425 {
2426 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2427 	unsigned first_entry = start >> PAGE_SHIFT;
2428 	gen6_pte_t __iomem *gtt_entries =
2429 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2430 	int i = 0;
2431 	struct sg_page_iter sg_iter;
2432 	dma_addr_t addr = 0;
2433 	int rpm_atomic_seq;
2434 
2435 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2436 
2437 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2438 		addr = sg_page_iter_dma_address(&sg_iter);
2439 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2440 		i++;
2441 	}
2442 
2443 	/* XXX: This serves as a posting read to make sure that the PTE has
2444 	 * actually been updated. There is some concern that even though
2445 	 * registers and PTEs are within the same BAR that they are potentially
2446 	 * of NUMA access patterns. Therefore, even with the way we assume
2447 	 * hardware should work, we must keep this posting read for paranoia.
2448 	 */
2449 	if (i != 0) {
2450 		unsigned long gtt = readl(&gtt_entries[i-1]);
2451 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2452 	}
2453 
2454 	/* This next bit makes the above posting read even more important. We
2455 	 * want to flush the TLBs only after we're certain all the PTE updates
2456 	 * have finished.
2457 	 */
2458 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2459 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2460 
2461 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2462 }
2463 
2464 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2465 				  uint64_t start,
2466 				  uint64_t length,
2467 				  bool use_scratch)
2468 {
2469 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2470 	unsigned first_entry = start >> PAGE_SHIFT;
2471 	unsigned num_entries = length >> PAGE_SHIFT;
2472 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2473 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2474 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2475 	int i;
2476 	int rpm_atomic_seq;
2477 
2478 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2479 
2480 	if (WARN(num_entries > max_entries,
2481 		 "First entry = %d; Num entries = %d (max=%d)\n",
2482 		 first_entry, num_entries, max_entries))
2483 		num_entries = max_entries;
2484 
2485 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2486 				      I915_CACHE_LLC,
2487 				      use_scratch);
2488 	for (i = 0; i < num_entries; i++)
2489 		gen8_set_pte(&gtt_base[i], scratch_pte);
2490 	readl(gtt_base);
2491 
2492 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2493 }
2494 
2495 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2496 				  uint64_t start,
2497 				  uint64_t length,
2498 				  bool use_scratch)
2499 {
2500 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2501 	unsigned first_entry = start >> PAGE_SHIFT;
2502 	unsigned num_entries = length >> PAGE_SHIFT;
2503 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2504 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2505 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2506 	int i;
2507 	int rpm_atomic_seq;
2508 
2509 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2510 
2511 	if (WARN(num_entries > max_entries,
2512 		 "First entry = %d; Num entries = %d (max=%d)\n",
2513 		 first_entry, num_entries, max_entries))
2514 		num_entries = max_entries;
2515 
2516 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2517 				     I915_CACHE_LLC, use_scratch, 0);
2518 
2519 	for (i = 0; i < num_entries; i++)
2520 		iowrite32(scratch_pte, &gtt_base[i]);
2521 	readl(gtt_base);
2522 
2523 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2524 }
2525 
2526 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2527 				     struct sg_table *pages,
2528 				     uint64_t start,
2529 				     enum i915_cache_level cache_level, u32 unused)
2530 {
2531 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2532 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2533 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2534 	int rpm_atomic_seq;
2535 
2536 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2537 
2538 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2539 
2540 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2541 
2542 }
2543 
2544 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2545 				  uint64_t start,
2546 				  uint64_t length,
2547 				  bool unused)
2548 {
2549 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2550 	unsigned first_entry = start >> PAGE_SHIFT;
2551 	unsigned num_entries = length >> PAGE_SHIFT;
2552 	int rpm_atomic_seq;
2553 
2554 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2555 
2556 	intel_gtt_clear_range(first_entry, num_entries);
2557 
2558 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2559 }
2560 
2561 static int ggtt_bind_vma(struct i915_vma *vma,
2562 			 enum i915_cache_level cache_level,
2563 			 u32 flags)
2564 {
2565 	struct drm_i915_gem_object *obj = vma->obj;
2566 	u32 pte_flags = 0;
2567 	int ret;
2568 
2569 	ret = i915_get_ggtt_vma_pages(vma);
2570 	if (ret)
2571 		return ret;
2572 
2573 	/* Currently applicable only to VLV */
2574 	if (obj->gt_ro)
2575 		pte_flags |= PTE_READ_ONLY;
2576 
2577 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2578 				vma->node.start,
2579 				cache_level, pte_flags);
2580 
2581 	/*
2582 	 * Without aliasing PPGTT there's no difference between
2583 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2584 	 * upgrade to both bound if we bind either to avoid double-binding.
2585 	 */
2586 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2587 
2588 	return 0;
2589 }
2590 
2591 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2592 				 enum i915_cache_level cache_level,
2593 				 u32 flags)
2594 {
2595 	struct drm_device *dev = vma->vm->dev;
2596 	struct drm_i915_private *dev_priv = dev->dev_private;
2597 	struct drm_i915_gem_object *obj = vma->obj;
2598 	struct sg_table *pages = obj->pages;
2599 	u32 pte_flags = 0;
2600 	int ret;
2601 
2602 	ret = i915_get_ggtt_vma_pages(vma);
2603 	if (ret)
2604 		return ret;
2605 	pages = vma->ggtt_view.pages;
2606 
2607 	/* Currently applicable only to VLV */
2608 	if (obj->gt_ro)
2609 		pte_flags |= PTE_READ_ONLY;
2610 
2611 
2612 	if (flags & GLOBAL_BIND) {
2613 		vma->vm->insert_entries(vma->vm, pages,
2614 					vma->node.start,
2615 					cache_level, pte_flags);
2616 	}
2617 
2618 	if (flags & LOCAL_BIND) {
2619 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2620 		appgtt->base.insert_entries(&appgtt->base, pages,
2621 					    vma->node.start,
2622 					    cache_level, pte_flags);
2623 	}
2624 
2625 	return 0;
2626 }
2627 
2628 static void ggtt_unbind_vma(struct i915_vma *vma)
2629 {
2630 	struct drm_device *dev = vma->vm->dev;
2631 	struct drm_i915_private *dev_priv = dev->dev_private;
2632 	struct drm_i915_gem_object *obj = vma->obj;
2633 	const uint64_t size = min_t(uint64_t,
2634 				    obj->base.size,
2635 				    vma->node.size);
2636 
2637 	if (vma->bound & GLOBAL_BIND) {
2638 		vma->vm->clear_range(vma->vm,
2639 				     vma->node.start,
2640 				     size,
2641 				     true);
2642 	}
2643 
2644 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2645 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2646 
2647 		appgtt->base.clear_range(&appgtt->base,
2648 					 vma->node.start,
2649 					 size,
2650 					 true);
2651 	}
2652 }
2653 
2654 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2655 {
2656 	struct drm_device *dev = obj->base.dev;
2657 	struct drm_i915_private *dev_priv = dev->dev_private;
2658 	bool interruptible;
2659 
2660 	interruptible = do_idling(dev_priv);
2661 
2662 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2663 		     PCI_DMA_BIDIRECTIONAL);
2664 
2665 	undo_idling(dev_priv, interruptible);
2666 }
2667 
2668 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2669 				  unsigned long color,
2670 				  u64 *start,
2671 				  u64 *end)
2672 {
2673 	if (node->color != color)
2674 		*start += 4096;
2675 
2676 	if (!list_empty(&node->node_list)) {
2677 		node = list_entry(node->node_list.next,
2678 				  struct drm_mm_node,
2679 				  node_list);
2680 		if (node->allocated && node->color != color)
2681 			*end -= 4096;
2682 	}
2683 }
2684 
2685 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2686 				     u64 start,
2687 				     u64 mappable_end,
2688 				     u64 end)
2689 {
2690 	/* Let GEM Manage all of the aperture.
2691 	 *
2692 	 * However, leave one page at the end still bound to the scratch page.
2693 	 * There are a number of places where the hardware apparently prefetches
2694 	 * past the end of the object, and we've seen multiple hangs with the
2695 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2696 	 * aperture.  One page should be enough to keep any prefetching inside
2697 	 * of the aperture.
2698 	 */
2699 	struct drm_i915_private *dev_priv = dev->dev_private;
2700 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2701 	struct drm_mm_node *entry;
2702 	struct drm_i915_gem_object *obj;
2703 	unsigned long hole_start, hole_end;
2704 	int ret;
2705 
2706 	BUG_ON(mappable_end > end);
2707 
2708 	ggtt_vm->start = start;
2709 
2710 	/* Subtract the guard page before address space initialization to
2711 	 * shrink the range used by drm_mm */
2712 	ggtt_vm->total = end - start - PAGE_SIZE;
2713 	i915_address_space_init(ggtt_vm, dev_priv);
2714 	ggtt_vm->total += PAGE_SIZE;
2715 
2716 	if (intel_vgpu_active(dev)) {
2717 		ret = intel_vgt_balloon(dev);
2718 		if (ret)
2719 			return ret;
2720 	}
2721 
2722 	if (!HAS_LLC(dev))
2723 		ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2724 
2725 	/* Mark any preallocated objects as occupied */
2726 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2727 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2728 
2729 		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2730 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2731 
2732 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2733 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2734 		if (ret) {
2735 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2736 			return ret;
2737 		}
2738 		vma->bound |= GLOBAL_BIND;
2739 		__i915_vma_set_map_and_fenceable(vma);
2740 		list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2741 	}
2742 
2743 	/* Clear any non-preallocated blocks */
2744 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2745 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2746 			      hole_start, hole_end);
2747 		ggtt_vm->clear_range(ggtt_vm, hole_start,
2748 				     hole_end - hole_start, true);
2749 	}
2750 
2751 	/* And finally clear the reserved guard page */
2752 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2753 
2754 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2755 		struct i915_hw_ppgtt *ppgtt;
2756 
2757 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2758 		if (!ppgtt)
2759 			return -ENOMEM;
2760 
2761 		ret = __hw_ppgtt_init(dev, ppgtt);
2762 		if (ret) {
2763 			ppgtt->base.cleanup(&ppgtt->base);
2764 			kfree(ppgtt);
2765 			return ret;
2766 		}
2767 
2768 		if (ppgtt->base.allocate_va_range)
2769 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2770 							    ppgtt->base.total);
2771 		if (ret) {
2772 			ppgtt->base.cleanup(&ppgtt->base);
2773 			kfree(ppgtt);
2774 			return ret;
2775 		}
2776 
2777 		ppgtt->base.clear_range(&ppgtt->base,
2778 					ppgtt->base.start,
2779 					ppgtt->base.total,
2780 					true);
2781 
2782 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2783 		WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2784 		dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2785 	}
2786 
2787 	return 0;
2788 }
2789 
2790 void i915_gem_init_global_gtt(struct drm_device *dev)
2791 {
2792 	struct drm_i915_private *dev_priv = dev->dev_private;
2793 	u64 gtt_size, mappable_size;
2794 
2795 	gtt_size = dev_priv->gtt.base.total;
2796 	mappable_size = dev_priv->gtt.mappable_end;
2797 
2798 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2799 }
2800 
2801 void i915_global_gtt_cleanup(struct drm_device *dev)
2802 {
2803 	struct drm_i915_private *dev_priv = dev->dev_private;
2804 	struct i915_address_space *vm = &dev_priv->gtt.base;
2805 
2806 	if (dev_priv->mm.aliasing_ppgtt) {
2807 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2808 
2809 		ppgtt->base.cleanup(&ppgtt->base);
2810 	}
2811 
2812 	if (drm_mm_initialized(&vm->mm)) {
2813 		if (intel_vgpu_active(dev))
2814 			intel_vgt_deballoon();
2815 
2816 		drm_mm_takedown(&vm->mm);
2817 		list_del(&vm->global_link);
2818 	}
2819 
2820 	vm->cleanup(vm);
2821 }
2822 
2823 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2824 {
2825 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2826 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2827 	return snb_gmch_ctl << 20;
2828 }
2829 
2830 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2831 {
2832 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2833 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2834 	if (bdw_gmch_ctl)
2835 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2836 
2837 #ifdef CONFIG_X86_32
2838 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2839 	if (bdw_gmch_ctl > 4)
2840 		bdw_gmch_ctl = 4;
2841 #endif
2842 
2843 	return bdw_gmch_ctl << 20;
2844 }
2845 
2846 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2847 {
2848 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2849 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2850 
2851 	if (gmch_ctrl)
2852 		return 1 << (20 + gmch_ctrl);
2853 
2854 	return 0;
2855 }
2856 
2857 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2858 {
2859 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2860 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2861 	return snb_gmch_ctl << 25; /* 32 MB units */
2862 }
2863 
2864 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2865 {
2866 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2867 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2868 	return bdw_gmch_ctl << 25; /* 32 MB units */
2869 }
2870 
2871 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2872 {
2873 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2874 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2875 
2876 	/*
2877 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2878 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2879 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2880 	 */
2881 	if (gmch_ctrl < 0x11)
2882 		return gmch_ctrl << 25;
2883 	else if (gmch_ctrl < 0x17)
2884 		return (gmch_ctrl - 0x11 + 2) << 22;
2885 	else
2886 		return (gmch_ctrl - 0x17 + 9) << 22;
2887 }
2888 
2889 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2890 {
2891 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2892 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2893 
2894 	if (gen9_gmch_ctl < 0xf0)
2895 		return gen9_gmch_ctl << 25; /* 32 MB units */
2896 	else
2897 		/* 4MB increments starting at 0xf0 for 4MB */
2898 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2899 }
2900 
2901 static int ggtt_probe_common(struct drm_device *dev,
2902 			     size_t gtt_size)
2903 {
2904 	struct drm_i915_private *dev_priv = dev->dev_private;
2905 	struct i915_page_scratch *scratch_page;
2906 	phys_addr_t gtt_phys_addr;
2907 
2908 	/* For Modern GENs the PTEs and register space are split in the BAR */
2909 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2910 		(pci_resource_len(dev->pdev, 0) / 2);
2911 
2912 	/*
2913 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2914 	 * dropped. For WC mappings in general we have 64 byte burst writes
2915 	 * when the WC buffer is flushed, so we can't use it, but have to
2916 	 * resort to an uncached mapping. The WC issue is easily caught by the
2917 	 * readback check when writing GTT PTE entries.
2918 	 */
2919 	if (IS_BROXTON(dev))
2920 		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2921 	else
2922 		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2923 	if (!dev_priv->gtt.gsm) {
2924 		DRM_ERROR("Failed to map the gtt page table\n");
2925 		return -ENOMEM;
2926 	}
2927 
2928 	scratch_page = alloc_scratch_page(dev);
2929 	if (IS_ERR(scratch_page)) {
2930 		DRM_ERROR("Scratch setup failed\n");
2931 		/* iounmap will also get called at remove, but meh */
2932 		iounmap(dev_priv->gtt.gsm);
2933 		return PTR_ERR(scratch_page);
2934 	}
2935 
2936 	dev_priv->gtt.base.scratch_page = scratch_page;
2937 
2938 	return 0;
2939 }
2940 
2941 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2942  * bits. When using advanced contexts each context stores its own PAT, but
2943  * writing this data shouldn't be harmful even in those cases. */
2944 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2945 {
2946 	uint64_t pat;
2947 
2948 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2949 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2950 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2951 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2952 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2953 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2954 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2955 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2956 
2957 	if (!USES_PPGTT(dev_priv->dev))
2958 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2959 		 * so RTL will always use the value corresponding to
2960 		 * pat_sel = 000".
2961 		 * So let's disable cache for GGTT to avoid screen corruptions.
2962 		 * MOCS still can be used though.
2963 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2964 		 * before this patch, i.e. the same uncached + snooping access
2965 		 * like on gen6/7 seems to be in effect.
2966 		 * - So this just fixes blitter/render access. Again it looks
2967 		 * like it's not just uncached access, but uncached + snooping.
2968 		 * So we can still hold onto all our assumptions wrt cpu
2969 		 * clflushing on LLC machines.
2970 		 */
2971 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2972 
2973 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2974 	 * write would work. */
2975 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2976 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2977 }
2978 
2979 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2980 {
2981 	uint64_t pat;
2982 
2983 	/*
2984 	 * Map WB on BDW to snooped on CHV.
2985 	 *
2986 	 * Only the snoop bit has meaning for CHV, the rest is
2987 	 * ignored.
2988 	 *
2989 	 * The hardware will never snoop for certain types of accesses:
2990 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2991 	 * - PPGTT page tables
2992 	 * - some other special cycles
2993 	 *
2994 	 * As with BDW, we also need to consider the following for GT accesses:
2995 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2996 	 * so RTL will always use the value corresponding to
2997 	 * pat_sel = 000".
2998 	 * Which means we must set the snoop bit in PAT entry 0
2999 	 * in order to keep the global status page working.
3000 	 */
3001 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3002 	      GEN8_PPAT(1, 0) |
3003 	      GEN8_PPAT(2, 0) |
3004 	      GEN8_PPAT(3, 0) |
3005 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3006 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3007 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3008 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3009 
3010 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3011 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3012 }
3013 
3014 static int gen8_gmch_probe(struct drm_device *dev,
3015 			   u64 *gtt_total,
3016 			   size_t *stolen,
3017 			   phys_addr_t *mappable_base,
3018 			   u64 *mappable_end)
3019 {
3020 	struct drm_i915_private *dev_priv = dev->dev_private;
3021 	u64 gtt_size;
3022 	u16 snb_gmch_ctl;
3023 	int ret;
3024 
3025 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3026 	*mappable_base = pci_resource_start(dev->pdev, 2);
3027 	*mappable_end = pci_resource_len(dev->pdev, 2);
3028 
3029 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3030 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3031 
3032 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3033 
3034 	if (INTEL_INFO(dev)->gen >= 9) {
3035 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
3036 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3037 	} else if (IS_CHERRYVIEW(dev)) {
3038 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
3039 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
3040 	} else {
3041 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
3042 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3043 	}
3044 
3045 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3046 
3047 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3048 		chv_setup_private_ppat(dev_priv);
3049 	else
3050 		bdw_setup_private_ppat(dev_priv);
3051 
3052 	ret = ggtt_probe_common(dev, gtt_size);
3053 
3054 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
3055 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
3056 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3057 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3058 
3059 	if (IS_CHERRYVIEW(dev_priv))
3060 		dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries__BKL;
3061 
3062 	return ret;
3063 }
3064 
3065 static int gen6_gmch_probe(struct drm_device *dev,
3066 			   u64 *gtt_total,
3067 			   size_t *stolen,
3068 			   phys_addr_t *mappable_base,
3069 			   u64 *mappable_end)
3070 {
3071 	struct drm_i915_private *dev_priv = dev->dev_private;
3072 	unsigned int gtt_size;
3073 	u16 snb_gmch_ctl;
3074 	int ret;
3075 
3076 	*mappable_base = pci_resource_start(dev->pdev, 2);
3077 	*mappable_end = pci_resource_len(dev->pdev, 2);
3078 
3079 	/* 64/512MB is the current min/max we actually know of, but this is just
3080 	 * a coarse sanity check.
3081 	 */
3082 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3083 		DRM_ERROR("Unknown GMADR size (%llx)\n",
3084 			  dev_priv->gtt.mappable_end);
3085 		return -ENXIO;
3086 	}
3087 
3088 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3089 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3090 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3091 
3092 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
3093 
3094 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3095 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3096 
3097 	ret = ggtt_probe_common(dev, gtt_size);
3098 
3099 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3100 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3101 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3102 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3103 
3104 	return ret;
3105 }
3106 
3107 static void gen6_gmch_remove(struct i915_address_space *vm)
3108 {
3109 
3110 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3111 
3112 	iounmap(gtt->gsm);
3113 	free_scratch_page(vm->dev, vm->scratch_page);
3114 }
3115 
3116 static int i915_gmch_probe(struct drm_device *dev,
3117 			   u64 *gtt_total,
3118 			   size_t *stolen,
3119 			   phys_addr_t *mappable_base,
3120 			   u64 *mappable_end)
3121 {
3122 	struct drm_i915_private *dev_priv = dev->dev_private;
3123 	int ret;
3124 
3125 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3126 	if (!ret) {
3127 		DRM_ERROR("failed to set up gmch\n");
3128 		return -EIO;
3129 	}
3130 
3131 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3132 
3133 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3134 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3135 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3136 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3137 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3138 
3139 	if (unlikely(dev_priv->gtt.do_idle_maps))
3140 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3141 
3142 	return 0;
3143 }
3144 
3145 static void i915_gmch_remove(struct i915_address_space *vm)
3146 {
3147 	intel_gmch_remove();
3148 }
3149 
3150 int i915_gem_gtt_init(struct drm_device *dev)
3151 {
3152 	struct drm_i915_private *dev_priv = dev->dev_private;
3153 	struct i915_gtt *gtt = &dev_priv->gtt;
3154 	int ret;
3155 
3156 	if (INTEL_INFO(dev)->gen <= 5) {
3157 		gtt->gtt_probe = i915_gmch_probe;
3158 		gtt->base.cleanup = i915_gmch_remove;
3159 	} else if (INTEL_INFO(dev)->gen < 8) {
3160 		gtt->gtt_probe = gen6_gmch_probe;
3161 		gtt->base.cleanup = gen6_gmch_remove;
3162 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
3163 			gtt->base.pte_encode = iris_pte_encode;
3164 		else if (IS_HASWELL(dev))
3165 			gtt->base.pte_encode = hsw_pte_encode;
3166 		else if (IS_VALLEYVIEW(dev))
3167 			gtt->base.pte_encode = byt_pte_encode;
3168 		else if (INTEL_INFO(dev)->gen >= 7)
3169 			gtt->base.pte_encode = ivb_pte_encode;
3170 		else
3171 			gtt->base.pte_encode = snb_pte_encode;
3172 	} else {
3173 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3174 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3175 	}
3176 
3177 	gtt->base.dev = dev;
3178 
3179 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3180 			     &gtt->mappable_base, &gtt->mappable_end);
3181 	if (ret)
3182 		return ret;
3183 
3184 	/* GMADR is the PCI mmio aperture into the global GTT. */
3185 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3186 		 gtt->base.total >> 20);
3187 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
3188 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3189 #ifdef CONFIG_INTEL_IOMMU
3190 	if (intel_iommu_gfx_mapped)
3191 		DRM_INFO("VT-d active for gfx access\n");
3192 #endif
3193 	/*
3194 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3195 	 * user's requested state against the hardware/driver capabilities.  We
3196 	 * do this now so that we can print out any log messages once rather
3197 	 * than every time we check intel_enable_ppgtt().
3198 	 */
3199 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3200 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3201 
3202 	return 0;
3203 }
3204 
3205 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3206 {
3207 	struct drm_i915_private *dev_priv = dev->dev_private;
3208 	struct drm_i915_gem_object *obj;
3209 	struct i915_address_space *vm;
3210 	struct i915_vma *vma;
3211 	bool flush;
3212 
3213 	i915_check_and_clear_faults(dev);
3214 
3215 	/* First fill our portion of the GTT with scratch pages */
3216 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3217 				       dev_priv->gtt.base.start,
3218 				       dev_priv->gtt.base.total,
3219 				       true);
3220 
3221 	/* Cache flush objects bound into GGTT and rebind them. */
3222 	vm = &dev_priv->gtt.base;
3223 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3224 		flush = false;
3225 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3226 			if (vma->vm != vm)
3227 				continue;
3228 
3229 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3230 					      PIN_UPDATE));
3231 
3232 			flush = true;
3233 		}
3234 
3235 		if (flush)
3236 			i915_gem_clflush_object(obj, obj->pin_display);
3237 	}
3238 
3239 	if (INTEL_INFO(dev)->gen >= 8) {
3240 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3241 			chv_setup_private_ppat(dev_priv);
3242 		else
3243 			bdw_setup_private_ppat(dev_priv);
3244 
3245 		return;
3246 	}
3247 
3248 	if (USES_PPGTT(dev)) {
3249 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3250 			/* TODO: Perhaps it shouldn't be gen6 specific */
3251 
3252 			struct i915_hw_ppgtt *ppgtt =
3253 					container_of(vm, struct i915_hw_ppgtt,
3254 						     base);
3255 
3256 			if (i915_is_ggtt(vm))
3257 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3258 
3259 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3260 					      0, ppgtt->base.total);
3261 		}
3262 	}
3263 
3264 	i915_ggtt_flush(dev_priv);
3265 }
3266 
3267 static struct i915_vma *
3268 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3269 		      struct i915_address_space *vm,
3270 		      const struct i915_ggtt_view *ggtt_view)
3271 {
3272 	struct i915_vma *vma;
3273 
3274 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3275 		return ERR_PTR(-EINVAL);
3276 
3277 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3278 	if (vma == NULL)
3279 		return ERR_PTR(-ENOMEM);
3280 
3281 	INIT_LIST_HEAD(&vma->vma_link);
3282 	INIT_LIST_HEAD(&vma->mm_list);
3283 	INIT_LIST_HEAD(&vma->exec_list);
3284 	vma->vm = vm;
3285 	vma->obj = obj;
3286 
3287 	if (i915_is_ggtt(vm))
3288 		vma->ggtt_view = *ggtt_view;
3289 
3290 	list_add_tail(&vma->vma_link, &obj->vma_list);
3291 	if (!i915_is_ggtt(vm))
3292 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3293 
3294 	return vma;
3295 }
3296 
3297 struct i915_vma *
3298 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3299 				  struct i915_address_space *vm)
3300 {
3301 	struct i915_vma *vma;
3302 
3303 	vma = i915_gem_obj_to_vma(obj, vm);
3304 	if (!vma)
3305 		vma = __i915_gem_vma_create(obj, vm,
3306 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3307 
3308 	return vma;
3309 }
3310 
3311 struct i915_vma *
3312 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3313 				       const struct i915_ggtt_view *view)
3314 {
3315 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3316 	struct i915_vma *vma;
3317 
3318 	if (WARN_ON(!view))
3319 		return ERR_PTR(-EINVAL);
3320 
3321 	vma = i915_gem_obj_to_ggtt_view(obj, view);
3322 
3323 	if (IS_ERR(vma))
3324 		return vma;
3325 
3326 	if (!vma)
3327 		vma = __i915_gem_vma_create(obj, ggtt, view);
3328 
3329 	return vma;
3330 
3331 }
3332 
3333 static struct scatterlist *
3334 rotate_pages(const dma_addr_t *in, unsigned int offset,
3335 	     unsigned int width, unsigned int height,
3336 	     struct sg_table *st, struct scatterlist *sg)
3337 {
3338 	unsigned int column, row;
3339 	unsigned int src_idx;
3340 
3341 	if (!sg) {
3342 		st->nents = 0;
3343 		sg = st->sgl;
3344 	}
3345 
3346 	for (column = 0; column < width; column++) {
3347 		src_idx = width * (height - 1) + column;
3348 		for (row = 0; row < height; row++) {
3349 			st->nents++;
3350 			/* We don't need the pages, but need to initialize
3351 			 * the entries so the sg list can be happily traversed.
3352 			 * The only thing we need are DMA addresses.
3353 			 */
3354 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3355 			sg_dma_address(sg) = in[offset + src_idx];
3356 			sg_dma_len(sg) = PAGE_SIZE;
3357 			sg = sg_next(sg);
3358 			src_idx -= width;
3359 		}
3360 	}
3361 
3362 	return sg;
3363 }
3364 
3365 static struct sg_table *
3366 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3367 			  struct drm_i915_gem_object *obj)
3368 {
3369 	struct intel_rotation_info *rot_info = &ggtt_view->params.rotation_info;
3370 	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3371 	unsigned int size_pages_uv;
3372 	struct sg_page_iter sg_iter;
3373 	unsigned long i;
3374 	dma_addr_t *page_addr_list;
3375 	struct sg_table *st;
3376 	unsigned int uv_start_page;
3377 	struct scatterlist *sg;
3378 	int ret = -ENOMEM;
3379 
3380 	/* Allocate a temporary list of source pages for random access. */
3381 	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3382 				       sizeof(dma_addr_t));
3383 	if (!page_addr_list)
3384 		return ERR_PTR(ret);
3385 
3386 	/* Account for UV plane with NV12. */
3387 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3388 		size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3389 	else
3390 		size_pages_uv = 0;
3391 
3392 	/* Allocate target SG list. */
3393 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3394 	if (!st)
3395 		goto err_st_alloc;
3396 
3397 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3398 	if (ret)
3399 		goto err_sg_alloc;
3400 
3401 	/* Populate source page list from the object. */
3402 	i = 0;
3403 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3404 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3405 		i++;
3406 	}
3407 
3408 	/* Rotate the pages. */
3409 	sg = rotate_pages(page_addr_list, 0,
3410 		     rot_info->width_pages, rot_info->height_pages,
3411 		     st, NULL);
3412 
3413 	/* Append the UV plane if NV12. */
3414 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3415 		uv_start_page = size_pages;
3416 
3417 		/* Check for tile-row un-alignment. */
3418 		if (offset_in_page(rot_info->uv_offset))
3419 			uv_start_page--;
3420 
3421 		rot_info->uv_start_page = uv_start_page;
3422 
3423 		rotate_pages(page_addr_list, uv_start_page,
3424 			     rot_info->width_pages_uv,
3425 			     rot_info->height_pages_uv,
3426 			     st, sg);
3427 	}
3428 
3429 	DRM_DEBUG_KMS(
3430 		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3431 		      obj->base.size, rot_info->pitch, rot_info->height,
3432 		      rot_info->pixel_format, rot_info->width_pages,
3433 		      rot_info->height_pages, size_pages + size_pages_uv,
3434 		      size_pages);
3435 
3436 	drm_free_large(page_addr_list);
3437 
3438 	return st;
3439 
3440 err_sg_alloc:
3441 	kfree(st);
3442 err_st_alloc:
3443 	drm_free_large(page_addr_list);
3444 
3445 	DRM_DEBUG_KMS(
3446 		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3447 		      obj->base.size, ret, rot_info->pitch, rot_info->height,
3448 		      rot_info->pixel_format, rot_info->width_pages,
3449 		      rot_info->height_pages, size_pages + size_pages_uv,
3450 		      size_pages);
3451 	return ERR_PTR(ret);
3452 }
3453 
3454 static struct sg_table *
3455 intel_partial_pages(const struct i915_ggtt_view *view,
3456 		    struct drm_i915_gem_object *obj)
3457 {
3458 	struct sg_table *st;
3459 	struct scatterlist *sg;
3460 	struct sg_page_iter obj_sg_iter;
3461 	int ret = -ENOMEM;
3462 
3463 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3464 	if (!st)
3465 		goto err_st_alloc;
3466 
3467 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3468 	if (ret)
3469 		goto err_sg_alloc;
3470 
3471 	sg = st->sgl;
3472 	st->nents = 0;
3473 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3474 		view->params.partial.offset)
3475 	{
3476 		if (st->nents >= view->params.partial.size)
3477 			break;
3478 
3479 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3480 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3481 		sg_dma_len(sg) = PAGE_SIZE;
3482 
3483 		sg = sg_next(sg);
3484 		st->nents++;
3485 	}
3486 
3487 	return st;
3488 
3489 err_sg_alloc:
3490 	kfree(st);
3491 err_st_alloc:
3492 	return ERR_PTR(ret);
3493 }
3494 
3495 static int
3496 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3497 {
3498 	int ret = 0;
3499 
3500 	if (vma->ggtt_view.pages)
3501 		return 0;
3502 
3503 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3504 		vma->ggtt_view.pages = vma->obj->pages;
3505 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3506 		vma->ggtt_view.pages =
3507 			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3508 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3509 		vma->ggtt_view.pages =
3510 			intel_partial_pages(&vma->ggtt_view, vma->obj);
3511 	else
3512 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3513 			  vma->ggtt_view.type);
3514 
3515 	if (!vma->ggtt_view.pages) {
3516 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3517 			  vma->ggtt_view.type);
3518 		ret = -EINVAL;
3519 	} else if (IS_ERR(vma->ggtt_view.pages)) {
3520 		ret = PTR_ERR(vma->ggtt_view.pages);
3521 		vma->ggtt_view.pages = NULL;
3522 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3523 			  vma->ggtt_view.type, ret);
3524 	}
3525 
3526 	return ret;
3527 }
3528 
3529 /**
3530  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3531  * @vma: VMA to map
3532  * @cache_level: mapping cache level
3533  * @flags: flags like global or local mapping
3534  *
3535  * DMA addresses are taken from the scatter-gather table of this object (or of
3536  * this VMA in case of non-default GGTT views) and PTE entries set up.
3537  * Note that DMA addresses are also the only part of the SG table we care about.
3538  */
3539 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3540 		  u32 flags)
3541 {
3542 	int ret;
3543 	u32 bind_flags;
3544 
3545 	if (WARN_ON(flags == 0))
3546 		return -EINVAL;
3547 
3548 	bind_flags = 0;
3549 	if (flags & PIN_GLOBAL)
3550 		bind_flags |= GLOBAL_BIND;
3551 	if (flags & PIN_USER)
3552 		bind_flags |= LOCAL_BIND;
3553 
3554 	if (flags & PIN_UPDATE)
3555 		bind_flags |= vma->bound;
3556 	else
3557 		bind_flags &= ~vma->bound;
3558 
3559 	if (bind_flags == 0)
3560 		return 0;
3561 
3562 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3563 		trace_i915_va_alloc(vma->vm,
3564 				    vma->node.start,
3565 				    vma->node.size,
3566 				    VM_TO_TRACE_NAME(vma->vm));
3567 
3568 		/* XXX: i915_vma_pin() will fix this +- hack */
3569 		vma->pin_count++;
3570 		ret = vma->vm->allocate_va_range(vma->vm,
3571 						 vma->node.start,
3572 						 vma->node.size);
3573 		vma->pin_count--;
3574 		if (ret)
3575 			return ret;
3576 	}
3577 
3578 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3579 	if (ret)
3580 		return ret;
3581 
3582 	vma->bound |= bind_flags;
3583 
3584 	return 0;
3585 }
3586 
3587 /**
3588  * i915_ggtt_view_size - Get the size of a GGTT view.
3589  * @obj: Object the view is of.
3590  * @view: The view in question.
3591  *
3592  * @return The size of the GGTT view in bytes.
3593  */
3594 size_t
3595 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3596 		    const struct i915_ggtt_view *view)
3597 {
3598 	if (view->type == I915_GGTT_VIEW_NORMAL) {
3599 		return obj->base.size;
3600 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3601 		return view->params.rotation_info.size;
3602 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3603 		return view->params.partial.size << PAGE_SHIFT;
3604 	} else {
3605 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3606 		return obj->base.size;
3607 	}
3608 }
3609