1 /* 2 * Copyright © 2010 Daniel Vetter 3 * Copyright © 2011-2014 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 27 28 #include <linux/fault-inject.h> 29 #include <linux/log2.h> 30 #include <linux/random.h> 31 #include <linux/seq_file.h> 32 #include <linux/stop_machine.h> 33 34 #include <asm/set_memory.h> 35 36 #include <drm/i915_drm.h> 37 38 #include "display/intel_frontbuffer.h" 39 40 #include "i915_drv.h" 41 #include "i915_scatterlist.h" 42 #include "i915_trace.h" 43 #include "i915_vgpu.h" 44 #include "intel_drv.h" 45 46 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) 47 48 /** 49 * DOC: Global GTT views 50 * 51 * Background and previous state 52 * 53 * Historically objects could exists (be bound) in global GTT space only as 54 * singular instances with a view representing all of the object's backing pages 55 * in a linear fashion. This view will be called a normal view. 56 * 57 * To support multiple views of the same object, where the number of mapped 58 * pages is not equal to the backing store, or where the layout of the pages 59 * is not linear, concept of a GGTT view was added. 60 * 61 * One example of an alternative view is a stereo display driven by a single 62 * image. In this case we would have a framebuffer looking like this 63 * (2x2 pages): 64 * 65 * 12 66 * 34 67 * 68 * Above would represent a normal GGTT view as normally mapped for GPU or CPU 69 * rendering. In contrast, fed to the display engine would be an alternative 70 * view which could look something like this: 71 * 72 * 1212 73 * 3434 74 * 75 * In this example both the size and layout of pages in the alternative view is 76 * different from the normal view. 77 * 78 * Implementation and usage 79 * 80 * GGTT views are implemented using VMAs and are distinguished via enum 81 * i915_ggtt_view_type and struct i915_ggtt_view. 82 * 83 * A new flavour of core GEM functions which work with GGTT bound objects were 84 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid 85 * renaming in large amounts of code. They take the struct i915_ggtt_view 86 * parameter encapsulating all metadata required to implement a view. 87 * 88 * As a helper for callers which are only interested in the normal view, 89 * globally const i915_ggtt_view_normal singleton instance exists. All old core 90 * GEM API functions, the ones not taking the view parameter, are operating on, 91 * or with the normal GGTT view. 92 * 93 * Code wanting to add or use a new GGTT view needs to: 94 * 95 * 1. Add a new enum with a suitable name. 96 * 2. Extend the metadata in the i915_ggtt_view structure if required. 97 * 3. Add support to i915_get_vma_pages(). 98 * 99 * New views are required to build a scatter-gather table from within the 100 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and 101 * exists for the lifetime of an VMA. 102 * 103 * Core API is designed to have copy semantics which means that passed in 104 * struct i915_ggtt_view does not need to be persistent (left around after 105 * calling the core API functions). 106 * 107 */ 108 109 static int 110 i915_get_ggtt_vma_pages(struct i915_vma *vma); 111 112 static void gen6_ggtt_invalidate(struct drm_i915_private *i915) 113 { 114 struct intel_uncore *uncore = &i915->uncore; 115 116 /* 117 * Note that as an uncached mmio write, this will flush the 118 * WCB of the writes into the GGTT before it triggers the invalidate. 119 */ 120 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 121 } 122 123 static void guc_ggtt_invalidate(struct drm_i915_private *i915) 124 { 125 struct intel_uncore *uncore = &i915->uncore; 126 127 gen6_ggtt_invalidate(i915); 128 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE); 129 } 130 131 static void gmch_ggtt_invalidate(struct drm_i915_private *i915) 132 { 133 intel_gtt_chipset_flush(); 134 } 135 136 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915) 137 { 138 i915->ggtt.invalidate(i915); 139 } 140 141 static int ppgtt_bind_vma(struct i915_vma *vma, 142 enum i915_cache_level cache_level, 143 u32 unused) 144 { 145 u32 pte_flags; 146 int err; 147 148 if (!(vma->flags & I915_VMA_LOCAL_BIND)) { 149 err = vma->vm->allocate_va_range(vma->vm, 150 vma->node.start, vma->size); 151 if (err) 152 return err; 153 } 154 155 /* Applicable to VLV, and gen8+ */ 156 pte_flags = 0; 157 if (i915_gem_object_is_readonly(vma->obj)) 158 pte_flags |= PTE_READ_ONLY; 159 160 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 161 162 return 0; 163 } 164 165 static void ppgtt_unbind_vma(struct i915_vma *vma) 166 { 167 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 168 } 169 170 static int ppgtt_set_pages(struct i915_vma *vma) 171 { 172 GEM_BUG_ON(vma->pages); 173 174 vma->pages = vma->obj->mm.pages; 175 176 vma->page_sizes = vma->obj->mm.page_sizes; 177 178 return 0; 179 } 180 181 static void clear_pages(struct i915_vma *vma) 182 { 183 GEM_BUG_ON(!vma->pages); 184 185 if (vma->pages != vma->obj->mm.pages) { 186 sg_free_table(vma->pages); 187 kfree(vma->pages); 188 } 189 vma->pages = NULL; 190 191 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); 192 } 193 194 static u64 gen8_pte_encode(dma_addr_t addr, 195 enum i915_cache_level level, 196 u32 flags) 197 { 198 gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW; 199 200 if (unlikely(flags & PTE_READ_ONLY)) 201 pte &= ~_PAGE_RW; 202 203 switch (level) { 204 case I915_CACHE_NONE: 205 pte |= PPAT_UNCACHED; 206 break; 207 case I915_CACHE_WT: 208 pte |= PPAT_DISPLAY_ELLC; 209 break; 210 default: 211 pte |= PPAT_CACHED; 212 break; 213 } 214 215 return pte; 216 } 217 218 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, 219 const enum i915_cache_level level) 220 { 221 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; 222 pde |= addr; 223 if (level != I915_CACHE_NONE) 224 pde |= PPAT_CACHED_PDE; 225 else 226 pde |= PPAT_UNCACHED; 227 return pde; 228 } 229 230 #define gen8_pdpe_encode gen8_pde_encode 231 #define gen8_pml4e_encode gen8_pde_encode 232 233 static u64 snb_pte_encode(dma_addr_t addr, 234 enum i915_cache_level level, 235 u32 flags) 236 { 237 gen6_pte_t pte = GEN6_PTE_VALID; 238 pte |= GEN6_PTE_ADDR_ENCODE(addr); 239 240 switch (level) { 241 case I915_CACHE_L3_LLC: 242 case I915_CACHE_LLC: 243 pte |= GEN6_PTE_CACHE_LLC; 244 break; 245 case I915_CACHE_NONE: 246 pte |= GEN6_PTE_UNCACHED; 247 break; 248 default: 249 MISSING_CASE(level); 250 } 251 252 return pte; 253 } 254 255 static u64 ivb_pte_encode(dma_addr_t addr, 256 enum i915_cache_level level, 257 u32 flags) 258 { 259 gen6_pte_t pte = GEN6_PTE_VALID; 260 pte |= GEN6_PTE_ADDR_ENCODE(addr); 261 262 switch (level) { 263 case I915_CACHE_L3_LLC: 264 pte |= GEN7_PTE_CACHE_L3_LLC; 265 break; 266 case I915_CACHE_LLC: 267 pte |= GEN6_PTE_CACHE_LLC; 268 break; 269 case I915_CACHE_NONE: 270 pte |= GEN6_PTE_UNCACHED; 271 break; 272 default: 273 MISSING_CASE(level); 274 } 275 276 return pte; 277 } 278 279 static u64 byt_pte_encode(dma_addr_t addr, 280 enum i915_cache_level level, 281 u32 flags) 282 { 283 gen6_pte_t pte = GEN6_PTE_VALID; 284 pte |= GEN6_PTE_ADDR_ENCODE(addr); 285 286 if (!(flags & PTE_READ_ONLY)) 287 pte |= BYT_PTE_WRITEABLE; 288 289 if (level != I915_CACHE_NONE) 290 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 291 292 return pte; 293 } 294 295 static u64 hsw_pte_encode(dma_addr_t addr, 296 enum i915_cache_level level, 297 u32 flags) 298 { 299 gen6_pte_t pte = GEN6_PTE_VALID; 300 pte |= HSW_PTE_ADDR_ENCODE(addr); 301 302 if (level != I915_CACHE_NONE) 303 pte |= HSW_WB_LLC_AGE3; 304 305 return pte; 306 } 307 308 static u64 iris_pte_encode(dma_addr_t addr, 309 enum i915_cache_level level, 310 u32 flags) 311 { 312 gen6_pte_t pte = GEN6_PTE_VALID; 313 pte |= HSW_PTE_ADDR_ENCODE(addr); 314 315 switch (level) { 316 case I915_CACHE_NONE: 317 break; 318 case I915_CACHE_WT: 319 pte |= HSW_WT_ELLC_LLC_AGE3; 320 break; 321 default: 322 pte |= HSW_WB_ELLC_LLC_AGE3; 323 break; 324 } 325 326 return pte; 327 } 328 329 static void stash_init(struct pagestash *stash) 330 { 331 pagevec_init(&stash->pvec); 332 spin_lock_init(&stash->lock); 333 } 334 335 static struct page *stash_pop_page(struct pagestash *stash) 336 { 337 struct page *page = NULL; 338 339 spin_lock(&stash->lock); 340 if (likely(stash->pvec.nr)) 341 page = stash->pvec.pages[--stash->pvec.nr]; 342 spin_unlock(&stash->lock); 343 344 return page; 345 } 346 347 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec) 348 { 349 unsigned int nr; 350 351 spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING); 352 353 nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec)); 354 memcpy(stash->pvec.pages + stash->pvec.nr, 355 pvec->pages + pvec->nr - nr, 356 sizeof(pvec->pages[0]) * nr); 357 stash->pvec.nr += nr; 358 359 spin_unlock(&stash->lock); 360 361 pvec->nr -= nr; 362 } 363 364 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp) 365 { 366 struct pagevec stack; 367 struct page *page; 368 369 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 370 i915_gem_shrink_all(vm->i915); 371 372 page = stash_pop_page(&vm->free_pages); 373 if (page) 374 return page; 375 376 if (!vm->pt_kmap_wc) 377 return alloc_page(gfp); 378 379 /* Look in our global stash of WC pages... */ 380 page = stash_pop_page(&vm->i915->mm.wc_stash); 381 if (page) 382 return page; 383 384 /* 385 * Otherwise batch allocate pages to amortize cost of set_pages_wc. 386 * 387 * We have to be careful as page allocation may trigger the shrinker 388 * (via direct reclaim) which will fill up the WC stash underneath us. 389 * So we add our WB pages into a temporary pvec on the stack and merge 390 * them into the WC stash after all the allocations are complete. 391 */ 392 pagevec_init(&stack); 393 do { 394 struct page *page; 395 396 page = alloc_page(gfp); 397 if (unlikely(!page)) 398 break; 399 400 stack.pages[stack.nr++] = page; 401 } while (pagevec_space(&stack)); 402 403 if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) { 404 page = stack.pages[--stack.nr]; 405 406 /* Merge spare WC pages to the global stash */ 407 if (stack.nr) 408 stash_push_pagevec(&vm->i915->mm.wc_stash, &stack); 409 410 /* Push any surplus WC pages onto the local VM stash */ 411 if (stack.nr) 412 stash_push_pagevec(&vm->free_pages, &stack); 413 } 414 415 /* Return unwanted leftovers */ 416 if (unlikely(stack.nr)) { 417 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr)); 418 __pagevec_release(&stack); 419 } 420 421 return page; 422 } 423 424 static void vm_free_pages_release(struct i915_address_space *vm, 425 bool immediate) 426 { 427 struct pagevec *pvec = &vm->free_pages.pvec; 428 struct pagevec stack; 429 430 lockdep_assert_held(&vm->free_pages.lock); 431 GEM_BUG_ON(!pagevec_count(pvec)); 432 433 if (vm->pt_kmap_wc) { 434 /* 435 * When we use WC, first fill up the global stash and then 436 * only if full immediately free the overflow. 437 */ 438 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec); 439 440 /* 441 * As we have made some room in the VM's free_pages, 442 * we can wait for it to fill again. Unless we are 443 * inside i915_address_space_fini() and must 444 * immediately release the pages! 445 */ 446 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1)) 447 return; 448 449 /* 450 * We have to drop the lock to allow ourselves to sleep, 451 * so take a copy of the pvec and clear the stash for 452 * others to use it as we sleep. 453 */ 454 stack = *pvec; 455 pagevec_reinit(pvec); 456 spin_unlock(&vm->free_pages.lock); 457 458 pvec = &stack; 459 set_pages_array_wb(pvec->pages, pvec->nr); 460 461 spin_lock(&vm->free_pages.lock); 462 } 463 464 __pagevec_release(pvec); 465 } 466 467 static void vm_free_page(struct i915_address_space *vm, struct page *page) 468 { 469 /* 470 * On !llc, we need to change the pages back to WB. We only do so 471 * in bulk, so we rarely need to change the page attributes here, 472 * but doing so requires a stop_machine() from deep inside arch/x86/mm. 473 * To make detection of the possible sleep more likely, use an 474 * unconditional might_sleep() for everybody. 475 */ 476 might_sleep(); 477 spin_lock(&vm->free_pages.lock); 478 while (!pagevec_space(&vm->free_pages.pvec)) 479 vm_free_pages_release(vm, false); 480 GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE); 481 pagevec_add(&vm->free_pages.pvec, page); 482 spin_unlock(&vm->free_pages.lock); 483 } 484 485 static void i915_address_space_init(struct i915_address_space *vm, int subclass) 486 { 487 kref_init(&vm->ref); 488 489 /* 490 * The vm->mutex must be reclaim safe (for use in the shrinker). 491 * Do a dummy acquire now under fs_reclaim so that any allocation 492 * attempt holding the lock is immediately reported by lockdep. 493 */ 494 mutex_init(&vm->mutex); 495 lockdep_set_subclass(&vm->mutex, subclass); 496 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); 497 498 GEM_BUG_ON(!vm->total); 499 drm_mm_init(&vm->mm, 0, vm->total); 500 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 501 502 stash_init(&vm->free_pages); 503 504 INIT_LIST_HEAD(&vm->unbound_list); 505 INIT_LIST_HEAD(&vm->bound_list); 506 } 507 508 static void i915_address_space_fini(struct i915_address_space *vm) 509 { 510 spin_lock(&vm->free_pages.lock); 511 if (pagevec_count(&vm->free_pages.pvec)) 512 vm_free_pages_release(vm, true); 513 GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec)); 514 spin_unlock(&vm->free_pages.lock); 515 516 drm_mm_takedown(&vm->mm); 517 518 mutex_destroy(&vm->mutex); 519 } 520 521 static int __setup_page_dma(struct i915_address_space *vm, 522 struct i915_page_dma *p, 523 gfp_t gfp) 524 { 525 p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL); 526 if (unlikely(!p->page)) 527 return -ENOMEM; 528 529 p->daddr = dma_map_page_attrs(vm->dma, 530 p->page, 0, PAGE_SIZE, 531 PCI_DMA_BIDIRECTIONAL, 532 DMA_ATTR_SKIP_CPU_SYNC | 533 DMA_ATTR_NO_WARN); 534 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) { 535 vm_free_page(vm, p->page); 536 return -ENOMEM; 537 } 538 539 return 0; 540 } 541 542 static int setup_page_dma(struct i915_address_space *vm, 543 struct i915_page_dma *p) 544 { 545 return __setup_page_dma(vm, p, __GFP_HIGHMEM); 546 } 547 548 static void cleanup_page_dma(struct i915_address_space *vm, 549 struct i915_page_dma *p) 550 { 551 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 552 vm_free_page(vm, p->page); 553 } 554 555 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page) 556 557 #define setup_px(vm, px) setup_page_dma((vm), px_base(px)) 558 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px)) 559 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v)) 560 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v)) 561 562 static void fill_page_dma(struct i915_address_space *vm, 563 struct i915_page_dma *p, 564 const u64 val) 565 { 566 u64 * const vaddr = kmap_atomic(p->page); 567 568 memset64(vaddr, val, PAGE_SIZE / sizeof(val)); 569 570 kunmap_atomic(vaddr); 571 } 572 573 static void fill_page_dma_32(struct i915_address_space *vm, 574 struct i915_page_dma *p, 575 const u32 v) 576 { 577 fill_page_dma(vm, p, (u64)v << 32 | v); 578 } 579 580 static int 581 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp) 582 { 583 unsigned long size; 584 585 /* 586 * In order to utilize 64K pages for an object with a size < 2M, we will 587 * need to support a 64K scratch page, given that every 16th entry for a 588 * page-table operating in 64K mode must point to a properly aligned 64K 589 * region, including any PTEs which happen to point to scratch. 590 * 591 * This is only relevant for the 48b PPGTT where we support 592 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the 593 * scratch (read-only) between all vm, we create one 64k scratch page 594 * for all. 595 */ 596 size = I915_GTT_PAGE_SIZE_4K; 597 if (i915_vm_is_4lvl(vm) && 598 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) { 599 size = I915_GTT_PAGE_SIZE_64K; 600 gfp |= __GFP_NOWARN; 601 } 602 gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL; 603 604 do { 605 int order = get_order(size); 606 struct page *page; 607 dma_addr_t addr; 608 609 page = alloc_pages(gfp, order); 610 if (unlikely(!page)) 611 goto skip; 612 613 addr = dma_map_page_attrs(vm->dma, 614 page, 0, size, 615 PCI_DMA_BIDIRECTIONAL, 616 DMA_ATTR_SKIP_CPU_SYNC | 617 DMA_ATTR_NO_WARN); 618 if (unlikely(dma_mapping_error(vm->dma, addr))) 619 goto free_page; 620 621 if (unlikely(!IS_ALIGNED(addr, size))) 622 goto unmap_page; 623 624 vm->scratch_page.page = page; 625 vm->scratch_page.daddr = addr; 626 vm->scratch_order = order; 627 return 0; 628 629 unmap_page: 630 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL); 631 free_page: 632 __free_pages(page, order); 633 skip: 634 if (size == I915_GTT_PAGE_SIZE_4K) 635 return -ENOMEM; 636 637 size = I915_GTT_PAGE_SIZE_4K; 638 gfp &= ~__GFP_NOWARN; 639 } while (1); 640 } 641 642 static void cleanup_scratch_page(struct i915_address_space *vm) 643 { 644 struct i915_page_dma *p = &vm->scratch_page; 645 int order = vm->scratch_order; 646 647 dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT, 648 PCI_DMA_BIDIRECTIONAL); 649 __free_pages(p->page, order); 650 } 651 652 static struct i915_page_table *alloc_pt(struct i915_address_space *vm) 653 { 654 struct i915_page_table *pt; 655 656 pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL); 657 if (unlikely(!pt)) 658 return ERR_PTR(-ENOMEM); 659 660 if (unlikely(setup_px(vm, pt))) { 661 kfree(pt); 662 return ERR_PTR(-ENOMEM); 663 } 664 665 atomic_set(&pt->used, 0); 666 667 return pt; 668 } 669 670 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt) 671 { 672 cleanup_px(vm, pt); 673 kfree(pt); 674 } 675 676 static void gen8_initialize_pt(struct i915_address_space *vm, 677 struct i915_page_table *pt) 678 { 679 fill_px(vm, pt, vm->scratch_pte); 680 } 681 682 static void gen6_initialize_pt(struct i915_address_space *vm, 683 struct i915_page_table *pt) 684 { 685 fill32_px(vm, pt, vm->scratch_pte); 686 } 687 688 static struct i915_page_directory *__alloc_pd(void) 689 { 690 struct i915_page_directory *pd; 691 692 pd = kmalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL); 693 694 if (unlikely(!pd)) 695 return NULL; 696 697 memset(&pd->base, 0, sizeof(pd->base)); 698 atomic_set(&pd->used, 0); 699 spin_lock_init(&pd->lock); 700 701 /* for safety */ 702 pd->entry[0] = NULL; 703 704 return pd; 705 } 706 707 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm) 708 { 709 struct i915_page_directory *pd; 710 711 pd = __alloc_pd(); 712 if (unlikely(!pd)) 713 return ERR_PTR(-ENOMEM); 714 715 if (unlikely(setup_px(vm, pd))) { 716 kfree(pd); 717 return ERR_PTR(-ENOMEM); 718 } 719 720 return pd; 721 } 722 723 static inline bool pd_has_phys_page(const struct i915_page_directory * const pd) 724 { 725 return pd->base.page; 726 } 727 728 static void free_pd(struct i915_address_space *vm, 729 struct i915_page_directory *pd) 730 { 731 if (likely(pd_has_phys_page(pd))) 732 cleanup_px(vm, pd); 733 734 kfree(pd); 735 } 736 737 static void init_pd_with_page(struct i915_address_space *vm, 738 struct i915_page_directory * const pd, 739 struct i915_page_table *pt) 740 { 741 fill_px(vm, pd, gen8_pde_encode(px_dma(pt), I915_CACHE_LLC)); 742 memset_p(pd->entry, pt, 512); 743 } 744 745 static void init_pd(struct i915_address_space *vm, 746 struct i915_page_directory * const pd, 747 struct i915_page_directory * const to) 748 { 749 GEM_DEBUG_BUG_ON(!pd_has_phys_page(pd)); 750 751 fill_px(vm, pd, gen8_pdpe_encode(px_dma(to), I915_CACHE_LLC)); 752 memset_p(pd->entry, to, 512); 753 } 754 755 /* 756 * PDE TLBs are a pain to invalidate on GEN8+. When we modify 757 * the page table structures, we mark them dirty so that 758 * context switching/execlist queuing code takes extra steps 759 * to ensure that tlbs are flushed. 760 */ 761 static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt) 762 { 763 ppgtt->pd_dirty_engines = ALL_ENGINES; 764 } 765 766 /* Removes entries from a single page table, releasing it if it's empty. 767 * Caller can use the return value to update higher-level entries. 768 */ 769 static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm, 770 struct i915_page_table *pt, 771 u64 start, u64 length) 772 { 773 unsigned int num_entries = gen8_pte_count(start, length); 774 gen8_pte_t *vaddr; 775 776 vaddr = kmap_atomic_px(pt); 777 memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries); 778 kunmap_atomic(vaddr); 779 780 GEM_BUG_ON(num_entries > atomic_read(&pt->used)); 781 return !atomic_sub_return(num_entries, &pt->used); 782 } 783 784 static void gen8_ppgtt_set_pde(struct i915_address_space *vm, 785 struct i915_page_directory *pd, 786 struct i915_page_table *pt, 787 unsigned int pde) 788 { 789 gen8_pde_t *vaddr; 790 791 vaddr = kmap_atomic_px(pd); 792 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC); 793 kunmap_atomic(vaddr); 794 } 795 796 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm, 797 struct i915_page_directory *pd, 798 u64 start, u64 length) 799 { 800 struct i915_page_table *pt; 801 u32 pde; 802 803 gen8_for_each_pde(pt, pd, start, length, pde) { 804 bool free = false; 805 806 GEM_BUG_ON(pt == vm->scratch_pt); 807 808 if (!gen8_ppgtt_clear_pt(vm, pt, start, length)) 809 continue; 810 811 spin_lock(&pd->lock); 812 if (!atomic_read(&pt->used)) { 813 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde); 814 pd->entry[pde] = vm->scratch_pt; 815 816 GEM_BUG_ON(!atomic_read(&pd->used)); 817 atomic_dec(&pd->used); 818 free = true; 819 } 820 spin_unlock(&pd->lock); 821 if (free) 822 free_pt(vm, pt); 823 } 824 825 return !atomic_read(&pd->used); 826 } 827 828 static void gen8_ppgtt_set_pdpe(struct i915_page_directory *pdp, 829 struct i915_page_directory *pd, 830 unsigned int pdpe) 831 { 832 gen8_ppgtt_pdpe_t *vaddr; 833 834 if (!pd_has_phys_page(pdp)) 835 return; 836 837 vaddr = kmap_atomic_px(pdp); 838 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); 839 kunmap_atomic(vaddr); 840 } 841 842 /* Removes entries from a single page dir pointer, releasing it if it's empty. 843 * Caller can use the return value to update higher-level entries 844 */ 845 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm, 846 struct i915_page_directory * const pdp, 847 u64 start, u64 length) 848 { 849 struct i915_page_directory *pd; 850 unsigned int pdpe; 851 852 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 853 bool free = false; 854 855 GEM_BUG_ON(pd == vm->scratch_pd); 856 857 if (!gen8_ppgtt_clear_pd(vm, pd, start, length)) 858 continue; 859 860 spin_lock(&pdp->lock); 861 if (!atomic_read(&pd->used)) { 862 gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe); 863 pdp->entry[pdpe] = vm->scratch_pd; 864 865 GEM_BUG_ON(!atomic_read(&pdp->used)); 866 atomic_dec(&pdp->used); 867 free = true; 868 } 869 spin_unlock(&pdp->lock); 870 if (free) 871 free_pd(vm, pd); 872 } 873 874 return !atomic_read(&pdp->used); 875 } 876 877 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm, 878 u64 start, u64 length) 879 { 880 gen8_ppgtt_clear_pdp(vm, i915_vm_to_ppgtt(vm)->pd, start, length); 881 } 882 883 static void gen8_ppgtt_set_pml4e(struct i915_page_directory *pml4, 884 struct i915_page_directory *pdp, 885 unsigned int pml4e) 886 { 887 gen8_ppgtt_pml4e_t *vaddr; 888 889 vaddr = kmap_atomic_px(pml4); 890 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); 891 kunmap_atomic(vaddr); 892 } 893 894 /* Removes entries from a single pml4. 895 * This is the top-level structure in 4-level page tables used on gen8+. 896 * Empty entries are always scratch pml4e. 897 */ 898 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm, 899 u64 start, u64 length) 900 { 901 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 902 struct i915_page_directory * const pml4 = ppgtt->pd; 903 struct i915_page_directory *pdp; 904 unsigned int pml4e; 905 906 GEM_BUG_ON(!i915_vm_is_4lvl(vm)); 907 908 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 909 bool free = false; 910 GEM_BUG_ON(pdp == vm->scratch_pdp); 911 912 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length)) 913 continue; 914 915 spin_lock(&pml4->lock); 916 if (!atomic_read(&pdp->used)) { 917 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); 918 pml4->entry[pml4e] = vm->scratch_pdp; 919 free = true; 920 } 921 spin_unlock(&pml4->lock); 922 if (free) 923 free_pd(vm, pdp); 924 } 925 } 926 927 static inline struct sgt_dma { 928 struct scatterlist *sg; 929 dma_addr_t dma, max; 930 } sgt_dma(struct i915_vma *vma) { 931 struct scatterlist *sg = vma->pages->sgl; 932 dma_addr_t addr = sg_dma_address(sg); 933 return (struct sgt_dma) { sg, addr, addr + sg->length }; 934 } 935 936 struct gen8_insert_pte { 937 u16 pml4e; 938 u16 pdpe; 939 u16 pde; 940 u16 pte; 941 }; 942 943 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start) 944 { 945 return (struct gen8_insert_pte) { 946 gen8_pml4e_index(start), 947 gen8_pdpe_index(start), 948 gen8_pde_index(start), 949 gen8_pte_index(start), 950 }; 951 } 952 953 static __always_inline bool 954 gen8_ppgtt_insert_pte_entries(struct i915_ppgtt *ppgtt, 955 struct i915_page_directory *pdp, 956 struct sgt_dma *iter, 957 struct gen8_insert_pte *idx, 958 enum i915_cache_level cache_level, 959 u32 flags) 960 { 961 struct i915_page_directory *pd; 962 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); 963 gen8_pte_t *vaddr; 964 bool ret; 965 966 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm)); 967 pd = i915_pd_entry(pdp, idx->pdpe); 968 vaddr = kmap_atomic_px(i915_pt_entry(pd, idx->pde)); 969 do { 970 vaddr[idx->pte] = pte_encode | iter->dma; 971 972 iter->dma += I915_GTT_PAGE_SIZE; 973 if (iter->dma >= iter->max) { 974 iter->sg = __sg_next(iter->sg); 975 if (!iter->sg) { 976 ret = false; 977 break; 978 } 979 980 iter->dma = sg_dma_address(iter->sg); 981 iter->max = iter->dma + iter->sg->length; 982 } 983 984 if (++idx->pte == GEN8_PTES) { 985 idx->pte = 0; 986 987 if (++idx->pde == I915_PDES) { 988 idx->pde = 0; 989 990 /* Limited by sg length for 3lvl */ 991 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) { 992 idx->pdpe = 0; 993 ret = true; 994 break; 995 } 996 997 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm)); 998 pd = pdp->entry[idx->pdpe]; 999 } 1000 1001 kunmap_atomic(vaddr); 1002 vaddr = kmap_atomic_px(i915_pt_entry(pd, idx->pde)); 1003 } 1004 } while (1); 1005 kunmap_atomic(vaddr); 1006 1007 return ret; 1008 } 1009 1010 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm, 1011 struct i915_vma *vma, 1012 enum i915_cache_level cache_level, 1013 u32 flags) 1014 { 1015 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1016 struct sgt_dma iter = sgt_dma(vma); 1017 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); 1018 1019 gen8_ppgtt_insert_pte_entries(ppgtt, ppgtt->pd, &iter, &idx, 1020 cache_level, flags); 1021 1022 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 1023 } 1024 1025 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma, 1026 struct i915_page_directory *pml4, 1027 struct sgt_dma *iter, 1028 enum i915_cache_level cache_level, 1029 u32 flags) 1030 { 1031 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); 1032 u64 start = vma->node.start; 1033 dma_addr_t rem = iter->sg->length; 1034 1035 do { 1036 struct gen8_insert_pte idx = gen8_insert_pte(start); 1037 struct i915_page_directory *pdp = 1038 i915_pdp_entry(pml4, idx.pml4e); 1039 struct i915_page_directory *pd = i915_pd_entry(pdp, idx.pdpe); 1040 unsigned int page_size; 1041 bool maybe_64K = false; 1042 gen8_pte_t encode = pte_encode; 1043 gen8_pte_t *vaddr; 1044 u16 index, max; 1045 1046 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M && 1047 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) && 1048 rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) { 1049 index = idx.pde; 1050 max = I915_PDES; 1051 page_size = I915_GTT_PAGE_SIZE_2M; 1052 1053 encode |= GEN8_PDE_PS_2M; 1054 1055 vaddr = kmap_atomic_px(pd); 1056 } else { 1057 struct i915_page_table *pt = i915_pt_entry(pd, idx.pde); 1058 1059 index = idx.pte; 1060 max = GEN8_PTES; 1061 page_size = I915_GTT_PAGE_SIZE; 1062 1063 if (!index && 1064 vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K && 1065 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && 1066 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || 1067 rem >= (max - index) * I915_GTT_PAGE_SIZE)) 1068 maybe_64K = true; 1069 1070 vaddr = kmap_atomic_px(pt); 1071 } 1072 1073 do { 1074 GEM_BUG_ON(iter->sg->length < page_size); 1075 vaddr[index++] = encode | iter->dma; 1076 1077 start += page_size; 1078 iter->dma += page_size; 1079 rem -= page_size; 1080 if (iter->dma >= iter->max) { 1081 iter->sg = __sg_next(iter->sg); 1082 if (!iter->sg) 1083 break; 1084 1085 rem = iter->sg->length; 1086 iter->dma = sg_dma_address(iter->sg); 1087 iter->max = iter->dma + rem; 1088 1089 if (maybe_64K && index < max && 1090 !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && 1091 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || 1092 rem >= (max - index) * I915_GTT_PAGE_SIZE))) 1093 maybe_64K = false; 1094 1095 if (unlikely(!IS_ALIGNED(iter->dma, page_size))) 1096 break; 1097 } 1098 } while (rem >= page_size && index < max); 1099 1100 kunmap_atomic(vaddr); 1101 1102 /* 1103 * Is it safe to mark the 2M block as 64K? -- Either we have 1104 * filled whole page-table with 64K entries, or filled part of 1105 * it and have reached the end of the sg table and we have 1106 * enough padding. 1107 */ 1108 if (maybe_64K && 1109 (index == max || 1110 (i915_vm_has_scratch_64K(vma->vm) && 1111 !iter->sg && IS_ALIGNED(vma->node.start + 1112 vma->node.size, 1113 I915_GTT_PAGE_SIZE_2M)))) { 1114 vaddr = kmap_atomic_px(pd); 1115 vaddr[idx.pde] |= GEN8_PDE_IPS_64K; 1116 kunmap_atomic(vaddr); 1117 page_size = I915_GTT_PAGE_SIZE_64K; 1118 1119 /* 1120 * We write all 4K page entries, even when using 64K 1121 * pages. In order to verify that the HW isn't cheating 1122 * by using the 4K PTE instead of the 64K PTE, we want 1123 * to remove all the surplus entries. If the HW skipped 1124 * the 64K PTE, it will read/write into the scratch page 1125 * instead - which we detect as missing results during 1126 * selftests. 1127 */ 1128 if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) { 1129 u16 i; 1130 1131 encode = vma->vm->scratch_pte; 1132 vaddr = kmap_atomic_px(i915_pt_entry(pd, 1133 idx.pde)); 1134 1135 for (i = 1; i < index; i += 16) 1136 memset64(vaddr + i, encode, 15); 1137 1138 kunmap_atomic(vaddr); 1139 } 1140 } 1141 1142 vma->page_sizes.gtt |= page_size; 1143 } while (iter->sg); 1144 } 1145 1146 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm, 1147 struct i915_vma *vma, 1148 enum i915_cache_level cache_level, 1149 u32 flags) 1150 { 1151 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1152 struct sgt_dma iter = sgt_dma(vma); 1153 struct i915_page_directory * const pml4 = ppgtt->pd; 1154 1155 if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { 1156 gen8_ppgtt_insert_huge_entries(vma, pml4, &iter, cache_level, 1157 flags); 1158 } else { 1159 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); 1160 1161 while (gen8_ppgtt_insert_pte_entries(ppgtt, 1162 i915_pdp_entry(pml4, idx.pml4e++), 1163 &iter, &idx, cache_level, 1164 flags)) 1165 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4); 1166 1167 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 1168 } 1169 } 1170 1171 static void gen8_free_page_tables(struct i915_address_space *vm, 1172 struct i915_page_directory *pd) 1173 { 1174 int i; 1175 1176 for (i = 0; i < I915_PDES; i++) { 1177 if (pd->entry[i] != vm->scratch_pt) 1178 free_pt(vm, pd->entry[i]); 1179 } 1180 } 1181 1182 static int gen8_init_scratch(struct i915_address_space *vm) 1183 { 1184 int ret; 1185 1186 /* 1187 * If everybody agrees to not to write into the scratch page, 1188 * we can reuse it for all vm, keeping contexts and processes separate. 1189 */ 1190 if (vm->has_read_only && 1191 vm->i915->kernel_context && 1192 vm->i915->kernel_context->vm) { 1193 struct i915_address_space *clone = vm->i915->kernel_context->vm; 1194 1195 GEM_BUG_ON(!clone->has_read_only); 1196 1197 vm->scratch_order = clone->scratch_order; 1198 vm->scratch_pte = clone->scratch_pte; 1199 vm->scratch_pt = clone->scratch_pt; 1200 vm->scratch_pd = clone->scratch_pd; 1201 vm->scratch_pdp = clone->scratch_pdp; 1202 return 0; 1203 } 1204 1205 ret = setup_scratch_page(vm, __GFP_HIGHMEM); 1206 if (ret) 1207 return ret; 1208 1209 vm->scratch_pte = 1210 gen8_pte_encode(vm->scratch_page.daddr, 1211 I915_CACHE_LLC, 1212 vm->has_read_only); 1213 1214 vm->scratch_pt = alloc_pt(vm); 1215 if (IS_ERR(vm->scratch_pt)) { 1216 ret = PTR_ERR(vm->scratch_pt); 1217 goto free_scratch_page; 1218 } 1219 1220 vm->scratch_pd = alloc_pd(vm); 1221 if (IS_ERR(vm->scratch_pd)) { 1222 ret = PTR_ERR(vm->scratch_pd); 1223 goto free_pt; 1224 } 1225 1226 if (i915_vm_is_4lvl(vm)) { 1227 vm->scratch_pdp = alloc_pd(vm); 1228 if (IS_ERR(vm->scratch_pdp)) { 1229 ret = PTR_ERR(vm->scratch_pdp); 1230 goto free_pd; 1231 } 1232 } 1233 1234 gen8_initialize_pt(vm, vm->scratch_pt); 1235 init_pd_with_page(vm, vm->scratch_pd, vm->scratch_pt); 1236 if (i915_vm_is_4lvl(vm)) 1237 init_pd(vm, vm->scratch_pdp, vm->scratch_pd); 1238 1239 return 0; 1240 1241 free_pd: 1242 free_pd(vm, vm->scratch_pd); 1243 free_pt: 1244 free_pt(vm, vm->scratch_pt); 1245 free_scratch_page: 1246 cleanup_scratch_page(vm); 1247 1248 return ret; 1249 } 1250 1251 static int gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create) 1252 { 1253 struct i915_address_space *vm = &ppgtt->vm; 1254 struct drm_i915_private *dev_priv = vm->i915; 1255 enum vgt_g2v_type msg; 1256 int i; 1257 1258 if (i915_vm_is_4lvl(vm)) { 1259 const u64 daddr = px_dma(ppgtt->pd); 1260 1261 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); 1262 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); 1263 1264 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : 1265 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); 1266 } else { 1267 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1268 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i); 1269 1270 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); 1271 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); 1272 } 1273 1274 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : 1275 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); 1276 } 1277 1278 I915_WRITE(vgtif_reg(g2v_notify), msg); 1279 1280 return 0; 1281 } 1282 1283 static void gen8_free_scratch(struct i915_address_space *vm) 1284 { 1285 if (!vm->scratch_page.daddr) 1286 return; 1287 1288 if (i915_vm_is_4lvl(vm)) 1289 free_pd(vm, vm->scratch_pdp); 1290 free_pd(vm, vm->scratch_pd); 1291 free_pt(vm, vm->scratch_pt); 1292 cleanup_scratch_page(vm); 1293 } 1294 1295 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm, 1296 struct i915_page_directory *pdp) 1297 { 1298 const unsigned int pdpes = i915_pdpes_per_pdp(vm); 1299 int i; 1300 1301 for (i = 0; i < pdpes; i++) { 1302 if (pdp->entry[i] == vm->scratch_pd) 1303 continue; 1304 1305 gen8_free_page_tables(vm, pdp->entry[i]); 1306 free_pd(vm, pdp->entry[i]); 1307 } 1308 1309 free_pd(vm, pdp); 1310 } 1311 1312 static void gen8_ppgtt_cleanup_4lvl(struct i915_ppgtt *ppgtt) 1313 { 1314 struct i915_page_directory * const pml4 = ppgtt->pd; 1315 int i; 1316 1317 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) { 1318 struct i915_page_directory *pdp = i915_pdp_entry(pml4, i); 1319 1320 if (pdp == ppgtt->vm.scratch_pdp) 1321 continue; 1322 1323 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, pdp); 1324 } 1325 1326 free_pd(&ppgtt->vm, pml4); 1327 } 1328 1329 static void gen8_ppgtt_cleanup(struct i915_address_space *vm) 1330 { 1331 struct drm_i915_private *i915 = vm->i915; 1332 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1333 1334 if (intel_vgpu_active(i915)) 1335 gen8_ppgtt_notify_vgt(ppgtt, false); 1336 1337 if (i915_vm_is_4lvl(vm)) 1338 gen8_ppgtt_cleanup_4lvl(ppgtt); 1339 else 1340 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pd); 1341 1342 gen8_free_scratch(vm); 1343 } 1344 1345 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm, 1346 struct i915_page_directory *pd, 1347 u64 start, u64 length) 1348 { 1349 struct i915_page_table *pt, *alloc = NULL; 1350 u64 from = start; 1351 unsigned int pde; 1352 int ret = 0; 1353 1354 spin_lock(&pd->lock); 1355 gen8_for_each_pde(pt, pd, start, length, pde) { 1356 const int count = gen8_pte_count(start, length); 1357 1358 if (pt == vm->scratch_pt) { 1359 spin_unlock(&pd->lock); 1360 1361 pt = fetch_and_zero(&alloc); 1362 if (!pt) 1363 pt = alloc_pt(vm); 1364 if (IS_ERR(pt)) { 1365 ret = PTR_ERR(pt); 1366 goto unwind; 1367 } 1368 1369 if (count < GEN8_PTES || intel_vgpu_active(vm->i915)) 1370 gen8_initialize_pt(vm, pt); 1371 1372 spin_lock(&pd->lock); 1373 if (pd->entry[pde] == vm->scratch_pt) { 1374 gen8_ppgtt_set_pde(vm, pd, pt, pde); 1375 pd->entry[pde] = pt; 1376 atomic_inc(&pd->used); 1377 } else { 1378 alloc = pt; 1379 pt = pd->entry[pde]; 1380 } 1381 } 1382 1383 atomic_add(count, &pt->used); 1384 } 1385 spin_unlock(&pd->lock); 1386 goto out; 1387 1388 unwind: 1389 gen8_ppgtt_clear_pd(vm, pd, from, start - from); 1390 out: 1391 if (alloc) 1392 free_pt(vm, alloc); 1393 return ret; 1394 } 1395 1396 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm, 1397 struct i915_page_directory *pdp, 1398 u64 start, u64 length) 1399 { 1400 struct i915_page_directory *pd, *alloc = NULL; 1401 u64 from = start; 1402 unsigned int pdpe; 1403 int ret = 0; 1404 1405 spin_lock(&pdp->lock); 1406 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1407 if (pd == vm->scratch_pd) { 1408 spin_unlock(&pdp->lock); 1409 1410 pd = fetch_and_zero(&alloc); 1411 if (!pd) 1412 pd = alloc_pd(vm); 1413 if (IS_ERR(pd)) { 1414 ret = PTR_ERR(pd); 1415 goto unwind; 1416 } 1417 1418 init_pd_with_page(vm, pd, vm->scratch_pt); 1419 1420 spin_lock(&pdp->lock); 1421 if (pdp->entry[pdpe] == vm->scratch_pd) { 1422 gen8_ppgtt_set_pdpe(pdp, pd, pdpe); 1423 pdp->entry[pdpe] = pd; 1424 atomic_inc(&pdp->used); 1425 } else { 1426 alloc = pd; 1427 pd = pdp->entry[pdpe]; 1428 } 1429 } 1430 atomic_inc(&pd->used); 1431 spin_unlock(&pdp->lock); 1432 1433 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length); 1434 if (unlikely(ret)) 1435 goto unwind_pd; 1436 1437 spin_lock(&pdp->lock); 1438 atomic_dec(&pd->used); 1439 } 1440 spin_unlock(&pdp->lock); 1441 goto out; 1442 1443 unwind_pd: 1444 spin_lock(&pdp->lock); 1445 if (atomic_dec_and_test(&pd->used)) { 1446 gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe); 1447 GEM_BUG_ON(!atomic_read(&pdp->used)); 1448 atomic_dec(&pdp->used); 1449 free_pd(vm, pd); 1450 } 1451 spin_unlock(&pdp->lock); 1452 unwind: 1453 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from); 1454 out: 1455 if (alloc) 1456 free_pd(vm, alloc); 1457 return ret; 1458 } 1459 1460 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm, 1461 u64 start, u64 length) 1462 { 1463 return gen8_ppgtt_alloc_pdp(vm, 1464 i915_vm_to_ppgtt(vm)->pd, start, length); 1465 } 1466 1467 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm, 1468 u64 start, u64 length) 1469 { 1470 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1471 struct i915_page_directory * const pml4 = ppgtt->pd; 1472 struct i915_page_directory *pdp, *alloc = NULL; 1473 u64 from = start; 1474 int ret = 0; 1475 u32 pml4e; 1476 1477 spin_lock(&pml4->lock); 1478 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 1479 if (pdp == vm->scratch_pdp) { 1480 spin_unlock(&pml4->lock); 1481 1482 pdp = fetch_and_zero(&alloc); 1483 if (!pdp) 1484 pdp = alloc_pd(vm); 1485 if (IS_ERR(pdp)) { 1486 ret = PTR_ERR(pdp); 1487 goto unwind; 1488 } 1489 1490 init_pd(vm, pdp, vm->scratch_pd); 1491 1492 spin_lock(&pml4->lock); 1493 if (pml4->entry[pml4e] == vm->scratch_pdp) { 1494 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e); 1495 pml4->entry[pml4e] = pdp; 1496 } else { 1497 alloc = pdp; 1498 pdp = pml4->entry[pml4e]; 1499 } 1500 } 1501 atomic_inc(&pdp->used); 1502 spin_unlock(&pml4->lock); 1503 1504 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length); 1505 if (unlikely(ret)) 1506 goto unwind_pdp; 1507 1508 spin_lock(&pml4->lock); 1509 atomic_dec(&pdp->used); 1510 } 1511 spin_unlock(&pml4->lock); 1512 goto out; 1513 1514 unwind_pdp: 1515 spin_lock(&pml4->lock); 1516 if (atomic_dec_and_test(&pdp->used)) { 1517 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); 1518 free_pd(vm, pdp); 1519 } 1520 spin_unlock(&pml4->lock); 1521 unwind: 1522 gen8_ppgtt_clear_4lvl(vm, from, start - from); 1523 out: 1524 if (alloc) 1525 free_pd(vm, alloc); 1526 return ret; 1527 } 1528 1529 static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt) 1530 { 1531 struct i915_address_space *vm = &ppgtt->vm; 1532 struct i915_page_directory *pdp = ppgtt->pd; 1533 struct i915_page_directory *pd; 1534 u64 start = 0, length = ppgtt->vm.total; 1535 u64 from = start; 1536 unsigned int pdpe; 1537 1538 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1539 pd = alloc_pd(vm); 1540 if (IS_ERR(pd)) 1541 goto unwind; 1542 1543 init_pd_with_page(vm, pd, vm->scratch_pt); 1544 gen8_ppgtt_set_pdpe(pdp, pd, pdpe); 1545 1546 atomic_inc(&pdp->used); 1547 } 1548 1549 atomic_inc(&pdp->used); /* never remove */ 1550 1551 return 0; 1552 1553 unwind: 1554 start -= from; 1555 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) { 1556 gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe); 1557 free_pd(vm, pd); 1558 } 1559 atomic_set(&pdp->used, 0); 1560 return -ENOMEM; 1561 } 1562 1563 static void ppgtt_init(struct drm_i915_private *i915, 1564 struct i915_ppgtt *ppgtt) 1565 { 1566 ppgtt->vm.i915 = i915; 1567 ppgtt->vm.dma = &i915->drm.pdev->dev; 1568 ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size); 1569 1570 i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT); 1571 1572 ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma; 1573 ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma; 1574 ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages; 1575 ppgtt->vm.vma_ops.clear_pages = clear_pages; 1576 } 1577 1578 /* 1579 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers 1580 * with a net effect resembling a 2-level page table in normal x86 terms. Each 1581 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address 1582 * space. 1583 * 1584 */ 1585 static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915) 1586 { 1587 struct i915_ppgtt *ppgtt; 1588 int err; 1589 1590 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); 1591 if (!ppgtt) 1592 return ERR_PTR(-ENOMEM); 1593 1594 ppgtt_init(i915, ppgtt); 1595 1596 /* 1597 * From bdw, there is hw support for read-only pages in the PPGTT. 1598 * 1599 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support 1600 * for now. 1601 */ 1602 ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11; 1603 1604 /* There are only few exceptions for gen >=6. chv and bxt. 1605 * And we are not sure about the latter so play safe for now. 1606 */ 1607 if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915)) 1608 ppgtt->vm.pt_kmap_wc = true; 1609 1610 err = gen8_init_scratch(&ppgtt->vm); 1611 if (err) 1612 goto err_free; 1613 1614 ppgtt->pd = __alloc_pd(); 1615 if (!ppgtt->pd) { 1616 err = -ENOMEM; 1617 goto err_free_scratch; 1618 } 1619 1620 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1621 err = setup_px(&ppgtt->vm, ppgtt->pd); 1622 if (err) 1623 goto err_free_pdp; 1624 1625 init_pd(&ppgtt->vm, ppgtt->pd, ppgtt->vm.scratch_pdp); 1626 1627 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl; 1628 ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl; 1629 ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl; 1630 } else { 1631 /* 1632 * We don't need to setup dma for top level pdp, only 1633 * for entries. So point entries to scratch. 1634 */ 1635 memset_p(ppgtt->pd->entry, ppgtt->vm.scratch_pd, 1636 GEN8_3LVL_PDPES); 1637 1638 if (intel_vgpu_active(i915)) { 1639 err = gen8_preallocate_top_level_pdp(ppgtt); 1640 if (err) 1641 goto err_free_pdp; 1642 } 1643 1644 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl; 1645 ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl; 1646 ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl; 1647 } 1648 1649 if (intel_vgpu_active(i915)) 1650 gen8_ppgtt_notify_vgt(ppgtt, true); 1651 1652 ppgtt->vm.cleanup = gen8_ppgtt_cleanup; 1653 1654 return ppgtt; 1655 1656 err_free_pdp: 1657 free_pd(&ppgtt->vm, ppgtt->pd); 1658 err_free_scratch: 1659 gen8_free_scratch(&ppgtt->vm); 1660 err_free: 1661 kfree(ppgtt); 1662 return ERR_PTR(err); 1663 } 1664 1665 /* Write pde (index) from the page directory @pd to the page table @pt */ 1666 static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt, 1667 const unsigned int pde, 1668 const struct i915_page_table *pt) 1669 { 1670 /* Caller needs to make sure the write completes if necessary */ 1671 iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID, 1672 ppgtt->pd_addr + pde); 1673 } 1674 1675 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv) 1676 { 1677 struct intel_engine_cs *engine; 1678 u32 ecochk, ecobits; 1679 enum intel_engine_id id; 1680 1681 ecobits = I915_READ(GAC_ECO_BITS); 1682 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); 1683 1684 ecochk = I915_READ(GAM_ECOCHK); 1685 if (IS_HASWELL(dev_priv)) { 1686 ecochk |= ECOCHK_PPGTT_WB_HSW; 1687 } else { 1688 ecochk |= ECOCHK_PPGTT_LLC_IVB; 1689 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; 1690 } 1691 I915_WRITE(GAM_ECOCHK, ecochk); 1692 1693 for_each_engine(engine, dev_priv, id) { 1694 /* GFX_MODE is per-ring on gen7+ */ 1695 ENGINE_WRITE(engine, 1696 RING_MODE_GEN7, 1697 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1698 } 1699 } 1700 1701 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv) 1702 { 1703 u32 ecochk, gab_ctl, ecobits; 1704 1705 ecobits = I915_READ(GAC_ECO_BITS); 1706 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | 1707 ECOBITS_PPGTT_CACHE64B); 1708 1709 gab_ctl = I915_READ(GAB_CTL); 1710 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); 1711 1712 ecochk = I915_READ(GAM_ECOCHK); 1713 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); 1714 1715 if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */ 1716 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1717 } 1718 1719 /* PPGTT support for Sandybdrige/Gen6 and later */ 1720 static void gen6_ppgtt_clear_range(struct i915_address_space *vm, 1721 u64 start, u64 length) 1722 { 1723 struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); 1724 const unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 1725 const gen6_pte_t scratch_pte = vm->scratch_pte; 1726 unsigned int pde = first_entry / GEN6_PTES; 1727 unsigned int pte = first_entry % GEN6_PTES; 1728 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 1729 1730 while (num_entries) { 1731 struct i915_page_table * const pt = 1732 i915_pt_entry(ppgtt->base.pd, pde++); 1733 const unsigned int count = min(num_entries, GEN6_PTES - pte); 1734 gen6_pte_t *vaddr; 1735 1736 GEM_BUG_ON(pt == vm->scratch_pt); 1737 1738 num_entries -= count; 1739 1740 GEM_BUG_ON(count > atomic_read(&pt->used)); 1741 if (!atomic_sub_return(count, &pt->used)) 1742 ppgtt->scan_for_unused_pt = true; 1743 1744 /* 1745 * Note that the hw doesn't support removing PDE on the fly 1746 * (they are cached inside the context with no means to 1747 * invalidate the cache), so we can only reset the PTE 1748 * entries back to scratch. 1749 */ 1750 1751 vaddr = kmap_atomic_px(pt); 1752 memset32(vaddr + pte, scratch_pte, count); 1753 kunmap_atomic(vaddr); 1754 1755 pte = 0; 1756 } 1757 } 1758 1759 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, 1760 struct i915_vma *vma, 1761 enum i915_cache_level cache_level, 1762 u32 flags) 1763 { 1764 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1765 struct i915_page_directory * const pd = ppgtt->pd; 1766 unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE; 1767 unsigned act_pt = first_entry / GEN6_PTES; 1768 unsigned act_pte = first_entry % GEN6_PTES; 1769 const u32 pte_encode = vm->pte_encode(0, cache_level, flags); 1770 struct sgt_dma iter = sgt_dma(vma); 1771 gen6_pte_t *vaddr; 1772 1773 GEM_BUG_ON(i915_pt_entry(pd, act_pt) == vm->scratch_pt); 1774 1775 vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt)); 1776 do { 1777 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma); 1778 1779 iter.dma += I915_GTT_PAGE_SIZE; 1780 if (iter.dma == iter.max) { 1781 iter.sg = __sg_next(iter.sg); 1782 if (!iter.sg) 1783 break; 1784 1785 iter.dma = sg_dma_address(iter.sg); 1786 iter.max = iter.dma + iter.sg->length; 1787 } 1788 1789 if (++act_pte == GEN6_PTES) { 1790 kunmap_atomic(vaddr); 1791 vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt)); 1792 act_pte = 0; 1793 } 1794 } while (1); 1795 kunmap_atomic(vaddr); 1796 1797 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 1798 } 1799 1800 static int gen6_alloc_va_range(struct i915_address_space *vm, 1801 u64 start, u64 length) 1802 { 1803 struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); 1804 struct i915_page_directory * const pd = ppgtt->base.pd; 1805 struct i915_page_table *pt, *alloc = NULL; 1806 intel_wakeref_t wakeref; 1807 u64 from = start; 1808 unsigned int pde; 1809 bool flush = false; 1810 int ret = 0; 1811 1812 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 1813 1814 spin_lock(&pd->lock); 1815 gen6_for_each_pde(pt, pd, start, length, pde) { 1816 const unsigned int count = gen6_pte_count(start, length); 1817 1818 if (pt == vm->scratch_pt) { 1819 spin_unlock(&pd->lock); 1820 1821 pt = fetch_and_zero(&alloc); 1822 if (!pt) 1823 pt = alloc_pt(vm); 1824 if (IS_ERR(pt)) { 1825 ret = PTR_ERR(pt); 1826 goto unwind_out; 1827 } 1828 1829 gen6_initialize_pt(vm, pt); 1830 1831 spin_lock(&pd->lock); 1832 if (pd->entry[pde] == vm->scratch_pt) { 1833 pd->entry[pde] = pt; 1834 if (i915_vma_is_bound(ppgtt->vma, 1835 I915_VMA_GLOBAL_BIND)) { 1836 gen6_write_pde(ppgtt, pde, pt); 1837 flush = true; 1838 } 1839 } else { 1840 alloc = pt; 1841 pt = pd->entry[pde]; 1842 } 1843 } 1844 1845 atomic_add(count, &pt->used); 1846 } 1847 spin_unlock(&pd->lock); 1848 1849 if (flush) { 1850 mark_tlbs_dirty(&ppgtt->base); 1851 gen6_ggtt_invalidate(vm->i915); 1852 } 1853 1854 goto out; 1855 1856 unwind_out: 1857 gen6_ppgtt_clear_range(vm, from, start - from); 1858 out: 1859 if (alloc) 1860 free_pt(vm, alloc); 1861 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 1862 return ret; 1863 } 1864 1865 static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt) 1866 { 1867 struct i915_address_space * const vm = &ppgtt->base.vm; 1868 struct i915_page_directory * const pd = ppgtt->base.pd; 1869 struct i915_page_table *unused; 1870 u32 pde; 1871 int ret; 1872 1873 ret = setup_scratch_page(vm, __GFP_HIGHMEM); 1874 if (ret) 1875 return ret; 1876 1877 vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr, 1878 I915_CACHE_NONE, 1879 PTE_READ_ONLY); 1880 1881 vm->scratch_pt = alloc_pt(vm); 1882 if (IS_ERR(vm->scratch_pt)) { 1883 cleanup_scratch_page(vm); 1884 return PTR_ERR(vm->scratch_pt); 1885 } 1886 1887 gen6_initialize_pt(vm, vm->scratch_pt); 1888 1889 gen6_for_all_pdes(unused, pd, pde) 1890 pd->entry[pde] = vm->scratch_pt; 1891 1892 return 0; 1893 } 1894 1895 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm) 1896 { 1897 free_pt(vm, vm->scratch_pt); 1898 cleanup_scratch_page(vm); 1899 } 1900 1901 static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt) 1902 { 1903 struct i915_page_directory * const pd = ppgtt->base.pd; 1904 struct i915_page_table *pt; 1905 u32 pde; 1906 1907 gen6_for_all_pdes(pt, pd, pde) 1908 if (pt != ppgtt->base.vm.scratch_pt) 1909 free_pt(&ppgtt->base.vm, pt); 1910 } 1911 1912 struct gen6_ppgtt_cleanup_work { 1913 struct work_struct base; 1914 struct i915_vma *vma; 1915 }; 1916 1917 static void gen6_ppgtt_cleanup_work(struct work_struct *wrk) 1918 { 1919 struct gen6_ppgtt_cleanup_work *work = 1920 container_of(wrk, typeof(*work), base); 1921 /* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */ 1922 struct drm_i915_private *i915 = work->vma->vm->i915; 1923 1924 mutex_lock(&i915->drm.struct_mutex); 1925 i915_vma_destroy(work->vma); 1926 mutex_unlock(&i915->drm.struct_mutex); 1927 1928 kfree(work); 1929 } 1930 1931 static int nop_set_pages(struct i915_vma *vma) 1932 { 1933 return -ENODEV; 1934 } 1935 1936 static void nop_clear_pages(struct i915_vma *vma) 1937 { 1938 } 1939 1940 static int nop_bind(struct i915_vma *vma, 1941 enum i915_cache_level cache_level, 1942 u32 unused) 1943 { 1944 return -ENODEV; 1945 } 1946 1947 static void nop_unbind(struct i915_vma *vma) 1948 { 1949 } 1950 1951 static const struct i915_vma_ops nop_vma_ops = { 1952 .set_pages = nop_set_pages, 1953 .clear_pages = nop_clear_pages, 1954 .bind_vma = nop_bind, 1955 .unbind_vma = nop_unbind, 1956 }; 1957 1958 static void gen6_ppgtt_cleanup(struct i915_address_space *vm) 1959 { 1960 struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); 1961 struct gen6_ppgtt_cleanup_work *work = ppgtt->work; 1962 1963 /* FIXME remove the struct_mutex to bring the locking under control */ 1964 INIT_WORK(&work->base, gen6_ppgtt_cleanup_work); 1965 work->vma = ppgtt->vma; 1966 work->vma->ops = &nop_vma_ops; 1967 schedule_work(&work->base); 1968 1969 gen6_ppgtt_free_pd(ppgtt); 1970 gen6_ppgtt_free_scratch(vm); 1971 kfree(ppgtt->base.pd); 1972 } 1973 1974 static int pd_vma_set_pages(struct i915_vma *vma) 1975 { 1976 vma->pages = ERR_PTR(-ENODEV); 1977 return 0; 1978 } 1979 1980 static void pd_vma_clear_pages(struct i915_vma *vma) 1981 { 1982 GEM_BUG_ON(!vma->pages); 1983 1984 vma->pages = NULL; 1985 } 1986 1987 static int pd_vma_bind(struct i915_vma *vma, 1988 enum i915_cache_level cache_level, 1989 u32 unused) 1990 { 1991 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm); 1992 struct gen6_ppgtt *ppgtt = vma->private; 1993 u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE; 1994 struct i915_page_table *pt; 1995 unsigned int pde; 1996 1997 ppgtt->base.pd->base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t); 1998 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset; 1999 2000 gen6_for_all_pdes(pt, ppgtt->base.pd, pde) 2001 gen6_write_pde(ppgtt, pde, pt); 2002 2003 mark_tlbs_dirty(&ppgtt->base); 2004 gen6_ggtt_invalidate(ppgtt->base.vm.i915); 2005 2006 return 0; 2007 } 2008 2009 static void pd_vma_unbind(struct i915_vma *vma) 2010 { 2011 struct gen6_ppgtt *ppgtt = vma->private; 2012 struct i915_page_directory * const pd = ppgtt->base.pd; 2013 struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt; 2014 struct i915_page_table *pt; 2015 unsigned int pde; 2016 2017 if (!ppgtt->scan_for_unused_pt) 2018 return; 2019 2020 /* Free all no longer used page tables */ 2021 gen6_for_all_pdes(pt, ppgtt->base.pd, pde) { 2022 if (atomic_read(&pt->used) || pt == scratch_pt) 2023 continue; 2024 2025 free_pt(&ppgtt->base.vm, pt); 2026 pd->entry[pde] = scratch_pt; 2027 } 2028 2029 ppgtt->scan_for_unused_pt = false; 2030 } 2031 2032 static const struct i915_vma_ops pd_vma_ops = { 2033 .set_pages = pd_vma_set_pages, 2034 .clear_pages = pd_vma_clear_pages, 2035 .bind_vma = pd_vma_bind, 2036 .unbind_vma = pd_vma_unbind, 2037 }; 2038 2039 static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size) 2040 { 2041 struct drm_i915_private *i915 = ppgtt->base.vm.i915; 2042 struct i915_ggtt *ggtt = &i915->ggtt; 2043 struct i915_vma *vma; 2044 2045 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 2046 GEM_BUG_ON(size > ggtt->vm.total); 2047 2048 vma = i915_vma_alloc(); 2049 if (!vma) 2050 return ERR_PTR(-ENOMEM); 2051 2052 i915_active_init(i915, &vma->active, NULL); 2053 INIT_ACTIVE_REQUEST(&vma->last_fence); 2054 2055 vma->vm = &ggtt->vm; 2056 vma->ops = &pd_vma_ops; 2057 vma->private = ppgtt; 2058 2059 vma->size = size; 2060 vma->fence_size = size; 2061 vma->flags = I915_VMA_GGTT; 2062 vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */ 2063 2064 INIT_LIST_HEAD(&vma->obj_link); 2065 INIT_LIST_HEAD(&vma->closed_link); 2066 2067 mutex_lock(&vma->vm->mutex); 2068 list_add(&vma->vm_link, &vma->vm->unbound_list); 2069 mutex_unlock(&vma->vm->mutex); 2070 2071 return vma; 2072 } 2073 2074 int gen6_ppgtt_pin(struct i915_ppgtt *base) 2075 { 2076 struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base); 2077 int err; 2078 2079 GEM_BUG_ON(ppgtt->base.vm.closed); 2080 2081 /* 2082 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt 2083 * which will be pinned into every active context. 2084 * (When vma->pin_count becomes atomic, I expect we will naturally 2085 * need a larger, unpacked, type and kill this redundancy.) 2086 */ 2087 if (ppgtt->pin_count++) 2088 return 0; 2089 2090 /* 2091 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The 2092 * allocator works in address space sizes, so it's multiplied by page 2093 * size. We allocate at the top of the GTT to avoid fragmentation. 2094 */ 2095 err = i915_vma_pin(ppgtt->vma, 2096 0, GEN6_PD_ALIGN, 2097 PIN_GLOBAL | PIN_HIGH); 2098 if (err) 2099 goto unpin; 2100 2101 return 0; 2102 2103 unpin: 2104 ppgtt->pin_count = 0; 2105 return err; 2106 } 2107 2108 void gen6_ppgtt_unpin(struct i915_ppgtt *base) 2109 { 2110 struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base); 2111 2112 GEM_BUG_ON(!ppgtt->pin_count); 2113 if (--ppgtt->pin_count) 2114 return; 2115 2116 i915_vma_unpin(ppgtt->vma); 2117 } 2118 2119 void gen6_ppgtt_unpin_all(struct i915_ppgtt *base) 2120 { 2121 struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base); 2122 2123 if (!ppgtt->pin_count) 2124 return; 2125 2126 ppgtt->pin_count = 0; 2127 i915_vma_unpin(ppgtt->vma); 2128 } 2129 2130 static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915) 2131 { 2132 struct i915_ggtt * const ggtt = &i915->ggtt; 2133 struct gen6_ppgtt *ppgtt; 2134 int err; 2135 2136 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); 2137 if (!ppgtt) 2138 return ERR_PTR(-ENOMEM); 2139 2140 ppgtt_init(i915, &ppgtt->base); 2141 2142 ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range; 2143 ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range; 2144 ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries; 2145 ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup; 2146 2147 ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode; 2148 2149 ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL); 2150 if (!ppgtt->work) { 2151 err = -ENOMEM; 2152 goto err_free; 2153 } 2154 2155 ppgtt->base.pd = __alloc_pd(); 2156 if (!ppgtt->base.pd) { 2157 err = -ENOMEM; 2158 goto err_work; 2159 } 2160 2161 err = gen6_ppgtt_init_scratch(ppgtt); 2162 if (err) 2163 goto err_pd; 2164 2165 ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE); 2166 if (IS_ERR(ppgtt->vma)) { 2167 err = PTR_ERR(ppgtt->vma); 2168 goto err_scratch; 2169 } 2170 2171 return &ppgtt->base; 2172 2173 err_scratch: 2174 gen6_ppgtt_free_scratch(&ppgtt->base.vm); 2175 err_pd: 2176 kfree(ppgtt->base.pd); 2177 err_work: 2178 kfree(ppgtt->work); 2179 err_free: 2180 kfree(ppgtt); 2181 return ERR_PTR(err); 2182 } 2183 2184 static void gtt_write_workarounds(struct drm_i915_private *dev_priv) 2185 { 2186 /* This function is for gtt related workarounds. This function is 2187 * called on driver load and after a GPU reset, so you can place 2188 * workarounds here even if they get overwritten by GPU reset. 2189 */ 2190 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ 2191 if (IS_BROADWELL(dev_priv)) 2192 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 2193 else if (IS_CHERRYVIEW(dev_priv)) 2194 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 2195 else if (IS_GEN9_LP(dev_priv)) 2196 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 2197 else if (INTEL_GEN(dev_priv) >= 9) 2198 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 2199 2200 /* 2201 * To support 64K PTEs we need to first enable the use of the 2202 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical 2203 * mmio, otherwise the page-walker will simply ignore the IPS bit. This 2204 * shouldn't be needed after GEN10. 2205 * 2206 * 64K pages were first introduced from BDW+, although technically they 2207 * only *work* from gen9+. For pre-BDW we instead have the option for 2208 * 32K pages, but we don't currently have any support for it in our 2209 * driver. 2210 */ 2211 if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) && 2212 INTEL_GEN(dev_priv) <= 10) 2213 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA, 2214 I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) | 2215 GAMW_ECO_ENABLE_64K_IPS_FIELD); 2216 } 2217 2218 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv) 2219 { 2220 gtt_write_workarounds(dev_priv); 2221 2222 if (IS_GEN(dev_priv, 6)) 2223 gen6_ppgtt_enable(dev_priv); 2224 else if (IS_GEN(dev_priv, 7)) 2225 gen7_ppgtt_enable(dev_priv); 2226 2227 return 0; 2228 } 2229 2230 static struct i915_ppgtt * 2231 __ppgtt_create(struct drm_i915_private *i915) 2232 { 2233 if (INTEL_GEN(i915) < 8) 2234 return gen6_ppgtt_create(i915); 2235 else 2236 return gen8_ppgtt_create(i915); 2237 } 2238 2239 struct i915_ppgtt * 2240 i915_ppgtt_create(struct drm_i915_private *i915) 2241 { 2242 struct i915_ppgtt *ppgtt; 2243 2244 ppgtt = __ppgtt_create(i915); 2245 if (IS_ERR(ppgtt)) 2246 return ppgtt; 2247 2248 trace_i915_ppgtt_create(&ppgtt->vm); 2249 2250 return ppgtt; 2251 } 2252 2253 static void ppgtt_destroy_vma(struct i915_address_space *vm) 2254 { 2255 struct list_head *phases[] = { 2256 &vm->bound_list, 2257 &vm->unbound_list, 2258 NULL, 2259 }, **phase; 2260 2261 vm->closed = true; 2262 for (phase = phases; *phase; phase++) { 2263 struct i915_vma *vma, *vn; 2264 2265 list_for_each_entry_safe(vma, vn, *phase, vm_link) 2266 i915_vma_destroy(vma); 2267 } 2268 } 2269 2270 void i915_vm_release(struct kref *kref) 2271 { 2272 struct i915_address_space *vm = 2273 container_of(kref, struct i915_address_space, ref); 2274 2275 GEM_BUG_ON(i915_is_ggtt(vm)); 2276 trace_i915_ppgtt_release(vm); 2277 2278 ppgtt_destroy_vma(vm); 2279 2280 GEM_BUG_ON(!list_empty(&vm->bound_list)); 2281 GEM_BUG_ON(!list_empty(&vm->unbound_list)); 2282 2283 vm->cleanup(vm); 2284 i915_address_space_fini(vm); 2285 2286 kfree(vm); 2287 } 2288 2289 /* Certain Gen5 chipsets require require idling the GPU before 2290 * unmapping anything from the GTT when VT-d is enabled. 2291 */ 2292 static bool needs_idle_maps(struct drm_i915_private *dev_priv) 2293 { 2294 /* Query intel_iommu to see if we need the workaround. Presumably that 2295 * was loaded first. 2296 */ 2297 return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active(); 2298 } 2299 2300 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv) 2301 { 2302 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2303 2304 /* Don't bother messing with faults pre GEN6 as we have little 2305 * documentation supporting that it's a good idea. 2306 */ 2307 if (INTEL_GEN(dev_priv) < 6) 2308 return; 2309 2310 i915_check_and_clear_faults(dev_priv); 2311 2312 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); 2313 2314 i915_ggtt_invalidate(dev_priv); 2315 } 2316 2317 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, 2318 struct sg_table *pages) 2319 { 2320 do { 2321 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev, 2322 pages->sgl, pages->nents, 2323 PCI_DMA_BIDIRECTIONAL, 2324 DMA_ATTR_NO_WARN)) 2325 return 0; 2326 2327 /* 2328 * If the DMA remap fails, one cause can be that we have 2329 * too many objects pinned in a small remapping table, 2330 * such as swiotlb. Incrementally purge all other objects and 2331 * try again - if there are no more pages to remove from 2332 * the DMA remapper, i915_gem_shrink will return 0. 2333 */ 2334 GEM_BUG_ON(obj->mm.pages == pages); 2335 } while (i915_gem_shrink(to_i915(obj->base.dev), 2336 obj->base.size >> PAGE_SHIFT, NULL, 2337 I915_SHRINK_BOUND | 2338 I915_SHRINK_UNBOUND)); 2339 2340 return -ENOSPC; 2341 } 2342 2343 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 2344 { 2345 writeq(pte, addr); 2346 } 2347 2348 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 2349 dma_addr_t addr, 2350 u64 offset, 2351 enum i915_cache_level level, 2352 u32 unused) 2353 { 2354 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2355 gen8_pte_t __iomem *pte = 2356 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 2357 2358 gen8_set_pte(pte, gen8_pte_encode(addr, level, 0)); 2359 2360 ggtt->invalidate(vm->i915); 2361 } 2362 2363 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 2364 struct i915_vma *vma, 2365 enum i915_cache_level level, 2366 u32 flags) 2367 { 2368 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2369 struct sgt_iter sgt_iter; 2370 gen8_pte_t __iomem *gtt_entries; 2371 const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0); 2372 dma_addr_t addr; 2373 2374 /* 2375 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 2376 * not to allow the user to override access to a read only page. 2377 */ 2378 2379 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm; 2380 gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE; 2381 for_each_sgt_dma(addr, sgt_iter, vma->pages) 2382 gen8_set_pte(gtt_entries++, pte_encode | addr); 2383 2384 /* 2385 * We want to flush the TLBs only after we're certain all the PTE 2386 * updates have finished. 2387 */ 2388 ggtt->invalidate(vm->i915); 2389 } 2390 2391 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 2392 dma_addr_t addr, 2393 u64 offset, 2394 enum i915_cache_level level, 2395 u32 flags) 2396 { 2397 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2398 gen6_pte_t __iomem *pte = 2399 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 2400 2401 iowrite32(vm->pte_encode(addr, level, flags), pte); 2402 2403 ggtt->invalidate(vm->i915); 2404 } 2405 2406 /* 2407 * Binds an object into the global gtt with the specified cache level. The object 2408 * will be accessible to the GPU via commands whose operands reference offsets 2409 * within the global GTT as well as accessible by the GPU through the GMADR 2410 * mapped BAR (dev_priv->mm.gtt->gtt). 2411 */ 2412 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 2413 struct i915_vma *vma, 2414 enum i915_cache_level level, 2415 u32 flags) 2416 { 2417 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2418 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm; 2419 unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE; 2420 struct sgt_iter iter; 2421 dma_addr_t addr; 2422 for_each_sgt_dma(addr, iter, vma->pages) 2423 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]); 2424 2425 /* 2426 * We want to flush the TLBs only after we're certain all the PTE 2427 * updates have finished. 2428 */ 2429 ggtt->invalidate(vm->i915); 2430 } 2431 2432 static void nop_clear_range(struct i915_address_space *vm, 2433 u64 start, u64 length) 2434 { 2435 } 2436 2437 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 2438 u64 start, u64 length) 2439 { 2440 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2441 unsigned first_entry = start / I915_GTT_PAGE_SIZE; 2442 unsigned num_entries = length / I915_GTT_PAGE_SIZE; 2443 const gen8_pte_t scratch_pte = vm->scratch_pte; 2444 gen8_pte_t __iomem *gtt_base = 2445 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 2446 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 2447 int i; 2448 2449 if (WARN(num_entries > max_entries, 2450 "First entry = %d; Num entries = %d (max=%d)\n", 2451 first_entry, num_entries, max_entries)) 2452 num_entries = max_entries; 2453 2454 for (i = 0; i < num_entries; i++) 2455 gen8_set_pte(>t_base[i], scratch_pte); 2456 } 2457 2458 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 2459 { 2460 struct drm_i915_private *dev_priv = vm->i915; 2461 2462 /* 2463 * Make sure the internal GAM fifo has been cleared of all GTT 2464 * writes before exiting stop_machine(). This guarantees that 2465 * any aperture accesses waiting to start in another process 2466 * cannot back up behind the GTT writes causing a hang. 2467 * The register can be any arbitrary GAM register. 2468 */ 2469 POSTING_READ(GFX_FLSH_CNTL_GEN6); 2470 } 2471 2472 struct insert_page { 2473 struct i915_address_space *vm; 2474 dma_addr_t addr; 2475 u64 offset; 2476 enum i915_cache_level level; 2477 }; 2478 2479 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 2480 { 2481 struct insert_page *arg = _arg; 2482 2483 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 2484 bxt_vtd_ggtt_wa(arg->vm); 2485 2486 return 0; 2487 } 2488 2489 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 2490 dma_addr_t addr, 2491 u64 offset, 2492 enum i915_cache_level level, 2493 u32 unused) 2494 { 2495 struct insert_page arg = { vm, addr, offset, level }; 2496 2497 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 2498 } 2499 2500 struct insert_entries { 2501 struct i915_address_space *vm; 2502 struct i915_vma *vma; 2503 enum i915_cache_level level; 2504 u32 flags; 2505 }; 2506 2507 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 2508 { 2509 struct insert_entries *arg = _arg; 2510 2511 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags); 2512 bxt_vtd_ggtt_wa(arg->vm); 2513 2514 return 0; 2515 } 2516 2517 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 2518 struct i915_vma *vma, 2519 enum i915_cache_level level, 2520 u32 flags) 2521 { 2522 struct insert_entries arg = { vm, vma, level, flags }; 2523 2524 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 2525 } 2526 2527 struct clear_range { 2528 struct i915_address_space *vm; 2529 u64 start; 2530 u64 length; 2531 }; 2532 2533 static int bxt_vtd_ggtt_clear_range__cb(void *_arg) 2534 { 2535 struct clear_range *arg = _arg; 2536 2537 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length); 2538 bxt_vtd_ggtt_wa(arg->vm); 2539 2540 return 0; 2541 } 2542 2543 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm, 2544 u64 start, 2545 u64 length) 2546 { 2547 struct clear_range arg = { vm, start, length }; 2548 2549 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL); 2550 } 2551 2552 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 2553 u64 start, u64 length) 2554 { 2555 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2556 unsigned first_entry = start / I915_GTT_PAGE_SIZE; 2557 unsigned num_entries = length / I915_GTT_PAGE_SIZE; 2558 gen6_pte_t scratch_pte, __iomem *gtt_base = 2559 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 2560 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 2561 int i; 2562 2563 if (WARN(num_entries > max_entries, 2564 "First entry = %d; Num entries = %d (max=%d)\n", 2565 first_entry, num_entries, max_entries)) 2566 num_entries = max_entries; 2567 2568 scratch_pte = vm->scratch_pte; 2569 2570 for (i = 0; i < num_entries; i++) 2571 iowrite32(scratch_pte, >t_base[i]); 2572 } 2573 2574 static void i915_ggtt_insert_page(struct i915_address_space *vm, 2575 dma_addr_t addr, 2576 u64 offset, 2577 enum i915_cache_level cache_level, 2578 u32 unused) 2579 { 2580 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 2581 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 2582 2583 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); 2584 } 2585 2586 static void i915_ggtt_insert_entries(struct i915_address_space *vm, 2587 struct i915_vma *vma, 2588 enum i915_cache_level cache_level, 2589 u32 unused) 2590 { 2591 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 2592 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 2593 2594 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT, 2595 flags); 2596 } 2597 2598 static void i915_ggtt_clear_range(struct i915_address_space *vm, 2599 u64 start, u64 length) 2600 { 2601 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); 2602 } 2603 2604 static int ggtt_bind_vma(struct i915_vma *vma, 2605 enum i915_cache_level cache_level, 2606 u32 flags) 2607 { 2608 struct drm_i915_private *i915 = vma->vm->i915; 2609 struct drm_i915_gem_object *obj = vma->obj; 2610 intel_wakeref_t wakeref; 2611 u32 pte_flags; 2612 2613 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 2614 pte_flags = 0; 2615 if (i915_gem_object_is_readonly(obj)) 2616 pte_flags |= PTE_READ_ONLY; 2617 2618 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 2619 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 2620 2621 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 2622 2623 /* 2624 * Without aliasing PPGTT there's no difference between 2625 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally 2626 * upgrade to both bound if we bind either to avoid double-binding. 2627 */ 2628 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 2629 2630 return 0; 2631 } 2632 2633 static void ggtt_unbind_vma(struct i915_vma *vma) 2634 { 2635 struct drm_i915_private *i915 = vma->vm->i915; 2636 intel_wakeref_t wakeref; 2637 2638 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 2639 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 2640 } 2641 2642 static int aliasing_gtt_bind_vma(struct i915_vma *vma, 2643 enum i915_cache_level cache_level, 2644 u32 flags) 2645 { 2646 struct drm_i915_private *i915 = vma->vm->i915; 2647 u32 pte_flags; 2648 int ret; 2649 2650 /* Currently applicable only to VLV */ 2651 pte_flags = 0; 2652 if (i915_gem_object_is_readonly(vma->obj)) 2653 pte_flags |= PTE_READ_ONLY; 2654 2655 if (flags & I915_VMA_LOCAL_BIND) { 2656 struct i915_ppgtt *appgtt = i915->mm.aliasing_ppgtt; 2657 2658 if (!(vma->flags & I915_VMA_LOCAL_BIND)) { 2659 ret = appgtt->vm.allocate_va_range(&appgtt->vm, 2660 vma->node.start, 2661 vma->size); 2662 if (ret) 2663 return ret; 2664 } 2665 2666 appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level, 2667 pte_flags); 2668 } 2669 2670 if (flags & I915_VMA_GLOBAL_BIND) { 2671 intel_wakeref_t wakeref; 2672 2673 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 2674 vma->vm->insert_entries(vma->vm, vma, 2675 cache_level, pte_flags); 2676 } 2677 } 2678 2679 return 0; 2680 } 2681 2682 static void aliasing_gtt_unbind_vma(struct i915_vma *vma) 2683 { 2684 struct drm_i915_private *i915 = vma->vm->i915; 2685 2686 if (vma->flags & I915_VMA_GLOBAL_BIND) { 2687 struct i915_address_space *vm = vma->vm; 2688 intel_wakeref_t wakeref; 2689 2690 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 2691 vm->clear_range(vm, vma->node.start, vma->size); 2692 } 2693 2694 if (vma->flags & I915_VMA_LOCAL_BIND) { 2695 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm; 2696 2697 vm->clear_range(vm, vma->node.start, vma->size); 2698 } 2699 } 2700 2701 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, 2702 struct sg_table *pages) 2703 { 2704 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2705 struct device *kdev = &dev_priv->drm.pdev->dev; 2706 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2707 2708 if (unlikely(ggtt->do_idle_maps)) { 2709 if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) { 2710 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); 2711 /* Wait a bit, in hopes it avoids the hang */ 2712 udelay(10); 2713 } 2714 } 2715 2716 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL); 2717 } 2718 2719 static int ggtt_set_pages(struct i915_vma *vma) 2720 { 2721 int ret; 2722 2723 GEM_BUG_ON(vma->pages); 2724 2725 ret = i915_get_ggtt_vma_pages(vma); 2726 if (ret) 2727 return ret; 2728 2729 vma->page_sizes = vma->obj->mm.page_sizes; 2730 2731 return 0; 2732 } 2733 2734 static void i915_gtt_color_adjust(const struct drm_mm_node *node, 2735 unsigned long color, 2736 u64 *start, 2737 u64 *end) 2738 { 2739 if (node->allocated && node->color != color) 2740 *start += I915_GTT_PAGE_SIZE; 2741 2742 /* Also leave a space between the unallocated reserved node after the 2743 * GTT and any objects within the GTT, i.e. we use the color adjustment 2744 * to insert a guard page to prevent prefetches crossing over the 2745 * GTT boundary. 2746 */ 2747 node = list_next_entry(node, node_list); 2748 if (node->color != color) 2749 *end -= I915_GTT_PAGE_SIZE; 2750 } 2751 2752 static int init_aliasing_ppgtt(struct drm_i915_private *i915) 2753 { 2754 struct i915_ggtt *ggtt = &i915->ggtt; 2755 struct i915_ppgtt *ppgtt; 2756 int err; 2757 2758 ppgtt = i915_ppgtt_create(i915); 2759 if (IS_ERR(ppgtt)) 2760 return PTR_ERR(ppgtt); 2761 2762 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 2763 err = -ENODEV; 2764 goto err_ppgtt; 2765 } 2766 2767 /* 2768 * Note we only pre-allocate as far as the end of the global 2769 * GTT. On 48b / 4-level page-tables, the difference is very, 2770 * very significant! We have to preallocate as GVT/vgpu does 2771 * not like the page directory disappearing. 2772 */ 2773 err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total); 2774 if (err) 2775 goto err_ppgtt; 2776 2777 i915->mm.aliasing_ppgtt = ppgtt; 2778 2779 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma); 2780 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 2781 2782 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma); 2783 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 2784 2785 return 0; 2786 2787 err_ppgtt: 2788 i915_vm_put(&ppgtt->vm); 2789 return err; 2790 } 2791 2792 static void fini_aliasing_ppgtt(struct drm_i915_private *i915) 2793 { 2794 struct i915_ggtt *ggtt = &i915->ggtt; 2795 struct i915_ppgtt *ppgtt; 2796 2797 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt); 2798 if (!ppgtt) 2799 return; 2800 2801 i915_vm_put(&ppgtt->vm); 2802 2803 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 2804 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 2805 } 2806 2807 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 2808 { 2809 u64 size; 2810 int ret; 2811 2812 if (!USES_GUC(ggtt->vm.i915)) 2813 return 0; 2814 2815 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); 2816 size = ggtt->vm.total - GUC_GGTT_TOP; 2817 2818 ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size, 2819 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, 2820 PIN_NOEVICT); 2821 if (ret) 2822 DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n"); 2823 2824 return ret; 2825 } 2826 2827 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 2828 { 2829 if (drm_mm_node_allocated(&ggtt->uc_fw)) 2830 drm_mm_remove_node(&ggtt->uc_fw); 2831 } 2832 2833 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) 2834 { 2835 /* Let GEM Manage all of the aperture. 2836 * 2837 * However, leave one page at the end still bound to the scratch page. 2838 * There are a number of places where the hardware apparently prefetches 2839 * past the end of the object, and we've seen multiple hangs with the 2840 * GPU head pointer stuck in a batchbuffer bound at the last page of the 2841 * aperture. One page should be enough to keep any prefetching inside 2842 * of the aperture. 2843 */ 2844 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2845 unsigned long hole_start, hole_end; 2846 struct drm_mm_node *entry; 2847 int ret; 2848 2849 /* 2850 * GuC requires all resources that we're sharing with it to be placed in 2851 * non-WOPCM memory. If GuC is not present or not in use we still need a 2852 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 2853 * why. 2854 */ 2855 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 2856 intel_wopcm_guc_size(&dev_priv->wopcm)); 2857 2858 ret = intel_vgt_balloon(dev_priv); 2859 if (ret) 2860 return ret; 2861 2862 /* Reserve a mappable slot for our lockless error capture */ 2863 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture, 2864 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 2865 0, ggtt->mappable_end, 2866 DRM_MM_INSERT_LOW); 2867 if (ret) 2868 return ret; 2869 2870 /* 2871 * The upper portion of the GuC address space has a sizeable hole 2872 * (several MB) that is inaccessible by GuC. Reserve this range within 2873 * GGTT as it can comfortably hold GuC/HuC firmware images. 2874 */ 2875 ret = ggtt_reserve_guc_top(ggtt); 2876 if (ret) 2877 goto err_reserve; 2878 2879 /* Clear any non-preallocated blocks */ 2880 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 2881 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", 2882 hole_start, hole_end); 2883 ggtt->vm.clear_range(&ggtt->vm, hole_start, 2884 hole_end - hole_start); 2885 } 2886 2887 /* And finally clear the reserved guard page */ 2888 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 2889 2890 if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) { 2891 ret = init_aliasing_ppgtt(dev_priv); 2892 if (ret) 2893 goto err_appgtt; 2894 } 2895 2896 return 0; 2897 2898 err_appgtt: 2899 ggtt_release_guc_top(ggtt); 2900 err_reserve: 2901 drm_mm_remove_node(&ggtt->error_capture); 2902 return ret; 2903 } 2904 2905 /** 2906 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization 2907 * @dev_priv: i915 device 2908 */ 2909 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) 2910 { 2911 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2912 struct i915_vma *vma, *vn; 2913 struct pagevec *pvec; 2914 2915 ggtt->vm.closed = true; 2916 2917 mutex_lock(&dev_priv->drm.struct_mutex); 2918 fini_aliasing_ppgtt(dev_priv); 2919 2920 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) 2921 WARN_ON(i915_vma_unbind(vma)); 2922 2923 if (drm_mm_node_allocated(&ggtt->error_capture)) 2924 drm_mm_remove_node(&ggtt->error_capture); 2925 2926 ggtt_release_guc_top(ggtt); 2927 2928 if (drm_mm_initialized(&ggtt->vm.mm)) { 2929 intel_vgt_deballoon(dev_priv); 2930 i915_address_space_fini(&ggtt->vm); 2931 } 2932 2933 ggtt->vm.cleanup(&ggtt->vm); 2934 2935 pvec = &dev_priv->mm.wc_stash.pvec; 2936 if (pvec->nr) { 2937 set_pages_array_wb(pvec->pages, pvec->nr); 2938 __pagevec_release(pvec); 2939 } 2940 2941 mutex_unlock(&dev_priv->drm.struct_mutex); 2942 2943 arch_phys_wc_del(ggtt->mtrr); 2944 io_mapping_fini(&ggtt->iomap); 2945 2946 i915_gem_cleanup_stolen(dev_priv); 2947 } 2948 2949 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 2950 { 2951 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 2952 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 2953 return snb_gmch_ctl << 20; 2954 } 2955 2956 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 2957 { 2958 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 2959 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 2960 if (bdw_gmch_ctl) 2961 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 2962 2963 #ifdef CONFIG_X86_32 2964 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 2965 if (bdw_gmch_ctl > 4) 2966 bdw_gmch_ctl = 4; 2967 #endif 2968 2969 return bdw_gmch_ctl << 20; 2970 } 2971 2972 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 2973 { 2974 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 2975 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 2976 2977 if (gmch_ctrl) 2978 return 1 << (20 + gmch_ctrl); 2979 2980 return 0; 2981 } 2982 2983 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 2984 { 2985 struct drm_i915_private *dev_priv = ggtt->vm.i915; 2986 struct pci_dev *pdev = dev_priv->drm.pdev; 2987 phys_addr_t phys_addr; 2988 int ret; 2989 2990 /* For Modern GENs the PTEs and register space are split in the BAR */ 2991 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; 2992 2993 /* 2994 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range 2995 * will be dropped. For WC mappings in general we have 64 byte burst 2996 * writes when the WC buffer is flushed, so we can't use it, but have to 2997 * resort to an uncached mapping. The WC issue is easily caught by the 2998 * readback check when writing GTT PTE entries. 2999 */ 3000 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) 3001 ggtt->gsm = ioremap_nocache(phys_addr, size); 3002 else 3003 ggtt->gsm = ioremap_wc(phys_addr, size); 3004 if (!ggtt->gsm) { 3005 DRM_ERROR("Failed to map the ggtt page table\n"); 3006 return -ENOMEM; 3007 } 3008 3009 ret = setup_scratch_page(&ggtt->vm, GFP_DMA32); 3010 if (ret) { 3011 DRM_ERROR("Scratch setup failed\n"); 3012 /* iounmap will also get called at remove, but meh */ 3013 iounmap(ggtt->gsm); 3014 return ret; 3015 } 3016 3017 ggtt->vm.scratch_pte = 3018 ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr, 3019 I915_CACHE_NONE, 0); 3020 3021 return 0; 3022 } 3023 3024 static struct intel_ppat_entry * 3025 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value) 3026 { 3027 struct intel_ppat_entry *entry = &ppat->entries[index]; 3028 3029 GEM_BUG_ON(index >= ppat->max_entries); 3030 GEM_BUG_ON(test_bit(index, ppat->used)); 3031 3032 entry->ppat = ppat; 3033 entry->value = value; 3034 kref_init(&entry->ref); 3035 set_bit(index, ppat->used); 3036 set_bit(index, ppat->dirty); 3037 3038 return entry; 3039 } 3040 3041 static void __free_ppat_entry(struct intel_ppat_entry *entry) 3042 { 3043 struct intel_ppat *ppat = entry->ppat; 3044 unsigned int index = entry - ppat->entries; 3045 3046 GEM_BUG_ON(index >= ppat->max_entries); 3047 GEM_BUG_ON(!test_bit(index, ppat->used)); 3048 3049 entry->value = ppat->clear_value; 3050 clear_bit(index, ppat->used); 3051 set_bit(index, ppat->dirty); 3052 } 3053 3054 /** 3055 * intel_ppat_get - get a usable PPAT entry 3056 * @i915: i915 device instance 3057 * @value: the PPAT value required by the caller 3058 * 3059 * The function tries to search if there is an existing PPAT entry which 3060 * matches with the required value. If perfectly matched, the existing PPAT 3061 * entry will be used. If only partially matched, it will try to check if 3062 * there is any available PPAT index. If yes, it will allocate a new PPAT 3063 * index for the required entry and update the HW. If not, the partially 3064 * matched entry will be used. 3065 */ 3066 const struct intel_ppat_entry * 3067 intel_ppat_get(struct drm_i915_private *i915, u8 value) 3068 { 3069 struct intel_ppat *ppat = &i915->ppat; 3070 struct intel_ppat_entry *entry = NULL; 3071 unsigned int scanned, best_score; 3072 int i; 3073 3074 GEM_BUG_ON(!ppat->max_entries); 3075 3076 scanned = best_score = 0; 3077 for_each_set_bit(i, ppat->used, ppat->max_entries) { 3078 unsigned int score; 3079 3080 score = ppat->match(ppat->entries[i].value, value); 3081 if (score > best_score) { 3082 entry = &ppat->entries[i]; 3083 if (score == INTEL_PPAT_PERFECT_MATCH) { 3084 kref_get(&entry->ref); 3085 return entry; 3086 } 3087 best_score = score; 3088 } 3089 scanned++; 3090 } 3091 3092 if (scanned == ppat->max_entries) { 3093 if (!entry) 3094 return ERR_PTR(-ENOSPC); 3095 3096 kref_get(&entry->ref); 3097 return entry; 3098 } 3099 3100 i = find_first_zero_bit(ppat->used, ppat->max_entries); 3101 entry = __alloc_ppat_entry(ppat, i, value); 3102 ppat->update_hw(i915); 3103 return entry; 3104 } 3105 3106 static void release_ppat(struct kref *kref) 3107 { 3108 struct intel_ppat_entry *entry = 3109 container_of(kref, struct intel_ppat_entry, ref); 3110 struct drm_i915_private *i915 = entry->ppat->i915; 3111 3112 __free_ppat_entry(entry); 3113 entry->ppat->update_hw(i915); 3114 } 3115 3116 /** 3117 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get() 3118 * @entry: an intel PPAT entry 3119 * 3120 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the 3121 * entry is dynamically allocated, its reference count will be decreased. Once 3122 * the reference count becomes into zero, the PPAT index becomes free again. 3123 */ 3124 void intel_ppat_put(const struct intel_ppat_entry *entry) 3125 { 3126 struct intel_ppat *ppat = entry->ppat; 3127 unsigned int index = entry - ppat->entries; 3128 3129 GEM_BUG_ON(!ppat->max_entries); 3130 3131 kref_put(&ppat->entries[index].ref, release_ppat); 3132 } 3133 3134 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv) 3135 { 3136 struct intel_ppat *ppat = &dev_priv->ppat; 3137 int i; 3138 3139 for_each_set_bit(i, ppat->dirty, ppat->max_entries) { 3140 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value); 3141 clear_bit(i, ppat->dirty); 3142 } 3143 } 3144 3145 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv) 3146 { 3147 struct intel_ppat *ppat = &dev_priv->ppat; 3148 u64 pat = 0; 3149 int i; 3150 3151 for (i = 0; i < ppat->max_entries; i++) 3152 pat |= GEN8_PPAT(i, ppat->entries[i].value); 3153 3154 bitmap_clear(ppat->dirty, 0, ppat->max_entries); 3155 3156 I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 3157 I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 3158 } 3159 3160 static unsigned int bdw_private_pat_match(u8 src, u8 dst) 3161 { 3162 unsigned int score = 0; 3163 enum { 3164 AGE_MATCH = BIT(0), 3165 TC_MATCH = BIT(1), 3166 CA_MATCH = BIT(2), 3167 }; 3168 3169 /* Cache attribute has to be matched. */ 3170 if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst)) 3171 return 0; 3172 3173 score |= CA_MATCH; 3174 3175 if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst)) 3176 score |= TC_MATCH; 3177 3178 if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst)) 3179 score |= AGE_MATCH; 3180 3181 if (score == (AGE_MATCH | TC_MATCH | CA_MATCH)) 3182 return INTEL_PPAT_PERFECT_MATCH; 3183 3184 return score; 3185 } 3186 3187 static unsigned int chv_private_pat_match(u8 src, u8 dst) 3188 { 3189 return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ? 3190 INTEL_PPAT_PERFECT_MATCH : 0; 3191 } 3192 3193 static void cnl_setup_private_ppat(struct intel_ppat *ppat) 3194 { 3195 ppat->max_entries = 8; 3196 ppat->update_hw = cnl_private_pat_update_hw; 3197 ppat->match = bdw_private_pat_match; 3198 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); 3199 3200 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); 3201 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); 3202 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); 3203 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); 3204 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 3205 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 3206 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 3207 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 3208 } 3209 3210 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 3211 * bits. When using advanced contexts each context stores its own PAT, but 3212 * writing this data shouldn't be harmful even in those cases. */ 3213 static void bdw_setup_private_ppat(struct intel_ppat *ppat) 3214 { 3215 ppat->max_entries = 8; 3216 ppat->update_hw = bdw_private_pat_update_hw; 3217 ppat->match = bdw_private_pat_match; 3218 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); 3219 3220 if (!HAS_PPGTT(ppat->i915)) { 3221 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, 3222 * so RTL will always use the value corresponding to 3223 * pat_sel = 000". 3224 * So let's disable cache for GGTT to avoid screen corruptions. 3225 * MOCS still can be used though. 3226 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work 3227 * before this patch, i.e. the same uncached + snooping access 3228 * like on gen6/7 seems to be in effect. 3229 * - So this just fixes blitter/render access. Again it looks 3230 * like it's not just uncached access, but uncached + snooping. 3231 * So we can still hold onto all our assumptions wrt cpu 3232 * clflushing on LLC machines. 3233 */ 3234 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC); 3235 return; 3236 } 3237 3238 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */ 3239 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */ 3240 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */ 3241 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */ 3242 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 3243 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 3244 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 3245 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 3246 } 3247 3248 static void chv_setup_private_ppat(struct intel_ppat *ppat) 3249 { 3250 ppat->max_entries = 8; 3251 ppat->update_hw = bdw_private_pat_update_hw; 3252 ppat->match = chv_private_pat_match; 3253 ppat->clear_value = CHV_PPAT_SNOOP; 3254 3255 /* 3256 * Map WB on BDW to snooped on CHV. 3257 * 3258 * Only the snoop bit has meaning for CHV, the rest is 3259 * ignored. 3260 * 3261 * The hardware will never snoop for certain types of accesses: 3262 * - CPU GTT (GMADR->GGTT->no snoop->memory) 3263 * - PPGTT page tables 3264 * - some other special cycles 3265 * 3266 * As with BDW, we also need to consider the following for GT accesses: 3267 * "For GGTT, there is NO pat_sel[2:0] from the entry, 3268 * so RTL will always use the value corresponding to 3269 * pat_sel = 000". 3270 * Which means we must set the snoop bit in PAT entry 0 3271 * in order to keep the global status page working. 3272 */ 3273 3274 __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP); 3275 __alloc_ppat_entry(ppat, 1, 0); 3276 __alloc_ppat_entry(ppat, 2, 0); 3277 __alloc_ppat_entry(ppat, 3, 0); 3278 __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP); 3279 __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP); 3280 __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP); 3281 __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP); 3282 } 3283 3284 static void gen6_gmch_remove(struct i915_address_space *vm) 3285 { 3286 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 3287 3288 iounmap(ggtt->gsm); 3289 cleanup_scratch_page(vm); 3290 } 3291 3292 static void setup_private_pat(struct drm_i915_private *dev_priv) 3293 { 3294 struct intel_ppat *ppat = &dev_priv->ppat; 3295 int i; 3296 3297 ppat->i915 = dev_priv; 3298 3299 if (INTEL_GEN(dev_priv) >= 10) 3300 cnl_setup_private_ppat(ppat); 3301 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) 3302 chv_setup_private_ppat(ppat); 3303 else 3304 bdw_setup_private_ppat(ppat); 3305 3306 GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES); 3307 3308 for_each_clear_bit(i, ppat->used, ppat->max_entries) { 3309 ppat->entries[i].value = ppat->clear_value; 3310 ppat->entries[i].ppat = ppat; 3311 set_bit(i, ppat->dirty); 3312 } 3313 3314 ppat->update_hw(dev_priv); 3315 } 3316 3317 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 3318 { 3319 struct drm_i915_private *dev_priv = ggtt->vm.i915; 3320 struct pci_dev *pdev = dev_priv->drm.pdev; 3321 unsigned int size; 3322 u16 snb_gmch_ctl; 3323 int err; 3324 3325 /* TODO: We're not aware of mappable constraints on gen8 yet */ 3326 ggtt->gmadr = 3327 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), 3328 pci_resource_len(pdev, 2)); 3329 ggtt->mappable_end = resource_size(&ggtt->gmadr); 3330 3331 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39)); 3332 if (!err) 3333 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); 3334 if (err) 3335 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); 3336 3337 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 3338 if (IS_CHERRYVIEW(dev_priv)) 3339 size = chv_get_total_gtt_size(snb_gmch_ctl); 3340 else 3341 size = gen8_get_total_gtt_size(snb_gmch_ctl); 3342 3343 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 3344 ggtt->vm.cleanup = gen6_gmch_remove; 3345 ggtt->vm.insert_page = gen8_ggtt_insert_page; 3346 ggtt->vm.clear_range = nop_clear_range; 3347 if (intel_scanout_needs_vtd_wa(dev_priv)) 3348 ggtt->vm.clear_range = gen8_ggtt_clear_range; 3349 3350 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 3351 3352 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */ 3353 if (intel_ggtt_update_needs_vtd_wa(dev_priv) || 3354 IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) { 3355 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 3356 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 3357 if (ggtt->vm.clear_range != nop_clear_range) 3358 ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL; 3359 3360 /* Prevent recursively calling stop_machine() and deadlocks. */ 3361 dev_info(dev_priv->drm.dev, 3362 "Disabling error capture for VT-d workaround\n"); 3363 i915_disable_error_state(dev_priv, -ENODEV); 3364 } 3365 3366 ggtt->invalidate = gen6_ggtt_invalidate; 3367 3368 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 3369 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 3370 ggtt->vm.vma_ops.set_pages = ggtt_set_pages; 3371 ggtt->vm.vma_ops.clear_pages = clear_pages; 3372 3373 ggtt->vm.pte_encode = gen8_pte_encode; 3374 3375 setup_private_pat(dev_priv); 3376 3377 return ggtt_probe_common(ggtt, size); 3378 } 3379 3380 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 3381 { 3382 struct drm_i915_private *dev_priv = ggtt->vm.i915; 3383 struct pci_dev *pdev = dev_priv->drm.pdev; 3384 unsigned int size; 3385 u16 snb_gmch_ctl; 3386 int err; 3387 3388 ggtt->gmadr = 3389 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), 3390 pci_resource_len(pdev, 2)); 3391 ggtt->mappable_end = resource_size(&ggtt->gmadr); 3392 3393 /* 64/512MB is the current min/max we actually know of, but this is just 3394 * a coarse sanity check. 3395 */ 3396 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { 3397 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end); 3398 return -ENXIO; 3399 } 3400 3401 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); 3402 if (!err) 3403 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); 3404 if (err) 3405 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); 3406 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 3407 3408 size = gen6_get_total_gtt_size(snb_gmch_ctl); 3409 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 3410 3411 ggtt->vm.clear_range = nop_clear_range; 3412 if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv)) 3413 ggtt->vm.clear_range = gen6_ggtt_clear_range; 3414 ggtt->vm.insert_page = gen6_ggtt_insert_page; 3415 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 3416 ggtt->vm.cleanup = gen6_gmch_remove; 3417 3418 ggtt->invalidate = gen6_ggtt_invalidate; 3419 3420 if (HAS_EDRAM(dev_priv)) 3421 ggtt->vm.pte_encode = iris_pte_encode; 3422 else if (IS_HASWELL(dev_priv)) 3423 ggtt->vm.pte_encode = hsw_pte_encode; 3424 else if (IS_VALLEYVIEW(dev_priv)) 3425 ggtt->vm.pte_encode = byt_pte_encode; 3426 else if (INTEL_GEN(dev_priv) >= 7) 3427 ggtt->vm.pte_encode = ivb_pte_encode; 3428 else 3429 ggtt->vm.pte_encode = snb_pte_encode; 3430 3431 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 3432 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 3433 ggtt->vm.vma_ops.set_pages = ggtt_set_pages; 3434 ggtt->vm.vma_ops.clear_pages = clear_pages; 3435 3436 return ggtt_probe_common(ggtt, size); 3437 } 3438 3439 static void i915_gmch_remove(struct i915_address_space *vm) 3440 { 3441 intel_gmch_remove(); 3442 } 3443 3444 static int i915_gmch_probe(struct i915_ggtt *ggtt) 3445 { 3446 struct drm_i915_private *dev_priv = ggtt->vm.i915; 3447 phys_addr_t gmadr_base; 3448 int ret; 3449 3450 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); 3451 if (!ret) { 3452 DRM_ERROR("failed to set up gmch\n"); 3453 return -EIO; 3454 } 3455 3456 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end); 3457 3458 ggtt->gmadr = 3459 (struct resource) DEFINE_RES_MEM(gmadr_base, 3460 ggtt->mappable_end); 3461 3462 ggtt->do_idle_maps = needs_idle_maps(dev_priv); 3463 ggtt->vm.insert_page = i915_ggtt_insert_page; 3464 ggtt->vm.insert_entries = i915_ggtt_insert_entries; 3465 ggtt->vm.clear_range = i915_ggtt_clear_range; 3466 ggtt->vm.cleanup = i915_gmch_remove; 3467 3468 ggtt->invalidate = gmch_ggtt_invalidate; 3469 3470 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 3471 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 3472 ggtt->vm.vma_ops.set_pages = ggtt_set_pages; 3473 ggtt->vm.vma_ops.clear_pages = clear_pages; 3474 3475 if (unlikely(ggtt->do_idle_maps)) 3476 DRM_INFO("applying Ironlake quirks for intel_iommu\n"); 3477 3478 return 0; 3479 } 3480 3481 /** 3482 * i915_ggtt_probe_hw - Probe GGTT hardware location 3483 * @dev_priv: i915 device 3484 */ 3485 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) 3486 { 3487 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3488 int ret; 3489 3490 ggtt->vm.i915 = dev_priv; 3491 ggtt->vm.dma = &dev_priv->drm.pdev->dev; 3492 3493 if (INTEL_GEN(dev_priv) <= 5) 3494 ret = i915_gmch_probe(ggtt); 3495 else if (INTEL_GEN(dev_priv) < 8) 3496 ret = gen6_gmch_probe(ggtt); 3497 else 3498 ret = gen8_gmch_probe(ggtt); 3499 if (ret) 3500 return ret; 3501 3502 if ((ggtt->vm.total - 1) >> 32) { 3503 DRM_ERROR("We never expected a Global GTT with more than 32bits" 3504 " of address space! Found %lldM!\n", 3505 ggtt->vm.total >> 20); 3506 ggtt->vm.total = 1ULL << 32; 3507 ggtt->mappable_end = 3508 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 3509 } 3510 3511 if (ggtt->mappable_end > ggtt->vm.total) { 3512 DRM_ERROR("mappable aperture extends past end of GGTT," 3513 " aperture=%pa, total=%llx\n", 3514 &ggtt->mappable_end, ggtt->vm.total); 3515 ggtt->mappable_end = ggtt->vm.total; 3516 } 3517 3518 /* GMADR is the PCI mmio aperture into the global GTT. */ 3519 DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20); 3520 DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20); 3521 DRM_DEBUG_DRIVER("DSM size = %lluM\n", 3522 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 3523 if (intel_vtd_active()) 3524 DRM_INFO("VT-d active for gfx access\n"); 3525 3526 return 0; 3527 } 3528 3529 /** 3530 * i915_ggtt_init_hw - Initialize GGTT hardware 3531 * @dev_priv: i915 device 3532 */ 3533 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) 3534 { 3535 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3536 int ret; 3537 3538 stash_init(&dev_priv->mm.wc_stash); 3539 3540 /* Note that we use page colouring to enforce a guard page at the 3541 * end of the address space. This is required as the CS may prefetch 3542 * beyond the end of the batch buffer, across the page boundary, 3543 * and beyond the end of the GTT if we do not provide a guard. 3544 */ 3545 mutex_lock(&dev_priv->drm.struct_mutex); 3546 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 3547 3548 ggtt->vm.is_ggtt = true; 3549 3550 /* Only VLV supports read-only GGTT mappings */ 3551 ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv); 3552 3553 if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv)) 3554 ggtt->vm.mm.color_adjust = i915_gtt_color_adjust; 3555 mutex_unlock(&dev_priv->drm.struct_mutex); 3556 3557 if (!io_mapping_init_wc(&dev_priv->ggtt.iomap, 3558 dev_priv->ggtt.gmadr.start, 3559 dev_priv->ggtt.mappable_end)) { 3560 ret = -EIO; 3561 goto out_gtt_cleanup; 3562 } 3563 3564 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end); 3565 3566 i915_ggtt_init_fences(ggtt); 3567 3568 /* 3569 * Initialise stolen early so that we may reserve preallocated 3570 * objects for the BIOS to KMS transition. 3571 */ 3572 ret = i915_gem_init_stolen(dev_priv); 3573 if (ret) 3574 goto out_gtt_cleanup; 3575 3576 return 0; 3577 3578 out_gtt_cleanup: 3579 ggtt->vm.cleanup(&ggtt->vm); 3580 return ret; 3581 } 3582 3583 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) 3584 { 3585 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) 3586 return -EIO; 3587 3588 return 0; 3589 } 3590 3591 void i915_ggtt_enable_guc(struct drm_i915_private *i915) 3592 { 3593 GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate); 3594 3595 i915->ggtt.invalidate = guc_ggtt_invalidate; 3596 3597 i915_ggtt_invalidate(i915); 3598 } 3599 3600 void i915_ggtt_disable_guc(struct drm_i915_private *i915) 3601 { 3602 /* XXX Temporary pardon for error unload */ 3603 if (i915->ggtt.invalidate == gen6_ggtt_invalidate) 3604 return; 3605 3606 /* We should only be called after i915_ggtt_enable_guc() */ 3607 GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate); 3608 3609 i915->ggtt.invalidate = gen6_ggtt_invalidate; 3610 3611 i915_ggtt_invalidate(i915); 3612 } 3613 3614 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv) 3615 { 3616 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3617 struct i915_vma *vma, *vn; 3618 3619 i915_check_and_clear_faults(dev_priv); 3620 3621 mutex_lock(&ggtt->vm.mutex); 3622 3623 /* First fill our portion of the GTT with scratch pages */ 3624 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); 3625 ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */ 3626 3627 /* clflush objects bound into the GGTT and rebind them. */ 3628 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 3629 struct drm_i915_gem_object *obj = vma->obj; 3630 3631 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) 3632 continue; 3633 3634 mutex_unlock(&ggtt->vm.mutex); 3635 3636 if (!i915_vma_unbind(vma)) 3637 goto lock; 3638 3639 WARN_ON(i915_vma_bind(vma, 3640 obj ? obj->cache_level : 0, 3641 PIN_UPDATE)); 3642 if (obj) { 3643 i915_gem_object_lock(obj); 3644 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); 3645 i915_gem_object_unlock(obj); 3646 } 3647 3648 lock: 3649 mutex_lock(&ggtt->vm.mutex); 3650 } 3651 3652 ggtt->vm.closed = false; 3653 i915_ggtt_invalidate(dev_priv); 3654 3655 mutex_unlock(&ggtt->vm.mutex); 3656 3657 if (INTEL_GEN(dev_priv) >= 8) { 3658 struct intel_ppat *ppat = &dev_priv->ppat; 3659 3660 bitmap_set(ppat->dirty, 0, ppat->max_entries); 3661 dev_priv->ppat.update_hw(dev_priv); 3662 return; 3663 } 3664 } 3665 3666 static struct scatterlist * 3667 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset, 3668 unsigned int width, unsigned int height, 3669 unsigned int stride, 3670 struct sg_table *st, struct scatterlist *sg) 3671 { 3672 unsigned int column, row; 3673 unsigned int src_idx; 3674 3675 for (column = 0; column < width; column++) { 3676 src_idx = stride * (height - 1) + column + offset; 3677 for (row = 0; row < height; row++) { 3678 st->nents++; 3679 /* We don't need the pages, but need to initialize 3680 * the entries so the sg list can be happily traversed. 3681 * The only thing we need are DMA addresses. 3682 */ 3683 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); 3684 sg_dma_address(sg) = 3685 i915_gem_object_get_dma_address(obj, src_idx); 3686 sg_dma_len(sg) = I915_GTT_PAGE_SIZE; 3687 sg = sg_next(sg); 3688 src_idx -= stride; 3689 } 3690 } 3691 3692 return sg; 3693 } 3694 3695 static noinline struct sg_table * 3696 intel_rotate_pages(struct intel_rotation_info *rot_info, 3697 struct drm_i915_gem_object *obj) 3698 { 3699 unsigned int size = intel_rotation_info_size(rot_info); 3700 struct sg_table *st; 3701 struct scatterlist *sg; 3702 int ret = -ENOMEM; 3703 int i; 3704 3705 /* Allocate target SG list. */ 3706 st = kmalloc(sizeof(*st), GFP_KERNEL); 3707 if (!st) 3708 goto err_st_alloc; 3709 3710 ret = sg_alloc_table(st, size, GFP_KERNEL); 3711 if (ret) 3712 goto err_sg_alloc; 3713 3714 st->nents = 0; 3715 sg = st->sgl; 3716 3717 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { 3718 sg = rotate_pages(obj, rot_info->plane[i].offset, 3719 rot_info->plane[i].width, rot_info->plane[i].height, 3720 rot_info->plane[i].stride, st, sg); 3721 } 3722 3723 return st; 3724 3725 err_sg_alloc: 3726 kfree(st); 3727 err_st_alloc: 3728 3729 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 3730 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); 3731 3732 return ERR_PTR(ret); 3733 } 3734 3735 static struct scatterlist * 3736 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset, 3737 unsigned int width, unsigned int height, 3738 unsigned int stride, 3739 struct sg_table *st, struct scatterlist *sg) 3740 { 3741 unsigned int row; 3742 3743 for (row = 0; row < height; row++) { 3744 unsigned int left = width * I915_GTT_PAGE_SIZE; 3745 3746 while (left) { 3747 dma_addr_t addr; 3748 unsigned int length; 3749 3750 /* We don't need the pages, but need to initialize 3751 * the entries so the sg list can be happily traversed. 3752 * The only thing we need are DMA addresses. 3753 */ 3754 3755 addr = i915_gem_object_get_dma_address_len(obj, offset, &length); 3756 3757 length = min(left, length); 3758 3759 st->nents++; 3760 3761 sg_set_page(sg, NULL, length, 0); 3762 sg_dma_address(sg) = addr; 3763 sg_dma_len(sg) = length; 3764 sg = sg_next(sg); 3765 3766 offset += length / I915_GTT_PAGE_SIZE; 3767 left -= length; 3768 } 3769 3770 offset += stride - width; 3771 } 3772 3773 return sg; 3774 } 3775 3776 static noinline struct sg_table * 3777 intel_remap_pages(struct intel_remapped_info *rem_info, 3778 struct drm_i915_gem_object *obj) 3779 { 3780 unsigned int size = intel_remapped_info_size(rem_info); 3781 struct sg_table *st; 3782 struct scatterlist *sg; 3783 int ret = -ENOMEM; 3784 int i; 3785 3786 /* Allocate target SG list. */ 3787 st = kmalloc(sizeof(*st), GFP_KERNEL); 3788 if (!st) 3789 goto err_st_alloc; 3790 3791 ret = sg_alloc_table(st, size, GFP_KERNEL); 3792 if (ret) 3793 goto err_sg_alloc; 3794 3795 st->nents = 0; 3796 sg = st->sgl; 3797 3798 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) { 3799 sg = remap_pages(obj, rem_info->plane[i].offset, 3800 rem_info->plane[i].width, rem_info->plane[i].height, 3801 rem_info->plane[i].stride, st, sg); 3802 } 3803 3804 i915_sg_trim(st); 3805 3806 return st; 3807 3808 err_sg_alloc: 3809 kfree(st); 3810 err_st_alloc: 3811 3812 DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n", 3813 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size); 3814 3815 return ERR_PTR(ret); 3816 } 3817 3818 static noinline struct sg_table * 3819 intel_partial_pages(const struct i915_ggtt_view *view, 3820 struct drm_i915_gem_object *obj) 3821 { 3822 struct sg_table *st; 3823 struct scatterlist *sg, *iter; 3824 unsigned int count = view->partial.size; 3825 unsigned int offset; 3826 int ret = -ENOMEM; 3827 3828 st = kmalloc(sizeof(*st), GFP_KERNEL); 3829 if (!st) 3830 goto err_st_alloc; 3831 3832 ret = sg_alloc_table(st, count, GFP_KERNEL); 3833 if (ret) 3834 goto err_sg_alloc; 3835 3836 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); 3837 GEM_BUG_ON(!iter); 3838 3839 sg = st->sgl; 3840 st->nents = 0; 3841 do { 3842 unsigned int len; 3843 3844 len = min(iter->length - (offset << PAGE_SHIFT), 3845 count << PAGE_SHIFT); 3846 sg_set_page(sg, NULL, len, 0); 3847 sg_dma_address(sg) = 3848 sg_dma_address(iter) + (offset << PAGE_SHIFT); 3849 sg_dma_len(sg) = len; 3850 3851 st->nents++; 3852 count -= len >> PAGE_SHIFT; 3853 if (count == 0) { 3854 sg_mark_end(sg); 3855 i915_sg_trim(st); /* Drop any unused tail entries. */ 3856 3857 return st; 3858 } 3859 3860 sg = __sg_next(sg); 3861 iter = __sg_next(iter); 3862 offset = 0; 3863 } while (1); 3864 3865 err_sg_alloc: 3866 kfree(st); 3867 err_st_alloc: 3868 return ERR_PTR(ret); 3869 } 3870 3871 static int 3872 i915_get_ggtt_vma_pages(struct i915_vma *vma) 3873 { 3874 int ret; 3875 3876 /* The vma->pages are only valid within the lifespan of the borrowed 3877 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 3878 * must be the vma->pages. A simple rule is that vma->pages must only 3879 * be accessed when the obj->mm.pages are pinned. 3880 */ 3881 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 3882 3883 switch (vma->ggtt_view.type) { 3884 default: 3885 GEM_BUG_ON(vma->ggtt_view.type); 3886 /* fall through */ 3887 case I915_GGTT_VIEW_NORMAL: 3888 vma->pages = vma->obj->mm.pages; 3889 return 0; 3890 3891 case I915_GGTT_VIEW_ROTATED: 3892 vma->pages = 3893 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); 3894 break; 3895 3896 case I915_GGTT_VIEW_REMAPPED: 3897 vma->pages = 3898 intel_remap_pages(&vma->ggtt_view.remapped, vma->obj); 3899 break; 3900 3901 case I915_GGTT_VIEW_PARTIAL: 3902 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); 3903 break; 3904 } 3905 3906 ret = 0; 3907 if (IS_ERR(vma->pages)) { 3908 ret = PTR_ERR(vma->pages); 3909 vma->pages = NULL; 3910 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", 3911 vma->ggtt_view.type, ret); 3912 } 3913 return ret; 3914 } 3915 3916 /** 3917 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT) 3918 * @vm: the &struct i915_address_space 3919 * @node: the &struct drm_mm_node (typically i915_vma.mode) 3920 * @size: how much space to allocate inside the GTT, 3921 * must be #I915_GTT_PAGE_SIZE aligned 3922 * @offset: where to insert inside the GTT, 3923 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node 3924 * (@offset + @size) must fit within the address space 3925 * @color: color to apply to node, if this node is not from a VMA, 3926 * color must be #I915_COLOR_UNEVICTABLE 3927 * @flags: control search and eviction behaviour 3928 * 3929 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside 3930 * the address space (using @size and @color). If the @node does not fit, it 3931 * tries to evict any overlapping nodes from the GTT, including any 3932 * neighbouring nodes if the colors do not match (to ensure guard pages between 3933 * differing domains). See i915_gem_evict_for_node() for the gory details 3934 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on 3935 * evicting active overlapping objects, and any overlapping node that is pinned 3936 * or marked as unevictable will also result in failure. 3937 * 3938 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if 3939 * asked to wait for eviction and interrupted. 3940 */ 3941 int i915_gem_gtt_reserve(struct i915_address_space *vm, 3942 struct drm_mm_node *node, 3943 u64 size, u64 offset, unsigned long color, 3944 unsigned int flags) 3945 { 3946 int err; 3947 3948 GEM_BUG_ON(!size); 3949 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 3950 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT)); 3951 GEM_BUG_ON(range_overflows(offset, size, vm->total)); 3952 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); 3953 GEM_BUG_ON(drm_mm_node_allocated(node)); 3954 3955 node->size = size; 3956 node->start = offset; 3957 node->color = color; 3958 3959 err = drm_mm_reserve_node(&vm->mm, node); 3960 if (err != -ENOSPC) 3961 return err; 3962 3963 if (flags & PIN_NOEVICT) 3964 return -ENOSPC; 3965 3966 err = i915_gem_evict_for_node(vm, node, flags); 3967 if (err == 0) 3968 err = drm_mm_reserve_node(&vm->mm, node); 3969 3970 return err; 3971 } 3972 3973 static u64 random_offset(u64 start, u64 end, u64 len, u64 align) 3974 { 3975 u64 range, addr; 3976 3977 GEM_BUG_ON(range_overflows(start, len, end)); 3978 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align)); 3979 3980 range = round_down(end - len, align) - round_up(start, align); 3981 if (range) { 3982 if (sizeof(unsigned long) == sizeof(u64)) { 3983 addr = get_random_long(); 3984 } else { 3985 addr = get_random_int(); 3986 if (range > U32_MAX) { 3987 addr <<= 32; 3988 addr |= get_random_int(); 3989 } 3990 } 3991 div64_u64_rem(addr, range, &addr); 3992 start += addr; 3993 } 3994 3995 return round_up(start, align); 3996 } 3997 3998 /** 3999 * i915_gem_gtt_insert - insert a node into an address_space (GTT) 4000 * @vm: the &struct i915_address_space 4001 * @node: the &struct drm_mm_node (typically i915_vma.node) 4002 * @size: how much space to allocate inside the GTT, 4003 * must be #I915_GTT_PAGE_SIZE aligned 4004 * @alignment: required alignment of starting offset, may be 0 but 4005 * if specified, this must be a power-of-two and at least 4006 * #I915_GTT_MIN_ALIGNMENT 4007 * @color: color to apply to node 4008 * @start: start of any range restriction inside GTT (0 for all), 4009 * must be #I915_GTT_PAGE_SIZE aligned 4010 * @end: end of any range restriction inside GTT (U64_MAX for all), 4011 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX 4012 * @flags: control search and eviction behaviour 4013 * 4014 * i915_gem_gtt_insert() first searches for an available hole into which 4015 * is can insert the node. The hole address is aligned to @alignment and 4016 * its @size must then fit entirely within the [@start, @end] bounds. The 4017 * nodes on either side of the hole must match @color, or else a guard page 4018 * will be inserted between the two nodes (or the node evicted). If no 4019 * suitable hole is found, first a victim is randomly selected and tested 4020 * for eviction, otherwise then the LRU list of objects within the GTT 4021 * is scanned to find the first set of replacement nodes to create the hole. 4022 * Those old overlapping nodes are evicted from the GTT (and so must be 4023 * rebound before any future use). Any node that is currently pinned cannot 4024 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently 4025 * active and #PIN_NONBLOCK is specified, that node is also skipped when 4026 * searching for an eviction candidate. See i915_gem_evict_something() for 4027 * the gory details on the eviction algorithm. 4028 * 4029 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if 4030 * asked to wait for eviction and interrupted. 4031 */ 4032 int i915_gem_gtt_insert(struct i915_address_space *vm, 4033 struct drm_mm_node *node, 4034 u64 size, u64 alignment, unsigned long color, 4035 u64 start, u64 end, unsigned int flags) 4036 { 4037 enum drm_mm_insert_mode mode; 4038 u64 offset; 4039 int err; 4040 4041 lockdep_assert_held(&vm->i915->drm.struct_mutex); 4042 GEM_BUG_ON(!size); 4043 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 4044 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 4045 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 4046 GEM_BUG_ON(start >= end); 4047 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 4048 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 4049 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); 4050 GEM_BUG_ON(drm_mm_node_allocated(node)); 4051 4052 if (unlikely(range_overflows(start, size, end))) 4053 return -ENOSPC; 4054 4055 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment))) 4056 return -ENOSPC; 4057 4058 mode = DRM_MM_INSERT_BEST; 4059 if (flags & PIN_HIGH) 4060 mode = DRM_MM_INSERT_HIGHEST; 4061 if (flags & PIN_MAPPABLE) 4062 mode = DRM_MM_INSERT_LOW; 4063 4064 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, 4065 * so we know that we always have a minimum alignment of 4096. 4066 * The drm_mm range manager is optimised to return results 4067 * with zero alignment, so where possible use the optimal 4068 * path. 4069 */ 4070 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE); 4071 if (alignment <= I915_GTT_MIN_ALIGNMENT) 4072 alignment = 0; 4073 4074 err = drm_mm_insert_node_in_range(&vm->mm, node, 4075 size, alignment, color, 4076 start, end, mode); 4077 if (err != -ENOSPC) 4078 return err; 4079 4080 if (mode & DRM_MM_INSERT_ONCE) { 4081 err = drm_mm_insert_node_in_range(&vm->mm, node, 4082 size, alignment, color, 4083 start, end, 4084 DRM_MM_INSERT_BEST); 4085 if (err != -ENOSPC) 4086 return err; 4087 } 4088 4089 if (flags & PIN_NOEVICT) 4090 return -ENOSPC; 4091 4092 /* No free space, pick a slot at random. 4093 * 4094 * There is a pathological case here using a GTT shared between 4095 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt): 4096 * 4097 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->| 4098 * (64k objects) (448k objects) 4099 * 4100 * Now imagine that the eviction LRU is ordered top-down (just because 4101 * pathology meets real life), and that we need to evict an object to 4102 * make room inside the aperture. The eviction scan then has to walk 4103 * the 448k list before it finds one within range. And now imagine that 4104 * it has to search for a new hole between every byte inside the memcpy, 4105 * for several simultaneous clients. 4106 * 4107 * On a full-ppgtt system, if we have run out of available space, there 4108 * will be lots and lots of objects in the eviction list! Again, 4109 * searching that LRU list may be slow if we are also applying any 4110 * range restrictions (e.g. restriction to low 4GiB) and so, for 4111 * simplicity and similarilty between different GTT, try the single 4112 * random replacement first. 4113 */ 4114 offset = random_offset(start, end, 4115 size, alignment ?: I915_GTT_MIN_ALIGNMENT); 4116 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags); 4117 if (err != -ENOSPC) 4118 return err; 4119 4120 /* Randomly selected placement is pinned, do a search */ 4121 err = i915_gem_evict_something(vm, size, alignment, color, 4122 start, end, flags); 4123 if (err) 4124 return err; 4125 4126 return drm_mm_insert_node_in_range(&vm->mm, node, 4127 size, alignment, color, 4128 start, end, DRM_MM_INSERT_EVICT); 4129 } 4130 4131 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4132 #include "selftests/mock_gtt.c" 4133 #include "selftests/i915_gem_gtt.c" 4134 #endif 4135