1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/*
114 	 * Note that as an uncached mmio write, this will flush the
115 	 * WCB of the writes into the GGTT before it triggers the invalidate.
116 	 */
117 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
118 }
119 
120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
121 {
122 	gen6_ggtt_invalidate(dev_priv);
123 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
124 }
125 
126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
127 {
128 	intel_gtt_chipset_flush();
129 }
130 
131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
132 {
133 	i915->ggtt.invalidate(i915);
134 }
135 
136 static int ppgtt_bind_vma(struct i915_vma *vma,
137 			  enum i915_cache_level cache_level,
138 			  u32 unused)
139 {
140 	u32 pte_flags;
141 	int err;
142 
143 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
144 		err = vma->vm->allocate_va_range(vma->vm,
145 						 vma->node.start, vma->size);
146 		if (err)
147 			return err;
148 	}
149 
150 	/* Applicable to VLV, and gen8+ */
151 	pte_flags = 0;
152 	if (i915_gem_object_is_readonly(vma->obj))
153 		pte_flags |= PTE_READ_ONLY;
154 
155 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
156 
157 	return 0;
158 }
159 
160 static void ppgtt_unbind_vma(struct i915_vma *vma)
161 {
162 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
163 }
164 
165 static int ppgtt_set_pages(struct i915_vma *vma)
166 {
167 	GEM_BUG_ON(vma->pages);
168 
169 	vma->pages = vma->obj->mm.pages;
170 
171 	vma->page_sizes = vma->obj->mm.page_sizes;
172 
173 	return 0;
174 }
175 
176 static void clear_pages(struct i915_vma *vma)
177 {
178 	GEM_BUG_ON(!vma->pages);
179 
180 	if (vma->pages != vma->obj->mm.pages) {
181 		sg_free_table(vma->pages);
182 		kfree(vma->pages);
183 	}
184 	vma->pages = NULL;
185 
186 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
187 }
188 
189 static u64 gen8_pte_encode(dma_addr_t addr,
190 			   enum i915_cache_level level,
191 			   u32 flags)
192 {
193 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
194 
195 	if (unlikely(flags & PTE_READ_ONLY))
196 		pte &= ~_PAGE_RW;
197 
198 	switch (level) {
199 	case I915_CACHE_NONE:
200 		pte |= PPAT_UNCACHED;
201 		break;
202 	case I915_CACHE_WT:
203 		pte |= PPAT_DISPLAY_ELLC;
204 		break;
205 	default:
206 		pte |= PPAT_CACHED;
207 		break;
208 	}
209 
210 	return pte;
211 }
212 
213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
214 				  const enum i915_cache_level level)
215 {
216 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
217 	pde |= addr;
218 	if (level != I915_CACHE_NONE)
219 		pde |= PPAT_CACHED_PDE;
220 	else
221 		pde |= PPAT_UNCACHED;
222 	return pde;
223 }
224 
225 #define gen8_pdpe_encode gen8_pde_encode
226 #define gen8_pml4e_encode gen8_pde_encode
227 
228 static u64 snb_pte_encode(dma_addr_t addr,
229 			  enum i915_cache_level level,
230 			  u32 flags)
231 {
232 	gen6_pte_t pte = GEN6_PTE_VALID;
233 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 
235 	switch (level) {
236 	case I915_CACHE_L3_LLC:
237 	case I915_CACHE_LLC:
238 		pte |= GEN6_PTE_CACHE_LLC;
239 		break;
240 	case I915_CACHE_NONE:
241 		pte |= GEN6_PTE_UNCACHED;
242 		break;
243 	default:
244 		MISSING_CASE(level);
245 	}
246 
247 	return pte;
248 }
249 
250 static u64 ivb_pte_encode(dma_addr_t addr,
251 			  enum i915_cache_level level,
252 			  u32 flags)
253 {
254 	gen6_pte_t pte = GEN6_PTE_VALID;
255 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
256 
257 	switch (level) {
258 	case I915_CACHE_L3_LLC:
259 		pte |= GEN7_PTE_CACHE_L3_LLC;
260 		break;
261 	case I915_CACHE_LLC:
262 		pte |= GEN6_PTE_CACHE_LLC;
263 		break;
264 	case I915_CACHE_NONE:
265 		pte |= GEN6_PTE_UNCACHED;
266 		break;
267 	default:
268 		MISSING_CASE(level);
269 	}
270 
271 	return pte;
272 }
273 
274 static u64 byt_pte_encode(dma_addr_t addr,
275 			  enum i915_cache_level level,
276 			  u32 flags)
277 {
278 	gen6_pte_t pte = GEN6_PTE_VALID;
279 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
280 
281 	if (!(flags & PTE_READ_ONLY))
282 		pte |= BYT_PTE_WRITEABLE;
283 
284 	if (level != I915_CACHE_NONE)
285 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
286 
287 	return pte;
288 }
289 
290 static u64 hsw_pte_encode(dma_addr_t addr,
291 			  enum i915_cache_level level,
292 			  u32 flags)
293 {
294 	gen6_pte_t pte = GEN6_PTE_VALID;
295 	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 
297 	if (level != I915_CACHE_NONE)
298 		pte |= HSW_WB_LLC_AGE3;
299 
300 	return pte;
301 }
302 
303 static u64 iris_pte_encode(dma_addr_t addr,
304 			   enum i915_cache_level level,
305 			   u32 flags)
306 {
307 	gen6_pte_t pte = GEN6_PTE_VALID;
308 	pte |= HSW_PTE_ADDR_ENCODE(addr);
309 
310 	switch (level) {
311 	case I915_CACHE_NONE:
312 		break;
313 	case I915_CACHE_WT:
314 		pte |= HSW_WT_ELLC_LLC_AGE3;
315 		break;
316 	default:
317 		pte |= HSW_WB_ELLC_LLC_AGE3;
318 		break;
319 	}
320 
321 	return pte;
322 }
323 
324 static void stash_init(struct pagestash *stash)
325 {
326 	pagevec_init(&stash->pvec);
327 	spin_lock_init(&stash->lock);
328 }
329 
330 static struct page *stash_pop_page(struct pagestash *stash)
331 {
332 	struct page *page = NULL;
333 
334 	spin_lock(&stash->lock);
335 	if (likely(stash->pvec.nr))
336 		page = stash->pvec.pages[--stash->pvec.nr];
337 	spin_unlock(&stash->lock);
338 
339 	return page;
340 }
341 
342 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
343 {
344 	int nr;
345 
346 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
347 
348 	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
349 	memcpy(stash->pvec.pages + stash->pvec.nr,
350 	       pvec->pages + pvec->nr - nr,
351 	       sizeof(pvec->pages[0]) * nr);
352 	stash->pvec.nr += nr;
353 
354 	spin_unlock(&stash->lock);
355 
356 	pvec->nr -= nr;
357 }
358 
359 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
360 {
361 	struct pagevec stack;
362 	struct page *page;
363 
364 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
365 		i915_gem_shrink_all(vm->i915);
366 
367 	page = stash_pop_page(&vm->free_pages);
368 	if (page)
369 		return page;
370 
371 	if (!vm->pt_kmap_wc)
372 		return alloc_page(gfp);
373 
374 	/* Look in our global stash of WC pages... */
375 	page = stash_pop_page(&vm->i915->mm.wc_stash);
376 	if (page)
377 		return page;
378 
379 	/*
380 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
381 	 *
382 	 * We have to be careful as page allocation may trigger the shrinker
383 	 * (via direct reclaim) which will fill up the WC stash underneath us.
384 	 * So we add our WB pages into a temporary pvec on the stack and merge
385 	 * them into the WC stash after all the allocations are complete.
386 	 */
387 	pagevec_init(&stack);
388 	do {
389 		struct page *page;
390 
391 		page = alloc_page(gfp);
392 		if (unlikely(!page))
393 			break;
394 
395 		stack.pages[stack.nr++] = page;
396 	} while (pagevec_space(&stack));
397 
398 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
399 		page = stack.pages[--stack.nr];
400 
401 		/* Merge spare WC pages to the global stash */
402 		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
403 
404 		/* Push any surplus WC pages onto the local VM stash */
405 		if (stack.nr)
406 			stash_push_pagevec(&vm->free_pages, &stack);
407 	}
408 
409 	/* Return unwanted leftovers */
410 	if (unlikely(stack.nr)) {
411 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
412 		__pagevec_release(&stack);
413 	}
414 
415 	return page;
416 }
417 
418 static void vm_free_pages_release(struct i915_address_space *vm,
419 				  bool immediate)
420 {
421 	struct pagevec *pvec = &vm->free_pages.pvec;
422 	struct pagevec stack;
423 
424 	lockdep_assert_held(&vm->free_pages.lock);
425 	GEM_BUG_ON(!pagevec_count(pvec));
426 
427 	if (vm->pt_kmap_wc) {
428 		/*
429 		 * When we use WC, first fill up the global stash and then
430 		 * only if full immediately free the overflow.
431 		 */
432 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
433 
434 		/*
435 		 * As we have made some room in the VM's free_pages,
436 		 * we can wait for it to fill again. Unless we are
437 		 * inside i915_address_space_fini() and must
438 		 * immediately release the pages!
439 		 */
440 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
441 			return;
442 
443 		/*
444 		 * We have to drop the lock to allow ourselves to sleep,
445 		 * so take a copy of the pvec and clear the stash for
446 		 * others to use it as we sleep.
447 		 */
448 		stack = *pvec;
449 		pagevec_reinit(pvec);
450 		spin_unlock(&vm->free_pages.lock);
451 
452 		pvec = &stack;
453 		set_pages_array_wb(pvec->pages, pvec->nr);
454 
455 		spin_lock(&vm->free_pages.lock);
456 	}
457 
458 	__pagevec_release(pvec);
459 }
460 
461 static void vm_free_page(struct i915_address_space *vm, struct page *page)
462 {
463 	/*
464 	 * On !llc, we need to change the pages back to WB. We only do so
465 	 * in bulk, so we rarely need to change the page attributes here,
466 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
467 	 * To make detection of the possible sleep more likely, use an
468 	 * unconditional might_sleep() for everybody.
469 	 */
470 	might_sleep();
471 	spin_lock(&vm->free_pages.lock);
472 	if (!pagevec_add(&vm->free_pages.pvec, page))
473 		vm_free_pages_release(vm, false);
474 	spin_unlock(&vm->free_pages.lock);
475 }
476 
477 static void i915_address_space_init(struct i915_address_space *vm,
478 				    struct drm_i915_private *dev_priv)
479 {
480 	/*
481 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
482 	 * Do a dummy acquire now under fs_reclaim so that any allocation
483 	 * attempt holding the lock is immediately reported by lockdep.
484 	 */
485 	mutex_init(&vm->mutex);
486 	i915_gem_shrinker_taints_mutex(&vm->mutex);
487 
488 	GEM_BUG_ON(!vm->total);
489 	drm_mm_init(&vm->mm, 0, vm->total);
490 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
491 
492 	stash_init(&vm->free_pages);
493 
494 	INIT_LIST_HEAD(&vm->active_list);
495 	INIT_LIST_HEAD(&vm->inactive_list);
496 	INIT_LIST_HEAD(&vm->unbound_list);
497 }
498 
499 static void i915_address_space_fini(struct i915_address_space *vm)
500 {
501 	spin_lock(&vm->free_pages.lock);
502 	if (pagevec_count(&vm->free_pages.pvec))
503 		vm_free_pages_release(vm, true);
504 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
505 	spin_unlock(&vm->free_pages.lock);
506 
507 	drm_mm_takedown(&vm->mm);
508 
509 	mutex_destroy(&vm->mutex);
510 }
511 
512 static int __setup_page_dma(struct i915_address_space *vm,
513 			    struct i915_page_dma *p,
514 			    gfp_t gfp)
515 {
516 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
517 	if (unlikely(!p->page))
518 		return -ENOMEM;
519 
520 	p->daddr = dma_map_page_attrs(vm->dma,
521 				      p->page, 0, PAGE_SIZE,
522 				      PCI_DMA_BIDIRECTIONAL,
523 				      DMA_ATTR_SKIP_CPU_SYNC |
524 				      DMA_ATTR_NO_WARN);
525 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
526 		vm_free_page(vm, p->page);
527 		return -ENOMEM;
528 	}
529 
530 	return 0;
531 }
532 
533 static int setup_page_dma(struct i915_address_space *vm,
534 			  struct i915_page_dma *p)
535 {
536 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
537 }
538 
539 static void cleanup_page_dma(struct i915_address_space *vm,
540 			     struct i915_page_dma *p)
541 {
542 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
543 	vm_free_page(vm, p->page);
544 }
545 
546 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
547 
548 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
549 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
550 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
551 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
552 
553 static void fill_page_dma(struct i915_address_space *vm,
554 			  struct i915_page_dma *p,
555 			  const u64 val)
556 {
557 	u64 * const vaddr = kmap_atomic(p->page);
558 
559 	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
560 
561 	kunmap_atomic(vaddr);
562 }
563 
564 static void fill_page_dma_32(struct i915_address_space *vm,
565 			     struct i915_page_dma *p,
566 			     const u32 v)
567 {
568 	fill_page_dma(vm, p, (u64)v << 32 | v);
569 }
570 
571 static int
572 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
573 {
574 	unsigned long size;
575 
576 	/*
577 	 * In order to utilize 64K pages for an object with a size < 2M, we will
578 	 * need to support a 64K scratch page, given that every 16th entry for a
579 	 * page-table operating in 64K mode must point to a properly aligned 64K
580 	 * region, including any PTEs which happen to point to scratch.
581 	 *
582 	 * This is only relevant for the 48b PPGTT where we support
583 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
584 	 * scratch (read-only) between all vm, we create one 64k scratch page
585 	 * for all.
586 	 */
587 	size = I915_GTT_PAGE_SIZE_4K;
588 	if (i915_vm_is_48bit(vm) &&
589 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
590 		size = I915_GTT_PAGE_SIZE_64K;
591 		gfp |= __GFP_NOWARN;
592 	}
593 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
594 
595 	do {
596 		int order = get_order(size);
597 		struct page *page;
598 		dma_addr_t addr;
599 
600 		page = alloc_pages(gfp, order);
601 		if (unlikely(!page))
602 			goto skip;
603 
604 		addr = dma_map_page_attrs(vm->dma,
605 					  page, 0, size,
606 					  PCI_DMA_BIDIRECTIONAL,
607 					  DMA_ATTR_SKIP_CPU_SYNC |
608 					  DMA_ATTR_NO_WARN);
609 		if (unlikely(dma_mapping_error(vm->dma, addr)))
610 			goto free_page;
611 
612 		if (unlikely(!IS_ALIGNED(addr, size)))
613 			goto unmap_page;
614 
615 		vm->scratch_page.page = page;
616 		vm->scratch_page.daddr = addr;
617 		vm->scratch_page.order = order;
618 		return 0;
619 
620 unmap_page:
621 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
622 free_page:
623 		__free_pages(page, order);
624 skip:
625 		if (size == I915_GTT_PAGE_SIZE_4K)
626 			return -ENOMEM;
627 
628 		size = I915_GTT_PAGE_SIZE_4K;
629 		gfp &= ~__GFP_NOWARN;
630 	} while (1);
631 }
632 
633 static void cleanup_scratch_page(struct i915_address_space *vm)
634 {
635 	struct i915_page_dma *p = &vm->scratch_page;
636 
637 	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
638 		       PCI_DMA_BIDIRECTIONAL);
639 	__free_pages(p->page, p->order);
640 }
641 
642 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
643 {
644 	struct i915_page_table *pt;
645 
646 	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
647 	if (unlikely(!pt))
648 		return ERR_PTR(-ENOMEM);
649 
650 	if (unlikely(setup_px(vm, pt))) {
651 		kfree(pt);
652 		return ERR_PTR(-ENOMEM);
653 	}
654 
655 	pt->used_ptes = 0;
656 	return pt;
657 }
658 
659 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
660 {
661 	cleanup_px(vm, pt);
662 	kfree(pt);
663 }
664 
665 static void gen8_initialize_pt(struct i915_address_space *vm,
666 			       struct i915_page_table *pt)
667 {
668 	fill_px(vm, pt, vm->scratch_pte);
669 }
670 
671 static void gen6_initialize_pt(struct i915_address_space *vm,
672 			       struct i915_page_table *pt)
673 {
674 	fill32_px(vm, pt, vm->scratch_pte);
675 }
676 
677 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
678 {
679 	struct i915_page_directory *pd;
680 
681 	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
682 	if (unlikely(!pd))
683 		return ERR_PTR(-ENOMEM);
684 
685 	if (unlikely(setup_px(vm, pd))) {
686 		kfree(pd);
687 		return ERR_PTR(-ENOMEM);
688 	}
689 
690 	pd->used_pdes = 0;
691 	return pd;
692 }
693 
694 static void free_pd(struct i915_address_space *vm,
695 		    struct i915_page_directory *pd)
696 {
697 	cleanup_px(vm, pd);
698 	kfree(pd);
699 }
700 
701 static void gen8_initialize_pd(struct i915_address_space *vm,
702 			       struct i915_page_directory *pd)
703 {
704 	fill_px(vm, pd,
705 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
706 	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
707 }
708 
709 static int __pdp_init(struct i915_address_space *vm,
710 		      struct i915_page_directory_pointer *pdp)
711 {
712 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
713 
714 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
715 					    I915_GFP_ALLOW_FAIL);
716 	if (unlikely(!pdp->page_directory))
717 		return -ENOMEM;
718 
719 	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
720 
721 	return 0;
722 }
723 
724 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
725 {
726 	kfree(pdp->page_directory);
727 	pdp->page_directory = NULL;
728 }
729 
730 static inline bool use_4lvl(const struct i915_address_space *vm)
731 {
732 	return i915_vm_is_48bit(vm);
733 }
734 
735 static struct i915_page_directory_pointer *
736 alloc_pdp(struct i915_address_space *vm)
737 {
738 	struct i915_page_directory_pointer *pdp;
739 	int ret = -ENOMEM;
740 
741 	GEM_BUG_ON(!use_4lvl(vm));
742 
743 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
744 	if (!pdp)
745 		return ERR_PTR(-ENOMEM);
746 
747 	ret = __pdp_init(vm, pdp);
748 	if (ret)
749 		goto fail_bitmap;
750 
751 	ret = setup_px(vm, pdp);
752 	if (ret)
753 		goto fail_page_m;
754 
755 	return pdp;
756 
757 fail_page_m:
758 	__pdp_fini(pdp);
759 fail_bitmap:
760 	kfree(pdp);
761 
762 	return ERR_PTR(ret);
763 }
764 
765 static void free_pdp(struct i915_address_space *vm,
766 		     struct i915_page_directory_pointer *pdp)
767 {
768 	__pdp_fini(pdp);
769 
770 	if (!use_4lvl(vm))
771 		return;
772 
773 	cleanup_px(vm, pdp);
774 	kfree(pdp);
775 }
776 
777 static void gen8_initialize_pdp(struct i915_address_space *vm,
778 				struct i915_page_directory_pointer *pdp)
779 {
780 	gen8_ppgtt_pdpe_t scratch_pdpe;
781 
782 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
783 
784 	fill_px(vm, pdp, scratch_pdpe);
785 }
786 
787 static void gen8_initialize_pml4(struct i915_address_space *vm,
788 				 struct i915_pml4 *pml4)
789 {
790 	fill_px(vm, pml4,
791 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
792 	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
793 }
794 
795 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
796  * the page table structures, we mark them dirty so that
797  * context switching/execlist queuing code takes extra steps
798  * to ensure that tlbs are flushed.
799  */
800 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
801 {
802 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
803 }
804 
805 /* Removes entries from a single page table, releasing it if it's empty.
806  * Caller can use the return value to update higher-level entries.
807  */
808 static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
809 				struct i915_page_table *pt,
810 				u64 start, u64 length)
811 {
812 	unsigned int num_entries = gen8_pte_count(start, length);
813 	unsigned int pte = gen8_pte_index(start);
814 	unsigned int pte_end = pte + num_entries;
815 	gen8_pte_t *vaddr;
816 
817 	GEM_BUG_ON(num_entries > pt->used_ptes);
818 
819 	pt->used_ptes -= num_entries;
820 	if (!pt->used_ptes)
821 		return true;
822 
823 	vaddr = kmap_atomic_px(pt);
824 	while (pte < pte_end)
825 		vaddr[pte++] = vm->scratch_pte;
826 	kunmap_atomic(vaddr);
827 
828 	return false;
829 }
830 
831 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
832 			       struct i915_page_directory *pd,
833 			       struct i915_page_table *pt,
834 			       unsigned int pde)
835 {
836 	gen8_pde_t *vaddr;
837 
838 	pd->page_table[pde] = pt;
839 
840 	vaddr = kmap_atomic_px(pd);
841 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
842 	kunmap_atomic(vaddr);
843 }
844 
845 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
846 				struct i915_page_directory *pd,
847 				u64 start, u64 length)
848 {
849 	struct i915_page_table *pt;
850 	u32 pde;
851 
852 	gen8_for_each_pde(pt, pd, start, length, pde) {
853 		GEM_BUG_ON(pt == vm->scratch_pt);
854 
855 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
856 			continue;
857 
858 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
859 		GEM_BUG_ON(!pd->used_pdes);
860 		pd->used_pdes--;
861 
862 		free_pt(vm, pt);
863 	}
864 
865 	return !pd->used_pdes;
866 }
867 
868 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
869 				struct i915_page_directory_pointer *pdp,
870 				struct i915_page_directory *pd,
871 				unsigned int pdpe)
872 {
873 	gen8_ppgtt_pdpe_t *vaddr;
874 
875 	pdp->page_directory[pdpe] = pd;
876 	if (!use_4lvl(vm))
877 		return;
878 
879 	vaddr = kmap_atomic_px(pdp);
880 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
881 	kunmap_atomic(vaddr);
882 }
883 
884 /* Removes entries from a single page dir pointer, releasing it if it's empty.
885  * Caller can use the return value to update higher-level entries
886  */
887 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
888 				 struct i915_page_directory_pointer *pdp,
889 				 u64 start, u64 length)
890 {
891 	struct i915_page_directory *pd;
892 	unsigned int pdpe;
893 
894 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
895 		GEM_BUG_ON(pd == vm->scratch_pd);
896 
897 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
898 			continue;
899 
900 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
901 		GEM_BUG_ON(!pdp->used_pdpes);
902 		pdp->used_pdpes--;
903 
904 		free_pd(vm, pd);
905 	}
906 
907 	return !pdp->used_pdpes;
908 }
909 
910 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
911 				  u64 start, u64 length)
912 {
913 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
914 }
915 
916 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
917 				 struct i915_page_directory_pointer *pdp,
918 				 unsigned int pml4e)
919 {
920 	gen8_ppgtt_pml4e_t *vaddr;
921 
922 	pml4->pdps[pml4e] = pdp;
923 
924 	vaddr = kmap_atomic_px(pml4);
925 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
926 	kunmap_atomic(vaddr);
927 }
928 
929 /* Removes entries from a single pml4.
930  * This is the top-level structure in 4-level page tables used on gen8+.
931  * Empty entries are always scratch pml4e.
932  */
933 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
934 				  u64 start, u64 length)
935 {
936 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
937 	struct i915_pml4 *pml4 = &ppgtt->pml4;
938 	struct i915_page_directory_pointer *pdp;
939 	unsigned int pml4e;
940 
941 	GEM_BUG_ON(!use_4lvl(vm));
942 
943 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
944 		GEM_BUG_ON(pdp == vm->scratch_pdp);
945 
946 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
947 			continue;
948 
949 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
950 
951 		free_pdp(vm, pdp);
952 	}
953 }
954 
955 static inline struct sgt_dma {
956 	struct scatterlist *sg;
957 	dma_addr_t dma, max;
958 } sgt_dma(struct i915_vma *vma) {
959 	struct scatterlist *sg = vma->pages->sgl;
960 	dma_addr_t addr = sg_dma_address(sg);
961 	return (struct sgt_dma) { sg, addr, addr + sg->length };
962 }
963 
964 struct gen8_insert_pte {
965 	u16 pml4e;
966 	u16 pdpe;
967 	u16 pde;
968 	u16 pte;
969 };
970 
971 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
972 {
973 	return (struct gen8_insert_pte) {
974 		 gen8_pml4e_index(start),
975 		 gen8_pdpe_index(start),
976 		 gen8_pde_index(start),
977 		 gen8_pte_index(start),
978 	};
979 }
980 
981 static __always_inline bool
982 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
983 			      struct i915_page_directory_pointer *pdp,
984 			      struct sgt_dma *iter,
985 			      struct gen8_insert_pte *idx,
986 			      enum i915_cache_level cache_level,
987 			      u32 flags)
988 {
989 	struct i915_page_directory *pd;
990 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
991 	gen8_pte_t *vaddr;
992 	bool ret;
993 
994 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
995 	pd = pdp->page_directory[idx->pdpe];
996 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
997 	do {
998 		vaddr[idx->pte] = pte_encode | iter->dma;
999 
1000 		iter->dma += I915_GTT_PAGE_SIZE;
1001 		if (iter->dma >= iter->max) {
1002 			iter->sg = __sg_next(iter->sg);
1003 			if (!iter->sg) {
1004 				ret = false;
1005 				break;
1006 			}
1007 
1008 			iter->dma = sg_dma_address(iter->sg);
1009 			iter->max = iter->dma + iter->sg->length;
1010 		}
1011 
1012 		if (++idx->pte == GEN8_PTES) {
1013 			idx->pte = 0;
1014 
1015 			if (++idx->pde == I915_PDES) {
1016 				idx->pde = 0;
1017 
1018 				/* Limited by sg length for 3lvl */
1019 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1020 					idx->pdpe = 0;
1021 					ret = true;
1022 					break;
1023 				}
1024 
1025 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1026 				pd = pdp->page_directory[idx->pdpe];
1027 			}
1028 
1029 			kunmap_atomic(vaddr);
1030 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1031 		}
1032 	} while (1);
1033 	kunmap_atomic(vaddr);
1034 
1035 	return ret;
1036 }
1037 
1038 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1039 				   struct i915_vma *vma,
1040 				   enum i915_cache_level cache_level,
1041 				   u32 flags)
1042 {
1043 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1044 	struct sgt_dma iter = sgt_dma(vma);
1045 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1046 
1047 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1048 				      cache_level, flags);
1049 
1050 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1051 }
1052 
1053 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1054 					   struct i915_page_directory_pointer **pdps,
1055 					   struct sgt_dma *iter,
1056 					   enum i915_cache_level cache_level,
1057 					   u32 flags)
1058 {
1059 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1060 	u64 start = vma->node.start;
1061 	dma_addr_t rem = iter->sg->length;
1062 
1063 	do {
1064 		struct gen8_insert_pte idx = gen8_insert_pte(start);
1065 		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1066 		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1067 		unsigned int page_size;
1068 		bool maybe_64K = false;
1069 		gen8_pte_t encode = pte_encode;
1070 		gen8_pte_t *vaddr;
1071 		u16 index, max;
1072 
1073 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1074 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1075 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1076 			index = idx.pde;
1077 			max = I915_PDES;
1078 			page_size = I915_GTT_PAGE_SIZE_2M;
1079 
1080 			encode |= GEN8_PDE_PS_2M;
1081 
1082 			vaddr = kmap_atomic_px(pd);
1083 		} else {
1084 			struct i915_page_table *pt = pd->page_table[idx.pde];
1085 
1086 			index = idx.pte;
1087 			max = GEN8_PTES;
1088 			page_size = I915_GTT_PAGE_SIZE;
1089 
1090 			if (!index &&
1091 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1092 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1093 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1094 			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1095 				maybe_64K = true;
1096 
1097 			vaddr = kmap_atomic_px(pt);
1098 		}
1099 
1100 		do {
1101 			GEM_BUG_ON(iter->sg->length < page_size);
1102 			vaddr[index++] = encode | iter->dma;
1103 
1104 			start += page_size;
1105 			iter->dma += page_size;
1106 			rem -= page_size;
1107 			if (iter->dma >= iter->max) {
1108 				iter->sg = __sg_next(iter->sg);
1109 				if (!iter->sg)
1110 					break;
1111 
1112 				rem = iter->sg->length;
1113 				iter->dma = sg_dma_address(iter->sg);
1114 				iter->max = iter->dma + rem;
1115 
1116 				if (maybe_64K && index < max &&
1117 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1118 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1119 				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1120 					maybe_64K = false;
1121 
1122 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1123 					break;
1124 			}
1125 		} while (rem >= page_size && index < max);
1126 
1127 		kunmap_atomic(vaddr);
1128 
1129 		/*
1130 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1131 		 * filled whole page-table with 64K entries, or filled part of
1132 		 * it and have reached the end of the sg table and we have
1133 		 * enough padding.
1134 		 */
1135 		if (maybe_64K &&
1136 		    (index == max ||
1137 		     (i915_vm_has_scratch_64K(vma->vm) &&
1138 		      !iter->sg && IS_ALIGNED(vma->node.start +
1139 					      vma->node.size,
1140 					      I915_GTT_PAGE_SIZE_2M)))) {
1141 			vaddr = kmap_atomic_px(pd);
1142 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1143 			kunmap_atomic(vaddr);
1144 			page_size = I915_GTT_PAGE_SIZE_64K;
1145 
1146 			/*
1147 			 * We write all 4K page entries, even when using 64K
1148 			 * pages. In order to verify that the HW isn't cheating
1149 			 * by using the 4K PTE instead of the 64K PTE, we want
1150 			 * to remove all the surplus entries. If the HW skipped
1151 			 * the 64K PTE, it will read/write into the scratch page
1152 			 * instead - which we detect as missing results during
1153 			 * selftests.
1154 			 */
1155 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1156 				u16 i;
1157 
1158 				encode = vma->vm->scratch_pte;
1159 				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1160 
1161 				for (i = 1; i < index; i += 16)
1162 					memset64(vaddr + i, encode, 15);
1163 
1164 				kunmap_atomic(vaddr);
1165 			}
1166 		}
1167 
1168 		vma->page_sizes.gtt |= page_size;
1169 	} while (iter->sg);
1170 }
1171 
1172 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1173 				   struct i915_vma *vma,
1174 				   enum i915_cache_level cache_level,
1175 				   u32 flags)
1176 {
1177 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1178 	struct sgt_dma iter = sgt_dma(vma);
1179 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1180 
1181 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1182 		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
1183 					       flags);
1184 	} else {
1185 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1186 
1187 		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1188 						     &iter, &idx, cache_level,
1189 						     flags))
1190 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1191 
1192 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1193 	}
1194 }
1195 
1196 static void gen8_free_page_tables(struct i915_address_space *vm,
1197 				  struct i915_page_directory *pd)
1198 {
1199 	int i;
1200 
1201 	for (i = 0; i < I915_PDES; i++) {
1202 		if (pd->page_table[i] != vm->scratch_pt)
1203 			free_pt(vm, pd->page_table[i]);
1204 	}
1205 }
1206 
1207 static int gen8_init_scratch(struct i915_address_space *vm)
1208 {
1209 	int ret;
1210 
1211 	/*
1212 	 * If everybody agrees to not to write into the scratch page,
1213 	 * we can reuse it for all vm, keeping contexts and processes separate.
1214 	 */
1215 	if (vm->has_read_only &&
1216 	    vm->i915->kernel_context &&
1217 	    vm->i915->kernel_context->ppgtt) {
1218 		struct i915_address_space *clone =
1219 			&vm->i915->kernel_context->ppgtt->vm;
1220 
1221 		GEM_BUG_ON(!clone->has_read_only);
1222 
1223 		vm->scratch_page.order = clone->scratch_page.order;
1224 		vm->scratch_pte = clone->scratch_pte;
1225 		vm->scratch_pt  = clone->scratch_pt;
1226 		vm->scratch_pd  = clone->scratch_pd;
1227 		vm->scratch_pdp = clone->scratch_pdp;
1228 		return 0;
1229 	}
1230 
1231 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1232 	if (ret)
1233 		return ret;
1234 
1235 	vm->scratch_pte =
1236 		gen8_pte_encode(vm->scratch_page.daddr,
1237 				I915_CACHE_LLC,
1238 				PTE_READ_ONLY);
1239 
1240 	vm->scratch_pt = alloc_pt(vm);
1241 	if (IS_ERR(vm->scratch_pt)) {
1242 		ret = PTR_ERR(vm->scratch_pt);
1243 		goto free_scratch_page;
1244 	}
1245 
1246 	vm->scratch_pd = alloc_pd(vm);
1247 	if (IS_ERR(vm->scratch_pd)) {
1248 		ret = PTR_ERR(vm->scratch_pd);
1249 		goto free_pt;
1250 	}
1251 
1252 	if (use_4lvl(vm)) {
1253 		vm->scratch_pdp = alloc_pdp(vm);
1254 		if (IS_ERR(vm->scratch_pdp)) {
1255 			ret = PTR_ERR(vm->scratch_pdp);
1256 			goto free_pd;
1257 		}
1258 	}
1259 
1260 	gen8_initialize_pt(vm, vm->scratch_pt);
1261 	gen8_initialize_pd(vm, vm->scratch_pd);
1262 	if (use_4lvl(vm))
1263 		gen8_initialize_pdp(vm, vm->scratch_pdp);
1264 
1265 	return 0;
1266 
1267 free_pd:
1268 	free_pd(vm, vm->scratch_pd);
1269 free_pt:
1270 	free_pt(vm, vm->scratch_pt);
1271 free_scratch_page:
1272 	cleanup_scratch_page(vm);
1273 
1274 	return ret;
1275 }
1276 
1277 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1278 {
1279 	struct i915_address_space *vm = &ppgtt->vm;
1280 	struct drm_i915_private *dev_priv = vm->i915;
1281 	enum vgt_g2v_type msg;
1282 	int i;
1283 
1284 	if (use_4lvl(vm)) {
1285 		const u64 daddr = px_dma(&ppgtt->pml4);
1286 
1287 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1288 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1289 
1290 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1291 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1292 	} else {
1293 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1294 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1295 
1296 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1297 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1298 		}
1299 
1300 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1301 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1302 	}
1303 
1304 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1305 
1306 	return 0;
1307 }
1308 
1309 static void gen8_free_scratch(struct i915_address_space *vm)
1310 {
1311 	if (!vm->scratch_page.daddr)
1312 		return;
1313 
1314 	if (use_4lvl(vm))
1315 		free_pdp(vm, vm->scratch_pdp);
1316 	free_pd(vm, vm->scratch_pd);
1317 	free_pt(vm, vm->scratch_pt);
1318 	cleanup_scratch_page(vm);
1319 }
1320 
1321 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1322 				    struct i915_page_directory_pointer *pdp)
1323 {
1324 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1325 	int i;
1326 
1327 	for (i = 0; i < pdpes; i++) {
1328 		if (pdp->page_directory[i] == vm->scratch_pd)
1329 			continue;
1330 
1331 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1332 		free_pd(vm, pdp->page_directory[i]);
1333 	}
1334 
1335 	free_pdp(vm, pdp);
1336 }
1337 
1338 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1339 {
1340 	int i;
1341 
1342 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1343 		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1344 			continue;
1345 
1346 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1347 	}
1348 
1349 	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1350 }
1351 
1352 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1353 {
1354 	struct drm_i915_private *dev_priv = vm->i915;
1355 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1356 
1357 	if (intel_vgpu_active(dev_priv))
1358 		gen8_ppgtt_notify_vgt(ppgtt, false);
1359 
1360 	if (use_4lvl(vm))
1361 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1362 	else
1363 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1364 
1365 	gen8_free_scratch(vm);
1366 }
1367 
1368 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1369 			       struct i915_page_directory *pd,
1370 			       u64 start, u64 length)
1371 {
1372 	struct i915_page_table *pt;
1373 	u64 from = start;
1374 	unsigned int pde;
1375 
1376 	gen8_for_each_pde(pt, pd, start, length, pde) {
1377 		int count = gen8_pte_count(start, length);
1378 
1379 		if (pt == vm->scratch_pt) {
1380 			pd->used_pdes++;
1381 
1382 			pt = alloc_pt(vm);
1383 			if (IS_ERR(pt)) {
1384 				pd->used_pdes--;
1385 				goto unwind;
1386 			}
1387 
1388 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1389 				gen8_initialize_pt(vm, pt);
1390 
1391 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1392 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1393 		}
1394 
1395 		pt->used_ptes += count;
1396 	}
1397 	return 0;
1398 
1399 unwind:
1400 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1401 	return -ENOMEM;
1402 }
1403 
1404 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1405 				struct i915_page_directory_pointer *pdp,
1406 				u64 start, u64 length)
1407 {
1408 	struct i915_page_directory *pd;
1409 	u64 from = start;
1410 	unsigned int pdpe;
1411 	int ret;
1412 
1413 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1414 		if (pd == vm->scratch_pd) {
1415 			pdp->used_pdpes++;
1416 
1417 			pd = alloc_pd(vm);
1418 			if (IS_ERR(pd)) {
1419 				pdp->used_pdpes--;
1420 				goto unwind;
1421 			}
1422 
1423 			gen8_initialize_pd(vm, pd);
1424 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1425 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1426 
1427 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1428 		}
1429 
1430 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1431 		if (unlikely(ret))
1432 			goto unwind_pd;
1433 	}
1434 
1435 	return 0;
1436 
1437 unwind_pd:
1438 	if (!pd->used_pdes) {
1439 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1440 		GEM_BUG_ON(!pdp->used_pdpes);
1441 		pdp->used_pdpes--;
1442 		free_pd(vm, pd);
1443 	}
1444 unwind:
1445 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1446 	return -ENOMEM;
1447 }
1448 
1449 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1450 				 u64 start, u64 length)
1451 {
1452 	return gen8_ppgtt_alloc_pdp(vm,
1453 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1454 }
1455 
1456 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1457 				 u64 start, u64 length)
1458 {
1459 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1460 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1461 	struct i915_page_directory_pointer *pdp;
1462 	u64 from = start;
1463 	u32 pml4e;
1464 	int ret;
1465 
1466 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1467 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1468 			pdp = alloc_pdp(vm);
1469 			if (IS_ERR(pdp))
1470 				goto unwind;
1471 
1472 			gen8_initialize_pdp(vm, pdp);
1473 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1474 		}
1475 
1476 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1477 		if (unlikely(ret))
1478 			goto unwind_pdp;
1479 	}
1480 
1481 	return 0;
1482 
1483 unwind_pdp:
1484 	if (!pdp->used_pdpes) {
1485 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1486 		free_pdp(vm, pdp);
1487 	}
1488 unwind:
1489 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1490 	return -ENOMEM;
1491 }
1492 
1493 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1494 			  struct i915_page_directory_pointer *pdp,
1495 			  u64 start, u64 length,
1496 			  gen8_pte_t scratch_pte,
1497 			  struct seq_file *m)
1498 {
1499 	struct i915_address_space *vm = &ppgtt->vm;
1500 	struct i915_page_directory *pd;
1501 	u32 pdpe;
1502 
1503 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1504 		struct i915_page_table *pt;
1505 		u64 pd_len = length;
1506 		u64 pd_start = start;
1507 		u32 pde;
1508 
1509 		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1510 			continue;
1511 
1512 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1513 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1514 			u32 pte;
1515 			gen8_pte_t *pt_vaddr;
1516 
1517 			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1518 				continue;
1519 
1520 			pt_vaddr = kmap_atomic_px(pt);
1521 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1522 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1523 					  pde << GEN8_PDE_SHIFT |
1524 					  pte << GEN8_PTE_SHIFT);
1525 				int i;
1526 				bool found = false;
1527 
1528 				for (i = 0; i < 4; i++)
1529 					if (pt_vaddr[pte + i] != scratch_pte)
1530 						found = true;
1531 				if (!found)
1532 					continue;
1533 
1534 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1535 				for (i = 0; i < 4; i++) {
1536 					if (pt_vaddr[pte + i] != scratch_pte)
1537 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1538 					else
1539 						seq_puts(m, "  SCRATCH ");
1540 				}
1541 				seq_puts(m, "\n");
1542 			}
1543 			kunmap_atomic(pt_vaddr);
1544 		}
1545 	}
1546 }
1547 
1548 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1549 {
1550 	struct i915_address_space *vm = &ppgtt->vm;
1551 	const gen8_pte_t scratch_pte = vm->scratch_pte;
1552 	u64 start = 0, length = ppgtt->vm.total;
1553 
1554 	if (use_4lvl(vm)) {
1555 		u64 pml4e;
1556 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1557 		struct i915_page_directory_pointer *pdp;
1558 
1559 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1560 			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1561 				continue;
1562 
1563 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1564 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1565 		}
1566 	} else {
1567 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1568 	}
1569 }
1570 
1571 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1572 {
1573 	struct i915_address_space *vm = &ppgtt->vm;
1574 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1575 	struct i915_page_directory *pd;
1576 	u64 start = 0, length = ppgtt->vm.total;
1577 	u64 from = start;
1578 	unsigned int pdpe;
1579 
1580 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1581 		pd = alloc_pd(vm);
1582 		if (IS_ERR(pd))
1583 			goto unwind;
1584 
1585 		gen8_initialize_pd(vm, pd);
1586 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1587 		pdp->used_pdpes++;
1588 	}
1589 
1590 	pdp->used_pdpes++; /* never remove */
1591 	return 0;
1592 
1593 unwind:
1594 	start -= from;
1595 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1596 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1597 		free_pd(vm, pd);
1598 	}
1599 	pdp->used_pdpes = 0;
1600 	return -ENOMEM;
1601 }
1602 
1603 /*
1604  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1605  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1606  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1607  * space.
1608  *
1609  */
1610 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1611 {
1612 	struct i915_hw_ppgtt *ppgtt;
1613 	int err;
1614 
1615 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1616 	if (!ppgtt)
1617 		return ERR_PTR(-ENOMEM);
1618 
1619 	kref_init(&ppgtt->ref);
1620 
1621 	ppgtt->vm.i915 = i915;
1622 	ppgtt->vm.dma = &i915->drm.pdev->dev;
1623 
1624 	ppgtt->vm.total = HAS_FULL_48BIT_PPGTT(i915) ?
1625 		1ULL << 48 :
1626 		1ULL << 32;
1627 
1628 	/* From bdw, there is support for read-only pages in the PPGTT. */
1629 	ppgtt->vm.has_read_only = true;
1630 
1631 	i915_address_space_init(&ppgtt->vm, i915);
1632 
1633 	/* There are only few exceptions for gen >=6. chv and bxt.
1634 	 * And we are not sure about the latter so play safe for now.
1635 	 */
1636 	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1637 		ppgtt->vm.pt_kmap_wc = true;
1638 
1639 	err = gen8_init_scratch(&ppgtt->vm);
1640 	if (err)
1641 		goto err_free;
1642 
1643 	if (use_4lvl(&ppgtt->vm)) {
1644 		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
1645 		if (err)
1646 			goto err_scratch;
1647 
1648 		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1649 
1650 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1651 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1652 		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1653 	} else {
1654 		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
1655 		if (err)
1656 			goto err_scratch;
1657 
1658 		if (intel_vgpu_active(i915)) {
1659 			err = gen8_preallocate_top_level_pdp(ppgtt);
1660 			if (err) {
1661 				__pdp_fini(&ppgtt->pdp);
1662 				goto err_scratch;
1663 			}
1664 		}
1665 
1666 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1667 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1668 		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1669 	}
1670 
1671 	if (intel_vgpu_active(i915))
1672 		gen8_ppgtt_notify_vgt(ppgtt, true);
1673 
1674 	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1675 	ppgtt->debug_dump = gen8_dump_ppgtt;
1676 
1677 	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1678 	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1679 	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1680 	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1681 
1682 	return ppgtt;
1683 
1684 err_scratch:
1685 	gen8_free_scratch(&ppgtt->vm);
1686 err_free:
1687 	kfree(ppgtt);
1688 	return ERR_PTR(err);
1689 }
1690 
1691 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
1692 {
1693 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1694 	const gen6_pte_t scratch_pte = base->vm.scratch_pte;
1695 	struct i915_page_table *pt;
1696 	u32 pte, pde;
1697 
1698 	gen6_for_all_pdes(pt, &base->pd, pde) {
1699 		gen6_pte_t *vaddr;
1700 
1701 		if (pt == base->vm.scratch_pt)
1702 			continue;
1703 
1704 		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
1705 			u32 expected =
1706 				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
1707 				GEN6_PDE_VALID;
1708 			u32 pd_entry = readl(ppgtt->pd_addr + pde);
1709 
1710 			if (pd_entry != expected)
1711 				seq_printf(m,
1712 					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1713 					   pde,
1714 					   pd_entry,
1715 					   expected);
1716 
1717 			seq_printf(m, "\tPDE: %x\n", pd_entry);
1718 		}
1719 
1720 		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
1721 		for (pte = 0; pte < GEN6_PTES; pte += 4) {
1722 			int i;
1723 
1724 			for (i = 0; i < 4; i++)
1725 				if (vaddr[pte + i] != scratch_pte)
1726 					break;
1727 			if (i == 4)
1728 				continue;
1729 
1730 			seq_printf(m, "\t\t(%03d, %04d) %08llx: ",
1731 				   pde, pte,
1732 				   (pde * GEN6_PTES + pte) * I915_GTT_PAGE_SIZE);
1733 			for (i = 0; i < 4; i++) {
1734 				if (vaddr[pte + i] != scratch_pte)
1735 					seq_printf(m, " %08x", vaddr[pte + i]);
1736 				else
1737 					seq_puts(m, "  SCRATCH");
1738 			}
1739 			seq_puts(m, "\n");
1740 		}
1741 		kunmap_atomic(vaddr);
1742 	}
1743 }
1744 
1745 /* Write pde (index) from the page directory @pd to the page table @pt */
1746 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
1747 				  const unsigned int pde,
1748 				  const struct i915_page_table *pt)
1749 {
1750 	/* Caller needs to make sure the write completes if necessary */
1751 	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1752 		  ppgtt->pd_addr + pde);
1753 }
1754 
1755 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1756 {
1757 	struct intel_engine_cs *engine;
1758 	u32 ecochk, ecobits;
1759 	enum intel_engine_id id;
1760 
1761 	ecobits = I915_READ(GAC_ECO_BITS);
1762 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1763 
1764 	ecochk = I915_READ(GAM_ECOCHK);
1765 	if (IS_HASWELL(dev_priv)) {
1766 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1767 	} else {
1768 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1769 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1770 	}
1771 	I915_WRITE(GAM_ECOCHK, ecochk);
1772 
1773 	for_each_engine(engine, dev_priv, id) {
1774 		/* GFX_MODE is per-ring on gen7+ */
1775 		I915_WRITE(RING_MODE_GEN7(engine),
1776 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1777 	}
1778 }
1779 
1780 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1781 {
1782 	u32 ecochk, gab_ctl, ecobits;
1783 
1784 	ecobits = I915_READ(GAC_ECO_BITS);
1785 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1786 		   ECOBITS_PPGTT_CACHE64B);
1787 
1788 	gab_ctl = I915_READ(GAB_CTL);
1789 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1790 
1791 	ecochk = I915_READ(GAM_ECOCHK);
1792 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1793 
1794 	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
1795 		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1796 }
1797 
1798 /* PPGTT support for Sandybdrige/Gen6 and later */
1799 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1800 				   u64 start, u64 length)
1801 {
1802 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1803 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1804 	unsigned int pde = first_entry / GEN6_PTES;
1805 	unsigned int pte = first_entry % GEN6_PTES;
1806 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1807 	const gen6_pte_t scratch_pte = vm->scratch_pte;
1808 
1809 	while (num_entries) {
1810 		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1811 		const unsigned int end = min(pte + num_entries, GEN6_PTES);
1812 		const unsigned int count = end - pte;
1813 		gen6_pte_t *vaddr;
1814 
1815 		GEM_BUG_ON(pt == vm->scratch_pt);
1816 
1817 		num_entries -= count;
1818 
1819 		GEM_BUG_ON(count > pt->used_ptes);
1820 		pt->used_ptes -= count;
1821 		if (!pt->used_ptes)
1822 			ppgtt->scan_for_unused_pt = true;
1823 
1824 		/*
1825 		 * Note that the hw doesn't support removing PDE on the fly
1826 		 * (they are cached inside the context with no means to
1827 		 * invalidate the cache), so we can only reset the PTE
1828 		 * entries back to scratch.
1829 		 */
1830 
1831 		vaddr = kmap_atomic_px(pt);
1832 		do {
1833 			vaddr[pte++] = scratch_pte;
1834 		} while (pte < end);
1835 		kunmap_atomic(vaddr);
1836 
1837 		pte = 0;
1838 	}
1839 }
1840 
1841 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1842 				      struct i915_vma *vma,
1843 				      enum i915_cache_level cache_level,
1844 				      u32 flags)
1845 {
1846 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1847 	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1848 	unsigned act_pt = first_entry / GEN6_PTES;
1849 	unsigned act_pte = first_entry % GEN6_PTES;
1850 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1851 	struct sgt_dma iter = sgt_dma(vma);
1852 	gen6_pte_t *vaddr;
1853 
1854 	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
1855 
1856 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1857 	do {
1858 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1859 
1860 		iter.dma += I915_GTT_PAGE_SIZE;
1861 		if (iter.dma == iter.max) {
1862 			iter.sg = __sg_next(iter.sg);
1863 			if (!iter.sg)
1864 				break;
1865 
1866 			iter.dma = sg_dma_address(iter.sg);
1867 			iter.max = iter.dma + iter.sg->length;
1868 		}
1869 
1870 		if (++act_pte == GEN6_PTES) {
1871 			kunmap_atomic(vaddr);
1872 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1873 			act_pte = 0;
1874 		}
1875 	} while (1);
1876 	kunmap_atomic(vaddr);
1877 
1878 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1879 }
1880 
1881 static int gen6_alloc_va_range(struct i915_address_space *vm,
1882 			       u64 start, u64 length)
1883 {
1884 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1885 	struct i915_page_table *pt;
1886 	u64 from = start;
1887 	unsigned int pde;
1888 	bool flush = false;
1889 
1890 	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1891 		const unsigned int count = gen6_pte_count(start, length);
1892 
1893 		if (pt == vm->scratch_pt) {
1894 			pt = alloc_pt(vm);
1895 			if (IS_ERR(pt))
1896 				goto unwind_out;
1897 
1898 			gen6_initialize_pt(vm, pt);
1899 			ppgtt->base.pd.page_table[pde] = pt;
1900 
1901 			if (i915_vma_is_bound(ppgtt->vma,
1902 					      I915_VMA_GLOBAL_BIND)) {
1903 				gen6_write_pde(ppgtt, pde, pt);
1904 				flush = true;
1905 			}
1906 
1907 			GEM_BUG_ON(pt->used_ptes);
1908 		}
1909 
1910 		pt->used_ptes += count;
1911 	}
1912 
1913 	if (flush) {
1914 		mark_tlbs_dirty(&ppgtt->base);
1915 		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1916 	}
1917 
1918 	return 0;
1919 
1920 unwind_out:
1921 	gen6_ppgtt_clear_range(vm, from, start - from);
1922 	return -ENOMEM;
1923 }
1924 
1925 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1926 {
1927 	struct i915_address_space * const vm = &ppgtt->base.vm;
1928 	struct i915_page_table *unused;
1929 	u32 pde;
1930 	int ret;
1931 
1932 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1933 	if (ret)
1934 		return ret;
1935 
1936 	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1937 					 I915_CACHE_NONE,
1938 					 PTE_READ_ONLY);
1939 
1940 	vm->scratch_pt = alloc_pt(vm);
1941 	if (IS_ERR(vm->scratch_pt)) {
1942 		cleanup_scratch_page(vm);
1943 		return PTR_ERR(vm->scratch_pt);
1944 	}
1945 
1946 	gen6_initialize_pt(vm, vm->scratch_pt);
1947 	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
1948 		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1949 
1950 	return 0;
1951 }
1952 
1953 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1954 {
1955 	free_pt(vm, vm->scratch_pt);
1956 	cleanup_scratch_page(vm);
1957 }
1958 
1959 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1960 {
1961 	struct i915_page_table *pt;
1962 	u32 pde;
1963 
1964 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1965 		if (pt != ppgtt->base.vm.scratch_pt)
1966 			free_pt(&ppgtt->base.vm, pt);
1967 }
1968 
1969 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1970 {
1971 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1972 
1973 	i915_vma_destroy(ppgtt->vma);
1974 
1975 	gen6_ppgtt_free_pd(ppgtt);
1976 	gen6_ppgtt_free_scratch(vm);
1977 }
1978 
1979 static int pd_vma_set_pages(struct i915_vma *vma)
1980 {
1981 	vma->pages = ERR_PTR(-ENODEV);
1982 	return 0;
1983 }
1984 
1985 static void pd_vma_clear_pages(struct i915_vma *vma)
1986 {
1987 	GEM_BUG_ON(!vma->pages);
1988 
1989 	vma->pages = NULL;
1990 }
1991 
1992 static int pd_vma_bind(struct i915_vma *vma,
1993 		       enum i915_cache_level cache_level,
1994 		       u32 unused)
1995 {
1996 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1997 	struct gen6_hw_ppgtt *ppgtt = vma->private;
1998 	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1999 	struct i915_page_table *pt;
2000 	unsigned int pde;
2001 
2002 	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
2003 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2004 
2005 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2006 		gen6_write_pde(ppgtt, pde, pt);
2007 
2008 	mark_tlbs_dirty(&ppgtt->base);
2009 	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2010 
2011 	return 0;
2012 }
2013 
2014 static void pd_vma_unbind(struct i915_vma *vma)
2015 {
2016 	struct gen6_hw_ppgtt *ppgtt = vma->private;
2017 	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
2018 	struct i915_page_table *pt;
2019 	unsigned int pde;
2020 
2021 	if (!ppgtt->scan_for_unused_pt)
2022 		return;
2023 
2024 	/* Free all no longer used page tables */
2025 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
2026 		if (pt->used_ptes || pt == scratch_pt)
2027 			continue;
2028 
2029 		free_pt(&ppgtt->base.vm, pt);
2030 		ppgtt->base.pd.page_table[pde] = scratch_pt;
2031 	}
2032 
2033 	ppgtt->scan_for_unused_pt = false;
2034 }
2035 
2036 static const struct i915_vma_ops pd_vma_ops = {
2037 	.set_pages = pd_vma_set_pages,
2038 	.clear_pages = pd_vma_clear_pages,
2039 	.bind_vma = pd_vma_bind,
2040 	.unbind_vma = pd_vma_unbind,
2041 };
2042 
2043 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
2044 {
2045 	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
2046 	struct i915_ggtt *ggtt = &i915->ggtt;
2047 	struct i915_vma *vma;
2048 
2049 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
2050 	GEM_BUG_ON(size > ggtt->vm.total);
2051 
2052 	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
2053 	if (!vma)
2054 		return ERR_PTR(-ENOMEM);
2055 
2056 	init_request_active(&vma->last_fence, NULL);
2057 
2058 	vma->vm = &ggtt->vm;
2059 	vma->ops = &pd_vma_ops;
2060 	vma->private = ppgtt;
2061 
2062 	vma->active = RB_ROOT;
2063 
2064 	vma->size = size;
2065 	vma->fence_size = size;
2066 	vma->flags = I915_VMA_GGTT;
2067 	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
2068 
2069 	INIT_LIST_HEAD(&vma->obj_link);
2070 	list_add(&vma->vm_link, &vma->vm->unbound_list);
2071 
2072 	return vma;
2073 }
2074 
2075 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2076 {
2077 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2078 	int err;
2079 
2080 	/*
2081 	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
2082 	 * which will be pinned into every active context.
2083 	 * (When vma->pin_count becomes atomic, I expect we will naturally
2084 	 * need a larger, unpacked, type and kill this redundancy.)
2085 	 */
2086 	if (ppgtt->pin_count++)
2087 		return 0;
2088 
2089 	/*
2090 	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2091 	 * allocator works in address space sizes, so it's multiplied by page
2092 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2093 	 */
2094 	err = i915_vma_pin(ppgtt->vma,
2095 			   0, GEN6_PD_ALIGN,
2096 			   PIN_GLOBAL | PIN_HIGH);
2097 	if (err)
2098 		goto unpin;
2099 
2100 	return 0;
2101 
2102 unpin:
2103 	ppgtt->pin_count = 0;
2104 	return err;
2105 }
2106 
2107 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
2108 {
2109 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2110 
2111 	GEM_BUG_ON(!ppgtt->pin_count);
2112 	if (--ppgtt->pin_count)
2113 		return;
2114 
2115 	i915_vma_unpin(ppgtt->vma);
2116 }
2117 
2118 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2119 {
2120 	struct i915_ggtt * const ggtt = &i915->ggtt;
2121 	struct gen6_hw_ppgtt *ppgtt;
2122 	int err;
2123 
2124 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2125 	if (!ppgtt)
2126 		return ERR_PTR(-ENOMEM);
2127 
2128 	kref_init(&ppgtt->base.ref);
2129 
2130 	ppgtt->base.vm.i915 = i915;
2131 	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2132 
2133 	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
2134 
2135 	i915_address_space_init(&ppgtt->base.vm, i915);
2136 
2137 	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2138 	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2139 	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2140 	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2141 	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2142 
2143 	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2144 	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
2145 	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
2146 	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2147 
2148 	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2149 
2150 	err = gen6_ppgtt_init_scratch(ppgtt);
2151 	if (err)
2152 		goto err_free;
2153 
2154 	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2155 	if (IS_ERR(ppgtt->vma)) {
2156 		err = PTR_ERR(ppgtt->vma);
2157 		goto err_scratch;
2158 	}
2159 
2160 	return &ppgtt->base;
2161 
2162 err_scratch:
2163 	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2164 err_free:
2165 	kfree(ppgtt);
2166 	return ERR_PTR(err);
2167 }
2168 
2169 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2170 {
2171 	/* This function is for gtt related workarounds. This function is
2172 	 * called on driver load and after a GPU reset, so you can place
2173 	 * workarounds here even if they get overwritten by GPU reset.
2174 	 */
2175 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2176 	if (IS_BROADWELL(dev_priv))
2177 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2178 	else if (IS_CHERRYVIEW(dev_priv))
2179 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2180 	else if (IS_GEN9_LP(dev_priv))
2181 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2182 	else if (INTEL_GEN(dev_priv) >= 9)
2183 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2184 
2185 	/*
2186 	 * To support 64K PTEs we need to first enable the use of the
2187 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2188 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2189 	 * shouldn't be needed after GEN10.
2190 	 *
2191 	 * 64K pages were first introduced from BDW+, although technically they
2192 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2193 	 * 32K pages, but we don't currently have any support for it in our
2194 	 * driver.
2195 	 */
2196 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2197 	    INTEL_GEN(dev_priv) <= 10)
2198 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2199 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2200 			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2201 }
2202 
2203 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2204 {
2205 	gtt_write_workarounds(dev_priv);
2206 
2207 	if (IS_GEN6(dev_priv))
2208 		gen6_ppgtt_enable(dev_priv);
2209 	else if (IS_GEN7(dev_priv))
2210 		gen7_ppgtt_enable(dev_priv);
2211 
2212 	return 0;
2213 }
2214 
2215 static struct i915_hw_ppgtt *
2216 __hw_ppgtt_create(struct drm_i915_private *i915)
2217 {
2218 	if (INTEL_GEN(i915) < 8)
2219 		return gen6_ppgtt_create(i915);
2220 	else
2221 		return gen8_ppgtt_create(i915);
2222 }
2223 
2224 struct i915_hw_ppgtt *
2225 i915_ppgtt_create(struct drm_i915_private *i915,
2226 		  struct drm_i915_file_private *fpriv)
2227 {
2228 	struct i915_hw_ppgtt *ppgtt;
2229 
2230 	ppgtt = __hw_ppgtt_create(i915);
2231 	if (IS_ERR(ppgtt))
2232 		return ppgtt;
2233 
2234 	ppgtt->vm.file = fpriv;
2235 
2236 	trace_i915_ppgtt_create(&ppgtt->vm);
2237 
2238 	return ppgtt;
2239 }
2240 
2241 void i915_ppgtt_close(struct i915_address_space *vm)
2242 {
2243 	GEM_BUG_ON(vm->closed);
2244 	vm->closed = true;
2245 }
2246 
2247 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2248 {
2249 	struct list_head *phases[] = {
2250 		&vm->active_list,
2251 		&vm->inactive_list,
2252 		&vm->unbound_list,
2253 		NULL,
2254 	}, **phase;
2255 
2256 	vm->closed = true;
2257 	for (phase = phases; *phase; phase++) {
2258 		struct i915_vma *vma, *vn;
2259 
2260 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2261 			i915_vma_destroy(vma);
2262 	}
2263 }
2264 
2265 void i915_ppgtt_release(struct kref *kref)
2266 {
2267 	struct i915_hw_ppgtt *ppgtt =
2268 		container_of(kref, struct i915_hw_ppgtt, ref);
2269 
2270 	trace_i915_ppgtt_release(&ppgtt->vm);
2271 
2272 	ppgtt_destroy_vma(&ppgtt->vm);
2273 
2274 	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
2275 	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
2276 	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2277 
2278 	ppgtt->vm.cleanup(&ppgtt->vm);
2279 	i915_address_space_fini(&ppgtt->vm);
2280 	kfree(ppgtt);
2281 }
2282 
2283 /* Certain Gen5 chipsets require require idling the GPU before
2284  * unmapping anything from the GTT when VT-d is enabled.
2285  */
2286 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2287 {
2288 	/* Query intel_iommu to see if we need the workaround. Presumably that
2289 	 * was loaded first.
2290 	 */
2291 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2292 }
2293 
2294 static void gen6_check_faults(struct drm_i915_private *dev_priv)
2295 {
2296 	struct intel_engine_cs *engine;
2297 	enum intel_engine_id id;
2298 	u32 fault;
2299 
2300 	for_each_engine(engine, dev_priv, id) {
2301 		fault = I915_READ(RING_FAULT_REG(engine));
2302 		if (fault & RING_FAULT_VALID) {
2303 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2304 					 "\tAddr: 0x%08lx\n"
2305 					 "\tAddress space: %s\n"
2306 					 "\tSource ID: %d\n"
2307 					 "\tType: %d\n",
2308 					 fault & PAGE_MASK,
2309 					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2310 					 RING_FAULT_SRCID(fault),
2311 					 RING_FAULT_FAULT_TYPE(fault));
2312 		}
2313 	}
2314 }
2315 
2316 static void gen8_check_faults(struct drm_i915_private *dev_priv)
2317 {
2318 	u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2319 
2320 	if (fault & RING_FAULT_VALID) {
2321 		u32 fault_data0, fault_data1;
2322 		u64 fault_addr;
2323 
2324 		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2325 		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2326 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2327 			     ((u64)fault_data0 << 12);
2328 
2329 		DRM_DEBUG_DRIVER("Unexpected fault\n"
2330 				 "\tAddr: 0x%08x_%08x\n"
2331 				 "\tAddress space: %s\n"
2332 				 "\tEngine ID: %d\n"
2333 				 "\tSource ID: %d\n"
2334 				 "\tType: %d\n",
2335 				 upper_32_bits(fault_addr),
2336 				 lower_32_bits(fault_addr),
2337 				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2338 				 GEN8_RING_FAULT_ENGINE_ID(fault),
2339 				 RING_FAULT_SRCID(fault),
2340 				 RING_FAULT_FAULT_TYPE(fault));
2341 	}
2342 }
2343 
2344 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2345 {
2346 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
2347 	if (INTEL_GEN(dev_priv) >= 8)
2348 		gen8_check_faults(dev_priv);
2349 	else if (INTEL_GEN(dev_priv) >= 6)
2350 		gen6_check_faults(dev_priv);
2351 	else
2352 		return;
2353 
2354 	i915_clear_error_registers(dev_priv);
2355 }
2356 
2357 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2358 {
2359 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2360 
2361 	/* Don't bother messing with faults pre GEN6 as we have little
2362 	 * documentation supporting that it's a good idea.
2363 	 */
2364 	if (INTEL_GEN(dev_priv) < 6)
2365 		return;
2366 
2367 	i915_check_and_clear_faults(dev_priv);
2368 
2369 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2370 
2371 	i915_ggtt_invalidate(dev_priv);
2372 }
2373 
2374 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2375 			       struct sg_table *pages)
2376 {
2377 	do {
2378 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2379 				     pages->sgl, pages->nents,
2380 				     PCI_DMA_BIDIRECTIONAL,
2381 				     DMA_ATTR_NO_WARN))
2382 			return 0;
2383 
2384 		/* If the DMA remap fails, one cause can be that we have
2385 		 * too many objects pinned in a small remapping table,
2386 		 * such as swiotlb. Incrementally purge all other objects and
2387 		 * try again - if there are no more pages to remove from
2388 		 * the DMA remapper, i915_gem_shrink will return 0.
2389 		 */
2390 		GEM_BUG_ON(obj->mm.pages == pages);
2391 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2392 				 obj->base.size >> PAGE_SHIFT, NULL,
2393 				 I915_SHRINK_BOUND |
2394 				 I915_SHRINK_UNBOUND |
2395 				 I915_SHRINK_ACTIVE));
2396 
2397 	return -ENOSPC;
2398 }
2399 
2400 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2401 {
2402 	writeq(pte, addr);
2403 }
2404 
2405 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2406 				  dma_addr_t addr,
2407 				  u64 offset,
2408 				  enum i915_cache_level level,
2409 				  u32 unused)
2410 {
2411 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2412 	gen8_pte_t __iomem *pte =
2413 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2414 
2415 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2416 
2417 	ggtt->invalidate(vm->i915);
2418 }
2419 
2420 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2421 				     struct i915_vma *vma,
2422 				     enum i915_cache_level level,
2423 				     u32 flags)
2424 {
2425 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2426 	struct sgt_iter sgt_iter;
2427 	gen8_pte_t __iomem *gtt_entries;
2428 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2429 	dma_addr_t addr;
2430 
2431 	/*
2432 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2433 	 * not to allow the user to override access to a read only page.
2434 	 */
2435 
2436 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2437 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2438 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2439 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2440 
2441 	/*
2442 	 * We want to flush the TLBs only after we're certain all the PTE
2443 	 * updates have finished.
2444 	 */
2445 	ggtt->invalidate(vm->i915);
2446 }
2447 
2448 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2449 				  dma_addr_t addr,
2450 				  u64 offset,
2451 				  enum i915_cache_level level,
2452 				  u32 flags)
2453 {
2454 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2455 	gen6_pte_t __iomem *pte =
2456 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2457 
2458 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2459 
2460 	ggtt->invalidate(vm->i915);
2461 }
2462 
2463 /*
2464  * Binds an object into the global gtt with the specified cache level. The object
2465  * will be accessible to the GPU via commands whose operands reference offsets
2466  * within the global GTT as well as accessible by the GPU through the GMADR
2467  * mapped BAR (dev_priv->mm.gtt->gtt).
2468  */
2469 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2470 				     struct i915_vma *vma,
2471 				     enum i915_cache_level level,
2472 				     u32 flags)
2473 {
2474 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2475 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2476 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2477 	struct sgt_iter iter;
2478 	dma_addr_t addr;
2479 	for_each_sgt_dma(addr, iter, vma->pages)
2480 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2481 
2482 	/*
2483 	 * We want to flush the TLBs only after we're certain all the PTE
2484 	 * updates have finished.
2485 	 */
2486 	ggtt->invalidate(vm->i915);
2487 }
2488 
2489 static void nop_clear_range(struct i915_address_space *vm,
2490 			    u64 start, u64 length)
2491 {
2492 }
2493 
2494 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2495 				  u64 start, u64 length)
2496 {
2497 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2498 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2499 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2500 	const gen8_pte_t scratch_pte = vm->scratch_pte;
2501 	gen8_pte_t __iomem *gtt_base =
2502 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2503 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2504 	int i;
2505 
2506 	if (WARN(num_entries > max_entries,
2507 		 "First entry = %d; Num entries = %d (max=%d)\n",
2508 		 first_entry, num_entries, max_entries))
2509 		num_entries = max_entries;
2510 
2511 	for (i = 0; i < num_entries; i++)
2512 		gen8_set_pte(&gtt_base[i], scratch_pte);
2513 }
2514 
2515 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2516 {
2517 	struct drm_i915_private *dev_priv = vm->i915;
2518 
2519 	/*
2520 	 * Make sure the internal GAM fifo has been cleared of all GTT
2521 	 * writes before exiting stop_machine(). This guarantees that
2522 	 * any aperture accesses waiting to start in another process
2523 	 * cannot back up behind the GTT writes causing a hang.
2524 	 * The register can be any arbitrary GAM register.
2525 	 */
2526 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2527 }
2528 
2529 struct insert_page {
2530 	struct i915_address_space *vm;
2531 	dma_addr_t addr;
2532 	u64 offset;
2533 	enum i915_cache_level level;
2534 };
2535 
2536 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2537 {
2538 	struct insert_page *arg = _arg;
2539 
2540 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2541 	bxt_vtd_ggtt_wa(arg->vm);
2542 
2543 	return 0;
2544 }
2545 
2546 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2547 					  dma_addr_t addr,
2548 					  u64 offset,
2549 					  enum i915_cache_level level,
2550 					  u32 unused)
2551 {
2552 	struct insert_page arg = { vm, addr, offset, level };
2553 
2554 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2555 }
2556 
2557 struct insert_entries {
2558 	struct i915_address_space *vm;
2559 	struct i915_vma *vma;
2560 	enum i915_cache_level level;
2561 	u32 flags;
2562 };
2563 
2564 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2565 {
2566 	struct insert_entries *arg = _arg;
2567 
2568 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2569 	bxt_vtd_ggtt_wa(arg->vm);
2570 
2571 	return 0;
2572 }
2573 
2574 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2575 					     struct i915_vma *vma,
2576 					     enum i915_cache_level level,
2577 					     u32 flags)
2578 {
2579 	struct insert_entries arg = { vm, vma, level, flags };
2580 
2581 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2582 }
2583 
2584 struct clear_range {
2585 	struct i915_address_space *vm;
2586 	u64 start;
2587 	u64 length;
2588 };
2589 
2590 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2591 {
2592 	struct clear_range *arg = _arg;
2593 
2594 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2595 	bxt_vtd_ggtt_wa(arg->vm);
2596 
2597 	return 0;
2598 }
2599 
2600 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2601 					  u64 start,
2602 					  u64 length)
2603 {
2604 	struct clear_range arg = { vm, start, length };
2605 
2606 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2607 }
2608 
2609 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2610 				  u64 start, u64 length)
2611 {
2612 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2613 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2614 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2615 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2616 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2617 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2618 	int i;
2619 
2620 	if (WARN(num_entries > max_entries,
2621 		 "First entry = %d; Num entries = %d (max=%d)\n",
2622 		 first_entry, num_entries, max_entries))
2623 		num_entries = max_entries;
2624 
2625 	scratch_pte = vm->scratch_pte;
2626 
2627 	for (i = 0; i < num_entries; i++)
2628 		iowrite32(scratch_pte, &gtt_base[i]);
2629 }
2630 
2631 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2632 				  dma_addr_t addr,
2633 				  u64 offset,
2634 				  enum i915_cache_level cache_level,
2635 				  u32 unused)
2636 {
2637 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2638 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2639 
2640 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2641 }
2642 
2643 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2644 				     struct i915_vma *vma,
2645 				     enum i915_cache_level cache_level,
2646 				     u32 unused)
2647 {
2648 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2649 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2650 
2651 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2652 				    flags);
2653 }
2654 
2655 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2656 				  u64 start, u64 length)
2657 {
2658 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2659 }
2660 
2661 static int ggtt_bind_vma(struct i915_vma *vma,
2662 			 enum i915_cache_level cache_level,
2663 			 u32 flags)
2664 {
2665 	struct drm_i915_private *i915 = vma->vm->i915;
2666 	struct drm_i915_gem_object *obj = vma->obj;
2667 	u32 pte_flags;
2668 
2669 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2670 	pte_flags = 0;
2671 	if (i915_gem_object_is_readonly(obj))
2672 		pte_flags |= PTE_READ_ONLY;
2673 
2674 	intel_runtime_pm_get(i915);
2675 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2676 	intel_runtime_pm_put(i915);
2677 
2678 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2679 
2680 	/*
2681 	 * Without aliasing PPGTT there's no difference between
2682 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2683 	 * upgrade to both bound if we bind either to avoid double-binding.
2684 	 */
2685 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2686 
2687 	return 0;
2688 }
2689 
2690 static void ggtt_unbind_vma(struct i915_vma *vma)
2691 {
2692 	struct drm_i915_private *i915 = vma->vm->i915;
2693 
2694 	intel_runtime_pm_get(i915);
2695 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2696 	intel_runtime_pm_put(i915);
2697 }
2698 
2699 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2700 				 enum i915_cache_level cache_level,
2701 				 u32 flags)
2702 {
2703 	struct drm_i915_private *i915 = vma->vm->i915;
2704 	u32 pte_flags;
2705 	int ret;
2706 
2707 	/* Currently applicable only to VLV */
2708 	pte_flags = 0;
2709 	if (i915_gem_object_is_readonly(vma->obj))
2710 		pte_flags |= PTE_READ_ONLY;
2711 
2712 	if (flags & I915_VMA_LOCAL_BIND) {
2713 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2714 
2715 		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2716 			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2717 							   vma->node.start,
2718 							   vma->size);
2719 			if (ret)
2720 				return ret;
2721 		}
2722 
2723 		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2724 					  pte_flags);
2725 	}
2726 
2727 	if (flags & I915_VMA_GLOBAL_BIND) {
2728 		intel_runtime_pm_get(i915);
2729 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2730 		intel_runtime_pm_put(i915);
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2737 {
2738 	struct drm_i915_private *i915 = vma->vm->i915;
2739 
2740 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2741 		intel_runtime_pm_get(i915);
2742 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2743 		intel_runtime_pm_put(i915);
2744 	}
2745 
2746 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2747 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2748 
2749 		vm->clear_range(vm, vma->node.start, vma->size);
2750 	}
2751 }
2752 
2753 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2754 			       struct sg_table *pages)
2755 {
2756 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2757 	struct device *kdev = &dev_priv->drm.pdev->dev;
2758 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2759 
2760 	if (unlikely(ggtt->do_idle_maps)) {
2761 		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2762 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2763 			/* Wait a bit, in hopes it avoids the hang */
2764 			udelay(10);
2765 		}
2766 	}
2767 
2768 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2769 }
2770 
2771 static int ggtt_set_pages(struct i915_vma *vma)
2772 {
2773 	int ret;
2774 
2775 	GEM_BUG_ON(vma->pages);
2776 
2777 	ret = i915_get_ggtt_vma_pages(vma);
2778 	if (ret)
2779 		return ret;
2780 
2781 	vma->page_sizes = vma->obj->mm.page_sizes;
2782 
2783 	return 0;
2784 }
2785 
2786 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2787 				  unsigned long color,
2788 				  u64 *start,
2789 				  u64 *end)
2790 {
2791 	if (node->allocated && node->color != color)
2792 		*start += I915_GTT_PAGE_SIZE;
2793 
2794 	/* Also leave a space between the unallocated reserved node after the
2795 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2796 	 * to insert a guard page to prevent prefetches crossing over the
2797 	 * GTT boundary.
2798 	 */
2799 	node = list_next_entry(node, node_list);
2800 	if (node->color != color)
2801 		*end -= I915_GTT_PAGE_SIZE;
2802 }
2803 
2804 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2805 {
2806 	struct i915_ggtt *ggtt = &i915->ggtt;
2807 	struct i915_hw_ppgtt *ppgtt;
2808 	int err;
2809 
2810 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2811 	if (IS_ERR(ppgtt))
2812 		return PTR_ERR(ppgtt);
2813 
2814 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2815 		err = -ENODEV;
2816 		goto err_ppgtt;
2817 	}
2818 
2819 	/*
2820 	 * Note we only pre-allocate as far as the end of the global
2821 	 * GTT. On 48b / 4-level page-tables, the difference is very,
2822 	 * very significant! We have to preallocate as GVT/vgpu does
2823 	 * not like the page directory disappearing.
2824 	 */
2825 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2826 	if (err)
2827 		goto err_ppgtt;
2828 
2829 	i915->mm.aliasing_ppgtt = ppgtt;
2830 
2831 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2832 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2833 
2834 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2835 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2836 
2837 	return 0;
2838 
2839 err_ppgtt:
2840 	i915_ppgtt_put(ppgtt);
2841 	return err;
2842 }
2843 
2844 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2845 {
2846 	struct i915_ggtt *ggtt = &i915->ggtt;
2847 	struct i915_hw_ppgtt *ppgtt;
2848 
2849 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2850 	if (!ppgtt)
2851 		return;
2852 
2853 	i915_ppgtt_put(ppgtt);
2854 
2855 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2856 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2857 }
2858 
2859 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2860 {
2861 	/* Let GEM Manage all of the aperture.
2862 	 *
2863 	 * However, leave one page at the end still bound to the scratch page.
2864 	 * There are a number of places where the hardware apparently prefetches
2865 	 * past the end of the object, and we've seen multiple hangs with the
2866 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2867 	 * aperture.  One page should be enough to keep any prefetching inside
2868 	 * of the aperture.
2869 	 */
2870 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2871 	unsigned long hole_start, hole_end;
2872 	struct drm_mm_node *entry;
2873 	int ret;
2874 
2875 	/*
2876 	 * GuC requires all resources that we're sharing with it to be placed in
2877 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
2878 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2879 	 * why.
2880 	 */
2881 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2882 			       intel_guc_reserved_gtt_size(&dev_priv->guc));
2883 
2884 	ret = intel_vgt_balloon(dev_priv);
2885 	if (ret)
2886 		return ret;
2887 
2888 	/* Reserve a mappable slot for our lockless error capture */
2889 	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2890 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2891 					  0, ggtt->mappable_end,
2892 					  DRM_MM_INSERT_LOW);
2893 	if (ret)
2894 		return ret;
2895 
2896 	/* Clear any non-preallocated blocks */
2897 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2898 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2899 			      hole_start, hole_end);
2900 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
2901 				     hole_end - hole_start);
2902 	}
2903 
2904 	/* And finally clear the reserved guard page */
2905 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2906 
2907 	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2908 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2909 		if (ret)
2910 			goto err;
2911 	}
2912 
2913 	return 0;
2914 
2915 err:
2916 	drm_mm_remove_node(&ggtt->error_capture);
2917 	return ret;
2918 }
2919 
2920 /**
2921  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2922  * @dev_priv: i915 device
2923  */
2924 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2925 {
2926 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2927 	struct i915_vma *vma, *vn;
2928 	struct pagevec *pvec;
2929 
2930 	ggtt->vm.closed = true;
2931 
2932 	mutex_lock(&dev_priv->drm.struct_mutex);
2933 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2934 
2935 	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
2936 	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2937 		WARN_ON(i915_vma_unbind(vma));
2938 
2939 	if (drm_mm_node_allocated(&ggtt->error_capture))
2940 		drm_mm_remove_node(&ggtt->error_capture);
2941 
2942 	if (drm_mm_initialized(&ggtt->vm.mm)) {
2943 		intel_vgt_deballoon(dev_priv);
2944 		i915_address_space_fini(&ggtt->vm);
2945 	}
2946 
2947 	ggtt->vm.cleanup(&ggtt->vm);
2948 
2949 	pvec = &dev_priv->mm.wc_stash.pvec;
2950 	if (pvec->nr) {
2951 		set_pages_array_wb(pvec->pages, pvec->nr);
2952 		__pagevec_release(pvec);
2953 	}
2954 
2955 	mutex_unlock(&dev_priv->drm.struct_mutex);
2956 
2957 	arch_phys_wc_del(ggtt->mtrr);
2958 	io_mapping_fini(&ggtt->iomap);
2959 
2960 	i915_gem_cleanup_stolen(dev_priv);
2961 }
2962 
2963 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2964 {
2965 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2966 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2967 	return snb_gmch_ctl << 20;
2968 }
2969 
2970 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2971 {
2972 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2973 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2974 	if (bdw_gmch_ctl)
2975 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2976 
2977 #ifdef CONFIG_X86_32
2978 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2979 	if (bdw_gmch_ctl > 4)
2980 		bdw_gmch_ctl = 4;
2981 #endif
2982 
2983 	return bdw_gmch_ctl << 20;
2984 }
2985 
2986 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2987 {
2988 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2989 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2990 
2991 	if (gmch_ctrl)
2992 		return 1 << (20 + gmch_ctrl);
2993 
2994 	return 0;
2995 }
2996 
2997 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2998 {
2999 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3000 	struct pci_dev *pdev = dev_priv->drm.pdev;
3001 	phys_addr_t phys_addr;
3002 	int ret;
3003 
3004 	/* For Modern GENs the PTEs and register space are split in the BAR */
3005 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
3006 
3007 	/*
3008 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
3009 	 * will be dropped. For WC mappings in general we have 64 byte burst
3010 	 * writes when the WC buffer is flushed, so we can't use it, but have to
3011 	 * resort to an uncached mapping. The WC issue is easily caught by the
3012 	 * readback check when writing GTT PTE entries.
3013 	 */
3014 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3015 		ggtt->gsm = ioremap_nocache(phys_addr, size);
3016 	else
3017 		ggtt->gsm = ioremap_wc(phys_addr, size);
3018 	if (!ggtt->gsm) {
3019 		DRM_ERROR("Failed to map the ggtt page table\n");
3020 		return -ENOMEM;
3021 	}
3022 
3023 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3024 	if (ret) {
3025 		DRM_ERROR("Scratch setup failed\n");
3026 		/* iounmap will also get called at remove, but meh */
3027 		iounmap(ggtt->gsm);
3028 		return ret;
3029 	}
3030 
3031 	ggtt->vm.scratch_pte =
3032 		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
3033 				    I915_CACHE_NONE, 0);
3034 
3035 	return 0;
3036 }
3037 
3038 static struct intel_ppat_entry *
3039 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3040 {
3041 	struct intel_ppat_entry *entry = &ppat->entries[index];
3042 
3043 	GEM_BUG_ON(index >= ppat->max_entries);
3044 	GEM_BUG_ON(test_bit(index, ppat->used));
3045 
3046 	entry->ppat = ppat;
3047 	entry->value = value;
3048 	kref_init(&entry->ref);
3049 	set_bit(index, ppat->used);
3050 	set_bit(index, ppat->dirty);
3051 
3052 	return entry;
3053 }
3054 
3055 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3056 {
3057 	struct intel_ppat *ppat = entry->ppat;
3058 	unsigned int index = entry - ppat->entries;
3059 
3060 	GEM_BUG_ON(index >= ppat->max_entries);
3061 	GEM_BUG_ON(!test_bit(index, ppat->used));
3062 
3063 	entry->value = ppat->clear_value;
3064 	clear_bit(index, ppat->used);
3065 	set_bit(index, ppat->dirty);
3066 }
3067 
3068 /**
3069  * intel_ppat_get - get a usable PPAT entry
3070  * @i915: i915 device instance
3071  * @value: the PPAT value required by the caller
3072  *
3073  * The function tries to search if there is an existing PPAT entry which
3074  * matches with the required value. If perfectly matched, the existing PPAT
3075  * entry will be used. If only partially matched, it will try to check if
3076  * there is any available PPAT index. If yes, it will allocate a new PPAT
3077  * index for the required entry and update the HW. If not, the partially
3078  * matched entry will be used.
3079  */
3080 const struct intel_ppat_entry *
3081 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3082 {
3083 	struct intel_ppat *ppat = &i915->ppat;
3084 	struct intel_ppat_entry *entry = NULL;
3085 	unsigned int scanned, best_score;
3086 	int i;
3087 
3088 	GEM_BUG_ON(!ppat->max_entries);
3089 
3090 	scanned = best_score = 0;
3091 	for_each_set_bit(i, ppat->used, ppat->max_entries) {
3092 		unsigned int score;
3093 
3094 		score = ppat->match(ppat->entries[i].value, value);
3095 		if (score > best_score) {
3096 			entry = &ppat->entries[i];
3097 			if (score == INTEL_PPAT_PERFECT_MATCH) {
3098 				kref_get(&entry->ref);
3099 				return entry;
3100 			}
3101 			best_score = score;
3102 		}
3103 		scanned++;
3104 	}
3105 
3106 	if (scanned == ppat->max_entries) {
3107 		if (!entry)
3108 			return ERR_PTR(-ENOSPC);
3109 
3110 		kref_get(&entry->ref);
3111 		return entry;
3112 	}
3113 
3114 	i = find_first_zero_bit(ppat->used, ppat->max_entries);
3115 	entry = __alloc_ppat_entry(ppat, i, value);
3116 	ppat->update_hw(i915);
3117 	return entry;
3118 }
3119 
3120 static void release_ppat(struct kref *kref)
3121 {
3122 	struct intel_ppat_entry *entry =
3123 		container_of(kref, struct intel_ppat_entry, ref);
3124 	struct drm_i915_private *i915 = entry->ppat->i915;
3125 
3126 	__free_ppat_entry(entry);
3127 	entry->ppat->update_hw(i915);
3128 }
3129 
3130 /**
3131  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3132  * @entry: an intel PPAT entry
3133  *
3134  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3135  * entry is dynamically allocated, its reference count will be decreased. Once
3136  * the reference count becomes into zero, the PPAT index becomes free again.
3137  */
3138 void intel_ppat_put(const struct intel_ppat_entry *entry)
3139 {
3140 	struct intel_ppat *ppat = entry->ppat;
3141 	unsigned int index = entry - ppat->entries;
3142 
3143 	GEM_BUG_ON(!ppat->max_entries);
3144 
3145 	kref_put(&ppat->entries[index].ref, release_ppat);
3146 }
3147 
3148 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3149 {
3150 	struct intel_ppat *ppat = &dev_priv->ppat;
3151 	int i;
3152 
3153 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3154 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3155 		clear_bit(i, ppat->dirty);
3156 	}
3157 }
3158 
3159 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3160 {
3161 	struct intel_ppat *ppat = &dev_priv->ppat;
3162 	u64 pat = 0;
3163 	int i;
3164 
3165 	for (i = 0; i < ppat->max_entries; i++)
3166 		pat |= GEN8_PPAT(i, ppat->entries[i].value);
3167 
3168 	bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3169 
3170 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3171 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3172 }
3173 
3174 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3175 {
3176 	unsigned int score = 0;
3177 	enum {
3178 		AGE_MATCH = BIT(0),
3179 		TC_MATCH = BIT(1),
3180 		CA_MATCH = BIT(2),
3181 	};
3182 
3183 	/* Cache attribute has to be matched. */
3184 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3185 		return 0;
3186 
3187 	score |= CA_MATCH;
3188 
3189 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3190 		score |= TC_MATCH;
3191 
3192 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3193 		score |= AGE_MATCH;
3194 
3195 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3196 		return INTEL_PPAT_PERFECT_MATCH;
3197 
3198 	return score;
3199 }
3200 
3201 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3202 {
3203 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3204 		INTEL_PPAT_PERFECT_MATCH : 0;
3205 }
3206 
3207 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3208 {
3209 	ppat->max_entries = 8;
3210 	ppat->update_hw = cnl_private_pat_update_hw;
3211 	ppat->match = bdw_private_pat_match;
3212 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3213 
3214 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3215 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3216 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3217 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3218 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3219 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3220 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3221 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3222 }
3223 
3224 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3225  * bits. When using advanced contexts each context stores its own PAT, but
3226  * writing this data shouldn't be harmful even in those cases. */
3227 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3228 {
3229 	ppat->max_entries = 8;
3230 	ppat->update_hw = bdw_private_pat_update_hw;
3231 	ppat->match = bdw_private_pat_match;
3232 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3233 
3234 	if (!HAS_PPGTT(ppat->i915)) {
3235 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3236 		 * so RTL will always use the value corresponding to
3237 		 * pat_sel = 000".
3238 		 * So let's disable cache for GGTT to avoid screen corruptions.
3239 		 * MOCS still can be used though.
3240 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3241 		 * before this patch, i.e. the same uncached + snooping access
3242 		 * like on gen6/7 seems to be in effect.
3243 		 * - So this just fixes blitter/render access. Again it looks
3244 		 * like it's not just uncached access, but uncached + snooping.
3245 		 * So we can still hold onto all our assumptions wrt cpu
3246 		 * clflushing on LLC machines.
3247 		 */
3248 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3249 		return;
3250 	}
3251 
3252 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3253 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3254 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3255 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3256 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3257 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3258 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3259 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3260 }
3261 
3262 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3263 {
3264 	ppat->max_entries = 8;
3265 	ppat->update_hw = bdw_private_pat_update_hw;
3266 	ppat->match = chv_private_pat_match;
3267 	ppat->clear_value = CHV_PPAT_SNOOP;
3268 
3269 	/*
3270 	 * Map WB on BDW to snooped on CHV.
3271 	 *
3272 	 * Only the snoop bit has meaning for CHV, the rest is
3273 	 * ignored.
3274 	 *
3275 	 * The hardware will never snoop for certain types of accesses:
3276 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3277 	 * - PPGTT page tables
3278 	 * - some other special cycles
3279 	 *
3280 	 * As with BDW, we also need to consider the following for GT accesses:
3281 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3282 	 * so RTL will always use the value corresponding to
3283 	 * pat_sel = 000".
3284 	 * Which means we must set the snoop bit in PAT entry 0
3285 	 * in order to keep the global status page working.
3286 	 */
3287 
3288 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3289 	__alloc_ppat_entry(ppat, 1, 0);
3290 	__alloc_ppat_entry(ppat, 2, 0);
3291 	__alloc_ppat_entry(ppat, 3, 0);
3292 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3293 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3294 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3295 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3296 }
3297 
3298 static void gen6_gmch_remove(struct i915_address_space *vm)
3299 {
3300 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3301 
3302 	iounmap(ggtt->gsm);
3303 	cleanup_scratch_page(vm);
3304 }
3305 
3306 static void setup_private_pat(struct drm_i915_private *dev_priv)
3307 {
3308 	struct intel_ppat *ppat = &dev_priv->ppat;
3309 	int i;
3310 
3311 	ppat->i915 = dev_priv;
3312 
3313 	if (INTEL_GEN(dev_priv) >= 10)
3314 		cnl_setup_private_ppat(ppat);
3315 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3316 		chv_setup_private_ppat(ppat);
3317 	else
3318 		bdw_setup_private_ppat(ppat);
3319 
3320 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3321 
3322 	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3323 		ppat->entries[i].value = ppat->clear_value;
3324 		ppat->entries[i].ppat = ppat;
3325 		set_bit(i, ppat->dirty);
3326 	}
3327 
3328 	ppat->update_hw(dev_priv);
3329 }
3330 
3331 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3332 {
3333 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3334 	struct pci_dev *pdev = dev_priv->drm.pdev;
3335 	unsigned int size;
3336 	u16 snb_gmch_ctl;
3337 	int err;
3338 
3339 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3340 	ggtt->gmadr =
3341 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3342 						 pci_resource_len(pdev, 2));
3343 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3344 
3345 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3346 	if (!err)
3347 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3348 	if (err)
3349 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3350 
3351 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3352 	if (IS_CHERRYVIEW(dev_priv))
3353 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3354 	else
3355 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3356 
3357 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3358 	ggtt->vm.cleanup = gen6_gmch_remove;
3359 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
3360 	ggtt->vm.clear_range = nop_clear_range;
3361 	if (intel_scanout_needs_vtd_wa(dev_priv))
3362 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3363 
3364 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3365 
3366 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3367 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3368 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3369 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3370 		if (ggtt->vm.clear_range != nop_clear_range)
3371 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3372 
3373 		/* Prevent recursively calling stop_machine() and deadlocks. */
3374 		dev_info(dev_priv->drm.dev,
3375 			 "Disabling error capture for VT-d workaround\n");
3376 		i915_disable_error_state(dev_priv, -ENODEV);
3377 	}
3378 
3379 	ggtt->invalidate = gen6_ggtt_invalidate;
3380 
3381 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3382 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3383 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3384 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3385 
3386 	ggtt->vm.pte_encode = gen8_pte_encode;
3387 
3388 	setup_private_pat(dev_priv);
3389 
3390 	return ggtt_probe_common(ggtt, size);
3391 }
3392 
3393 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3394 {
3395 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3396 	struct pci_dev *pdev = dev_priv->drm.pdev;
3397 	unsigned int size;
3398 	u16 snb_gmch_ctl;
3399 	int err;
3400 
3401 	ggtt->gmadr =
3402 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3403 						 pci_resource_len(pdev, 2));
3404 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3405 
3406 	/* 64/512MB is the current min/max we actually know of, but this is just
3407 	 * a coarse sanity check.
3408 	 */
3409 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3410 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3411 		return -ENXIO;
3412 	}
3413 
3414 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3415 	if (!err)
3416 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3417 	if (err)
3418 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3419 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3420 
3421 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3422 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3423 
3424 	ggtt->vm.clear_range = gen6_ggtt_clear_range;
3425 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
3426 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3427 	ggtt->vm.cleanup = gen6_gmch_remove;
3428 
3429 	ggtt->invalidate = gen6_ggtt_invalidate;
3430 
3431 	if (HAS_EDRAM(dev_priv))
3432 		ggtt->vm.pte_encode = iris_pte_encode;
3433 	else if (IS_HASWELL(dev_priv))
3434 		ggtt->vm.pte_encode = hsw_pte_encode;
3435 	else if (IS_VALLEYVIEW(dev_priv))
3436 		ggtt->vm.pte_encode = byt_pte_encode;
3437 	else if (INTEL_GEN(dev_priv) >= 7)
3438 		ggtt->vm.pte_encode = ivb_pte_encode;
3439 	else
3440 		ggtt->vm.pte_encode = snb_pte_encode;
3441 
3442 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3443 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3444 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3445 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3446 
3447 	return ggtt_probe_common(ggtt, size);
3448 }
3449 
3450 static void i915_gmch_remove(struct i915_address_space *vm)
3451 {
3452 	intel_gmch_remove();
3453 }
3454 
3455 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3456 {
3457 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3458 	phys_addr_t gmadr_base;
3459 	int ret;
3460 
3461 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3462 	if (!ret) {
3463 		DRM_ERROR("failed to set up gmch\n");
3464 		return -EIO;
3465 	}
3466 
3467 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3468 
3469 	ggtt->gmadr =
3470 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3471 						 ggtt->mappable_end);
3472 
3473 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3474 	ggtt->vm.insert_page = i915_ggtt_insert_page;
3475 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3476 	ggtt->vm.clear_range = i915_ggtt_clear_range;
3477 	ggtt->vm.cleanup = i915_gmch_remove;
3478 
3479 	ggtt->invalidate = gmch_ggtt_invalidate;
3480 
3481 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3482 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3483 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3484 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3485 
3486 	if (unlikely(ggtt->do_idle_maps))
3487 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3488 
3489 	return 0;
3490 }
3491 
3492 /**
3493  * i915_ggtt_probe_hw - Probe GGTT hardware location
3494  * @dev_priv: i915 device
3495  */
3496 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3497 {
3498 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3499 	int ret;
3500 
3501 	ggtt->vm.i915 = dev_priv;
3502 	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3503 
3504 	if (INTEL_GEN(dev_priv) <= 5)
3505 		ret = i915_gmch_probe(ggtt);
3506 	else if (INTEL_GEN(dev_priv) < 8)
3507 		ret = gen6_gmch_probe(ggtt);
3508 	else
3509 		ret = gen8_gmch_probe(ggtt);
3510 	if (ret)
3511 		return ret;
3512 
3513 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3514 	 * This is easier than doing range restriction on the fly, as we
3515 	 * currently don't have any bits spare to pass in this upper
3516 	 * restriction!
3517 	 */
3518 	if (USES_GUC(dev_priv)) {
3519 		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
3520 		ggtt->mappable_end =
3521 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3522 	}
3523 
3524 	if ((ggtt->vm.total - 1) >> 32) {
3525 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3526 			  " of address space! Found %lldM!\n",
3527 			  ggtt->vm.total >> 20);
3528 		ggtt->vm.total = 1ULL << 32;
3529 		ggtt->mappable_end =
3530 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3531 	}
3532 
3533 	if (ggtt->mappable_end > ggtt->vm.total) {
3534 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3535 			  " aperture=%pa, total=%llx\n",
3536 			  &ggtt->mappable_end, ggtt->vm.total);
3537 		ggtt->mappable_end = ggtt->vm.total;
3538 	}
3539 
3540 	/* GMADR is the PCI mmio aperture into the global GTT. */
3541 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3542 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3543 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3544 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3545 	if (intel_vtd_active())
3546 		DRM_INFO("VT-d active for gfx access\n");
3547 
3548 	return 0;
3549 }
3550 
3551 /**
3552  * i915_ggtt_init_hw - Initialize GGTT hardware
3553  * @dev_priv: i915 device
3554  */
3555 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3556 {
3557 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3558 	int ret;
3559 
3560 	stash_init(&dev_priv->mm.wc_stash);
3561 
3562 	/* Note that we use page colouring to enforce a guard page at the
3563 	 * end of the address space. This is required as the CS may prefetch
3564 	 * beyond the end of the batch buffer, across the page boundary,
3565 	 * and beyond the end of the GTT if we do not provide a guard.
3566 	 */
3567 	mutex_lock(&dev_priv->drm.struct_mutex);
3568 	i915_address_space_init(&ggtt->vm, dev_priv);
3569 
3570 	ggtt->vm.is_ggtt = true;
3571 
3572 	/* Only VLV supports read-only GGTT mappings */
3573 	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
3574 
3575 	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3576 		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3577 	mutex_unlock(&dev_priv->drm.struct_mutex);
3578 
3579 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3580 				dev_priv->ggtt.gmadr.start,
3581 				dev_priv->ggtt.mappable_end)) {
3582 		ret = -EIO;
3583 		goto out_gtt_cleanup;
3584 	}
3585 
3586 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3587 
3588 	/*
3589 	 * Initialise stolen early so that we may reserve preallocated
3590 	 * objects for the BIOS to KMS transition.
3591 	 */
3592 	ret = i915_gem_init_stolen(dev_priv);
3593 	if (ret)
3594 		goto out_gtt_cleanup;
3595 
3596 	return 0;
3597 
3598 out_gtt_cleanup:
3599 	ggtt->vm.cleanup(&ggtt->vm);
3600 	return ret;
3601 }
3602 
3603 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3604 {
3605 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3606 		return -EIO;
3607 
3608 	return 0;
3609 }
3610 
3611 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3612 {
3613 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3614 
3615 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3616 
3617 	i915_ggtt_invalidate(i915);
3618 }
3619 
3620 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3621 {
3622 	/* XXX Temporary pardon for error unload */
3623 	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
3624 		return;
3625 
3626 	/* We should only be called after i915_ggtt_enable_guc() */
3627 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3628 
3629 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3630 
3631 	i915_ggtt_invalidate(i915);
3632 }
3633 
3634 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3635 {
3636 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3637 	struct i915_vma *vma, *vn;
3638 
3639 	i915_check_and_clear_faults(dev_priv);
3640 
3641 	/* First fill our portion of the GTT with scratch pages */
3642 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3643 
3644 	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3645 
3646 	/* clflush objects bound into the GGTT and rebind them. */
3647 	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
3648 	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3649 		struct drm_i915_gem_object *obj = vma->obj;
3650 
3651 		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3652 			continue;
3653 
3654 		if (!i915_vma_unbind(vma))
3655 			continue;
3656 
3657 		WARN_ON(i915_vma_bind(vma,
3658 				      obj ? obj->cache_level : 0,
3659 				      PIN_UPDATE));
3660 		if (obj)
3661 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3662 	}
3663 
3664 	ggtt->vm.closed = false;
3665 	i915_ggtt_invalidate(dev_priv);
3666 
3667 	if (INTEL_GEN(dev_priv) >= 8) {
3668 		struct intel_ppat *ppat = &dev_priv->ppat;
3669 
3670 		bitmap_set(ppat->dirty, 0, ppat->max_entries);
3671 		dev_priv->ppat.update_hw(dev_priv);
3672 		return;
3673 	}
3674 }
3675 
3676 static struct scatterlist *
3677 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3678 	     unsigned int width, unsigned int height,
3679 	     unsigned int stride,
3680 	     struct sg_table *st, struct scatterlist *sg)
3681 {
3682 	unsigned int column, row;
3683 	unsigned int src_idx;
3684 
3685 	for (column = 0; column < width; column++) {
3686 		src_idx = stride * (height - 1) + column + offset;
3687 		for (row = 0; row < height; row++) {
3688 			st->nents++;
3689 			/* We don't need the pages, but need to initialize
3690 			 * the entries so the sg list can be happily traversed.
3691 			 * The only thing we need are DMA addresses.
3692 			 */
3693 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3694 			sg_dma_address(sg) =
3695 				i915_gem_object_get_dma_address(obj, src_idx);
3696 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3697 			sg = sg_next(sg);
3698 			src_idx -= stride;
3699 		}
3700 	}
3701 
3702 	return sg;
3703 }
3704 
3705 static noinline struct sg_table *
3706 intel_rotate_pages(struct intel_rotation_info *rot_info,
3707 		   struct drm_i915_gem_object *obj)
3708 {
3709 	unsigned int size = intel_rotation_info_size(rot_info);
3710 	struct sg_table *st;
3711 	struct scatterlist *sg;
3712 	int ret = -ENOMEM;
3713 	int i;
3714 
3715 	/* Allocate target SG list. */
3716 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3717 	if (!st)
3718 		goto err_st_alloc;
3719 
3720 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3721 	if (ret)
3722 		goto err_sg_alloc;
3723 
3724 	st->nents = 0;
3725 	sg = st->sgl;
3726 
3727 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3728 		sg = rotate_pages(obj, rot_info->plane[i].offset,
3729 				  rot_info->plane[i].width, rot_info->plane[i].height,
3730 				  rot_info->plane[i].stride, st, sg);
3731 	}
3732 
3733 	return st;
3734 
3735 err_sg_alloc:
3736 	kfree(st);
3737 err_st_alloc:
3738 
3739 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3740 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3741 
3742 	return ERR_PTR(ret);
3743 }
3744 
3745 static noinline struct sg_table *
3746 intel_partial_pages(const struct i915_ggtt_view *view,
3747 		    struct drm_i915_gem_object *obj)
3748 {
3749 	struct sg_table *st;
3750 	struct scatterlist *sg, *iter;
3751 	unsigned int count = view->partial.size;
3752 	unsigned int offset;
3753 	int ret = -ENOMEM;
3754 
3755 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3756 	if (!st)
3757 		goto err_st_alloc;
3758 
3759 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3760 	if (ret)
3761 		goto err_sg_alloc;
3762 
3763 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3764 	GEM_BUG_ON(!iter);
3765 
3766 	sg = st->sgl;
3767 	st->nents = 0;
3768 	do {
3769 		unsigned int len;
3770 
3771 		len = min(iter->length - (offset << PAGE_SHIFT),
3772 			  count << PAGE_SHIFT);
3773 		sg_set_page(sg, NULL, len, 0);
3774 		sg_dma_address(sg) =
3775 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3776 		sg_dma_len(sg) = len;
3777 
3778 		st->nents++;
3779 		count -= len >> PAGE_SHIFT;
3780 		if (count == 0) {
3781 			sg_mark_end(sg);
3782 			i915_sg_trim(st); /* Drop any unused tail entries. */
3783 
3784 			return st;
3785 		}
3786 
3787 		sg = __sg_next(sg);
3788 		iter = __sg_next(iter);
3789 		offset = 0;
3790 	} while (1);
3791 
3792 err_sg_alloc:
3793 	kfree(st);
3794 err_st_alloc:
3795 	return ERR_PTR(ret);
3796 }
3797 
3798 static int
3799 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3800 {
3801 	int ret;
3802 
3803 	/* The vma->pages are only valid within the lifespan of the borrowed
3804 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3805 	 * must be the vma->pages. A simple rule is that vma->pages must only
3806 	 * be accessed when the obj->mm.pages are pinned.
3807 	 */
3808 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3809 
3810 	switch (vma->ggtt_view.type) {
3811 	default:
3812 		GEM_BUG_ON(vma->ggtt_view.type);
3813 		/* fall through */
3814 	case I915_GGTT_VIEW_NORMAL:
3815 		vma->pages = vma->obj->mm.pages;
3816 		return 0;
3817 
3818 	case I915_GGTT_VIEW_ROTATED:
3819 		vma->pages =
3820 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3821 		break;
3822 
3823 	case I915_GGTT_VIEW_PARTIAL:
3824 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3825 		break;
3826 	}
3827 
3828 	ret = 0;
3829 	if (unlikely(IS_ERR(vma->pages))) {
3830 		ret = PTR_ERR(vma->pages);
3831 		vma->pages = NULL;
3832 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3833 			  vma->ggtt_view.type, ret);
3834 	}
3835 	return ret;
3836 }
3837 
3838 /**
3839  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3840  * @vm: the &struct i915_address_space
3841  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3842  * @size: how much space to allocate inside the GTT,
3843  *        must be #I915_GTT_PAGE_SIZE aligned
3844  * @offset: where to insert inside the GTT,
3845  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3846  *          (@offset + @size) must fit within the address space
3847  * @color: color to apply to node, if this node is not from a VMA,
3848  *         color must be #I915_COLOR_UNEVICTABLE
3849  * @flags: control search and eviction behaviour
3850  *
3851  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3852  * the address space (using @size and @color). If the @node does not fit, it
3853  * tries to evict any overlapping nodes from the GTT, including any
3854  * neighbouring nodes if the colors do not match (to ensure guard pages between
3855  * differing domains). See i915_gem_evict_for_node() for the gory details
3856  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3857  * evicting active overlapping objects, and any overlapping node that is pinned
3858  * or marked as unevictable will also result in failure.
3859  *
3860  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3861  * asked to wait for eviction and interrupted.
3862  */
3863 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3864 			 struct drm_mm_node *node,
3865 			 u64 size, u64 offset, unsigned long color,
3866 			 unsigned int flags)
3867 {
3868 	int err;
3869 
3870 	GEM_BUG_ON(!size);
3871 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3872 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3873 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3874 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3875 	GEM_BUG_ON(drm_mm_node_allocated(node));
3876 
3877 	node->size = size;
3878 	node->start = offset;
3879 	node->color = color;
3880 
3881 	err = drm_mm_reserve_node(&vm->mm, node);
3882 	if (err != -ENOSPC)
3883 		return err;
3884 
3885 	if (flags & PIN_NOEVICT)
3886 		return -ENOSPC;
3887 
3888 	err = i915_gem_evict_for_node(vm, node, flags);
3889 	if (err == 0)
3890 		err = drm_mm_reserve_node(&vm->mm, node);
3891 
3892 	return err;
3893 }
3894 
3895 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3896 {
3897 	u64 range, addr;
3898 
3899 	GEM_BUG_ON(range_overflows(start, len, end));
3900 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3901 
3902 	range = round_down(end - len, align) - round_up(start, align);
3903 	if (range) {
3904 		if (sizeof(unsigned long) == sizeof(u64)) {
3905 			addr = get_random_long();
3906 		} else {
3907 			addr = get_random_int();
3908 			if (range > U32_MAX) {
3909 				addr <<= 32;
3910 				addr |= get_random_int();
3911 			}
3912 		}
3913 		div64_u64_rem(addr, range, &addr);
3914 		start += addr;
3915 	}
3916 
3917 	return round_up(start, align);
3918 }
3919 
3920 /**
3921  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3922  * @vm: the &struct i915_address_space
3923  * @node: the &struct drm_mm_node (typically i915_vma.node)
3924  * @size: how much space to allocate inside the GTT,
3925  *        must be #I915_GTT_PAGE_SIZE aligned
3926  * @alignment: required alignment of starting offset, may be 0 but
3927  *             if specified, this must be a power-of-two and at least
3928  *             #I915_GTT_MIN_ALIGNMENT
3929  * @color: color to apply to node
3930  * @start: start of any range restriction inside GTT (0 for all),
3931  *         must be #I915_GTT_PAGE_SIZE aligned
3932  * @end: end of any range restriction inside GTT (U64_MAX for all),
3933  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3934  * @flags: control search and eviction behaviour
3935  *
3936  * i915_gem_gtt_insert() first searches for an available hole into which
3937  * is can insert the node. The hole address is aligned to @alignment and
3938  * its @size must then fit entirely within the [@start, @end] bounds. The
3939  * nodes on either side of the hole must match @color, or else a guard page
3940  * will be inserted between the two nodes (or the node evicted). If no
3941  * suitable hole is found, first a victim is randomly selected and tested
3942  * for eviction, otherwise then the LRU list of objects within the GTT
3943  * is scanned to find the first set of replacement nodes to create the hole.
3944  * Those old overlapping nodes are evicted from the GTT (and so must be
3945  * rebound before any future use). Any node that is currently pinned cannot
3946  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3947  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3948  * searching for an eviction candidate. See i915_gem_evict_something() for
3949  * the gory details on the eviction algorithm.
3950  *
3951  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3952  * asked to wait for eviction and interrupted.
3953  */
3954 int i915_gem_gtt_insert(struct i915_address_space *vm,
3955 			struct drm_mm_node *node,
3956 			u64 size, u64 alignment, unsigned long color,
3957 			u64 start, u64 end, unsigned int flags)
3958 {
3959 	enum drm_mm_insert_mode mode;
3960 	u64 offset;
3961 	int err;
3962 
3963 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3964 	GEM_BUG_ON(!size);
3965 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3966 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3967 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3968 	GEM_BUG_ON(start >= end);
3969 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3970 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3971 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3972 	GEM_BUG_ON(drm_mm_node_allocated(node));
3973 
3974 	if (unlikely(range_overflows(start, size, end)))
3975 		return -ENOSPC;
3976 
3977 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3978 		return -ENOSPC;
3979 
3980 	mode = DRM_MM_INSERT_BEST;
3981 	if (flags & PIN_HIGH)
3982 		mode = DRM_MM_INSERT_HIGHEST;
3983 	if (flags & PIN_MAPPABLE)
3984 		mode = DRM_MM_INSERT_LOW;
3985 
3986 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3987 	 * so we know that we always have a minimum alignment of 4096.
3988 	 * The drm_mm range manager is optimised to return results
3989 	 * with zero alignment, so where possible use the optimal
3990 	 * path.
3991 	 */
3992 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3993 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3994 		alignment = 0;
3995 
3996 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3997 					  size, alignment, color,
3998 					  start, end, mode);
3999 	if (err != -ENOSPC)
4000 		return err;
4001 
4002 	if (mode & DRM_MM_INSERT_ONCE) {
4003 		err = drm_mm_insert_node_in_range(&vm->mm, node,
4004 						  size, alignment, color,
4005 						  start, end,
4006 						  DRM_MM_INSERT_BEST);
4007 		if (err != -ENOSPC)
4008 			return err;
4009 	}
4010 
4011 	if (flags & PIN_NOEVICT)
4012 		return -ENOSPC;
4013 
4014 	/* No free space, pick a slot at random.
4015 	 *
4016 	 * There is a pathological case here using a GTT shared between
4017 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4018 	 *
4019 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4020 	 *         (64k objects)             (448k objects)
4021 	 *
4022 	 * Now imagine that the eviction LRU is ordered top-down (just because
4023 	 * pathology meets real life), and that we need to evict an object to
4024 	 * make room inside the aperture. The eviction scan then has to walk
4025 	 * the 448k list before it finds one within range. And now imagine that
4026 	 * it has to search for a new hole between every byte inside the memcpy,
4027 	 * for several simultaneous clients.
4028 	 *
4029 	 * On a full-ppgtt system, if we have run out of available space, there
4030 	 * will be lots and lots of objects in the eviction list! Again,
4031 	 * searching that LRU list may be slow if we are also applying any
4032 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
4033 	 * simplicity and similarilty between different GTT, try the single
4034 	 * random replacement first.
4035 	 */
4036 	offset = random_offset(start, end,
4037 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4038 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4039 	if (err != -ENOSPC)
4040 		return err;
4041 
4042 	/* Randomly selected placement is pinned, do a search */
4043 	err = i915_gem_evict_something(vm, size, alignment, color,
4044 				       start, end, flags);
4045 	if (err)
4046 		return err;
4047 
4048 	return drm_mm_insert_node_in_range(&vm->mm, node,
4049 					   size, alignment, color,
4050 					   start, end, DRM_MM_INSERT_EVICT);
4051 }
4052 
4053 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4054 #include "selftests/mock_gtt.c"
4055 #include "selftests/i915_gem_gtt.c"
4056 #endif
4057