1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94 
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97 
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100         .type = I915_GGTT_VIEW_ROTATED
101 };
102 
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105 	bool has_aliasing_ppgtt;
106 	bool has_full_ppgtt;
107 
108 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110 
111 	if (intel_vgpu_active(dev))
112 		has_full_ppgtt = false; /* emulation is too hard */
113 
114 	/*
115 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 	 * execlists, the sole mechanism available to submit work.
117 	 */
118 	if (INTEL_INFO(dev)->gen < 9 &&
119 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120 		return 0;
121 
122 	if (enable_ppgtt == 1)
123 		return 1;
124 
125 	if (enable_ppgtt == 2 && has_full_ppgtt)
126 		return 2;
127 
128 #ifdef CONFIG_INTEL_IOMMU
129 	/* Disable ppgtt on SNB if VT-d is on. */
130 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
132 		return 0;
133 	}
134 #endif
135 
136 	/* Early VLV doesn't have this */
137 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138 	    dev->pdev->revision < 0xb) {
139 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140 		return 0;
141 	}
142 
143 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144 		return 2;
145 	else
146 		return has_aliasing_ppgtt ? 1 : 0;
147 }
148 
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150 			  enum i915_cache_level cache_level,
151 			  u32 unused)
152 {
153 	u32 pte_flags = 0;
154 
155 	/* Currently applicable only to VLV */
156 	if (vma->obj->gt_ro)
157 		pte_flags |= PTE_READ_ONLY;
158 
159 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160 				cache_level, pte_flags);
161 
162 	return 0;
163 }
164 
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167 	vma->vm->clear_range(vma->vm,
168 			     vma->node.start,
169 			     vma->obj->base.size,
170 			     true);
171 }
172 
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174 				  enum i915_cache_level level,
175 				  bool valid)
176 {
177 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178 	pte |= addr;
179 
180 	switch (level) {
181 	case I915_CACHE_NONE:
182 		pte |= PPAT_UNCACHED_INDEX;
183 		break;
184 	case I915_CACHE_WT:
185 		pte |= PPAT_DISPLAY_ELLC_INDEX;
186 		break;
187 	default:
188 		pte |= PPAT_CACHED_INDEX;
189 		break;
190 	}
191 
192 	return pte;
193 }
194 
195 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
196 				  const enum i915_cache_level level)
197 {
198 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
199 	pde |= addr;
200 	if (level != I915_CACHE_NONE)
201 		pde |= PPAT_CACHED_PDE_INDEX;
202 	else
203 		pde |= PPAT_UNCACHED_INDEX;
204 	return pde;
205 }
206 
207 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
208 				 enum i915_cache_level level,
209 				 bool valid, u32 unused)
210 {
211 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
212 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
213 
214 	switch (level) {
215 	case I915_CACHE_L3_LLC:
216 	case I915_CACHE_LLC:
217 		pte |= GEN6_PTE_CACHE_LLC;
218 		break;
219 	case I915_CACHE_NONE:
220 		pte |= GEN6_PTE_UNCACHED;
221 		break;
222 	default:
223 		MISSING_CASE(level);
224 	}
225 
226 	return pte;
227 }
228 
229 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
230 				 enum i915_cache_level level,
231 				 bool valid, u32 unused)
232 {
233 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
234 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
235 
236 	switch (level) {
237 	case I915_CACHE_L3_LLC:
238 		pte |= GEN7_PTE_CACHE_L3_LLC;
239 		break;
240 	case I915_CACHE_LLC:
241 		pte |= GEN6_PTE_CACHE_LLC;
242 		break;
243 	case I915_CACHE_NONE:
244 		pte |= GEN6_PTE_UNCACHED;
245 		break;
246 	default:
247 		MISSING_CASE(level);
248 	}
249 
250 	return pte;
251 }
252 
253 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
254 				 enum i915_cache_level level,
255 				 bool valid, u32 flags)
256 {
257 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
258 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
259 
260 	if (!(flags & PTE_READ_ONLY))
261 		pte |= BYT_PTE_WRITEABLE;
262 
263 	if (level != I915_CACHE_NONE)
264 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
265 
266 	return pte;
267 }
268 
269 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
270 				 enum i915_cache_level level,
271 				 bool valid, u32 unused)
272 {
273 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
274 	pte |= HSW_PTE_ADDR_ENCODE(addr);
275 
276 	if (level != I915_CACHE_NONE)
277 		pte |= HSW_WB_LLC_AGE3;
278 
279 	return pte;
280 }
281 
282 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
283 				  enum i915_cache_level level,
284 				  bool valid, u32 unused)
285 {
286 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
287 	pte |= HSW_PTE_ADDR_ENCODE(addr);
288 
289 	switch (level) {
290 	case I915_CACHE_NONE:
291 		break;
292 	case I915_CACHE_WT:
293 		pte |= HSW_WT_ELLC_LLC_AGE3;
294 		break;
295 	default:
296 		pte |= HSW_WB_ELLC_LLC_AGE3;
297 		break;
298 	}
299 
300 	return pte;
301 }
302 
303 static int __setup_page_dma(struct drm_device *dev,
304 			    struct i915_page_dma *p, gfp_t flags)
305 {
306 	struct device *device = &dev->pdev->dev;
307 
308 	p->page = alloc_page(flags);
309 	if (!p->page)
310 		return -ENOMEM;
311 
312 	p->daddr = dma_map_page(device,
313 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
314 
315 	if (dma_mapping_error(device, p->daddr)) {
316 		__free_page(p->page);
317 		return -EINVAL;
318 	}
319 
320 	return 0;
321 }
322 
323 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
324 {
325 	return __setup_page_dma(dev, p, GFP_KERNEL);
326 }
327 
328 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
329 {
330 	if (WARN_ON(!p->page))
331 		return;
332 
333 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
334 	__free_page(p->page);
335 	memset(p, 0, sizeof(*p));
336 }
337 
338 static void *kmap_page_dma(struct i915_page_dma *p)
339 {
340 	return kmap_atomic(p->page);
341 }
342 
343 /* We use the flushing unmap only with ppgtt structures:
344  * page directories, page tables and scratch pages.
345  */
346 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
347 {
348 	/* There are only few exceptions for gen >=6. chv and bxt.
349 	 * And we are not sure about the latter so play safe for now.
350 	 */
351 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
352 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
353 
354 	kunmap_atomic(vaddr);
355 }
356 
357 #define kmap_px(px) kmap_page_dma(px_base(px))
358 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
359 
360 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
361 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
362 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
363 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
364 
365 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
366 			  const uint64_t val)
367 {
368 	int i;
369 	uint64_t * const vaddr = kmap_page_dma(p);
370 
371 	for (i = 0; i < 512; i++)
372 		vaddr[i] = val;
373 
374 	kunmap_page_dma(dev, vaddr);
375 }
376 
377 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
378 			     const uint32_t val32)
379 {
380 	uint64_t v = val32;
381 
382 	v = v << 32 | val32;
383 
384 	fill_page_dma(dev, p, v);
385 }
386 
387 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
388 {
389 	struct i915_page_scratch *sp;
390 	int ret;
391 
392 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
393 	if (sp == NULL)
394 		return ERR_PTR(-ENOMEM);
395 
396 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
397 	if (ret) {
398 		kfree(sp);
399 		return ERR_PTR(ret);
400 	}
401 
402 	set_pages_uc(px_page(sp), 1);
403 
404 	return sp;
405 }
406 
407 static void free_scratch_page(struct drm_device *dev,
408 			      struct i915_page_scratch *sp)
409 {
410 	set_pages_wb(px_page(sp), 1);
411 
412 	cleanup_px(dev, sp);
413 	kfree(sp);
414 }
415 
416 static struct i915_page_table *alloc_pt(struct drm_device *dev)
417 {
418 	struct i915_page_table *pt;
419 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
420 		GEN8_PTES : GEN6_PTES;
421 	int ret = -ENOMEM;
422 
423 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
424 	if (!pt)
425 		return ERR_PTR(-ENOMEM);
426 
427 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
428 				GFP_KERNEL);
429 
430 	if (!pt->used_ptes)
431 		goto fail_bitmap;
432 
433 	ret = setup_px(dev, pt);
434 	if (ret)
435 		goto fail_page_m;
436 
437 	return pt;
438 
439 fail_page_m:
440 	kfree(pt->used_ptes);
441 fail_bitmap:
442 	kfree(pt);
443 
444 	return ERR_PTR(ret);
445 }
446 
447 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
448 {
449 	cleanup_px(dev, pt);
450 	kfree(pt->used_ptes);
451 	kfree(pt);
452 }
453 
454 static void gen8_initialize_pt(struct i915_address_space *vm,
455 			       struct i915_page_table *pt)
456 {
457 	gen8_pte_t scratch_pte;
458 
459 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
460 				      I915_CACHE_LLC, true);
461 
462 	fill_px(vm->dev, pt, scratch_pte);
463 }
464 
465 static void gen6_initialize_pt(struct i915_address_space *vm,
466 			       struct i915_page_table *pt)
467 {
468 	gen6_pte_t scratch_pte;
469 
470 	WARN_ON(px_dma(vm->scratch_page) == 0);
471 
472 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
473 				     I915_CACHE_LLC, true, 0);
474 
475 	fill32_px(vm->dev, pt, scratch_pte);
476 }
477 
478 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
479 {
480 	struct i915_page_directory *pd;
481 	int ret = -ENOMEM;
482 
483 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
484 	if (!pd)
485 		return ERR_PTR(-ENOMEM);
486 
487 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
488 				sizeof(*pd->used_pdes), GFP_KERNEL);
489 	if (!pd->used_pdes)
490 		goto fail_bitmap;
491 
492 	ret = setup_px(dev, pd);
493 	if (ret)
494 		goto fail_page_m;
495 
496 	return pd;
497 
498 fail_page_m:
499 	kfree(pd->used_pdes);
500 fail_bitmap:
501 	kfree(pd);
502 
503 	return ERR_PTR(ret);
504 }
505 
506 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
507 {
508 	if (px_page(pd)) {
509 		cleanup_px(dev, pd);
510 		kfree(pd->used_pdes);
511 		kfree(pd);
512 	}
513 }
514 
515 static void gen8_initialize_pd(struct i915_address_space *vm,
516 			       struct i915_page_directory *pd)
517 {
518 	gen8_pde_t scratch_pde;
519 
520 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
521 
522 	fill_px(vm->dev, pd, scratch_pde);
523 }
524 
525 /* Broadwell Page Directory Pointer Descriptors */
526 static int gen8_write_pdp(struct drm_i915_gem_request *req,
527 			  unsigned entry,
528 			  dma_addr_t addr)
529 {
530 	struct intel_engine_cs *ring = req->ring;
531 	int ret;
532 
533 	BUG_ON(entry >= 4);
534 
535 	ret = intel_ring_begin(req, 6);
536 	if (ret)
537 		return ret;
538 
539 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
540 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
541 	intel_ring_emit(ring, upper_32_bits(addr));
542 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
543 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
544 	intel_ring_emit(ring, lower_32_bits(addr));
545 	intel_ring_advance(ring);
546 
547 	return 0;
548 }
549 
550 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
551 			  struct drm_i915_gem_request *req)
552 {
553 	int i, ret;
554 
555 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
556 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
557 
558 		ret = gen8_write_pdp(req, i, pd_daddr);
559 		if (ret)
560 			return ret;
561 	}
562 
563 	return 0;
564 }
565 
566 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
567 				   uint64_t start,
568 				   uint64_t length,
569 				   bool use_scratch)
570 {
571 	struct i915_hw_ppgtt *ppgtt =
572 		container_of(vm, struct i915_hw_ppgtt, base);
573 	gen8_pte_t *pt_vaddr, scratch_pte;
574 	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
575 	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
576 	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
577 	unsigned num_entries = length >> PAGE_SHIFT;
578 	unsigned last_pte, i;
579 
580 	scratch_pte = gen8_pte_encode(px_dma(ppgtt->base.scratch_page),
581 				      I915_CACHE_LLC, use_scratch);
582 
583 	while (num_entries) {
584 		struct i915_page_directory *pd;
585 		struct i915_page_table *pt;
586 
587 		if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
588 			break;
589 
590 		pd = ppgtt->pdp.page_directory[pdpe];
591 
592 		if (WARN_ON(!pd->page_table[pde]))
593 			break;
594 
595 		pt = pd->page_table[pde];
596 
597 		if (WARN_ON(!px_page(pt)))
598 			break;
599 
600 		last_pte = pte + num_entries;
601 		if (last_pte > GEN8_PTES)
602 			last_pte = GEN8_PTES;
603 
604 		pt_vaddr = kmap_px(pt);
605 
606 		for (i = pte; i < last_pte; i++) {
607 			pt_vaddr[i] = scratch_pte;
608 			num_entries--;
609 		}
610 
611 		kunmap_px(ppgtt, pt);
612 
613 		pte = 0;
614 		if (++pde == I915_PDES) {
615 			pdpe++;
616 			pde = 0;
617 		}
618 	}
619 }
620 
621 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
622 				      struct sg_table *pages,
623 				      uint64_t start,
624 				      enum i915_cache_level cache_level, u32 unused)
625 {
626 	struct i915_hw_ppgtt *ppgtt =
627 		container_of(vm, struct i915_hw_ppgtt, base);
628 	gen8_pte_t *pt_vaddr;
629 	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
630 	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
631 	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
632 	struct sg_page_iter sg_iter;
633 
634 	pt_vaddr = NULL;
635 
636 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
637 		if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
638 			break;
639 
640 		if (pt_vaddr == NULL) {
641 			struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
642 			struct i915_page_table *pt = pd->page_table[pde];
643 			pt_vaddr = kmap_px(pt);
644 		}
645 
646 		pt_vaddr[pte] =
647 			gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
648 					cache_level, true);
649 		if (++pte == GEN8_PTES) {
650 			kunmap_px(ppgtt, pt_vaddr);
651 			pt_vaddr = NULL;
652 			if (++pde == I915_PDES) {
653 				pdpe++;
654 				pde = 0;
655 			}
656 			pte = 0;
657 		}
658 	}
659 
660 	if (pt_vaddr)
661 		kunmap_px(ppgtt, pt_vaddr);
662 }
663 
664 static void gen8_free_page_tables(struct drm_device *dev,
665 				  struct i915_page_directory *pd)
666 {
667 	int i;
668 
669 	if (!px_page(pd))
670 		return;
671 
672 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
673 		if (WARN_ON(!pd->page_table[i]))
674 			continue;
675 
676 		free_pt(dev, pd->page_table[i]);
677 		pd->page_table[i] = NULL;
678 	}
679 }
680 
681 static int gen8_init_scratch(struct i915_address_space *vm)
682 {
683 	struct drm_device *dev = vm->dev;
684 
685 	vm->scratch_page = alloc_scratch_page(dev);
686 	if (IS_ERR(vm->scratch_page))
687 		return PTR_ERR(vm->scratch_page);
688 
689 	vm->scratch_pt = alloc_pt(dev);
690 	if (IS_ERR(vm->scratch_pt)) {
691 		free_scratch_page(dev, vm->scratch_page);
692 		return PTR_ERR(vm->scratch_pt);
693 	}
694 
695 	vm->scratch_pd = alloc_pd(dev);
696 	if (IS_ERR(vm->scratch_pd)) {
697 		free_pt(dev, vm->scratch_pt);
698 		free_scratch_page(dev, vm->scratch_page);
699 		return PTR_ERR(vm->scratch_pd);
700 	}
701 
702 	gen8_initialize_pt(vm, vm->scratch_pt);
703 	gen8_initialize_pd(vm, vm->scratch_pd);
704 
705 	return 0;
706 }
707 
708 static void gen8_free_scratch(struct i915_address_space *vm)
709 {
710 	struct drm_device *dev = vm->dev;
711 
712 	free_pd(dev, vm->scratch_pd);
713 	free_pt(dev, vm->scratch_pt);
714 	free_scratch_page(dev, vm->scratch_page);
715 }
716 
717 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
718 {
719 	struct i915_hw_ppgtt *ppgtt =
720 		container_of(vm, struct i915_hw_ppgtt, base);
721 	int i;
722 
723 	for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
724 		if (WARN_ON(!ppgtt->pdp.page_directory[i]))
725 			continue;
726 
727 		gen8_free_page_tables(ppgtt->base.dev,
728 				      ppgtt->pdp.page_directory[i]);
729 		free_pd(ppgtt->base.dev, ppgtt->pdp.page_directory[i]);
730 	}
731 
732 	gen8_free_scratch(vm);
733 }
734 
735 /**
736  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
737  * @ppgtt:	Master ppgtt structure.
738  * @pd:		Page directory for this address range.
739  * @start:	Starting virtual address to begin allocations.
740  * @length	Size of the allocations.
741  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
742  *		caller to free on error.
743  *
744  * Allocate the required number of page tables. Extremely similar to
745  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
746  * the page directory boundary (instead of the page directory pointer). That
747  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
748  * possible, and likely that the caller will need to use multiple calls of this
749  * function to achieve the appropriate allocation.
750  *
751  * Return: 0 if success; negative error code otherwise.
752  */
753 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
754 				     struct i915_page_directory *pd,
755 				     uint64_t start,
756 				     uint64_t length,
757 				     unsigned long *new_pts)
758 {
759 	struct drm_device *dev = ppgtt->base.dev;
760 	struct i915_page_table *pt;
761 	uint64_t temp;
762 	uint32_t pde;
763 
764 	gen8_for_each_pde(pt, pd, start, length, temp, pde) {
765 		/* Don't reallocate page tables */
766 		if (pt) {
767 			/* Scratch is never allocated this way */
768 			WARN_ON(pt == ppgtt->base.scratch_pt);
769 			continue;
770 		}
771 
772 		pt = alloc_pt(dev);
773 		if (IS_ERR(pt))
774 			goto unwind_out;
775 
776 		gen8_initialize_pt(&ppgtt->base, pt);
777 		pd->page_table[pde] = pt;
778 		__set_bit(pde, new_pts);
779 	}
780 
781 	return 0;
782 
783 unwind_out:
784 	for_each_set_bit(pde, new_pts, I915_PDES)
785 		free_pt(dev, pd->page_table[pde]);
786 
787 	return -ENOMEM;
788 }
789 
790 /**
791  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
792  * @ppgtt:	Master ppgtt structure.
793  * @pdp:	Page directory pointer for this address range.
794  * @start:	Starting virtual address to begin allocations.
795  * @length	Size of the allocations.
796  * @new_pds	Bitmap set by function with new allocations. Likely used by the
797  *		caller to free on error.
798  *
799  * Allocate the required number of page directories starting at the pde index of
800  * @start, and ending at the pde index @start + @length. This function will skip
801  * over already allocated page directories within the range, and only allocate
802  * new ones, setting the appropriate pointer within the pdp as well as the
803  * correct position in the bitmap @new_pds.
804  *
805  * The function will only allocate the pages within the range for a give page
806  * directory pointer. In other words, if @start + @length straddles a virtually
807  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
808  * required by the caller, This is not currently possible, and the BUG in the
809  * code will prevent it.
810  *
811  * Return: 0 if success; negative error code otherwise.
812  */
813 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
814 				     struct i915_page_directory_pointer *pdp,
815 				     uint64_t start,
816 				     uint64_t length,
817 				     unsigned long *new_pds)
818 {
819 	struct drm_device *dev = ppgtt->base.dev;
820 	struct i915_page_directory *pd;
821 	uint64_t temp;
822 	uint32_t pdpe;
823 
824 	WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
825 
826 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
827 		if (pd)
828 			continue;
829 
830 		pd = alloc_pd(dev);
831 		if (IS_ERR(pd))
832 			goto unwind_out;
833 
834 		gen8_initialize_pd(&ppgtt->base, pd);
835 		pdp->page_directory[pdpe] = pd;
836 		__set_bit(pdpe, new_pds);
837 	}
838 
839 	return 0;
840 
841 unwind_out:
842 	for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
843 		free_pd(dev, pdp->page_directory[pdpe]);
844 
845 	return -ENOMEM;
846 }
847 
848 static void
849 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
850 {
851 	int i;
852 
853 	for (i = 0; i < GEN8_LEGACY_PDPES; i++)
854 		kfree(new_pts[i]);
855 	kfree(new_pts);
856 	kfree(new_pds);
857 }
858 
859 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
860  * of these are based on the number of PDPEs in the system.
861  */
862 static
863 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
864 					 unsigned long ***new_pts)
865 {
866 	int i;
867 	unsigned long *pds;
868 	unsigned long **pts;
869 
870 	pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
871 	if (!pds)
872 		return -ENOMEM;
873 
874 	pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
875 	if (!pts) {
876 		kfree(pds);
877 		return -ENOMEM;
878 	}
879 
880 	for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
881 		pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
882 				 sizeof(unsigned long), GFP_KERNEL);
883 		if (!pts[i])
884 			goto err_out;
885 	}
886 
887 	*new_pds = pds;
888 	*new_pts = pts;
889 
890 	return 0;
891 
892 err_out:
893 	free_gen8_temp_bitmaps(pds, pts);
894 	return -ENOMEM;
895 }
896 
897 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
898  * the page table structures, we mark them dirty so that
899  * context switching/execlist queuing code takes extra steps
900  * to ensure that tlbs are flushed.
901  */
902 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
903 {
904 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
905 }
906 
907 static int gen8_alloc_va_range(struct i915_address_space *vm,
908 			       uint64_t start,
909 			       uint64_t length)
910 {
911 	struct i915_hw_ppgtt *ppgtt =
912 		container_of(vm, struct i915_hw_ppgtt, base);
913 	unsigned long *new_page_dirs, **new_page_tables;
914 	struct i915_page_directory *pd;
915 	const uint64_t orig_start = start;
916 	const uint64_t orig_length = length;
917 	uint64_t temp;
918 	uint32_t pdpe;
919 	int ret;
920 
921 	/* Wrap is never okay since we can only represent 48b, and we don't
922 	 * actually use the other side of the canonical address space.
923 	 */
924 	if (WARN_ON(start + length < start))
925 		return -ENODEV;
926 
927 	if (WARN_ON(start + length > ppgtt->base.total))
928 		return -ENODEV;
929 
930 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
931 	if (ret)
932 		return ret;
933 
934 	/* Do the allocations first so we can easily bail out */
935 	ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
936 					new_page_dirs);
937 	if (ret) {
938 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
939 		return ret;
940 	}
941 
942 	/* For every page directory referenced, allocate page tables */
943 	gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
944 		ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
945 						new_page_tables[pdpe]);
946 		if (ret)
947 			goto err_out;
948 	}
949 
950 	start = orig_start;
951 	length = orig_length;
952 
953 	/* Allocations have completed successfully, so set the bitmaps, and do
954 	 * the mappings. */
955 	gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
956 		gen8_pde_t *const page_directory = kmap_px(pd);
957 		struct i915_page_table *pt;
958 		uint64_t pd_len = gen8_clamp_pd(start, length);
959 		uint64_t pd_start = start;
960 		uint32_t pde;
961 
962 		/* Every pd should be allocated, we just did that above. */
963 		WARN_ON(!pd);
964 
965 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
966 			/* Same reasoning as pd */
967 			WARN_ON(!pt);
968 			WARN_ON(!pd_len);
969 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
970 
971 			/* Set our used ptes within the page table */
972 			bitmap_set(pt->used_ptes,
973 				   gen8_pte_index(pd_start),
974 				   gen8_pte_count(pd_start, pd_len));
975 
976 			/* Our pde is now pointing to the pagetable, pt */
977 			__set_bit(pde, pd->used_pdes);
978 
979 			/* Map the PDE to the page table */
980 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
981 							      I915_CACHE_LLC);
982 
983 			/* NB: We haven't yet mapped ptes to pages. At this
984 			 * point we're still relying on insert_entries() */
985 		}
986 
987 		kunmap_px(ppgtt, page_directory);
988 
989 		__set_bit(pdpe, ppgtt->pdp.used_pdpes);
990 	}
991 
992 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
993 	mark_tlbs_dirty(ppgtt);
994 	return 0;
995 
996 err_out:
997 	while (pdpe--) {
998 		for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
999 			free_pt(vm->dev, ppgtt->pdp.page_directory[pdpe]->page_table[temp]);
1000 	}
1001 
1002 	for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
1003 		free_pd(vm->dev, ppgtt->pdp.page_directory[pdpe]);
1004 
1005 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1006 	mark_tlbs_dirty(ppgtt);
1007 	return ret;
1008 }
1009 
1010 /*
1011  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1012  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1013  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1014  * space.
1015  *
1016  */
1017 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1018 {
1019 	int ret;
1020 
1021 	ret = gen8_init_scratch(&ppgtt->base);
1022 	if (ret)
1023 		return ret;
1024 
1025 	ppgtt->base.start = 0;
1026 	ppgtt->base.total = 1ULL << 32;
1027 	if (IS_ENABLED(CONFIG_X86_32))
1028 		/* While we have a proliferation of size_t variables
1029 		 * we cannot represent the full ppgtt size on 32bit,
1030 		 * so limit it to the same size as the GGTT (currently
1031 		 * 2GiB).
1032 		 */
1033 		ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
1034 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1035 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1036 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1037 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1038 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1039 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1040 
1041 	ppgtt->switch_mm = gen8_mm_switch;
1042 
1043 	return 0;
1044 }
1045 
1046 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1047 {
1048 	struct i915_address_space *vm = &ppgtt->base;
1049 	struct i915_page_table *unused;
1050 	gen6_pte_t scratch_pte;
1051 	uint32_t pd_entry;
1052 	uint32_t  pte, pde, temp;
1053 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1054 
1055 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1056 				     I915_CACHE_LLC, true, 0);
1057 
1058 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1059 		u32 expected;
1060 		gen6_pte_t *pt_vaddr;
1061 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1062 		pd_entry = readl(ppgtt->pd_addr + pde);
1063 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1064 
1065 		if (pd_entry != expected)
1066 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1067 				   pde,
1068 				   pd_entry,
1069 				   expected);
1070 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1071 
1072 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1073 
1074 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1075 			unsigned long va =
1076 				(pde * PAGE_SIZE * GEN6_PTES) +
1077 				(pte * PAGE_SIZE);
1078 			int i;
1079 			bool found = false;
1080 			for (i = 0; i < 4; i++)
1081 				if (pt_vaddr[pte + i] != scratch_pte)
1082 					found = true;
1083 			if (!found)
1084 				continue;
1085 
1086 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1087 			for (i = 0; i < 4; i++) {
1088 				if (pt_vaddr[pte + i] != scratch_pte)
1089 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1090 				else
1091 					seq_puts(m, "  SCRATCH ");
1092 			}
1093 			seq_puts(m, "\n");
1094 		}
1095 		kunmap_px(ppgtt, pt_vaddr);
1096 	}
1097 }
1098 
1099 /* Write pde (index) from the page directory @pd to the page table @pt */
1100 static void gen6_write_pde(struct i915_page_directory *pd,
1101 			    const int pde, struct i915_page_table *pt)
1102 {
1103 	/* Caller needs to make sure the write completes if necessary */
1104 	struct i915_hw_ppgtt *ppgtt =
1105 		container_of(pd, struct i915_hw_ppgtt, pd);
1106 	u32 pd_entry;
1107 
1108 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1109 	pd_entry |= GEN6_PDE_VALID;
1110 
1111 	writel(pd_entry, ppgtt->pd_addr + pde);
1112 }
1113 
1114 /* Write all the page tables found in the ppgtt structure to incrementing page
1115  * directories. */
1116 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1117 				  struct i915_page_directory *pd,
1118 				  uint32_t start, uint32_t length)
1119 {
1120 	struct i915_page_table *pt;
1121 	uint32_t pde, temp;
1122 
1123 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
1124 		gen6_write_pde(pd, pde, pt);
1125 
1126 	/* Make sure write is complete before other code can use this page
1127 	 * table. Also require for WC mapped PTEs */
1128 	readl(dev_priv->gtt.gsm);
1129 }
1130 
1131 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1132 {
1133 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1134 
1135 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1136 }
1137 
1138 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1139 			 struct drm_i915_gem_request *req)
1140 {
1141 	struct intel_engine_cs *ring = req->ring;
1142 	int ret;
1143 
1144 	/* NB: TLBs must be flushed and invalidated before a switch */
1145 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1146 	if (ret)
1147 		return ret;
1148 
1149 	ret = intel_ring_begin(req, 6);
1150 	if (ret)
1151 		return ret;
1152 
1153 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1154 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1155 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1156 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1157 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1158 	intel_ring_emit(ring, MI_NOOP);
1159 	intel_ring_advance(ring);
1160 
1161 	return 0;
1162 }
1163 
1164 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1165 			  struct drm_i915_gem_request *req)
1166 {
1167 	struct intel_engine_cs *ring = req->ring;
1168 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1169 
1170 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1171 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1172 	return 0;
1173 }
1174 
1175 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1176 			  struct drm_i915_gem_request *req)
1177 {
1178 	struct intel_engine_cs *ring = req->ring;
1179 	int ret;
1180 
1181 	/* NB: TLBs must be flushed and invalidated before a switch */
1182 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1183 	if (ret)
1184 		return ret;
1185 
1186 	ret = intel_ring_begin(req, 6);
1187 	if (ret)
1188 		return ret;
1189 
1190 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1191 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1192 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1193 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1194 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1195 	intel_ring_emit(ring, MI_NOOP);
1196 	intel_ring_advance(ring);
1197 
1198 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1199 	if (ring->id != RCS) {
1200 		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1201 		if (ret)
1202 			return ret;
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1209 			  struct drm_i915_gem_request *req)
1210 {
1211 	struct intel_engine_cs *ring = req->ring;
1212 	struct drm_device *dev = ppgtt->base.dev;
1213 	struct drm_i915_private *dev_priv = dev->dev_private;
1214 
1215 
1216 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1217 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1218 
1219 	POSTING_READ(RING_PP_DIR_DCLV(ring));
1220 
1221 	return 0;
1222 }
1223 
1224 static void gen8_ppgtt_enable(struct drm_device *dev)
1225 {
1226 	struct drm_i915_private *dev_priv = dev->dev_private;
1227 	struct intel_engine_cs *ring;
1228 	int j;
1229 
1230 	for_each_ring(ring, dev_priv, j) {
1231 		I915_WRITE(RING_MODE_GEN7(ring),
1232 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1233 	}
1234 }
1235 
1236 static void gen7_ppgtt_enable(struct drm_device *dev)
1237 {
1238 	struct drm_i915_private *dev_priv = dev->dev_private;
1239 	struct intel_engine_cs *ring;
1240 	uint32_t ecochk, ecobits;
1241 	int i;
1242 
1243 	ecobits = I915_READ(GAC_ECO_BITS);
1244 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1245 
1246 	ecochk = I915_READ(GAM_ECOCHK);
1247 	if (IS_HASWELL(dev)) {
1248 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1249 	} else {
1250 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1251 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1252 	}
1253 	I915_WRITE(GAM_ECOCHK, ecochk);
1254 
1255 	for_each_ring(ring, dev_priv, i) {
1256 		/* GFX_MODE is per-ring on gen7+ */
1257 		I915_WRITE(RING_MODE_GEN7(ring),
1258 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1259 	}
1260 }
1261 
1262 static void gen6_ppgtt_enable(struct drm_device *dev)
1263 {
1264 	struct drm_i915_private *dev_priv = dev->dev_private;
1265 	uint32_t ecochk, gab_ctl, ecobits;
1266 
1267 	ecobits = I915_READ(GAC_ECO_BITS);
1268 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1269 		   ECOBITS_PPGTT_CACHE64B);
1270 
1271 	gab_ctl = I915_READ(GAB_CTL);
1272 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1273 
1274 	ecochk = I915_READ(GAM_ECOCHK);
1275 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1276 
1277 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1278 }
1279 
1280 /* PPGTT support for Sandybdrige/Gen6 and later */
1281 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1282 				   uint64_t start,
1283 				   uint64_t length,
1284 				   bool use_scratch)
1285 {
1286 	struct i915_hw_ppgtt *ppgtt =
1287 		container_of(vm, struct i915_hw_ppgtt, base);
1288 	gen6_pte_t *pt_vaddr, scratch_pte;
1289 	unsigned first_entry = start >> PAGE_SHIFT;
1290 	unsigned num_entries = length >> PAGE_SHIFT;
1291 	unsigned act_pt = first_entry / GEN6_PTES;
1292 	unsigned first_pte = first_entry % GEN6_PTES;
1293 	unsigned last_pte, i;
1294 
1295 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1296 				     I915_CACHE_LLC, true, 0);
1297 
1298 	while (num_entries) {
1299 		last_pte = first_pte + num_entries;
1300 		if (last_pte > GEN6_PTES)
1301 			last_pte = GEN6_PTES;
1302 
1303 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1304 
1305 		for (i = first_pte; i < last_pte; i++)
1306 			pt_vaddr[i] = scratch_pte;
1307 
1308 		kunmap_px(ppgtt, pt_vaddr);
1309 
1310 		num_entries -= last_pte - first_pte;
1311 		first_pte = 0;
1312 		act_pt++;
1313 	}
1314 }
1315 
1316 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1317 				      struct sg_table *pages,
1318 				      uint64_t start,
1319 				      enum i915_cache_level cache_level, u32 flags)
1320 {
1321 	struct i915_hw_ppgtt *ppgtt =
1322 		container_of(vm, struct i915_hw_ppgtt, base);
1323 	gen6_pte_t *pt_vaddr;
1324 	unsigned first_entry = start >> PAGE_SHIFT;
1325 	unsigned act_pt = first_entry / GEN6_PTES;
1326 	unsigned act_pte = first_entry % GEN6_PTES;
1327 	struct sg_page_iter sg_iter;
1328 
1329 	pt_vaddr = NULL;
1330 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1331 		if (pt_vaddr == NULL)
1332 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1333 
1334 		pt_vaddr[act_pte] =
1335 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1336 				       cache_level, true, flags);
1337 
1338 		if (++act_pte == GEN6_PTES) {
1339 			kunmap_px(ppgtt, pt_vaddr);
1340 			pt_vaddr = NULL;
1341 			act_pt++;
1342 			act_pte = 0;
1343 		}
1344 	}
1345 	if (pt_vaddr)
1346 		kunmap_px(ppgtt, pt_vaddr);
1347 }
1348 
1349 static int gen6_alloc_va_range(struct i915_address_space *vm,
1350 			       uint64_t start_in, uint64_t length_in)
1351 {
1352 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1353 	struct drm_device *dev = vm->dev;
1354 	struct drm_i915_private *dev_priv = dev->dev_private;
1355 	struct i915_hw_ppgtt *ppgtt =
1356 				container_of(vm, struct i915_hw_ppgtt, base);
1357 	struct i915_page_table *pt;
1358 	uint32_t start, length, start_save, length_save;
1359 	uint32_t pde, temp;
1360 	int ret;
1361 
1362 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1363 		return -ENODEV;
1364 
1365 	start = start_save = start_in;
1366 	length = length_save = length_in;
1367 
1368 	bitmap_zero(new_page_tables, I915_PDES);
1369 
1370 	/* The allocation is done in two stages so that we can bail out with
1371 	 * minimal amount of pain. The first stage finds new page tables that
1372 	 * need allocation. The second stage marks use ptes within the page
1373 	 * tables.
1374 	 */
1375 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1376 		if (pt != vm->scratch_pt) {
1377 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1378 			continue;
1379 		}
1380 
1381 		/* We've already allocated a page table */
1382 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1383 
1384 		pt = alloc_pt(dev);
1385 		if (IS_ERR(pt)) {
1386 			ret = PTR_ERR(pt);
1387 			goto unwind_out;
1388 		}
1389 
1390 		gen6_initialize_pt(vm, pt);
1391 
1392 		ppgtt->pd.page_table[pde] = pt;
1393 		__set_bit(pde, new_page_tables);
1394 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1395 	}
1396 
1397 	start = start_save;
1398 	length = length_save;
1399 
1400 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1401 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1402 
1403 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1404 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1405 			   gen6_pte_count(start, length));
1406 
1407 		if (__test_and_clear_bit(pde, new_page_tables))
1408 			gen6_write_pde(&ppgtt->pd, pde, pt);
1409 
1410 		trace_i915_page_table_entry_map(vm, pde, pt,
1411 					 gen6_pte_index(start),
1412 					 gen6_pte_count(start, length),
1413 					 GEN6_PTES);
1414 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1415 				GEN6_PTES);
1416 	}
1417 
1418 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1419 
1420 	/* Make sure write is complete before other code can use this page
1421 	 * table. Also require for WC mapped PTEs */
1422 	readl(dev_priv->gtt.gsm);
1423 
1424 	mark_tlbs_dirty(ppgtt);
1425 	return 0;
1426 
1427 unwind_out:
1428 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1429 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1430 
1431 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1432 		free_pt(vm->dev, pt);
1433 	}
1434 
1435 	mark_tlbs_dirty(ppgtt);
1436 	return ret;
1437 }
1438 
1439 static int gen6_init_scratch(struct i915_address_space *vm)
1440 {
1441 	struct drm_device *dev = vm->dev;
1442 
1443 	vm->scratch_page = alloc_scratch_page(dev);
1444 	if (IS_ERR(vm->scratch_page))
1445 		return PTR_ERR(vm->scratch_page);
1446 
1447 	vm->scratch_pt = alloc_pt(dev);
1448 	if (IS_ERR(vm->scratch_pt)) {
1449 		free_scratch_page(dev, vm->scratch_page);
1450 		return PTR_ERR(vm->scratch_pt);
1451 	}
1452 
1453 	gen6_initialize_pt(vm, vm->scratch_pt);
1454 
1455 	return 0;
1456 }
1457 
1458 static void gen6_free_scratch(struct i915_address_space *vm)
1459 {
1460 	struct drm_device *dev = vm->dev;
1461 
1462 	free_pt(dev, vm->scratch_pt);
1463 	free_scratch_page(dev, vm->scratch_page);
1464 }
1465 
1466 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1467 {
1468 	struct i915_hw_ppgtt *ppgtt =
1469 		container_of(vm, struct i915_hw_ppgtt, base);
1470 	struct i915_page_table *pt;
1471 	uint32_t pde;
1472 
1473 	drm_mm_remove_node(&ppgtt->node);
1474 
1475 	gen6_for_all_pdes(pt, ppgtt, pde) {
1476 		if (pt != vm->scratch_pt)
1477 			free_pt(ppgtt->base.dev, pt);
1478 	}
1479 
1480 	gen6_free_scratch(vm);
1481 }
1482 
1483 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1484 {
1485 	struct i915_address_space *vm = &ppgtt->base;
1486 	struct drm_device *dev = ppgtt->base.dev;
1487 	struct drm_i915_private *dev_priv = dev->dev_private;
1488 	bool retried = false;
1489 	int ret;
1490 
1491 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1492 	 * allocator works in address space sizes, so it's multiplied by page
1493 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1494 	 */
1495 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1496 
1497 	ret = gen6_init_scratch(vm);
1498 	if (ret)
1499 		return ret;
1500 
1501 alloc:
1502 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1503 						  &ppgtt->node, GEN6_PD_SIZE,
1504 						  GEN6_PD_ALIGN, 0,
1505 						  0, dev_priv->gtt.base.total,
1506 						  DRM_MM_TOPDOWN);
1507 	if (ret == -ENOSPC && !retried) {
1508 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1509 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
1510 					       I915_CACHE_NONE,
1511 					       0, dev_priv->gtt.base.total,
1512 					       0);
1513 		if (ret)
1514 			goto err_out;
1515 
1516 		retried = true;
1517 		goto alloc;
1518 	}
1519 
1520 	if (ret)
1521 		goto err_out;
1522 
1523 
1524 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1525 		DRM_DEBUG("Forced to use aperture for PDEs\n");
1526 
1527 	return 0;
1528 
1529 err_out:
1530 	gen6_free_scratch(vm);
1531 	return ret;
1532 }
1533 
1534 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1535 {
1536 	return gen6_ppgtt_allocate_page_directories(ppgtt);
1537 }
1538 
1539 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1540 				  uint64_t start, uint64_t length)
1541 {
1542 	struct i915_page_table *unused;
1543 	uint32_t pde, temp;
1544 
1545 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1546 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1547 }
1548 
1549 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1550 {
1551 	struct drm_device *dev = ppgtt->base.dev;
1552 	struct drm_i915_private *dev_priv = dev->dev_private;
1553 	int ret;
1554 
1555 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1556 	if (IS_GEN6(dev)) {
1557 		ppgtt->switch_mm = gen6_mm_switch;
1558 	} else if (IS_HASWELL(dev)) {
1559 		ppgtt->switch_mm = hsw_mm_switch;
1560 	} else if (IS_GEN7(dev)) {
1561 		ppgtt->switch_mm = gen7_mm_switch;
1562 	} else
1563 		BUG();
1564 
1565 	if (intel_vgpu_active(dev))
1566 		ppgtt->switch_mm = vgpu_mm_switch;
1567 
1568 	ret = gen6_ppgtt_alloc(ppgtt);
1569 	if (ret)
1570 		return ret;
1571 
1572 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1573 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1574 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1575 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1576 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1577 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1578 	ppgtt->base.start = 0;
1579 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1580 	ppgtt->debug_dump = gen6_dump_ppgtt;
1581 
1582 	ppgtt->pd.base.ggtt_offset =
1583 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1584 
1585 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1586 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1587 
1588 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1589 
1590 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1591 
1592 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1593 			 ppgtt->node.size >> 20,
1594 			 ppgtt->node.start / PAGE_SIZE);
1595 
1596 	DRM_DEBUG("Adding PPGTT at offset %x\n",
1597 		  ppgtt->pd.base.ggtt_offset << 10);
1598 
1599 	return 0;
1600 }
1601 
1602 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1603 {
1604 	ppgtt->base.dev = dev;
1605 
1606 	if (INTEL_INFO(dev)->gen < 8)
1607 		return gen6_ppgtt_init(ppgtt);
1608 	else
1609 		return gen8_ppgtt_init(ppgtt);
1610 }
1611 
1612 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1613 {
1614 	struct drm_i915_private *dev_priv = dev->dev_private;
1615 	int ret = 0;
1616 
1617 	ret = __hw_ppgtt_init(dev, ppgtt);
1618 	if (ret == 0) {
1619 		kref_init(&ppgtt->ref);
1620 		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1621 			    ppgtt->base.total);
1622 		i915_init_vm(dev_priv, &ppgtt->base);
1623 	}
1624 
1625 	return ret;
1626 }
1627 
1628 int i915_ppgtt_init_hw(struct drm_device *dev)
1629 {
1630 	/* In the case of execlists, PPGTT is enabled by the context descriptor
1631 	 * and the PDPs are contained within the context itself.  We don't
1632 	 * need to do anything here. */
1633 	if (i915.enable_execlists)
1634 		return 0;
1635 
1636 	if (!USES_PPGTT(dev))
1637 		return 0;
1638 
1639 	if (IS_GEN6(dev))
1640 		gen6_ppgtt_enable(dev);
1641 	else if (IS_GEN7(dev))
1642 		gen7_ppgtt_enable(dev);
1643 	else if (INTEL_INFO(dev)->gen >= 8)
1644 		gen8_ppgtt_enable(dev);
1645 	else
1646 		MISSING_CASE(INTEL_INFO(dev)->gen);
1647 
1648 	return 0;
1649 }
1650 
1651 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
1652 {
1653 	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
1654 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1655 
1656 	if (i915.enable_execlists)
1657 		return 0;
1658 
1659 	if (!ppgtt)
1660 		return 0;
1661 
1662 	return ppgtt->switch_mm(ppgtt, req);
1663 }
1664 
1665 struct i915_hw_ppgtt *
1666 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1667 {
1668 	struct i915_hw_ppgtt *ppgtt;
1669 	int ret;
1670 
1671 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1672 	if (!ppgtt)
1673 		return ERR_PTR(-ENOMEM);
1674 
1675 	ret = i915_ppgtt_init(dev, ppgtt);
1676 	if (ret) {
1677 		kfree(ppgtt);
1678 		return ERR_PTR(ret);
1679 	}
1680 
1681 	ppgtt->file_priv = fpriv;
1682 
1683 	trace_i915_ppgtt_create(&ppgtt->base);
1684 
1685 	return ppgtt;
1686 }
1687 
1688 void  i915_ppgtt_release(struct kref *kref)
1689 {
1690 	struct i915_hw_ppgtt *ppgtt =
1691 		container_of(kref, struct i915_hw_ppgtt, ref);
1692 
1693 	trace_i915_ppgtt_release(&ppgtt->base);
1694 
1695 	/* vmas should already be unbound */
1696 	WARN_ON(!list_empty(&ppgtt->base.active_list));
1697 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1698 
1699 	list_del(&ppgtt->base.global_link);
1700 	drm_mm_takedown(&ppgtt->base.mm);
1701 
1702 	ppgtt->base.cleanup(&ppgtt->base);
1703 	kfree(ppgtt);
1704 }
1705 
1706 extern int intel_iommu_gfx_mapped;
1707 /* Certain Gen5 chipsets require require idling the GPU before
1708  * unmapping anything from the GTT when VT-d is enabled.
1709  */
1710 static bool needs_idle_maps(struct drm_device *dev)
1711 {
1712 #ifdef CONFIG_INTEL_IOMMU
1713 	/* Query intel_iommu to see if we need the workaround. Presumably that
1714 	 * was loaded first.
1715 	 */
1716 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1717 		return true;
1718 #endif
1719 	return false;
1720 }
1721 
1722 static bool do_idling(struct drm_i915_private *dev_priv)
1723 {
1724 	bool ret = dev_priv->mm.interruptible;
1725 
1726 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
1727 		dev_priv->mm.interruptible = false;
1728 		if (i915_gpu_idle(dev_priv->dev)) {
1729 			DRM_ERROR("Couldn't idle GPU\n");
1730 			/* Wait a bit, in hopes it avoids the hang */
1731 			udelay(10);
1732 		}
1733 	}
1734 
1735 	return ret;
1736 }
1737 
1738 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1739 {
1740 	if (unlikely(dev_priv->gtt.do_idle_maps))
1741 		dev_priv->mm.interruptible = interruptible;
1742 }
1743 
1744 void i915_check_and_clear_faults(struct drm_device *dev)
1745 {
1746 	struct drm_i915_private *dev_priv = dev->dev_private;
1747 	struct intel_engine_cs *ring;
1748 	int i;
1749 
1750 	if (INTEL_INFO(dev)->gen < 6)
1751 		return;
1752 
1753 	for_each_ring(ring, dev_priv, i) {
1754 		u32 fault_reg;
1755 		fault_reg = I915_READ(RING_FAULT_REG(ring));
1756 		if (fault_reg & RING_FAULT_VALID) {
1757 			DRM_DEBUG_DRIVER("Unexpected fault\n"
1758 					 "\tAddr: 0x%08lx\n"
1759 					 "\tAddress space: %s\n"
1760 					 "\tSource ID: %d\n"
1761 					 "\tType: %d\n",
1762 					 fault_reg & PAGE_MASK,
1763 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1764 					 RING_FAULT_SRCID(fault_reg),
1765 					 RING_FAULT_FAULT_TYPE(fault_reg));
1766 			I915_WRITE(RING_FAULT_REG(ring),
1767 				   fault_reg & ~RING_FAULT_VALID);
1768 		}
1769 	}
1770 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1771 }
1772 
1773 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1774 {
1775 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1776 		intel_gtt_chipset_flush();
1777 	} else {
1778 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1779 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
1780 	}
1781 }
1782 
1783 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1784 {
1785 	struct drm_i915_private *dev_priv = dev->dev_private;
1786 
1787 	/* Don't bother messing with faults pre GEN6 as we have little
1788 	 * documentation supporting that it's a good idea.
1789 	 */
1790 	if (INTEL_INFO(dev)->gen < 6)
1791 		return;
1792 
1793 	i915_check_and_clear_faults(dev);
1794 
1795 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1796 				       dev_priv->gtt.base.start,
1797 				       dev_priv->gtt.base.total,
1798 				       true);
1799 
1800 	i915_ggtt_flush(dev_priv);
1801 }
1802 
1803 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1804 {
1805 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
1806 			obj->pages->sgl, obj->pages->nents,
1807 			PCI_DMA_BIDIRECTIONAL))
1808 		return -ENOSPC;
1809 
1810 	return 0;
1811 }
1812 
1813 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1814 {
1815 #ifdef writeq
1816 	writeq(pte, addr);
1817 #else
1818 	iowrite32((u32)pte, addr);
1819 	iowrite32(pte >> 32, addr + 4);
1820 #endif
1821 }
1822 
1823 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1824 				     struct sg_table *st,
1825 				     uint64_t start,
1826 				     enum i915_cache_level level, u32 unused)
1827 {
1828 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1829 	unsigned first_entry = start >> PAGE_SHIFT;
1830 	gen8_pte_t __iomem *gtt_entries =
1831 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1832 	int i = 0;
1833 	struct sg_page_iter sg_iter;
1834 	dma_addr_t addr = 0; /* shut up gcc */
1835 
1836 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1837 		addr = sg_dma_address(sg_iter.sg) +
1838 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
1839 		gen8_set_pte(&gtt_entries[i],
1840 			     gen8_pte_encode(addr, level, true));
1841 		i++;
1842 	}
1843 
1844 	/*
1845 	 * XXX: This serves as a posting read to make sure that the PTE has
1846 	 * actually been updated. There is some concern that even though
1847 	 * registers and PTEs are within the same BAR that they are potentially
1848 	 * of NUMA access patterns. Therefore, even with the way we assume
1849 	 * hardware should work, we must keep this posting read for paranoia.
1850 	 */
1851 	if (i != 0)
1852 		WARN_ON(readq(&gtt_entries[i-1])
1853 			!= gen8_pte_encode(addr, level, true));
1854 
1855 	/* This next bit makes the above posting read even more important. We
1856 	 * want to flush the TLBs only after we're certain all the PTE updates
1857 	 * have finished.
1858 	 */
1859 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1860 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1861 }
1862 
1863 /*
1864  * Binds an object into the global gtt with the specified cache level. The object
1865  * will be accessible to the GPU via commands whose operands reference offsets
1866  * within the global GTT as well as accessible by the GPU through the GMADR
1867  * mapped BAR (dev_priv->mm.gtt->gtt).
1868  */
1869 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1870 				     struct sg_table *st,
1871 				     uint64_t start,
1872 				     enum i915_cache_level level, u32 flags)
1873 {
1874 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1875 	unsigned first_entry = start >> PAGE_SHIFT;
1876 	gen6_pte_t __iomem *gtt_entries =
1877 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1878 	int i = 0;
1879 	struct sg_page_iter sg_iter;
1880 	dma_addr_t addr = 0;
1881 
1882 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1883 		addr = sg_page_iter_dma_address(&sg_iter);
1884 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1885 		i++;
1886 	}
1887 
1888 	/* XXX: This serves as a posting read to make sure that the PTE has
1889 	 * actually been updated. There is some concern that even though
1890 	 * registers and PTEs are within the same BAR that they are potentially
1891 	 * of NUMA access patterns. Therefore, even with the way we assume
1892 	 * hardware should work, we must keep this posting read for paranoia.
1893 	 */
1894 	if (i != 0) {
1895 		unsigned long gtt = readl(&gtt_entries[i-1]);
1896 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1897 	}
1898 
1899 	/* This next bit makes the above posting read even more important. We
1900 	 * want to flush the TLBs only after we're certain all the PTE updates
1901 	 * have finished.
1902 	 */
1903 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1904 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1905 }
1906 
1907 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1908 				  uint64_t start,
1909 				  uint64_t length,
1910 				  bool use_scratch)
1911 {
1912 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1913 	unsigned first_entry = start >> PAGE_SHIFT;
1914 	unsigned num_entries = length >> PAGE_SHIFT;
1915 	gen8_pte_t scratch_pte, __iomem *gtt_base =
1916 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1917 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1918 	int i;
1919 
1920 	if (WARN(num_entries > max_entries,
1921 		 "First entry = %d; Num entries = %d (max=%d)\n",
1922 		 first_entry, num_entries, max_entries))
1923 		num_entries = max_entries;
1924 
1925 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1926 				      I915_CACHE_LLC,
1927 				      use_scratch);
1928 	for (i = 0; i < num_entries; i++)
1929 		gen8_set_pte(&gtt_base[i], scratch_pte);
1930 	readl(gtt_base);
1931 }
1932 
1933 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1934 				  uint64_t start,
1935 				  uint64_t length,
1936 				  bool use_scratch)
1937 {
1938 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1939 	unsigned first_entry = start >> PAGE_SHIFT;
1940 	unsigned num_entries = length >> PAGE_SHIFT;
1941 	gen6_pte_t scratch_pte, __iomem *gtt_base =
1942 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1943 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1944 	int i;
1945 
1946 	if (WARN(num_entries > max_entries,
1947 		 "First entry = %d; Num entries = %d (max=%d)\n",
1948 		 first_entry, num_entries, max_entries))
1949 		num_entries = max_entries;
1950 
1951 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1952 				     I915_CACHE_LLC, use_scratch, 0);
1953 
1954 	for (i = 0; i < num_entries; i++)
1955 		iowrite32(scratch_pte, &gtt_base[i]);
1956 	readl(gtt_base);
1957 }
1958 
1959 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1960 				     struct sg_table *pages,
1961 				     uint64_t start,
1962 				     enum i915_cache_level cache_level, u32 unused)
1963 {
1964 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1965 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1966 
1967 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
1968 
1969 }
1970 
1971 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1972 				  uint64_t start,
1973 				  uint64_t length,
1974 				  bool unused)
1975 {
1976 	unsigned first_entry = start >> PAGE_SHIFT;
1977 	unsigned num_entries = length >> PAGE_SHIFT;
1978 	intel_gtt_clear_range(first_entry, num_entries);
1979 }
1980 
1981 static int ggtt_bind_vma(struct i915_vma *vma,
1982 			 enum i915_cache_level cache_level,
1983 			 u32 flags)
1984 {
1985 	struct drm_device *dev = vma->vm->dev;
1986 	struct drm_i915_private *dev_priv = dev->dev_private;
1987 	struct drm_i915_gem_object *obj = vma->obj;
1988 	struct sg_table *pages = obj->pages;
1989 	u32 pte_flags = 0;
1990 	int ret;
1991 
1992 	ret = i915_get_ggtt_vma_pages(vma);
1993 	if (ret)
1994 		return ret;
1995 	pages = vma->ggtt_view.pages;
1996 
1997 	/* Currently applicable only to VLV */
1998 	if (obj->gt_ro)
1999 		pte_flags |= PTE_READ_ONLY;
2000 
2001 
2002 	if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
2003 		vma->vm->insert_entries(vma->vm, pages,
2004 					vma->node.start,
2005 					cache_level, pte_flags);
2006 
2007 		/* Note the inconsistency here is due to absence of the
2008 		 * aliasing ppgtt on gen4 and earlier. Though we always
2009 		 * request PIN_USER for execbuffer (translated to LOCAL_BIND),
2010 		 * without the appgtt, we cannot honour that request and so
2011 		 * must substitute it with a global binding. Since we do this
2012 		 * behind the upper layers back, we need to explicitly set
2013 		 * the bound flag ourselves.
2014 		 */
2015 		vma->bound |= GLOBAL_BIND;
2016 
2017 	}
2018 
2019 	if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
2020 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2021 		appgtt->base.insert_entries(&appgtt->base, pages,
2022 					    vma->node.start,
2023 					    cache_level, pte_flags);
2024 	}
2025 
2026 	return 0;
2027 }
2028 
2029 static void ggtt_unbind_vma(struct i915_vma *vma)
2030 {
2031 	struct drm_device *dev = vma->vm->dev;
2032 	struct drm_i915_private *dev_priv = dev->dev_private;
2033 	struct drm_i915_gem_object *obj = vma->obj;
2034 	const uint64_t size = min_t(uint64_t,
2035 				    obj->base.size,
2036 				    vma->node.size);
2037 
2038 	if (vma->bound & GLOBAL_BIND) {
2039 		vma->vm->clear_range(vma->vm,
2040 				     vma->node.start,
2041 				     size,
2042 				     true);
2043 	}
2044 
2045 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2046 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2047 
2048 		appgtt->base.clear_range(&appgtt->base,
2049 					 vma->node.start,
2050 					 size,
2051 					 true);
2052 	}
2053 }
2054 
2055 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2056 {
2057 	struct drm_device *dev = obj->base.dev;
2058 	struct drm_i915_private *dev_priv = dev->dev_private;
2059 	bool interruptible;
2060 
2061 	interruptible = do_idling(dev_priv);
2062 
2063 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2064 		     PCI_DMA_BIDIRECTIONAL);
2065 
2066 	undo_idling(dev_priv, interruptible);
2067 }
2068 
2069 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2070 				  unsigned long color,
2071 				  u64 *start,
2072 				  u64 *end)
2073 {
2074 	if (node->color != color)
2075 		*start += 4096;
2076 
2077 	if (!list_empty(&node->node_list)) {
2078 		node = list_entry(node->node_list.next,
2079 				  struct drm_mm_node,
2080 				  node_list);
2081 		if (node->allocated && node->color != color)
2082 			*end -= 4096;
2083 	}
2084 }
2085 
2086 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2087 				     unsigned long start,
2088 				     unsigned long mappable_end,
2089 				     unsigned long end)
2090 {
2091 	/* Let GEM Manage all of the aperture.
2092 	 *
2093 	 * However, leave one page at the end still bound to the scratch page.
2094 	 * There are a number of places where the hardware apparently prefetches
2095 	 * past the end of the object, and we've seen multiple hangs with the
2096 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2097 	 * aperture.  One page should be enough to keep any prefetching inside
2098 	 * of the aperture.
2099 	 */
2100 	struct drm_i915_private *dev_priv = dev->dev_private;
2101 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2102 	struct drm_mm_node *entry;
2103 	struct drm_i915_gem_object *obj;
2104 	unsigned long hole_start, hole_end;
2105 	int ret;
2106 
2107 	BUG_ON(mappable_end > end);
2108 
2109 	/* Subtract the guard page ... */
2110 	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2111 
2112 	dev_priv->gtt.base.start = start;
2113 	dev_priv->gtt.base.total = end - start;
2114 
2115 	if (intel_vgpu_active(dev)) {
2116 		ret = intel_vgt_balloon(dev);
2117 		if (ret)
2118 			return ret;
2119 	}
2120 
2121 	if (!HAS_LLC(dev))
2122 		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2123 
2124 	/* Mark any preallocated objects as occupied */
2125 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2126 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2127 
2128 		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2129 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2130 
2131 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2132 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2133 		if (ret) {
2134 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2135 			return ret;
2136 		}
2137 		vma->bound |= GLOBAL_BIND;
2138 	}
2139 
2140 	/* Clear any non-preallocated blocks */
2141 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2142 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2143 			      hole_start, hole_end);
2144 		ggtt_vm->clear_range(ggtt_vm, hole_start,
2145 				     hole_end - hole_start, true);
2146 	}
2147 
2148 	/* And finally clear the reserved guard page */
2149 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2150 
2151 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2152 		struct i915_hw_ppgtt *ppgtt;
2153 
2154 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2155 		if (!ppgtt)
2156 			return -ENOMEM;
2157 
2158 		ret = __hw_ppgtt_init(dev, ppgtt);
2159 		if (ret) {
2160 			ppgtt->base.cleanup(&ppgtt->base);
2161 			kfree(ppgtt);
2162 			return ret;
2163 		}
2164 
2165 		if (ppgtt->base.allocate_va_range)
2166 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2167 							    ppgtt->base.total);
2168 		if (ret) {
2169 			ppgtt->base.cleanup(&ppgtt->base);
2170 			kfree(ppgtt);
2171 			return ret;
2172 		}
2173 
2174 		ppgtt->base.clear_range(&ppgtt->base,
2175 					ppgtt->base.start,
2176 					ppgtt->base.total,
2177 					true);
2178 
2179 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 void i915_gem_init_global_gtt(struct drm_device *dev)
2186 {
2187 	struct drm_i915_private *dev_priv = dev->dev_private;
2188 	u64 gtt_size, mappable_size;
2189 
2190 	gtt_size = dev_priv->gtt.base.total;
2191 	mappable_size = dev_priv->gtt.mappable_end;
2192 
2193 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2194 }
2195 
2196 void i915_global_gtt_cleanup(struct drm_device *dev)
2197 {
2198 	struct drm_i915_private *dev_priv = dev->dev_private;
2199 	struct i915_address_space *vm = &dev_priv->gtt.base;
2200 
2201 	if (dev_priv->mm.aliasing_ppgtt) {
2202 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2203 
2204 		ppgtt->base.cleanup(&ppgtt->base);
2205 	}
2206 
2207 	if (drm_mm_initialized(&vm->mm)) {
2208 		if (intel_vgpu_active(dev))
2209 			intel_vgt_deballoon();
2210 
2211 		drm_mm_takedown(&vm->mm);
2212 		list_del(&vm->global_link);
2213 	}
2214 
2215 	vm->cleanup(vm);
2216 }
2217 
2218 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2219 {
2220 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2221 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2222 	return snb_gmch_ctl << 20;
2223 }
2224 
2225 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2226 {
2227 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2228 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2229 	if (bdw_gmch_ctl)
2230 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2231 
2232 #ifdef CONFIG_X86_32
2233 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2234 	if (bdw_gmch_ctl > 4)
2235 		bdw_gmch_ctl = 4;
2236 #endif
2237 
2238 	return bdw_gmch_ctl << 20;
2239 }
2240 
2241 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2242 {
2243 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2244 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2245 
2246 	if (gmch_ctrl)
2247 		return 1 << (20 + gmch_ctrl);
2248 
2249 	return 0;
2250 }
2251 
2252 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2253 {
2254 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2255 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2256 	return snb_gmch_ctl << 25; /* 32 MB units */
2257 }
2258 
2259 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2260 {
2261 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2262 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2263 	return bdw_gmch_ctl << 25; /* 32 MB units */
2264 }
2265 
2266 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2267 {
2268 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2269 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2270 
2271 	/*
2272 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2273 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2274 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2275 	 */
2276 	if (gmch_ctrl < 0x11)
2277 		return gmch_ctrl << 25;
2278 	else if (gmch_ctrl < 0x17)
2279 		return (gmch_ctrl - 0x11 + 2) << 22;
2280 	else
2281 		return (gmch_ctrl - 0x17 + 9) << 22;
2282 }
2283 
2284 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2285 {
2286 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2287 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2288 
2289 	if (gen9_gmch_ctl < 0xf0)
2290 		return gen9_gmch_ctl << 25; /* 32 MB units */
2291 	else
2292 		/* 4MB increments starting at 0xf0 for 4MB */
2293 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2294 }
2295 
2296 static int ggtt_probe_common(struct drm_device *dev,
2297 			     size_t gtt_size)
2298 {
2299 	struct drm_i915_private *dev_priv = dev->dev_private;
2300 	struct i915_page_scratch *scratch_page;
2301 	phys_addr_t gtt_phys_addr;
2302 
2303 	/* For Modern GENs the PTEs and register space are split in the BAR */
2304 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2305 		(pci_resource_len(dev->pdev, 0) / 2);
2306 
2307 	/*
2308 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2309 	 * dropped. For WC mappings in general we have 64 byte burst writes
2310 	 * when the WC buffer is flushed, so we can't use it, but have to
2311 	 * resort to an uncached mapping. The WC issue is easily caught by the
2312 	 * readback check when writing GTT PTE entries.
2313 	 */
2314 	if (IS_BROXTON(dev))
2315 		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2316 	else
2317 		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2318 	if (!dev_priv->gtt.gsm) {
2319 		DRM_ERROR("Failed to map the gtt page table\n");
2320 		return -ENOMEM;
2321 	}
2322 
2323 	scratch_page = alloc_scratch_page(dev);
2324 	if (IS_ERR(scratch_page)) {
2325 		DRM_ERROR("Scratch setup failed\n");
2326 		/* iounmap will also get called at remove, but meh */
2327 		iounmap(dev_priv->gtt.gsm);
2328 		return PTR_ERR(scratch_page);
2329 	}
2330 
2331 	dev_priv->gtt.base.scratch_page = scratch_page;
2332 
2333 	return 0;
2334 }
2335 
2336 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2337  * bits. When using advanced contexts each context stores its own PAT, but
2338  * writing this data shouldn't be harmful even in those cases. */
2339 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2340 {
2341 	uint64_t pat;
2342 
2343 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2344 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2345 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2346 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2347 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2348 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2349 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2350 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2351 
2352 	if (!USES_PPGTT(dev_priv->dev))
2353 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2354 		 * so RTL will always use the value corresponding to
2355 		 * pat_sel = 000".
2356 		 * So let's disable cache for GGTT to avoid screen corruptions.
2357 		 * MOCS still can be used though.
2358 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2359 		 * before this patch, i.e. the same uncached + snooping access
2360 		 * like on gen6/7 seems to be in effect.
2361 		 * - So this just fixes blitter/render access. Again it looks
2362 		 * like it's not just uncached access, but uncached + snooping.
2363 		 * So we can still hold onto all our assumptions wrt cpu
2364 		 * clflushing on LLC machines.
2365 		 */
2366 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2367 
2368 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2369 	 * write would work. */
2370 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
2371 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2372 }
2373 
2374 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2375 {
2376 	uint64_t pat;
2377 
2378 	/*
2379 	 * Map WB on BDW to snooped on CHV.
2380 	 *
2381 	 * Only the snoop bit has meaning for CHV, the rest is
2382 	 * ignored.
2383 	 *
2384 	 * The hardware will never snoop for certain types of accesses:
2385 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2386 	 * - PPGTT page tables
2387 	 * - some other special cycles
2388 	 *
2389 	 * As with BDW, we also need to consider the following for GT accesses:
2390 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2391 	 * so RTL will always use the value corresponding to
2392 	 * pat_sel = 000".
2393 	 * Which means we must set the snoop bit in PAT entry 0
2394 	 * in order to keep the global status page working.
2395 	 */
2396 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2397 	      GEN8_PPAT(1, 0) |
2398 	      GEN8_PPAT(2, 0) |
2399 	      GEN8_PPAT(3, 0) |
2400 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2401 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2402 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2403 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2404 
2405 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
2406 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2407 }
2408 
2409 static int gen8_gmch_probe(struct drm_device *dev,
2410 			   u64 *gtt_total,
2411 			   size_t *stolen,
2412 			   phys_addr_t *mappable_base,
2413 			   u64 *mappable_end)
2414 {
2415 	struct drm_i915_private *dev_priv = dev->dev_private;
2416 	u64 gtt_size;
2417 	u16 snb_gmch_ctl;
2418 	int ret;
2419 
2420 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2421 	*mappable_base = pci_resource_start(dev->pdev, 2);
2422 	*mappable_end = pci_resource_len(dev->pdev, 2);
2423 
2424 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2425 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2426 
2427 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2428 
2429 	if (INTEL_INFO(dev)->gen >= 9) {
2430 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
2431 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2432 	} else if (IS_CHERRYVIEW(dev)) {
2433 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
2434 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2435 	} else {
2436 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
2437 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2438 	}
2439 
2440 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2441 
2442 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2443 		chv_setup_private_ppat(dev_priv);
2444 	else
2445 		bdw_setup_private_ppat(dev_priv);
2446 
2447 	ret = ggtt_probe_common(dev, gtt_size);
2448 
2449 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2450 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2451 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2452 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2453 
2454 	return ret;
2455 }
2456 
2457 static int gen6_gmch_probe(struct drm_device *dev,
2458 			   u64 *gtt_total,
2459 			   size_t *stolen,
2460 			   phys_addr_t *mappable_base,
2461 			   u64 *mappable_end)
2462 {
2463 	struct drm_i915_private *dev_priv = dev->dev_private;
2464 	unsigned int gtt_size;
2465 	u16 snb_gmch_ctl;
2466 	int ret;
2467 
2468 	*mappable_base = pci_resource_start(dev->pdev, 2);
2469 	*mappable_end = pci_resource_len(dev->pdev, 2);
2470 
2471 	/* 64/512MB is the current min/max we actually know of, but this is just
2472 	 * a coarse sanity check.
2473 	 */
2474 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2475 		DRM_ERROR("Unknown GMADR size (%llx)\n",
2476 			  dev_priv->gtt.mappable_end);
2477 		return -ENXIO;
2478 	}
2479 
2480 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2481 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2482 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2483 
2484 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
2485 
2486 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2487 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2488 
2489 	ret = ggtt_probe_common(dev, gtt_size);
2490 
2491 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2492 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2493 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2494 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2495 
2496 	return ret;
2497 }
2498 
2499 static void gen6_gmch_remove(struct i915_address_space *vm)
2500 {
2501 
2502 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2503 
2504 	iounmap(gtt->gsm);
2505 	free_scratch_page(vm->dev, vm->scratch_page);
2506 }
2507 
2508 static int i915_gmch_probe(struct drm_device *dev,
2509 			   u64 *gtt_total,
2510 			   size_t *stolen,
2511 			   phys_addr_t *mappable_base,
2512 			   u64 *mappable_end)
2513 {
2514 	struct drm_i915_private *dev_priv = dev->dev_private;
2515 	int ret;
2516 
2517 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2518 	if (!ret) {
2519 		DRM_ERROR("failed to set up gmch\n");
2520 		return -EIO;
2521 	}
2522 
2523 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2524 
2525 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2526 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2527 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2528 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2529 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2530 
2531 	if (unlikely(dev_priv->gtt.do_idle_maps))
2532 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2533 
2534 	return 0;
2535 }
2536 
2537 static void i915_gmch_remove(struct i915_address_space *vm)
2538 {
2539 	intel_gmch_remove();
2540 }
2541 
2542 int i915_gem_gtt_init(struct drm_device *dev)
2543 {
2544 	struct drm_i915_private *dev_priv = dev->dev_private;
2545 	struct i915_gtt *gtt = &dev_priv->gtt;
2546 	int ret;
2547 
2548 	if (INTEL_INFO(dev)->gen <= 5) {
2549 		gtt->gtt_probe = i915_gmch_probe;
2550 		gtt->base.cleanup = i915_gmch_remove;
2551 	} else if (INTEL_INFO(dev)->gen < 8) {
2552 		gtt->gtt_probe = gen6_gmch_probe;
2553 		gtt->base.cleanup = gen6_gmch_remove;
2554 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
2555 			gtt->base.pte_encode = iris_pte_encode;
2556 		else if (IS_HASWELL(dev))
2557 			gtt->base.pte_encode = hsw_pte_encode;
2558 		else if (IS_VALLEYVIEW(dev))
2559 			gtt->base.pte_encode = byt_pte_encode;
2560 		else if (INTEL_INFO(dev)->gen >= 7)
2561 			gtt->base.pte_encode = ivb_pte_encode;
2562 		else
2563 			gtt->base.pte_encode = snb_pte_encode;
2564 	} else {
2565 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2566 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2567 	}
2568 
2569 	gtt->base.dev = dev;
2570 
2571 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2572 			     &gtt->mappable_base, &gtt->mappable_end);
2573 	if (ret)
2574 		return ret;
2575 
2576 	/* GMADR is the PCI mmio aperture into the global GTT. */
2577 	DRM_INFO("Memory usable by graphics device = %lluM\n",
2578 		 gtt->base.total >> 20);
2579 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
2580 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2581 #ifdef CONFIG_INTEL_IOMMU
2582 	if (intel_iommu_gfx_mapped)
2583 		DRM_INFO("VT-d active for gfx access\n");
2584 #endif
2585 	/*
2586 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2587 	 * user's requested state against the hardware/driver capabilities.  We
2588 	 * do this now so that we can print out any log messages once rather
2589 	 * than every time we check intel_enable_ppgtt().
2590 	 */
2591 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2592 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2593 
2594 	return 0;
2595 }
2596 
2597 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2598 {
2599 	struct drm_i915_private *dev_priv = dev->dev_private;
2600 	struct drm_i915_gem_object *obj;
2601 	struct i915_address_space *vm;
2602 	struct i915_vma *vma;
2603 	bool flush;
2604 
2605 	i915_check_and_clear_faults(dev);
2606 
2607 	/* First fill our portion of the GTT with scratch pages */
2608 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2609 				       dev_priv->gtt.base.start,
2610 				       dev_priv->gtt.base.total,
2611 				       true);
2612 
2613 	/* Cache flush objects bound into GGTT and rebind them. */
2614 	vm = &dev_priv->gtt.base;
2615 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2616 		flush = false;
2617 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
2618 			if (vma->vm != vm)
2619 				continue;
2620 
2621 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
2622 					      PIN_UPDATE));
2623 
2624 			flush = true;
2625 		}
2626 
2627 		if (flush)
2628 			i915_gem_clflush_object(obj, obj->pin_display);
2629 	}
2630 
2631 	if (INTEL_INFO(dev)->gen >= 8) {
2632 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2633 			chv_setup_private_ppat(dev_priv);
2634 		else
2635 			bdw_setup_private_ppat(dev_priv);
2636 
2637 		return;
2638 	}
2639 
2640 	if (USES_PPGTT(dev)) {
2641 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2642 			/* TODO: Perhaps it shouldn't be gen6 specific */
2643 
2644 			struct i915_hw_ppgtt *ppgtt =
2645 					container_of(vm, struct i915_hw_ppgtt,
2646 						     base);
2647 
2648 			if (i915_is_ggtt(vm))
2649 				ppgtt = dev_priv->mm.aliasing_ppgtt;
2650 
2651 			gen6_write_page_range(dev_priv, &ppgtt->pd,
2652 					      0, ppgtt->base.total);
2653 		}
2654 	}
2655 
2656 	i915_ggtt_flush(dev_priv);
2657 }
2658 
2659 static struct i915_vma *
2660 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2661 		      struct i915_address_space *vm,
2662 		      const struct i915_ggtt_view *ggtt_view)
2663 {
2664 	struct i915_vma *vma;
2665 
2666 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2667 		return ERR_PTR(-EINVAL);
2668 
2669 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
2670 	if (vma == NULL)
2671 		return ERR_PTR(-ENOMEM);
2672 
2673 	INIT_LIST_HEAD(&vma->vma_link);
2674 	INIT_LIST_HEAD(&vma->mm_list);
2675 	INIT_LIST_HEAD(&vma->exec_list);
2676 	vma->vm = vm;
2677 	vma->obj = obj;
2678 
2679 	if (i915_is_ggtt(vm))
2680 		vma->ggtt_view = *ggtt_view;
2681 
2682 	list_add_tail(&vma->vma_link, &obj->vma_list);
2683 	if (!i915_is_ggtt(vm))
2684 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2685 
2686 	return vma;
2687 }
2688 
2689 struct i915_vma *
2690 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2691 				  struct i915_address_space *vm)
2692 {
2693 	struct i915_vma *vma;
2694 
2695 	vma = i915_gem_obj_to_vma(obj, vm);
2696 	if (!vma)
2697 		vma = __i915_gem_vma_create(obj, vm,
2698 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2699 
2700 	return vma;
2701 }
2702 
2703 struct i915_vma *
2704 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2705 				       const struct i915_ggtt_view *view)
2706 {
2707 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2708 	struct i915_vma *vma;
2709 
2710 	if (WARN_ON(!view))
2711 		return ERR_PTR(-EINVAL);
2712 
2713 	vma = i915_gem_obj_to_ggtt_view(obj, view);
2714 
2715 	if (IS_ERR(vma))
2716 		return vma;
2717 
2718 	if (!vma)
2719 		vma = __i915_gem_vma_create(obj, ggtt, view);
2720 
2721 	return vma;
2722 
2723 }
2724 
2725 static void
2726 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2727 	     struct sg_table *st)
2728 {
2729 	unsigned int column, row;
2730 	unsigned int src_idx;
2731 	struct scatterlist *sg = st->sgl;
2732 
2733 	st->nents = 0;
2734 
2735 	for (column = 0; column < width; column++) {
2736 		src_idx = width * (height - 1) + column;
2737 		for (row = 0; row < height; row++) {
2738 			st->nents++;
2739 			/* We don't need the pages, but need to initialize
2740 			 * the entries so the sg list can be happily traversed.
2741 			 * The only thing we need are DMA addresses.
2742 			 */
2743 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
2744 			sg_dma_address(sg) = in[src_idx];
2745 			sg_dma_len(sg) = PAGE_SIZE;
2746 			sg = sg_next(sg);
2747 			src_idx -= width;
2748 		}
2749 	}
2750 }
2751 
2752 static struct sg_table *
2753 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2754 			  struct drm_i915_gem_object *obj)
2755 {
2756 	struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2757 	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
2758 	struct sg_page_iter sg_iter;
2759 	unsigned long i;
2760 	dma_addr_t *page_addr_list;
2761 	struct sg_table *st;
2762 	int ret = -ENOMEM;
2763 
2764 	/* Allocate a temporary list of source pages for random access. */
2765 	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
2766 				       sizeof(dma_addr_t));
2767 	if (!page_addr_list)
2768 		return ERR_PTR(ret);
2769 
2770 	/* Allocate target SG list. */
2771 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2772 	if (!st)
2773 		goto err_st_alloc;
2774 
2775 	ret = sg_alloc_table(st, size_pages, GFP_KERNEL);
2776 	if (ret)
2777 		goto err_sg_alloc;
2778 
2779 	/* Populate source page list from the object. */
2780 	i = 0;
2781 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2782 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2783 		i++;
2784 	}
2785 
2786 	/* Rotate the pages. */
2787 	rotate_pages(page_addr_list,
2788 		     rot_info->width_pages, rot_info->height_pages,
2789 		     st);
2790 
2791 	DRM_DEBUG_KMS(
2792 		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages).\n",
2793 		      obj->base.size, rot_info->pitch, rot_info->height,
2794 		      rot_info->pixel_format, rot_info->width_pages,
2795 		      rot_info->height_pages, size_pages);
2796 
2797 	drm_free_large(page_addr_list);
2798 
2799 	return st;
2800 
2801 err_sg_alloc:
2802 	kfree(st);
2803 err_st_alloc:
2804 	drm_free_large(page_addr_list);
2805 
2806 	DRM_DEBUG_KMS(
2807 		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages)\n",
2808 		      obj->base.size, ret, rot_info->pitch, rot_info->height,
2809 		      rot_info->pixel_format, rot_info->width_pages,
2810 		      rot_info->height_pages, size_pages);
2811 	return ERR_PTR(ret);
2812 }
2813 
2814 static struct sg_table *
2815 intel_partial_pages(const struct i915_ggtt_view *view,
2816 		    struct drm_i915_gem_object *obj)
2817 {
2818 	struct sg_table *st;
2819 	struct scatterlist *sg;
2820 	struct sg_page_iter obj_sg_iter;
2821 	int ret = -ENOMEM;
2822 
2823 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2824 	if (!st)
2825 		goto err_st_alloc;
2826 
2827 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
2828 	if (ret)
2829 		goto err_sg_alloc;
2830 
2831 	sg = st->sgl;
2832 	st->nents = 0;
2833 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
2834 		view->params.partial.offset)
2835 	{
2836 		if (st->nents >= view->params.partial.size)
2837 			break;
2838 
2839 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
2840 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
2841 		sg_dma_len(sg) = PAGE_SIZE;
2842 
2843 		sg = sg_next(sg);
2844 		st->nents++;
2845 	}
2846 
2847 	return st;
2848 
2849 err_sg_alloc:
2850 	kfree(st);
2851 err_st_alloc:
2852 	return ERR_PTR(ret);
2853 }
2854 
2855 static int
2856 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2857 {
2858 	int ret = 0;
2859 
2860 	if (vma->ggtt_view.pages)
2861 		return 0;
2862 
2863 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2864 		vma->ggtt_view.pages = vma->obj->pages;
2865 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2866 		vma->ggtt_view.pages =
2867 			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2868 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
2869 		vma->ggtt_view.pages =
2870 			intel_partial_pages(&vma->ggtt_view, vma->obj);
2871 	else
2872 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
2873 			  vma->ggtt_view.type);
2874 
2875 	if (!vma->ggtt_view.pages) {
2876 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2877 			  vma->ggtt_view.type);
2878 		ret = -EINVAL;
2879 	} else if (IS_ERR(vma->ggtt_view.pages)) {
2880 		ret = PTR_ERR(vma->ggtt_view.pages);
2881 		vma->ggtt_view.pages = NULL;
2882 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2883 			  vma->ggtt_view.type, ret);
2884 	}
2885 
2886 	return ret;
2887 }
2888 
2889 /**
2890  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2891  * @vma: VMA to map
2892  * @cache_level: mapping cache level
2893  * @flags: flags like global or local mapping
2894  *
2895  * DMA addresses are taken from the scatter-gather table of this object (or of
2896  * this VMA in case of non-default GGTT views) and PTE entries set up.
2897  * Note that DMA addresses are also the only part of the SG table we care about.
2898  */
2899 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2900 		  u32 flags)
2901 {
2902 	int ret;
2903 	u32 bind_flags;
2904 
2905 	if (WARN_ON(flags == 0))
2906 		return -EINVAL;
2907 
2908 	bind_flags = 0;
2909 	if (flags & PIN_GLOBAL)
2910 		bind_flags |= GLOBAL_BIND;
2911 	if (flags & PIN_USER)
2912 		bind_flags |= LOCAL_BIND;
2913 
2914 	if (flags & PIN_UPDATE)
2915 		bind_flags |= vma->bound;
2916 	else
2917 		bind_flags &= ~vma->bound;
2918 
2919 	if (bind_flags == 0)
2920 		return 0;
2921 
2922 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
2923 		trace_i915_va_alloc(vma->vm,
2924 				    vma->node.start,
2925 				    vma->node.size,
2926 				    VM_TO_TRACE_NAME(vma->vm));
2927 
2928 		/* XXX: i915_vma_pin() will fix this +- hack */
2929 		vma->pin_count++;
2930 		ret = vma->vm->allocate_va_range(vma->vm,
2931 						 vma->node.start,
2932 						 vma->node.size);
2933 		vma->pin_count--;
2934 		if (ret)
2935 			return ret;
2936 	}
2937 
2938 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
2939 	if (ret)
2940 		return ret;
2941 
2942 	vma->bound |= bind_flags;
2943 
2944 	return 0;
2945 }
2946 
2947 /**
2948  * i915_ggtt_view_size - Get the size of a GGTT view.
2949  * @obj: Object the view is of.
2950  * @view: The view in question.
2951  *
2952  * @return The size of the GGTT view in bytes.
2953  */
2954 size_t
2955 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
2956 		    const struct i915_ggtt_view *view)
2957 {
2958 	if (view->type == I915_GGTT_VIEW_NORMAL) {
2959 		return obj->base.size;
2960 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
2961 		return view->rotation_info.size;
2962 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
2963 		return view->params.partial.size << PAGE_SHIFT;
2964 	} else {
2965 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
2966 		return obj->base.size;
2967 	}
2968 }
2969