1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32 
33 /**
34  * DOC: Global GTT views
35  *
36  * Background and previous state
37  *
38  * Historically objects could exists (be bound) in global GTT space only as
39  * singular instances with a view representing all of the object's backing pages
40  * in a linear fashion. This view will be called a normal view.
41  *
42  * To support multiple views of the same object, where the number of mapped
43  * pages is not equal to the backing store, or where the layout of the pages
44  * is not linear, concept of a GGTT view was added.
45  *
46  * One example of an alternative view is a stereo display driven by a single
47  * image. In this case we would have a framebuffer looking like this
48  * (2x2 pages):
49  *
50  *    12
51  *    34
52  *
53  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
54  * rendering. In contrast, fed to the display engine would be an alternative
55  * view which could look something like this:
56  *
57  *   1212
58  *   3434
59  *
60  * In this example both the size and layout of pages in the alternative view is
61  * different from the normal view.
62  *
63  * Implementation and usage
64  *
65  * GGTT views are implemented using VMAs and are distinguished via enum
66  * i915_ggtt_view_type and struct i915_ggtt_view.
67  *
68  * A new flavour of core GEM functions which work with GGTT bound objects were
69  * added with the _view suffix. They take the struct i915_ggtt_view parameter
70  * encapsulating all metadata required to implement a view.
71  *
72  * As a helper for callers which are only interested in the normal view,
73  * globally const i915_ggtt_view_normal singleton instance exists. All old core
74  * GEM API functions, the ones not taking the view parameter, are operating on,
75  * or with the normal GGTT view.
76  *
77  * Code wanting to add or use a new GGTT view needs to:
78  *
79  * 1. Add a new enum with a suitable name.
80  * 2. Extend the metadata in the i915_ggtt_view structure if required.
81  * 3. Add support to i915_get_vma_pages().
82  *
83  * New views are required to build a scatter-gather table from within the
84  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
85  * exists for the lifetime of an VMA.
86  *
87  * Core API is designed to have copy semantics which means that passed in
88  * struct i915_ggtt_view does not need to be persistent (left around after
89  * calling the core API functions).
90  *
91  */
92 
93 const struct i915_ggtt_view i915_ggtt_view_normal;
94 
95 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
96 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
97 
98 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
99 {
100 	bool has_aliasing_ppgtt;
101 	bool has_full_ppgtt;
102 
103 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
104 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
105 
106 	/*
107 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
108 	 * execlists, the sole mechanism available to submit work.
109 	 */
110 	if (INTEL_INFO(dev)->gen < 9 &&
111 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
112 		return 0;
113 
114 	if (enable_ppgtt == 1)
115 		return 1;
116 
117 	if (enable_ppgtt == 2 && has_full_ppgtt)
118 		return 2;
119 
120 #ifdef CONFIG_INTEL_IOMMU
121 	/* Disable ppgtt on SNB if VT-d is on. */
122 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
123 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
124 		return 0;
125 	}
126 #endif
127 
128 	/* Early VLV doesn't have this */
129 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
130 	    dev->pdev->revision < 0xb) {
131 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
132 		return 0;
133 	}
134 
135 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
136 		return 2;
137 	else
138 		return has_aliasing_ppgtt ? 1 : 0;
139 }
140 
141 
142 static void ppgtt_bind_vma(struct i915_vma *vma,
143 			   enum i915_cache_level cache_level,
144 			   u32 flags);
145 static void ppgtt_unbind_vma(struct i915_vma *vma);
146 
147 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
148 					     enum i915_cache_level level,
149 					     bool valid)
150 {
151 	gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
152 	pte |= addr;
153 
154 	switch (level) {
155 	case I915_CACHE_NONE:
156 		pte |= PPAT_UNCACHED_INDEX;
157 		break;
158 	case I915_CACHE_WT:
159 		pte |= PPAT_DISPLAY_ELLC_INDEX;
160 		break;
161 	default:
162 		pte |= PPAT_CACHED_INDEX;
163 		break;
164 	}
165 
166 	return pte;
167 }
168 
169 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
170 					     dma_addr_t addr,
171 					     enum i915_cache_level level)
172 {
173 	gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
174 	pde |= addr;
175 	if (level != I915_CACHE_NONE)
176 		pde |= PPAT_CACHED_PDE_INDEX;
177 	else
178 		pde |= PPAT_UNCACHED_INDEX;
179 	return pde;
180 }
181 
182 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
183 				     enum i915_cache_level level,
184 				     bool valid, u32 unused)
185 {
186 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
187 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
188 
189 	switch (level) {
190 	case I915_CACHE_L3_LLC:
191 	case I915_CACHE_LLC:
192 		pte |= GEN6_PTE_CACHE_LLC;
193 		break;
194 	case I915_CACHE_NONE:
195 		pte |= GEN6_PTE_UNCACHED;
196 		break;
197 	default:
198 		MISSING_CASE(level);
199 	}
200 
201 	return pte;
202 }
203 
204 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
205 				     enum i915_cache_level level,
206 				     bool valid, u32 unused)
207 {
208 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
209 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
210 
211 	switch (level) {
212 	case I915_CACHE_L3_LLC:
213 		pte |= GEN7_PTE_CACHE_L3_LLC;
214 		break;
215 	case I915_CACHE_LLC:
216 		pte |= GEN6_PTE_CACHE_LLC;
217 		break;
218 	case I915_CACHE_NONE:
219 		pte |= GEN6_PTE_UNCACHED;
220 		break;
221 	default:
222 		MISSING_CASE(level);
223 	}
224 
225 	return pte;
226 }
227 
228 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
229 				     enum i915_cache_level level,
230 				     bool valid, u32 flags)
231 {
232 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
233 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 
235 	if (!(flags & PTE_READ_ONLY))
236 		pte |= BYT_PTE_WRITEABLE;
237 
238 	if (level != I915_CACHE_NONE)
239 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
240 
241 	return pte;
242 }
243 
244 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
245 				     enum i915_cache_level level,
246 				     bool valid, u32 unused)
247 {
248 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
249 	pte |= HSW_PTE_ADDR_ENCODE(addr);
250 
251 	if (level != I915_CACHE_NONE)
252 		pte |= HSW_WB_LLC_AGE3;
253 
254 	return pte;
255 }
256 
257 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
258 				      enum i915_cache_level level,
259 				      bool valid, u32 unused)
260 {
261 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
262 	pte |= HSW_PTE_ADDR_ENCODE(addr);
263 
264 	switch (level) {
265 	case I915_CACHE_NONE:
266 		break;
267 	case I915_CACHE_WT:
268 		pte |= HSW_WT_ELLC_LLC_AGE3;
269 		break;
270 	default:
271 		pte |= HSW_WB_ELLC_LLC_AGE3;
272 		break;
273 	}
274 
275 	return pte;
276 }
277 
278 /* Broadwell Page Directory Pointer Descriptors */
279 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
280 			   uint64_t val)
281 {
282 	int ret;
283 
284 	BUG_ON(entry >= 4);
285 
286 	ret = intel_ring_begin(ring, 6);
287 	if (ret)
288 		return ret;
289 
290 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
291 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
292 	intel_ring_emit(ring, (u32)(val >> 32));
293 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
294 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
295 	intel_ring_emit(ring, (u32)(val));
296 	intel_ring_advance(ring);
297 
298 	return 0;
299 }
300 
301 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
302 			  struct intel_engine_cs *ring)
303 {
304 	int i, ret;
305 
306 	/* bit of a hack to find the actual last used pd */
307 	int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
308 
309 	for (i = used_pd - 1; i >= 0; i--) {
310 		dma_addr_t addr = ppgtt->pd_dma_addr[i];
311 		ret = gen8_write_pdp(ring, i, addr);
312 		if (ret)
313 			return ret;
314 	}
315 
316 	return 0;
317 }
318 
319 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
320 				   uint64_t start,
321 				   uint64_t length,
322 				   bool use_scratch)
323 {
324 	struct i915_hw_ppgtt *ppgtt =
325 		container_of(vm, struct i915_hw_ppgtt, base);
326 	gen8_gtt_pte_t *pt_vaddr, scratch_pte;
327 	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
328 	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
329 	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
330 	unsigned num_entries = length >> PAGE_SHIFT;
331 	unsigned last_pte, i;
332 
333 	scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
334 				      I915_CACHE_LLC, use_scratch);
335 
336 	while (num_entries) {
337 		struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
338 
339 		last_pte = pte + num_entries;
340 		if (last_pte > GEN8_PTES_PER_PAGE)
341 			last_pte = GEN8_PTES_PER_PAGE;
342 
343 		pt_vaddr = kmap_atomic(page_table);
344 
345 		for (i = pte; i < last_pte; i++) {
346 			pt_vaddr[i] = scratch_pte;
347 			num_entries--;
348 		}
349 
350 		if (!HAS_LLC(ppgtt->base.dev))
351 			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
352 		kunmap_atomic(pt_vaddr);
353 
354 		pte = 0;
355 		if (++pde == GEN8_PDES_PER_PAGE) {
356 			pdpe++;
357 			pde = 0;
358 		}
359 	}
360 }
361 
362 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
363 				      struct sg_table *pages,
364 				      uint64_t start,
365 				      enum i915_cache_level cache_level, u32 unused)
366 {
367 	struct i915_hw_ppgtt *ppgtt =
368 		container_of(vm, struct i915_hw_ppgtt, base);
369 	gen8_gtt_pte_t *pt_vaddr;
370 	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
371 	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
372 	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
373 	struct sg_page_iter sg_iter;
374 
375 	pt_vaddr = NULL;
376 
377 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
378 		if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
379 			break;
380 
381 		if (pt_vaddr == NULL)
382 			pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
383 
384 		pt_vaddr[pte] =
385 			gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
386 					cache_level, true);
387 		if (++pte == GEN8_PTES_PER_PAGE) {
388 			if (!HAS_LLC(ppgtt->base.dev))
389 				drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
390 			kunmap_atomic(pt_vaddr);
391 			pt_vaddr = NULL;
392 			if (++pde == GEN8_PDES_PER_PAGE) {
393 				pdpe++;
394 				pde = 0;
395 			}
396 			pte = 0;
397 		}
398 	}
399 	if (pt_vaddr) {
400 		if (!HAS_LLC(ppgtt->base.dev))
401 			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
402 		kunmap_atomic(pt_vaddr);
403 	}
404 }
405 
406 static void gen8_free_page_tables(struct page **pt_pages)
407 {
408 	int i;
409 
410 	if (pt_pages == NULL)
411 		return;
412 
413 	for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
414 		if (pt_pages[i])
415 			__free_pages(pt_pages[i], 0);
416 }
417 
418 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
419 {
420 	int i;
421 
422 	for (i = 0; i < ppgtt->num_pd_pages; i++) {
423 		gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
424 		kfree(ppgtt->gen8_pt_pages[i]);
425 		kfree(ppgtt->gen8_pt_dma_addr[i]);
426 	}
427 
428 	__free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
429 }
430 
431 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
432 {
433 	struct pci_dev *hwdev = ppgtt->base.dev->pdev;
434 	int i, j;
435 
436 	for (i = 0; i < ppgtt->num_pd_pages; i++) {
437 		/* TODO: In the future we'll support sparse mappings, so this
438 		 * will have to change. */
439 		if (!ppgtt->pd_dma_addr[i])
440 			continue;
441 
442 		pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
443 			       PCI_DMA_BIDIRECTIONAL);
444 
445 		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
446 			dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
447 			if (addr)
448 				pci_unmap_page(hwdev, addr, PAGE_SIZE,
449 					       PCI_DMA_BIDIRECTIONAL);
450 		}
451 	}
452 }
453 
454 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
455 {
456 	struct i915_hw_ppgtt *ppgtt =
457 		container_of(vm, struct i915_hw_ppgtt, base);
458 
459 	gen8_ppgtt_unmap_pages(ppgtt);
460 	gen8_ppgtt_free(ppgtt);
461 }
462 
463 static struct page **__gen8_alloc_page_tables(void)
464 {
465 	struct page **pt_pages;
466 	int i;
467 
468 	pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
469 	if (!pt_pages)
470 		return ERR_PTR(-ENOMEM);
471 
472 	for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
473 		pt_pages[i] = alloc_page(GFP_KERNEL);
474 		if (!pt_pages[i])
475 			goto bail;
476 	}
477 
478 	return pt_pages;
479 
480 bail:
481 	gen8_free_page_tables(pt_pages);
482 	kfree(pt_pages);
483 	return ERR_PTR(-ENOMEM);
484 }
485 
486 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
487 					   const int max_pdp)
488 {
489 	struct page **pt_pages[GEN8_LEGACY_PDPS];
490 	int i, ret;
491 
492 	for (i = 0; i < max_pdp; i++) {
493 		pt_pages[i] = __gen8_alloc_page_tables();
494 		if (IS_ERR(pt_pages[i])) {
495 			ret = PTR_ERR(pt_pages[i]);
496 			goto unwind_out;
497 		}
498 	}
499 
500 	/* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
501 	 * "atomic" - for cleanup purposes.
502 	 */
503 	for (i = 0; i < max_pdp; i++)
504 		ppgtt->gen8_pt_pages[i] = pt_pages[i];
505 
506 	return 0;
507 
508 unwind_out:
509 	while (i--) {
510 		gen8_free_page_tables(pt_pages[i]);
511 		kfree(pt_pages[i]);
512 	}
513 
514 	return ret;
515 }
516 
517 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
518 {
519 	int i;
520 
521 	for (i = 0; i < ppgtt->num_pd_pages; i++) {
522 		ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
523 						     sizeof(dma_addr_t),
524 						     GFP_KERNEL);
525 		if (!ppgtt->gen8_pt_dma_addr[i])
526 			return -ENOMEM;
527 	}
528 
529 	return 0;
530 }
531 
532 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
533 						const int max_pdp)
534 {
535 	ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
536 	if (!ppgtt->pd_pages)
537 		return -ENOMEM;
538 
539 	ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
540 	BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
541 
542 	return 0;
543 }
544 
545 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
546 			    const int max_pdp)
547 {
548 	int ret;
549 
550 	ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
551 	if (ret)
552 		return ret;
553 
554 	ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
555 	if (ret) {
556 		__free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
557 		return ret;
558 	}
559 
560 	ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
561 
562 	ret = gen8_ppgtt_allocate_dma(ppgtt);
563 	if (ret)
564 		gen8_ppgtt_free(ppgtt);
565 
566 	return ret;
567 }
568 
569 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
570 					     const int pd)
571 {
572 	dma_addr_t pd_addr;
573 	int ret;
574 
575 	pd_addr = pci_map_page(ppgtt->base.dev->pdev,
576 			       &ppgtt->pd_pages[pd], 0,
577 			       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
578 
579 	ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
580 	if (ret)
581 		return ret;
582 
583 	ppgtt->pd_dma_addr[pd] = pd_addr;
584 
585 	return 0;
586 }
587 
588 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
589 					const int pd,
590 					const int pt)
591 {
592 	dma_addr_t pt_addr;
593 	struct page *p;
594 	int ret;
595 
596 	p = ppgtt->gen8_pt_pages[pd][pt];
597 	pt_addr = pci_map_page(ppgtt->base.dev->pdev,
598 			       p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
599 	ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
600 	if (ret)
601 		return ret;
602 
603 	ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
604 
605 	return 0;
606 }
607 
608 /**
609  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
610  * with a net effect resembling a 2-level page table in normal x86 terms. Each
611  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
612  * space.
613  *
614  * FIXME: split allocation into smaller pieces. For now we only ever do this
615  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
616  * TODO: Do something with the size parameter
617  */
618 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
619 {
620 	const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
621 	const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
622 	int i, j, ret;
623 
624 	if (size % (1<<30))
625 		DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
626 
627 	/* 1. Do all our allocations for page directories and page tables. */
628 	ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
629 	if (ret)
630 		return ret;
631 
632 	/*
633 	 * 2. Create DMA mappings for the page directories and page tables.
634 	 */
635 	for (i = 0; i < max_pdp; i++) {
636 		ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
637 		if (ret)
638 			goto bail;
639 
640 		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
641 			ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
642 			if (ret)
643 				goto bail;
644 		}
645 	}
646 
647 	/*
648 	 * 3. Map all the page directory entires to point to the page tables
649 	 * we've allocated.
650 	 *
651 	 * For now, the PPGTT helper functions all require that the PDEs are
652 	 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
653 	 * will never need to touch the PDEs again.
654 	 */
655 	for (i = 0; i < max_pdp; i++) {
656 		gen8_ppgtt_pde_t *pd_vaddr;
657 		pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
658 		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
659 			dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
660 			pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
661 						      I915_CACHE_LLC);
662 		}
663 		if (!HAS_LLC(ppgtt->base.dev))
664 			drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
665 		kunmap_atomic(pd_vaddr);
666 	}
667 
668 	ppgtt->switch_mm = gen8_mm_switch;
669 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
670 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
671 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
672 	ppgtt->base.start = 0;
673 	ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
674 
675 	ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
676 
677 	DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
678 			 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
679 	DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
680 			 ppgtt->num_pd_entries,
681 			 (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
682 	return 0;
683 
684 bail:
685 	gen8_ppgtt_unmap_pages(ppgtt);
686 	gen8_ppgtt_free(ppgtt);
687 	return ret;
688 }
689 
690 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
691 {
692 	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
693 	struct i915_address_space *vm = &ppgtt->base;
694 	gen6_gtt_pte_t __iomem *pd_addr;
695 	gen6_gtt_pte_t scratch_pte;
696 	uint32_t pd_entry;
697 	int pte, pde;
698 
699 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
700 
701 	pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
702 		ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
703 
704 	seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
705 		   ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
706 	for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
707 		u32 expected;
708 		gen6_gtt_pte_t *pt_vaddr;
709 		dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
710 		pd_entry = readl(pd_addr + pde);
711 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
712 
713 		if (pd_entry != expected)
714 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
715 				   pde,
716 				   pd_entry,
717 				   expected);
718 		seq_printf(m, "\tPDE: %x\n", pd_entry);
719 
720 		pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
721 		for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
722 			unsigned long va =
723 				(pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
724 				(pte * PAGE_SIZE);
725 			int i;
726 			bool found = false;
727 			for (i = 0; i < 4; i++)
728 				if (pt_vaddr[pte + i] != scratch_pte)
729 					found = true;
730 			if (!found)
731 				continue;
732 
733 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
734 			for (i = 0; i < 4; i++) {
735 				if (pt_vaddr[pte + i] != scratch_pte)
736 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
737 				else
738 					seq_puts(m, "  SCRATCH ");
739 			}
740 			seq_puts(m, "\n");
741 		}
742 		kunmap_atomic(pt_vaddr);
743 	}
744 }
745 
746 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
747 {
748 	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
749 	gen6_gtt_pte_t __iomem *pd_addr;
750 	uint32_t pd_entry;
751 	int i;
752 
753 	WARN_ON(ppgtt->pd_offset & 0x3f);
754 	pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
755 		ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
756 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
757 		dma_addr_t pt_addr;
758 
759 		pt_addr = ppgtt->pt_dma_addr[i];
760 		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
761 		pd_entry |= GEN6_PDE_VALID;
762 
763 		writel(pd_entry, pd_addr + i);
764 	}
765 	readl(pd_addr);
766 }
767 
768 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
769 {
770 	BUG_ON(ppgtt->pd_offset & 0x3f);
771 
772 	return (ppgtt->pd_offset / 64) << 16;
773 }
774 
775 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
776 			 struct intel_engine_cs *ring)
777 {
778 	int ret;
779 
780 	/* NB: TLBs must be flushed and invalidated before a switch */
781 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
782 	if (ret)
783 		return ret;
784 
785 	ret = intel_ring_begin(ring, 6);
786 	if (ret)
787 		return ret;
788 
789 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
790 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
791 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
792 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
793 	intel_ring_emit(ring, get_pd_offset(ppgtt));
794 	intel_ring_emit(ring, MI_NOOP);
795 	intel_ring_advance(ring);
796 
797 	return 0;
798 }
799 
800 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
801 			  struct intel_engine_cs *ring)
802 {
803 	int ret;
804 
805 	/* NB: TLBs must be flushed and invalidated before a switch */
806 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
807 	if (ret)
808 		return ret;
809 
810 	ret = intel_ring_begin(ring, 6);
811 	if (ret)
812 		return ret;
813 
814 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
815 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
816 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
817 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
818 	intel_ring_emit(ring, get_pd_offset(ppgtt));
819 	intel_ring_emit(ring, MI_NOOP);
820 	intel_ring_advance(ring);
821 
822 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
823 	if (ring->id != RCS) {
824 		ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
825 		if (ret)
826 			return ret;
827 	}
828 
829 	return 0;
830 }
831 
832 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
833 			  struct intel_engine_cs *ring)
834 {
835 	struct drm_device *dev = ppgtt->base.dev;
836 	struct drm_i915_private *dev_priv = dev->dev_private;
837 
838 
839 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
840 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
841 
842 	POSTING_READ(RING_PP_DIR_DCLV(ring));
843 
844 	return 0;
845 }
846 
847 static void gen8_ppgtt_enable(struct drm_device *dev)
848 {
849 	struct drm_i915_private *dev_priv = dev->dev_private;
850 	struct intel_engine_cs *ring;
851 	int j;
852 
853 	for_each_ring(ring, dev_priv, j) {
854 		I915_WRITE(RING_MODE_GEN7(ring),
855 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
856 	}
857 }
858 
859 static void gen7_ppgtt_enable(struct drm_device *dev)
860 {
861 	struct drm_i915_private *dev_priv = dev->dev_private;
862 	struct intel_engine_cs *ring;
863 	uint32_t ecochk, ecobits;
864 	int i;
865 
866 	ecobits = I915_READ(GAC_ECO_BITS);
867 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
868 
869 	ecochk = I915_READ(GAM_ECOCHK);
870 	if (IS_HASWELL(dev)) {
871 		ecochk |= ECOCHK_PPGTT_WB_HSW;
872 	} else {
873 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
874 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
875 	}
876 	I915_WRITE(GAM_ECOCHK, ecochk);
877 
878 	for_each_ring(ring, dev_priv, i) {
879 		/* GFX_MODE is per-ring on gen7+ */
880 		I915_WRITE(RING_MODE_GEN7(ring),
881 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
882 	}
883 }
884 
885 static void gen6_ppgtt_enable(struct drm_device *dev)
886 {
887 	struct drm_i915_private *dev_priv = dev->dev_private;
888 	uint32_t ecochk, gab_ctl, ecobits;
889 
890 	ecobits = I915_READ(GAC_ECO_BITS);
891 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
892 		   ECOBITS_PPGTT_CACHE64B);
893 
894 	gab_ctl = I915_READ(GAB_CTL);
895 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
896 
897 	ecochk = I915_READ(GAM_ECOCHK);
898 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
899 
900 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
901 }
902 
903 /* PPGTT support for Sandybdrige/Gen6 and later */
904 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
905 				   uint64_t start,
906 				   uint64_t length,
907 				   bool use_scratch)
908 {
909 	struct i915_hw_ppgtt *ppgtt =
910 		container_of(vm, struct i915_hw_ppgtt, base);
911 	gen6_gtt_pte_t *pt_vaddr, scratch_pte;
912 	unsigned first_entry = start >> PAGE_SHIFT;
913 	unsigned num_entries = length >> PAGE_SHIFT;
914 	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
915 	unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
916 	unsigned last_pte, i;
917 
918 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
919 
920 	while (num_entries) {
921 		last_pte = first_pte + num_entries;
922 		if (last_pte > I915_PPGTT_PT_ENTRIES)
923 			last_pte = I915_PPGTT_PT_ENTRIES;
924 
925 		pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
926 
927 		for (i = first_pte; i < last_pte; i++)
928 			pt_vaddr[i] = scratch_pte;
929 
930 		kunmap_atomic(pt_vaddr);
931 
932 		num_entries -= last_pte - first_pte;
933 		first_pte = 0;
934 		act_pt++;
935 	}
936 }
937 
938 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
939 				      struct sg_table *pages,
940 				      uint64_t start,
941 				      enum i915_cache_level cache_level, u32 flags)
942 {
943 	struct i915_hw_ppgtt *ppgtt =
944 		container_of(vm, struct i915_hw_ppgtt, base);
945 	gen6_gtt_pte_t *pt_vaddr;
946 	unsigned first_entry = start >> PAGE_SHIFT;
947 	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
948 	unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
949 	struct sg_page_iter sg_iter;
950 
951 	pt_vaddr = NULL;
952 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
953 		if (pt_vaddr == NULL)
954 			pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
955 
956 		pt_vaddr[act_pte] =
957 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
958 				       cache_level, true, flags);
959 
960 		if (++act_pte == I915_PPGTT_PT_ENTRIES) {
961 			kunmap_atomic(pt_vaddr);
962 			pt_vaddr = NULL;
963 			act_pt++;
964 			act_pte = 0;
965 		}
966 	}
967 	if (pt_vaddr)
968 		kunmap_atomic(pt_vaddr);
969 }
970 
971 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
972 {
973 	int i;
974 
975 	if (ppgtt->pt_dma_addr) {
976 		for (i = 0; i < ppgtt->num_pd_entries; i++)
977 			pci_unmap_page(ppgtt->base.dev->pdev,
978 				       ppgtt->pt_dma_addr[i],
979 				       4096, PCI_DMA_BIDIRECTIONAL);
980 	}
981 }
982 
983 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
984 {
985 	int i;
986 
987 	kfree(ppgtt->pt_dma_addr);
988 	for (i = 0; i < ppgtt->num_pd_entries; i++)
989 		__free_page(ppgtt->pt_pages[i]);
990 	kfree(ppgtt->pt_pages);
991 }
992 
993 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
994 {
995 	struct i915_hw_ppgtt *ppgtt =
996 		container_of(vm, struct i915_hw_ppgtt, base);
997 
998 	drm_mm_remove_node(&ppgtt->node);
999 
1000 	gen6_ppgtt_unmap_pages(ppgtt);
1001 	gen6_ppgtt_free(ppgtt);
1002 }
1003 
1004 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1005 {
1006 	struct drm_device *dev = ppgtt->base.dev;
1007 	struct drm_i915_private *dev_priv = dev->dev_private;
1008 	bool retried = false;
1009 	int ret;
1010 
1011 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1012 	 * allocator works in address space sizes, so it's multiplied by page
1013 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1014 	 */
1015 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1016 alloc:
1017 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1018 						  &ppgtt->node, GEN6_PD_SIZE,
1019 						  GEN6_PD_ALIGN, 0,
1020 						  0, dev_priv->gtt.base.total,
1021 						  DRM_MM_TOPDOWN);
1022 	if (ret == -ENOSPC && !retried) {
1023 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1024 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
1025 					       I915_CACHE_NONE,
1026 					       0, dev_priv->gtt.base.total,
1027 					       0);
1028 		if (ret)
1029 			return ret;
1030 
1031 		retried = true;
1032 		goto alloc;
1033 	}
1034 
1035 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1036 		DRM_DEBUG("Forced to use aperture for PDEs\n");
1037 
1038 	ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1039 	return ret;
1040 }
1041 
1042 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1043 {
1044 	int i;
1045 
1046 	ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1047 				  GFP_KERNEL);
1048 
1049 	if (!ppgtt->pt_pages)
1050 		return -ENOMEM;
1051 
1052 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
1053 		ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1054 		if (!ppgtt->pt_pages[i]) {
1055 			gen6_ppgtt_free(ppgtt);
1056 			return -ENOMEM;
1057 		}
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1064 {
1065 	int ret;
1066 
1067 	ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1068 	if (ret)
1069 		return ret;
1070 
1071 	ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1072 	if (ret) {
1073 		drm_mm_remove_node(&ppgtt->node);
1074 		return ret;
1075 	}
1076 
1077 	ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1078 				     GFP_KERNEL);
1079 	if (!ppgtt->pt_dma_addr) {
1080 		drm_mm_remove_node(&ppgtt->node);
1081 		gen6_ppgtt_free(ppgtt);
1082 		return -ENOMEM;
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1089 {
1090 	struct drm_device *dev = ppgtt->base.dev;
1091 	int i;
1092 
1093 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
1094 		dma_addr_t pt_addr;
1095 
1096 		pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1097 				       PCI_DMA_BIDIRECTIONAL);
1098 
1099 		if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1100 			gen6_ppgtt_unmap_pages(ppgtt);
1101 			return -EIO;
1102 		}
1103 
1104 		ppgtt->pt_dma_addr[i] = pt_addr;
1105 	}
1106 
1107 	return 0;
1108 }
1109 
1110 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1111 {
1112 	struct drm_device *dev = ppgtt->base.dev;
1113 	struct drm_i915_private *dev_priv = dev->dev_private;
1114 	int ret;
1115 
1116 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1117 	if (IS_GEN6(dev)) {
1118 		ppgtt->switch_mm = gen6_mm_switch;
1119 	} else if (IS_HASWELL(dev)) {
1120 		ppgtt->switch_mm = hsw_mm_switch;
1121 	} else if (IS_GEN7(dev)) {
1122 		ppgtt->switch_mm = gen7_mm_switch;
1123 	} else
1124 		BUG();
1125 
1126 	ret = gen6_ppgtt_alloc(ppgtt);
1127 	if (ret)
1128 		return ret;
1129 
1130 	ret = gen6_ppgtt_setup_page_tables(ppgtt);
1131 	if (ret) {
1132 		gen6_ppgtt_free(ppgtt);
1133 		return ret;
1134 	}
1135 
1136 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1137 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1138 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1139 	ppgtt->base.start = 0;
1140 	ppgtt->base.total =  ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1141 	ppgtt->debug_dump = gen6_dump_ppgtt;
1142 
1143 	ppgtt->pd_offset =
1144 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1145 
1146 	ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1147 
1148 	DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1149 			 ppgtt->node.size >> 20,
1150 			 ppgtt->node.start / PAGE_SIZE);
1151 
1152 	gen6_write_pdes(ppgtt);
1153 	DRM_DEBUG("Adding PPGTT at offset %x\n",
1154 		  ppgtt->pd_offset << 10);
1155 
1156 	return 0;
1157 }
1158 
1159 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1160 {
1161 	struct drm_i915_private *dev_priv = dev->dev_private;
1162 
1163 	ppgtt->base.dev = dev;
1164 	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1165 
1166 	if (INTEL_INFO(dev)->gen < 8)
1167 		return gen6_ppgtt_init(ppgtt);
1168 	else
1169 		return gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1170 }
1171 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1172 {
1173 	struct drm_i915_private *dev_priv = dev->dev_private;
1174 	int ret = 0;
1175 
1176 	ret = __hw_ppgtt_init(dev, ppgtt);
1177 	if (ret == 0) {
1178 		kref_init(&ppgtt->ref);
1179 		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1180 			    ppgtt->base.total);
1181 		i915_init_vm(dev_priv, &ppgtt->base);
1182 	}
1183 
1184 	return ret;
1185 }
1186 
1187 int i915_ppgtt_init_hw(struct drm_device *dev)
1188 {
1189 	struct drm_i915_private *dev_priv = dev->dev_private;
1190 	struct intel_engine_cs *ring;
1191 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1192 	int i, ret = 0;
1193 
1194 	/* In the case of execlists, PPGTT is enabled by the context descriptor
1195 	 * and the PDPs are contained within the context itself.  We don't
1196 	 * need to do anything here. */
1197 	if (i915.enable_execlists)
1198 		return 0;
1199 
1200 	if (!USES_PPGTT(dev))
1201 		return 0;
1202 
1203 	if (IS_GEN6(dev))
1204 		gen6_ppgtt_enable(dev);
1205 	else if (IS_GEN7(dev))
1206 		gen7_ppgtt_enable(dev);
1207 	else if (INTEL_INFO(dev)->gen >= 8)
1208 		gen8_ppgtt_enable(dev);
1209 	else
1210 		MISSING_CASE(INTEL_INFO(dev)->gen);
1211 
1212 	if (ppgtt) {
1213 		for_each_ring(ring, dev_priv, i) {
1214 			ret = ppgtt->switch_mm(ppgtt, ring);
1215 			if (ret != 0)
1216 				return ret;
1217 		}
1218 	}
1219 
1220 	return ret;
1221 }
1222 struct i915_hw_ppgtt *
1223 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1224 {
1225 	struct i915_hw_ppgtt *ppgtt;
1226 	int ret;
1227 
1228 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1229 	if (!ppgtt)
1230 		return ERR_PTR(-ENOMEM);
1231 
1232 	ret = i915_ppgtt_init(dev, ppgtt);
1233 	if (ret) {
1234 		kfree(ppgtt);
1235 		return ERR_PTR(ret);
1236 	}
1237 
1238 	ppgtt->file_priv = fpriv;
1239 
1240 	trace_i915_ppgtt_create(&ppgtt->base);
1241 
1242 	return ppgtt;
1243 }
1244 
1245 void  i915_ppgtt_release(struct kref *kref)
1246 {
1247 	struct i915_hw_ppgtt *ppgtt =
1248 		container_of(kref, struct i915_hw_ppgtt, ref);
1249 
1250 	trace_i915_ppgtt_release(&ppgtt->base);
1251 
1252 	/* vmas should already be unbound */
1253 	WARN_ON(!list_empty(&ppgtt->base.active_list));
1254 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1255 
1256 	list_del(&ppgtt->base.global_link);
1257 	drm_mm_takedown(&ppgtt->base.mm);
1258 
1259 	ppgtt->base.cleanup(&ppgtt->base);
1260 	kfree(ppgtt);
1261 }
1262 
1263 static void
1264 ppgtt_bind_vma(struct i915_vma *vma,
1265 	       enum i915_cache_level cache_level,
1266 	       u32 flags)
1267 {
1268 	/* Currently applicable only to VLV */
1269 	if (vma->obj->gt_ro)
1270 		flags |= PTE_READ_ONLY;
1271 
1272 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1273 				cache_level, flags);
1274 }
1275 
1276 static void ppgtt_unbind_vma(struct i915_vma *vma)
1277 {
1278 	vma->vm->clear_range(vma->vm,
1279 			     vma->node.start,
1280 			     vma->obj->base.size,
1281 			     true);
1282 }
1283 
1284 extern int intel_iommu_gfx_mapped;
1285 /* Certain Gen5 chipsets require require idling the GPU before
1286  * unmapping anything from the GTT when VT-d is enabled.
1287  */
1288 static inline bool needs_idle_maps(struct drm_device *dev)
1289 {
1290 #ifdef CONFIG_INTEL_IOMMU
1291 	/* Query intel_iommu to see if we need the workaround. Presumably that
1292 	 * was loaded first.
1293 	 */
1294 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1295 		return true;
1296 #endif
1297 	return false;
1298 }
1299 
1300 static bool do_idling(struct drm_i915_private *dev_priv)
1301 {
1302 	bool ret = dev_priv->mm.interruptible;
1303 
1304 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
1305 		dev_priv->mm.interruptible = false;
1306 		if (i915_gpu_idle(dev_priv->dev)) {
1307 			DRM_ERROR("Couldn't idle GPU\n");
1308 			/* Wait a bit, in hopes it avoids the hang */
1309 			udelay(10);
1310 		}
1311 	}
1312 
1313 	return ret;
1314 }
1315 
1316 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1317 {
1318 	if (unlikely(dev_priv->gtt.do_idle_maps))
1319 		dev_priv->mm.interruptible = interruptible;
1320 }
1321 
1322 void i915_check_and_clear_faults(struct drm_device *dev)
1323 {
1324 	struct drm_i915_private *dev_priv = dev->dev_private;
1325 	struct intel_engine_cs *ring;
1326 	int i;
1327 
1328 	if (INTEL_INFO(dev)->gen < 6)
1329 		return;
1330 
1331 	for_each_ring(ring, dev_priv, i) {
1332 		u32 fault_reg;
1333 		fault_reg = I915_READ(RING_FAULT_REG(ring));
1334 		if (fault_reg & RING_FAULT_VALID) {
1335 			DRM_DEBUG_DRIVER("Unexpected fault\n"
1336 					 "\tAddr: 0x%08lx\n"
1337 					 "\tAddress space: %s\n"
1338 					 "\tSource ID: %d\n"
1339 					 "\tType: %d\n",
1340 					 fault_reg & PAGE_MASK,
1341 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1342 					 RING_FAULT_SRCID(fault_reg),
1343 					 RING_FAULT_FAULT_TYPE(fault_reg));
1344 			I915_WRITE(RING_FAULT_REG(ring),
1345 				   fault_reg & ~RING_FAULT_VALID);
1346 		}
1347 	}
1348 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1349 }
1350 
1351 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1352 {
1353 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1354 		intel_gtt_chipset_flush();
1355 	} else {
1356 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1357 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
1358 	}
1359 }
1360 
1361 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1362 {
1363 	struct drm_i915_private *dev_priv = dev->dev_private;
1364 
1365 	/* Don't bother messing with faults pre GEN6 as we have little
1366 	 * documentation supporting that it's a good idea.
1367 	 */
1368 	if (INTEL_INFO(dev)->gen < 6)
1369 		return;
1370 
1371 	i915_check_and_clear_faults(dev);
1372 
1373 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1374 				       dev_priv->gtt.base.start,
1375 				       dev_priv->gtt.base.total,
1376 				       true);
1377 
1378 	i915_ggtt_flush(dev_priv);
1379 }
1380 
1381 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1382 {
1383 	struct drm_i915_private *dev_priv = dev->dev_private;
1384 	struct drm_i915_gem_object *obj;
1385 	struct i915_address_space *vm;
1386 
1387 	i915_check_and_clear_faults(dev);
1388 
1389 	/* First fill our portion of the GTT with scratch pages */
1390 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1391 				       dev_priv->gtt.base.start,
1392 				       dev_priv->gtt.base.total,
1393 				       true);
1394 
1395 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1396 		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1397 							   &dev_priv->gtt.base);
1398 		if (!vma)
1399 			continue;
1400 
1401 		i915_gem_clflush_object(obj, obj->pin_display);
1402 		/* The bind_vma code tries to be smart about tracking mappings.
1403 		 * Unfortunately above, we've just wiped out the mappings
1404 		 * without telling our object about it. So we need to fake it.
1405 		 *
1406 		 * Bind is not expected to fail since this is only called on
1407 		 * resume and assumption is all requirements exist already.
1408 		 */
1409 		vma->bound &= ~GLOBAL_BIND;
1410 		WARN_ON(i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND));
1411 	}
1412 
1413 
1414 	if (INTEL_INFO(dev)->gen >= 8) {
1415 		if (IS_CHERRYVIEW(dev))
1416 			chv_setup_private_ppat(dev_priv);
1417 		else
1418 			bdw_setup_private_ppat(dev_priv);
1419 
1420 		return;
1421 	}
1422 
1423 	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1424 		/* TODO: Perhaps it shouldn't be gen6 specific */
1425 		if (i915_is_ggtt(vm)) {
1426 			if (dev_priv->mm.aliasing_ppgtt)
1427 				gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1428 			continue;
1429 		}
1430 
1431 		gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1432 	}
1433 
1434 	i915_ggtt_flush(dev_priv);
1435 }
1436 
1437 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1438 {
1439 	if (obj->has_dma_mapping)
1440 		return 0;
1441 
1442 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
1443 			obj->pages->sgl, obj->pages->nents,
1444 			PCI_DMA_BIDIRECTIONAL))
1445 		return -ENOSPC;
1446 
1447 	return 0;
1448 }
1449 
1450 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1451 {
1452 #ifdef writeq
1453 	writeq(pte, addr);
1454 #else
1455 	iowrite32((u32)pte, addr);
1456 	iowrite32(pte >> 32, addr + 4);
1457 #endif
1458 }
1459 
1460 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1461 				     struct sg_table *st,
1462 				     uint64_t start,
1463 				     enum i915_cache_level level, u32 unused)
1464 {
1465 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1466 	unsigned first_entry = start >> PAGE_SHIFT;
1467 	gen8_gtt_pte_t __iomem *gtt_entries =
1468 		(gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1469 	int i = 0;
1470 	struct sg_page_iter sg_iter;
1471 	dma_addr_t addr = 0; /* shut up gcc */
1472 
1473 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1474 		addr = sg_dma_address(sg_iter.sg) +
1475 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
1476 		gen8_set_pte(&gtt_entries[i],
1477 			     gen8_pte_encode(addr, level, true));
1478 		i++;
1479 	}
1480 
1481 	/*
1482 	 * XXX: This serves as a posting read to make sure that the PTE has
1483 	 * actually been updated. There is some concern that even though
1484 	 * registers and PTEs are within the same BAR that they are potentially
1485 	 * of NUMA access patterns. Therefore, even with the way we assume
1486 	 * hardware should work, we must keep this posting read for paranoia.
1487 	 */
1488 	if (i != 0)
1489 		WARN_ON(readq(&gtt_entries[i-1])
1490 			!= gen8_pte_encode(addr, level, true));
1491 
1492 	/* This next bit makes the above posting read even more important. We
1493 	 * want to flush the TLBs only after we're certain all the PTE updates
1494 	 * have finished.
1495 	 */
1496 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1497 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1498 }
1499 
1500 /*
1501  * Binds an object into the global gtt with the specified cache level. The object
1502  * will be accessible to the GPU via commands whose operands reference offsets
1503  * within the global GTT as well as accessible by the GPU through the GMADR
1504  * mapped BAR (dev_priv->mm.gtt->gtt).
1505  */
1506 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1507 				     struct sg_table *st,
1508 				     uint64_t start,
1509 				     enum i915_cache_level level, u32 flags)
1510 {
1511 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1512 	unsigned first_entry = start >> PAGE_SHIFT;
1513 	gen6_gtt_pte_t __iomem *gtt_entries =
1514 		(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1515 	int i = 0;
1516 	struct sg_page_iter sg_iter;
1517 	dma_addr_t addr = 0;
1518 
1519 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1520 		addr = sg_page_iter_dma_address(&sg_iter);
1521 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1522 		i++;
1523 	}
1524 
1525 	/* XXX: This serves as a posting read to make sure that the PTE has
1526 	 * actually been updated. There is some concern that even though
1527 	 * registers and PTEs are within the same BAR that they are potentially
1528 	 * of NUMA access patterns. Therefore, even with the way we assume
1529 	 * hardware should work, we must keep this posting read for paranoia.
1530 	 */
1531 	if (i != 0) {
1532 		unsigned long gtt = readl(&gtt_entries[i-1]);
1533 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1534 	}
1535 
1536 	/* This next bit makes the above posting read even more important. We
1537 	 * want to flush the TLBs only after we're certain all the PTE updates
1538 	 * have finished.
1539 	 */
1540 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1541 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1542 }
1543 
1544 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1545 				  uint64_t start,
1546 				  uint64_t length,
1547 				  bool use_scratch)
1548 {
1549 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1550 	unsigned first_entry = start >> PAGE_SHIFT;
1551 	unsigned num_entries = length >> PAGE_SHIFT;
1552 	gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1553 		(gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1554 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1555 	int i;
1556 
1557 	if (WARN(num_entries > max_entries,
1558 		 "First entry = %d; Num entries = %d (max=%d)\n",
1559 		 first_entry, num_entries, max_entries))
1560 		num_entries = max_entries;
1561 
1562 	scratch_pte = gen8_pte_encode(vm->scratch.addr,
1563 				      I915_CACHE_LLC,
1564 				      use_scratch);
1565 	for (i = 0; i < num_entries; i++)
1566 		gen8_set_pte(&gtt_base[i], scratch_pte);
1567 	readl(gtt_base);
1568 }
1569 
1570 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1571 				  uint64_t start,
1572 				  uint64_t length,
1573 				  bool use_scratch)
1574 {
1575 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1576 	unsigned first_entry = start >> PAGE_SHIFT;
1577 	unsigned num_entries = length >> PAGE_SHIFT;
1578 	gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1579 		(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1580 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1581 	int i;
1582 
1583 	if (WARN(num_entries > max_entries,
1584 		 "First entry = %d; Num entries = %d (max=%d)\n",
1585 		 first_entry, num_entries, max_entries))
1586 		num_entries = max_entries;
1587 
1588 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1589 
1590 	for (i = 0; i < num_entries; i++)
1591 		iowrite32(scratch_pte, &gtt_base[i]);
1592 	readl(gtt_base);
1593 }
1594 
1595 
1596 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1597 			       enum i915_cache_level cache_level,
1598 			       u32 unused)
1599 {
1600 	const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1601 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1602 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1603 
1604 	BUG_ON(!i915_is_ggtt(vma->vm));
1605 	intel_gtt_insert_sg_entries(vma->ggtt_view.pages, entry, flags);
1606 	vma->bound = GLOBAL_BIND;
1607 }
1608 
1609 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1610 				  uint64_t start,
1611 				  uint64_t length,
1612 				  bool unused)
1613 {
1614 	unsigned first_entry = start >> PAGE_SHIFT;
1615 	unsigned num_entries = length >> PAGE_SHIFT;
1616 	intel_gtt_clear_range(first_entry, num_entries);
1617 }
1618 
1619 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1620 {
1621 	const unsigned int first = vma->node.start >> PAGE_SHIFT;
1622 	const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1623 
1624 	BUG_ON(!i915_is_ggtt(vma->vm));
1625 	vma->bound = 0;
1626 	intel_gtt_clear_range(first, size);
1627 }
1628 
1629 static void ggtt_bind_vma(struct i915_vma *vma,
1630 			  enum i915_cache_level cache_level,
1631 			  u32 flags)
1632 {
1633 	struct drm_device *dev = vma->vm->dev;
1634 	struct drm_i915_private *dev_priv = dev->dev_private;
1635 	struct drm_i915_gem_object *obj = vma->obj;
1636 
1637 	/* Currently applicable only to VLV */
1638 	if (obj->gt_ro)
1639 		flags |= PTE_READ_ONLY;
1640 
1641 	/* If there is no aliasing PPGTT, or the caller needs a global mapping,
1642 	 * or we have a global mapping already but the cacheability flags have
1643 	 * changed, set the global PTEs.
1644 	 *
1645 	 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1646 	 * instead if none of the above hold true.
1647 	 *
1648 	 * NB: A global mapping should only be needed for special regions like
1649 	 * "gtt mappable", SNB errata, or if specified via special execbuf
1650 	 * flags. At all other times, the GPU will use the aliasing PPGTT.
1651 	 */
1652 	if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1653 		if (!(vma->bound & GLOBAL_BIND) ||
1654 		    (cache_level != obj->cache_level)) {
1655 			vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
1656 						vma->node.start,
1657 						cache_level, flags);
1658 			vma->bound |= GLOBAL_BIND;
1659 		}
1660 	}
1661 
1662 	if (dev_priv->mm.aliasing_ppgtt &&
1663 	    (!(vma->bound & LOCAL_BIND) ||
1664 	     (cache_level != obj->cache_level))) {
1665 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1666 		appgtt->base.insert_entries(&appgtt->base,
1667 					    vma->ggtt_view.pages,
1668 					    vma->node.start,
1669 					    cache_level, flags);
1670 		vma->bound |= LOCAL_BIND;
1671 	}
1672 }
1673 
1674 static void ggtt_unbind_vma(struct i915_vma *vma)
1675 {
1676 	struct drm_device *dev = vma->vm->dev;
1677 	struct drm_i915_private *dev_priv = dev->dev_private;
1678 	struct drm_i915_gem_object *obj = vma->obj;
1679 
1680 	if (vma->bound & GLOBAL_BIND) {
1681 		vma->vm->clear_range(vma->vm,
1682 				     vma->node.start,
1683 				     obj->base.size,
1684 				     true);
1685 		vma->bound &= ~GLOBAL_BIND;
1686 	}
1687 
1688 	if (vma->bound & LOCAL_BIND) {
1689 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1690 		appgtt->base.clear_range(&appgtt->base,
1691 					 vma->node.start,
1692 					 obj->base.size,
1693 					 true);
1694 		vma->bound &= ~LOCAL_BIND;
1695 	}
1696 }
1697 
1698 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1699 {
1700 	struct drm_device *dev = obj->base.dev;
1701 	struct drm_i915_private *dev_priv = dev->dev_private;
1702 	bool interruptible;
1703 
1704 	interruptible = do_idling(dev_priv);
1705 
1706 	if (!obj->has_dma_mapping)
1707 		dma_unmap_sg(&dev->pdev->dev,
1708 			     obj->pages->sgl, obj->pages->nents,
1709 			     PCI_DMA_BIDIRECTIONAL);
1710 
1711 	undo_idling(dev_priv, interruptible);
1712 }
1713 
1714 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1715 				  unsigned long color,
1716 				  unsigned long *start,
1717 				  unsigned long *end)
1718 {
1719 	if (node->color != color)
1720 		*start += 4096;
1721 
1722 	if (!list_empty(&node->node_list)) {
1723 		node = list_entry(node->node_list.next,
1724 				  struct drm_mm_node,
1725 				  node_list);
1726 		if (node->allocated && node->color != color)
1727 			*end -= 4096;
1728 	}
1729 }
1730 
1731 static int i915_gem_setup_global_gtt(struct drm_device *dev,
1732 				     unsigned long start,
1733 				     unsigned long mappable_end,
1734 				     unsigned long end)
1735 {
1736 	/* Let GEM Manage all of the aperture.
1737 	 *
1738 	 * However, leave one page at the end still bound to the scratch page.
1739 	 * There are a number of places where the hardware apparently prefetches
1740 	 * past the end of the object, and we've seen multiple hangs with the
1741 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1742 	 * aperture.  One page should be enough to keep any prefetching inside
1743 	 * of the aperture.
1744 	 */
1745 	struct drm_i915_private *dev_priv = dev->dev_private;
1746 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1747 	struct drm_mm_node *entry;
1748 	struct drm_i915_gem_object *obj;
1749 	unsigned long hole_start, hole_end;
1750 	int ret;
1751 
1752 	BUG_ON(mappable_end > end);
1753 
1754 	/* Subtract the guard page ... */
1755 	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1756 	if (!HAS_LLC(dev))
1757 		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1758 
1759 	/* Mark any preallocated objects as occupied */
1760 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1761 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1762 
1763 		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1764 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
1765 
1766 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
1767 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1768 		if (ret) {
1769 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
1770 			return ret;
1771 		}
1772 		vma->bound |= GLOBAL_BIND;
1773 	}
1774 
1775 	dev_priv->gtt.base.start = start;
1776 	dev_priv->gtt.base.total = end - start;
1777 
1778 	/* Clear any non-preallocated blocks */
1779 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1780 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1781 			      hole_start, hole_end);
1782 		ggtt_vm->clear_range(ggtt_vm, hole_start,
1783 				     hole_end - hole_start, true);
1784 	}
1785 
1786 	/* And finally clear the reserved guard page */
1787 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1788 
1789 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
1790 		struct i915_hw_ppgtt *ppgtt;
1791 
1792 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1793 		if (!ppgtt)
1794 			return -ENOMEM;
1795 
1796 		ret = __hw_ppgtt_init(dev, ppgtt);
1797 		if (ret != 0)
1798 			return ret;
1799 
1800 		dev_priv->mm.aliasing_ppgtt = ppgtt;
1801 	}
1802 
1803 	return 0;
1804 }
1805 
1806 void i915_gem_init_global_gtt(struct drm_device *dev)
1807 {
1808 	struct drm_i915_private *dev_priv = dev->dev_private;
1809 	unsigned long gtt_size, mappable_size;
1810 
1811 	gtt_size = dev_priv->gtt.base.total;
1812 	mappable_size = dev_priv->gtt.mappable_end;
1813 
1814 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1815 }
1816 
1817 void i915_global_gtt_cleanup(struct drm_device *dev)
1818 {
1819 	struct drm_i915_private *dev_priv = dev->dev_private;
1820 	struct i915_address_space *vm = &dev_priv->gtt.base;
1821 
1822 	if (dev_priv->mm.aliasing_ppgtt) {
1823 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1824 
1825 		ppgtt->base.cleanup(&ppgtt->base);
1826 	}
1827 
1828 	if (drm_mm_initialized(&vm->mm)) {
1829 		drm_mm_takedown(&vm->mm);
1830 		list_del(&vm->global_link);
1831 	}
1832 
1833 	vm->cleanup(vm);
1834 }
1835 
1836 static int setup_scratch_page(struct drm_device *dev)
1837 {
1838 	struct drm_i915_private *dev_priv = dev->dev_private;
1839 	struct page *page;
1840 	dma_addr_t dma_addr;
1841 
1842 	page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1843 	if (page == NULL)
1844 		return -ENOMEM;
1845 	set_pages_uc(page, 1);
1846 
1847 #ifdef CONFIG_INTEL_IOMMU
1848 	dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1849 				PCI_DMA_BIDIRECTIONAL);
1850 	if (pci_dma_mapping_error(dev->pdev, dma_addr))
1851 		return -EINVAL;
1852 #else
1853 	dma_addr = page_to_phys(page);
1854 #endif
1855 	dev_priv->gtt.base.scratch.page = page;
1856 	dev_priv->gtt.base.scratch.addr = dma_addr;
1857 
1858 	return 0;
1859 }
1860 
1861 static void teardown_scratch_page(struct drm_device *dev)
1862 {
1863 	struct drm_i915_private *dev_priv = dev->dev_private;
1864 	struct page *page = dev_priv->gtt.base.scratch.page;
1865 
1866 	set_pages_wb(page, 1);
1867 	pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1868 		       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1869 	__free_page(page);
1870 }
1871 
1872 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1873 {
1874 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1875 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1876 	return snb_gmch_ctl << 20;
1877 }
1878 
1879 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1880 {
1881 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1882 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1883 	if (bdw_gmch_ctl)
1884 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1885 
1886 #ifdef CONFIG_X86_32
1887 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
1888 	if (bdw_gmch_ctl > 4)
1889 		bdw_gmch_ctl = 4;
1890 #endif
1891 
1892 	return bdw_gmch_ctl << 20;
1893 }
1894 
1895 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1896 {
1897 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1898 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1899 
1900 	if (gmch_ctrl)
1901 		return 1 << (20 + gmch_ctrl);
1902 
1903 	return 0;
1904 }
1905 
1906 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1907 {
1908 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1909 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1910 	return snb_gmch_ctl << 25; /* 32 MB units */
1911 }
1912 
1913 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1914 {
1915 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1916 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1917 	return bdw_gmch_ctl << 25; /* 32 MB units */
1918 }
1919 
1920 static size_t chv_get_stolen_size(u16 gmch_ctrl)
1921 {
1922 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
1923 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
1924 
1925 	/*
1926 	 * 0x0  to 0x10: 32MB increments starting at 0MB
1927 	 * 0x11 to 0x16: 4MB increments starting at 8MB
1928 	 * 0x17 to 0x1d: 4MB increments start at 36MB
1929 	 */
1930 	if (gmch_ctrl < 0x11)
1931 		return gmch_ctrl << 25;
1932 	else if (gmch_ctrl < 0x17)
1933 		return (gmch_ctrl - 0x11 + 2) << 22;
1934 	else
1935 		return (gmch_ctrl - 0x17 + 9) << 22;
1936 }
1937 
1938 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
1939 {
1940 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1941 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
1942 
1943 	if (gen9_gmch_ctl < 0xf0)
1944 		return gen9_gmch_ctl << 25; /* 32 MB units */
1945 	else
1946 		/* 4MB increments starting at 0xf0 for 4MB */
1947 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
1948 }
1949 
1950 static int ggtt_probe_common(struct drm_device *dev,
1951 			     size_t gtt_size)
1952 {
1953 	struct drm_i915_private *dev_priv = dev->dev_private;
1954 	phys_addr_t gtt_phys_addr;
1955 	int ret;
1956 
1957 	/* For Modern GENs the PTEs and register space are split in the BAR */
1958 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1959 		(pci_resource_len(dev->pdev, 0) / 2);
1960 
1961 	dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1962 	if (!dev_priv->gtt.gsm) {
1963 		DRM_ERROR("Failed to map the gtt page table\n");
1964 		return -ENOMEM;
1965 	}
1966 
1967 	ret = setup_scratch_page(dev);
1968 	if (ret) {
1969 		DRM_ERROR("Scratch setup failed\n");
1970 		/* iounmap will also get called at remove, but meh */
1971 		iounmap(dev_priv->gtt.gsm);
1972 	}
1973 
1974 	return ret;
1975 }
1976 
1977 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1978  * bits. When using advanced contexts each context stores its own PAT, but
1979  * writing this data shouldn't be harmful even in those cases. */
1980 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
1981 {
1982 	uint64_t pat;
1983 
1984 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1985 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1986 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1987 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1988 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1989 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1990 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1991 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1992 
1993 	if (!USES_PPGTT(dev_priv->dev))
1994 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
1995 		 * so RTL will always use the value corresponding to
1996 		 * pat_sel = 000".
1997 		 * So let's disable cache for GGTT to avoid screen corruptions.
1998 		 * MOCS still can be used though.
1999 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2000 		 * before this patch, i.e. the same uncached + snooping access
2001 		 * like on gen6/7 seems to be in effect.
2002 		 * - So this just fixes blitter/render access. Again it looks
2003 		 * like it's not just uncached access, but uncached + snooping.
2004 		 * So we can still hold onto all our assumptions wrt cpu
2005 		 * clflushing on LLC machines.
2006 		 */
2007 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2008 
2009 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2010 	 * write would work. */
2011 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
2012 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2013 }
2014 
2015 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2016 {
2017 	uint64_t pat;
2018 
2019 	/*
2020 	 * Map WB on BDW to snooped on CHV.
2021 	 *
2022 	 * Only the snoop bit has meaning for CHV, the rest is
2023 	 * ignored.
2024 	 *
2025 	 * The hardware will never snoop for certain types of accesses:
2026 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2027 	 * - PPGTT page tables
2028 	 * - some other special cycles
2029 	 *
2030 	 * As with BDW, we also need to consider the following for GT accesses:
2031 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2032 	 * so RTL will always use the value corresponding to
2033 	 * pat_sel = 000".
2034 	 * Which means we must set the snoop bit in PAT entry 0
2035 	 * in order to keep the global status page working.
2036 	 */
2037 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2038 	      GEN8_PPAT(1, 0) |
2039 	      GEN8_PPAT(2, 0) |
2040 	      GEN8_PPAT(3, 0) |
2041 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2042 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2043 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2044 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2045 
2046 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
2047 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2048 }
2049 
2050 static int gen8_gmch_probe(struct drm_device *dev,
2051 			   size_t *gtt_total,
2052 			   size_t *stolen,
2053 			   phys_addr_t *mappable_base,
2054 			   unsigned long *mappable_end)
2055 {
2056 	struct drm_i915_private *dev_priv = dev->dev_private;
2057 	unsigned int gtt_size;
2058 	u16 snb_gmch_ctl;
2059 	int ret;
2060 
2061 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2062 	*mappable_base = pci_resource_start(dev->pdev, 2);
2063 	*mappable_end = pci_resource_len(dev->pdev, 2);
2064 
2065 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2066 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2067 
2068 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2069 
2070 	if (INTEL_INFO(dev)->gen >= 9) {
2071 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
2072 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2073 	} else if (IS_CHERRYVIEW(dev)) {
2074 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
2075 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2076 	} else {
2077 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
2078 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2079 	}
2080 
2081 	*gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
2082 
2083 	if (IS_CHERRYVIEW(dev))
2084 		chv_setup_private_ppat(dev_priv);
2085 	else
2086 		bdw_setup_private_ppat(dev_priv);
2087 
2088 	ret = ggtt_probe_common(dev, gtt_size);
2089 
2090 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2091 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2092 
2093 	return ret;
2094 }
2095 
2096 static int gen6_gmch_probe(struct drm_device *dev,
2097 			   size_t *gtt_total,
2098 			   size_t *stolen,
2099 			   phys_addr_t *mappable_base,
2100 			   unsigned long *mappable_end)
2101 {
2102 	struct drm_i915_private *dev_priv = dev->dev_private;
2103 	unsigned int gtt_size;
2104 	u16 snb_gmch_ctl;
2105 	int ret;
2106 
2107 	*mappable_base = pci_resource_start(dev->pdev, 2);
2108 	*mappable_end = pci_resource_len(dev->pdev, 2);
2109 
2110 	/* 64/512MB is the current min/max we actually know of, but this is just
2111 	 * a coarse sanity check.
2112 	 */
2113 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2114 		DRM_ERROR("Unknown GMADR size (%lx)\n",
2115 			  dev_priv->gtt.mappable_end);
2116 		return -ENXIO;
2117 	}
2118 
2119 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2120 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2121 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2122 
2123 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
2124 
2125 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2126 	*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
2127 
2128 	ret = ggtt_probe_common(dev, gtt_size);
2129 
2130 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2131 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2132 
2133 	return ret;
2134 }
2135 
2136 static void gen6_gmch_remove(struct i915_address_space *vm)
2137 {
2138 
2139 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2140 
2141 	iounmap(gtt->gsm);
2142 	teardown_scratch_page(vm->dev);
2143 }
2144 
2145 static int i915_gmch_probe(struct drm_device *dev,
2146 			   size_t *gtt_total,
2147 			   size_t *stolen,
2148 			   phys_addr_t *mappable_base,
2149 			   unsigned long *mappable_end)
2150 {
2151 	struct drm_i915_private *dev_priv = dev->dev_private;
2152 	int ret;
2153 
2154 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2155 	if (!ret) {
2156 		DRM_ERROR("failed to set up gmch\n");
2157 		return -EIO;
2158 	}
2159 
2160 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2161 
2162 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2163 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2164 
2165 	if (unlikely(dev_priv->gtt.do_idle_maps))
2166 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2167 
2168 	return 0;
2169 }
2170 
2171 static void i915_gmch_remove(struct i915_address_space *vm)
2172 {
2173 	intel_gmch_remove();
2174 }
2175 
2176 int i915_gem_gtt_init(struct drm_device *dev)
2177 {
2178 	struct drm_i915_private *dev_priv = dev->dev_private;
2179 	struct i915_gtt *gtt = &dev_priv->gtt;
2180 	int ret;
2181 
2182 	if (INTEL_INFO(dev)->gen <= 5) {
2183 		gtt->gtt_probe = i915_gmch_probe;
2184 		gtt->base.cleanup = i915_gmch_remove;
2185 	} else if (INTEL_INFO(dev)->gen < 8) {
2186 		gtt->gtt_probe = gen6_gmch_probe;
2187 		gtt->base.cleanup = gen6_gmch_remove;
2188 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
2189 			gtt->base.pte_encode = iris_pte_encode;
2190 		else if (IS_HASWELL(dev))
2191 			gtt->base.pte_encode = hsw_pte_encode;
2192 		else if (IS_VALLEYVIEW(dev))
2193 			gtt->base.pte_encode = byt_pte_encode;
2194 		else if (INTEL_INFO(dev)->gen >= 7)
2195 			gtt->base.pte_encode = ivb_pte_encode;
2196 		else
2197 			gtt->base.pte_encode = snb_pte_encode;
2198 	} else {
2199 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2200 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2201 	}
2202 
2203 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2204 			     &gtt->mappable_base, &gtt->mappable_end);
2205 	if (ret)
2206 		return ret;
2207 
2208 	gtt->base.dev = dev;
2209 
2210 	/* GMADR is the PCI mmio aperture into the global GTT. */
2211 	DRM_INFO("Memory usable by graphics device = %zdM\n",
2212 		 gtt->base.total >> 20);
2213 	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2214 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2215 #ifdef CONFIG_INTEL_IOMMU
2216 	if (intel_iommu_gfx_mapped)
2217 		DRM_INFO("VT-d active for gfx access\n");
2218 #endif
2219 	/*
2220 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2221 	 * user's requested state against the hardware/driver capabilities.  We
2222 	 * do this now so that we can print out any log messages once rather
2223 	 * than every time we check intel_enable_ppgtt().
2224 	 */
2225 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2226 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2227 
2228 	return 0;
2229 }
2230 
2231 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2232 					      struct i915_address_space *vm,
2233 					      const struct i915_ggtt_view *view)
2234 {
2235 	struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2236 	if (vma == NULL)
2237 		return ERR_PTR(-ENOMEM);
2238 
2239 	INIT_LIST_HEAD(&vma->vma_link);
2240 	INIT_LIST_HEAD(&vma->mm_list);
2241 	INIT_LIST_HEAD(&vma->exec_list);
2242 	vma->vm = vm;
2243 	vma->obj = obj;
2244 	vma->ggtt_view = *view;
2245 
2246 	if (INTEL_INFO(vm->dev)->gen >= 6) {
2247 		if (i915_is_ggtt(vm)) {
2248 			vma->unbind_vma = ggtt_unbind_vma;
2249 			vma->bind_vma = ggtt_bind_vma;
2250 		} else {
2251 			vma->unbind_vma = ppgtt_unbind_vma;
2252 			vma->bind_vma = ppgtt_bind_vma;
2253 		}
2254 	} else {
2255 		BUG_ON(!i915_is_ggtt(vm));
2256 		vma->unbind_vma = i915_ggtt_unbind_vma;
2257 		vma->bind_vma = i915_ggtt_bind_vma;
2258 	}
2259 
2260 	list_add_tail(&vma->vma_link, &obj->vma_list);
2261 	if (!i915_is_ggtt(vm))
2262 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2263 
2264 	return vma;
2265 }
2266 
2267 struct i915_vma *
2268 i915_gem_obj_lookup_or_create_vma_view(struct drm_i915_gem_object *obj,
2269 				       struct i915_address_space *vm,
2270 				       const struct i915_ggtt_view *view)
2271 {
2272 	struct i915_vma *vma;
2273 
2274 	vma = i915_gem_obj_to_vma_view(obj, vm, view);
2275 	if (!vma)
2276 		vma = __i915_gem_vma_create(obj, vm, view);
2277 
2278 	return vma;
2279 }
2280 
2281 static inline
2282 int i915_get_vma_pages(struct i915_vma *vma)
2283 {
2284 	if (vma->ggtt_view.pages)
2285 		return 0;
2286 
2287 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2288 		vma->ggtt_view.pages = vma->obj->pages;
2289 	else
2290 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
2291 			  vma->ggtt_view.type);
2292 
2293 	if (!vma->ggtt_view.pages) {
2294 		DRM_ERROR("Failed to get pages for VMA view type %u!\n",
2295 			  vma->ggtt_view.type);
2296 		return -EINVAL;
2297 	}
2298 
2299 	return 0;
2300 }
2301 
2302 /**
2303  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2304  * @vma: VMA to map
2305  * @cache_level: mapping cache level
2306  * @flags: flags like global or local mapping
2307  *
2308  * DMA addresses are taken from the scatter-gather table of this object (or of
2309  * this VMA in case of non-default GGTT views) and PTE entries set up.
2310  * Note that DMA addresses are also the only part of the SG table we care about.
2311  */
2312 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2313 		  u32 flags)
2314 {
2315 	int ret = i915_get_vma_pages(vma);
2316 
2317 	if (ret)
2318 		return ret;
2319 
2320 	vma->bind_vma(vma, cache_level, flags);
2321 
2322 	return 0;
2323 }
2324