1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
36 
37 /**
38  * DOC: Global GTT views
39  *
40  * Background and previous state
41  *
42  * Historically objects could exists (be bound) in global GTT space only as
43  * singular instances with a view representing all of the object's backing pages
44  * in a linear fashion. This view will be called a normal view.
45  *
46  * To support multiple views of the same object, where the number of mapped
47  * pages is not equal to the backing store, or where the layout of the pages
48  * is not linear, concept of a GGTT view was added.
49  *
50  * One example of an alternative view is a stereo display driven by a single
51  * image. In this case we would have a framebuffer looking like this
52  * (2x2 pages):
53  *
54  *    12
55  *    34
56  *
57  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
58  * rendering. In contrast, fed to the display engine would be an alternative
59  * view which could look something like this:
60  *
61  *   1212
62  *   3434
63  *
64  * In this example both the size and layout of pages in the alternative view is
65  * different from the normal view.
66  *
67  * Implementation and usage
68  *
69  * GGTT views are implemented using VMAs and are distinguished via enum
70  * i915_ggtt_view_type and struct i915_ggtt_view.
71  *
72  * A new flavour of core GEM functions which work with GGTT bound objects were
73  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
74  * renaming  in large amounts of code. They take the struct i915_ggtt_view
75  * parameter encapsulating all metadata required to implement a view.
76  *
77  * As a helper for callers which are only interested in the normal view,
78  * globally const i915_ggtt_view_normal singleton instance exists. All old core
79  * GEM API functions, the ones not taking the view parameter, are operating on,
80  * or with the normal GGTT view.
81  *
82  * Code wanting to add or use a new GGTT view needs to:
83  *
84  * 1. Add a new enum with a suitable name.
85  * 2. Extend the metadata in the i915_ggtt_view structure if required.
86  * 3. Add support to i915_get_vma_pages().
87  *
88  * New views are required to build a scatter-gather table from within the
89  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
90  * exists for the lifetime of an VMA.
91  *
92  * Core API is designed to have copy semantics which means that passed in
93  * struct i915_ggtt_view does not need to be persistent (left around after
94  * calling the core API functions).
95  *
96  */
97 
98 static inline struct i915_ggtt *
99 i915_vm_to_ggtt(struct i915_address_space *vm)
100 {
101 	GEM_BUG_ON(!i915_is_ggtt(vm));
102 	return container_of(vm, struct i915_ggtt, base);
103 }
104 
105 static int
106 i915_get_ggtt_vma_pages(struct i915_vma *vma);
107 
108 const struct i915_ggtt_view i915_ggtt_view_normal = {
109 	.type = I915_GGTT_VIEW_NORMAL,
110 };
111 const struct i915_ggtt_view i915_ggtt_view_rotated = {
112 	.type = I915_GGTT_VIEW_ROTATED,
113 };
114 
115 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
116 			       	int enable_ppgtt)
117 {
118 	bool has_aliasing_ppgtt;
119 	bool has_full_ppgtt;
120 	bool has_full_48bit_ppgtt;
121 
122 	has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
123 	has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
124 	has_full_48bit_ppgtt =
125 	       	IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
126 
127 	if (intel_vgpu_active(dev_priv)) {
128 		/* emulation is too hard */
129 		has_full_ppgtt = false;
130 		has_full_48bit_ppgtt = false;
131 	}
132 
133 	if (!has_aliasing_ppgtt)
134 		return 0;
135 
136 	/*
137 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
138 	 * execlists, the sole mechanism available to submit work.
139 	 */
140 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
141 		return 0;
142 
143 	if (enable_ppgtt == 1)
144 		return 1;
145 
146 	if (enable_ppgtt == 2 && has_full_ppgtt)
147 		return 2;
148 
149 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
150 		return 3;
151 
152 #ifdef CONFIG_INTEL_IOMMU
153 	/* Disable ppgtt on SNB if VT-d is on. */
154 	if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
155 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
156 		return 0;
157 	}
158 #endif
159 
160 	/* Early VLV doesn't have this */
161 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
162 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
163 		return 0;
164 	}
165 
166 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
167 		return has_full_48bit_ppgtt ? 3 : 2;
168 	else
169 		return has_aliasing_ppgtt ? 1 : 0;
170 }
171 
172 static int ppgtt_bind_vma(struct i915_vma *vma,
173 			  enum i915_cache_level cache_level,
174 			  u32 unused)
175 {
176 	u32 pte_flags = 0;
177 
178 	vma->pages = vma->obj->pages;
179 
180 	/* Currently applicable only to VLV */
181 	if (vma->obj->gt_ro)
182 		pte_flags |= PTE_READ_ONLY;
183 
184 	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
185 				cache_level, pte_flags);
186 
187 	return 0;
188 }
189 
190 static void ppgtt_unbind_vma(struct i915_vma *vma)
191 {
192 	vma->vm->clear_range(vma->vm,
193 			     vma->node.start,
194 			     vma->size,
195 			     true);
196 }
197 
198 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
199 				  enum i915_cache_level level,
200 				  bool valid)
201 {
202 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
203 	pte |= addr;
204 
205 	switch (level) {
206 	case I915_CACHE_NONE:
207 		pte |= PPAT_UNCACHED_INDEX;
208 		break;
209 	case I915_CACHE_WT:
210 		pte |= PPAT_DISPLAY_ELLC_INDEX;
211 		break;
212 	default:
213 		pte |= PPAT_CACHED_INDEX;
214 		break;
215 	}
216 
217 	return pte;
218 }
219 
220 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
221 				  const enum i915_cache_level level)
222 {
223 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
224 	pde |= addr;
225 	if (level != I915_CACHE_NONE)
226 		pde |= PPAT_CACHED_PDE_INDEX;
227 	else
228 		pde |= PPAT_UNCACHED_INDEX;
229 	return pde;
230 }
231 
232 #define gen8_pdpe_encode gen8_pde_encode
233 #define gen8_pml4e_encode gen8_pde_encode
234 
235 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
236 				 enum i915_cache_level level,
237 				 bool valid, u32 unused)
238 {
239 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
240 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
241 
242 	switch (level) {
243 	case I915_CACHE_L3_LLC:
244 	case I915_CACHE_LLC:
245 		pte |= GEN6_PTE_CACHE_LLC;
246 		break;
247 	case I915_CACHE_NONE:
248 		pte |= GEN6_PTE_UNCACHED;
249 		break;
250 	default:
251 		MISSING_CASE(level);
252 	}
253 
254 	return pte;
255 }
256 
257 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
258 				 enum i915_cache_level level,
259 				 bool valid, u32 unused)
260 {
261 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
262 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
263 
264 	switch (level) {
265 	case I915_CACHE_L3_LLC:
266 		pte |= GEN7_PTE_CACHE_L3_LLC;
267 		break;
268 	case I915_CACHE_LLC:
269 		pte |= GEN6_PTE_CACHE_LLC;
270 		break;
271 	case I915_CACHE_NONE:
272 		pte |= GEN6_PTE_UNCACHED;
273 		break;
274 	default:
275 		MISSING_CASE(level);
276 	}
277 
278 	return pte;
279 }
280 
281 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
282 				 enum i915_cache_level level,
283 				 bool valid, u32 flags)
284 {
285 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
286 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
287 
288 	if (!(flags & PTE_READ_ONLY))
289 		pte |= BYT_PTE_WRITEABLE;
290 
291 	if (level != I915_CACHE_NONE)
292 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
293 
294 	return pte;
295 }
296 
297 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
298 				 enum i915_cache_level level,
299 				 bool valid, u32 unused)
300 {
301 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
302 	pte |= HSW_PTE_ADDR_ENCODE(addr);
303 
304 	if (level != I915_CACHE_NONE)
305 		pte |= HSW_WB_LLC_AGE3;
306 
307 	return pte;
308 }
309 
310 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
311 				  enum i915_cache_level level,
312 				  bool valid, u32 unused)
313 {
314 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
315 	pte |= HSW_PTE_ADDR_ENCODE(addr);
316 
317 	switch (level) {
318 	case I915_CACHE_NONE:
319 		break;
320 	case I915_CACHE_WT:
321 		pte |= HSW_WT_ELLC_LLC_AGE3;
322 		break;
323 	default:
324 		pte |= HSW_WB_ELLC_LLC_AGE3;
325 		break;
326 	}
327 
328 	return pte;
329 }
330 
331 static int __setup_page_dma(struct drm_device *dev,
332 			    struct i915_page_dma *p, gfp_t flags)
333 {
334 	struct device *kdev = &dev->pdev->dev;
335 
336 	p->page = alloc_page(flags);
337 	if (!p->page)
338 		return -ENOMEM;
339 
340 	p->daddr = dma_map_page(kdev,
341 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
342 
343 	if (dma_mapping_error(kdev, p->daddr)) {
344 		__free_page(p->page);
345 		return -EINVAL;
346 	}
347 
348 	return 0;
349 }
350 
351 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
352 {
353 	return __setup_page_dma(dev, p, I915_GFP_DMA);
354 }
355 
356 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
357 {
358 	struct pci_dev *pdev = dev->pdev;
359 
360 	if (WARN_ON(!p->page))
361 		return;
362 
363 	dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
364 	__free_page(p->page);
365 	memset(p, 0, sizeof(*p));
366 }
367 
368 static void *kmap_page_dma(struct i915_page_dma *p)
369 {
370 	return kmap_atomic(p->page);
371 }
372 
373 /* We use the flushing unmap only with ppgtt structures:
374  * page directories, page tables and scratch pages.
375  */
376 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
377 {
378 	/* There are only few exceptions for gen >=6. chv and bxt.
379 	 * And we are not sure about the latter so play safe for now.
380 	 */
381 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
382 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
383 
384 	kunmap_atomic(vaddr);
385 }
386 
387 #define kmap_px(px) kmap_page_dma(px_base(px))
388 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
389 
390 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
391 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
392 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
393 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
394 
395 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
396 			  const uint64_t val)
397 {
398 	int i;
399 	uint64_t * const vaddr = kmap_page_dma(p);
400 
401 	for (i = 0; i < 512; i++)
402 		vaddr[i] = val;
403 
404 	kunmap_page_dma(dev, vaddr);
405 }
406 
407 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
408 			     const uint32_t val32)
409 {
410 	uint64_t v = val32;
411 
412 	v = v << 32 | val32;
413 
414 	fill_page_dma(dev, p, v);
415 }
416 
417 static int
418 setup_scratch_page(struct drm_device *dev,
419 		   struct i915_page_dma *scratch,
420 		   gfp_t gfp)
421 {
422 	return __setup_page_dma(dev, scratch, gfp | __GFP_ZERO);
423 }
424 
425 static void cleanup_scratch_page(struct drm_device *dev,
426 				 struct i915_page_dma *scratch)
427 {
428 	cleanup_page_dma(dev, scratch);
429 }
430 
431 static struct i915_page_table *alloc_pt(struct drm_device *dev)
432 {
433 	struct i915_page_table *pt;
434 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
435 		GEN8_PTES : GEN6_PTES;
436 	int ret = -ENOMEM;
437 
438 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
439 	if (!pt)
440 		return ERR_PTR(-ENOMEM);
441 
442 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
443 				GFP_KERNEL);
444 
445 	if (!pt->used_ptes)
446 		goto fail_bitmap;
447 
448 	ret = setup_px(dev, pt);
449 	if (ret)
450 		goto fail_page_m;
451 
452 	return pt;
453 
454 fail_page_m:
455 	kfree(pt->used_ptes);
456 fail_bitmap:
457 	kfree(pt);
458 
459 	return ERR_PTR(ret);
460 }
461 
462 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
463 {
464 	cleanup_px(dev, pt);
465 	kfree(pt->used_ptes);
466 	kfree(pt);
467 }
468 
469 static void gen8_initialize_pt(struct i915_address_space *vm,
470 			       struct i915_page_table *pt)
471 {
472 	gen8_pte_t scratch_pte;
473 
474 	scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
475 				      I915_CACHE_LLC, true);
476 
477 	fill_px(vm->dev, pt, scratch_pte);
478 }
479 
480 static void gen6_initialize_pt(struct i915_address_space *vm,
481 			       struct i915_page_table *pt)
482 {
483 	gen6_pte_t scratch_pte;
484 
485 	WARN_ON(vm->scratch_page.daddr == 0);
486 
487 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
488 				     I915_CACHE_LLC, true, 0);
489 
490 	fill32_px(vm->dev, pt, scratch_pte);
491 }
492 
493 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
494 {
495 	struct i915_page_directory *pd;
496 	int ret = -ENOMEM;
497 
498 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
499 	if (!pd)
500 		return ERR_PTR(-ENOMEM);
501 
502 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
503 				sizeof(*pd->used_pdes), GFP_KERNEL);
504 	if (!pd->used_pdes)
505 		goto fail_bitmap;
506 
507 	ret = setup_px(dev, pd);
508 	if (ret)
509 		goto fail_page_m;
510 
511 	return pd;
512 
513 fail_page_m:
514 	kfree(pd->used_pdes);
515 fail_bitmap:
516 	kfree(pd);
517 
518 	return ERR_PTR(ret);
519 }
520 
521 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
522 {
523 	if (px_page(pd)) {
524 		cleanup_px(dev, pd);
525 		kfree(pd->used_pdes);
526 		kfree(pd);
527 	}
528 }
529 
530 static void gen8_initialize_pd(struct i915_address_space *vm,
531 			       struct i915_page_directory *pd)
532 {
533 	gen8_pde_t scratch_pde;
534 
535 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
536 
537 	fill_px(vm->dev, pd, scratch_pde);
538 }
539 
540 static int __pdp_init(struct drm_device *dev,
541 		      struct i915_page_directory_pointer *pdp)
542 {
543 	size_t pdpes = I915_PDPES_PER_PDP(dev);
544 
545 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
546 				  sizeof(unsigned long),
547 				  GFP_KERNEL);
548 	if (!pdp->used_pdpes)
549 		return -ENOMEM;
550 
551 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
552 				      GFP_KERNEL);
553 	if (!pdp->page_directory) {
554 		kfree(pdp->used_pdpes);
555 		/* the PDP might be the statically allocated top level. Keep it
556 		 * as clean as possible */
557 		pdp->used_pdpes = NULL;
558 		return -ENOMEM;
559 	}
560 
561 	return 0;
562 }
563 
564 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
565 {
566 	kfree(pdp->used_pdpes);
567 	kfree(pdp->page_directory);
568 	pdp->page_directory = NULL;
569 }
570 
571 static struct
572 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
573 {
574 	struct i915_page_directory_pointer *pdp;
575 	int ret = -ENOMEM;
576 
577 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
578 
579 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
580 	if (!pdp)
581 		return ERR_PTR(-ENOMEM);
582 
583 	ret = __pdp_init(dev, pdp);
584 	if (ret)
585 		goto fail_bitmap;
586 
587 	ret = setup_px(dev, pdp);
588 	if (ret)
589 		goto fail_page_m;
590 
591 	return pdp;
592 
593 fail_page_m:
594 	__pdp_fini(pdp);
595 fail_bitmap:
596 	kfree(pdp);
597 
598 	return ERR_PTR(ret);
599 }
600 
601 static void free_pdp(struct drm_device *dev,
602 		     struct i915_page_directory_pointer *pdp)
603 {
604 	__pdp_fini(pdp);
605 	if (USES_FULL_48BIT_PPGTT(dev)) {
606 		cleanup_px(dev, pdp);
607 		kfree(pdp);
608 	}
609 }
610 
611 static void gen8_initialize_pdp(struct i915_address_space *vm,
612 				struct i915_page_directory_pointer *pdp)
613 {
614 	gen8_ppgtt_pdpe_t scratch_pdpe;
615 
616 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
617 
618 	fill_px(vm->dev, pdp, scratch_pdpe);
619 }
620 
621 static void gen8_initialize_pml4(struct i915_address_space *vm,
622 				 struct i915_pml4 *pml4)
623 {
624 	gen8_ppgtt_pml4e_t scratch_pml4e;
625 
626 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
627 					  I915_CACHE_LLC);
628 
629 	fill_px(vm->dev, pml4, scratch_pml4e);
630 }
631 
632 static void
633 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
634 			  struct i915_page_directory_pointer *pdp,
635 			  struct i915_page_directory *pd,
636 			  int index)
637 {
638 	gen8_ppgtt_pdpe_t *page_directorypo;
639 
640 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
641 		return;
642 
643 	page_directorypo = kmap_px(pdp);
644 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
645 	kunmap_px(ppgtt, page_directorypo);
646 }
647 
648 static void
649 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
650 				  struct i915_pml4 *pml4,
651 				  struct i915_page_directory_pointer *pdp,
652 				  int index)
653 {
654 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
655 
656 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
657 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
658 	kunmap_px(ppgtt, pagemap);
659 }
660 
661 /* Broadwell Page Directory Pointer Descriptors */
662 static int gen8_write_pdp(struct drm_i915_gem_request *req,
663 			  unsigned entry,
664 			  dma_addr_t addr)
665 {
666 	struct intel_ring *ring = req->ring;
667 	struct intel_engine_cs *engine = req->engine;
668 	int ret;
669 
670 	BUG_ON(entry >= 4);
671 
672 	ret = intel_ring_begin(req, 6);
673 	if (ret)
674 		return ret;
675 
676 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
677 	intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
678 	intel_ring_emit(ring, upper_32_bits(addr));
679 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
680 	intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
681 	intel_ring_emit(ring, lower_32_bits(addr));
682 	intel_ring_advance(ring);
683 
684 	return 0;
685 }
686 
687 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
688 				 struct drm_i915_gem_request *req)
689 {
690 	int i, ret;
691 
692 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
693 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
694 
695 		ret = gen8_write_pdp(req, i, pd_daddr);
696 		if (ret)
697 			return ret;
698 	}
699 
700 	return 0;
701 }
702 
703 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
704 			      struct drm_i915_gem_request *req)
705 {
706 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
707 }
708 
709 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
710 				       struct i915_page_directory_pointer *pdp,
711 				       uint64_t start,
712 				       uint64_t length,
713 				       gen8_pte_t scratch_pte)
714 {
715 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
716 	gen8_pte_t *pt_vaddr;
717 	unsigned pdpe = gen8_pdpe_index(start);
718 	unsigned pde = gen8_pde_index(start);
719 	unsigned pte = gen8_pte_index(start);
720 	unsigned num_entries = length >> PAGE_SHIFT;
721 	unsigned last_pte, i;
722 
723 	if (WARN_ON(!pdp))
724 		return;
725 
726 	while (num_entries) {
727 		struct i915_page_directory *pd;
728 		struct i915_page_table *pt;
729 
730 		if (WARN_ON(!pdp->page_directory[pdpe]))
731 			break;
732 
733 		pd = pdp->page_directory[pdpe];
734 
735 		if (WARN_ON(!pd->page_table[pde]))
736 			break;
737 
738 		pt = pd->page_table[pde];
739 
740 		if (WARN_ON(!px_page(pt)))
741 			break;
742 
743 		last_pte = pte + num_entries;
744 		if (last_pte > GEN8_PTES)
745 			last_pte = GEN8_PTES;
746 
747 		pt_vaddr = kmap_px(pt);
748 
749 		for (i = pte; i < last_pte; i++) {
750 			pt_vaddr[i] = scratch_pte;
751 			num_entries--;
752 		}
753 
754 		kunmap_px(ppgtt, pt_vaddr);
755 
756 		pte = 0;
757 		if (++pde == I915_PDES) {
758 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
759 				break;
760 			pde = 0;
761 		}
762 	}
763 }
764 
765 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
766 				   uint64_t start,
767 				   uint64_t length,
768 				   bool use_scratch)
769 {
770 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
771 	gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
772 						 I915_CACHE_LLC, use_scratch);
773 
774 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
775 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
776 					   scratch_pte);
777 	} else {
778 		uint64_t pml4e;
779 		struct i915_page_directory_pointer *pdp;
780 
781 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
782 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
783 						   scratch_pte);
784 		}
785 	}
786 }
787 
788 static void
789 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
790 			      struct i915_page_directory_pointer *pdp,
791 			      struct sg_page_iter *sg_iter,
792 			      uint64_t start,
793 			      enum i915_cache_level cache_level)
794 {
795 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
796 	gen8_pte_t *pt_vaddr;
797 	unsigned pdpe = gen8_pdpe_index(start);
798 	unsigned pde = gen8_pde_index(start);
799 	unsigned pte = gen8_pte_index(start);
800 
801 	pt_vaddr = NULL;
802 
803 	while (__sg_page_iter_next(sg_iter)) {
804 		if (pt_vaddr == NULL) {
805 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
806 			struct i915_page_table *pt = pd->page_table[pde];
807 			pt_vaddr = kmap_px(pt);
808 		}
809 
810 		pt_vaddr[pte] =
811 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
812 					cache_level, true);
813 		if (++pte == GEN8_PTES) {
814 			kunmap_px(ppgtt, pt_vaddr);
815 			pt_vaddr = NULL;
816 			if (++pde == I915_PDES) {
817 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
818 					break;
819 				pde = 0;
820 			}
821 			pte = 0;
822 		}
823 	}
824 
825 	if (pt_vaddr)
826 		kunmap_px(ppgtt, pt_vaddr);
827 }
828 
829 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
830 				      struct sg_table *pages,
831 				      uint64_t start,
832 				      enum i915_cache_level cache_level,
833 				      u32 unused)
834 {
835 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
836 	struct sg_page_iter sg_iter;
837 
838 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
839 
840 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
841 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
842 					      cache_level);
843 	} else {
844 		struct i915_page_directory_pointer *pdp;
845 		uint64_t pml4e;
846 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
847 
848 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
849 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
850 						      start, cache_level);
851 		}
852 	}
853 }
854 
855 static void gen8_free_page_tables(struct drm_device *dev,
856 				  struct i915_page_directory *pd)
857 {
858 	int i;
859 
860 	if (!px_page(pd))
861 		return;
862 
863 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
864 		if (WARN_ON(!pd->page_table[i]))
865 			continue;
866 
867 		free_pt(dev, pd->page_table[i]);
868 		pd->page_table[i] = NULL;
869 	}
870 }
871 
872 static int gen8_init_scratch(struct i915_address_space *vm)
873 {
874 	struct drm_device *dev = vm->dev;
875 	int ret;
876 
877 	ret = setup_scratch_page(dev, &vm->scratch_page, I915_GFP_DMA);
878 	if (ret)
879 		return ret;
880 
881 	vm->scratch_pt = alloc_pt(dev);
882 	if (IS_ERR(vm->scratch_pt)) {
883 		ret = PTR_ERR(vm->scratch_pt);
884 		goto free_scratch_page;
885 	}
886 
887 	vm->scratch_pd = alloc_pd(dev);
888 	if (IS_ERR(vm->scratch_pd)) {
889 		ret = PTR_ERR(vm->scratch_pd);
890 		goto free_pt;
891 	}
892 
893 	if (USES_FULL_48BIT_PPGTT(dev)) {
894 		vm->scratch_pdp = alloc_pdp(dev);
895 		if (IS_ERR(vm->scratch_pdp)) {
896 			ret = PTR_ERR(vm->scratch_pdp);
897 			goto free_pd;
898 		}
899 	}
900 
901 	gen8_initialize_pt(vm, vm->scratch_pt);
902 	gen8_initialize_pd(vm, vm->scratch_pd);
903 	if (USES_FULL_48BIT_PPGTT(dev))
904 		gen8_initialize_pdp(vm, vm->scratch_pdp);
905 
906 	return 0;
907 
908 free_pd:
909 	free_pd(dev, vm->scratch_pd);
910 free_pt:
911 	free_pt(dev, vm->scratch_pt);
912 free_scratch_page:
913 	cleanup_scratch_page(dev, &vm->scratch_page);
914 
915 	return ret;
916 }
917 
918 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
919 {
920 	enum vgt_g2v_type msg;
921 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
922 	int i;
923 
924 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
925 		u64 daddr = px_dma(&ppgtt->pml4);
926 
927 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
928 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
929 
930 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
931 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
932 	} else {
933 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
934 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
935 
936 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
937 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
938 		}
939 
940 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
941 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
942 	}
943 
944 	I915_WRITE(vgtif_reg(g2v_notify), msg);
945 
946 	return 0;
947 }
948 
949 static void gen8_free_scratch(struct i915_address_space *vm)
950 {
951 	struct drm_device *dev = vm->dev;
952 
953 	if (USES_FULL_48BIT_PPGTT(dev))
954 		free_pdp(dev, vm->scratch_pdp);
955 	free_pd(dev, vm->scratch_pd);
956 	free_pt(dev, vm->scratch_pt);
957 	cleanup_scratch_page(dev, &vm->scratch_page);
958 }
959 
960 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
961 				    struct i915_page_directory_pointer *pdp)
962 {
963 	int i;
964 
965 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
966 		if (WARN_ON(!pdp->page_directory[i]))
967 			continue;
968 
969 		gen8_free_page_tables(dev, pdp->page_directory[i]);
970 		free_pd(dev, pdp->page_directory[i]);
971 	}
972 
973 	free_pdp(dev, pdp);
974 }
975 
976 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
977 {
978 	int i;
979 
980 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
981 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
982 			continue;
983 
984 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
985 	}
986 
987 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
988 }
989 
990 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
991 {
992 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
993 
994 	if (intel_vgpu_active(to_i915(vm->dev)))
995 		gen8_ppgtt_notify_vgt(ppgtt, false);
996 
997 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
998 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
999 	else
1000 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1001 
1002 	gen8_free_scratch(vm);
1003 }
1004 
1005 /**
1006  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1007  * @vm:	Master vm structure.
1008  * @pd:	Page directory for this address range.
1009  * @start:	Starting virtual address to begin allocations.
1010  * @length:	Size of the allocations.
1011  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1012  *		caller to free on error.
1013  *
1014  * Allocate the required number of page tables. Extremely similar to
1015  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1016  * the page directory boundary (instead of the page directory pointer). That
1017  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1018  * possible, and likely that the caller will need to use multiple calls of this
1019  * function to achieve the appropriate allocation.
1020  *
1021  * Return: 0 if success; negative error code otherwise.
1022  */
1023 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1024 				     struct i915_page_directory *pd,
1025 				     uint64_t start,
1026 				     uint64_t length,
1027 				     unsigned long *new_pts)
1028 {
1029 	struct drm_device *dev = vm->dev;
1030 	struct i915_page_table *pt;
1031 	uint32_t pde;
1032 
1033 	gen8_for_each_pde(pt, pd, start, length, pde) {
1034 		/* Don't reallocate page tables */
1035 		if (test_bit(pde, pd->used_pdes)) {
1036 			/* Scratch is never allocated this way */
1037 			WARN_ON(pt == vm->scratch_pt);
1038 			continue;
1039 		}
1040 
1041 		pt = alloc_pt(dev);
1042 		if (IS_ERR(pt))
1043 			goto unwind_out;
1044 
1045 		gen8_initialize_pt(vm, pt);
1046 		pd->page_table[pde] = pt;
1047 		__set_bit(pde, new_pts);
1048 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1049 	}
1050 
1051 	return 0;
1052 
1053 unwind_out:
1054 	for_each_set_bit(pde, new_pts, I915_PDES)
1055 		free_pt(dev, pd->page_table[pde]);
1056 
1057 	return -ENOMEM;
1058 }
1059 
1060 /**
1061  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1062  * @vm:	Master vm structure.
1063  * @pdp:	Page directory pointer for this address range.
1064  * @start:	Starting virtual address to begin allocations.
1065  * @length:	Size of the allocations.
1066  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1067  *		caller to free on error.
1068  *
1069  * Allocate the required number of page directories starting at the pde index of
1070  * @start, and ending at the pde index @start + @length. This function will skip
1071  * over already allocated page directories within the range, and only allocate
1072  * new ones, setting the appropriate pointer within the pdp as well as the
1073  * correct position in the bitmap @new_pds.
1074  *
1075  * The function will only allocate the pages within the range for a give page
1076  * directory pointer. In other words, if @start + @length straddles a virtually
1077  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1078  * required by the caller, This is not currently possible, and the BUG in the
1079  * code will prevent it.
1080  *
1081  * Return: 0 if success; negative error code otherwise.
1082  */
1083 static int
1084 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1085 				  struct i915_page_directory_pointer *pdp,
1086 				  uint64_t start,
1087 				  uint64_t length,
1088 				  unsigned long *new_pds)
1089 {
1090 	struct drm_device *dev = vm->dev;
1091 	struct i915_page_directory *pd;
1092 	uint32_t pdpe;
1093 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1094 
1095 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1096 
1097 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1098 		if (test_bit(pdpe, pdp->used_pdpes))
1099 			continue;
1100 
1101 		pd = alloc_pd(dev);
1102 		if (IS_ERR(pd))
1103 			goto unwind_out;
1104 
1105 		gen8_initialize_pd(vm, pd);
1106 		pdp->page_directory[pdpe] = pd;
1107 		__set_bit(pdpe, new_pds);
1108 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1109 	}
1110 
1111 	return 0;
1112 
1113 unwind_out:
1114 	for_each_set_bit(pdpe, new_pds, pdpes)
1115 		free_pd(dev, pdp->page_directory[pdpe]);
1116 
1117 	return -ENOMEM;
1118 }
1119 
1120 /**
1121  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1122  * @vm:	Master vm structure.
1123  * @pml4:	Page map level 4 for this address range.
1124  * @start:	Starting virtual address to begin allocations.
1125  * @length:	Size of the allocations.
1126  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1127  *		caller to free on error.
1128  *
1129  * Allocate the required number of page directory pointers. Extremely similar to
1130  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1131  * The main difference is here we are limited by the pml4 boundary (instead of
1132  * the page directory pointer).
1133  *
1134  * Return: 0 if success; negative error code otherwise.
1135  */
1136 static int
1137 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1138 				  struct i915_pml4 *pml4,
1139 				  uint64_t start,
1140 				  uint64_t length,
1141 				  unsigned long *new_pdps)
1142 {
1143 	struct drm_device *dev = vm->dev;
1144 	struct i915_page_directory_pointer *pdp;
1145 	uint32_t pml4e;
1146 
1147 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1148 
1149 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1150 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1151 			pdp = alloc_pdp(dev);
1152 			if (IS_ERR(pdp))
1153 				goto unwind_out;
1154 
1155 			gen8_initialize_pdp(vm, pdp);
1156 			pml4->pdps[pml4e] = pdp;
1157 			__set_bit(pml4e, new_pdps);
1158 			trace_i915_page_directory_pointer_entry_alloc(vm,
1159 								      pml4e,
1160 								      start,
1161 								      GEN8_PML4E_SHIFT);
1162 		}
1163 	}
1164 
1165 	return 0;
1166 
1167 unwind_out:
1168 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1169 		free_pdp(dev, pml4->pdps[pml4e]);
1170 
1171 	return -ENOMEM;
1172 }
1173 
1174 static void
1175 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1176 {
1177 	kfree(new_pts);
1178 	kfree(new_pds);
1179 }
1180 
1181 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1182  * of these are based on the number of PDPEs in the system.
1183  */
1184 static
1185 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1186 					 unsigned long **new_pts,
1187 					 uint32_t pdpes)
1188 {
1189 	unsigned long *pds;
1190 	unsigned long *pts;
1191 
1192 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1193 	if (!pds)
1194 		return -ENOMEM;
1195 
1196 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1197 		      GFP_TEMPORARY);
1198 	if (!pts)
1199 		goto err_out;
1200 
1201 	*new_pds = pds;
1202 	*new_pts = pts;
1203 
1204 	return 0;
1205 
1206 err_out:
1207 	free_gen8_temp_bitmaps(pds, pts);
1208 	return -ENOMEM;
1209 }
1210 
1211 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1212  * the page table structures, we mark them dirty so that
1213  * context switching/execlist queuing code takes extra steps
1214  * to ensure that tlbs are flushed.
1215  */
1216 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1217 {
1218 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1219 }
1220 
1221 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1222 				    struct i915_page_directory_pointer *pdp,
1223 				    uint64_t start,
1224 				    uint64_t length)
1225 {
1226 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1227 	unsigned long *new_page_dirs, *new_page_tables;
1228 	struct drm_device *dev = vm->dev;
1229 	struct i915_page_directory *pd;
1230 	const uint64_t orig_start = start;
1231 	const uint64_t orig_length = length;
1232 	uint32_t pdpe;
1233 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1234 	int ret;
1235 
1236 	/* Wrap is never okay since we can only represent 48b, and we don't
1237 	 * actually use the other side of the canonical address space.
1238 	 */
1239 	if (WARN_ON(start + length < start))
1240 		return -ENODEV;
1241 
1242 	if (WARN_ON(start + length > vm->total))
1243 		return -ENODEV;
1244 
1245 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1246 	if (ret)
1247 		return ret;
1248 
1249 	/* Do the allocations first so we can easily bail out */
1250 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1251 						new_page_dirs);
1252 	if (ret) {
1253 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1254 		return ret;
1255 	}
1256 
1257 	/* For every page directory referenced, allocate page tables */
1258 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1259 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1260 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1261 		if (ret)
1262 			goto err_out;
1263 	}
1264 
1265 	start = orig_start;
1266 	length = orig_length;
1267 
1268 	/* Allocations have completed successfully, so set the bitmaps, and do
1269 	 * the mappings. */
1270 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1271 		gen8_pde_t *const page_directory = kmap_px(pd);
1272 		struct i915_page_table *pt;
1273 		uint64_t pd_len = length;
1274 		uint64_t pd_start = start;
1275 		uint32_t pde;
1276 
1277 		/* Every pd should be allocated, we just did that above. */
1278 		WARN_ON(!pd);
1279 
1280 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1281 			/* Same reasoning as pd */
1282 			WARN_ON(!pt);
1283 			WARN_ON(!pd_len);
1284 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1285 
1286 			/* Set our used ptes within the page table */
1287 			bitmap_set(pt->used_ptes,
1288 				   gen8_pte_index(pd_start),
1289 				   gen8_pte_count(pd_start, pd_len));
1290 
1291 			/* Our pde is now pointing to the pagetable, pt */
1292 			__set_bit(pde, pd->used_pdes);
1293 
1294 			/* Map the PDE to the page table */
1295 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1296 							      I915_CACHE_LLC);
1297 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1298 							gen8_pte_index(start),
1299 							gen8_pte_count(start, length),
1300 							GEN8_PTES);
1301 
1302 			/* NB: We haven't yet mapped ptes to pages. At this
1303 			 * point we're still relying on insert_entries() */
1304 		}
1305 
1306 		kunmap_px(ppgtt, page_directory);
1307 		__set_bit(pdpe, pdp->used_pdpes);
1308 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1309 	}
1310 
1311 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1312 	mark_tlbs_dirty(ppgtt);
1313 	return 0;
1314 
1315 err_out:
1316 	while (pdpe--) {
1317 		unsigned long temp;
1318 
1319 		for_each_set_bit(temp, new_page_tables + pdpe *
1320 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1321 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1322 	}
1323 
1324 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1325 		free_pd(dev, pdp->page_directory[pdpe]);
1326 
1327 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1328 	mark_tlbs_dirty(ppgtt);
1329 	return ret;
1330 }
1331 
1332 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1333 				    struct i915_pml4 *pml4,
1334 				    uint64_t start,
1335 				    uint64_t length)
1336 {
1337 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1338 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1339 	struct i915_page_directory_pointer *pdp;
1340 	uint64_t pml4e;
1341 	int ret = 0;
1342 
1343 	/* Do the pml4 allocations first, so we don't need to track the newly
1344 	 * allocated tables below the pdp */
1345 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1346 
1347 	/* The pagedirectory and pagetable allocations are done in the shared 3
1348 	 * and 4 level code. Just allocate the pdps.
1349 	 */
1350 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1351 						new_pdps);
1352 	if (ret)
1353 		return ret;
1354 
1355 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1356 	     "The allocation has spanned more than 512GB. "
1357 	     "It is highly likely this is incorrect.");
1358 
1359 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1360 		WARN_ON(!pdp);
1361 
1362 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1363 		if (ret)
1364 			goto err_out;
1365 
1366 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1367 	}
1368 
1369 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1370 		  GEN8_PML4ES_PER_PML4);
1371 
1372 	return 0;
1373 
1374 err_out:
1375 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1376 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1377 
1378 	return ret;
1379 }
1380 
1381 static int gen8_alloc_va_range(struct i915_address_space *vm,
1382 			       uint64_t start, uint64_t length)
1383 {
1384 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1385 
1386 	if (USES_FULL_48BIT_PPGTT(vm->dev))
1387 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1388 	else
1389 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1390 }
1391 
1392 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1393 			  uint64_t start, uint64_t length,
1394 			  gen8_pte_t scratch_pte,
1395 			  struct seq_file *m)
1396 {
1397 	struct i915_page_directory *pd;
1398 	uint32_t pdpe;
1399 
1400 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1401 		struct i915_page_table *pt;
1402 		uint64_t pd_len = length;
1403 		uint64_t pd_start = start;
1404 		uint32_t pde;
1405 
1406 		if (!test_bit(pdpe, pdp->used_pdpes))
1407 			continue;
1408 
1409 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1410 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1411 			uint32_t  pte;
1412 			gen8_pte_t *pt_vaddr;
1413 
1414 			if (!test_bit(pde, pd->used_pdes))
1415 				continue;
1416 
1417 			pt_vaddr = kmap_px(pt);
1418 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1419 				uint64_t va =
1420 					(pdpe << GEN8_PDPE_SHIFT) |
1421 					(pde << GEN8_PDE_SHIFT) |
1422 					(pte << GEN8_PTE_SHIFT);
1423 				int i;
1424 				bool found = false;
1425 
1426 				for (i = 0; i < 4; i++)
1427 					if (pt_vaddr[pte + i] != scratch_pte)
1428 						found = true;
1429 				if (!found)
1430 					continue;
1431 
1432 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1433 				for (i = 0; i < 4; i++) {
1434 					if (pt_vaddr[pte + i] != scratch_pte)
1435 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1436 					else
1437 						seq_puts(m, "  SCRATCH ");
1438 				}
1439 				seq_puts(m, "\n");
1440 			}
1441 			/* don't use kunmap_px, it could trigger
1442 			 * an unnecessary flush.
1443 			 */
1444 			kunmap_atomic(pt_vaddr);
1445 		}
1446 	}
1447 }
1448 
1449 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1450 {
1451 	struct i915_address_space *vm = &ppgtt->base;
1452 	uint64_t start = ppgtt->base.start;
1453 	uint64_t length = ppgtt->base.total;
1454 	gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
1455 						 I915_CACHE_LLC, true);
1456 
1457 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1458 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1459 	} else {
1460 		uint64_t pml4e;
1461 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1462 		struct i915_page_directory_pointer *pdp;
1463 
1464 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1465 			if (!test_bit(pml4e, pml4->used_pml4es))
1466 				continue;
1467 
1468 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1469 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1470 		}
1471 	}
1472 }
1473 
1474 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1475 {
1476 	unsigned long *new_page_dirs, *new_page_tables;
1477 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1478 	int ret;
1479 
1480 	/* We allocate temp bitmap for page tables for no gain
1481 	 * but as this is for init only, lets keep the things simple
1482 	 */
1483 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1484 	if (ret)
1485 		return ret;
1486 
1487 	/* Allocate for all pdps regardless of how the ppgtt
1488 	 * was defined.
1489 	 */
1490 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1491 						0, 1ULL << 32,
1492 						new_page_dirs);
1493 	if (!ret)
1494 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1495 
1496 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1497 
1498 	return ret;
1499 }
1500 
1501 /*
1502  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1503  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1504  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1505  * space.
1506  *
1507  */
1508 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1509 {
1510 	int ret;
1511 
1512 	ret = gen8_init_scratch(&ppgtt->base);
1513 	if (ret)
1514 		return ret;
1515 
1516 	ppgtt->base.start = 0;
1517 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1518 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1519 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1520 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1521 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1522 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1523 	ppgtt->debug_dump = gen8_dump_ppgtt;
1524 
1525 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1526 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1527 		if (ret)
1528 			goto free_scratch;
1529 
1530 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1531 
1532 		ppgtt->base.total = 1ULL << 48;
1533 		ppgtt->switch_mm = gen8_48b_mm_switch;
1534 	} else {
1535 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1536 		if (ret)
1537 			goto free_scratch;
1538 
1539 		ppgtt->base.total = 1ULL << 32;
1540 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1541 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1542 							      0, 0,
1543 							      GEN8_PML4E_SHIFT);
1544 
1545 		if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1546 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1547 			if (ret)
1548 				goto free_scratch;
1549 		}
1550 	}
1551 
1552 	if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1553 		gen8_ppgtt_notify_vgt(ppgtt, true);
1554 
1555 	return 0;
1556 
1557 free_scratch:
1558 	gen8_free_scratch(&ppgtt->base);
1559 	return ret;
1560 }
1561 
1562 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1563 {
1564 	struct i915_address_space *vm = &ppgtt->base;
1565 	struct i915_page_table *unused;
1566 	gen6_pte_t scratch_pte;
1567 	uint32_t pd_entry;
1568 	uint32_t  pte, pde;
1569 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1570 
1571 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1572 				     I915_CACHE_LLC, true, 0);
1573 
1574 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1575 		u32 expected;
1576 		gen6_pte_t *pt_vaddr;
1577 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1578 		pd_entry = readl(ppgtt->pd_addr + pde);
1579 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1580 
1581 		if (pd_entry != expected)
1582 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1583 				   pde,
1584 				   pd_entry,
1585 				   expected);
1586 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1587 
1588 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1589 
1590 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1591 			unsigned long va =
1592 				(pde * PAGE_SIZE * GEN6_PTES) +
1593 				(pte * PAGE_SIZE);
1594 			int i;
1595 			bool found = false;
1596 			for (i = 0; i < 4; i++)
1597 				if (pt_vaddr[pte + i] != scratch_pte)
1598 					found = true;
1599 			if (!found)
1600 				continue;
1601 
1602 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1603 			for (i = 0; i < 4; i++) {
1604 				if (pt_vaddr[pte + i] != scratch_pte)
1605 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1606 				else
1607 					seq_puts(m, "  SCRATCH ");
1608 			}
1609 			seq_puts(m, "\n");
1610 		}
1611 		kunmap_px(ppgtt, pt_vaddr);
1612 	}
1613 }
1614 
1615 /* Write pde (index) from the page directory @pd to the page table @pt */
1616 static void gen6_write_pde(struct i915_page_directory *pd,
1617 			    const int pde, struct i915_page_table *pt)
1618 {
1619 	/* Caller needs to make sure the write completes if necessary */
1620 	struct i915_hw_ppgtt *ppgtt =
1621 		container_of(pd, struct i915_hw_ppgtt, pd);
1622 	u32 pd_entry;
1623 
1624 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1625 	pd_entry |= GEN6_PDE_VALID;
1626 
1627 	writel(pd_entry, ppgtt->pd_addr + pde);
1628 }
1629 
1630 /* Write all the page tables found in the ppgtt structure to incrementing page
1631  * directories. */
1632 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1633 				  struct i915_page_directory *pd,
1634 				  uint32_t start, uint32_t length)
1635 {
1636 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1637 	struct i915_page_table *pt;
1638 	uint32_t pde;
1639 
1640 	gen6_for_each_pde(pt, pd, start, length, pde)
1641 		gen6_write_pde(pd, pde, pt);
1642 
1643 	/* Make sure write is complete before other code can use this page
1644 	 * table. Also require for WC mapped PTEs */
1645 	readl(ggtt->gsm);
1646 }
1647 
1648 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1649 {
1650 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1651 
1652 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1653 }
1654 
1655 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1656 			 struct drm_i915_gem_request *req)
1657 {
1658 	struct intel_ring *ring = req->ring;
1659 	struct intel_engine_cs *engine = req->engine;
1660 	int ret;
1661 
1662 	/* NB: TLBs must be flushed and invalidated before a switch */
1663 	ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1664 	if (ret)
1665 		return ret;
1666 
1667 	ret = intel_ring_begin(req, 6);
1668 	if (ret)
1669 		return ret;
1670 
1671 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1672 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1673 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1674 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1675 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1676 	intel_ring_emit(ring, MI_NOOP);
1677 	intel_ring_advance(ring);
1678 
1679 	return 0;
1680 }
1681 
1682 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1683 			  struct drm_i915_gem_request *req)
1684 {
1685 	struct intel_ring *ring = req->ring;
1686 	struct intel_engine_cs *engine = req->engine;
1687 	int ret;
1688 
1689 	/* NB: TLBs must be flushed and invalidated before a switch */
1690 	ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1691 	if (ret)
1692 		return ret;
1693 
1694 	ret = intel_ring_begin(req, 6);
1695 	if (ret)
1696 		return ret;
1697 
1698 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1699 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1700 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1701 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1702 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1703 	intel_ring_emit(ring, MI_NOOP);
1704 	intel_ring_advance(ring);
1705 
1706 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1707 	if (engine->id != RCS) {
1708 		ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1709 		if (ret)
1710 			return ret;
1711 	}
1712 
1713 	return 0;
1714 }
1715 
1716 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1717 			  struct drm_i915_gem_request *req)
1718 {
1719 	struct intel_engine_cs *engine = req->engine;
1720 	struct drm_i915_private *dev_priv = req->i915;
1721 
1722 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1723 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1724 	return 0;
1725 }
1726 
1727 static void gen8_ppgtt_enable(struct drm_device *dev)
1728 {
1729 	struct drm_i915_private *dev_priv = to_i915(dev);
1730 	struct intel_engine_cs *engine;
1731 
1732 	for_each_engine(engine, dev_priv) {
1733 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1734 		I915_WRITE(RING_MODE_GEN7(engine),
1735 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1736 	}
1737 }
1738 
1739 static void gen7_ppgtt_enable(struct drm_device *dev)
1740 {
1741 	struct drm_i915_private *dev_priv = to_i915(dev);
1742 	struct intel_engine_cs *engine;
1743 	uint32_t ecochk, ecobits;
1744 
1745 	ecobits = I915_READ(GAC_ECO_BITS);
1746 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1747 
1748 	ecochk = I915_READ(GAM_ECOCHK);
1749 	if (IS_HASWELL(dev)) {
1750 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1751 	} else {
1752 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1753 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1754 	}
1755 	I915_WRITE(GAM_ECOCHK, ecochk);
1756 
1757 	for_each_engine(engine, dev_priv) {
1758 		/* GFX_MODE is per-ring on gen7+ */
1759 		I915_WRITE(RING_MODE_GEN7(engine),
1760 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1761 	}
1762 }
1763 
1764 static void gen6_ppgtt_enable(struct drm_device *dev)
1765 {
1766 	struct drm_i915_private *dev_priv = to_i915(dev);
1767 	uint32_t ecochk, gab_ctl, ecobits;
1768 
1769 	ecobits = I915_READ(GAC_ECO_BITS);
1770 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1771 		   ECOBITS_PPGTT_CACHE64B);
1772 
1773 	gab_ctl = I915_READ(GAB_CTL);
1774 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1775 
1776 	ecochk = I915_READ(GAM_ECOCHK);
1777 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1778 
1779 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1780 }
1781 
1782 /* PPGTT support for Sandybdrige/Gen6 and later */
1783 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1784 				   uint64_t start,
1785 				   uint64_t length,
1786 				   bool use_scratch)
1787 {
1788 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1789 	gen6_pte_t *pt_vaddr, scratch_pte;
1790 	unsigned first_entry = start >> PAGE_SHIFT;
1791 	unsigned num_entries = length >> PAGE_SHIFT;
1792 	unsigned act_pt = first_entry / GEN6_PTES;
1793 	unsigned first_pte = first_entry % GEN6_PTES;
1794 	unsigned last_pte, i;
1795 
1796 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1797 				     I915_CACHE_LLC, true, 0);
1798 
1799 	while (num_entries) {
1800 		last_pte = first_pte + num_entries;
1801 		if (last_pte > GEN6_PTES)
1802 			last_pte = GEN6_PTES;
1803 
1804 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1805 
1806 		for (i = first_pte; i < last_pte; i++)
1807 			pt_vaddr[i] = scratch_pte;
1808 
1809 		kunmap_px(ppgtt, pt_vaddr);
1810 
1811 		num_entries -= last_pte - first_pte;
1812 		first_pte = 0;
1813 		act_pt++;
1814 	}
1815 }
1816 
1817 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1818 				      struct sg_table *pages,
1819 				      uint64_t start,
1820 				      enum i915_cache_level cache_level, u32 flags)
1821 {
1822 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1823 	unsigned first_entry = start >> PAGE_SHIFT;
1824 	unsigned act_pt = first_entry / GEN6_PTES;
1825 	unsigned act_pte = first_entry % GEN6_PTES;
1826 	gen6_pte_t *pt_vaddr = NULL;
1827 	struct sgt_iter sgt_iter;
1828 	dma_addr_t addr;
1829 
1830 	for_each_sgt_dma(addr, sgt_iter, pages) {
1831 		if (pt_vaddr == NULL)
1832 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1833 
1834 		pt_vaddr[act_pte] =
1835 			vm->pte_encode(addr, cache_level, true, flags);
1836 
1837 		if (++act_pte == GEN6_PTES) {
1838 			kunmap_px(ppgtt, pt_vaddr);
1839 			pt_vaddr = NULL;
1840 			act_pt++;
1841 			act_pte = 0;
1842 		}
1843 	}
1844 
1845 	if (pt_vaddr)
1846 		kunmap_px(ppgtt, pt_vaddr);
1847 }
1848 
1849 static int gen6_alloc_va_range(struct i915_address_space *vm,
1850 			       uint64_t start_in, uint64_t length_in)
1851 {
1852 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1853 	struct drm_device *dev = vm->dev;
1854 	struct drm_i915_private *dev_priv = to_i915(dev);
1855 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1856 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1857 	struct i915_page_table *pt;
1858 	uint32_t start, length, start_save, length_save;
1859 	uint32_t pde;
1860 	int ret;
1861 
1862 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1863 		return -ENODEV;
1864 
1865 	start = start_save = start_in;
1866 	length = length_save = length_in;
1867 
1868 	bitmap_zero(new_page_tables, I915_PDES);
1869 
1870 	/* The allocation is done in two stages so that we can bail out with
1871 	 * minimal amount of pain. The first stage finds new page tables that
1872 	 * need allocation. The second stage marks use ptes within the page
1873 	 * tables.
1874 	 */
1875 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1876 		if (pt != vm->scratch_pt) {
1877 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1878 			continue;
1879 		}
1880 
1881 		/* We've already allocated a page table */
1882 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1883 
1884 		pt = alloc_pt(dev);
1885 		if (IS_ERR(pt)) {
1886 			ret = PTR_ERR(pt);
1887 			goto unwind_out;
1888 		}
1889 
1890 		gen6_initialize_pt(vm, pt);
1891 
1892 		ppgtt->pd.page_table[pde] = pt;
1893 		__set_bit(pde, new_page_tables);
1894 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1895 	}
1896 
1897 	start = start_save;
1898 	length = length_save;
1899 
1900 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1901 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1902 
1903 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1904 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1905 			   gen6_pte_count(start, length));
1906 
1907 		if (__test_and_clear_bit(pde, new_page_tables))
1908 			gen6_write_pde(&ppgtt->pd, pde, pt);
1909 
1910 		trace_i915_page_table_entry_map(vm, pde, pt,
1911 					 gen6_pte_index(start),
1912 					 gen6_pte_count(start, length),
1913 					 GEN6_PTES);
1914 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1915 				GEN6_PTES);
1916 	}
1917 
1918 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1919 
1920 	/* Make sure write is complete before other code can use this page
1921 	 * table. Also require for WC mapped PTEs */
1922 	readl(ggtt->gsm);
1923 
1924 	mark_tlbs_dirty(ppgtt);
1925 	return 0;
1926 
1927 unwind_out:
1928 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1929 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1930 
1931 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1932 		free_pt(vm->dev, pt);
1933 	}
1934 
1935 	mark_tlbs_dirty(ppgtt);
1936 	return ret;
1937 }
1938 
1939 static int gen6_init_scratch(struct i915_address_space *vm)
1940 {
1941 	struct drm_device *dev = vm->dev;
1942 	int ret;
1943 
1944 	ret = setup_scratch_page(dev, &vm->scratch_page, I915_GFP_DMA);
1945 	if (ret)
1946 		return ret;
1947 
1948 	vm->scratch_pt = alloc_pt(dev);
1949 	if (IS_ERR(vm->scratch_pt)) {
1950 		cleanup_scratch_page(dev, &vm->scratch_page);
1951 		return PTR_ERR(vm->scratch_pt);
1952 	}
1953 
1954 	gen6_initialize_pt(vm, vm->scratch_pt);
1955 
1956 	return 0;
1957 }
1958 
1959 static void gen6_free_scratch(struct i915_address_space *vm)
1960 {
1961 	struct drm_device *dev = vm->dev;
1962 
1963 	free_pt(dev, vm->scratch_pt);
1964 	cleanup_scratch_page(dev, &vm->scratch_page);
1965 }
1966 
1967 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1968 {
1969 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1970 	struct i915_page_directory *pd = &ppgtt->pd;
1971 	struct drm_device *dev = vm->dev;
1972 	struct i915_page_table *pt;
1973 	uint32_t pde;
1974 
1975 	drm_mm_remove_node(&ppgtt->node);
1976 
1977 	gen6_for_all_pdes(pt, pd, pde)
1978 		if (pt != vm->scratch_pt)
1979 			free_pt(dev, pt);
1980 
1981 	gen6_free_scratch(vm);
1982 }
1983 
1984 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1985 {
1986 	struct i915_address_space *vm = &ppgtt->base;
1987 	struct drm_device *dev = ppgtt->base.dev;
1988 	struct drm_i915_private *dev_priv = to_i915(dev);
1989 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1990 	bool retried = false;
1991 	int ret;
1992 
1993 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1994 	 * allocator works in address space sizes, so it's multiplied by page
1995 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1996 	 */
1997 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1998 
1999 	ret = gen6_init_scratch(vm);
2000 	if (ret)
2001 		return ret;
2002 
2003 alloc:
2004 	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2005 						  &ppgtt->node, GEN6_PD_SIZE,
2006 						  GEN6_PD_ALIGN, 0,
2007 						  0, ggtt->base.total,
2008 						  DRM_MM_TOPDOWN);
2009 	if (ret == -ENOSPC && !retried) {
2010 		ret = i915_gem_evict_something(&ggtt->base,
2011 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2012 					       I915_CACHE_NONE,
2013 					       0, ggtt->base.total,
2014 					       0);
2015 		if (ret)
2016 			goto err_out;
2017 
2018 		retried = true;
2019 		goto alloc;
2020 	}
2021 
2022 	if (ret)
2023 		goto err_out;
2024 
2025 
2026 	if (ppgtt->node.start < ggtt->mappable_end)
2027 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2028 
2029 	return 0;
2030 
2031 err_out:
2032 	gen6_free_scratch(vm);
2033 	return ret;
2034 }
2035 
2036 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2037 {
2038 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2039 }
2040 
2041 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2042 				  uint64_t start, uint64_t length)
2043 {
2044 	struct i915_page_table *unused;
2045 	uint32_t pde;
2046 
2047 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2048 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2049 }
2050 
2051 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2052 {
2053 	struct drm_device *dev = ppgtt->base.dev;
2054 	struct drm_i915_private *dev_priv = to_i915(dev);
2055 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2056 	int ret;
2057 
2058 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2059 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2060 		ppgtt->switch_mm = gen6_mm_switch;
2061 	else if (IS_HASWELL(dev))
2062 		ppgtt->switch_mm = hsw_mm_switch;
2063 	else if (IS_GEN7(dev))
2064 		ppgtt->switch_mm = gen7_mm_switch;
2065 	else
2066 		BUG();
2067 
2068 	ret = gen6_ppgtt_alloc(ppgtt);
2069 	if (ret)
2070 		return ret;
2071 
2072 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2073 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2074 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2075 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2076 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2077 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2078 	ppgtt->base.start = 0;
2079 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2080 	ppgtt->debug_dump = gen6_dump_ppgtt;
2081 
2082 	ppgtt->pd.base.ggtt_offset =
2083 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2084 
2085 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2086 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2087 
2088 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2089 
2090 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2091 
2092 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2093 			 ppgtt->node.size >> 20,
2094 			 ppgtt->node.start / PAGE_SIZE);
2095 
2096 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2097 		  ppgtt->pd.base.ggtt_offset << 10);
2098 
2099 	return 0;
2100 }
2101 
2102 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2103 			   struct drm_i915_private *dev_priv)
2104 {
2105 	ppgtt->base.dev = &dev_priv->drm;
2106 
2107 	if (INTEL_INFO(dev_priv)->gen < 8)
2108 		return gen6_ppgtt_init(ppgtt);
2109 	else
2110 		return gen8_ppgtt_init(ppgtt);
2111 }
2112 
2113 static void i915_address_space_init(struct i915_address_space *vm,
2114 				    struct drm_i915_private *dev_priv)
2115 {
2116 	drm_mm_init(&vm->mm, vm->start, vm->total);
2117 	INIT_LIST_HEAD(&vm->active_list);
2118 	INIT_LIST_HEAD(&vm->inactive_list);
2119 	INIT_LIST_HEAD(&vm->unbound_list);
2120 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2121 }
2122 
2123 static void gtt_write_workarounds(struct drm_device *dev)
2124 {
2125 	struct drm_i915_private *dev_priv = to_i915(dev);
2126 
2127 	/* This function is for gtt related workarounds. This function is
2128 	 * called on driver load and after a GPU reset, so you can place
2129 	 * workarounds here even if they get overwritten by GPU reset.
2130 	 */
2131 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2132 	if (IS_BROADWELL(dev))
2133 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2134 	else if (IS_CHERRYVIEW(dev))
2135 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2136 	else if (IS_SKYLAKE(dev))
2137 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2138 	else if (IS_BROXTON(dev))
2139 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2140 }
2141 
2142 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2143 			   struct drm_i915_private *dev_priv,
2144 			   struct drm_i915_file_private *file_priv)
2145 {
2146 	int ret;
2147 
2148 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
2149 	if (ret == 0) {
2150 		kref_init(&ppgtt->ref);
2151 		i915_address_space_init(&ppgtt->base, dev_priv);
2152 		ppgtt->base.file = file_priv;
2153 	}
2154 
2155 	return ret;
2156 }
2157 
2158 int i915_ppgtt_init_hw(struct drm_device *dev)
2159 {
2160 	gtt_write_workarounds(dev);
2161 
2162 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2163 	 * and the PDPs are contained within the context itself.  We don't
2164 	 * need to do anything here. */
2165 	if (i915.enable_execlists)
2166 		return 0;
2167 
2168 	if (!USES_PPGTT(dev))
2169 		return 0;
2170 
2171 	if (IS_GEN6(dev))
2172 		gen6_ppgtt_enable(dev);
2173 	else if (IS_GEN7(dev))
2174 		gen7_ppgtt_enable(dev);
2175 	else if (INTEL_INFO(dev)->gen >= 8)
2176 		gen8_ppgtt_enable(dev);
2177 	else
2178 		MISSING_CASE(INTEL_INFO(dev)->gen);
2179 
2180 	return 0;
2181 }
2182 
2183 struct i915_hw_ppgtt *
2184 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2185 		  struct drm_i915_file_private *fpriv)
2186 {
2187 	struct i915_hw_ppgtt *ppgtt;
2188 	int ret;
2189 
2190 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2191 	if (!ppgtt)
2192 		return ERR_PTR(-ENOMEM);
2193 
2194 	ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv);
2195 	if (ret) {
2196 		kfree(ppgtt);
2197 		return ERR_PTR(ret);
2198 	}
2199 
2200 	trace_i915_ppgtt_create(&ppgtt->base);
2201 
2202 	return ppgtt;
2203 }
2204 
2205 void  i915_ppgtt_release(struct kref *kref)
2206 {
2207 	struct i915_hw_ppgtt *ppgtt =
2208 		container_of(kref, struct i915_hw_ppgtt, ref);
2209 
2210 	trace_i915_ppgtt_release(&ppgtt->base);
2211 
2212 	/* vmas should already be unbound and destroyed */
2213 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2214 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2215 	WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2216 
2217 	list_del(&ppgtt->base.global_link);
2218 	drm_mm_takedown(&ppgtt->base.mm);
2219 
2220 	ppgtt->base.cleanup(&ppgtt->base);
2221 	kfree(ppgtt);
2222 }
2223 
2224 /* Certain Gen5 chipsets require require idling the GPU before
2225  * unmapping anything from the GTT when VT-d is enabled.
2226  */
2227 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2228 {
2229 #ifdef CONFIG_INTEL_IOMMU
2230 	/* Query intel_iommu to see if we need the workaround. Presumably that
2231 	 * was loaded first.
2232 	 */
2233 	if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2234 		return true;
2235 #endif
2236 	return false;
2237 }
2238 
2239 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2240 {
2241 	struct intel_engine_cs *engine;
2242 
2243 	if (INTEL_INFO(dev_priv)->gen < 6)
2244 		return;
2245 
2246 	for_each_engine(engine, dev_priv) {
2247 		u32 fault_reg;
2248 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2249 		if (fault_reg & RING_FAULT_VALID) {
2250 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2251 					 "\tAddr: 0x%08lx\n"
2252 					 "\tAddress space: %s\n"
2253 					 "\tSource ID: %d\n"
2254 					 "\tType: %d\n",
2255 					 fault_reg & PAGE_MASK,
2256 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2257 					 RING_FAULT_SRCID(fault_reg),
2258 					 RING_FAULT_FAULT_TYPE(fault_reg));
2259 			I915_WRITE(RING_FAULT_REG(engine),
2260 				   fault_reg & ~RING_FAULT_VALID);
2261 		}
2262 	}
2263 	POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2264 }
2265 
2266 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2267 {
2268 	if (INTEL_INFO(dev_priv)->gen < 6) {
2269 		intel_gtt_chipset_flush();
2270 	} else {
2271 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2272 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2273 	}
2274 }
2275 
2276 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2277 {
2278 	struct drm_i915_private *dev_priv = to_i915(dev);
2279 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2280 
2281 	/* Don't bother messing with faults pre GEN6 as we have little
2282 	 * documentation supporting that it's a good idea.
2283 	 */
2284 	if (INTEL_INFO(dev)->gen < 6)
2285 		return;
2286 
2287 	i915_check_and_clear_faults(dev_priv);
2288 
2289 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2290 			     true);
2291 
2292 	i915_ggtt_flush(dev_priv);
2293 }
2294 
2295 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2296 {
2297 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2298 			obj->pages->sgl, obj->pages->nents,
2299 			PCI_DMA_BIDIRECTIONAL))
2300 		return -ENOSPC;
2301 
2302 	return 0;
2303 }
2304 
2305 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2306 {
2307 	writeq(pte, addr);
2308 }
2309 
2310 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2311 				  dma_addr_t addr,
2312 				  uint64_t offset,
2313 				  enum i915_cache_level level,
2314 				  u32 unused)
2315 {
2316 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2317 	gen8_pte_t __iomem *pte =
2318 		(gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2319 		(offset >> PAGE_SHIFT);
2320 	int rpm_atomic_seq;
2321 
2322 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2323 
2324 	gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2325 
2326 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2327 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2328 
2329 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2330 }
2331 
2332 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2333 				     struct sg_table *st,
2334 				     uint64_t start,
2335 				     enum i915_cache_level level, u32 unused)
2336 {
2337 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2338 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2339 	struct sgt_iter sgt_iter;
2340 	gen8_pte_t __iomem *gtt_entries;
2341 	gen8_pte_t gtt_entry;
2342 	dma_addr_t addr;
2343 	int rpm_atomic_seq;
2344 	int i = 0;
2345 
2346 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2347 
2348 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2349 
2350 	for_each_sgt_dma(addr, sgt_iter, st) {
2351 		gtt_entry = gen8_pte_encode(addr, level, true);
2352 		gen8_set_pte(&gtt_entries[i++], gtt_entry);
2353 	}
2354 
2355 	/*
2356 	 * XXX: This serves as a posting read to make sure that the PTE has
2357 	 * actually been updated. There is some concern that even though
2358 	 * registers and PTEs are within the same BAR that they are potentially
2359 	 * of NUMA access patterns. Therefore, even with the way we assume
2360 	 * hardware should work, we must keep this posting read for paranoia.
2361 	 */
2362 	if (i != 0)
2363 		WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2364 
2365 	/* This next bit makes the above posting read even more important. We
2366 	 * want to flush the TLBs only after we're certain all the PTE updates
2367 	 * have finished.
2368 	 */
2369 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2370 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2371 
2372 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2373 }
2374 
2375 struct insert_entries {
2376 	struct i915_address_space *vm;
2377 	struct sg_table *st;
2378 	uint64_t start;
2379 	enum i915_cache_level level;
2380 	u32 flags;
2381 };
2382 
2383 static int gen8_ggtt_insert_entries__cb(void *_arg)
2384 {
2385 	struct insert_entries *arg = _arg;
2386 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2387 				 arg->start, arg->level, arg->flags);
2388 	return 0;
2389 }
2390 
2391 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2392 					  struct sg_table *st,
2393 					  uint64_t start,
2394 					  enum i915_cache_level level,
2395 					  u32 flags)
2396 {
2397 	struct insert_entries arg = { vm, st, start, level, flags };
2398 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2399 }
2400 
2401 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2402 				  dma_addr_t addr,
2403 				  uint64_t offset,
2404 				  enum i915_cache_level level,
2405 				  u32 flags)
2406 {
2407 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2408 	gen6_pte_t __iomem *pte =
2409 		(gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2410 		(offset >> PAGE_SHIFT);
2411 	int rpm_atomic_seq;
2412 
2413 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2414 
2415 	iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2416 
2417 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2418 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2419 
2420 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2421 }
2422 
2423 /*
2424  * Binds an object into the global gtt with the specified cache level. The object
2425  * will be accessible to the GPU via commands whose operands reference offsets
2426  * within the global GTT as well as accessible by the GPU through the GMADR
2427  * mapped BAR (dev_priv->mm.gtt->gtt).
2428  */
2429 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2430 				     struct sg_table *st,
2431 				     uint64_t start,
2432 				     enum i915_cache_level level, u32 flags)
2433 {
2434 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2435 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2436 	struct sgt_iter sgt_iter;
2437 	gen6_pte_t __iomem *gtt_entries;
2438 	gen6_pte_t gtt_entry;
2439 	dma_addr_t addr;
2440 	int rpm_atomic_seq;
2441 	int i = 0;
2442 
2443 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2444 
2445 	gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2446 
2447 	for_each_sgt_dma(addr, sgt_iter, st) {
2448 		gtt_entry = vm->pte_encode(addr, level, true, flags);
2449 		iowrite32(gtt_entry, &gtt_entries[i++]);
2450 	}
2451 
2452 	/* XXX: This serves as a posting read to make sure that the PTE has
2453 	 * actually been updated. There is some concern that even though
2454 	 * registers and PTEs are within the same BAR that they are potentially
2455 	 * of NUMA access patterns. Therefore, even with the way we assume
2456 	 * hardware should work, we must keep this posting read for paranoia.
2457 	 */
2458 	if (i != 0)
2459 		WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2460 
2461 	/* This next bit makes the above posting read even more important. We
2462 	 * want to flush the TLBs only after we're certain all the PTE updates
2463 	 * have finished.
2464 	 */
2465 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2466 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2467 
2468 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2469 }
2470 
2471 static void nop_clear_range(struct i915_address_space *vm,
2472 			    uint64_t start,
2473 			    uint64_t length,
2474 			    bool use_scratch)
2475 {
2476 }
2477 
2478 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2479 				  uint64_t start,
2480 				  uint64_t length,
2481 				  bool use_scratch)
2482 {
2483 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2484 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2485 	unsigned first_entry = start >> PAGE_SHIFT;
2486 	unsigned num_entries = length >> PAGE_SHIFT;
2487 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2488 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2489 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2490 	int i;
2491 	int rpm_atomic_seq;
2492 
2493 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2494 
2495 	if (WARN(num_entries > max_entries,
2496 		 "First entry = %d; Num entries = %d (max=%d)\n",
2497 		 first_entry, num_entries, max_entries))
2498 		num_entries = max_entries;
2499 
2500 	scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
2501 				      I915_CACHE_LLC,
2502 				      use_scratch);
2503 	for (i = 0; i < num_entries; i++)
2504 		gen8_set_pte(&gtt_base[i], scratch_pte);
2505 	readl(gtt_base);
2506 
2507 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2508 }
2509 
2510 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2511 				  uint64_t start,
2512 				  uint64_t length,
2513 				  bool use_scratch)
2514 {
2515 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2516 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2517 	unsigned first_entry = start >> PAGE_SHIFT;
2518 	unsigned num_entries = length >> PAGE_SHIFT;
2519 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2520 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2521 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2522 	int i;
2523 	int rpm_atomic_seq;
2524 
2525 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2526 
2527 	if (WARN(num_entries > max_entries,
2528 		 "First entry = %d; Num entries = %d (max=%d)\n",
2529 		 first_entry, num_entries, max_entries))
2530 		num_entries = max_entries;
2531 
2532 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2533 				     I915_CACHE_LLC, use_scratch, 0);
2534 
2535 	for (i = 0; i < num_entries; i++)
2536 		iowrite32(scratch_pte, &gtt_base[i]);
2537 	readl(gtt_base);
2538 
2539 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2540 }
2541 
2542 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2543 				  dma_addr_t addr,
2544 				  uint64_t offset,
2545 				  enum i915_cache_level cache_level,
2546 				  u32 unused)
2547 {
2548 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2549 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2550 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2551 	int rpm_atomic_seq;
2552 
2553 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2554 
2555 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2556 
2557 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2558 }
2559 
2560 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2561 				     struct sg_table *pages,
2562 				     uint64_t start,
2563 				     enum i915_cache_level cache_level, u32 unused)
2564 {
2565 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2566 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2567 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2568 	int rpm_atomic_seq;
2569 
2570 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2571 
2572 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2573 
2574 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2575 
2576 }
2577 
2578 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2579 				  uint64_t start,
2580 				  uint64_t length,
2581 				  bool unused)
2582 {
2583 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2584 	unsigned first_entry = start >> PAGE_SHIFT;
2585 	unsigned num_entries = length >> PAGE_SHIFT;
2586 	int rpm_atomic_seq;
2587 
2588 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2589 
2590 	intel_gtt_clear_range(first_entry, num_entries);
2591 
2592 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2593 }
2594 
2595 static int ggtt_bind_vma(struct i915_vma *vma,
2596 			 enum i915_cache_level cache_level,
2597 			 u32 flags)
2598 {
2599 	struct drm_i915_gem_object *obj = vma->obj;
2600 	u32 pte_flags = 0;
2601 	int ret;
2602 
2603 	ret = i915_get_ggtt_vma_pages(vma);
2604 	if (ret)
2605 		return ret;
2606 
2607 	/* Currently applicable only to VLV */
2608 	if (obj->gt_ro)
2609 		pte_flags |= PTE_READ_ONLY;
2610 
2611 	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2612 				cache_level, pte_flags);
2613 
2614 	/*
2615 	 * Without aliasing PPGTT there's no difference between
2616 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2617 	 * upgrade to both bound if we bind either to avoid double-binding.
2618 	 */
2619 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2620 
2621 	return 0;
2622 }
2623 
2624 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2625 				 enum i915_cache_level cache_level,
2626 				 u32 flags)
2627 {
2628 	u32 pte_flags;
2629 	int ret;
2630 
2631 	ret = i915_get_ggtt_vma_pages(vma);
2632 	if (ret)
2633 		return ret;
2634 
2635 	/* Currently applicable only to VLV */
2636 	pte_flags = 0;
2637 	if (vma->obj->gt_ro)
2638 		pte_flags |= PTE_READ_ONLY;
2639 
2640 
2641 	if (flags & I915_VMA_GLOBAL_BIND) {
2642 		vma->vm->insert_entries(vma->vm,
2643 					vma->pages, vma->node.start,
2644 					cache_level, pte_flags);
2645 	}
2646 
2647 	if (flags & I915_VMA_LOCAL_BIND) {
2648 		struct i915_hw_ppgtt *appgtt =
2649 			to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2650 		appgtt->base.insert_entries(&appgtt->base,
2651 					    vma->pages, vma->node.start,
2652 					    cache_level, pte_flags);
2653 	}
2654 
2655 	return 0;
2656 }
2657 
2658 static void ggtt_unbind_vma(struct i915_vma *vma)
2659 {
2660 	struct i915_hw_ppgtt *appgtt = to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2661 	const u64 size = min(vma->size, vma->node.size);
2662 
2663 	if (vma->flags & I915_VMA_GLOBAL_BIND)
2664 		vma->vm->clear_range(vma->vm,
2665 				     vma->node.start, size,
2666 				     true);
2667 
2668 	if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2669 		appgtt->base.clear_range(&appgtt->base,
2670 					 vma->node.start, size,
2671 					 true);
2672 }
2673 
2674 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2675 {
2676 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2677 	struct device *kdev = &dev_priv->drm.pdev->dev;
2678 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2679 
2680 	if (unlikely(ggtt->do_idle_maps)) {
2681 		if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) {
2682 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2683 			/* Wait a bit, in hopes it avoids the hang */
2684 			udelay(10);
2685 		}
2686 	}
2687 
2688 	dma_unmap_sg(kdev, obj->pages->sgl, obj->pages->nents,
2689 		     PCI_DMA_BIDIRECTIONAL);
2690 }
2691 
2692 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2693 				  unsigned long color,
2694 				  u64 *start,
2695 				  u64 *end)
2696 {
2697 	if (node->color != color)
2698 		*start += 4096;
2699 
2700 	node = list_first_entry_or_null(&node->node_list,
2701 					struct drm_mm_node,
2702 					node_list);
2703 	if (node && node->allocated && node->color != color)
2704 		*end -= 4096;
2705 }
2706 
2707 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2708 {
2709 	/* Let GEM Manage all of the aperture.
2710 	 *
2711 	 * However, leave one page at the end still bound to the scratch page.
2712 	 * There are a number of places where the hardware apparently prefetches
2713 	 * past the end of the object, and we've seen multiple hangs with the
2714 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2715 	 * aperture.  One page should be enough to keep any prefetching inside
2716 	 * of the aperture.
2717 	 */
2718 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2719 	unsigned long hole_start, hole_end;
2720 	struct drm_mm_node *entry;
2721 	int ret;
2722 
2723 	ret = intel_vgt_balloon(dev_priv);
2724 	if (ret)
2725 		return ret;
2726 
2727 	/* Clear any non-preallocated blocks */
2728 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2729 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2730 			      hole_start, hole_end);
2731 		ggtt->base.clear_range(&ggtt->base, hole_start,
2732 				     hole_end - hole_start, true);
2733 	}
2734 
2735 	/* And finally clear the reserved guard page */
2736 	ggtt->base.clear_range(&ggtt->base,
2737 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE,
2738 			       true);
2739 
2740 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2741 		struct i915_hw_ppgtt *ppgtt;
2742 
2743 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2744 		if (!ppgtt)
2745 			return -ENOMEM;
2746 
2747 		ret = __hw_ppgtt_init(ppgtt, dev_priv);
2748 		if (ret) {
2749 			kfree(ppgtt);
2750 			return ret;
2751 		}
2752 
2753 		if (ppgtt->base.allocate_va_range)
2754 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2755 							    ppgtt->base.total);
2756 		if (ret) {
2757 			ppgtt->base.cleanup(&ppgtt->base);
2758 			kfree(ppgtt);
2759 			return ret;
2760 		}
2761 
2762 		ppgtt->base.clear_range(&ppgtt->base,
2763 					ppgtt->base.start,
2764 					ppgtt->base.total,
2765 					true);
2766 
2767 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2768 		WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2769 		ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2770 	}
2771 
2772 	return 0;
2773 }
2774 
2775 /**
2776  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2777  * @dev_priv: i915 device
2778  */
2779 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2780 {
2781 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2782 
2783 	if (dev_priv->mm.aliasing_ppgtt) {
2784 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2785 		ppgtt->base.cleanup(&ppgtt->base);
2786 		kfree(ppgtt);
2787 	}
2788 
2789 	i915_gem_cleanup_stolen(&dev_priv->drm);
2790 
2791 	if (drm_mm_initialized(&ggtt->base.mm)) {
2792 		intel_vgt_deballoon(dev_priv);
2793 
2794 		drm_mm_takedown(&ggtt->base.mm);
2795 		list_del(&ggtt->base.global_link);
2796 	}
2797 
2798 	ggtt->base.cleanup(&ggtt->base);
2799 
2800 	arch_phys_wc_del(ggtt->mtrr);
2801 	io_mapping_fini(&ggtt->mappable);
2802 }
2803 
2804 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2805 {
2806 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2807 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2808 	return snb_gmch_ctl << 20;
2809 }
2810 
2811 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2812 {
2813 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2814 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2815 	if (bdw_gmch_ctl)
2816 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2817 
2818 #ifdef CONFIG_X86_32
2819 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2820 	if (bdw_gmch_ctl > 4)
2821 		bdw_gmch_ctl = 4;
2822 #endif
2823 
2824 	return bdw_gmch_ctl << 20;
2825 }
2826 
2827 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2828 {
2829 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2830 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2831 
2832 	if (gmch_ctrl)
2833 		return 1 << (20 + gmch_ctrl);
2834 
2835 	return 0;
2836 }
2837 
2838 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2839 {
2840 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2841 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2842 	return snb_gmch_ctl << 25; /* 32 MB units */
2843 }
2844 
2845 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2846 {
2847 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2848 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2849 	return bdw_gmch_ctl << 25; /* 32 MB units */
2850 }
2851 
2852 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2853 {
2854 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2855 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2856 
2857 	/*
2858 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2859 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2860 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2861 	 */
2862 	if (gmch_ctrl < 0x11)
2863 		return gmch_ctrl << 25;
2864 	else if (gmch_ctrl < 0x17)
2865 		return (gmch_ctrl - 0x11 + 2) << 22;
2866 	else
2867 		return (gmch_ctrl - 0x17 + 9) << 22;
2868 }
2869 
2870 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2871 {
2872 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2873 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2874 
2875 	if (gen9_gmch_ctl < 0xf0)
2876 		return gen9_gmch_ctl << 25; /* 32 MB units */
2877 	else
2878 		/* 4MB increments starting at 0xf0 for 4MB */
2879 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2880 }
2881 
2882 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2883 {
2884 	struct pci_dev *pdev = ggtt->base.dev->pdev;
2885 	phys_addr_t phys_addr;
2886 	int ret;
2887 
2888 	/* For Modern GENs the PTEs and register space are split in the BAR */
2889 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2890 
2891 	/*
2892 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2893 	 * dropped. For WC mappings in general we have 64 byte burst writes
2894 	 * when the WC buffer is flushed, so we can't use it, but have to
2895 	 * resort to an uncached mapping. The WC issue is easily caught by the
2896 	 * readback check when writing GTT PTE entries.
2897 	 */
2898 	if (IS_BROXTON(ggtt->base.dev))
2899 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2900 	else
2901 		ggtt->gsm = ioremap_wc(phys_addr, size);
2902 	if (!ggtt->gsm) {
2903 		DRM_ERROR("Failed to map the ggtt page table\n");
2904 		return -ENOMEM;
2905 	}
2906 
2907 	ret = setup_scratch_page(ggtt->base.dev,
2908 				 &ggtt->base.scratch_page,
2909 				 GFP_DMA32);
2910 	if (ret) {
2911 		DRM_ERROR("Scratch setup failed\n");
2912 		/* iounmap will also get called at remove, but meh */
2913 		iounmap(ggtt->gsm);
2914 		return ret;
2915 	}
2916 
2917 	return 0;
2918 }
2919 
2920 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2921  * bits. When using advanced contexts each context stores its own PAT, but
2922  * writing this data shouldn't be harmful even in those cases. */
2923 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2924 {
2925 	uint64_t pat;
2926 
2927 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2928 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2929 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2930 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2931 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2932 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2933 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2934 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2935 
2936 	if (!USES_PPGTT(dev_priv))
2937 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2938 		 * so RTL will always use the value corresponding to
2939 		 * pat_sel = 000".
2940 		 * So let's disable cache for GGTT to avoid screen corruptions.
2941 		 * MOCS still can be used though.
2942 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2943 		 * before this patch, i.e. the same uncached + snooping access
2944 		 * like on gen6/7 seems to be in effect.
2945 		 * - So this just fixes blitter/render access. Again it looks
2946 		 * like it's not just uncached access, but uncached + snooping.
2947 		 * So we can still hold onto all our assumptions wrt cpu
2948 		 * clflushing on LLC machines.
2949 		 */
2950 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2951 
2952 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2953 	 * write would work. */
2954 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2955 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2956 }
2957 
2958 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2959 {
2960 	uint64_t pat;
2961 
2962 	/*
2963 	 * Map WB on BDW to snooped on CHV.
2964 	 *
2965 	 * Only the snoop bit has meaning for CHV, the rest is
2966 	 * ignored.
2967 	 *
2968 	 * The hardware will never snoop for certain types of accesses:
2969 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2970 	 * - PPGTT page tables
2971 	 * - some other special cycles
2972 	 *
2973 	 * As with BDW, we also need to consider the following for GT accesses:
2974 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2975 	 * so RTL will always use the value corresponding to
2976 	 * pat_sel = 000".
2977 	 * Which means we must set the snoop bit in PAT entry 0
2978 	 * in order to keep the global status page working.
2979 	 */
2980 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2981 	      GEN8_PPAT(1, 0) |
2982 	      GEN8_PPAT(2, 0) |
2983 	      GEN8_PPAT(3, 0) |
2984 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2985 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2986 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2987 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2988 
2989 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2990 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2991 }
2992 
2993 static void gen6_gmch_remove(struct i915_address_space *vm)
2994 {
2995 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2996 
2997 	iounmap(ggtt->gsm);
2998 	cleanup_scratch_page(vm->dev, &vm->scratch_page);
2999 }
3000 
3001 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3002 {
3003 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3004 	struct pci_dev *pdev = dev_priv->drm.pdev;
3005 	unsigned int size;
3006 	u16 snb_gmch_ctl;
3007 
3008 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3009 	ggtt->mappable_base = pci_resource_start(pdev, 2);
3010 	ggtt->mappable_end = pci_resource_len(pdev, 2);
3011 
3012 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3013 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3014 
3015 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3016 
3017 	if (INTEL_GEN(dev_priv) >= 9) {
3018 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3019 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3020 	} else if (IS_CHERRYVIEW(dev_priv)) {
3021 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3022 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3023 	} else {
3024 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3025 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3026 	}
3027 
3028 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3029 
3030 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3031 		chv_setup_private_ppat(dev_priv);
3032 	else
3033 		bdw_setup_private_ppat(dev_priv);
3034 
3035 	ggtt->base.cleanup = gen6_gmch_remove;
3036 	ggtt->base.bind_vma = ggtt_bind_vma;
3037 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3038 	ggtt->base.insert_page = gen8_ggtt_insert_page;
3039 	ggtt->base.clear_range = nop_clear_range;
3040 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3041 		ggtt->base.clear_range = gen8_ggtt_clear_range;
3042 
3043 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3044 	if (IS_CHERRYVIEW(dev_priv))
3045 		ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3046 
3047 	return ggtt_probe_common(ggtt, size);
3048 }
3049 
3050 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3051 {
3052 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3053 	struct pci_dev *pdev = dev_priv->drm.pdev;
3054 	unsigned int size;
3055 	u16 snb_gmch_ctl;
3056 
3057 	ggtt->mappable_base = pci_resource_start(pdev, 2);
3058 	ggtt->mappable_end = pci_resource_len(pdev, 2);
3059 
3060 	/* 64/512MB is the current min/max we actually know of, but this is just
3061 	 * a coarse sanity check.
3062 	 */
3063 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3064 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3065 		return -ENXIO;
3066 	}
3067 
3068 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3069 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3070 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3071 
3072 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3073 
3074 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3075 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3076 
3077 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3078 	ggtt->base.insert_page = gen6_ggtt_insert_page;
3079 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3080 	ggtt->base.bind_vma = ggtt_bind_vma;
3081 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3082 	ggtt->base.cleanup = gen6_gmch_remove;
3083 
3084 	if (HAS_EDRAM(dev_priv))
3085 		ggtt->base.pte_encode = iris_pte_encode;
3086 	else if (IS_HASWELL(dev_priv))
3087 		ggtt->base.pte_encode = hsw_pte_encode;
3088 	else if (IS_VALLEYVIEW(dev_priv))
3089 		ggtt->base.pte_encode = byt_pte_encode;
3090 	else if (INTEL_GEN(dev_priv) >= 7)
3091 		ggtt->base.pte_encode = ivb_pte_encode;
3092 	else
3093 		ggtt->base.pte_encode = snb_pte_encode;
3094 
3095 	return ggtt_probe_common(ggtt, size);
3096 }
3097 
3098 static void i915_gmch_remove(struct i915_address_space *vm)
3099 {
3100 	intel_gmch_remove();
3101 }
3102 
3103 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3104 {
3105 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3106 	int ret;
3107 
3108 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3109 	if (!ret) {
3110 		DRM_ERROR("failed to set up gmch\n");
3111 		return -EIO;
3112 	}
3113 
3114 	intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3115 		      &ggtt->mappable_base, &ggtt->mappable_end);
3116 
3117 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3118 	ggtt->base.insert_page = i915_ggtt_insert_page;
3119 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3120 	ggtt->base.clear_range = i915_ggtt_clear_range;
3121 	ggtt->base.bind_vma = ggtt_bind_vma;
3122 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3123 	ggtt->base.cleanup = i915_gmch_remove;
3124 
3125 	if (unlikely(ggtt->do_idle_maps))
3126 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3127 
3128 	return 0;
3129 }
3130 
3131 /**
3132  * i915_ggtt_probe_hw - Probe GGTT hardware location
3133  * @dev_priv: i915 device
3134  */
3135 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3136 {
3137 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3138 	int ret;
3139 
3140 	ggtt->base.dev = &dev_priv->drm;
3141 
3142 	if (INTEL_GEN(dev_priv) <= 5)
3143 		ret = i915_gmch_probe(ggtt);
3144 	else if (INTEL_GEN(dev_priv) < 8)
3145 		ret = gen6_gmch_probe(ggtt);
3146 	else
3147 		ret = gen8_gmch_probe(ggtt);
3148 	if (ret)
3149 		return ret;
3150 
3151 	if ((ggtt->base.total - 1) >> 32) {
3152 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3153 			  " of address space! Found %lldM!\n",
3154 			  ggtt->base.total >> 20);
3155 		ggtt->base.total = 1ULL << 32;
3156 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3157 	}
3158 
3159 	if (ggtt->mappable_end > ggtt->base.total) {
3160 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3161 			  " aperture=%llx, total=%llx\n",
3162 			  ggtt->mappable_end, ggtt->base.total);
3163 		ggtt->mappable_end = ggtt->base.total;
3164 	}
3165 
3166 	/* GMADR is the PCI mmio aperture into the global GTT. */
3167 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3168 		 ggtt->base.total >> 20);
3169 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3170 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3171 #ifdef CONFIG_INTEL_IOMMU
3172 	if (intel_iommu_gfx_mapped)
3173 		DRM_INFO("VT-d active for gfx access\n");
3174 #endif
3175 
3176 	return 0;
3177 }
3178 
3179 /**
3180  * i915_ggtt_init_hw - Initialize GGTT hardware
3181  * @dev_priv: i915 device
3182  */
3183 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3184 {
3185 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3186 	int ret;
3187 
3188 	INIT_LIST_HEAD(&dev_priv->vm_list);
3189 
3190 	/* Subtract the guard page before address space initialization to
3191 	 * shrink the range used by drm_mm.
3192 	 */
3193 	ggtt->base.total -= PAGE_SIZE;
3194 	i915_address_space_init(&ggtt->base, dev_priv);
3195 	ggtt->base.total += PAGE_SIZE;
3196 	if (!HAS_LLC(dev_priv))
3197 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3198 
3199 	if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3200 				dev_priv->ggtt.mappable_base,
3201 				dev_priv->ggtt.mappable_end)) {
3202 		ret = -EIO;
3203 		goto out_gtt_cleanup;
3204 	}
3205 
3206 	ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3207 
3208 	/*
3209 	 * Initialise stolen early so that we may reserve preallocated
3210 	 * objects for the BIOS to KMS transition.
3211 	 */
3212 	ret = i915_gem_init_stolen(&dev_priv->drm);
3213 	if (ret)
3214 		goto out_gtt_cleanup;
3215 
3216 	return 0;
3217 
3218 out_gtt_cleanup:
3219 	ggtt->base.cleanup(&ggtt->base);
3220 	return ret;
3221 }
3222 
3223 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3224 {
3225 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3226 		return -EIO;
3227 
3228 	return 0;
3229 }
3230 
3231 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3232 {
3233 	struct drm_i915_private *dev_priv = to_i915(dev);
3234 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3235 	struct drm_i915_gem_object *obj, *on;
3236 
3237 	i915_check_and_clear_faults(dev_priv);
3238 
3239 	/* First fill our portion of the GTT with scratch pages */
3240 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3241 			       true);
3242 
3243 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3244 
3245 	/* clflush objects bound into the GGTT and rebind them. */
3246 	list_for_each_entry_safe(obj, on,
3247 				 &dev_priv->mm.bound_list, global_list) {
3248 		bool ggtt_bound = false;
3249 		struct i915_vma *vma;
3250 
3251 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3252 			if (vma->vm != &ggtt->base)
3253 				continue;
3254 
3255 			if (!i915_vma_unbind(vma))
3256 				continue;
3257 
3258 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3259 					      PIN_UPDATE));
3260 			ggtt_bound = true;
3261 		}
3262 
3263 		if (ggtt_bound)
3264 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3265 	}
3266 
3267 	ggtt->base.closed = false;
3268 
3269 	if (INTEL_INFO(dev)->gen >= 8) {
3270 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3271 			chv_setup_private_ppat(dev_priv);
3272 		else
3273 			bdw_setup_private_ppat(dev_priv);
3274 
3275 		return;
3276 	}
3277 
3278 	if (USES_PPGTT(dev)) {
3279 		struct i915_address_space *vm;
3280 
3281 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3282 			/* TODO: Perhaps it shouldn't be gen6 specific */
3283 
3284 			struct i915_hw_ppgtt *ppgtt;
3285 
3286 			if (i915_is_ggtt(vm))
3287 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3288 			else
3289 				ppgtt = i915_vm_to_ppgtt(vm);
3290 
3291 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3292 					      0, ppgtt->base.total);
3293 		}
3294 	}
3295 
3296 	i915_ggtt_flush(dev_priv);
3297 }
3298 
3299 static void
3300 i915_vma_retire(struct i915_gem_active *active,
3301 		struct drm_i915_gem_request *rq)
3302 {
3303 	const unsigned int idx = rq->engine->id;
3304 	struct i915_vma *vma =
3305 		container_of(active, struct i915_vma, last_read[idx]);
3306 
3307 	GEM_BUG_ON(!i915_vma_has_active_engine(vma, idx));
3308 
3309 	i915_vma_clear_active(vma, idx);
3310 	if (i915_vma_is_active(vma))
3311 		return;
3312 
3313 	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3314 	if (unlikely(i915_vma_is_closed(vma) && !i915_vma_is_pinned(vma)))
3315 		WARN_ON(i915_vma_unbind(vma));
3316 }
3317 
3318 void i915_vma_destroy(struct i915_vma *vma)
3319 {
3320 	GEM_BUG_ON(vma->node.allocated);
3321 	GEM_BUG_ON(i915_vma_is_active(vma));
3322 	GEM_BUG_ON(!i915_vma_is_closed(vma));
3323 	GEM_BUG_ON(vma->fence);
3324 
3325 	list_del(&vma->vm_link);
3326 	if (!i915_vma_is_ggtt(vma))
3327 		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
3328 
3329 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
3330 }
3331 
3332 void i915_vma_close(struct i915_vma *vma)
3333 {
3334 	GEM_BUG_ON(i915_vma_is_closed(vma));
3335 	vma->flags |= I915_VMA_CLOSED;
3336 
3337 	list_del_init(&vma->obj_link);
3338 	if (!i915_vma_is_active(vma) && !i915_vma_is_pinned(vma))
3339 		WARN_ON(i915_vma_unbind(vma));
3340 }
3341 
3342 static struct i915_vma *
3343 __i915_vma_create(struct drm_i915_gem_object *obj,
3344 		  struct i915_address_space *vm,
3345 		  const struct i915_ggtt_view *view)
3346 {
3347 	struct i915_vma *vma;
3348 	int i;
3349 
3350 	GEM_BUG_ON(vm->closed);
3351 
3352 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3353 	if (vma == NULL)
3354 		return ERR_PTR(-ENOMEM);
3355 
3356 	INIT_LIST_HEAD(&vma->exec_list);
3357 	for (i = 0; i < ARRAY_SIZE(vma->last_read); i++)
3358 		init_request_active(&vma->last_read[i], i915_vma_retire);
3359 	init_request_active(&vma->last_fence, NULL);
3360 	list_add(&vma->vm_link, &vm->unbound_list);
3361 	vma->vm = vm;
3362 	vma->obj = obj;
3363 	vma->size = obj->base.size;
3364 
3365 	if (view) {
3366 		vma->ggtt_view = *view;
3367 		if (view->type == I915_GGTT_VIEW_PARTIAL) {
3368 			vma->size = view->params.partial.size;
3369 			vma->size <<= PAGE_SHIFT;
3370 		} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3371 			vma->size =
3372 				intel_rotation_info_size(&view->params.rotated);
3373 			vma->size <<= PAGE_SHIFT;
3374 		}
3375 	}
3376 
3377 	if (i915_is_ggtt(vm)) {
3378 		vma->flags |= I915_VMA_GGTT;
3379 	} else {
3380 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3381 	}
3382 
3383 	list_add_tail(&vma->obj_link, &obj->vma_list);
3384 	return vma;
3385 }
3386 
3387 static inline bool vma_matches(struct i915_vma *vma,
3388 			       struct i915_address_space *vm,
3389 			       const struct i915_ggtt_view *view)
3390 {
3391 	if (vma->vm != vm)
3392 		return false;
3393 
3394 	if (!i915_vma_is_ggtt(vma))
3395 		return true;
3396 
3397 	if (!view)
3398 		return vma->ggtt_view.type == 0;
3399 
3400 	if (vma->ggtt_view.type != view->type)
3401 		return false;
3402 
3403 	return memcmp(&vma->ggtt_view.params,
3404 		      &view->params,
3405 		      sizeof(view->params)) == 0;
3406 }
3407 
3408 struct i915_vma *
3409 i915_vma_create(struct drm_i915_gem_object *obj,
3410 		struct i915_address_space *vm,
3411 		const struct i915_ggtt_view *view)
3412 {
3413 	GEM_BUG_ON(view && !i915_is_ggtt(vm));
3414 	GEM_BUG_ON(i915_gem_obj_to_vma(obj, vm, view));
3415 
3416 	return __i915_vma_create(obj, vm, view);
3417 }
3418 
3419 struct i915_vma *
3420 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3421 		    struct i915_address_space *vm,
3422 		    const struct i915_ggtt_view *view)
3423 {
3424 	struct i915_vma *vma;
3425 
3426 	list_for_each_entry_reverse(vma, &obj->vma_list, obj_link)
3427 		if (vma_matches(vma, vm, view))
3428 			return vma;
3429 
3430 	return NULL;
3431 }
3432 
3433 struct i915_vma *
3434 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3435 				  struct i915_address_space *vm,
3436 				  const struct i915_ggtt_view *view)
3437 {
3438 	struct i915_vma *vma;
3439 
3440 	GEM_BUG_ON(view && !i915_is_ggtt(vm));
3441 
3442 	vma = i915_gem_obj_to_vma(obj, vm, view);
3443 	if (!vma)
3444 		vma = __i915_vma_create(obj, vm, view);
3445 
3446 	GEM_BUG_ON(i915_vma_is_closed(vma));
3447 	return vma;
3448 }
3449 
3450 static struct scatterlist *
3451 rotate_pages(const dma_addr_t *in, unsigned int offset,
3452 	     unsigned int width, unsigned int height,
3453 	     unsigned int stride,
3454 	     struct sg_table *st, struct scatterlist *sg)
3455 {
3456 	unsigned int column, row;
3457 	unsigned int src_idx;
3458 
3459 	for (column = 0; column < width; column++) {
3460 		src_idx = stride * (height - 1) + column;
3461 		for (row = 0; row < height; row++) {
3462 			st->nents++;
3463 			/* We don't need the pages, but need to initialize
3464 			 * the entries so the sg list can be happily traversed.
3465 			 * The only thing we need are DMA addresses.
3466 			 */
3467 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3468 			sg_dma_address(sg) = in[offset + src_idx];
3469 			sg_dma_len(sg) = PAGE_SIZE;
3470 			sg = sg_next(sg);
3471 			src_idx -= stride;
3472 		}
3473 	}
3474 
3475 	return sg;
3476 }
3477 
3478 static struct sg_table *
3479 intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
3480 			  struct drm_i915_gem_object *obj)
3481 {
3482 	const size_t n_pages = obj->base.size / PAGE_SIZE;
3483 	unsigned int size = intel_rotation_info_size(rot_info);
3484 	struct sgt_iter sgt_iter;
3485 	dma_addr_t dma_addr;
3486 	unsigned long i;
3487 	dma_addr_t *page_addr_list;
3488 	struct sg_table *st;
3489 	struct scatterlist *sg;
3490 	int ret = -ENOMEM;
3491 
3492 	/* Allocate a temporary list of source pages for random access. */
3493 	page_addr_list = drm_malloc_gfp(n_pages,
3494 					sizeof(dma_addr_t),
3495 					GFP_TEMPORARY);
3496 	if (!page_addr_list)
3497 		return ERR_PTR(ret);
3498 
3499 	/* Allocate target SG list. */
3500 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3501 	if (!st)
3502 		goto err_st_alloc;
3503 
3504 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3505 	if (ret)
3506 		goto err_sg_alloc;
3507 
3508 	/* Populate source page list from the object. */
3509 	i = 0;
3510 	for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3511 		page_addr_list[i++] = dma_addr;
3512 
3513 	GEM_BUG_ON(i != n_pages);
3514 	st->nents = 0;
3515 	sg = st->sgl;
3516 
3517 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3518 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3519 				  rot_info->plane[i].width, rot_info->plane[i].height,
3520 				  rot_info->plane[i].stride, st, sg);
3521 	}
3522 
3523 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3524 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3525 
3526 	drm_free_large(page_addr_list);
3527 
3528 	return st;
3529 
3530 err_sg_alloc:
3531 	kfree(st);
3532 err_st_alloc:
3533 	drm_free_large(page_addr_list);
3534 
3535 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3536 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3537 
3538 	return ERR_PTR(ret);
3539 }
3540 
3541 static struct sg_table *
3542 intel_partial_pages(const struct i915_ggtt_view *view,
3543 		    struct drm_i915_gem_object *obj)
3544 {
3545 	struct sg_table *st;
3546 	struct scatterlist *sg;
3547 	struct sg_page_iter obj_sg_iter;
3548 	int ret = -ENOMEM;
3549 
3550 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3551 	if (!st)
3552 		goto err_st_alloc;
3553 
3554 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3555 	if (ret)
3556 		goto err_sg_alloc;
3557 
3558 	sg = st->sgl;
3559 	st->nents = 0;
3560 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3561 		view->params.partial.offset)
3562 	{
3563 		if (st->nents >= view->params.partial.size)
3564 			break;
3565 
3566 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3567 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3568 		sg_dma_len(sg) = PAGE_SIZE;
3569 
3570 		sg = sg_next(sg);
3571 		st->nents++;
3572 	}
3573 
3574 	return st;
3575 
3576 err_sg_alloc:
3577 	kfree(st);
3578 err_st_alloc:
3579 	return ERR_PTR(ret);
3580 }
3581 
3582 static int
3583 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3584 {
3585 	int ret = 0;
3586 
3587 	if (vma->pages)
3588 		return 0;
3589 
3590 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3591 		vma->pages = vma->obj->pages;
3592 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3593 		vma->pages =
3594 			intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3595 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3596 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3597 	else
3598 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3599 			  vma->ggtt_view.type);
3600 
3601 	if (!vma->pages) {
3602 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3603 			  vma->ggtt_view.type);
3604 		ret = -EINVAL;
3605 	} else if (IS_ERR(vma->pages)) {
3606 		ret = PTR_ERR(vma->pages);
3607 		vma->pages = NULL;
3608 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3609 			  vma->ggtt_view.type, ret);
3610 	}
3611 
3612 	return ret;
3613 }
3614 
3615 /**
3616  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3617  * @vma: VMA to map
3618  * @cache_level: mapping cache level
3619  * @flags: flags like global or local mapping
3620  *
3621  * DMA addresses are taken from the scatter-gather table of this object (or of
3622  * this VMA in case of non-default GGTT views) and PTE entries set up.
3623  * Note that DMA addresses are also the only part of the SG table we care about.
3624  */
3625 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3626 		  u32 flags)
3627 {
3628 	u32 bind_flags;
3629 	u32 vma_flags;
3630 	int ret;
3631 
3632 	if (WARN_ON(flags == 0))
3633 		return -EINVAL;
3634 
3635 	bind_flags = 0;
3636 	if (flags & PIN_GLOBAL)
3637 		bind_flags |= I915_VMA_GLOBAL_BIND;
3638 	if (flags & PIN_USER)
3639 		bind_flags |= I915_VMA_LOCAL_BIND;
3640 
3641 	vma_flags = vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
3642 	if (flags & PIN_UPDATE)
3643 		bind_flags |= vma_flags;
3644 	else
3645 		bind_flags &= ~vma_flags;
3646 	if (bind_flags == 0)
3647 		return 0;
3648 
3649 	if (vma_flags == 0 && vma->vm->allocate_va_range) {
3650 		trace_i915_va_alloc(vma);
3651 		ret = vma->vm->allocate_va_range(vma->vm,
3652 						 vma->node.start,
3653 						 vma->node.size);
3654 		if (ret)
3655 			return ret;
3656 	}
3657 
3658 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3659 	if (ret)
3660 		return ret;
3661 
3662 	vma->flags |= bind_flags;
3663 	return 0;
3664 }
3665 
3666 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3667 {
3668 	void __iomem *ptr;
3669 
3670 	/* Access through the GTT requires the device to be awake. */
3671 	assert_rpm_wakelock_held(to_i915(vma->vm->dev));
3672 
3673 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3674 	if (WARN_ON(!i915_vma_is_map_and_fenceable(vma)))
3675 		return IO_ERR_PTR(-ENODEV);
3676 
3677 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
3678 	GEM_BUG_ON((vma->flags & I915_VMA_GLOBAL_BIND) == 0);
3679 
3680 	ptr = vma->iomap;
3681 	if (ptr == NULL) {
3682 		ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->mappable,
3683 					vma->node.start,
3684 					vma->node.size);
3685 		if (ptr == NULL)
3686 			return IO_ERR_PTR(-ENOMEM);
3687 
3688 		vma->iomap = ptr;
3689 	}
3690 
3691 	__i915_vma_pin(vma);
3692 	return ptr;
3693 }
3694 
3695 void i915_vma_unpin_and_release(struct i915_vma **p_vma)
3696 {
3697 	struct i915_vma *vma;
3698 
3699 	vma = fetch_and_zero(p_vma);
3700 	if (!vma)
3701 		return;
3702 
3703 	i915_vma_unpin(vma);
3704 	i915_vma_put(vma);
3705 }
3706