1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include "intel_frontbuffer.h"
35 
36 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
37 
38 /**
39  * DOC: Global GTT views
40  *
41  * Background and previous state
42  *
43  * Historically objects could exists (be bound) in global GTT space only as
44  * singular instances with a view representing all of the object's backing pages
45  * in a linear fashion. This view will be called a normal view.
46  *
47  * To support multiple views of the same object, where the number of mapped
48  * pages is not equal to the backing store, or where the layout of the pages
49  * is not linear, concept of a GGTT view was added.
50  *
51  * One example of an alternative view is a stereo display driven by a single
52  * image. In this case we would have a framebuffer looking like this
53  * (2x2 pages):
54  *
55  *    12
56  *    34
57  *
58  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
59  * rendering. In contrast, fed to the display engine would be an alternative
60  * view which could look something like this:
61  *
62  *   1212
63  *   3434
64  *
65  * In this example both the size and layout of pages in the alternative view is
66  * different from the normal view.
67  *
68  * Implementation and usage
69  *
70  * GGTT views are implemented using VMAs and are distinguished via enum
71  * i915_ggtt_view_type and struct i915_ggtt_view.
72  *
73  * A new flavour of core GEM functions which work with GGTT bound objects were
74  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
75  * renaming  in large amounts of code. They take the struct i915_ggtt_view
76  * parameter encapsulating all metadata required to implement a view.
77  *
78  * As a helper for callers which are only interested in the normal view,
79  * globally const i915_ggtt_view_normal singleton instance exists. All old core
80  * GEM API functions, the ones not taking the view parameter, are operating on,
81  * or with the normal GGTT view.
82  *
83  * Code wanting to add or use a new GGTT view needs to:
84  *
85  * 1. Add a new enum with a suitable name.
86  * 2. Extend the metadata in the i915_ggtt_view structure if required.
87  * 3. Add support to i915_get_vma_pages().
88  *
89  * New views are required to build a scatter-gather table from within the
90  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
91  * exists for the lifetime of an VMA.
92  *
93  * Core API is designed to have copy semantics which means that passed in
94  * struct i915_ggtt_view does not need to be persistent (left around after
95  * calling the core API functions).
96  *
97  */
98 
99 static int
100 i915_get_ggtt_vma_pages(struct i915_vma *vma);
101 
102 const struct i915_ggtt_view i915_ggtt_view_normal = {
103 	.type = I915_GGTT_VIEW_NORMAL,
104 };
105 const struct i915_ggtt_view i915_ggtt_view_rotated = {
106 	.type = I915_GGTT_VIEW_ROTATED,
107 };
108 
109 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
110 			       	int enable_ppgtt)
111 {
112 	bool has_aliasing_ppgtt;
113 	bool has_full_ppgtt;
114 	bool has_full_48bit_ppgtt;
115 
116 	has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
117 	has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
118 	has_full_48bit_ppgtt =
119 	       	IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
120 
121 	if (intel_vgpu_active(dev_priv)) {
122 		/* emulation is too hard */
123 		has_full_ppgtt = false;
124 		has_full_48bit_ppgtt = false;
125 	}
126 
127 	if (!has_aliasing_ppgtt)
128 		return 0;
129 
130 	/*
131 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
132 	 * execlists, the sole mechanism available to submit work.
133 	 */
134 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
135 		return 0;
136 
137 	if (enable_ppgtt == 1)
138 		return 1;
139 
140 	if (enable_ppgtt == 2 && has_full_ppgtt)
141 		return 2;
142 
143 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
144 		return 3;
145 
146 #ifdef CONFIG_INTEL_IOMMU
147 	/* Disable ppgtt on SNB if VT-d is on. */
148 	if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
149 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
150 		return 0;
151 	}
152 #endif
153 
154 	/* Early VLV doesn't have this */
155 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
156 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
157 		return 0;
158 	}
159 
160 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
161 		return has_full_48bit_ppgtt ? 3 : 2;
162 	else
163 		return has_aliasing_ppgtt ? 1 : 0;
164 }
165 
166 static int ppgtt_bind_vma(struct i915_vma *vma,
167 			  enum i915_cache_level cache_level,
168 			  u32 unused)
169 {
170 	u32 pte_flags = 0;
171 
172 	vma->pages = vma->obj->mm.pages;
173 
174 	/* Currently applicable only to VLV */
175 	if (vma->obj->gt_ro)
176 		pte_flags |= PTE_READ_ONLY;
177 
178 	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
179 				cache_level, pte_flags);
180 
181 	return 0;
182 }
183 
184 static void ppgtt_unbind_vma(struct i915_vma *vma)
185 {
186 	vma->vm->clear_range(vma->vm,
187 			     vma->node.start,
188 			     vma->size);
189 }
190 
191 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
192 				  enum i915_cache_level level)
193 {
194 	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
195 	pte |= addr;
196 
197 	switch (level) {
198 	case I915_CACHE_NONE:
199 		pte |= PPAT_UNCACHED_INDEX;
200 		break;
201 	case I915_CACHE_WT:
202 		pte |= PPAT_DISPLAY_ELLC_INDEX;
203 		break;
204 	default:
205 		pte |= PPAT_CACHED_INDEX;
206 		break;
207 	}
208 
209 	return pte;
210 }
211 
212 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
213 				  const enum i915_cache_level level)
214 {
215 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
216 	pde |= addr;
217 	if (level != I915_CACHE_NONE)
218 		pde |= PPAT_CACHED_PDE_INDEX;
219 	else
220 		pde |= PPAT_UNCACHED_INDEX;
221 	return pde;
222 }
223 
224 #define gen8_pdpe_encode gen8_pde_encode
225 #define gen8_pml4e_encode gen8_pde_encode
226 
227 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
228 				 enum i915_cache_level level,
229 				 u32 unused)
230 {
231 	gen6_pte_t pte = GEN6_PTE_VALID;
232 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
233 
234 	switch (level) {
235 	case I915_CACHE_L3_LLC:
236 	case I915_CACHE_LLC:
237 		pte |= GEN6_PTE_CACHE_LLC;
238 		break;
239 	case I915_CACHE_NONE:
240 		pte |= GEN6_PTE_UNCACHED;
241 		break;
242 	default:
243 		MISSING_CASE(level);
244 	}
245 
246 	return pte;
247 }
248 
249 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
250 				 enum i915_cache_level level,
251 				 u32 unused)
252 {
253 	gen6_pte_t pte = GEN6_PTE_VALID;
254 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
255 
256 	switch (level) {
257 	case I915_CACHE_L3_LLC:
258 		pte |= GEN7_PTE_CACHE_L3_LLC;
259 		break;
260 	case I915_CACHE_LLC:
261 		pte |= GEN6_PTE_CACHE_LLC;
262 		break;
263 	case I915_CACHE_NONE:
264 		pte |= GEN6_PTE_UNCACHED;
265 		break;
266 	default:
267 		MISSING_CASE(level);
268 	}
269 
270 	return pte;
271 }
272 
273 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
274 				 enum i915_cache_level level,
275 				 u32 flags)
276 {
277 	gen6_pte_t pte = GEN6_PTE_VALID;
278 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
279 
280 	if (!(flags & PTE_READ_ONLY))
281 		pte |= BYT_PTE_WRITEABLE;
282 
283 	if (level != I915_CACHE_NONE)
284 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
285 
286 	return pte;
287 }
288 
289 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
290 				 enum i915_cache_level level,
291 				 u32 unused)
292 {
293 	gen6_pte_t pte = GEN6_PTE_VALID;
294 	pte |= HSW_PTE_ADDR_ENCODE(addr);
295 
296 	if (level != I915_CACHE_NONE)
297 		pte |= HSW_WB_LLC_AGE3;
298 
299 	return pte;
300 }
301 
302 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
303 				  enum i915_cache_level level,
304 				  u32 unused)
305 {
306 	gen6_pte_t pte = GEN6_PTE_VALID;
307 	pte |= HSW_PTE_ADDR_ENCODE(addr);
308 
309 	switch (level) {
310 	case I915_CACHE_NONE:
311 		break;
312 	case I915_CACHE_WT:
313 		pte |= HSW_WT_ELLC_LLC_AGE3;
314 		break;
315 	default:
316 		pte |= HSW_WB_ELLC_LLC_AGE3;
317 		break;
318 	}
319 
320 	return pte;
321 }
322 
323 static int __setup_page_dma(struct drm_i915_private *dev_priv,
324 			    struct i915_page_dma *p, gfp_t flags)
325 {
326 	struct device *kdev = &dev_priv->drm.pdev->dev;
327 
328 	p->page = alloc_page(flags);
329 	if (!p->page)
330 		return -ENOMEM;
331 
332 	p->daddr = dma_map_page(kdev,
333 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
334 
335 	if (dma_mapping_error(kdev, p->daddr)) {
336 		__free_page(p->page);
337 		return -EINVAL;
338 	}
339 
340 	return 0;
341 }
342 
343 static int setup_page_dma(struct drm_i915_private *dev_priv,
344 			  struct i915_page_dma *p)
345 {
346 	return __setup_page_dma(dev_priv, p, I915_GFP_DMA);
347 }
348 
349 static void cleanup_page_dma(struct drm_i915_private *dev_priv,
350 			     struct i915_page_dma *p)
351 {
352 	struct pci_dev *pdev = dev_priv->drm.pdev;
353 
354 	if (WARN_ON(!p->page))
355 		return;
356 
357 	dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
358 	__free_page(p->page);
359 	memset(p, 0, sizeof(*p));
360 }
361 
362 static void *kmap_page_dma(struct i915_page_dma *p)
363 {
364 	return kmap_atomic(p->page);
365 }
366 
367 /* We use the flushing unmap only with ppgtt structures:
368  * page directories, page tables and scratch pages.
369  */
370 static void kunmap_page_dma(struct drm_i915_private *dev_priv, void *vaddr)
371 {
372 	/* There are only few exceptions for gen >=6. chv and bxt.
373 	 * And we are not sure about the latter so play safe for now.
374 	 */
375 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
376 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
377 
378 	kunmap_atomic(vaddr);
379 }
380 
381 #define kmap_px(px) kmap_page_dma(px_base(px))
382 #define kunmap_px(ppgtt, vaddr) \
383 		kunmap_page_dma(to_i915((ppgtt)->base.dev), (vaddr))
384 
385 #define setup_px(dev_priv, px) setup_page_dma((dev_priv), px_base(px))
386 #define cleanup_px(dev_priv, px) cleanup_page_dma((dev_priv), px_base(px))
387 #define fill_px(dev_priv, px, v) fill_page_dma((dev_priv), px_base(px), (v))
388 #define fill32_px(dev_priv, px, v) \
389 		fill_page_dma_32((dev_priv), px_base(px), (v))
390 
391 static void fill_page_dma(struct drm_i915_private *dev_priv,
392 			  struct i915_page_dma *p, const uint64_t val)
393 {
394 	int i;
395 	uint64_t * const vaddr = kmap_page_dma(p);
396 
397 	for (i = 0; i < 512; i++)
398 		vaddr[i] = val;
399 
400 	kunmap_page_dma(dev_priv, vaddr);
401 }
402 
403 static void fill_page_dma_32(struct drm_i915_private *dev_priv,
404 			     struct i915_page_dma *p, const uint32_t val32)
405 {
406 	uint64_t v = val32;
407 
408 	v = v << 32 | val32;
409 
410 	fill_page_dma(dev_priv, p, v);
411 }
412 
413 static int
414 setup_scratch_page(struct drm_i915_private *dev_priv,
415 		   struct i915_page_dma *scratch,
416 		   gfp_t gfp)
417 {
418 	return __setup_page_dma(dev_priv, scratch, gfp | __GFP_ZERO);
419 }
420 
421 static void cleanup_scratch_page(struct drm_i915_private *dev_priv,
422 				 struct i915_page_dma *scratch)
423 {
424 	cleanup_page_dma(dev_priv, scratch);
425 }
426 
427 static struct i915_page_table *alloc_pt(struct drm_i915_private *dev_priv)
428 {
429 	struct i915_page_table *pt;
430 	const size_t count = INTEL_GEN(dev_priv) >= 8 ? GEN8_PTES : GEN6_PTES;
431 	int ret = -ENOMEM;
432 
433 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
434 	if (!pt)
435 		return ERR_PTR(-ENOMEM);
436 
437 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
438 				GFP_KERNEL);
439 
440 	if (!pt->used_ptes)
441 		goto fail_bitmap;
442 
443 	ret = setup_px(dev_priv, pt);
444 	if (ret)
445 		goto fail_page_m;
446 
447 	return pt;
448 
449 fail_page_m:
450 	kfree(pt->used_ptes);
451 fail_bitmap:
452 	kfree(pt);
453 
454 	return ERR_PTR(ret);
455 }
456 
457 static void free_pt(struct drm_i915_private *dev_priv,
458 		    struct i915_page_table *pt)
459 {
460 	cleanup_px(dev_priv, pt);
461 	kfree(pt->used_ptes);
462 	kfree(pt);
463 }
464 
465 static void gen8_initialize_pt(struct i915_address_space *vm,
466 			       struct i915_page_table *pt)
467 {
468 	gen8_pte_t scratch_pte;
469 
470 	scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
471 				      I915_CACHE_LLC);
472 
473 	fill_px(to_i915(vm->dev), pt, scratch_pte);
474 }
475 
476 static void gen6_initialize_pt(struct i915_address_space *vm,
477 			       struct i915_page_table *pt)
478 {
479 	gen6_pte_t scratch_pte;
480 
481 	WARN_ON(vm->scratch_page.daddr == 0);
482 
483 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
484 				     I915_CACHE_LLC, 0);
485 
486 	fill32_px(to_i915(vm->dev), pt, scratch_pte);
487 }
488 
489 static struct i915_page_directory *alloc_pd(struct drm_i915_private *dev_priv)
490 {
491 	struct i915_page_directory *pd;
492 	int ret = -ENOMEM;
493 
494 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
495 	if (!pd)
496 		return ERR_PTR(-ENOMEM);
497 
498 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
499 				sizeof(*pd->used_pdes), GFP_KERNEL);
500 	if (!pd->used_pdes)
501 		goto fail_bitmap;
502 
503 	ret = setup_px(dev_priv, pd);
504 	if (ret)
505 		goto fail_page_m;
506 
507 	return pd;
508 
509 fail_page_m:
510 	kfree(pd->used_pdes);
511 fail_bitmap:
512 	kfree(pd);
513 
514 	return ERR_PTR(ret);
515 }
516 
517 static void free_pd(struct drm_i915_private *dev_priv,
518 		    struct i915_page_directory *pd)
519 {
520 	if (px_page(pd)) {
521 		cleanup_px(dev_priv, pd);
522 		kfree(pd->used_pdes);
523 		kfree(pd);
524 	}
525 }
526 
527 static void gen8_initialize_pd(struct i915_address_space *vm,
528 			       struct i915_page_directory *pd)
529 {
530 	gen8_pde_t scratch_pde;
531 
532 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
533 
534 	fill_px(to_i915(vm->dev), pd, scratch_pde);
535 }
536 
537 static int __pdp_init(struct drm_i915_private *dev_priv,
538 		      struct i915_page_directory_pointer *pdp)
539 {
540 	size_t pdpes = I915_PDPES_PER_PDP(dev_priv);
541 
542 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
543 				  sizeof(unsigned long),
544 				  GFP_KERNEL);
545 	if (!pdp->used_pdpes)
546 		return -ENOMEM;
547 
548 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
549 				      GFP_KERNEL);
550 	if (!pdp->page_directory) {
551 		kfree(pdp->used_pdpes);
552 		/* the PDP might be the statically allocated top level. Keep it
553 		 * as clean as possible */
554 		pdp->used_pdpes = NULL;
555 		return -ENOMEM;
556 	}
557 
558 	return 0;
559 }
560 
561 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
562 {
563 	kfree(pdp->used_pdpes);
564 	kfree(pdp->page_directory);
565 	pdp->page_directory = NULL;
566 }
567 
568 static struct
569 i915_page_directory_pointer *alloc_pdp(struct drm_i915_private *dev_priv)
570 {
571 	struct i915_page_directory_pointer *pdp;
572 	int ret = -ENOMEM;
573 
574 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev_priv));
575 
576 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
577 	if (!pdp)
578 		return ERR_PTR(-ENOMEM);
579 
580 	ret = __pdp_init(dev_priv, pdp);
581 	if (ret)
582 		goto fail_bitmap;
583 
584 	ret = setup_px(dev_priv, pdp);
585 	if (ret)
586 		goto fail_page_m;
587 
588 	return pdp;
589 
590 fail_page_m:
591 	__pdp_fini(pdp);
592 fail_bitmap:
593 	kfree(pdp);
594 
595 	return ERR_PTR(ret);
596 }
597 
598 static void free_pdp(struct drm_i915_private *dev_priv,
599 		     struct i915_page_directory_pointer *pdp)
600 {
601 	__pdp_fini(pdp);
602 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
603 		cleanup_px(dev_priv, pdp);
604 		kfree(pdp);
605 	}
606 }
607 
608 static void gen8_initialize_pdp(struct i915_address_space *vm,
609 				struct i915_page_directory_pointer *pdp)
610 {
611 	gen8_ppgtt_pdpe_t scratch_pdpe;
612 
613 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
614 
615 	fill_px(to_i915(vm->dev), pdp, scratch_pdpe);
616 }
617 
618 static void gen8_initialize_pml4(struct i915_address_space *vm,
619 				 struct i915_pml4 *pml4)
620 {
621 	gen8_ppgtt_pml4e_t scratch_pml4e;
622 
623 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
624 					  I915_CACHE_LLC);
625 
626 	fill_px(to_i915(vm->dev), pml4, scratch_pml4e);
627 }
628 
629 static void
630 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
631 			  struct i915_page_directory_pointer *pdp,
632 			  struct i915_page_directory *pd,
633 			  int index)
634 {
635 	gen8_ppgtt_pdpe_t *page_directorypo;
636 
637 	if (!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)))
638 		return;
639 
640 	page_directorypo = kmap_px(pdp);
641 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
642 	kunmap_px(ppgtt, page_directorypo);
643 }
644 
645 static void
646 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
647 				  struct i915_pml4 *pml4,
648 				  struct i915_page_directory_pointer *pdp,
649 				  int index)
650 {
651 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
652 
653 	WARN_ON(!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)));
654 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
655 	kunmap_px(ppgtt, pagemap);
656 }
657 
658 /* Broadwell Page Directory Pointer Descriptors */
659 static int gen8_write_pdp(struct drm_i915_gem_request *req,
660 			  unsigned entry,
661 			  dma_addr_t addr)
662 {
663 	struct intel_ring *ring = req->ring;
664 	struct intel_engine_cs *engine = req->engine;
665 	int ret;
666 
667 	BUG_ON(entry >= 4);
668 
669 	ret = intel_ring_begin(req, 6);
670 	if (ret)
671 		return ret;
672 
673 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
674 	intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
675 	intel_ring_emit(ring, upper_32_bits(addr));
676 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
677 	intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
678 	intel_ring_emit(ring, lower_32_bits(addr));
679 	intel_ring_advance(ring);
680 
681 	return 0;
682 }
683 
684 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
685 				 struct drm_i915_gem_request *req)
686 {
687 	int i, ret;
688 
689 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
690 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
691 
692 		ret = gen8_write_pdp(req, i, pd_daddr);
693 		if (ret)
694 			return ret;
695 	}
696 
697 	return 0;
698 }
699 
700 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
701 			      struct drm_i915_gem_request *req)
702 {
703 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
704 }
705 
706 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
707  * the page table structures, we mark them dirty so that
708  * context switching/execlist queuing code takes extra steps
709  * to ensure that tlbs are flushed.
710  */
711 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
712 {
713 	ppgtt->pd_dirty_rings = INTEL_INFO(to_i915(ppgtt->base.dev))->ring_mask;
714 }
715 
716 /* Removes entries from a single page table, releasing it if it's empty.
717  * Caller can use the return value to update higher-level entries.
718  */
719 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
720 				struct i915_page_table *pt,
721 				uint64_t start,
722 				uint64_t length)
723 {
724 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
725 	unsigned int num_entries = gen8_pte_count(start, length);
726 	unsigned int pte = gen8_pte_index(start);
727 	unsigned int pte_end = pte + num_entries;
728 	gen8_pte_t *pt_vaddr;
729 	gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
730 						 I915_CACHE_LLC);
731 
732 	if (WARN_ON(!px_page(pt)))
733 		return false;
734 
735 	GEM_BUG_ON(pte_end > GEN8_PTES);
736 
737 	bitmap_clear(pt->used_ptes, pte, num_entries);
738 
739 	if (bitmap_empty(pt->used_ptes, GEN8_PTES)) {
740 		free_pt(to_i915(vm->dev), pt);
741 		return true;
742 	}
743 
744 	pt_vaddr = kmap_px(pt);
745 
746 	while (pte < pte_end)
747 		pt_vaddr[pte++] = scratch_pte;
748 
749 	kunmap_px(ppgtt, pt_vaddr);
750 
751 	return false;
752 }
753 
754 /* Removes entries from a single page dir, releasing it if it's empty.
755  * Caller can use the return value to update higher-level entries
756  */
757 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
758 				struct i915_page_directory *pd,
759 				uint64_t start,
760 				uint64_t length)
761 {
762 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
763 	struct i915_page_table *pt;
764 	uint64_t pde;
765 	gen8_pde_t *pde_vaddr;
766 	gen8_pde_t scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt),
767 						 I915_CACHE_LLC);
768 
769 	gen8_for_each_pde(pt, pd, start, length, pde) {
770 		if (WARN_ON(!pd->page_table[pde]))
771 			break;
772 
773 		if (gen8_ppgtt_clear_pt(vm, pt, start, length)) {
774 			__clear_bit(pde, pd->used_pdes);
775 			pde_vaddr = kmap_px(pd);
776 			pde_vaddr[pde] = scratch_pde;
777 			kunmap_px(ppgtt, pde_vaddr);
778 		}
779 	}
780 
781 	if (bitmap_empty(pd->used_pdes, I915_PDES)) {
782 		free_pd(to_i915(vm->dev), pd);
783 		return true;
784 	}
785 
786 	return false;
787 }
788 
789 /* Removes entries from a single page dir pointer, releasing it if it's empty.
790  * Caller can use the return value to update higher-level entries
791  */
792 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
793 				 struct i915_page_directory_pointer *pdp,
794 				 uint64_t start,
795 				 uint64_t length)
796 {
797 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
798 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
799 	struct i915_page_directory *pd;
800 	uint64_t pdpe;
801 	gen8_ppgtt_pdpe_t *pdpe_vaddr;
802 	gen8_ppgtt_pdpe_t scratch_pdpe =
803 		gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
804 
805 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
806 		if (WARN_ON(!pdp->page_directory[pdpe]))
807 			break;
808 
809 		if (gen8_ppgtt_clear_pd(vm, pd, start, length)) {
810 			__clear_bit(pdpe, pdp->used_pdpes);
811 			if (USES_FULL_48BIT_PPGTT(dev_priv)) {
812 				pdpe_vaddr = kmap_px(pdp);
813 				pdpe_vaddr[pdpe] = scratch_pdpe;
814 				kunmap_px(ppgtt, pdpe_vaddr);
815 			}
816 		}
817 	}
818 
819 	mark_tlbs_dirty(ppgtt);
820 
821 	if (USES_FULL_48BIT_PPGTT(dev_priv) &&
822 	    bitmap_empty(pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv))) {
823 		free_pdp(dev_priv, pdp);
824 		return true;
825 	}
826 
827 	return false;
828 }
829 
830 /* Removes entries from a single pml4.
831  * This is the top-level structure in 4-level page tables used on gen8+.
832  * Empty entries are always scratch pml4e.
833  */
834 static void gen8_ppgtt_clear_pml4(struct i915_address_space *vm,
835 				  struct i915_pml4 *pml4,
836 				  uint64_t start,
837 				  uint64_t length)
838 {
839 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
840 	struct i915_page_directory_pointer *pdp;
841 	uint64_t pml4e;
842 	gen8_ppgtt_pml4e_t *pml4e_vaddr;
843 	gen8_ppgtt_pml4e_t scratch_pml4e =
844 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC);
845 
846 	GEM_BUG_ON(!USES_FULL_48BIT_PPGTT(to_i915(vm->dev)));
847 
848 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
849 		if (WARN_ON(!pml4->pdps[pml4e]))
850 			break;
851 
852 		if (gen8_ppgtt_clear_pdp(vm, pdp, start, length)) {
853 			__clear_bit(pml4e, pml4->used_pml4es);
854 			pml4e_vaddr = kmap_px(pml4);
855 			pml4e_vaddr[pml4e] = scratch_pml4e;
856 			kunmap_px(ppgtt, pml4e_vaddr);
857 		}
858 	}
859 }
860 
861 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
862 				   uint64_t start, uint64_t length)
863 {
864 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
865 
866 	if (USES_FULL_48BIT_PPGTT(to_i915(vm->dev)))
867 		gen8_ppgtt_clear_pml4(vm, &ppgtt->pml4, start, length);
868 	else
869 		gen8_ppgtt_clear_pdp(vm, &ppgtt->pdp, start, length);
870 }
871 
872 static void
873 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
874 			      struct i915_page_directory_pointer *pdp,
875 			      struct sg_page_iter *sg_iter,
876 			      uint64_t start,
877 			      enum i915_cache_level cache_level)
878 {
879 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
880 	gen8_pte_t *pt_vaddr;
881 	unsigned pdpe = gen8_pdpe_index(start);
882 	unsigned pde = gen8_pde_index(start);
883 	unsigned pte = gen8_pte_index(start);
884 
885 	pt_vaddr = NULL;
886 
887 	while (__sg_page_iter_next(sg_iter)) {
888 		if (pt_vaddr == NULL) {
889 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
890 			struct i915_page_table *pt = pd->page_table[pde];
891 			pt_vaddr = kmap_px(pt);
892 		}
893 
894 		pt_vaddr[pte] =
895 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
896 					cache_level);
897 		if (++pte == GEN8_PTES) {
898 			kunmap_px(ppgtt, pt_vaddr);
899 			pt_vaddr = NULL;
900 			if (++pde == I915_PDES) {
901 				if (++pdpe == I915_PDPES_PER_PDP(to_i915(vm->dev)))
902 					break;
903 				pde = 0;
904 			}
905 			pte = 0;
906 		}
907 	}
908 
909 	if (pt_vaddr)
910 		kunmap_px(ppgtt, pt_vaddr);
911 }
912 
913 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
914 				      struct sg_table *pages,
915 				      uint64_t start,
916 				      enum i915_cache_level cache_level,
917 				      u32 unused)
918 {
919 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
920 	struct sg_page_iter sg_iter;
921 
922 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
923 
924 	if (!USES_FULL_48BIT_PPGTT(to_i915(vm->dev))) {
925 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
926 					      cache_level);
927 	} else {
928 		struct i915_page_directory_pointer *pdp;
929 		uint64_t pml4e;
930 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
931 
932 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
933 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
934 						      start, cache_level);
935 		}
936 	}
937 }
938 
939 static void gen8_free_page_tables(struct drm_i915_private *dev_priv,
940 				  struct i915_page_directory *pd)
941 {
942 	int i;
943 
944 	if (!px_page(pd))
945 		return;
946 
947 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
948 		if (WARN_ON(!pd->page_table[i]))
949 			continue;
950 
951 		free_pt(dev_priv, pd->page_table[i]);
952 		pd->page_table[i] = NULL;
953 	}
954 }
955 
956 static int gen8_init_scratch(struct i915_address_space *vm)
957 {
958 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
959 	int ret;
960 
961 	ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
962 	if (ret)
963 		return ret;
964 
965 	vm->scratch_pt = alloc_pt(dev_priv);
966 	if (IS_ERR(vm->scratch_pt)) {
967 		ret = PTR_ERR(vm->scratch_pt);
968 		goto free_scratch_page;
969 	}
970 
971 	vm->scratch_pd = alloc_pd(dev_priv);
972 	if (IS_ERR(vm->scratch_pd)) {
973 		ret = PTR_ERR(vm->scratch_pd);
974 		goto free_pt;
975 	}
976 
977 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
978 		vm->scratch_pdp = alloc_pdp(dev_priv);
979 		if (IS_ERR(vm->scratch_pdp)) {
980 			ret = PTR_ERR(vm->scratch_pdp);
981 			goto free_pd;
982 		}
983 	}
984 
985 	gen8_initialize_pt(vm, vm->scratch_pt);
986 	gen8_initialize_pd(vm, vm->scratch_pd);
987 	if (USES_FULL_48BIT_PPGTT(dev_priv))
988 		gen8_initialize_pdp(vm, vm->scratch_pdp);
989 
990 	return 0;
991 
992 free_pd:
993 	free_pd(dev_priv, vm->scratch_pd);
994 free_pt:
995 	free_pt(dev_priv, vm->scratch_pt);
996 free_scratch_page:
997 	cleanup_scratch_page(dev_priv, &vm->scratch_page);
998 
999 	return ret;
1000 }
1001 
1002 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1003 {
1004 	enum vgt_g2v_type msg;
1005 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1006 	int i;
1007 
1008 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1009 		u64 daddr = px_dma(&ppgtt->pml4);
1010 
1011 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1012 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1013 
1014 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1015 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1016 	} else {
1017 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
1018 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1019 
1020 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1021 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1022 		}
1023 
1024 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1025 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1026 	}
1027 
1028 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1029 
1030 	return 0;
1031 }
1032 
1033 static void gen8_free_scratch(struct i915_address_space *vm)
1034 {
1035 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1036 
1037 	if (USES_FULL_48BIT_PPGTT(dev_priv))
1038 		free_pdp(dev_priv, vm->scratch_pdp);
1039 	free_pd(dev_priv, vm->scratch_pd);
1040 	free_pt(dev_priv, vm->scratch_pt);
1041 	cleanup_scratch_page(dev_priv, &vm->scratch_page);
1042 }
1043 
1044 static void gen8_ppgtt_cleanup_3lvl(struct drm_i915_private *dev_priv,
1045 				    struct i915_page_directory_pointer *pdp)
1046 {
1047 	int i;
1048 
1049 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)) {
1050 		if (WARN_ON(!pdp->page_directory[i]))
1051 			continue;
1052 
1053 		gen8_free_page_tables(dev_priv, pdp->page_directory[i]);
1054 		free_pd(dev_priv, pdp->page_directory[i]);
1055 	}
1056 
1057 	free_pdp(dev_priv, pdp);
1058 }
1059 
1060 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1061 {
1062 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1063 	int i;
1064 
1065 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
1066 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
1067 			continue;
1068 
1069 		gen8_ppgtt_cleanup_3lvl(dev_priv, ppgtt->pml4.pdps[i]);
1070 	}
1071 
1072 	cleanup_px(dev_priv, &ppgtt->pml4);
1073 }
1074 
1075 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1076 {
1077 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1078 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1079 
1080 	if (intel_vgpu_active(dev_priv))
1081 		gen8_ppgtt_notify_vgt(ppgtt, false);
1082 
1083 	if (!USES_FULL_48BIT_PPGTT(dev_priv))
1084 		gen8_ppgtt_cleanup_3lvl(dev_priv, &ppgtt->pdp);
1085 	else
1086 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1087 
1088 	gen8_free_scratch(vm);
1089 }
1090 
1091 /**
1092  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1093  * @vm:	Master vm structure.
1094  * @pd:	Page directory for this address range.
1095  * @start:	Starting virtual address to begin allocations.
1096  * @length:	Size of the allocations.
1097  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1098  *		caller to free on error.
1099  *
1100  * Allocate the required number of page tables. Extremely similar to
1101  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1102  * the page directory boundary (instead of the page directory pointer). That
1103  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1104  * possible, and likely that the caller will need to use multiple calls of this
1105  * function to achieve the appropriate allocation.
1106  *
1107  * Return: 0 if success; negative error code otherwise.
1108  */
1109 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1110 				     struct i915_page_directory *pd,
1111 				     uint64_t start,
1112 				     uint64_t length,
1113 				     unsigned long *new_pts)
1114 {
1115 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1116 	struct i915_page_table *pt;
1117 	uint32_t pde;
1118 
1119 	gen8_for_each_pde(pt, pd, start, length, pde) {
1120 		/* Don't reallocate page tables */
1121 		if (test_bit(pde, pd->used_pdes)) {
1122 			/* Scratch is never allocated this way */
1123 			WARN_ON(pt == vm->scratch_pt);
1124 			continue;
1125 		}
1126 
1127 		pt = alloc_pt(dev_priv);
1128 		if (IS_ERR(pt))
1129 			goto unwind_out;
1130 
1131 		gen8_initialize_pt(vm, pt);
1132 		pd->page_table[pde] = pt;
1133 		__set_bit(pde, new_pts);
1134 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1135 	}
1136 
1137 	return 0;
1138 
1139 unwind_out:
1140 	for_each_set_bit(pde, new_pts, I915_PDES)
1141 		free_pt(dev_priv, pd->page_table[pde]);
1142 
1143 	return -ENOMEM;
1144 }
1145 
1146 /**
1147  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1148  * @vm:	Master vm structure.
1149  * @pdp:	Page directory pointer for this address range.
1150  * @start:	Starting virtual address to begin allocations.
1151  * @length:	Size of the allocations.
1152  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1153  *		caller to free on error.
1154  *
1155  * Allocate the required number of page directories starting at the pde index of
1156  * @start, and ending at the pde index @start + @length. This function will skip
1157  * over already allocated page directories within the range, and only allocate
1158  * new ones, setting the appropriate pointer within the pdp as well as the
1159  * correct position in the bitmap @new_pds.
1160  *
1161  * The function will only allocate the pages within the range for a give page
1162  * directory pointer. In other words, if @start + @length straddles a virtually
1163  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1164  * required by the caller, This is not currently possible, and the BUG in the
1165  * code will prevent it.
1166  *
1167  * Return: 0 if success; negative error code otherwise.
1168  */
1169 static int
1170 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1171 				  struct i915_page_directory_pointer *pdp,
1172 				  uint64_t start,
1173 				  uint64_t length,
1174 				  unsigned long *new_pds)
1175 {
1176 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1177 	struct i915_page_directory *pd;
1178 	uint32_t pdpe;
1179 	uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1180 
1181 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1182 
1183 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1184 		if (test_bit(pdpe, pdp->used_pdpes))
1185 			continue;
1186 
1187 		pd = alloc_pd(dev_priv);
1188 		if (IS_ERR(pd))
1189 			goto unwind_out;
1190 
1191 		gen8_initialize_pd(vm, pd);
1192 		pdp->page_directory[pdpe] = pd;
1193 		__set_bit(pdpe, new_pds);
1194 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1195 	}
1196 
1197 	return 0;
1198 
1199 unwind_out:
1200 	for_each_set_bit(pdpe, new_pds, pdpes)
1201 		free_pd(dev_priv, pdp->page_directory[pdpe]);
1202 
1203 	return -ENOMEM;
1204 }
1205 
1206 /**
1207  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1208  * @vm:	Master vm structure.
1209  * @pml4:	Page map level 4 for this address range.
1210  * @start:	Starting virtual address to begin allocations.
1211  * @length:	Size of the allocations.
1212  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1213  *		caller to free on error.
1214  *
1215  * Allocate the required number of page directory pointers. Extremely similar to
1216  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1217  * The main difference is here we are limited by the pml4 boundary (instead of
1218  * the page directory pointer).
1219  *
1220  * Return: 0 if success; negative error code otherwise.
1221  */
1222 static int
1223 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1224 				  struct i915_pml4 *pml4,
1225 				  uint64_t start,
1226 				  uint64_t length,
1227 				  unsigned long *new_pdps)
1228 {
1229 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1230 	struct i915_page_directory_pointer *pdp;
1231 	uint32_t pml4e;
1232 
1233 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1234 
1235 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1236 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1237 			pdp = alloc_pdp(dev_priv);
1238 			if (IS_ERR(pdp))
1239 				goto unwind_out;
1240 
1241 			gen8_initialize_pdp(vm, pdp);
1242 			pml4->pdps[pml4e] = pdp;
1243 			__set_bit(pml4e, new_pdps);
1244 			trace_i915_page_directory_pointer_entry_alloc(vm,
1245 								      pml4e,
1246 								      start,
1247 								      GEN8_PML4E_SHIFT);
1248 		}
1249 	}
1250 
1251 	return 0;
1252 
1253 unwind_out:
1254 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1255 		free_pdp(dev_priv, pml4->pdps[pml4e]);
1256 
1257 	return -ENOMEM;
1258 }
1259 
1260 static void
1261 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1262 {
1263 	kfree(new_pts);
1264 	kfree(new_pds);
1265 }
1266 
1267 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1268  * of these are based on the number of PDPEs in the system.
1269  */
1270 static
1271 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1272 					 unsigned long **new_pts,
1273 					 uint32_t pdpes)
1274 {
1275 	unsigned long *pds;
1276 	unsigned long *pts;
1277 
1278 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1279 	if (!pds)
1280 		return -ENOMEM;
1281 
1282 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1283 		      GFP_TEMPORARY);
1284 	if (!pts)
1285 		goto err_out;
1286 
1287 	*new_pds = pds;
1288 	*new_pts = pts;
1289 
1290 	return 0;
1291 
1292 err_out:
1293 	free_gen8_temp_bitmaps(pds, pts);
1294 	return -ENOMEM;
1295 }
1296 
1297 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1298 				    struct i915_page_directory_pointer *pdp,
1299 				    uint64_t start,
1300 				    uint64_t length)
1301 {
1302 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1303 	unsigned long *new_page_dirs, *new_page_tables;
1304 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1305 	struct i915_page_directory *pd;
1306 	const uint64_t orig_start = start;
1307 	const uint64_t orig_length = length;
1308 	uint32_t pdpe;
1309 	uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1310 	int ret;
1311 
1312 	/* Wrap is never okay since we can only represent 48b, and we don't
1313 	 * actually use the other side of the canonical address space.
1314 	 */
1315 	if (WARN_ON(start + length < start))
1316 		return -ENODEV;
1317 
1318 	if (WARN_ON(start + length > vm->total))
1319 		return -ENODEV;
1320 
1321 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1322 	if (ret)
1323 		return ret;
1324 
1325 	/* Do the allocations first so we can easily bail out */
1326 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1327 						new_page_dirs);
1328 	if (ret) {
1329 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1330 		return ret;
1331 	}
1332 
1333 	/* For every page directory referenced, allocate page tables */
1334 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1335 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1336 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1337 		if (ret)
1338 			goto err_out;
1339 	}
1340 
1341 	start = orig_start;
1342 	length = orig_length;
1343 
1344 	/* Allocations have completed successfully, so set the bitmaps, and do
1345 	 * the mappings. */
1346 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1347 		gen8_pde_t *const page_directory = kmap_px(pd);
1348 		struct i915_page_table *pt;
1349 		uint64_t pd_len = length;
1350 		uint64_t pd_start = start;
1351 		uint32_t pde;
1352 
1353 		/* Every pd should be allocated, we just did that above. */
1354 		WARN_ON(!pd);
1355 
1356 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1357 			/* Same reasoning as pd */
1358 			WARN_ON(!pt);
1359 			WARN_ON(!pd_len);
1360 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1361 
1362 			/* Set our used ptes within the page table */
1363 			bitmap_set(pt->used_ptes,
1364 				   gen8_pte_index(pd_start),
1365 				   gen8_pte_count(pd_start, pd_len));
1366 
1367 			/* Our pde is now pointing to the pagetable, pt */
1368 			__set_bit(pde, pd->used_pdes);
1369 
1370 			/* Map the PDE to the page table */
1371 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1372 							      I915_CACHE_LLC);
1373 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1374 							gen8_pte_index(start),
1375 							gen8_pte_count(start, length),
1376 							GEN8_PTES);
1377 
1378 			/* NB: We haven't yet mapped ptes to pages. At this
1379 			 * point we're still relying on insert_entries() */
1380 		}
1381 
1382 		kunmap_px(ppgtt, page_directory);
1383 		__set_bit(pdpe, pdp->used_pdpes);
1384 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1385 	}
1386 
1387 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1388 	mark_tlbs_dirty(ppgtt);
1389 	return 0;
1390 
1391 err_out:
1392 	while (pdpe--) {
1393 		unsigned long temp;
1394 
1395 		for_each_set_bit(temp, new_page_tables + pdpe *
1396 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1397 			free_pt(dev_priv,
1398 				pdp->page_directory[pdpe]->page_table[temp]);
1399 	}
1400 
1401 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1402 		free_pd(dev_priv, pdp->page_directory[pdpe]);
1403 
1404 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1405 	mark_tlbs_dirty(ppgtt);
1406 	return ret;
1407 }
1408 
1409 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1410 				    struct i915_pml4 *pml4,
1411 				    uint64_t start,
1412 				    uint64_t length)
1413 {
1414 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1415 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1416 	struct i915_page_directory_pointer *pdp;
1417 	uint64_t pml4e;
1418 	int ret = 0;
1419 
1420 	/* Do the pml4 allocations first, so we don't need to track the newly
1421 	 * allocated tables below the pdp */
1422 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1423 
1424 	/* The pagedirectory and pagetable allocations are done in the shared 3
1425 	 * and 4 level code. Just allocate the pdps.
1426 	 */
1427 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1428 						new_pdps);
1429 	if (ret)
1430 		return ret;
1431 
1432 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1433 	     "The allocation has spanned more than 512GB. "
1434 	     "It is highly likely this is incorrect.");
1435 
1436 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1437 		WARN_ON(!pdp);
1438 
1439 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1440 		if (ret)
1441 			goto err_out;
1442 
1443 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1444 	}
1445 
1446 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1447 		  GEN8_PML4ES_PER_PML4);
1448 
1449 	return 0;
1450 
1451 err_out:
1452 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1453 		gen8_ppgtt_cleanup_3lvl(to_i915(vm->dev), pml4->pdps[pml4e]);
1454 
1455 	return ret;
1456 }
1457 
1458 static int gen8_alloc_va_range(struct i915_address_space *vm,
1459 			       uint64_t start, uint64_t length)
1460 {
1461 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1462 
1463 	if (USES_FULL_48BIT_PPGTT(to_i915(vm->dev)))
1464 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1465 	else
1466 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1467 }
1468 
1469 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1470 			  uint64_t start, uint64_t length,
1471 			  gen8_pte_t scratch_pte,
1472 			  struct seq_file *m)
1473 {
1474 	struct i915_page_directory *pd;
1475 	uint32_t pdpe;
1476 
1477 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1478 		struct i915_page_table *pt;
1479 		uint64_t pd_len = length;
1480 		uint64_t pd_start = start;
1481 		uint32_t pde;
1482 
1483 		if (!test_bit(pdpe, pdp->used_pdpes))
1484 			continue;
1485 
1486 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1487 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1488 			uint32_t  pte;
1489 			gen8_pte_t *pt_vaddr;
1490 
1491 			if (!test_bit(pde, pd->used_pdes))
1492 				continue;
1493 
1494 			pt_vaddr = kmap_px(pt);
1495 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1496 				uint64_t va =
1497 					(pdpe << GEN8_PDPE_SHIFT) |
1498 					(pde << GEN8_PDE_SHIFT) |
1499 					(pte << GEN8_PTE_SHIFT);
1500 				int i;
1501 				bool found = false;
1502 
1503 				for (i = 0; i < 4; i++)
1504 					if (pt_vaddr[pte + i] != scratch_pte)
1505 						found = true;
1506 				if (!found)
1507 					continue;
1508 
1509 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1510 				for (i = 0; i < 4; i++) {
1511 					if (pt_vaddr[pte + i] != scratch_pte)
1512 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1513 					else
1514 						seq_puts(m, "  SCRATCH ");
1515 				}
1516 				seq_puts(m, "\n");
1517 			}
1518 			/* don't use kunmap_px, it could trigger
1519 			 * an unnecessary flush.
1520 			 */
1521 			kunmap_atomic(pt_vaddr);
1522 		}
1523 	}
1524 }
1525 
1526 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1527 {
1528 	struct i915_address_space *vm = &ppgtt->base;
1529 	uint64_t start = ppgtt->base.start;
1530 	uint64_t length = ppgtt->base.total;
1531 	gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
1532 						 I915_CACHE_LLC);
1533 
1534 	if (!USES_FULL_48BIT_PPGTT(to_i915(vm->dev))) {
1535 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1536 	} else {
1537 		uint64_t pml4e;
1538 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1539 		struct i915_page_directory_pointer *pdp;
1540 
1541 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1542 			if (!test_bit(pml4e, pml4->used_pml4es))
1543 				continue;
1544 
1545 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1546 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1547 		}
1548 	}
1549 }
1550 
1551 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1552 {
1553 	unsigned long *new_page_dirs, *new_page_tables;
1554 	uint32_t pdpes = I915_PDPES_PER_PDP(to_i915(ppgtt->base.dev));
1555 	int ret;
1556 
1557 	/* We allocate temp bitmap for page tables for no gain
1558 	 * but as this is for init only, lets keep the things simple
1559 	 */
1560 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1561 	if (ret)
1562 		return ret;
1563 
1564 	/* Allocate for all pdps regardless of how the ppgtt
1565 	 * was defined.
1566 	 */
1567 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1568 						0, 1ULL << 32,
1569 						new_page_dirs);
1570 	if (!ret)
1571 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1572 
1573 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1574 
1575 	return ret;
1576 }
1577 
1578 /*
1579  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1580  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1581  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1582  * space.
1583  *
1584  */
1585 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1586 {
1587 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1588 	int ret;
1589 
1590 	ret = gen8_init_scratch(&ppgtt->base);
1591 	if (ret)
1592 		return ret;
1593 
1594 	ppgtt->base.start = 0;
1595 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1596 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1597 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1598 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1599 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1600 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1601 	ppgtt->debug_dump = gen8_dump_ppgtt;
1602 
1603 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1604 		ret = setup_px(dev_priv, &ppgtt->pml4);
1605 		if (ret)
1606 			goto free_scratch;
1607 
1608 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1609 
1610 		ppgtt->base.total = 1ULL << 48;
1611 		ppgtt->switch_mm = gen8_48b_mm_switch;
1612 	} else {
1613 		ret = __pdp_init(dev_priv, &ppgtt->pdp);
1614 		if (ret)
1615 			goto free_scratch;
1616 
1617 		ppgtt->base.total = 1ULL << 32;
1618 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1619 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1620 							      0, 0,
1621 							      GEN8_PML4E_SHIFT);
1622 
1623 		if (intel_vgpu_active(dev_priv)) {
1624 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1625 			if (ret)
1626 				goto free_scratch;
1627 		}
1628 	}
1629 
1630 	if (intel_vgpu_active(dev_priv))
1631 		gen8_ppgtt_notify_vgt(ppgtt, true);
1632 
1633 	return 0;
1634 
1635 free_scratch:
1636 	gen8_free_scratch(&ppgtt->base);
1637 	return ret;
1638 }
1639 
1640 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1641 {
1642 	struct i915_address_space *vm = &ppgtt->base;
1643 	struct i915_page_table *unused;
1644 	gen6_pte_t scratch_pte;
1645 	uint32_t pd_entry;
1646 	uint32_t  pte, pde;
1647 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1648 
1649 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1650 				     I915_CACHE_LLC, 0);
1651 
1652 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1653 		u32 expected;
1654 		gen6_pte_t *pt_vaddr;
1655 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1656 		pd_entry = readl(ppgtt->pd_addr + pde);
1657 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1658 
1659 		if (pd_entry != expected)
1660 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1661 				   pde,
1662 				   pd_entry,
1663 				   expected);
1664 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1665 
1666 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1667 
1668 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1669 			unsigned long va =
1670 				(pde * PAGE_SIZE * GEN6_PTES) +
1671 				(pte * PAGE_SIZE);
1672 			int i;
1673 			bool found = false;
1674 			for (i = 0; i < 4; i++)
1675 				if (pt_vaddr[pte + i] != scratch_pte)
1676 					found = true;
1677 			if (!found)
1678 				continue;
1679 
1680 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1681 			for (i = 0; i < 4; i++) {
1682 				if (pt_vaddr[pte + i] != scratch_pte)
1683 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1684 				else
1685 					seq_puts(m, "  SCRATCH ");
1686 			}
1687 			seq_puts(m, "\n");
1688 		}
1689 		kunmap_px(ppgtt, pt_vaddr);
1690 	}
1691 }
1692 
1693 /* Write pde (index) from the page directory @pd to the page table @pt */
1694 static void gen6_write_pde(struct i915_page_directory *pd,
1695 			    const int pde, struct i915_page_table *pt)
1696 {
1697 	/* Caller needs to make sure the write completes if necessary */
1698 	struct i915_hw_ppgtt *ppgtt =
1699 		container_of(pd, struct i915_hw_ppgtt, pd);
1700 	u32 pd_entry;
1701 
1702 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1703 	pd_entry |= GEN6_PDE_VALID;
1704 
1705 	writel(pd_entry, ppgtt->pd_addr + pde);
1706 }
1707 
1708 /* Write all the page tables found in the ppgtt structure to incrementing page
1709  * directories. */
1710 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1711 				  struct i915_page_directory *pd,
1712 				  uint32_t start, uint32_t length)
1713 {
1714 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1715 	struct i915_page_table *pt;
1716 	uint32_t pde;
1717 
1718 	gen6_for_each_pde(pt, pd, start, length, pde)
1719 		gen6_write_pde(pd, pde, pt);
1720 
1721 	/* Make sure write is complete before other code can use this page
1722 	 * table. Also require for WC mapped PTEs */
1723 	readl(ggtt->gsm);
1724 }
1725 
1726 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1727 {
1728 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1729 
1730 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1731 }
1732 
1733 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1734 			 struct drm_i915_gem_request *req)
1735 {
1736 	struct intel_ring *ring = req->ring;
1737 	struct intel_engine_cs *engine = req->engine;
1738 	int ret;
1739 
1740 	/* NB: TLBs must be flushed and invalidated before a switch */
1741 	ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1742 	if (ret)
1743 		return ret;
1744 
1745 	ret = intel_ring_begin(req, 6);
1746 	if (ret)
1747 		return ret;
1748 
1749 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1750 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1751 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1752 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1753 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1754 	intel_ring_emit(ring, MI_NOOP);
1755 	intel_ring_advance(ring);
1756 
1757 	return 0;
1758 }
1759 
1760 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1761 			  struct drm_i915_gem_request *req)
1762 {
1763 	struct intel_ring *ring = req->ring;
1764 	struct intel_engine_cs *engine = req->engine;
1765 	int ret;
1766 
1767 	/* NB: TLBs must be flushed and invalidated before a switch */
1768 	ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1769 	if (ret)
1770 		return ret;
1771 
1772 	ret = intel_ring_begin(req, 6);
1773 	if (ret)
1774 		return ret;
1775 
1776 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1777 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1778 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1779 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1780 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1781 	intel_ring_emit(ring, MI_NOOP);
1782 	intel_ring_advance(ring);
1783 
1784 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1785 	if (engine->id != RCS) {
1786 		ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1787 		if (ret)
1788 			return ret;
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1795 			  struct drm_i915_gem_request *req)
1796 {
1797 	struct intel_engine_cs *engine = req->engine;
1798 	struct drm_i915_private *dev_priv = req->i915;
1799 
1800 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1801 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1802 	return 0;
1803 }
1804 
1805 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1806 {
1807 	struct intel_engine_cs *engine;
1808 	enum intel_engine_id id;
1809 
1810 	for_each_engine(engine, dev_priv, id) {
1811 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1812 				 GEN8_GFX_PPGTT_48B : 0;
1813 		I915_WRITE(RING_MODE_GEN7(engine),
1814 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1815 	}
1816 }
1817 
1818 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1819 {
1820 	struct intel_engine_cs *engine;
1821 	uint32_t ecochk, ecobits;
1822 	enum intel_engine_id id;
1823 
1824 	ecobits = I915_READ(GAC_ECO_BITS);
1825 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1826 
1827 	ecochk = I915_READ(GAM_ECOCHK);
1828 	if (IS_HASWELL(dev_priv)) {
1829 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1830 	} else {
1831 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1832 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1833 	}
1834 	I915_WRITE(GAM_ECOCHK, ecochk);
1835 
1836 	for_each_engine(engine, dev_priv, id) {
1837 		/* GFX_MODE is per-ring on gen7+ */
1838 		I915_WRITE(RING_MODE_GEN7(engine),
1839 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1840 	}
1841 }
1842 
1843 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1844 {
1845 	uint32_t ecochk, gab_ctl, ecobits;
1846 
1847 	ecobits = I915_READ(GAC_ECO_BITS);
1848 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1849 		   ECOBITS_PPGTT_CACHE64B);
1850 
1851 	gab_ctl = I915_READ(GAB_CTL);
1852 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1853 
1854 	ecochk = I915_READ(GAM_ECOCHK);
1855 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1856 
1857 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1858 }
1859 
1860 /* PPGTT support for Sandybdrige/Gen6 and later */
1861 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1862 				   uint64_t start,
1863 				   uint64_t length)
1864 {
1865 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1866 	gen6_pte_t *pt_vaddr, scratch_pte;
1867 	unsigned first_entry = start >> PAGE_SHIFT;
1868 	unsigned num_entries = length >> PAGE_SHIFT;
1869 	unsigned act_pt = first_entry / GEN6_PTES;
1870 	unsigned first_pte = first_entry % GEN6_PTES;
1871 	unsigned last_pte, i;
1872 
1873 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1874 				     I915_CACHE_LLC, 0);
1875 
1876 	while (num_entries) {
1877 		last_pte = first_pte + num_entries;
1878 		if (last_pte > GEN6_PTES)
1879 			last_pte = GEN6_PTES;
1880 
1881 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1882 
1883 		for (i = first_pte; i < last_pte; i++)
1884 			pt_vaddr[i] = scratch_pte;
1885 
1886 		kunmap_px(ppgtt, pt_vaddr);
1887 
1888 		num_entries -= last_pte - first_pte;
1889 		first_pte = 0;
1890 		act_pt++;
1891 	}
1892 }
1893 
1894 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1895 				      struct sg_table *pages,
1896 				      uint64_t start,
1897 				      enum i915_cache_level cache_level, u32 flags)
1898 {
1899 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1900 	unsigned first_entry = start >> PAGE_SHIFT;
1901 	unsigned act_pt = first_entry / GEN6_PTES;
1902 	unsigned act_pte = first_entry % GEN6_PTES;
1903 	gen6_pte_t *pt_vaddr = NULL;
1904 	struct sgt_iter sgt_iter;
1905 	dma_addr_t addr;
1906 
1907 	for_each_sgt_dma(addr, sgt_iter, pages) {
1908 		if (pt_vaddr == NULL)
1909 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1910 
1911 		pt_vaddr[act_pte] =
1912 			vm->pte_encode(addr, cache_level, flags);
1913 
1914 		if (++act_pte == GEN6_PTES) {
1915 			kunmap_px(ppgtt, pt_vaddr);
1916 			pt_vaddr = NULL;
1917 			act_pt++;
1918 			act_pte = 0;
1919 		}
1920 	}
1921 
1922 	if (pt_vaddr)
1923 		kunmap_px(ppgtt, pt_vaddr);
1924 }
1925 
1926 static int gen6_alloc_va_range(struct i915_address_space *vm,
1927 			       uint64_t start_in, uint64_t length_in)
1928 {
1929 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1930 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1931 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1932 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1933 	struct i915_page_table *pt;
1934 	uint32_t start, length, start_save, length_save;
1935 	uint32_t pde;
1936 	int ret;
1937 
1938 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1939 		return -ENODEV;
1940 
1941 	start = start_save = start_in;
1942 	length = length_save = length_in;
1943 
1944 	bitmap_zero(new_page_tables, I915_PDES);
1945 
1946 	/* The allocation is done in two stages so that we can bail out with
1947 	 * minimal amount of pain. The first stage finds new page tables that
1948 	 * need allocation. The second stage marks use ptes within the page
1949 	 * tables.
1950 	 */
1951 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1952 		if (pt != vm->scratch_pt) {
1953 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1954 			continue;
1955 		}
1956 
1957 		/* We've already allocated a page table */
1958 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1959 
1960 		pt = alloc_pt(dev_priv);
1961 		if (IS_ERR(pt)) {
1962 			ret = PTR_ERR(pt);
1963 			goto unwind_out;
1964 		}
1965 
1966 		gen6_initialize_pt(vm, pt);
1967 
1968 		ppgtt->pd.page_table[pde] = pt;
1969 		__set_bit(pde, new_page_tables);
1970 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1971 	}
1972 
1973 	start = start_save;
1974 	length = length_save;
1975 
1976 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1977 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1978 
1979 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1980 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1981 			   gen6_pte_count(start, length));
1982 
1983 		if (__test_and_clear_bit(pde, new_page_tables))
1984 			gen6_write_pde(&ppgtt->pd, pde, pt);
1985 
1986 		trace_i915_page_table_entry_map(vm, pde, pt,
1987 					 gen6_pte_index(start),
1988 					 gen6_pte_count(start, length),
1989 					 GEN6_PTES);
1990 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1991 				GEN6_PTES);
1992 	}
1993 
1994 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1995 
1996 	/* Make sure write is complete before other code can use this page
1997 	 * table. Also require for WC mapped PTEs */
1998 	readl(ggtt->gsm);
1999 
2000 	mark_tlbs_dirty(ppgtt);
2001 	return 0;
2002 
2003 unwind_out:
2004 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
2005 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
2006 
2007 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
2008 		free_pt(dev_priv, pt);
2009 	}
2010 
2011 	mark_tlbs_dirty(ppgtt);
2012 	return ret;
2013 }
2014 
2015 static int gen6_init_scratch(struct i915_address_space *vm)
2016 {
2017 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2018 	int ret;
2019 
2020 	ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
2021 	if (ret)
2022 		return ret;
2023 
2024 	vm->scratch_pt = alloc_pt(dev_priv);
2025 	if (IS_ERR(vm->scratch_pt)) {
2026 		cleanup_scratch_page(dev_priv, &vm->scratch_page);
2027 		return PTR_ERR(vm->scratch_pt);
2028 	}
2029 
2030 	gen6_initialize_pt(vm, vm->scratch_pt);
2031 
2032 	return 0;
2033 }
2034 
2035 static void gen6_free_scratch(struct i915_address_space *vm)
2036 {
2037 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2038 
2039 	free_pt(dev_priv, vm->scratch_pt);
2040 	cleanup_scratch_page(dev_priv, &vm->scratch_page);
2041 }
2042 
2043 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2044 {
2045 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
2046 	struct i915_page_directory *pd = &ppgtt->pd;
2047 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2048 	struct i915_page_table *pt;
2049 	uint32_t pde;
2050 
2051 	drm_mm_remove_node(&ppgtt->node);
2052 
2053 	gen6_for_all_pdes(pt, pd, pde)
2054 		if (pt != vm->scratch_pt)
2055 			free_pt(dev_priv, pt);
2056 
2057 	gen6_free_scratch(vm);
2058 }
2059 
2060 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2061 {
2062 	struct i915_address_space *vm = &ppgtt->base;
2063 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
2064 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2065 	bool retried = false;
2066 	int ret;
2067 
2068 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2069 	 * allocator works in address space sizes, so it's multiplied by page
2070 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2071 	 */
2072 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2073 
2074 	ret = gen6_init_scratch(vm);
2075 	if (ret)
2076 		return ret;
2077 
2078 alloc:
2079 	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2080 						  &ppgtt->node, GEN6_PD_SIZE,
2081 						  GEN6_PD_ALIGN, 0,
2082 						  0, ggtt->base.total,
2083 						  DRM_MM_TOPDOWN);
2084 	if (ret == -ENOSPC && !retried) {
2085 		ret = i915_gem_evict_something(&ggtt->base,
2086 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2087 					       I915_CACHE_NONE,
2088 					       0, ggtt->base.total,
2089 					       0);
2090 		if (ret)
2091 			goto err_out;
2092 
2093 		retried = true;
2094 		goto alloc;
2095 	}
2096 
2097 	if (ret)
2098 		goto err_out;
2099 
2100 
2101 	if (ppgtt->node.start < ggtt->mappable_end)
2102 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2103 
2104 	return 0;
2105 
2106 err_out:
2107 	gen6_free_scratch(vm);
2108 	return ret;
2109 }
2110 
2111 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2112 {
2113 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2114 }
2115 
2116 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2117 				  uint64_t start, uint64_t length)
2118 {
2119 	struct i915_page_table *unused;
2120 	uint32_t pde;
2121 
2122 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2123 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2124 }
2125 
2126 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2127 {
2128 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
2129 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2130 	int ret;
2131 
2132 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2133 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2134 		ppgtt->switch_mm = gen6_mm_switch;
2135 	else if (IS_HASWELL(dev_priv))
2136 		ppgtt->switch_mm = hsw_mm_switch;
2137 	else if (IS_GEN7(dev_priv))
2138 		ppgtt->switch_mm = gen7_mm_switch;
2139 	else
2140 		BUG();
2141 
2142 	ret = gen6_ppgtt_alloc(ppgtt);
2143 	if (ret)
2144 		return ret;
2145 
2146 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2147 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2148 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2149 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2150 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2151 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2152 	ppgtt->base.start = 0;
2153 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2154 	ppgtt->debug_dump = gen6_dump_ppgtt;
2155 
2156 	ppgtt->pd.base.ggtt_offset =
2157 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2158 
2159 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2160 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2161 
2162 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2163 
2164 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2165 
2166 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2167 			 ppgtt->node.size >> 20,
2168 			 ppgtt->node.start / PAGE_SIZE);
2169 
2170 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2171 		  ppgtt->pd.base.ggtt_offset << 10);
2172 
2173 	return 0;
2174 }
2175 
2176 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2177 			   struct drm_i915_private *dev_priv)
2178 {
2179 	ppgtt->base.dev = &dev_priv->drm;
2180 
2181 	if (INTEL_INFO(dev_priv)->gen < 8)
2182 		return gen6_ppgtt_init(ppgtt);
2183 	else
2184 		return gen8_ppgtt_init(ppgtt);
2185 }
2186 
2187 static void i915_address_space_init(struct i915_address_space *vm,
2188 				    struct drm_i915_private *dev_priv,
2189 				    const char *name)
2190 {
2191 	i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2192 	drm_mm_init(&vm->mm, vm->start, vm->total);
2193 	INIT_LIST_HEAD(&vm->active_list);
2194 	INIT_LIST_HEAD(&vm->inactive_list);
2195 	INIT_LIST_HEAD(&vm->unbound_list);
2196 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2197 }
2198 
2199 static void i915_address_space_fini(struct i915_address_space *vm)
2200 {
2201 	i915_gem_timeline_fini(&vm->timeline);
2202 	drm_mm_takedown(&vm->mm);
2203 	list_del(&vm->global_link);
2204 }
2205 
2206 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2207 {
2208 	/* This function is for gtt related workarounds. This function is
2209 	 * called on driver load and after a GPU reset, so you can place
2210 	 * workarounds here even if they get overwritten by GPU reset.
2211 	 */
2212 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2213 	if (IS_BROADWELL(dev_priv))
2214 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2215 	else if (IS_CHERRYVIEW(dev_priv))
2216 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2217 	else if (IS_SKYLAKE(dev_priv))
2218 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2219 	else if (IS_BROXTON(dev_priv))
2220 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2221 }
2222 
2223 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2224 			   struct drm_i915_private *dev_priv,
2225 			   struct drm_i915_file_private *file_priv,
2226 			   const char *name)
2227 {
2228 	int ret;
2229 
2230 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
2231 	if (ret == 0) {
2232 		kref_init(&ppgtt->ref);
2233 		i915_address_space_init(&ppgtt->base, dev_priv, name);
2234 		ppgtt->base.file = file_priv;
2235 	}
2236 
2237 	return ret;
2238 }
2239 
2240 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2241 {
2242 	gtt_write_workarounds(dev_priv);
2243 
2244 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2245 	 * and the PDPs are contained within the context itself.  We don't
2246 	 * need to do anything here. */
2247 	if (i915.enable_execlists)
2248 		return 0;
2249 
2250 	if (!USES_PPGTT(dev_priv))
2251 		return 0;
2252 
2253 	if (IS_GEN6(dev_priv))
2254 		gen6_ppgtt_enable(dev_priv);
2255 	else if (IS_GEN7(dev_priv))
2256 		gen7_ppgtt_enable(dev_priv);
2257 	else if (INTEL_GEN(dev_priv) >= 8)
2258 		gen8_ppgtt_enable(dev_priv);
2259 	else
2260 		MISSING_CASE(INTEL_GEN(dev_priv));
2261 
2262 	return 0;
2263 }
2264 
2265 struct i915_hw_ppgtt *
2266 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2267 		  struct drm_i915_file_private *fpriv,
2268 		  const char *name)
2269 {
2270 	struct i915_hw_ppgtt *ppgtt;
2271 	int ret;
2272 
2273 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2274 	if (!ppgtt)
2275 		return ERR_PTR(-ENOMEM);
2276 
2277 	ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv, name);
2278 	if (ret) {
2279 		kfree(ppgtt);
2280 		return ERR_PTR(ret);
2281 	}
2282 
2283 	trace_i915_ppgtt_create(&ppgtt->base);
2284 
2285 	return ppgtt;
2286 }
2287 
2288 void i915_ppgtt_release(struct kref *kref)
2289 {
2290 	struct i915_hw_ppgtt *ppgtt =
2291 		container_of(kref, struct i915_hw_ppgtt, ref);
2292 
2293 	trace_i915_ppgtt_release(&ppgtt->base);
2294 
2295 	/* vmas should already be unbound and destroyed */
2296 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2297 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2298 	WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2299 
2300 	i915_address_space_fini(&ppgtt->base);
2301 
2302 	ppgtt->base.cleanup(&ppgtt->base);
2303 	kfree(ppgtt);
2304 }
2305 
2306 /* Certain Gen5 chipsets require require idling the GPU before
2307  * unmapping anything from the GTT when VT-d is enabled.
2308  */
2309 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2310 {
2311 #ifdef CONFIG_INTEL_IOMMU
2312 	/* Query intel_iommu to see if we need the workaround. Presumably that
2313 	 * was loaded first.
2314 	 */
2315 	if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2316 		return true;
2317 #endif
2318 	return false;
2319 }
2320 
2321 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2322 {
2323 	struct intel_engine_cs *engine;
2324 	enum intel_engine_id id;
2325 
2326 	if (INTEL_INFO(dev_priv)->gen < 6)
2327 		return;
2328 
2329 	for_each_engine(engine, dev_priv, id) {
2330 		u32 fault_reg;
2331 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2332 		if (fault_reg & RING_FAULT_VALID) {
2333 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2334 					 "\tAddr: 0x%08lx\n"
2335 					 "\tAddress space: %s\n"
2336 					 "\tSource ID: %d\n"
2337 					 "\tType: %d\n",
2338 					 fault_reg & PAGE_MASK,
2339 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2340 					 RING_FAULT_SRCID(fault_reg),
2341 					 RING_FAULT_FAULT_TYPE(fault_reg));
2342 			I915_WRITE(RING_FAULT_REG(engine),
2343 				   fault_reg & ~RING_FAULT_VALID);
2344 		}
2345 	}
2346 
2347 	/* Engine specific init may not have been done till this point. */
2348 	if (dev_priv->engine[RCS])
2349 		POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2350 }
2351 
2352 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2353 {
2354 	if (INTEL_INFO(dev_priv)->gen < 6) {
2355 		intel_gtt_chipset_flush();
2356 	} else {
2357 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2358 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2359 	}
2360 }
2361 
2362 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2363 {
2364 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2365 
2366 	/* Don't bother messing with faults pre GEN6 as we have little
2367 	 * documentation supporting that it's a good idea.
2368 	 */
2369 	if (INTEL_GEN(dev_priv) < 6)
2370 		return;
2371 
2372 	i915_check_and_clear_faults(dev_priv);
2373 
2374 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
2375 
2376 	i915_ggtt_flush(dev_priv);
2377 }
2378 
2379 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2380 			       struct sg_table *pages)
2381 {
2382 	if (dma_map_sg(&obj->base.dev->pdev->dev,
2383 		       pages->sgl, pages->nents,
2384 		       PCI_DMA_BIDIRECTIONAL))
2385 		return 0;
2386 
2387 	return -ENOSPC;
2388 }
2389 
2390 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2391 {
2392 	writeq(pte, addr);
2393 }
2394 
2395 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2396 				  dma_addr_t addr,
2397 				  uint64_t offset,
2398 				  enum i915_cache_level level,
2399 				  u32 unused)
2400 {
2401 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2402 	gen8_pte_t __iomem *pte =
2403 		(gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2404 		(offset >> PAGE_SHIFT);
2405 
2406 	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2407 
2408 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2409 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2410 }
2411 
2412 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2413 				     struct sg_table *st,
2414 				     uint64_t start,
2415 				     enum i915_cache_level level, u32 unused)
2416 {
2417 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2418 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2419 	struct sgt_iter sgt_iter;
2420 	gen8_pte_t __iomem *gtt_entries;
2421 	gen8_pte_t gtt_entry;
2422 	dma_addr_t addr;
2423 	int i = 0;
2424 
2425 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2426 
2427 	for_each_sgt_dma(addr, sgt_iter, st) {
2428 		gtt_entry = gen8_pte_encode(addr, level);
2429 		gen8_set_pte(&gtt_entries[i++], gtt_entry);
2430 	}
2431 
2432 	/*
2433 	 * XXX: This serves as a posting read to make sure that the PTE has
2434 	 * actually been updated. There is some concern that even though
2435 	 * registers and PTEs are within the same BAR that they are potentially
2436 	 * of NUMA access patterns. Therefore, even with the way we assume
2437 	 * hardware should work, we must keep this posting read for paranoia.
2438 	 */
2439 	if (i != 0)
2440 		WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2441 
2442 	/* This next bit makes the above posting read even more important. We
2443 	 * want to flush the TLBs only after we're certain all the PTE updates
2444 	 * have finished.
2445 	 */
2446 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2447 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2448 }
2449 
2450 struct insert_entries {
2451 	struct i915_address_space *vm;
2452 	struct sg_table *st;
2453 	uint64_t start;
2454 	enum i915_cache_level level;
2455 	u32 flags;
2456 };
2457 
2458 static int gen8_ggtt_insert_entries__cb(void *_arg)
2459 {
2460 	struct insert_entries *arg = _arg;
2461 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2462 				 arg->start, arg->level, arg->flags);
2463 	return 0;
2464 }
2465 
2466 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2467 					  struct sg_table *st,
2468 					  uint64_t start,
2469 					  enum i915_cache_level level,
2470 					  u32 flags)
2471 {
2472 	struct insert_entries arg = { vm, st, start, level, flags };
2473 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2474 }
2475 
2476 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2477 				  dma_addr_t addr,
2478 				  uint64_t offset,
2479 				  enum i915_cache_level level,
2480 				  u32 flags)
2481 {
2482 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2483 	gen6_pte_t __iomem *pte =
2484 		(gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2485 		(offset >> PAGE_SHIFT);
2486 
2487 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2488 
2489 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2490 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2491 }
2492 
2493 /*
2494  * Binds an object into the global gtt with the specified cache level. The object
2495  * will be accessible to the GPU via commands whose operands reference offsets
2496  * within the global GTT as well as accessible by the GPU through the GMADR
2497  * mapped BAR (dev_priv->mm.gtt->gtt).
2498  */
2499 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2500 				     struct sg_table *st,
2501 				     uint64_t start,
2502 				     enum i915_cache_level level, u32 flags)
2503 {
2504 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2505 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2506 	struct sgt_iter sgt_iter;
2507 	gen6_pte_t __iomem *gtt_entries;
2508 	gen6_pte_t gtt_entry;
2509 	dma_addr_t addr;
2510 	int i = 0;
2511 
2512 	gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2513 
2514 	for_each_sgt_dma(addr, sgt_iter, st) {
2515 		gtt_entry = vm->pte_encode(addr, level, flags);
2516 		iowrite32(gtt_entry, &gtt_entries[i++]);
2517 	}
2518 
2519 	/* XXX: This serves as a posting read to make sure that the PTE has
2520 	 * actually been updated. There is some concern that even though
2521 	 * registers and PTEs are within the same BAR that they are potentially
2522 	 * of NUMA access patterns. Therefore, even with the way we assume
2523 	 * hardware should work, we must keep this posting read for paranoia.
2524 	 */
2525 	if (i != 0)
2526 		WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2527 
2528 	/* This next bit makes the above posting read even more important. We
2529 	 * want to flush the TLBs only after we're certain all the PTE updates
2530 	 * have finished.
2531 	 */
2532 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2533 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2534 }
2535 
2536 static void nop_clear_range(struct i915_address_space *vm,
2537 			    uint64_t start, uint64_t length)
2538 {
2539 }
2540 
2541 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2542 				  uint64_t start, uint64_t length)
2543 {
2544 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2545 	unsigned first_entry = start >> PAGE_SHIFT;
2546 	unsigned num_entries = length >> PAGE_SHIFT;
2547 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2548 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2549 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2550 	int i;
2551 
2552 	if (WARN(num_entries > max_entries,
2553 		 "First entry = %d; Num entries = %d (max=%d)\n",
2554 		 first_entry, num_entries, max_entries))
2555 		num_entries = max_entries;
2556 
2557 	scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
2558 				      I915_CACHE_LLC);
2559 	for (i = 0; i < num_entries; i++)
2560 		gen8_set_pte(&gtt_base[i], scratch_pte);
2561 	readl(gtt_base);
2562 }
2563 
2564 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2565 				  uint64_t start,
2566 				  uint64_t length)
2567 {
2568 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2569 	unsigned first_entry = start >> PAGE_SHIFT;
2570 	unsigned num_entries = length >> PAGE_SHIFT;
2571 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2572 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2573 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2574 	int i;
2575 
2576 	if (WARN(num_entries > max_entries,
2577 		 "First entry = %d; Num entries = %d (max=%d)\n",
2578 		 first_entry, num_entries, max_entries))
2579 		num_entries = max_entries;
2580 
2581 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2582 				     I915_CACHE_LLC, 0);
2583 
2584 	for (i = 0; i < num_entries; i++)
2585 		iowrite32(scratch_pte, &gtt_base[i]);
2586 	readl(gtt_base);
2587 }
2588 
2589 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2590 				  dma_addr_t addr,
2591 				  uint64_t offset,
2592 				  enum i915_cache_level cache_level,
2593 				  u32 unused)
2594 {
2595 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2596 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2597 
2598 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2599 }
2600 
2601 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2602 				     struct sg_table *pages,
2603 				     uint64_t start,
2604 				     enum i915_cache_level cache_level, u32 unused)
2605 {
2606 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2607 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2608 
2609 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2610 
2611 }
2612 
2613 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2614 				  uint64_t start,
2615 				  uint64_t length)
2616 {
2617 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2618 }
2619 
2620 static int ggtt_bind_vma(struct i915_vma *vma,
2621 			 enum i915_cache_level cache_level,
2622 			 u32 flags)
2623 {
2624 	struct drm_i915_private *i915 = to_i915(vma->vm->dev);
2625 	struct drm_i915_gem_object *obj = vma->obj;
2626 	u32 pte_flags = 0;
2627 	int ret;
2628 
2629 	ret = i915_get_ggtt_vma_pages(vma);
2630 	if (ret)
2631 		return ret;
2632 
2633 	/* Currently applicable only to VLV */
2634 	if (obj->gt_ro)
2635 		pte_flags |= PTE_READ_ONLY;
2636 
2637 	intel_runtime_pm_get(i915);
2638 	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2639 				cache_level, pte_flags);
2640 	intel_runtime_pm_put(i915);
2641 
2642 	/*
2643 	 * Without aliasing PPGTT there's no difference between
2644 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2645 	 * upgrade to both bound if we bind either to avoid double-binding.
2646 	 */
2647 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2648 
2649 	return 0;
2650 }
2651 
2652 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2653 				 enum i915_cache_level cache_level,
2654 				 u32 flags)
2655 {
2656 	struct drm_i915_private *i915 = to_i915(vma->vm->dev);
2657 	u32 pte_flags;
2658 	int ret;
2659 
2660 	ret = i915_get_ggtt_vma_pages(vma);
2661 	if (ret)
2662 		return ret;
2663 
2664 	/* Currently applicable only to VLV */
2665 	pte_flags = 0;
2666 	if (vma->obj->gt_ro)
2667 		pte_flags |= PTE_READ_ONLY;
2668 
2669 
2670 	if (flags & I915_VMA_GLOBAL_BIND) {
2671 		intel_runtime_pm_get(i915);
2672 		vma->vm->insert_entries(vma->vm,
2673 					vma->pages, vma->node.start,
2674 					cache_level, pte_flags);
2675 		intel_runtime_pm_put(i915);
2676 	}
2677 
2678 	if (flags & I915_VMA_LOCAL_BIND) {
2679 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2680 		appgtt->base.insert_entries(&appgtt->base,
2681 					    vma->pages, vma->node.start,
2682 					    cache_level, pte_flags);
2683 	}
2684 
2685 	return 0;
2686 }
2687 
2688 static void ggtt_unbind_vma(struct i915_vma *vma)
2689 {
2690 	struct drm_i915_private *i915 = to_i915(vma->vm->dev);
2691 	struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2692 	const u64 size = min(vma->size, vma->node.size);
2693 
2694 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2695 		intel_runtime_pm_get(i915);
2696 		vma->vm->clear_range(vma->vm,
2697 				     vma->node.start, size);
2698 		intel_runtime_pm_put(i915);
2699 	}
2700 
2701 	if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2702 		appgtt->base.clear_range(&appgtt->base,
2703 					 vma->node.start, size);
2704 }
2705 
2706 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2707 			       struct sg_table *pages)
2708 {
2709 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2710 	struct device *kdev = &dev_priv->drm.pdev->dev;
2711 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2712 
2713 	if (unlikely(ggtt->do_idle_maps)) {
2714 		if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) {
2715 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2716 			/* Wait a bit, in hopes it avoids the hang */
2717 			udelay(10);
2718 		}
2719 	}
2720 
2721 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2722 }
2723 
2724 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2725 				  unsigned long color,
2726 				  u64 *start,
2727 				  u64 *end)
2728 {
2729 	if (node->color != color)
2730 		*start += 4096;
2731 
2732 	node = list_first_entry_or_null(&node->node_list,
2733 					struct drm_mm_node,
2734 					node_list);
2735 	if (node && node->allocated && node->color != color)
2736 		*end -= 4096;
2737 }
2738 
2739 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2740 {
2741 	/* Let GEM Manage all of the aperture.
2742 	 *
2743 	 * However, leave one page at the end still bound to the scratch page.
2744 	 * There are a number of places where the hardware apparently prefetches
2745 	 * past the end of the object, and we've seen multiple hangs with the
2746 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2747 	 * aperture.  One page should be enough to keep any prefetching inside
2748 	 * of the aperture.
2749 	 */
2750 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2751 	unsigned long hole_start, hole_end;
2752 	struct i915_hw_ppgtt *ppgtt;
2753 	struct drm_mm_node *entry;
2754 	int ret;
2755 
2756 	ret = intel_vgt_balloon(dev_priv);
2757 	if (ret)
2758 		return ret;
2759 
2760 	/* Reserve a mappable slot for our lockless error capture */
2761 	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2762 						  &ggtt->error_capture,
2763 						  4096, 0, -1,
2764 						  0, ggtt->mappable_end,
2765 						  0, 0);
2766 	if (ret)
2767 		return ret;
2768 
2769 	/* Clear any non-preallocated blocks */
2770 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2771 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2772 			      hole_start, hole_end);
2773 		ggtt->base.clear_range(&ggtt->base, hole_start,
2774 				       hole_end - hole_start);
2775 	}
2776 
2777 	/* And finally clear the reserved guard page */
2778 	ggtt->base.clear_range(&ggtt->base,
2779 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2780 
2781 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2782 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2783 		if (!ppgtt) {
2784 			ret = -ENOMEM;
2785 			goto err;
2786 		}
2787 
2788 		ret = __hw_ppgtt_init(ppgtt, dev_priv);
2789 		if (ret)
2790 			goto err_ppgtt;
2791 
2792 		if (ppgtt->base.allocate_va_range) {
2793 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2794 							    ppgtt->base.total);
2795 			if (ret)
2796 				goto err_ppgtt_cleanup;
2797 		}
2798 
2799 		ppgtt->base.clear_range(&ppgtt->base,
2800 					ppgtt->base.start,
2801 					ppgtt->base.total);
2802 
2803 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2804 		WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2805 		ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2806 	}
2807 
2808 	return 0;
2809 
2810 err_ppgtt_cleanup:
2811 	ppgtt->base.cleanup(&ppgtt->base);
2812 err_ppgtt:
2813 	kfree(ppgtt);
2814 err:
2815 	drm_mm_remove_node(&ggtt->error_capture);
2816 	return ret;
2817 }
2818 
2819 /**
2820  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2821  * @dev_priv: i915 device
2822  */
2823 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2824 {
2825 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2826 
2827 	if (dev_priv->mm.aliasing_ppgtt) {
2828 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2829 		ppgtt->base.cleanup(&ppgtt->base);
2830 		kfree(ppgtt);
2831 	}
2832 
2833 	i915_gem_cleanup_stolen(&dev_priv->drm);
2834 
2835 	if (drm_mm_node_allocated(&ggtt->error_capture))
2836 		drm_mm_remove_node(&ggtt->error_capture);
2837 
2838 	if (drm_mm_initialized(&ggtt->base.mm)) {
2839 		intel_vgt_deballoon(dev_priv);
2840 
2841 		mutex_lock(&dev_priv->drm.struct_mutex);
2842 		i915_address_space_fini(&ggtt->base);
2843 		mutex_unlock(&dev_priv->drm.struct_mutex);
2844 	}
2845 
2846 	ggtt->base.cleanup(&ggtt->base);
2847 
2848 	arch_phys_wc_del(ggtt->mtrr);
2849 	io_mapping_fini(&ggtt->mappable);
2850 }
2851 
2852 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2853 {
2854 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2855 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2856 	return snb_gmch_ctl << 20;
2857 }
2858 
2859 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2860 {
2861 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2862 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2863 	if (bdw_gmch_ctl)
2864 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2865 
2866 #ifdef CONFIG_X86_32
2867 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2868 	if (bdw_gmch_ctl > 4)
2869 		bdw_gmch_ctl = 4;
2870 #endif
2871 
2872 	return bdw_gmch_ctl << 20;
2873 }
2874 
2875 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2876 {
2877 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2878 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2879 
2880 	if (gmch_ctrl)
2881 		return 1 << (20 + gmch_ctrl);
2882 
2883 	return 0;
2884 }
2885 
2886 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2887 {
2888 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2889 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2890 	return snb_gmch_ctl << 25; /* 32 MB units */
2891 }
2892 
2893 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2894 {
2895 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2896 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2897 	return bdw_gmch_ctl << 25; /* 32 MB units */
2898 }
2899 
2900 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2901 {
2902 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2903 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2904 
2905 	/*
2906 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2907 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2908 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2909 	 */
2910 	if (gmch_ctrl < 0x11)
2911 		return gmch_ctrl << 25;
2912 	else if (gmch_ctrl < 0x17)
2913 		return (gmch_ctrl - 0x11 + 2) << 22;
2914 	else
2915 		return (gmch_ctrl - 0x17 + 9) << 22;
2916 }
2917 
2918 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2919 {
2920 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2921 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2922 
2923 	if (gen9_gmch_ctl < 0xf0)
2924 		return gen9_gmch_ctl << 25; /* 32 MB units */
2925 	else
2926 		/* 4MB increments starting at 0xf0 for 4MB */
2927 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2928 }
2929 
2930 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2931 {
2932 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
2933 	struct pci_dev *pdev = ggtt->base.dev->pdev;
2934 	phys_addr_t phys_addr;
2935 	int ret;
2936 
2937 	/* For Modern GENs the PTEs and register space are split in the BAR */
2938 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2939 
2940 	/*
2941 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2942 	 * dropped. For WC mappings in general we have 64 byte burst writes
2943 	 * when the WC buffer is flushed, so we can't use it, but have to
2944 	 * resort to an uncached mapping. The WC issue is easily caught by the
2945 	 * readback check when writing GTT PTE entries.
2946 	 */
2947 	if (IS_BROXTON(dev_priv))
2948 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2949 	else
2950 		ggtt->gsm = ioremap_wc(phys_addr, size);
2951 	if (!ggtt->gsm) {
2952 		DRM_ERROR("Failed to map the ggtt page table\n");
2953 		return -ENOMEM;
2954 	}
2955 
2956 	ret = setup_scratch_page(dev_priv, &ggtt->base.scratch_page, GFP_DMA32);
2957 	if (ret) {
2958 		DRM_ERROR("Scratch setup failed\n");
2959 		/* iounmap will also get called at remove, but meh */
2960 		iounmap(ggtt->gsm);
2961 		return ret;
2962 	}
2963 
2964 	return 0;
2965 }
2966 
2967 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2968  * bits. When using advanced contexts each context stores its own PAT, but
2969  * writing this data shouldn't be harmful even in those cases. */
2970 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2971 {
2972 	uint64_t pat;
2973 
2974 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2975 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2976 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2977 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2978 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2979 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2980 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2981 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2982 
2983 	if (!USES_PPGTT(dev_priv))
2984 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2985 		 * so RTL will always use the value corresponding to
2986 		 * pat_sel = 000".
2987 		 * So let's disable cache for GGTT to avoid screen corruptions.
2988 		 * MOCS still can be used though.
2989 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2990 		 * before this patch, i.e. the same uncached + snooping access
2991 		 * like on gen6/7 seems to be in effect.
2992 		 * - So this just fixes blitter/render access. Again it looks
2993 		 * like it's not just uncached access, but uncached + snooping.
2994 		 * So we can still hold onto all our assumptions wrt cpu
2995 		 * clflushing on LLC machines.
2996 		 */
2997 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2998 
2999 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
3000 	 * write would work. */
3001 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3002 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3003 }
3004 
3005 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3006 {
3007 	uint64_t pat;
3008 
3009 	/*
3010 	 * Map WB on BDW to snooped on CHV.
3011 	 *
3012 	 * Only the snoop bit has meaning for CHV, the rest is
3013 	 * ignored.
3014 	 *
3015 	 * The hardware will never snoop for certain types of accesses:
3016 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3017 	 * - PPGTT page tables
3018 	 * - some other special cycles
3019 	 *
3020 	 * As with BDW, we also need to consider the following for GT accesses:
3021 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3022 	 * so RTL will always use the value corresponding to
3023 	 * pat_sel = 000".
3024 	 * Which means we must set the snoop bit in PAT entry 0
3025 	 * in order to keep the global status page working.
3026 	 */
3027 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3028 	      GEN8_PPAT(1, 0) |
3029 	      GEN8_PPAT(2, 0) |
3030 	      GEN8_PPAT(3, 0) |
3031 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3032 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3033 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3034 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3035 
3036 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3037 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3038 }
3039 
3040 static void gen6_gmch_remove(struct i915_address_space *vm)
3041 {
3042 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3043 
3044 	iounmap(ggtt->gsm);
3045 	cleanup_scratch_page(to_i915(vm->dev), &vm->scratch_page);
3046 }
3047 
3048 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3049 {
3050 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3051 	struct pci_dev *pdev = dev_priv->drm.pdev;
3052 	unsigned int size;
3053 	u16 snb_gmch_ctl;
3054 
3055 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3056 	ggtt->mappable_base = pci_resource_start(pdev, 2);
3057 	ggtt->mappable_end = pci_resource_len(pdev, 2);
3058 
3059 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3060 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3061 
3062 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3063 
3064 	if (INTEL_GEN(dev_priv) >= 9) {
3065 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3066 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3067 	} else if (IS_CHERRYVIEW(dev_priv)) {
3068 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3069 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3070 	} else {
3071 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3072 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3073 	}
3074 
3075 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3076 
3077 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3078 		chv_setup_private_ppat(dev_priv);
3079 	else
3080 		bdw_setup_private_ppat(dev_priv);
3081 
3082 	ggtt->base.cleanup = gen6_gmch_remove;
3083 	ggtt->base.bind_vma = ggtt_bind_vma;
3084 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3085 	ggtt->base.insert_page = gen8_ggtt_insert_page;
3086 	ggtt->base.clear_range = nop_clear_range;
3087 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3088 		ggtt->base.clear_range = gen8_ggtt_clear_range;
3089 
3090 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3091 	if (IS_CHERRYVIEW(dev_priv))
3092 		ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3093 
3094 	return ggtt_probe_common(ggtt, size);
3095 }
3096 
3097 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3098 {
3099 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3100 	struct pci_dev *pdev = dev_priv->drm.pdev;
3101 	unsigned int size;
3102 	u16 snb_gmch_ctl;
3103 
3104 	ggtt->mappable_base = pci_resource_start(pdev, 2);
3105 	ggtt->mappable_end = pci_resource_len(pdev, 2);
3106 
3107 	/* 64/512MB is the current min/max we actually know of, but this is just
3108 	 * a coarse sanity check.
3109 	 */
3110 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3111 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3112 		return -ENXIO;
3113 	}
3114 
3115 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3116 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3117 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3118 
3119 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3120 
3121 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3122 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3123 
3124 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3125 	ggtt->base.insert_page = gen6_ggtt_insert_page;
3126 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3127 	ggtt->base.bind_vma = ggtt_bind_vma;
3128 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3129 	ggtt->base.cleanup = gen6_gmch_remove;
3130 
3131 	if (HAS_EDRAM(dev_priv))
3132 		ggtt->base.pte_encode = iris_pte_encode;
3133 	else if (IS_HASWELL(dev_priv))
3134 		ggtt->base.pte_encode = hsw_pte_encode;
3135 	else if (IS_VALLEYVIEW(dev_priv))
3136 		ggtt->base.pte_encode = byt_pte_encode;
3137 	else if (INTEL_GEN(dev_priv) >= 7)
3138 		ggtt->base.pte_encode = ivb_pte_encode;
3139 	else
3140 		ggtt->base.pte_encode = snb_pte_encode;
3141 
3142 	return ggtt_probe_common(ggtt, size);
3143 }
3144 
3145 static void i915_gmch_remove(struct i915_address_space *vm)
3146 {
3147 	intel_gmch_remove();
3148 }
3149 
3150 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3151 {
3152 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3153 	int ret;
3154 
3155 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3156 	if (!ret) {
3157 		DRM_ERROR("failed to set up gmch\n");
3158 		return -EIO;
3159 	}
3160 
3161 	intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3162 		      &ggtt->mappable_base, &ggtt->mappable_end);
3163 
3164 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3165 	ggtt->base.insert_page = i915_ggtt_insert_page;
3166 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3167 	ggtt->base.clear_range = i915_ggtt_clear_range;
3168 	ggtt->base.bind_vma = ggtt_bind_vma;
3169 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3170 	ggtt->base.cleanup = i915_gmch_remove;
3171 
3172 	if (unlikely(ggtt->do_idle_maps))
3173 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3174 
3175 	return 0;
3176 }
3177 
3178 /**
3179  * i915_ggtt_probe_hw - Probe GGTT hardware location
3180  * @dev_priv: i915 device
3181  */
3182 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3183 {
3184 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3185 	int ret;
3186 
3187 	ggtt->base.dev = &dev_priv->drm;
3188 
3189 	if (INTEL_GEN(dev_priv) <= 5)
3190 		ret = i915_gmch_probe(ggtt);
3191 	else if (INTEL_GEN(dev_priv) < 8)
3192 		ret = gen6_gmch_probe(ggtt);
3193 	else
3194 		ret = gen8_gmch_probe(ggtt);
3195 	if (ret)
3196 		return ret;
3197 
3198 	if ((ggtt->base.total - 1) >> 32) {
3199 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3200 			  " of address space! Found %lldM!\n",
3201 			  ggtt->base.total >> 20);
3202 		ggtt->base.total = 1ULL << 32;
3203 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3204 	}
3205 
3206 	if (ggtt->mappable_end > ggtt->base.total) {
3207 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3208 			  " aperture=%llx, total=%llx\n",
3209 			  ggtt->mappable_end, ggtt->base.total);
3210 		ggtt->mappable_end = ggtt->base.total;
3211 	}
3212 
3213 	/* GMADR is the PCI mmio aperture into the global GTT. */
3214 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3215 		 ggtt->base.total >> 20);
3216 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3217 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3218 #ifdef CONFIG_INTEL_IOMMU
3219 	if (intel_iommu_gfx_mapped)
3220 		DRM_INFO("VT-d active for gfx access\n");
3221 #endif
3222 
3223 	return 0;
3224 }
3225 
3226 /**
3227  * i915_ggtt_init_hw - Initialize GGTT hardware
3228  * @dev_priv: i915 device
3229  */
3230 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3231 {
3232 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3233 	int ret;
3234 
3235 	INIT_LIST_HEAD(&dev_priv->vm_list);
3236 
3237 	/* Subtract the guard page before address space initialization to
3238 	 * shrink the range used by drm_mm.
3239 	 */
3240 	mutex_lock(&dev_priv->drm.struct_mutex);
3241 	ggtt->base.total -= PAGE_SIZE;
3242 	i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3243 	ggtt->base.total += PAGE_SIZE;
3244 	if (!HAS_LLC(dev_priv))
3245 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3246 	mutex_unlock(&dev_priv->drm.struct_mutex);
3247 
3248 	if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3249 				dev_priv->ggtt.mappable_base,
3250 				dev_priv->ggtt.mappable_end)) {
3251 		ret = -EIO;
3252 		goto out_gtt_cleanup;
3253 	}
3254 
3255 	ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3256 
3257 	/*
3258 	 * Initialise stolen early so that we may reserve preallocated
3259 	 * objects for the BIOS to KMS transition.
3260 	 */
3261 	ret = i915_gem_init_stolen(dev_priv);
3262 	if (ret)
3263 		goto out_gtt_cleanup;
3264 
3265 	return 0;
3266 
3267 out_gtt_cleanup:
3268 	ggtt->base.cleanup(&ggtt->base);
3269 	return ret;
3270 }
3271 
3272 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3273 {
3274 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3275 		return -EIO;
3276 
3277 	return 0;
3278 }
3279 
3280 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3281 {
3282 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3283 	struct drm_i915_gem_object *obj, *on;
3284 
3285 	i915_check_and_clear_faults(dev_priv);
3286 
3287 	/* First fill our portion of the GTT with scratch pages */
3288 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
3289 
3290 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3291 
3292 	/* clflush objects bound into the GGTT and rebind them. */
3293 	list_for_each_entry_safe(obj, on,
3294 				 &dev_priv->mm.bound_list, global_link) {
3295 		bool ggtt_bound = false;
3296 		struct i915_vma *vma;
3297 
3298 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3299 			if (vma->vm != &ggtt->base)
3300 				continue;
3301 
3302 			if (!i915_vma_unbind(vma))
3303 				continue;
3304 
3305 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3306 					      PIN_UPDATE));
3307 			ggtt_bound = true;
3308 		}
3309 
3310 		if (ggtt_bound)
3311 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3312 	}
3313 
3314 	ggtt->base.closed = false;
3315 
3316 	if (INTEL_GEN(dev_priv) >= 8) {
3317 		if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3318 			chv_setup_private_ppat(dev_priv);
3319 		else
3320 			bdw_setup_private_ppat(dev_priv);
3321 
3322 		return;
3323 	}
3324 
3325 	if (USES_PPGTT(dev_priv)) {
3326 		struct i915_address_space *vm;
3327 
3328 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3329 			/* TODO: Perhaps it shouldn't be gen6 specific */
3330 
3331 			struct i915_hw_ppgtt *ppgtt;
3332 
3333 			if (i915_is_ggtt(vm))
3334 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3335 			else
3336 				ppgtt = i915_vm_to_ppgtt(vm);
3337 
3338 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3339 					      0, ppgtt->base.total);
3340 		}
3341 	}
3342 
3343 	i915_ggtt_flush(dev_priv);
3344 }
3345 
3346 struct i915_vma *
3347 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3348 		    struct i915_address_space *vm,
3349 		    const struct i915_ggtt_view *view)
3350 {
3351 	struct rb_node *rb;
3352 
3353 	rb = obj->vma_tree.rb_node;
3354 	while (rb) {
3355 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
3356 		long cmp;
3357 
3358 		cmp = i915_vma_compare(vma, vm, view);
3359 		if (cmp == 0)
3360 			return vma;
3361 
3362 		if (cmp < 0)
3363 			rb = rb->rb_right;
3364 		else
3365 			rb = rb->rb_left;
3366 	}
3367 
3368 	return NULL;
3369 }
3370 
3371 struct i915_vma *
3372 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3373 				  struct i915_address_space *vm,
3374 				  const struct i915_ggtt_view *view)
3375 {
3376 	struct i915_vma *vma;
3377 
3378 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3379 	GEM_BUG_ON(view && !i915_is_ggtt(vm));
3380 
3381 	vma = i915_gem_obj_to_vma(obj, vm, view);
3382 	if (!vma) {
3383 		vma = i915_vma_create(obj, vm, view);
3384 		GEM_BUG_ON(vma != i915_gem_obj_to_vma(obj, vm, view));
3385 	}
3386 
3387 	GEM_BUG_ON(i915_vma_is_closed(vma));
3388 	return vma;
3389 }
3390 
3391 static struct scatterlist *
3392 rotate_pages(const dma_addr_t *in, unsigned int offset,
3393 	     unsigned int width, unsigned int height,
3394 	     unsigned int stride,
3395 	     struct sg_table *st, struct scatterlist *sg)
3396 {
3397 	unsigned int column, row;
3398 	unsigned int src_idx;
3399 
3400 	for (column = 0; column < width; column++) {
3401 		src_idx = stride * (height - 1) + column;
3402 		for (row = 0; row < height; row++) {
3403 			st->nents++;
3404 			/* We don't need the pages, but need to initialize
3405 			 * the entries so the sg list can be happily traversed.
3406 			 * The only thing we need are DMA addresses.
3407 			 */
3408 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3409 			sg_dma_address(sg) = in[offset + src_idx];
3410 			sg_dma_len(sg) = PAGE_SIZE;
3411 			sg = sg_next(sg);
3412 			src_idx -= stride;
3413 		}
3414 	}
3415 
3416 	return sg;
3417 }
3418 
3419 static struct sg_table *
3420 intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
3421 			  struct drm_i915_gem_object *obj)
3422 {
3423 	const size_t n_pages = obj->base.size / PAGE_SIZE;
3424 	unsigned int size = intel_rotation_info_size(rot_info);
3425 	struct sgt_iter sgt_iter;
3426 	dma_addr_t dma_addr;
3427 	unsigned long i;
3428 	dma_addr_t *page_addr_list;
3429 	struct sg_table *st;
3430 	struct scatterlist *sg;
3431 	int ret = -ENOMEM;
3432 
3433 	/* Allocate a temporary list of source pages for random access. */
3434 	page_addr_list = drm_malloc_gfp(n_pages,
3435 					sizeof(dma_addr_t),
3436 					GFP_TEMPORARY);
3437 	if (!page_addr_list)
3438 		return ERR_PTR(ret);
3439 
3440 	/* Allocate target SG list. */
3441 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3442 	if (!st)
3443 		goto err_st_alloc;
3444 
3445 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3446 	if (ret)
3447 		goto err_sg_alloc;
3448 
3449 	/* Populate source page list from the object. */
3450 	i = 0;
3451 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3452 		page_addr_list[i++] = dma_addr;
3453 
3454 	GEM_BUG_ON(i != n_pages);
3455 	st->nents = 0;
3456 	sg = st->sgl;
3457 
3458 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3459 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3460 				  rot_info->plane[i].width, rot_info->plane[i].height,
3461 				  rot_info->plane[i].stride, st, sg);
3462 	}
3463 
3464 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3465 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3466 
3467 	drm_free_large(page_addr_list);
3468 
3469 	return st;
3470 
3471 err_sg_alloc:
3472 	kfree(st);
3473 err_st_alloc:
3474 	drm_free_large(page_addr_list);
3475 
3476 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3477 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3478 
3479 	return ERR_PTR(ret);
3480 }
3481 
3482 static struct sg_table *
3483 intel_partial_pages(const struct i915_ggtt_view *view,
3484 		    struct drm_i915_gem_object *obj)
3485 {
3486 	struct sg_table *st;
3487 	struct scatterlist *sg, *iter;
3488 	unsigned int count = view->params.partial.size;
3489 	unsigned int offset;
3490 	int ret = -ENOMEM;
3491 
3492 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3493 	if (!st)
3494 		goto err_st_alloc;
3495 
3496 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3497 	if (ret)
3498 		goto err_sg_alloc;
3499 
3500 	iter = i915_gem_object_get_sg(obj,
3501 				      view->params.partial.offset,
3502 				      &offset);
3503 	GEM_BUG_ON(!iter);
3504 
3505 	sg = st->sgl;
3506 	st->nents = 0;
3507 	do {
3508 		unsigned int len;
3509 
3510 		len = min(iter->length - (offset << PAGE_SHIFT),
3511 			  count << PAGE_SHIFT);
3512 		sg_set_page(sg, NULL, len, 0);
3513 		sg_dma_address(sg) =
3514 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3515 		sg_dma_len(sg) = len;
3516 
3517 		st->nents++;
3518 		count -= len >> PAGE_SHIFT;
3519 		if (count == 0) {
3520 			sg_mark_end(sg);
3521 			return st;
3522 		}
3523 
3524 		sg = __sg_next(sg);
3525 		iter = __sg_next(iter);
3526 		offset = 0;
3527 	} while (1);
3528 
3529 err_sg_alloc:
3530 	kfree(st);
3531 err_st_alloc:
3532 	return ERR_PTR(ret);
3533 }
3534 
3535 static int
3536 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3537 {
3538 	int ret = 0;
3539 
3540 	/* The vma->pages are only valid within the lifespan of the borrowed
3541 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3542 	 * must be the vma->pages. A simple rule is that vma->pages must only
3543 	 * be accessed when the obj->mm.pages are pinned.
3544 	 */
3545 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3546 
3547 	if (vma->pages)
3548 		return 0;
3549 
3550 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3551 		vma->pages = vma->obj->mm.pages;
3552 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3553 		vma->pages =
3554 			intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3555 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3556 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3557 	else
3558 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3559 			  vma->ggtt_view.type);
3560 
3561 	if (!vma->pages) {
3562 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3563 			  vma->ggtt_view.type);
3564 		ret = -EINVAL;
3565 	} else if (IS_ERR(vma->pages)) {
3566 		ret = PTR_ERR(vma->pages);
3567 		vma->pages = NULL;
3568 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3569 			  vma->ggtt_view.type, ret);
3570 	}
3571 
3572 	return ret;
3573 }
3574 
3575