1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: Global GTT views
37  *
38  * Background and previous state
39  *
40  * Historically objects could exists (be bound) in global GTT space only as
41  * singular instances with a view representing all of the object's backing pages
42  * in a linear fashion. This view will be called a normal view.
43  *
44  * To support multiple views of the same object, where the number of mapped
45  * pages is not equal to the backing store, or where the layout of the pages
46  * is not linear, concept of a GGTT view was added.
47  *
48  * One example of an alternative view is a stereo display driven by a single
49  * image. In this case we would have a framebuffer looking like this
50  * (2x2 pages):
51  *
52  *    12
53  *    34
54  *
55  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56  * rendering. In contrast, fed to the display engine would be an alternative
57  * view which could look something like this:
58  *
59  *   1212
60  *   3434
61  *
62  * In this example both the size and layout of pages in the alternative view is
63  * different from the normal view.
64  *
65  * Implementation and usage
66  *
67  * GGTT views are implemented using VMAs and are distinguished via enum
68  * i915_ggtt_view_type and struct i915_ggtt_view.
69  *
70  * A new flavour of core GEM functions which work with GGTT bound objects were
71  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72  * renaming  in large amounts of code. They take the struct i915_ggtt_view
73  * parameter encapsulating all metadata required to implement a view.
74  *
75  * As a helper for callers which are only interested in the normal view,
76  * globally const i915_ggtt_view_normal singleton instance exists. All old core
77  * GEM API functions, the ones not taking the view parameter, are operating on,
78  * or with the normal GGTT view.
79  *
80  * Code wanting to add or use a new GGTT view needs to:
81  *
82  * 1. Add a new enum with a suitable name.
83  * 2. Extend the metadata in the i915_ggtt_view structure if required.
84  * 3. Add support to i915_get_vma_pages().
85  *
86  * New views are required to build a scatter-gather table from within the
87  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88  * exists for the lifetime of an VMA.
89  *
90  * Core API is designed to have copy semantics which means that passed in
91  * struct i915_ggtt_view does not need to be persistent (left around after
92  * calling the core API functions).
93  *
94  */
95 
96 static int
97 i915_get_ggtt_vma_pages(struct i915_vma *vma);
98 
99 const struct i915_ggtt_view i915_ggtt_view_normal;
100 const struct i915_ggtt_view i915_ggtt_view_rotated = {
101         .type = I915_GGTT_VIEW_ROTATED
102 };
103 
104 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
105 {
106 	bool has_aliasing_ppgtt;
107 	bool has_full_ppgtt;
108 	bool has_full_48bit_ppgtt;
109 
110 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
111 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
112 	has_full_48bit_ppgtt = IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9;
113 
114 	if (intel_vgpu_active(dev))
115 		has_full_ppgtt = false; /* emulation is too hard */
116 
117 	/*
118 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
119 	 * execlists, the sole mechanism available to submit work.
120 	 */
121 	if (INTEL_INFO(dev)->gen < 9 &&
122 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
123 		return 0;
124 
125 	if (enable_ppgtt == 1)
126 		return 1;
127 
128 	if (enable_ppgtt == 2 && has_full_ppgtt)
129 		return 2;
130 
131 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
132 		return 3;
133 
134 #ifdef CONFIG_INTEL_IOMMU
135 	/* Disable ppgtt on SNB if VT-d is on. */
136 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
137 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
138 		return 0;
139 	}
140 #endif
141 
142 	/* Early VLV doesn't have this */
143 	if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) {
144 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
145 		return 0;
146 	}
147 
148 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
149 		return has_full_48bit_ppgtt ? 3 : 2;
150 	else
151 		return has_aliasing_ppgtt ? 1 : 0;
152 }
153 
154 static int ppgtt_bind_vma(struct i915_vma *vma,
155 			  enum i915_cache_level cache_level,
156 			  u32 unused)
157 {
158 	u32 pte_flags = 0;
159 
160 	/* Currently applicable only to VLV */
161 	if (vma->obj->gt_ro)
162 		pte_flags |= PTE_READ_ONLY;
163 
164 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
165 				cache_level, pte_flags);
166 
167 	return 0;
168 }
169 
170 static void ppgtt_unbind_vma(struct i915_vma *vma)
171 {
172 	vma->vm->clear_range(vma->vm,
173 			     vma->node.start,
174 			     vma->obj->base.size,
175 			     true);
176 }
177 
178 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
179 				  enum i915_cache_level level,
180 				  bool valid)
181 {
182 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
183 	pte |= addr;
184 
185 	switch (level) {
186 	case I915_CACHE_NONE:
187 		pte |= PPAT_UNCACHED_INDEX;
188 		break;
189 	case I915_CACHE_WT:
190 		pte |= PPAT_DISPLAY_ELLC_INDEX;
191 		break;
192 	default:
193 		pte |= PPAT_CACHED_INDEX;
194 		break;
195 	}
196 
197 	return pte;
198 }
199 
200 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
201 				  const enum i915_cache_level level)
202 {
203 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
204 	pde |= addr;
205 	if (level != I915_CACHE_NONE)
206 		pde |= PPAT_CACHED_PDE_INDEX;
207 	else
208 		pde |= PPAT_UNCACHED_INDEX;
209 	return pde;
210 }
211 
212 #define gen8_pdpe_encode gen8_pde_encode
213 #define gen8_pml4e_encode gen8_pde_encode
214 
215 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
216 				 enum i915_cache_level level,
217 				 bool valid, u32 unused)
218 {
219 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
220 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
221 
222 	switch (level) {
223 	case I915_CACHE_L3_LLC:
224 	case I915_CACHE_LLC:
225 		pte |= GEN6_PTE_CACHE_LLC;
226 		break;
227 	case I915_CACHE_NONE:
228 		pte |= GEN6_PTE_UNCACHED;
229 		break;
230 	default:
231 		MISSING_CASE(level);
232 	}
233 
234 	return pte;
235 }
236 
237 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
238 				 enum i915_cache_level level,
239 				 bool valid, u32 unused)
240 {
241 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
242 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
243 
244 	switch (level) {
245 	case I915_CACHE_L3_LLC:
246 		pte |= GEN7_PTE_CACHE_L3_LLC;
247 		break;
248 	case I915_CACHE_LLC:
249 		pte |= GEN6_PTE_CACHE_LLC;
250 		break;
251 	case I915_CACHE_NONE:
252 		pte |= GEN6_PTE_UNCACHED;
253 		break;
254 	default:
255 		MISSING_CASE(level);
256 	}
257 
258 	return pte;
259 }
260 
261 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
262 				 enum i915_cache_level level,
263 				 bool valid, u32 flags)
264 {
265 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
266 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
267 
268 	if (!(flags & PTE_READ_ONLY))
269 		pte |= BYT_PTE_WRITEABLE;
270 
271 	if (level != I915_CACHE_NONE)
272 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
273 
274 	return pte;
275 }
276 
277 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
278 				 enum i915_cache_level level,
279 				 bool valid, u32 unused)
280 {
281 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
282 	pte |= HSW_PTE_ADDR_ENCODE(addr);
283 
284 	if (level != I915_CACHE_NONE)
285 		pte |= HSW_WB_LLC_AGE3;
286 
287 	return pte;
288 }
289 
290 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
291 				  enum i915_cache_level level,
292 				  bool valid, u32 unused)
293 {
294 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
295 	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 
297 	switch (level) {
298 	case I915_CACHE_NONE:
299 		break;
300 	case I915_CACHE_WT:
301 		pte |= HSW_WT_ELLC_LLC_AGE3;
302 		break;
303 	default:
304 		pte |= HSW_WB_ELLC_LLC_AGE3;
305 		break;
306 	}
307 
308 	return pte;
309 }
310 
311 static int __setup_page_dma(struct drm_device *dev,
312 			    struct i915_page_dma *p, gfp_t flags)
313 {
314 	struct device *device = &dev->pdev->dev;
315 
316 	p->page = alloc_page(flags);
317 	if (!p->page)
318 		return -ENOMEM;
319 
320 	p->daddr = dma_map_page(device,
321 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
322 
323 	if (dma_mapping_error(device, p->daddr)) {
324 		__free_page(p->page);
325 		return -EINVAL;
326 	}
327 
328 	return 0;
329 }
330 
331 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
332 {
333 	return __setup_page_dma(dev, p, GFP_KERNEL);
334 }
335 
336 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
337 {
338 	if (WARN_ON(!p->page))
339 		return;
340 
341 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
342 	__free_page(p->page);
343 	memset(p, 0, sizeof(*p));
344 }
345 
346 static void *kmap_page_dma(struct i915_page_dma *p)
347 {
348 	return kmap_atomic(p->page);
349 }
350 
351 /* We use the flushing unmap only with ppgtt structures:
352  * page directories, page tables and scratch pages.
353  */
354 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
355 {
356 	/* There are only few exceptions for gen >=6. chv and bxt.
357 	 * And we are not sure about the latter so play safe for now.
358 	 */
359 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
360 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
361 
362 	kunmap_atomic(vaddr);
363 }
364 
365 #define kmap_px(px) kmap_page_dma(px_base(px))
366 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
367 
368 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
369 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
370 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
371 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
372 
373 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
374 			  const uint64_t val)
375 {
376 	int i;
377 	uint64_t * const vaddr = kmap_page_dma(p);
378 
379 	for (i = 0; i < 512; i++)
380 		vaddr[i] = val;
381 
382 	kunmap_page_dma(dev, vaddr);
383 }
384 
385 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
386 			     const uint32_t val32)
387 {
388 	uint64_t v = val32;
389 
390 	v = v << 32 | val32;
391 
392 	fill_page_dma(dev, p, v);
393 }
394 
395 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
396 {
397 	struct i915_page_scratch *sp;
398 	int ret;
399 
400 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
401 	if (sp == NULL)
402 		return ERR_PTR(-ENOMEM);
403 
404 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
405 	if (ret) {
406 		kfree(sp);
407 		return ERR_PTR(ret);
408 	}
409 
410 	set_pages_uc(px_page(sp), 1);
411 
412 	return sp;
413 }
414 
415 static void free_scratch_page(struct drm_device *dev,
416 			      struct i915_page_scratch *sp)
417 {
418 	set_pages_wb(px_page(sp), 1);
419 
420 	cleanup_px(dev, sp);
421 	kfree(sp);
422 }
423 
424 static struct i915_page_table *alloc_pt(struct drm_device *dev)
425 {
426 	struct i915_page_table *pt;
427 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
428 		GEN8_PTES : GEN6_PTES;
429 	int ret = -ENOMEM;
430 
431 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
432 	if (!pt)
433 		return ERR_PTR(-ENOMEM);
434 
435 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
436 				GFP_KERNEL);
437 
438 	if (!pt->used_ptes)
439 		goto fail_bitmap;
440 
441 	ret = setup_px(dev, pt);
442 	if (ret)
443 		goto fail_page_m;
444 
445 	return pt;
446 
447 fail_page_m:
448 	kfree(pt->used_ptes);
449 fail_bitmap:
450 	kfree(pt);
451 
452 	return ERR_PTR(ret);
453 }
454 
455 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
456 {
457 	cleanup_px(dev, pt);
458 	kfree(pt->used_ptes);
459 	kfree(pt);
460 }
461 
462 static void gen8_initialize_pt(struct i915_address_space *vm,
463 			       struct i915_page_table *pt)
464 {
465 	gen8_pte_t scratch_pte;
466 
467 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
468 				      I915_CACHE_LLC, true);
469 
470 	fill_px(vm->dev, pt, scratch_pte);
471 }
472 
473 static void gen6_initialize_pt(struct i915_address_space *vm,
474 			       struct i915_page_table *pt)
475 {
476 	gen6_pte_t scratch_pte;
477 
478 	WARN_ON(px_dma(vm->scratch_page) == 0);
479 
480 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
481 				     I915_CACHE_LLC, true, 0);
482 
483 	fill32_px(vm->dev, pt, scratch_pte);
484 }
485 
486 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
487 {
488 	struct i915_page_directory *pd;
489 	int ret = -ENOMEM;
490 
491 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
492 	if (!pd)
493 		return ERR_PTR(-ENOMEM);
494 
495 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
496 				sizeof(*pd->used_pdes), GFP_KERNEL);
497 	if (!pd->used_pdes)
498 		goto fail_bitmap;
499 
500 	ret = setup_px(dev, pd);
501 	if (ret)
502 		goto fail_page_m;
503 
504 	return pd;
505 
506 fail_page_m:
507 	kfree(pd->used_pdes);
508 fail_bitmap:
509 	kfree(pd);
510 
511 	return ERR_PTR(ret);
512 }
513 
514 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
515 {
516 	if (px_page(pd)) {
517 		cleanup_px(dev, pd);
518 		kfree(pd->used_pdes);
519 		kfree(pd);
520 	}
521 }
522 
523 static void gen8_initialize_pd(struct i915_address_space *vm,
524 			       struct i915_page_directory *pd)
525 {
526 	gen8_pde_t scratch_pde;
527 
528 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
529 
530 	fill_px(vm->dev, pd, scratch_pde);
531 }
532 
533 static int __pdp_init(struct drm_device *dev,
534 		      struct i915_page_directory_pointer *pdp)
535 {
536 	size_t pdpes = I915_PDPES_PER_PDP(dev);
537 
538 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
539 				  sizeof(unsigned long),
540 				  GFP_KERNEL);
541 	if (!pdp->used_pdpes)
542 		return -ENOMEM;
543 
544 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
545 				      GFP_KERNEL);
546 	if (!pdp->page_directory) {
547 		kfree(pdp->used_pdpes);
548 		/* the PDP might be the statically allocated top level. Keep it
549 		 * as clean as possible */
550 		pdp->used_pdpes = NULL;
551 		return -ENOMEM;
552 	}
553 
554 	return 0;
555 }
556 
557 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
558 {
559 	kfree(pdp->used_pdpes);
560 	kfree(pdp->page_directory);
561 	pdp->page_directory = NULL;
562 }
563 
564 static struct
565 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
566 {
567 	struct i915_page_directory_pointer *pdp;
568 	int ret = -ENOMEM;
569 
570 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
571 
572 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
573 	if (!pdp)
574 		return ERR_PTR(-ENOMEM);
575 
576 	ret = __pdp_init(dev, pdp);
577 	if (ret)
578 		goto fail_bitmap;
579 
580 	ret = setup_px(dev, pdp);
581 	if (ret)
582 		goto fail_page_m;
583 
584 	return pdp;
585 
586 fail_page_m:
587 	__pdp_fini(pdp);
588 fail_bitmap:
589 	kfree(pdp);
590 
591 	return ERR_PTR(ret);
592 }
593 
594 static void free_pdp(struct drm_device *dev,
595 		     struct i915_page_directory_pointer *pdp)
596 {
597 	__pdp_fini(pdp);
598 	if (USES_FULL_48BIT_PPGTT(dev)) {
599 		cleanup_px(dev, pdp);
600 		kfree(pdp);
601 	}
602 }
603 
604 static void gen8_initialize_pdp(struct i915_address_space *vm,
605 				struct i915_page_directory_pointer *pdp)
606 {
607 	gen8_ppgtt_pdpe_t scratch_pdpe;
608 
609 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
610 
611 	fill_px(vm->dev, pdp, scratch_pdpe);
612 }
613 
614 static void gen8_initialize_pml4(struct i915_address_space *vm,
615 				 struct i915_pml4 *pml4)
616 {
617 	gen8_ppgtt_pml4e_t scratch_pml4e;
618 
619 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
620 					  I915_CACHE_LLC);
621 
622 	fill_px(vm->dev, pml4, scratch_pml4e);
623 }
624 
625 static void
626 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
627 			  struct i915_page_directory_pointer *pdp,
628 			  struct i915_page_directory *pd,
629 			  int index)
630 {
631 	gen8_ppgtt_pdpe_t *page_directorypo;
632 
633 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
634 		return;
635 
636 	page_directorypo = kmap_px(pdp);
637 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
638 	kunmap_px(ppgtt, page_directorypo);
639 }
640 
641 static void
642 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
643 				  struct i915_pml4 *pml4,
644 				  struct i915_page_directory_pointer *pdp,
645 				  int index)
646 {
647 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
648 
649 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
650 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
651 	kunmap_px(ppgtt, pagemap);
652 }
653 
654 /* Broadwell Page Directory Pointer Descriptors */
655 static int gen8_write_pdp(struct drm_i915_gem_request *req,
656 			  unsigned entry,
657 			  dma_addr_t addr)
658 {
659 	struct intel_engine_cs *ring = req->ring;
660 	int ret;
661 
662 	BUG_ON(entry >= 4);
663 
664 	ret = intel_ring_begin(req, 6);
665 	if (ret)
666 		return ret;
667 
668 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
669 	intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(ring, entry));
670 	intel_ring_emit(ring, upper_32_bits(addr));
671 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
672 	intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(ring, entry));
673 	intel_ring_emit(ring, lower_32_bits(addr));
674 	intel_ring_advance(ring);
675 
676 	return 0;
677 }
678 
679 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
680 				 struct drm_i915_gem_request *req)
681 {
682 	int i, ret;
683 
684 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
685 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
686 
687 		ret = gen8_write_pdp(req, i, pd_daddr);
688 		if (ret)
689 			return ret;
690 	}
691 
692 	return 0;
693 }
694 
695 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
696 			      struct drm_i915_gem_request *req)
697 {
698 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
699 }
700 
701 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
702 				       struct i915_page_directory_pointer *pdp,
703 				       uint64_t start,
704 				       uint64_t length,
705 				       gen8_pte_t scratch_pte)
706 {
707 	struct i915_hw_ppgtt *ppgtt =
708 		container_of(vm, struct i915_hw_ppgtt, base);
709 	gen8_pte_t *pt_vaddr;
710 	unsigned pdpe = gen8_pdpe_index(start);
711 	unsigned pde = gen8_pde_index(start);
712 	unsigned pte = gen8_pte_index(start);
713 	unsigned num_entries = length >> PAGE_SHIFT;
714 	unsigned last_pte, i;
715 
716 	if (WARN_ON(!pdp))
717 		return;
718 
719 	while (num_entries) {
720 		struct i915_page_directory *pd;
721 		struct i915_page_table *pt;
722 
723 		if (WARN_ON(!pdp->page_directory[pdpe]))
724 			break;
725 
726 		pd = pdp->page_directory[pdpe];
727 
728 		if (WARN_ON(!pd->page_table[pde]))
729 			break;
730 
731 		pt = pd->page_table[pde];
732 
733 		if (WARN_ON(!px_page(pt)))
734 			break;
735 
736 		last_pte = pte + num_entries;
737 		if (last_pte > GEN8_PTES)
738 			last_pte = GEN8_PTES;
739 
740 		pt_vaddr = kmap_px(pt);
741 
742 		for (i = pte; i < last_pte; i++) {
743 			pt_vaddr[i] = scratch_pte;
744 			num_entries--;
745 		}
746 
747 		kunmap_px(ppgtt, pt);
748 
749 		pte = 0;
750 		if (++pde == I915_PDES) {
751 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
752 				break;
753 			pde = 0;
754 		}
755 	}
756 }
757 
758 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
759 				   uint64_t start,
760 				   uint64_t length,
761 				   bool use_scratch)
762 {
763 	struct i915_hw_ppgtt *ppgtt =
764 		container_of(vm, struct i915_hw_ppgtt, base);
765 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
766 						 I915_CACHE_LLC, use_scratch);
767 
768 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
769 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
770 					   scratch_pte);
771 	} else {
772 		uint64_t pml4e;
773 		struct i915_page_directory_pointer *pdp;
774 
775 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
776 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
777 						   scratch_pte);
778 		}
779 	}
780 }
781 
782 static void
783 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
784 			      struct i915_page_directory_pointer *pdp,
785 			      struct sg_page_iter *sg_iter,
786 			      uint64_t start,
787 			      enum i915_cache_level cache_level)
788 {
789 	struct i915_hw_ppgtt *ppgtt =
790 		container_of(vm, struct i915_hw_ppgtt, base);
791 	gen8_pte_t *pt_vaddr;
792 	unsigned pdpe = gen8_pdpe_index(start);
793 	unsigned pde = gen8_pde_index(start);
794 	unsigned pte = gen8_pte_index(start);
795 
796 	pt_vaddr = NULL;
797 
798 	while (__sg_page_iter_next(sg_iter)) {
799 		if (pt_vaddr == NULL) {
800 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
801 			struct i915_page_table *pt = pd->page_table[pde];
802 			pt_vaddr = kmap_px(pt);
803 		}
804 
805 		pt_vaddr[pte] =
806 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
807 					cache_level, true);
808 		if (++pte == GEN8_PTES) {
809 			kunmap_px(ppgtt, pt_vaddr);
810 			pt_vaddr = NULL;
811 			if (++pde == I915_PDES) {
812 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
813 					break;
814 				pde = 0;
815 			}
816 			pte = 0;
817 		}
818 	}
819 
820 	if (pt_vaddr)
821 		kunmap_px(ppgtt, pt_vaddr);
822 }
823 
824 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
825 				      struct sg_table *pages,
826 				      uint64_t start,
827 				      enum i915_cache_level cache_level,
828 				      u32 unused)
829 {
830 	struct i915_hw_ppgtt *ppgtt =
831 		container_of(vm, struct i915_hw_ppgtt, base);
832 	struct sg_page_iter sg_iter;
833 
834 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
835 
836 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
837 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
838 					      cache_level);
839 	} else {
840 		struct i915_page_directory_pointer *pdp;
841 		uint64_t pml4e;
842 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
843 
844 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
845 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
846 						      start, cache_level);
847 		}
848 	}
849 }
850 
851 static void gen8_free_page_tables(struct drm_device *dev,
852 				  struct i915_page_directory *pd)
853 {
854 	int i;
855 
856 	if (!px_page(pd))
857 		return;
858 
859 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
860 		if (WARN_ON(!pd->page_table[i]))
861 			continue;
862 
863 		free_pt(dev, pd->page_table[i]);
864 		pd->page_table[i] = NULL;
865 	}
866 }
867 
868 static int gen8_init_scratch(struct i915_address_space *vm)
869 {
870 	struct drm_device *dev = vm->dev;
871 
872 	vm->scratch_page = alloc_scratch_page(dev);
873 	if (IS_ERR(vm->scratch_page))
874 		return PTR_ERR(vm->scratch_page);
875 
876 	vm->scratch_pt = alloc_pt(dev);
877 	if (IS_ERR(vm->scratch_pt)) {
878 		free_scratch_page(dev, vm->scratch_page);
879 		return PTR_ERR(vm->scratch_pt);
880 	}
881 
882 	vm->scratch_pd = alloc_pd(dev);
883 	if (IS_ERR(vm->scratch_pd)) {
884 		free_pt(dev, vm->scratch_pt);
885 		free_scratch_page(dev, vm->scratch_page);
886 		return PTR_ERR(vm->scratch_pd);
887 	}
888 
889 	if (USES_FULL_48BIT_PPGTT(dev)) {
890 		vm->scratch_pdp = alloc_pdp(dev);
891 		if (IS_ERR(vm->scratch_pdp)) {
892 			free_pd(dev, vm->scratch_pd);
893 			free_pt(dev, vm->scratch_pt);
894 			free_scratch_page(dev, vm->scratch_page);
895 			return PTR_ERR(vm->scratch_pdp);
896 		}
897 	}
898 
899 	gen8_initialize_pt(vm, vm->scratch_pt);
900 	gen8_initialize_pd(vm, vm->scratch_pd);
901 	if (USES_FULL_48BIT_PPGTT(dev))
902 		gen8_initialize_pdp(vm, vm->scratch_pdp);
903 
904 	return 0;
905 }
906 
907 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
908 {
909 	enum vgt_g2v_type msg;
910 	struct drm_device *dev = ppgtt->base.dev;
911 	struct drm_i915_private *dev_priv = dev->dev_private;
912 	int i;
913 
914 	if (USES_FULL_48BIT_PPGTT(dev)) {
915 		u64 daddr = px_dma(&ppgtt->pml4);
916 
917 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
918 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
919 
920 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
921 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
922 	} else {
923 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
924 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
925 
926 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
927 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
928 		}
929 
930 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
931 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
932 	}
933 
934 	I915_WRITE(vgtif_reg(g2v_notify), msg);
935 
936 	return 0;
937 }
938 
939 static void gen8_free_scratch(struct i915_address_space *vm)
940 {
941 	struct drm_device *dev = vm->dev;
942 
943 	if (USES_FULL_48BIT_PPGTT(dev))
944 		free_pdp(dev, vm->scratch_pdp);
945 	free_pd(dev, vm->scratch_pd);
946 	free_pt(dev, vm->scratch_pt);
947 	free_scratch_page(dev, vm->scratch_page);
948 }
949 
950 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
951 				    struct i915_page_directory_pointer *pdp)
952 {
953 	int i;
954 
955 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
956 		if (WARN_ON(!pdp->page_directory[i]))
957 			continue;
958 
959 		gen8_free_page_tables(dev, pdp->page_directory[i]);
960 		free_pd(dev, pdp->page_directory[i]);
961 	}
962 
963 	free_pdp(dev, pdp);
964 }
965 
966 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
967 {
968 	int i;
969 
970 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
971 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
972 			continue;
973 
974 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
975 	}
976 
977 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
978 }
979 
980 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
981 {
982 	struct i915_hw_ppgtt *ppgtt =
983 		container_of(vm, struct i915_hw_ppgtt, base);
984 
985 	if (intel_vgpu_active(vm->dev))
986 		gen8_ppgtt_notify_vgt(ppgtt, false);
987 
988 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
989 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
990 	else
991 		gen8_ppgtt_cleanup_4lvl(ppgtt);
992 
993 	gen8_free_scratch(vm);
994 }
995 
996 /**
997  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
998  * @vm:	Master vm structure.
999  * @pd:	Page directory for this address range.
1000  * @start:	Starting virtual address to begin allocations.
1001  * @length:	Size of the allocations.
1002  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1003  *		caller to free on error.
1004  *
1005  * Allocate the required number of page tables. Extremely similar to
1006  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1007  * the page directory boundary (instead of the page directory pointer). That
1008  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1009  * possible, and likely that the caller will need to use multiple calls of this
1010  * function to achieve the appropriate allocation.
1011  *
1012  * Return: 0 if success; negative error code otherwise.
1013  */
1014 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1015 				     struct i915_page_directory *pd,
1016 				     uint64_t start,
1017 				     uint64_t length,
1018 				     unsigned long *new_pts)
1019 {
1020 	struct drm_device *dev = vm->dev;
1021 	struct i915_page_table *pt;
1022 	uint32_t pde;
1023 
1024 	gen8_for_each_pde(pt, pd, start, length, pde) {
1025 		/* Don't reallocate page tables */
1026 		if (test_bit(pde, pd->used_pdes)) {
1027 			/* Scratch is never allocated this way */
1028 			WARN_ON(pt == vm->scratch_pt);
1029 			continue;
1030 		}
1031 
1032 		pt = alloc_pt(dev);
1033 		if (IS_ERR(pt))
1034 			goto unwind_out;
1035 
1036 		gen8_initialize_pt(vm, pt);
1037 		pd->page_table[pde] = pt;
1038 		__set_bit(pde, new_pts);
1039 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1040 	}
1041 
1042 	return 0;
1043 
1044 unwind_out:
1045 	for_each_set_bit(pde, new_pts, I915_PDES)
1046 		free_pt(dev, pd->page_table[pde]);
1047 
1048 	return -ENOMEM;
1049 }
1050 
1051 /**
1052  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1053  * @vm:	Master vm structure.
1054  * @pdp:	Page directory pointer for this address range.
1055  * @start:	Starting virtual address to begin allocations.
1056  * @length:	Size of the allocations.
1057  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1058  *		caller to free on error.
1059  *
1060  * Allocate the required number of page directories starting at the pde index of
1061  * @start, and ending at the pde index @start + @length. This function will skip
1062  * over already allocated page directories within the range, and only allocate
1063  * new ones, setting the appropriate pointer within the pdp as well as the
1064  * correct position in the bitmap @new_pds.
1065  *
1066  * The function will only allocate the pages within the range for a give page
1067  * directory pointer. In other words, if @start + @length straddles a virtually
1068  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1069  * required by the caller, This is not currently possible, and the BUG in the
1070  * code will prevent it.
1071  *
1072  * Return: 0 if success; negative error code otherwise.
1073  */
1074 static int
1075 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1076 				  struct i915_page_directory_pointer *pdp,
1077 				  uint64_t start,
1078 				  uint64_t length,
1079 				  unsigned long *new_pds)
1080 {
1081 	struct drm_device *dev = vm->dev;
1082 	struct i915_page_directory *pd;
1083 	uint32_t pdpe;
1084 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1085 
1086 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1087 
1088 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1089 		if (test_bit(pdpe, pdp->used_pdpes))
1090 			continue;
1091 
1092 		pd = alloc_pd(dev);
1093 		if (IS_ERR(pd))
1094 			goto unwind_out;
1095 
1096 		gen8_initialize_pd(vm, pd);
1097 		pdp->page_directory[pdpe] = pd;
1098 		__set_bit(pdpe, new_pds);
1099 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1100 	}
1101 
1102 	return 0;
1103 
1104 unwind_out:
1105 	for_each_set_bit(pdpe, new_pds, pdpes)
1106 		free_pd(dev, pdp->page_directory[pdpe]);
1107 
1108 	return -ENOMEM;
1109 }
1110 
1111 /**
1112  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1113  * @vm:	Master vm structure.
1114  * @pml4:	Page map level 4 for this address range.
1115  * @start:	Starting virtual address to begin allocations.
1116  * @length:	Size of the allocations.
1117  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1118  *		caller to free on error.
1119  *
1120  * Allocate the required number of page directory pointers. Extremely similar to
1121  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1122  * The main difference is here we are limited by the pml4 boundary (instead of
1123  * the page directory pointer).
1124  *
1125  * Return: 0 if success; negative error code otherwise.
1126  */
1127 static int
1128 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1129 				  struct i915_pml4 *pml4,
1130 				  uint64_t start,
1131 				  uint64_t length,
1132 				  unsigned long *new_pdps)
1133 {
1134 	struct drm_device *dev = vm->dev;
1135 	struct i915_page_directory_pointer *pdp;
1136 	uint32_t pml4e;
1137 
1138 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1139 
1140 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1141 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1142 			pdp = alloc_pdp(dev);
1143 			if (IS_ERR(pdp))
1144 				goto unwind_out;
1145 
1146 			gen8_initialize_pdp(vm, pdp);
1147 			pml4->pdps[pml4e] = pdp;
1148 			__set_bit(pml4e, new_pdps);
1149 			trace_i915_page_directory_pointer_entry_alloc(vm,
1150 								      pml4e,
1151 								      start,
1152 								      GEN8_PML4E_SHIFT);
1153 		}
1154 	}
1155 
1156 	return 0;
1157 
1158 unwind_out:
1159 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1160 		free_pdp(dev, pml4->pdps[pml4e]);
1161 
1162 	return -ENOMEM;
1163 }
1164 
1165 static void
1166 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1167 {
1168 	kfree(new_pts);
1169 	kfree(new_pds);
1170 }
1171 
1172 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1173  * of these are based on the number of PDPEs in the system.
1174  */
1175 static
1176 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1177 					 unsigned long **new_pts,
1178 					 uint32_t pdpes)
1179 {
1180 	unsigned long *pds;
1181 	unsigned long *pts;
1182 
1183 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1184 	if (!pds)
1185 		return -ENOMEM;
1186 
1187 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1188 		      GFP_TEMPORARY);
1189 	if (!pts)
1190 		goto err_out;
1191 
1192 	*new_pds = pds;
1193 	*new_pts = pts;
1194 
1195 	return 0;
1196 
1197 err_out:
1198 	free_gen8_temp_bitmaps(pds, pts);
1199 	return -ENOMEM;
1200 }
1201 
1202 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1203  * the page table structures, we mark them dirty so that
1204  * context switching/execlist queuing code takes extra steps
1205  * to ensure that tlbs are flushed.
1206  */
1207 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1208 {
1209 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1210 }
1211 
1212 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1213 				    struct i915_page_directory_pointer *pdp,
1214 				    uint64_t start,
1215 				    uint64_t length)
1216 {
1217 	struct i915_hw_ppgtt *ppgtt =
1218 		container_of(vm, struct i915_hw_ppgtt, base);
1219 	unsigned long *new_page_dirs, *new_page_tables;
1220 	struct drm_device *dev = vm->dev;
1221 	struct i915_page_directory *pd;
1222 	const uint64_t orig_start = start;
1223 	const uint64_t orig_length = length;
1224 	uint32_t pdpe;
1225 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1226 	int ret;
1227 
1228 	/* Wrap is never okay since we can only represent 48b, and we don't
1229 	 * actually use the other side of the canonical address space.
1230 	 */
1231 	if (WARN_ON(start + length < start))
1232 		return -ENODEV;
1233 
1234 	if (WARN_ON(start + length > vm->total))
1235 		return -ENODEV;
1236 
1237 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1238 	if (ret)
1239 		return ret;
1240 
1241 	/* Do the allocations first so we can easily bail out */
1242 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1243 						new_page_dirs);
1244 	if (ret) {
1245 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1246 		return ret;
1247 	}
1248 
1249 	/* For every page directory referenced, allocate page tables */
1250 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1251 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1252 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1253 		if (ret)
1254 			goto err_out;
1255 	}
1256 
1257 	start = orig_start;
1258 	length = orig_length;
1259 
1260 	/* Allocations have completed successfully, so set the bitmaps, and do
1261 	 * the mappings. */
1262 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1263 		gen8_pde_t *const page_directory = kmap_px(pd);
1264 		struct i915_page_table *pt;
1265 		uint64_t pd_len = length;
1266 		uint64_t pd_start = start;
1267 		uint32_t pde;
1268 
1269 		/* Every pd should be allocated, we just did that above. */
1270 		WARN_ON(!pd);
1271 
1272 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1273 			/* Same reasoning as pd */
1274 			WARN_ON(!pt);
1275 			WARN_ON(!pd_len);
1276 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1277 
1278 			/* Set our used ptes within the page table */
1279 			bitmap_set(pt->used_ptes,
1280 				   gen8_pte_index(pd_start),
1281 				   gen8_pte_count(pd_start, pd_len));
1282 
1283 			/* Our pde is now pointing to the pagetable, pt */
1284 			__set_bit(pde, pd->used_pdes);
1285 
1286 			/* Map the PDE to the page table */
1287 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1288 							      I915_CACHE_LLC);
1289 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1290 							gen8_pte_index(start),
1291 							gen8_pte_count(start, length),
1292 							GEN8_PTES);
1293 
1294 			/* NB: We haven't yet mapped ptes to pages. At this
1295 			 * point we're still relying on insert_entries() */
1296 		}
1297 
1298 		kunmap_px(ppgtt, page_directory);
1299 		__set_bit(pdpe, pdp->used_pdpes);
1300 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1301 	}
1302 
1303 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1304 	mark_tlbs_dirty(ppgtt);
1305 	return 0;
1306 
1307 err_out:
1308 	while (pdpe--) {
1309 		unsigned long temp;
1310 
1311 		for_each_set_bit(temp, new_page_tables + pdpe *
1312 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1313 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1314 	}
1315 
1316 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1317 		free_pd(dev, pdp->page_directory[pdpe]);
1318 
1319 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1320 	mark_tlbs_dirty(ppgtt);
1321 	return ret;
1322 }
1323 
1324 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1325 				    struct i915_pml4 *pml4,
1326 				    uint64_t start,
1327 				    uint64_t length)
1328 {
1329 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1330 	struct i915_hw_ppgtt *ppgtt =
1331 			container_of(vm, struct i915_hw_ppgtt, base);
1332 	struct i915_page_directory_pointer *pdp;
1333 	uint64_t pml4e;
1334 	int ret = 0;
1335 
1336 	/* Do the pml4 allocations first, so we don't need to track the newly
1337 	 * allocated tables below the pdp */
1338 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1339 
1340 	/* The pagedirectory and pagetable allocations are done in the shared 3
1341 	 * and 4 level code. Just allocate the pdps.
1342 	 */
1343 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1344 						new_pdps);
1345 	if (ret)
1346 		return ret;
1347 
1348 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1349 	     "The allocation has spanned more than 512GB. "
1350 	     "It is highly likely this is incorrect.");
1351 
1352 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1353 		WARN_ON(!pdp);
1354 
1355 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1356 		if (ret)
1357 			goto err_out;
1358 
1359 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1360 	}
1361 
1362 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1363 		  GEN8_PML4ES_PER_PML4);
1364 
1365 	return 0;
1366 
1367 err_out:
1368 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1369 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1370 
1371 	return ret;
1372 }
1373 
1374 static int gen8_alloc_va_range(struct i915_address_space *vm,
1375 			       uint64_t start, uint64_t length)
1376 {
1377 	struct i915_hw_ppgtt *ppgtt =
1378 		container_of(vm, struct i915_hw_ppgtt, base);
1379 
1380 	if (USES_FULL_48BIT_PPGTT(vm->dev))
1381 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1382 	else
1383 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1384 }
1385 
1386 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1387 			  uint64_t start, uint64_t length,
1388 			  gen8_pte_t scratch_pte,
1389 			  struct seq_file *m)
1390 {
1391 	struct i915_page_directory *pd;
1392 	uint32_t pdpe;
1393 
1394 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1395 		struct i915_page_table *pt;
1396 		uint64_t pd_len = length;
1397 		uint64_t pd_start = start;
1398 		uint32_t pde;
1399 
1400 		if (!test_bit(pdpe, pdp->used_pdpes))
1401 			continue;
1402 
1403 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1404 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1405 			uint32_t  pte;
1406 			gen8_pte_t *pt_vaddr;
1407 
1408 			if (!test_bit(pde, pd->used_pdes))
1409 				continue;
1410 
1411 			pt_vaddr = kmap_px(pt);
1412 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1413 				uint64_t va =
1414 					(pdpe << GEN8_PDPE_SHIFT) |
1415 					(pde << GEN8_PDE_SHIFT) |
1416 					(pte << GEN8_PTE_SHIFT);
1417 				int i;
1418 				bool found = false;
1419 
1420 				for (i = 0; i < 4; i++)
1421 					if (pt_vaddr[pte + i] != scratch_pte)
1422 						found = true;
1423 				if (!found)
1424 					continue;
1425 
1426 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1427 				for (i = 0; i < 4; i++) {
1428 					if (pt_vaddr[pte + i] != scratch_pte)
1429 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1430 					else
1431 						seq_puts(m, "  SCRATCH ");
1432 				}
1433 				seq_puts(m, "\n");
1434 			}
1435 			/* don't use kunmap_px, it could trigger
1436 			 * an unnecessary flush.
1437 			 */
1438 			kunmap_atomic(pt_vaddr);
1439 		}
1440 	}
1441 }
1442 
1443 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1444 {
1445 	struct i915_address_space *vm = &ppgtt->base;
1446 	uint64_t start = ppgtt->base.start;
1447 	uint64_t length = ppgtt->base.total;
1448 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1449 						 I915_CACHE_LLC, true);
1450 
1451 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1452 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1453 	} else {
1454 		uint64_t pml4e;
1455 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1456 		struct i915_page_directory_pointer *pdp;
1457 
1458 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1459 			if (!test_bit(pml4e, pml4->used_pml4es))
1460 				continue;
1461 
1462 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1463 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1464 		}
1465 	}
1466 }
1467 
1468 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1469 {
1470 	unsigned long *new_page_dirs, *new_page_tables;
1471 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1472 	int ret;
1473 
1474 	/* We allocate temp bitmap for page tables for no gain
1475 	 * but as this is for init only, lets keep the things simple
1476 	 */
1477 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1478 	if (ret)
1479 		return ret;
1480 
1481 	/* Allocate for all pdps regardless of how the ppgtt
1482 	 * was defined.
1483 	 */
1484 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1485 						0, 1ULL << 32,
1486 						new_page_dirs);
1487 	if (!ret)
1488 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1489 
1490 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1491 
1492 	return ret;
1493 }
1494 
1495 /*
1496  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1497  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1498  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1499  * space.
1500  *
1501  */
1502 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1503 {
1504 	int ret;
1505 
1506 	ret = gen8_init_scratch(&ppgtt->base);
1507 	if (ret)
1508 		return ret;
1509 
1510 	ppgtt->base.start = 0;
1511 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1512 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1513 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1514 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1515 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1516 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1517 	ppgtt->debug_dump = gen8_dump_ppgtt;
1518 
1519 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1520 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1521 		if (ret)
1522 			goto free_scratch;
1523 
1524 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1525 
1526 		ppgtt->base.total = 1ULL << 48;
1527 		ppgtt->switch_mm = gen8_48b_mm_switch;
1528 	} else {
1529 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1530 		if (ret)
1531 			goto free_scratch;
1532 
1533 		ppgtt->base.total = 1ULL << 32;
1534 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1535 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1536 							      0, 0,
1537 							      GEN8_PML4E_SHIFT);
1538 
1539 		if (intel_vgpu_active(ppgtt->base.dev)) {
1540 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1541 			if (ret)
1542 				goto free_scratch;
1543 		}
1544 	}
1545 
1546 	if (intel_vgpu_active(ppgtt->base.dev))
1547 		gen8_ppgtt_notify_vgt(ppgtt, true);
1548 
1549 	return 0;
1550 
1551 free_scratch:
1552 	gen8_free_scratch(&ppgtt->base);
1553 	return ret;
1554 }
1555 
1556 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1557 {
1558 	struct i915_address_space *vm = &ppgtt->base;
1559 	struct i915_page_table *unused;
1560 	gen6_pte_t scratch_pte;
1561 	uint32_t pd_entry;
1562 	uint32_t  pte, pde, temp;
1563 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1564 
1565 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1566 				     I915_CACHE_LLC, true, 0);
1567 
1568 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1569 		u32 expected;
1570 		gen6_pte_t *pt_vaddr;
1571 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1572 		pd_entry = readl(ppgtt->pd_addr + pde);
1573 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1574 
1575 		if (pd_entry != expected)
1576 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1577 				   pde,
1578 				   pd_entry,
1579 				   expected);
1580 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1581 
1582 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1583 
1584 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1585 			unsigned long va =
1586 				(pde * PAGE_SIZE * GEN6_PTES) +
1587 				(pte * PAGE_SIZE);
1588 			int i;
1589 			bool found = false;
1590 			for (i = 0; i < 4; i++)
1591 				if (pt_vaddr[pte + i] != scratch_pte)
1592 					found = true;
1593 			if (!found)
1594 				continue;
1595 
1596 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1597 			for (i = 0; i < 4; i++) {
1598 				if (pt_vaddr[pte + i] != scratch_pte)
1599 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1600 				else
1601 					seq_puts(m, "  SCRATCH ");
1602 			}
1603 			seq_puts(m, "\n");
1604 		}
1605 		kunmap_px(ppgtt, pt_vaddr);
1606 	}
1607 }
1608 
1609 /* Write pde (index) from the page directory @pd to the page table @pt */
1610 static void gen6_write_pde(struct i915_page_directory *pd,
1611 			    const int pde, struct i915_page_table *pt)
1612 {
1613 	/* Caller needs to make sure the write completes if necessary */
1614 	struct i915_hw_ppgtt *ppgtt =
1615 		container_of(pd, struct i915_hw_ppgtt, pd);
1616 	u32 pd_entry;
1617 
1618 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1619 	pd_entry |= GEN6_PDE_VALID;
1620 
1621 	writel(pd_entry, ppgtt->pd_addr + pde);
1622 }
1623 
1624 /* Write all the page tables found in the ppgtt structure to incrementing page
1625  * directories. */
1626 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1627 				  struct i915_page_directory *pd,
1628 				  uint32_t start, uint32_t length)
1629 {
1630 	struct i915_page_table *pt;
1631 	uint32_t pde, temp;
1632 
1633 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
1634 		gen6_write_pde(pd, pde, pt);
1635 
1636 	/* Make sure write is complete before other code can use this page
1637 	 * table. Also require for WC mapped PTEs */
1638 	readl(dev_priv->gtt.gsm);
1639 }
1640 
1641 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1642 {
1643 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1644 
1645 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1646 }
1647 
1648 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1649 			 struct drm_i915_gem_request *req)
1650 {
1651 	struct intel_engine_cs *ring = req->ring;
1652 	int ret;
1653 
1654 	/* NB: TLBs must be flushed and invalidated before a switch */
1655 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1656 	if (ret)
1657 		return ret;
1658 
1659 	ret = intel_ring_begin(req, 6);
1660 	if (ret)
1661 		return ret;
1662 
1663 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1664 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
1665 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1666 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
1667 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1668 	intel_ring_emit(ring, MI_NOOP);
1669 	intel_ring_advance(ring);
1670 
1671 	return 0;
1672 }
1673 
1674 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1675 			  struct drm_i915_gem_request *req)
1676 {
1677 	struct intel_engine_cs *ring = req->ring;
1678 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1679 
1680 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1681 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1682 	return 0;
1683 }
1684 
1685 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1686 			  struct drm_i915_gem_request *req)
1687 {
1688 	struct intel_engine_cs *ring = req->ring;
1689 	int ret;
1690 
1691 	/* NB: TLBs must be flushed and invalidated before a switch */
1692 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1693 	if (ret)
1694 		return ret;
1695 
1696 	ret = intel_ring_begin(req, 6);
1697 	if (ret)
1698 		return ret;
1699 
1700 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1701 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
1702 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1703 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
1704 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1705 	intel_ring_emit(ring, MI_NOOP);
1706 	intel_ring_advance(ring);
1707 
1708 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1709 	if (ring->id != RCS) {
1710 		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1711 		if (ret)
1712 			return ret;
1713 	}
1714 
1715 	return 0;
1716 }
1717 
1718 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1719 			  struct drm_i915_gem_request *req)
1720 {
1721 	struct intel_engine_cs *ring = req->ring;
1722 	struct drm_device *dev = ppgtt->base.dev;
1723 	struct drm_i915_private *dev_priv = dev->dev_private;
1724 
1725 
1726 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1727 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1728 
1729 	POSTING_READ(RING_PP_DIR_DCLV(ring));
1730 
1731 	return 0;
1732 }
1733 
1734 static void gen8_ppgtt_enable(struct drm_device *dev)
1735 {
1736 	struct drm_i915_private *dev_priv = dev->dev_private;
1737 	struct intel_engine_cs *ring;
1738 	int j;
1739 
1740 	for_each_ring(ring, dev_priv, j) {
1741 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1742 		I915_WRITE(RING_MODE_GEN7(ring),
1743 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1744 	}
1745 }
1746 
1747 static void gen7_ppgtt_enable(struct drm_device *dev)
1748 {
1749 	struct drm_i915_private *dev_priv = dev->dev_private;
1750 	struct intel_engine_cs *ring;
1751 	uint32_t ecochk, ecobits;
1752 	int i;
1753 
1754 	ecobits = I915_READ(GAC_ECO_BITS);
1755 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1756 
1757 	ecochk = I915_READ(GAM_ECOCHK);
1758 	if (IS_HASWELL(dev)) {
1759 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1760 	} else {
1761 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1762 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1763 	}
1764 	I915_WRITE(GAM_ECOCHK, ecochk);
1765 
1766 	for_each_ring(ring, dev_priv, i) {
1767 		/* GFX_MODE is per-ring on gen7+ */
1768 		I915_WRITE(RING_MODE_GEN7(ring),
1769 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1770 	}
1771 }
1772 
1773 static void gen6_ppgtt_enable(struct drm_device *dev)
1774 {
1775 	struct drm_i915_private *dev_priv = dev->dev_private;
1776 	uint32_t ecochk, gab_ctl, ecobits;
1777 
1778 	ecobits = I915_READ(GAC_ECO_BITS);
1779 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1780 		   ECOBITS_PPGTT_CACHE64B);
1781 
1782 	gab_ctl = I915_READ(GAB_CTL);
1783 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1784 
1785 	ecochk = I915_READ(GAM_ECOCHK);
1786 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1787 
1788 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1789 }
1790 
1791 /* PPGTT support for Sandybdrige/Gen6 and later */
1792 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1793 				   uint64_t start,
1794 				   uint64_t length,
1795 				   bool use_scratch)
1796 {
1797 	struct i915_hw_ppgtt *ppgtt =
1798 		container_of(vm, struct i915_hw_ppgtt, base);
1799 	gen6_pte_t *pt_vaddr, scratch_pte;
1800 	unsigned first_entry = start >> PAGE_SHIFT;
1801 	unsigned num_entries = length >> PAGE_SHIFT;
1802 	unsigned act_pt = first_entry / GEN6_PTES;
1803 	unsigned first_pte = first_entry % GEN6_PTES;
1804 	unsigned last_pte, i;
1805 
1806 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1807 				     I915_CACHE_LLC, true, 0);
1808 
1809 	while (num_entries) {
1810 		last_pte = first_pte + num_entries;
1811 		if (last_pte > GEN6_PTES)
1812 			last_pte = GEN6_PTES;
1813 
1814 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1815 
1816 		for (i = first_pte; i < last_pte; i++)
1817 			pt_vaddr[i] = scratch_pte;
1818 
1819 		kunmap_px(ppgtt, pt_vaddr);
1820 
1821 		num_entries -= last_pte - first_pte;
1822 		first_pte = 0;
1823 		act_pt++;
1824 	}
1825 }
1826 
1827 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1828 				      struct sg_table *pages,
1829 				      uint64_t start,
1830 				      enum i915_cache_level cache_level, u32 flags)
1831 {
1832 	struct i915_hw_ppgtt *ppgtt =
1833 		container_of(vm, struct i915_hw_ppgtt, base);
1834 	gen6_pte_t *pt_vaddr;
1835 	unsigned first_entry = start >> PAGE_SHIFT;
1836 	unsigned act_pt = first_entry / GEN6_PTES;
1837 	unsigned act_pte = first_entry % GEN6_PTES;
1838 	struct sg_page_iter sg_iter;
1839 
1840 	pt_vaddr = NULL;
1841 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1842 		if (pt_vaddr == NULL)
1843 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1844 
1845 		pt_vaddr[act_pte] =
1846 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1847 				       cache_level, true, flags);
1848 
1849 		if (++act_pte == GEN6_PTES) {
1850 			kunmap_px(ppgtt, pt_vaddr);
1851 			pt_vaddr = NULL;
1852 			act_pt++;
1853 			act_pte = 0;
1854 		}
1855 	}
1856 	if (pt_vaddr)
1857 		kunmap_px(ppgtt, pt_vaddr);
1858 }
1859 
1860 static int gen6_alloc_va_range(struct i915_address_space *vm,
1861 			       uint64_t start_in, uint64_t length_in)
1862 {
1863 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1864 	struct drm_device *dev = vm->dev;
1865 	struct drm_i915_private *dev_priv = dev->dev_private;
1866 	struct i915_hw_ppgtt *ppgtt =
1867 				container_of(vm, struct i915_hw_ppgtt, base);
1868 	struct i915_page_table *pt;
1869 	uint32_t start, length, start_save, length_save;
1870 	uint32_t pde, temp;
1871 	int ret;
1872 
1873 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1874 		return -ENODEV;
1875 
1876 	start = start_save = start_in;
1877 	length = length_save = length_in;
1878 
1879 	bitmap_zero(new_page_tables, I915_PDES);
1880 
1881 	/* The allocation is done in two stages so that we can bail out with
1882 	 * minimal amount of pain. The first stage finds new page tables that
1883 	 * need allocation. The second stage marks use ptes within the page
1884 	 * tables.
1885 	 */
1886 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1887 		if (pt != vm->scratch_pt) {
1888 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1889 			continue;
1890 		}
1891 
1892 		/* We've already allocated a page table */
1893 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1894 
1895 		pt = alloc_pt(dev);
1896 		if (IS_ERR(pt)) {
1897 			ret = PTR_ERR(pt);
1898 			goto unwind_out;
1899 		}
1900 
1901 		gen6_initialize_pt(vm, pt);
1902 
1903 		ppgtt->pd.page_table[pde] = pt;
1904 		__set_bit(pde, new_page_tables);
1905 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1906 	}
1907 
1908 	start = start_save;
1909 	length = length_save;
1910 
1911 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1912 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1913 
1914 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1915 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1916 			   gen6_pte_count(start, length));
1917 
1918 		if (__test_and_clear_bit(pde, new_page_tables))
1919 			gen6_write_pde(&ppgtt->pd, pde, pt);
1920 
1921 		trace_i915_page_table_entry_map(vm, pde, pt,
1922 					 gen6_pte_index(start),
1923 					 gen6_pte_count(start, length),
1924 					 GEN6_PTES);
1925 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1926 				GEN6_PTES);
1927 	}
1928 
1929 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1930 
1931 	/* Make sure write is complete before other code can use this page
1932 	 * table. Also require for WC mapped PTEs */
1933 	readl(dev_priv->gtt.gsm);
1934 
1935 	mark_tlbs_dirty(ppgtt);
1936 	return 0;
1937 
1938 unwind_out:
1939 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1940 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1941 
1942 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1943 		free_pt(vm->dev, pt);
1944 	}
1945 
1946 	mark_tlbs_dirty(ppgtt);
1947 	return ret;
1948 }
1949 
1950 static int gen6_init_scratch(struct i915_address_space *vm)
1951 {
1952 	struct drm_device *dev = vm->dev;
1953 
1954 	vm->scratch_page = alloc_scratch_page(dev);
1955 	if (IS_ERR(vm->scratch_page))
1956 		return PTR_ERR(vm->scratch_page);
1957 
1958 	vm->scratch_pt = alloc_pt(dev);
1959 	if (IS_ERR(vm->scratch_pt)) {
1960 		free_scratch_page(dev, vm->scratch_page);
1961 		return PTR_ERR(vm->scratch_pt);
1962 	}
1963 
1964 	gen6_initialize_pt(vm, vm->scratch_pt);
1965 
1966 	return 0;
1967 }
1968 
1969 static void gen6_free_scratch(struct i915_address_space *vm)
1970 {
1971 	struct drm_device *dev = vm->dev;
1972 
1973 	free_pt(dev, vm->scratch_pt);
1974 	free_scratch_page(dev, vm->scratch_page);
1975 }
1976 
1977 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1978 {
1979 	struct i915_hw_ppgtt *ppgtt =
1980 		container_of(vm, struct i915_hw_ppgtt, base);
1981 	struct i915_page_table *pt;
1982 	uint32_t pde;
1983 
1984 	drm_mm_remove_node(&ppgtt->node);
1985 
1986 	gen6_for_all_pdes(pt, ppgtt, pde) {
1987 		if (pt != vm->scratch_pt)
1988 			free_pt(ppgtt->base.dev, pt);
1989 	}
1990 
1991 	gen6_free_scratch(vm);
1992 }
1993 
1994 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1995 {
1996 	struct i915_address_space *vm = &ppgtt->base;
1997 	struct drm_device *dev = ppgtt->base.dev;
1998 	struct drm_i915_private *dev_priv = dev->dev_private;
1999 	bool retried = false;
2000 	int ret;
2001 
2002 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2003 	 * allocator works in address space sizes, so it's multiplied by page
2004 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2005 	 */
2006 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2007 
2008 	ret = gen6_init_scratch(vm);
2009 	if (ret)
2010 		return ret;
2011 
2012 alloc:
2013 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2014 						  &ppgtt->node, GEN6_PD_SIZE,
2015 						  GEN6_PD_ALIGN, 0,
2016 						  0, dev_priv->gtt.base.total,
2017 						  DRM_MM_TOPDOWN);
2018 	if (ret == -ENOSPC && !retried) {
2019 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2020 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2021 					       I915_CACHE_NONE,
2022 					       0, dev_priv->gtt.base.total,
2023 					       0);
2024 		if (ret)
2025 			goto err_out;
2026 
2027 		retried = true;
2028 		goto alloc;
2029 	}
2030 
2031 	if (ret)
2032 		goto err_out;
2033 
2034 
2035 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2036 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2037 
2038 	return 0;
2039 
2040 err_out:
2041 	gen6_free_scratch(vm);
2042 	return ret;
2043 }
2044 
2045 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2046 {
2047 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2048 }
2049 
2050 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2051 				  uint64_t start, uint64_t length)
2052 {
2053 	struct i915_page_table *unused;
2054 	uint32_t pde, temp;
2055 
2056 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2057 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2058 }
2059 
2060 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2061 {
2062 	struct drm_device *dev = ppgtt->base.dev;
2063 	struct drm_i915_private *dev_priv = dev->dev_private;
2064 	int ret;
2065 
2066 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2067 	if (IS_GEN6(dev)) {
2068 		ppgtt->switch_mm = gen6_mm_switch;
2069 	} else if (IS_HASWELL(dev)) {
2070 		ppgtt->switch_mm = hsw_mm_switch;
2071 	} else if (IS_GEN7(dev)) {
2072 		ppgtt->switch_mm = gen7_mm_switch;
2073 	} else
2074 		BUG();
2075 
2076 	if (intel_vgpu_active(dev))
2077 		ppgtt->switch_mm = vgpu_mm_switch;
2078 
2079 	ret = gen6_ppgtt_alloc(ppgtt);
2080 	if (ret)
2081 		return ret;
2082 
2083 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2084 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2085 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2086 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2087 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2088 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2089 	ppgtt->base.start = 0;
2090 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2091 	ppgtt->debug_dump = gen6_dump_ppgtt;
2092 
2093 	ppgtt->pd.base.ggtt_offset =
2094 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2095 
2096 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2097 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2098 
2099 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2100 
2101 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2102 
2103 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2104 			 ppgtt->node.size >> 20,
2105 			 ppgtt->node.start / PAGE_SIZE);
2106 
2107 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2108 		  ppgtt->pd.base.ggtt_offset << 10);
2109 
2110 	return 0;
2111 }
2112 
2113 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2114 {
2115 	ppgtt->base.dev = dev;
2116 
2117 	if (INTEL_INFO(dev)->gen < 8)
2118 		return gen6_ppgtt_init(ppgtt);
2119 	else
2120 		return gen8_ppgtt_init(ppgtt);
2121 }
2122 
2123 static void i915_address_space_init(struct i915_address_space *vm,
2124 				    struct drm_i915_private *dev_priv)
2125 {
2126 	drm_mm_init(&vm->mm, vm->start, vm->total);
2127 	vm->dev = dev_priv->dev;
2128 	INIT_LIST_HEAD(&vm->active_list);
2129 	INIT_LIST_HEAD(&vm->inactive_list);
2130 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2131 }
2132 
2133 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2134 {
2135 	struct drm_i915_private *dev_priv = dev->dev_private;
2136 	int ret = 0;
2137 
2138 	ret = __hw_ppgtt_init(dev, ppgtt);
2139 	if (ret == 0) {
2140 		kref_init(&ppgtt->ref);
2141 		i915_address_space_init(&ppgtt->base, dev_priv);
2142 	}
2143 
2144 	return ret;
2145 }
2146 
2147 int i915_ppgtt_init_hw(struct drm_device *dev)
2148 {
2149 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2150 	 * and the PDPs are contained within the context itself.  We don't
2151 	 * need to do anything here. */
2152 	if (i915.enable_execlists)
2153 		return 0;
2154 
2155 	if (!USES_PPGTT(dev))
2156 		return 0;
2157 
2158 	if (IS_GEN6(dev))
2159 		gen6_ppgtt_enable(dev);
2160 	else if (IS_GEN7(dev))
2161 		gen7_ppgtt_enable(dev);
2162 	else if (INTEL_INFO(dev)->gen >= 8)
2163 		gen8_ppgtt_enable(dev);
2164 	else
2165 		MISSING_CASE(INTEL_INFO(dev)->gen);
2166 
2167 	return 0;
2168 }
2169 
2170 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2171 {
2172 	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2173 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2174 
2175 	if (i915.enable_execlists)
2176 		return 0;
2177 
2178 	if (!ppgtt)
2179 		return 0;
2180 
2181 	return ppgtt->switch_mm(ppgtt, req);
2182 }
2183 
2184 struct i915_hw_ppgtt *
2185 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2186 {
2187 	struct i915_hw_ppgtt *ppgtt;
2188 	int ret;
2189 
2190 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2191 	if (!ppgtt)
2192 		return ERR_PTR(-ENOMEM);
2193 
2194 	ret = i915_ppgtt_init(dev, ppgtt);
2195 	if (ret) {
2196 		kfree(ppgtt);
2197 		return ERR_PTR(ret);
2198 	}
2199 
2200 	ppgtt->file_priv = fpriv;
2201 
2202 	trace_i915_ppgtt_create(&ppgtt->base);
2203 
2204 	return ppgtt;
2205 }
2206 
2207 void  i915_ppgtt_release(struct kref *kref)
2208 {
2209 	struct i915_hw_ppgtt *ppgtt =
2210 		container_of(kref, struct i915_hw_ppgtt, ref);
2211 
2212 	trace_i915_ppgtt_release(&ppgtt->base);
2213 
2214 	/* vmas should already be unbound */
2215 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2216 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2217 
2218 	list_del(&ppgtt->base.global_link);
2219 	drm_mm_takedown(&ppgtt->base.mm);
2220 
2221 	ppgtt->base.cleanup(&ppgtt->base);
2222 	kfree(ppgtt);
2223 }
2224 
2225 extern int intel_iommu_gfx_mapped;
2226 /* Certain Gen5 chipsets require require idling the GPU before
2227  * unmapping anything from the GTT when VT-d is enabled.
2228  */
2229 static bool needs_idle_maps(struct drm_device *dev)
2230 {
2231 #ifdef CONFIG_INTEL_IOMMU
2232 	/* Query intel_iommu to see if we need the workaround. Presumably that
2233 	 * was loaded first.
2234 	 */
2235 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2236 		return true;
2237 #endif
2238 	return false;
2239 }
2240 
2241 static bool do_idling(struct drm_i915_private *dev_priv)
2242 {
2243 	bool ret = dev_priv->mm.interruptible;
2244 
2245 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
2246 		dev_priv->mm.interruptible = false;
2247 		if (i915_gpu_idle(dev_priv->dev)) {
2248 			DRM_ERROR("Couldn't idle GPU\n");
2249 			/* Wait a bit, in hopes it avoids the hang */
2250 			udelay(10);
2251 		}
2252 	}
2253 
2254 	return ret;
2255 }
2256 
2257 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2258 {
2259 	if (unlikely(dev_priv->gtt.do_idle_maps))
2260 		dev_priv->mm.interruptible = interruptible;
2261 }
2262 
2263 void i915_check_and_clear_faults(struct drm_device *dev)
2264 {
2265 	struct drm_i915_private *dev_priv = dev->dev_private;
2266 	struct intel_engine_cs *ring;
2267 	int i;
2268 
2269 	if (INTEL_INFO(dev)->gen < 6)
2270 		return;
2271 
2272 	for_each_ring(ring, dev_priv, i) {
2273 		u32 fault_reg;
2274 		fault_reg = I915_READ(RING_FAULT_REG(ring));
2275 		if (fault_reg & RING_FAULT_VALID) {
2276 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2277 					 "\tAddr: 0x%08lx\n"
2278 					 "\tAddress space: %s\n"
2279 					 "\tSource ID: %d\n"
2280 					 "\tType: %d\n",
2281 					 fault_reg & PAGE_MASK,
2282 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2283 					 RING_FAULT_SRCID(fault_reg),
2284 					 RING_FAULT_FAULT_TYPE(fault_reg));
2285 			I915_WRITE(RING_FAULT_REG(ring),
2286 				   fault_reg & ~RING_FAULT_VALID);
2287 		}
2288 	}
2289 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2290 }
2291 
2292 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2293 {
2294 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2295 		intel_gtt_chipset_flush();
2296 	} else {
2297 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2298 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2299 	}
2300 }
2301 
2302 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2303 {
2304 	struct drm_i915_private *dev_priv = dev->dev_private;
2305 
2306 	/* Don't bother messing with faults pre GEN6 as we have little
2307 	 * documentation supporting that it's a good idea.
2308 	 */
2309 	if (INTEL_INFO(dev)->gen < 6)
2310 		return;
2311 
2312 	i915_check_and_clear_faults(dev);
2313 
2314 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2315 				       dev_priv->gtt.base.start,
2316 				       dev_priv->gtt.base.total,
2317 				       true);
2318 
2319 	i915_ggtt_flush(dev_priv);
2320 }
2321 
2322 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2323 {
2324 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2325 			obj->pages->sgl, obj->pages->nents,
2326 			PCI_DMA_BIDIRECTIONAL))
2327 		return -ENOSPC;
2328 
2329 	return 0;
2330 }
2331 
2332 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2333 {
2334 #ifdef writeq
2335 	writeq(pte, addr);
2336 #else
2337 	iowrite32((u32)pte, addr);
2338 	iowrite32(pte >> 32, addr + 4);
2339 #endif
2340 }
2341 
2342 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2343 				     struct sg_table *st,
2344 				     uint64_t start,
2345 				     enum i915_cache_level level, u32 unused)
2346 {
2347 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2348 	unsigned first_entry = start >> PAGE_SHIFT;
2349 	gen8_pte_t __iomem *gtt_entries =
2350 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2351 	int i = 0;
2352 	struct sg_page_iter sg_iter;
2353 	dma_addr_t addr = 0; /* shut up gcc */
2354 	int rpm_atomic_seq;
2355 
2356 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2357 
2358 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2359 		addr = sg_dma_address(sg_iter.sg) +
2360 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
2361 		gen8_set_pte(&gtt_entries[i],
2362 			     gen8_pte_encode(addr, level, true));
2363 		i++;
2364 	}
2365 
2366 	/*
2367 	 * XXX: This serves as a posting read to make sure that the PTE has
2368 	 * actually been updated. There is some concern that even though
2369 	 * registers and PTEs are within the same BAR that they are potentially
2370 	 * of NUMA access patterns. Therefore, even with the way we assume
2371 	 * hardware should work, we must keep this posting read for paranoia.
2372 	 */
2373 	if (i != 0)
2374 		WARN_ON(readq(&gtt_entries[i-1])
2375 			!= gen8_pte_encode(addr, level, true));
2376 
2377 	/* This next bit makes the above posting read even more important. We
2378 	 * want to flush the TLBs only after we're certain all the PTE updates
2379 	 * have finished.
2380 	 */
2381 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2382 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2383 
2384 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2385 }
2386 
2387 struct insert_entries {
2388 	struct i915_address_space *vm;
2389 	struct sg_table *st;
2390 	uint64_t start;
2391 	enum i915_cache_level level;
2392 	u32 flags;
2393 };
2394 
2395 static int gen8_ggtt_insert_entries__cb(void *_arg)
2396 {
2397 	struct insert_entries *arg = _arg;
2398 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2399 				 arg->start, arg->level, arg->flags);
2400 	return 0;
2401 }
2402 
2403 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2404 					  struct sg_table *st,
2405 					  uint64_t start,
2406 					  enum i915_cache_level level,
2407 					  u32 flags)
2408 {
2409 	struct insert_entries arg = { vm, st, start, level, flags };
2410 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2411 }
2412 
2413 /*
2414  * Binds an object into the global gtt with the specified cache level. The object
2415  * will be accessible to the GPU via commands whose operands reference offsets
2416  * within the global GTT as well as accessible by the GPU through the GMADR
2417  * mapped BAR (dev_priv->mm.gtt->gtt).
2418  */
2419 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2420 				     struct sg_table *st,
2421 				     uint64_t start,
2422 				     enum i915_cache_level level, u32 flags)
2423 {
2424 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2425 	unsigned first_entry = start >> PAGE_SHIFT;
2426 	gen6_pte_t __iomem *gtt_entries =
2427 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2428 	int i = 0;
2429 	struct sg_page_iter sg_iter;
2430 	dma_addr_t addr = 0;
2431 	int rpm_atomic_seq;
2432 
2433 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2434 
2435 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2436 		addr = sg_page_iter_dma_address(&sg_iter);
2437 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2438 		i++;
2439 	}
2440 
2441 	/* XXX: This serves as a posting read to make sure that the PTE has
2442 	 * actually been updated. There is some concern that even though
2443 	 * registers and PTEs are within the same BAR that they are potentially
2444 	 * of NUMA access patterns. Therefore, even with the way we assume
2445 	 * hardware should work, we must keep this posting read for paranoia.
2446 	 */
2447 	if (i != 0) {
2448 		unsigned long gtt = readl(&gtt_entries[i-1]);
2449 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2450 	}
2451 
2452 	/* This next bit makes the above posting read even more important. We
2453 	 * want to flush the TLBs only after we're certain all the PTE updates
2454 	 * have finished.
2455 	 */
2456 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2457 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2458 
2459 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2460 }
2461 
2462 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2463 				  uint64_t start,
2464 				  uint64_t length,
2465 				  bool use_scratch)
2466 {
2467 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2468 	unsigned first_entry = start >> PAGE_SHIFT;
2469 	unsigned num_entries = length >> PAGE_SHIFT;
2470 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2471 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2472 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2473 	int i;
2474 	int rpm_atomic_seq;
2475 
2476 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2477 
2478 	if (WARN(num_entries > max_entries,
2479 		 "First entry = %d; Num entries = %d (max=%d)\n",
2480 		 first_entry, num_entries, max_entries))
2481 		num_entries = max_entries;
2482 
2483 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2484 				      I915_CACHE_LLC,
2485 				      use_scratch);
2486 	for (i = 0; i < num_entries; i++)
2487 		gen8_set_pte(&gtt_base[i], scratch_pte);
2488 	readl(gtt_base);
2489 
2490 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2491 }
2492 
2493 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2494 				  uint64_t start,
2495 				  uint64_t length,
2496 				  bool use_scratch)
2497 {
2498 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2499 	unsigned first_entry = start >> PAGE_SHIFT;
2500 	unsigned num_entries = length >> PAGE_SHIFT;
2501 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2502 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2503 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2504 	int i;
2505 	int rpm_atomic_seq;
2506 
2507 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2508 
2509 	if (WARN(num_entries > max_entries,
2510 		 "First entry = %d; Num entries = %d (max=%d)\n",
2511 		 first_entry, num_entries, max_entries))
2512 		num_entries = max_entries;
2513 
2514 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2515 				     I915_CACHE_LLC, use_scratch, 0);
2516 
2517 	for (i = 0; i < num_entries; i++)
2518 		iowrite32(scratch_pte, &gtt_base[i]);
2519 	readl(gtt_base);
2520 
2521 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2522 }
2523 
2524 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2525 				     struct sg_table *pages,
2526 				     uint64_t start,
2527 				     enum i915_cache_level cache_level, u32 unused)
2528 {
2529 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2530 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2531 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2532 	int rpm_atomic_seq;
2533 
2534 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2535 
2536 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2537 
2538 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2539 
2540 }
2541 
2542 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2543 				  uint64_t start,
2544 				  uint64_t length,
2545 				  bool unused)
2546 {
2547 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2548 	unsigned first_entry = start >> PAGE_SHIFT;
2549 	unsigned num_entries = length >> PAGE_SHIFT;
2550 	int rpm_atomic_seq;
2551 
2552 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2553 
2554 	intel_gtt_clear_range(first_entry, num_entries);
2555 
2556 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2557 }
2558 
2559 static int ggtt_bind_vma(struct i915_vma *vma,
2560 			 enum i915_cache_level cache_level,
2561 			 u32 flags)
2562 {
2563 	struct drm_i915_gem_object *obj = vma->obj;
2564 	u32 pte_flags = 0;
2565 	int ret;
2566 
2567 	ret = i915_get_ggtt_vma_pages(vma);
2568 	if (ret)
2569 		return ret;
2570 
2571 	/* Currently applicable only to VLV */
2572 	if (obj->gt_ro)
2573 		pte_flags |= PTE_READ_ONLY;
2574 
2575 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2576 				vma->node.start,
2577 				cache_level, pte_flags);
2578 
2579 	/*
2580 	 * Without aliasing PPGTT there's no difference between
2581 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2582 	 * upgrade to both bound if we bind either to avoid double-binding.
2583 	 */
2584 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2585 
2586 	return 0;
2587 }
2588 
2589 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2590 				 enum i915_cache_level cache_level,
2591 				 u32 flags)
2592 {
2593 	struct drm_device *dev = vma->vm->dev;
2594 	struct drm_i915_private *dev_priv = dev->dev_private;
2595 	struct drm_i915_gem_object *obj = vma->obj;
2596 	struct sg_table *pages = obj->pages;
2597 	u32 pte_flags = 0;
2598 	int ret;
2599 
2600 	ret = i915_get_ggtt_vma_pages(vma);
2601 	if (ret)
2602 		return ret;
2603 	pages = vma->ggtt_view.pages;
2604 
2605 	/* Currently applicable only to VLV */
2606 	if (obj->gt_ro)
2607 		pte_flags |= PTE_READ_ONLY;
2608 
2609 
2610 	if (flags & GLOBAL_BIND) {
2611 		vma->vm->insert_entries(vma->vm, pages,
2612 					vma->node.start,
2613 					cache_level, pte_flags);
2614 	}
2615 
2616 	if (flags & LOCAL_BIND) {
2617 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2618 		appgtt->base.insert_entries(&appgtt->base, pages,
2619 					    vma->node.start,
2620 					    cache_level, pte_flags);
2621 	}
2622 
2623 	return 0;
2624 }
2625 
2626 static void ggtt_unbind_vma(struct i915_vma *vma)
2627 {
2628 	struct drm_device *dev = vma->vm->dev;
2629 	struct drm_i915_private *dev_priv = dev->dev_private;
2630 	struct drm_i915_gem_object *obj = vma->obj;
2631 	const uint64_t size = min_t(uint64_t,
2632 				    obj->base.size,
2633 				    vma->node.size);
2634 
2635 	if (vma->bound & GLOBAL_BIND) {
2636 		vma->vm->clear_range(vma->vm,
2637 				     vma->node.start,
2638 				     size,
2639 				     true);
2640 	}
2641 
2642 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2643 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2644 
2645 		appgtt->base.clear_range(&appgtt->base,
2646 					 vma->node.start,
2647 					 size,
2648 					 true);
2649 	}
2650 }
2651 
2652 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2653 {
2654 	struct drm_device *dev = obj->base.dev;
2655 	struct drm_i915_private *dev_priv = dev->dev_private;
2656 	bool interruptible;
2657 
2658 	interruptible = do_idling(dev_priv);
2659 
2660 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2661 		     PCI_DMA_BIDIRECTIONAL);
2662 
2663 	undo_idling(dev_priv, interruptible);
2664 }
2665 
2666 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2667 				  unsigned long color,
2668 				  u64 *start,
2669 				  u64 *end)
2670 {
2671 	if (node->color != color)
2672 		*start += 4096;
2673 
2674 	if (!list_empty(&node->node_list)) {
2675 		node = list_entry(node->node_list.next,
2676 				  struct drm_mm_node,
2677 				  node_list);
2678 		if (node->allocated && node->color != color)
2679 			*end -= 4096;
2680 	}
2681 }
2682 
2683 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2684 				     u64 start,
2685 				     u64 mappable_end,
2686 				     u64 end)
2687 {
2688 	/* Let GEM Manage all of the aperture.
2689 	 *
2690 	 * However, leave one page at the end still bound to the scratch page.
2691 	 * There are a number of places where the hardware apparently prefetches
2692 	 * past the end of the object, and we've seen multiple hangs with the
2693 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2694 	 * aperture.  One page should be enough to keep any prefetching inside
2695 	 * of the aperture.
2696 	 */
2697 	struct drm_i915_private *dev_priv = dev->dev_private;
2698 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2699 	struct drm_mm_node *entry;
2700 	struct drm_i915_gem_object *obj;
2701 	unsigned long hole_start, hole_end;
2702 	int ret;
2703 
2704 	BUG_ON(mappable_end > end);
2705 
2706 	ggtt_vm->start = start;
2707 
2708 	/* Subtract the guard page before address space initialization to
2709 	 * shrink the range used by drm_mm */
2710 	ggtt_vm->total = end - start - PAGE_SIZE;
2711 	i915_address_space_init(ggtt_vm, dev_priv);
2712 	ggtt_vm->total += PAGE_SIZE;
2713 
2714 	if (intel_vgpu_active(dev)) {
2715 		ret = intel_vgt_balloon(dev);
2716 		if (ret)
2717 			return ret;
2718 	}
2719 
2720 	if (!HAS_LLC(dev))
2721 		ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2722 
2723 	/* Mark any preallocated objects as occupied */
2724 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2725 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2726 
2727 		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2728 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2729 
2730 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2731 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2732 		if (ret) {
2733 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2734 			return ret;
2735 		}
2736 		vma->bound |= GLOBAL_BIND;
2737 		__i915_vma_set_map_and_fenceable(vma);
2738 		list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2739 	}
2740 
2741 	/* Clear any non-preallocated blocks */
2742 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2743 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2744 			      hole_start, hole_end);
2745 		ggtt_vm->clear_range(ggtt_vm, hole_start,
2746 				     hole_end - hole_start, true);
2747 	}
2748 
2749 	/* And finally clear the reserved guard page */
2750 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2751 
2752 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2753 		struct i915_hw_ppgtt *ppgtt;
2754 
2755 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2756 		if (!ppgtt)
2757 			return -ENOMEM;
2758 
2759 		ret = __hw_ppgtt_init(dev, ppgtt);
2760 		if (ret) {
2761 			ppgtt->base.cleanup(&ppgtt->base);
2762 			kfree(ppgtt);
2763 			return ret;
2764 		}
2765 
2766 		if (ppgtt->base.allocate_va_range)
2767 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2768 							    ppgtt->base.total);
2769 		if (ret) {
2770 			ppgtt->base.cleanup(&ppgtt->base);
2771 			kfree(ppgtt);
2772 			return ret;
2773 		}
2774 
2775 		ppgtt->base.clear_range(&ppgtt->base,
2776 					ppgtt->base.start,
2777 					ppgtt->base.total,
2778 					true);
2779 
2780 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2781 		WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2782 		dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2783 	}
2784 
2785 	return 0;
2786 }
2787 
2788 void i915_gem_init_global_gtt(struct drm_device *dev)
2789 {
2790 	struct drm_i915_private *dev_priv = dev->dev_private;
2791 	u64 gtt_size, mappable_size;
2792 
2793 	gtt_size = dev_priv->gtt.base.total;
2794 	mappable_size = dev_priv->gtt.mappable_end;
2795 
2796 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2797 }
2798 
2799 void i915_global_gtt_cleanup(struct drm_device *dev)
2800 {
2801 	struct drm_i915_private *dev_priv = dev->dev_private;
2802 	struct i915_address_space *vm = &dev_priv->gtt.base;
2803 
2804 	if (dev_priv->mm.aliasing_ppgtt) {
2805 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2806 
2807 		ppgtt->base.cleanup(&ppgtt->base);
2808 	}
2809 
2810 	if (drm_mm_initialized(&vm->mm)) {
2811 		if (intel_vgpu_active(dev))
2812 			intel_vgt_deballoon();
2813 
2814 		drm_mm_takedown(&vm->mm);
2815 		list_del(&vm->global_link);
2816 	}
2817 
2818 	vm->cleanup(vm);
2819 }
2820 
2821 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2822 {
2823 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2824 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2825 	return snb_gmch_ctl << 20;
2826 }
2827 
2828 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2829 {
2830 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2831 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2832 	if (bdw_gmch_ctl)
2833 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2834 
2835 #ifdef CONFIG_X86_32
2836 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2837 	if (bdw_gmch_ctl > 4)
2838 		bdw_gmch_ctl = 4;
2839 #endif
2840 
2841 	return bdw_gmch_ctl << 20;
2842 }
2843 
2844 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2845 {
2846 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2847 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2848 
2849 	if (gmch_ctrl)
2850 		return 1 << (20 + gmch_ctrl);
2851 
2852 	return 0;
2853 }
2854 
2855 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2856 {
2857 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2858 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2859 	return snb_gmch_ctl << 25; /* 32 MB units */
2860 }
2861 
2862 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2863 {
2864 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2865 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2866 	return bdw_gmch_ctl << 25; /* 32 MB units */
2867 }
2868 
2869 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2870 {
2871 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2872 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2873 
2874 	/*
2875 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2876 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2877 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2878 	 */
2879 	if (gmch_ctrl < 0x11)
2880 		return gmch_ctrl << 25;
2881 	else if (gmch_ctrl < 0x17)
2882 		return (gmch_ctrl - 0x11 + 2) << 22;
2883 	else
2884 		return (gmch_ctrl - 0x17 + 9) << 22;
2885 }
2886 
2887 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2888 {
2889 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2890 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2891 
2892 	if (gen9_gmch_ctl < 0xf0)
2893 		return gen9_gmch_ctl << 25; /* 32 MB units */
2894 	else
2895 		/* 4MB increments starting at 0xf0 for 4MB */
2896 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2897 }
2898 
2899 static int ggtt_probe_common(struct drm_device *dev,
2900 			     size_t gtt_size)
2901 {
2902 	struct drm_i915_private *dev_priv = dev->dev_private;
2903 	struct i915_page_scratch *scratch_page;
2904 	phys_addr_t gtt_phys_addr;
2905 
2906 	/* For Modern GENs the PTEs and register space are split in the BAR */
2907 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2908 		(pci_resource_len(dev->pdev, 0) / 2);
2909 
2910 	/*
2911 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2912 	 * dropped. For WC mappings in general we have 64 byte burst writes
2913 	 * when the WC buffer is flushed, so we can't use it, but have to
2914 	 * resort to an uncached mapping. The WC issue is easily caught by the
2915 	 * readback check when writing GTT PTE entries.
2916 	 */
2917 	if (IS_BROXTON(dev))
2918 		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2919 	else
2920 		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2921 	if (!dev_priv->gtt.gsm) {
2922 		DRM_ERROR("Failed to map the gtt page table\n");
2923 		return -ENOMEM;
2924 	}
2925 
2926 	scratch_page = alloc_scratch_page(dev);
2927 	if (IS_ERR(scratch_page)) {
2928 		DRM_ERROR("Scratch setup failed\n");
2929 		/* iounmap will also get called at remove, but meh */
2930 		iounmap(dev_priv->gtt.gsm);
2931 		return PTR_ERR(scratch_page);
2932 	}
2933 
2934 	dev_priv->gtt.base.scratch_page = scratch_page;
2935 
2936 	return 0;
2937 }
2938 
2939 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2940  * bits. When using advanced contexts each context stores its own PAT, but
2941  * writing this data shouldn't be harmful even in those cases. */
2942 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2943 {
2944 	uint64_t pat;
2945 
2946 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2947 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2948 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2949 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2950 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2951 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2952 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2953 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2954 
2955 	if (!USES_PPGTT(dev_priv->dev))
2956 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2957 		 * so RTL will always use the value corresponding to
2958 		 * pat_sel = 000".
2959 		 * So let's disable cache for GGTT to avoid screen corruptions.
2960 		 * MOCS still can be used though.
2961 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2962 		 * before this patch, i.e. the same uncached + snooping access
2963 		 * like on gen6/7 seems to be in effect.
2964 		 * - So this just fixes blitter/render access. Again it looks
2965 		 * like it's not just uncached access, but uncached + snooping.
2966 		 * So we can still hold onto all our assumptions wrt cpu
2967 		 * clflushing on LLC machines.
2968 		 */
2969 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2970 
2971 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2972 	 * write would work. */
2973 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2974 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2975 }
2976 
2977 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2978 {
2979 	uint64_t pat;
2980 
2981 	/*
2982 	 * Map WB on BDW to snooped on CHV.
2983 	 *
2984 	 * Only the snoop bit has meaning for CHV, the rest is
2985 	 * ignored.
2986 	 *
2987 	 * The hardware will never snoop for certain types of accesses:
2988 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2989 	 * - PPGTT page tables
2990 	 * - some other special cycles
2991 	 *
2992 	 * As with BDW, we also need to consider the following for GT accesses:
2993 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2994 	 * so RTL will always use the value corresponding to
2995 	 * pat_sel = 000".
2996 	 * Which means we must set the snoop bit in PAT entry 0
2997 	 * in order to keep the global status page working.
2998 	 */
2999 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3000 	      GEN8_PPAT(1, 0) |
3001 	      GEN8_PPAT(2, 0) |
3002 	      GEN8_PPAT(3, 0) |
3003 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3004 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3005 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3006 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3007 
3008 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3009 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3010 }
3011 
3012 static int gen8_gmch_probe(struct drm_device *dev,
3013 			   u64 *gtt_total,
3014 			   size_t *stolen,
3015 			   phys_addr_t *mappable_base,
3016 			   u64 *mappable_end)
3017 {
3018 	struct drm_i915_private *dev_priv = dev->dev_private;
3019 	u64 gtt_size;
3020 	u16 snb_gmch_ctl;
3021 	int ret;
3022 
3023 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3024 	*mappable_base = pci_resource_start(dev->pdev, 2);
3025 	*mappable_end = pci_resource_len(dev->pdev, 2);
3026 
3027 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3028 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3029 
3030 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3031 
3032 	if (INTEL_INFO(dev)->gen >= 9) {
3033 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
3034 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3035 	} else if (IS_CHERRYVIEW(dev)) {
3036 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
3037 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
3038 	} else {
3039 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
3040 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3041 	}
3042 
3043 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3044 
3045 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3046 		chv_setup_private_ppat(dev_priv);
3047 	else
3048 		bdw_setup_private_ppat(dev_priv);
3049 
3050 	ret = ggtt_probe_common(dev, gtt_size);
3051 
3052 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
3053 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
3054 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3055 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3056 
3057 	if (IS_CHERRYVIEW(dev_priv))
3058 		dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries__BKL;
3059 
3060 	return ret;
3061 }
3062 
3063 static int gen6_gmch_probe(struct drm_device *dev,
3064 			   u64 *gtt_total,
3065 			   size_t *stolen,
3066 			   phys_addr_t *mappable_base,
3067 			   u64 *mappable_end)
3068 {
3069 	struct drm_i915_private *dev_priv = dev->dev_private;
3070 	unsigned int gtt_size;
3071 	u16 snb_gmch_ctl;
3072 	int ret;
3073 
3074 	*mappable_base = pci_resource_start(dev->pdev, 2);
3075 	*mappable_end = pci_resource_len(dev->pdev, 2);
3076 
3077 	/* 64/512MB is the current min/max we actually know of, but this is just
3078 	 * a coarse sanity check.
3079 	 */
3080 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3081 		DRM_ERROR("Unknown GMADR size (%llx)\n",
3082 			  dev_priv->gtt.mappable_end);
3083 		return -ENXIO;
3084 	}
3085 
3086 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3087 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3088 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3089 
3090 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
3091 
3092 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3093 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3094 
3095 	ret = ggtt_probe_common(dev, gtt_size);
3096 
3097 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3098 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3099 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3100 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3101 
3102 	return ret;
3103 }
3104 
3105 static void gen6_gmch_remove(struct i915_address_space *vm)
3106 {
3107 
3108 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3109 
3110 	iounmap(gtt->gsm);
3111 	free_scratch_page(vm->dev, vm->scratch_page);
3112 }
3113 
3114 static int i915_gmch_probe(struct drm_device *dev,
3115 			   u64 *gtt_total,
3116 			   size_t *stolen,
3117 			   phys_addr_t *mappable_base,
3118 			   u64 *mappable_end)
3119 {
3120 	struct drm_i915_private *dev_priv = dev->dev_private;
3121 	int ret;
3122 
3123 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3124 	if (!ret) {
3125 		DRM_ERROR("failed to set up gmch\n");
3126 		return -EIO;
3127 	}
3128 
3129 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3130 
3131 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3132 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3133 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3134 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3135 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3136 
3137 	if (unlikely(dev_priv->gtt.do_idle_maps))
3138 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3139 
3140 	return 0;
3141 }
3142 
3143 static void i915_gmch_remove(struct i915_address_space *vm)
3144 {
3145 	intel_gmch_remove();
3146 }
3147 
3148 int i915_gem_gtt_init(struct drm_device *dev)
3149 {
3150 	struct drm_i915_private *dev_priv = dev->dev_private;
3151 	struct i915_gtt *gtt = &dev_priv->gtt;
3152 	int ret;
3153 
3154 	if (INTEL_INFO(dev)->gen <= 5) {
3155 		gtt->gtt_probe = i915_gmch_probe;
3156 		gtt->base.cleanup = i915_gmch_remove;
3157 	} else if (INTEL_INFO(dev)->gen < 8) {
3158 		gtt->gtt_probe = gen6_gmch_probe;
3159 		gtt->base.cleanup = gen6_gmch_remove;
3160 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
3161 			gtt->base.pte_encode = iris_pte_encode;
3162 		else if (IS_HASWELL(dev))
3163 			gtt->base.pte_encode = hsw_pte_encode;
3164 		else if (IS_VALLEYVIEW(dev))
3165 			gtt->base.pte_encode = byt_pte_encode;
3166 		else if (INTEL_INFO(dev)->gen >= 7)
3167 			gtt->base.pte_encode = ivb_pte_encode;
3168 		else
3169 			gtt->base.pte_encode = snb_pte_encode;
3170 	} else {
3171 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3172 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3173 	}
3174 
3175 	gtt->base.dev = dev;
3176 
3177 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3178 			     &gtt->mappable_base, &gtt->mappable_end);
3179 	if (ret)
3180 		return ret;
3181 
3182 	/* GMADR is the PCI mmio aperture into the global GTT. */
3183 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3184 		 gtt->base.total >> 20);
3185 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
3186 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3187 #ifdef CONFIG_INTEL_IOMMU
3188 	if (intel_iommu_gfx_mapped)
3189 		DRM_INFO("VT-d active for gfx access\n");
3190 #endif
3191 	/*
3192 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3193 	 * user's requested state against the hardware/driver capabilities.  We
3194 	 * do this now so that we can print out any log messages once rather
3195 	 * than every time we check intel_enable_ppgtt().
3196 	 */
3197 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3198 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3199 
3200 	return 0;
3201 }
3202 
3203 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3204 {
3205 	struct drm_i915_private *dev_priv = dev->dev_private;
3206 	struct drm_i915_gem_object *obj;
3207 	struct i915_address_space *vm;
3208 	struct i915_vma *vma;
3209 	bool flush;
3210 
3211 	i915_check_and_clear_faults(dev);
3212 
3213 	/* First fill our portion of the GTT with scratch pages */
3214 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3215 				       dev_priv->gtt.base.start,
3216 				       dev_priv->gtt.base.total,
3217 				       true);
3218 
3219 	/* Cache flush objects bound into GGTT and rebind them. */
3220 	vm = &dev_priv->gtt.base;
3221 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3222 		flush = false;
3223 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3224 			if (vma->vm != vm)
3225 				continue;
3226 
3227 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3228 					      PIN_UPDATE));
3229 
3230 			flush = true;
3231 		}
3232 
3233 		if (flush)
3234 			i915_gem_clflush_object(obj, obj->pin_display);
3235 	}
3236 
3237 	if (INTEL_INFO(dev)->gen >= 8) {
3238 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3239 			chv_setup_private_ppat(dev_priv);
3240 		else
3241 			bdw_setup_private_ppat(dev_priv);
3242 
3243 		return;
3244 	}
3245 
3246 	if (USES_PPGTT(dev)) {
3247 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3248 			/* TODO: Perhaps it shouldn't be gen6 specific */
3249 
3250 			struct i915_hw_ppgtt *ppgtt =
3251 					container_of(vm, struct i915_hw_ppgtt,
3252 						     base);
3253 
3254 			if (i915_is_ggtt(vm))
3255 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3256 
3257 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3258 					      0, ppgtt->base.total);
3259 		}
3260 	}
3261 
3262 	i915_ggtt_flush(dev_priv);
3263 }
3264 
3265 static struct i915_vma *
3266 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3267 		      struct i915_address_space *vm,
3268 		      const struct i915_ggtt_view *ggtt_view)
3269 {
3270 	struct i915_vma *vma;
3271 
3272 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3273 		return ERR_PTR(-EINVAL);
3274 
3275 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3276 	if (vma == NULL)
3277 		return ERR_PTR(-ENOMEM);
3278 
3279 	INIT_LIST_HEAD(&vma->vma_link);
3280 	INIT_LIST_HEAD(&vma->mm_list);
3281 	INIT_LIST_HEAD(&vma->exec_list);
3282 	vma->vm = vm;
3283 	vma->obj = obj;
3284 
3285 	if (i915_is_ggtt(vm))
3286 		vma->ggtt_view = *ggtt_view;
3287 
3288 	list_add_tail(&vma->vma_link, &obj->vma_list);
3289 	if (!i915_is_ggtt(vm))
3290 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3291 
3292 	return vma;
3293 }
3294 
3295 struct i915_vma *
3296 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3297 				  struct i915_address_space *vm)
3298 {
3299 	struct i915_vma *vma;
3300 
3301 	vma = i915_gem_obj_to_vma(obj, vm);
3302 	if (!vma)
3303 		vma = __i915_gem_vma_create(obj, vm,
3304 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3305 
3306 	return vma;
3307 }
3308 
3309 struct i915_vma *
3310 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3311 				       const struct i915_ggtt_view *view)
3312 {
3313 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3314 	struct i915_vma *vma;
3315 
3316 	if (WARN_ON(!view))
3317 		return ERR_PTR(-EINVAL);
3318 
3319 	vma = i915_gem_obj_to_ggtt_view(obj, view);
3320 
3321 	if (IS_ERR(vma))
3322 		return vma;
3323 
3324 	if (!vma)
3325 		vma = __i915_gem_vma_create(obj, ggtt, view);
3326 
3327 	return vma;
3328 
3329 }
3330 
3331 static struct scatterlist *
3332 rotate_pages(dma_addr_t *in, unsigned int offset,
3333 	     unsigned int width, unsigned int height,
3334 	     struct sg_table *st, struct scatterlist *sg)
3335 {
3336 	unsigned int column, row;
3337 	unsigned int src_idx;
3338 
3339 	if (!sg) {
3340 		st->nents = 0;
3341 		sg = st->sgl;
3342 	}
3343 
3344 	for (column = 0; column < width; column++) {
3345 		src_idx = width * (height - 1) + column;
3346 		for (row = 0; row < height; row++) {
3347 			st->nents++;
3348 			/* We don't need the pages, but need to initialize
3349 			 * the entries so the sg list can be happily traversed.
3350 			 * The only thing we need are DMA addresses.
3351 			 */
3352 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3353 			sg_dma_address(sg) = in[offset + src_idx];
3354 			sg_dma_len(sg) = PAGE_SIZE;
3355 			sg = sg_next(sg);
3356 			src_idx -= width;
3357 		}
3358 	}
3359 
3360 	return sg;
3361 }
3362 
3363 static struct sg_table *
3364 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3365 			  struct drm_i915_gem_object *obj)
3366 {
3367 	struct intel_rotation_info *rot_info = &ggtt_view->params.rotation_info;
3368 	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3369 	unsigned int size_pages_uv;
3370 	struct sg_page_iter sg_iter;
3371 	unsigned long i;
3372 	dma_addr_t *page_addr_list;
3373 	struct sg_table *st;
3374 	unsigned int uv_start_page;
3375 	struct scatterlist *sg;
3376 	int ret = -ENOMEM;
3377 
3378 	/* Allocate a temporary list of source pages for random access. */
3379 	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3380 				       sizeof(dma_addr_t));
3381 	if (!page_addr_list)
3382 		return ERR_PTR(ret);
3383 
3384 	/* Account for UV plane with NV12. */
3385 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3386 		size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3387 	else
3388 		size_pages_uv = 0;
3389 
3390 	/* Allocate target SG list. */
3391 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3392 	if (!st)
3393 		goto err_st_alloc;
3394 
3395 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3396 	if (ret)
3397 		goto err_sg_alloc;
3398 
3399 	/* Populate source page list from the object. */
3400 	i = 0;
3401 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3402 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3403 		i++;
3404 	}
3405 
3406 	/* Rotate the pages. */
3407 	sg = rotate_pages(page_addr_list, 0,
3408 		     rot_info->width_pages, rot_info->height_pages,
3409 		     st, NULL);
3410 
3411 	/* Append the UV plane if NV12. */
3412 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3413 		uv_start_page = size_pages;
3414 
3415 		/* Check for tile-row un-alignment. */
3416 		if (offset_in_page(rot_info->uv_offset))
3417 			uv_start_page--;
3418 
3419 		rot_info->uv_start_page = uv_start_page;
3420 
3421 		rotate_pages(page_addr_list, uv_start_page,
3422 			     rot_info->width_pages_uv,
3423 			     rot_info->height_pages_uv,
3424 			     st, sg);
3425 	}
3426 
3427 	DRM_DEBUG_KMS(
3428 		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3429 		      obj->base.size, rot_info->pitch, rot_info->height,
3430 		      rot_info->pixel_format, rot_info->width_pages,
3431 		      rot_info->height_pages, size_pages + size_pages_uv,
3432 		      size_pages);
3433 
3434 	drm_free_large(page_addr_list);
3435 
3436 	return st;
3437 
3438 err_sg_alloc:
3439 	kfree(st);
3440 err_st_alloc:
3441 	drm_free_large(page_addr_list);
3442 
3443 	DRM_DEBUG_KMS(
3444 		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3445 		      obj->base.size, ret, rot_info->pitch, rot_info->height,
3446 		      rot_info->pixel_format, rot_info->width_pages,
3447 		      rot_info->height_pages, size_pages + size_pages_uv,
3448 		      size_pages);
3449 	return ERR_PTR(ret);
3450 }
3451 
3452 static struct sg_table *
3453 intel_partial_pages(const struct i915_ggtt_view *view,
3454 		    struct drm_i915_gem_object *obj)
3455 {
3456 	struct sg_table *st;
3457 	struct scatterlist *sg;
3458 	struct sg_page_iter obj_sg_iter;
3459 	int ret = -ENOMEM;
3460 
3461 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3462 	if (!st)
3463 		goto err_st_alloc;
3464 
3465 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3466 	if (ret)
3467 		goto err_sg_alloc;
3468 
3469 	sg = st->sgl;
3470 	st->nents = 0;
3471 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3472 		view->params.partial.offset)
3473 	{
3474 		if (st->nents >= view->params.partial.size)
3475 			break;
3476 
3477 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3478 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3479 		sg_dma_len(sg) = PAGE_SIZE;
3480 
3481 		sg = sg_next(sg);
3482 		st->nents++;
3483 	}
3484 
3485 	return st;
3486 
3487 err_sg_alloc:
3488 	kfree(st);
3489 err_st_alloc:
3490 	return ERR_PTR(ret);
3491 }
3492 
3493 static int
3494 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3495 {
3496 	int ret = 0;
3497 
3498 	if (vma->ggtt_view.pages)
3499 		return 0;
3500 
3501 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3502 		vma->ggtt_view.pages = vma->obj->pages;
3503 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3504 		vma->ggtt_view.pages =
3505 			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3506 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3507 		vma->ggtt_view.pages =
3508 			intel_partial_pages(&vma->ggtt_view, vma->obj);
3509 	else
3510 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3511 			  vma->ggtt_view.type);
3512 
3513 	if (!vma->ggtt_view.pages) {
3514 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3515 			  vma->ggtt_view.type);
3516 		ret = -EINVAL;
3517 	} else if (IS_ERR(vma->ggtt_view.pages)) {
3518 		ret = PTR_ERR(vma->ggtt_view.pages);
3519 		vma->ggtt_view.pages = NULL;
3520 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3521 			  vma->ggtt_view.type, ret);
3522 	}
3523 
3524 	return ret;
3525 }
3526 
3527 /**
3528  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3529  * @vma: VMA to map
3530  * @cache_level: mapping cache level
3531  * @flags: flags like global or local mapping
3532  *
3533  * DMA addresses are taken from the scatter-gather table of this object (or of
3534  * this VMA in case of non-default GGTT views) and PTE entries set up.
3535  * Note that DMA addresses are also the only part of the SG table we care about.
3536  */
3537 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3538 		  u32 flags)
3539 {
3540 	int ret;
3541 	u32 bind_flags;
3542 
3543 	if (WARN_ON(flags == 0))
3544 		return -EINVAL;
3545 
3546 	bind_flags = 0;
3547 	if (flags & PIN_GLOBAL)
3548 		bind_flags |= GLOBAL_BIND;
3549 	if (flags & PIN_USER)
3550 		bind_flags |= LOCAL_BIND;
3551 
3552 	if (flags & PIN_UPDATE)
3553 		bind_flags |= vma->bound;
3554 	else
3555 		bind_flags &= ~vma->bound;
3556 
3557 	if (bind_flags == 0)
3558 		return 0;
3559 
3560 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3561 		trace_i915_va_alloc(vma->vm,
3562 				    vma->node.start,
3563 				    vma->node.size,
3564 				    VM_TO_TRACE_NAME(vma->vm));
3565 
3566 		/* XXX: i915_vma_pin() will fix this +- hack */
3567 		vma->pin_count++;
3568 		ret = vma->vm->allocate_va_range(vma->vm,
3569 						 vma->node.start,
3570 						 vma->node.size);
3571 		vma->pin_count--;
3572 		if (ret)
3573 			return ret;
3574 	}
3575 
3576 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3577 	if (ret)
3578 		return ret;
3579 
3580 	vma->bound |= bind_flags;
3581 
3582 	return 0;
3583 }
3584 
3585 /**
3586  * i915_ggtt_view_size - Get the size of a GGTT view.
3587  * @obj: Object the view is of.
3588  * @view: The view in question.
3589  *
3590  * @return The size of the GGTT view in bytes.
3591  */
3592 size_t
3593 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3594 		    const struct i915_ggtt_view *view)
3595 {
3596 	if (view->type == I915_GGTT_VIEW_NORMAL) {
3597 		return obj->base.size;
3598 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3599 		return view->params.rotation_info.size;
3600 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3601 		return view->params.partial.size << PAGE_SHIFT;
3602 	} else {
3603 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3604 		return obj->base.size;
3605 	}
3606 }
3607