1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/i915_drm.h>
37 
38 #include "display/intel_frontbuffer.h"
39 
40 #include "i915_drv.h"
41 #include "i915_scatterlist.h"
42 #include "i915_trace.h"
43 #include "i915_vgpu.h"
44 #include "intel_drv.h"
45 
46 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
47 
48 /**
49  * DOC: Global GTT views
50  *
51  * Background and previous state
52  *
53  * Historically objects could exists (be bound) in global GTT space only as
54  * singular instances with a view representing all of the object's backing pages
55  * in a linear fashion. This view will be called a normal view.
56  *
57  * To support multiple views of the same object, where the number of mapped
58  * pages is not equal to the backing store, or where the layout of the pages
59  * is not linear, concept of a GGTT view was added.
60  *
61  * One example of an alternative view is a stereo display driven by a single
62  * image. In this case we would have a framebuffer looking like this
63  * (2x2 pages):
64  *
65  *    12
66  *    34
67  *
68  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
69  * rendering. In contrast, fed to the display engine would be an alternative
70  * view which could look something like this:
71  *
72  *   1212
73  *   3434
74  *
75  * In this example both the size and layout of pages in the alternative view is
76  * different from the normal view.
77  *
78  * Implementation and usage
79  *
80  * GGTT views are implemented using VMAs and are distinguished via enum
81  * i915_ggtt_view_type and struct i915_ggtt_view.
82  *
83  * A new flavour of core GEM functions which work with GGTT bound objects were
84  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
85  * renaming  in large amounts of code. They take the struct i915_ggtt_view
86  * parameter encapsulating all metadata required to implement a view.
87  *
88  * As a helper for callers which are only interested in the normal view,
89  * globally const i915_ggtt_view_normal singleton instance exists. All old core
90  * GEM API functions, the ones not taking the view parameter, are operating on,
91  * or with the normal GGTT view.
92  *
93  * Code wanting to add or use a new GGTT view needs to:
94  *
95  * 1. Add a new enum with a suitable name.
96  * 2. Extend the metadata in the i915_ggtt_view structure if required.
97  * 3. Add support to i915_get_vma_pages().
98  *
99  * New views are required to build a scatter-gather table from within the
100  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
101  * exists for the lifetime of an VMA.
102  *
103  * Core API is designed to have copy semantics which means that passed in
104  * struct i915_ggtt_view does not need to be persistent (left around after
105  * calling the core API functions).
106  *
107  */
108 
109 static int
110 i915_get_ggtt_vma_pages(struct i915_vma *vma);
111 
112 static void gen6_ggtt_invalidate(struct drm_i915_private *i915)
113 {
114 	struct intel_uncore *uncore = &i915->uncore;
115 
116 	/*
117 	 * Note that as an uncached mmio write, this will flush the
118 	 * WCB of the writes into the GGTT before it triggers the invalidate.
119 	 */
120 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
121 }
122 
123 static void guc_ggtt_invalidate(struct drm_i915_private *i915)
124 {
125 	struct intel_uncore *uncore = &i915->uncore;
126 
127 	gen6_ggtt_invalidate(i915);
128 	intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
129 }
130 
131 static void gmch_ggtt_invalidate(struct drm_i915_private *i915)
132 {
133 	intel_gtt_chipset_flush();
134 }
135 
136 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
137 {
138 	i915->ggtt.invalidate(i915);
139 }
140 
141 static int ppgtt_bind_vma(struct i915_vma *vma,
142 			  enum i915_cache_level cache_level,
143 			  u32 unused)
144 {
145 	u32 pte_flags;
146 	int err;
147 
148 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
149 		err = vma->vm->allocate_va_range(vma->vm,
150 						 vma->node.start, vma->size);
151 		if (err)
152 			return err;
153 	}
154 
155 	/* Applicable to VLV, and gen8+ */
156 	pte_flags = 0;
157 	if (i915_gem_object_is_readonly(vma->obj))
158 		pte_flags |= PTE_READ_ONLY;
159 
160 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
161 
162 	return 0;
163 }
164 
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
168 }
169 
170 static int ppgtt_set_pages(struct i915_vma *vma)
171 {
172 	GEM_BUG_ON(vma->pages);
173 
174 	vma->pages = vma->obj->mm.pages;
175 
176 	vma->page_sizes = vma->obj->mm.page_sizes;
177 
178 	return 0;
179 }
180 
181 static void clear_pages(struct i915_vma *vma)
182 {
183 	GEM_BUG_ON(!vma->pages);
184 
185 	if (vma->pages != vma->obj->mm.pages) {
186 		sg_free_table(vma->pages);
187 		kfree(vma->pages);
188 	}
189 	vma->pages = NULL;
190 
191 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
192 }
193 
194 static u64 gen8_pte_encode(dma_addr_t addr,
195 			   enum i915_cache_level level,
196 			   u32 flags)
197 {
198 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
199 
200 	if (unlikely(flags & PTE_READ_ONLY))
201 		pte &= ~_PAGE_RW;
202 
203 	switch (level) {
204 	case I915_CACHE_NONE:
205 		pte |= PPAT_UNCACHED;
206 		break;
207 	case I915_CACHE_WT:
208 		pte |= PPAT_DISPLAY_ELLC;
209 		break;
210 	default:
211 		pte |= PPAT_CACHED;
212 		break;
213 	}
214 
215 	return pte;
216 }
217 
218 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
219 				  const enum i915_cache_level level)
220 {
221 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
222 	pde |= addr;
223 	if (level != I915_CACHE_NONE)
224 		pde |= PPAT_CACHED_PDE;
225 	else
226 		pde |= PPAT_UNCACHED;
227 	return pde;
228 }
229 
230 #define gen8_pdpe_encode gen8_pde_encode
231 #define gen8_pml4e_encode gen8_pde_encode
232 
233 static u64 snb_pte_encode(dma_addr_t addr,
234 			  enum i915_cache_level level,
235 			  u32 flags)
236 {
237 	gen6_pte_t pte = GEN6_PTE_VALID;
238 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
239 
240 	switch (level) {
241 	case I915_CACHE_L3_LLC:
242 	case I915_CACHE_LLC:
243 		pte |= GEN6_PTE_CACHE_LLC;
244 		break;
245 	case I915_CACHE_NONE:
246 		pte |= GEN6_PTE_UNCACHED;
247 		break;
248 	default:
249 		MISSING_CASE(level);
250 	}
251 
252 	return pte;
253 }
254 
255 static u64 ivb_pte_encode(dma_addr_t addr,
256 			  enum i915_cache_level level,
257 			  u32 flags)
258 {
259 	gen6_pte_t pte = GEN6_PTE_VALID;
260 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
261 
262 	switch (level) {
263 	case I915_CACHE_L3_LLC:
264 		pte |= GEN7_PTE_CACHE_L3_LLC;
265 		break;
266 	case I915_CACHE_LLC:
267 		pte |= GEN6_PTE_CACHE_LLC;
268 		break;
269 	case I915_CACHE_NONE:
270 		pte |= GEN6_PTE_UNCACHED;
271 		break;
272 	default:
273 		MISSING_CASE(level);
274 	}
275 
276 	return pte;
277 }
278 
279 static u64 byt_pte_encode(dma_addr_t addr,
280 			  enum i915_cache_level level,
281 			  u32 flags)
282 {
283 	gen6_pte_t pte = GEN6_PTE_VALID;
284 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
285 
286 	if (!(flags & PTE_READ_ONLY))
287 		pte |= BYT_PTE_WRITEABLE;
288 
289 	if (level != I915_CACHE_NONE)
290 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
291 
292 	return pte;
293 }
294 
295 static u64 hsw_pte_encode(dma_addr_t addr,
296 			  enum i915_cache_level level,
297 			  u32 flags)
298 {
299 	gen6_pte_t pte = GEN6_PTE_VALID;
300 	pte |= HSW_PTE_ADDR_ENCODE(addr);
301 
302 	if (level != I915_CACHE_NONE)
303 		pte |= HSW_WB_LLC_AGE3;
304 
305 	return pte;
306 }
307 
308 static u64 iris_pte_encode(dma_addr_t addr,
309 			   enum i915_cache_level level,
310 			   u32 flags)
311 {
312 	gen6_pte_t pte = GEN6_PTE_VALID;
313 	pte |= HSW_PTE_ADDR_ENCODE(addr);
314 
315 	switch (level) {
316 	case I915_CACHE_NONE:
317 		break;
318 	case I915_CACHE_WT:
319 		pte |= HSW_WT_ELLC_LLC_AGE3;
320 		break;
321 	default:
322 		pte |= HSW_WB_ELLC_LLC_AGE3;
323 		break;
324 	}
325 
326 	return pte;
327 }
328 
329 static void stash_init(struct pagestash *stash)
330 {
331 	pagevec_init(&stash->pvec);
332 	spin_lock_init(&stash->lock);
333 }
334 
335 static struct page *stash_pop_page(struct pagestash *stash)
336 {
337 	struct page *page = NULL;
338 
339 	spin_lock(&stash->lock);
340 	if (likely(stash->pvec.nr))
341 		page = stash->pvec.pages[--stash->pvec.nr];
342 	spin_unlock(&stash->lock);
343 
344 	return page;
345 }
346 
347 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
348 {
349 	unsigned int nr;
350 
351 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
352 
353 	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
354 	memcpy(stash->pvec.pages + stash->pvec.nr,
355 	       pvec->pages + pvec->nr - nr,
356 	       sizeof(pvec->pages[0]) * nr);
357 	stash->pvec.nr += nr;
358 
359 	spin_unlock(&stash->lock);
360 
361 	pvec->nr -= nr;
362 }
363 
364 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
365 {
366 	struct pagevec stack;
367 	struct page *page;
368 
369 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
370 		i915_gem_shrink_all(vm->i915);
371 
372 	page = stash_pop_page(&vm->free_pages);
373 	if (page)
374 		return page;
375 
376 	if (!vm->pt_kmap_wc)
377 		return alloc_page(gfp);
378 
379 	/* Look in our global stash of WC pages... */
380 	page = stash_pop_page(&vm->i915->mm.wc_stash);
381 	if (page)
382 		return page;
383 
384 	/*
385 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
386 	 *
387 	 * We have to be careful as page allocation may trigger the shrinker
388 	 * (via direct reclaim) which will fill up the WC stash underneath us.
389 	 * So we add our WB pages into a temporary pvec on the stack and merge
390 	 * them into the WC stash after all the allocations are complete.
391 	 */
392 	pagevec_init(&stack);
393 	do {
394 		struct page *page;
395 
396 		page = alloc_page(gfp);
397 		if (unlikely(!page))
398 			break;
399 
400 		stack.pages[stack.nr++] = page;
401 	} while (pagevec_space(&stack));
402 
403 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
404 		page = stack.pages[--stack.nr];
405 
406 		/* Merge spare WC pages to the global stash */
407 		if (stack.nr)
408 			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
409 
410 		/* Push any surplus WC pages onto the local VM stash */
411 		if (stack.nr)
412 			stash_push_pagevec(&vm->free_pages, &stack);
413 	}
414 
415 	/* Return unwanted leftovers */
416 	if (unlikely(stack.nr)) {
417 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
418 		__pagevec_release(&stack);
419 	}
420 
421 	return page;
422 }
423 
424 static void vm_free_pages_release(struct i915_address_space *vm,
425 				  bool immediate)
426 {
427 	struct pagevec *pvec = &vm->free_pages.pvec;
428 	struct pagevec stack;
429 
430 	lockdep_assert_held(&vm->free_pages.lock);
431 	GEM_BUG_ON(!pagevec_count(pvec));
432 
433 	if (vm->pt_kmap_wc) {
434 		/*
435 		 * When we use WC, first fill up the global stash and then
436 		 * only if full immediately free the overflow.
437 		 */
438 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
439 
440 		/*
441 		 * As we have made some room in the VM's free_pages,
442 		 * we can wait for it to fill again. Unless we are
443 		 * inside i915_address_space_fini() and must
444 		 * immediately release the pages!
445 		 */
446 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
447 			return;
448 
449 		/*
450 		 * We have to drop the lock to allow ourselves to sleep,
451 		 * so take a copy of the pvec and clear the stash for
452 		 * others to use it as we sleep.
453 		 */
454 		stack = *pvec;
455 		pagevec_reinit(pvec);
456 		spin_unlock(&vm->free_pages.lock);
457 
458 		pvec = &stack;
459 		set_pages_array_wb(pvec->pages, pvec->nr);
460 
461 		spin_lock(&vm->free_pages.lock);
462 	}
463 
464 	__pagevec_release(pvec);
465 }
466 
467 static void vm_free_page(struct i915_address_space *vm, struct page *page)
468 {
469 	/*
470 	 * On !llc, we need to change the pages back to WB. We only do so
471 	 * in bulk, so we rarely need to change the page attributes here,
472 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
473 	 * To make detection of the possible sleep more likely, use an
474 	 * unconditional might_sleep() for everybody.
475 	 */
476 	might_sleep();
477 	spin_lock(&vm->free_pages.lock);
478 	while (!pagevec_space(&vm->free_pages.pvec))
479 		vm_free_pages_release(vm, false);
480 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
481 	pagevec_add(&vm->free_pages.pvec, page);
482 	spin_unlock(&vm->free_pages.lock);
483 }
484 
485 static void i915_address_space_init(struct i915_address_space *vm, int subclass)
486 {
487 	kref_init(&vm->ref);
488 
489 	/*
490 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
491 	 * Do a dummy acquire now under fs_reclaim so that any allocation
492 	 * attempt holding the lock is immediately reported by lockdep.
493 	 */
494 	mutex_init(&vm->mutex);
495 	lockdep_set_subclass(&vm->mutex, subclass);
496 	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
497 
498 	GEM_BUG_ON(!vm->total);
499 	drm_mm_init(&vm->mm, 0, vm->total);
500 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
501 
502 	stash_init(&vm->free_pages);
503 
504 	INIT_LIST_HEAD(&vm->unbound_list);
505 	INIT_LIST_HEAD(&vm->bound_list);
506 }
507 
508 static void i915_address_space_fini(struct i915_address_space *vm)
509 {
510 	spin_lock(&vm->free_pages.lock);
511 	if (pagevec_count(&vm->free_pages.pvec))
512 		vm_free_pages_release(vm, true);
513 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
514 	spin_unlock(&vm->free_pages.lock);
515 
516 	drm_mm_takedown(&vm->mm);
517 
518 	mutex_destroy(&vm->mutex);
519 }
520 
521 static int __setup_page_dma(struct i915_address_space *vm,
522 			    struct i915_page_dma *p,
523 			    gfp_t gfp)
524 {
525 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
526 	if (unlikely(!p->page))
527 		return -ENOMEM;
528 
529 	p->daddr = dma_map_page_attrs(vm->dma,
530 				      p->page, 0, PAGE_SIZE,
531 				      PCI_DMA_BIDIRECTIONAL,
532 				      DMA_ATTR_SKIP_CPU_SYNC |
533 				      DMA_ATTR_NO_WARN);
534 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
535 		vm_free_page(vm, p->page);
536 		return -ENOMEM;
537 	}
538 
539 	return 0;
540 }
541 
542 static int setup_page_dma(struct i915_address_space *vm,
543 			  struct i915_page_dma *p)
544 {
545 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
546 }
547 
548 static void cleanup_page_dma(struct i915_address_space *vm,
549 			     struct i915_page_dma *p)
550 {
551 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
552 	vm_free_page(vm, p->page);
553 }
554 
555 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
556 
557 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
558 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
559 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
560 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
561 
562 static void fill_page_dma(struct i915_address_space *vm,
563 			  struct i915_page_dma *p,
564 			  const u64 val)
565 {
566 	u64 * const vaddr = kmap_atomic(p->page);
567 
568 	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
569 
570 	kunmap_atomic(vaddr);
571 }
572 
573 static void fill_page_dma_32(struct i915_address_space *vm,
574 			     struct i915_page_dma *p,
575 			     const u32 v)
576 {
577 	fill_page_dma(vm, p, (u64)v << 32 | v);
578 }
579 
580 static int
581 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
582 {
583 	unsigned long size;
584 
585 	/*
586 	 * In order to utilize 64K pages for an object with a size < 2M, we will
587 	 * need to support a 64K scratch page, given that every 16th entry for a
588 	 * page-table operating in 64K mode must point to a properly aligned 64K
589 	 * region, including any PTEs which happen to point to scratch.
590 	 *
591 	 * This is only relevant for the 48b PPGTT where we support
592 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
593 	 * scratch (read-only) between all vm, we create one 64k scratch page
594 	 * for all.
595 	 */
596 	size = I915_GTT_PAGE_SIZE_4K;
597 	if (i915_vm_is_4lvl(vm) &&
598 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
599 		size = I915_GTT_PAGE_SIZE_64K;
600 		gfp |= __GFP_NOWARN;
601 	}
602 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
603 
604 	do {
605 		int order = get_order(size);
606 		struct page *page;
607 		dma_addr_t addr;
608 
609 		page = alloc_pages(gfp, order);
610 		if (unlikely(!page))
611 			goto skip;
612 
613 		addr = dma_map_page_attrs(vm->dma,
614 					  page, 0, size,
615 					  PCI_DMA_BIDIRECTIONAL,
616 					  DMA_ATTR_SKIP_CPU_SYNC |
617 					  DMA_ATTR_NO_WARN);
618 		if (unlikely(dma_mapping_error(vm->dma, addr)))
619 			goto free_page;
620 
621 		if (unlikely(!IS_ALIGNED(addr, size)))
622 			goto unmap_page;
623 
624 		vm->scratch_page.page = page;
625 		vm->scratch_page.daddr = addr;
626 		vm->scratch_order = order;
627 		return 0;
628 
629 unmap_page:
630 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
631 free_page:
632 		__free_pages(page, order);
633 skip:
634 		if (size == I915_GTT_PAGE_SIZE_4K)
635 			return -ENOMEM;
636 
637 		size = I915_GTT_PAGE_SIZE_4K;
638 		gfp &= ~__GFP_NOWARN;
639 	} while (1);
640 }
641 
642 static void cleanup_scratch_page(struct i915_address_space *vm)
643 {
644 	struct i915_page_dma *p = &vm->scratch_page;
645 	int order = vm->scratch_order;
646 
647 	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
648 		       PCI_DMA_BIDIRECTIONAL);
649 	__free_pages(p->page, order);
650 }
651 
652 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
653 {
654 	struct i915_page_table *pt;
655 
656 	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
657 	if (unlikely(!pt))
658 		return ERR_PTR(-ENOMEM);
659 
660 	if (unlikely(setup_px(vm, pt))) {
661 		kfree(pt);
662 		return ERR_PTR(-ENOMEM);
663 	}
664 
665 	atomic_set(&pt->used, 0);
666 
667 	return pt;
668 }
669 
670 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
671 {
672 	cleanup_px(vm, pt);
673 	kfree(pt);
674 }
675 
676 static void gen8_initialize_pt(struct i915_address_space *vm,
677 			       struct i915_page_table *pt)
678 {
679 	fill_px(vm, pt, vm->scratch_pte);
680 }
681 
682 static void gen6_initialize_pt(struct i915_address_space *vm,
683 			       struct i915_page_table *pt)
684 {
685 	fill32_px(vm, pt, vm->scratch_pte);
686 }
687 
688 static struct i915_page_directory *__alloc_pd(void)
689 {
690 	struct i915_page_directory *pd;
691 
692 	pd = kmalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
693 
694 	if (unlikely(!pd))
695 		return NULL;
696 
697 	memset(&pd->base, 0, sizeof(pd->base));
698 	atomic_set(&pd->used, 0);
699 	spin_lock_init(&pd->lock);
700 
701 	/* for safety */
702 	pd->entry[0] = NULL;
703 
704 	return pd;
705 }
706 
707 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
708 {
709 	struct i915_page_directory *pd;
710 
711 	pd = __alloc_pd();
712 	if (unlikely(!pd))
713 		return ERR_PTR(-ENOMEM);
714 
715 	if (unlikely(setup_px(vm, pd))) {
716 		kfree(pd);
717 		return ERR_PTR(-ENOMEM);
718 	}
719 
720 	return pd;
721 }
722 
723 static inline bool pd_has_phys_page(const struct i915_page_directory * const pd)
724 {
725 	return pd->base.page;
726 }
727 
728 static void free_pd(struct i915_address_space *vm,
729 		    struct i915_page_directory *pd)
730 {
731 	if (likely(pd_has_phys_page(pd)))
732 		cleanup_px(vm, pd);
733 
734 	kfree(pd);
735 }
736 
737 static void init_pd_with_page(struct i915_address_space *vm,
738 			      struct i915_page_directory * const pd,
739 			      struct i915_page_table *pt)
740 {
741 	fill_px(vm, pd, gen8_pde_encode(px_dma(pt), I915_CACHE_LLC));
742 	memset_p(pd->entry, pt, 512);
743 }
744 
745 static void init_pd(struct i915_address_space *vm,
746 		    struct i915_page_directory * const pd,
747 		    struct i915_page_directory * const to)
748 {
749 	GEM_DEBUG_BUG_ON(!pd_has_phys_page(pd));
750 
751 	fill_px(vm, pd, gen8_pdpe_encode(px_dma(to), I915_CACHE_LLC));
752 	memset_p(pd->entry, to, 512);
753 }
754 
755 /*
756  * PDE TLBs are a pain to invalidate on GEN8+. When we modify
757  * the page table structures, we mark them dirty so that
758  * context switching/execlist queuing code takes extra steps
759  * to ensure that tlbs are flushed.
760  */
761 static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt)
762 {
763 	ppgtt->pd_dirty_engines = ALL_ENGINES;
764 }
765 
766 /* Removes entries from a single page table, releasing it if it's empty.
767  * Caller can use the return value to update higher-level entries.
768  */
769 static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
770 				struct i915_page_table *pt,
771 				u64 start, u64 length)
772 {
773 	unsigned int num_entries = gen8_pte_count(start, length);
774 	gen8_pte_t *vaddr;
775 
776 	vaddr = kmap_atomic_px(pt);
777 	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
778 	kunmap_atomic(vaddr);
779 
780 	GEM_BUG_ON(num_entries > atomic_read(&pt->used));
781 	return !atomic_sub_return(num_entries, &pt->used);
782 }
783 
784 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
785 			       struct i915_page_directory *pd,
786 			       struct i915_page_table *pt,
787 			       unsigned int pde)
788 {
789 	gen8_pde_t *vaddr;
790 
791 	vaddr = kmap_atomic_px(pd);
792 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
793 	kunmap_atomic(vaddr);
794 }
795 
796 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
797 				struct i915_page_directory *pd,
798 				u64 start, u64 length)
799 {
800 	struct i915_page_table *pt;
801 	u32 pde;
802 
803 	gen8_for_each_pde(pt, pd, start, length, pde) {
804 		bool free = false;
805 
806 		GEM_BUG_ON(pt == vm->scratch_pt);
807 
808 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
809 			continue;
810 
811 		spin_lock(&pd->lock);
812 		if (!atomic_read(&pt->used)) {
813 			gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
814 			pd->entry[pde] = vm->scratch_pt;
815 
816 			GEM_BUG_ON(!atomic_read(&pd->used));
817 			atomic_dec(&pd->used);
818 			free = true;
819 		}
820 		spin_unlock(&pd->lock);
821 		if (free)
822 			free_pt(vm, pt);
823 	}
824 
825 	return !atomic_read(&pd->used);
826 }
827 
828 static void gen8_ppgtt_set_pdpe(struct i915_page_directory *pdp,
829 				struct i915_page_directory *pd,
830 				unsigned int pdpe)
831 {
832 	gen8_ppgtt_pdpe_t *vaddr;
833 
834 	if (!pd_has_phys_page(pdp))
835 		return;
836 
837 	vaddr = kmap_atomic_px(pdp);
838 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
839 	kunmap_atomic(vaddr);
840 }
841 
842 /* Removes entries from a single page dir pointer, releasing it if it's empty.
843  * Caller can use the return value to update higher-level entries
844  */
845 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
846 				 struct i915_page_directory * const pdp,
847 				 u64 start, u64 length)
848 {
849 	struct i915_page_directory *pd;
850 	unsigned int pdpe;
851 
852 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
853 		bool free = false;
854 
855 		GEM_BUG_ON(pd == vm->scratch_pd);
856 
857 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
858 			continue;
859 
860 		spin_lock(&pdp->lock);
861 		if (!atomic_read(&pd->used)) {
862 			gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
863 			pdp->entry[pdpe] = vm->scratch_pd;
864 
865 			GEM_BUG_ON(!atomic_read(&pdp->used));
866 			atomic_dec(&pdp->used);
867 			free = true;
868 		}
869 		spin_unlock(&pdp->lock);
870 		if (free)
871 			free_pd(vm, pd);
872 	}
873 
874 	return !atomic_read(&pdp->used);
875 }
876 
877 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
878 				  u64 start, u64 length)
879 {
880 	gen8_ppgtt_clear_pdp(vm, i915_vm_to_ppgtt(vm)->pd, start, length);
881 }
882 
883 static void gen8_ppgtt_set_pml4e(struct i915_page_directory *pml4,
884 				 struct i915_page_directory *pdp,
885 				 unsigned int pml4e)
886 {
887 	gen8_ppgtt_pml4e_t *vaddr;
888 
889 	vaddr = kmap_atomic_px(pml4);
890 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
891 	kunmap_atomic(vaddr);
892 }
893 
894 /* Removes entries from a single pml4.
895  * This is the top-level structure in 4-level page tables used on gen8+.
896  * Empty entries are always scratch pml4e.
897  */
898 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
899 				  u64 start, u64 length)
900 {
901 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
902 	struct i915_page_directory * const pml4 = ppgtt->pd;
903 	struct i915_page_directory *pdp;
904 	unsigned int pml4e;
905 
906 	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
907 
908 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
909 		bool free = false;
910 		GEM_BUG_ON(pdp == vm->scratch_pdp);
911 
912 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
913 			continue;
914 
915 		spin_lock(&pml4->lock);
916 		if (!atomic_read(&pdp->used)) {
917 			gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
918 			pml4->entry[pml4e] = vm->scratch_pdp;
919 			free = true;
920 		}
921 		spin_unlock(&pml4->lock);
922 		if (free)
923 			free_pd(vm, pdp);
924 	}
925 }
926 
927 static inline struct sgt_dma {
928 	struct scatterlist *sg;
929 	dma_addr_t dma, max;
930 } sgt_dma(struct i915_vma *vma) {
931 	struct scatterlist *sg = vma->pages->sgl;
932 	dma_addr_t addr = sg_dma_address(sg);
933 	return (struct sgt_dma) { sg, addr, addr + sg->length };
934 }
935 
936 struct gen8_insert_pte {
937 	u16 pml4e;
938 	u16 pdpe;
939 	u16 pde;
940 	u16 pte;
941 };
942 
943 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
944 {
945 	return (struct gen8_insert_pte) {
946 		 gen8_pml4e_index(start),
947 		 gen8_pdpe_index(start),
948 		 gen8_pde_index(start),
949 		 gen8_pte_index(start),
950 	};
951 }
952 
953 static __always_inline bool
954 gen8_ppgtt_insert_pte_entries(struct i915_ppgtt *ppgtt,
955 			      struct i915_page_directory *pdp,
956 			      struct sgt_dma *iter,
957 			      struct gen8_insert_pte *idx,
958 			      enum i915_cache_level cache_level,
959 			      u32 flags)
960 {
961 	struct i915_page_directory *pd;
962 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
963 	gen8_pte_t *vaddr;
964 	bool ret;
965 
966 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
967 	pd = i915_pd_entry(pdp, idx->pdpe);
968 	vaddr = kmap_atomic_px(i915_pt_entry(pd, idx->pde));
969 	do {
970 		vaddr[idx->pte] = pte_encode | iter->dma;
971 
972 		iter->dma += I915_GTT_PAGE_SIZE;
973 		if (iter->dma >= iter->max) {
974 			iter->sg = __sg_next(iter->sg);
975 			if (!iter->sg) {
976 				ret = false;
977 				break;
978 			}
979 
980 			iter->dma = sg_dma_address(iter->sg);
981 			iter->max = iter->dma + iter->sg->length;
982 		}
983 
984 		if (++idx->pte == GEN8_PTES) {
985 			idx->pte = 0;
986 
987 			if (++idx->pde == I915_PDES) {
988 				idx->pde = 0;
989 
990 				/* Limited by sg length for 3lvl */
991 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
992 					idx->pdpe = 0;
993 					ret = true;
994 					break;
995 				}
996 
997 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
998 				pd = pdp->entry[idx->pdpe];
999 			}
1000 
1001 			kunmap_atomic(vaddr);
1002 			vaddr = kmap_atomic_px(i915_pt_entry(pd, idx->pde));
1003 		}
1004 	} while (1);
1005 	kunmap_atomic(vaddr);
1006 
1007 	return ret;
1008 }
1009 
1010 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1011 				   struct i915_vma *vma,
1012 				   enum i915_cache_level cache_level,
1013 				   u32 flags)
1014 {
1015 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1016 	struct sgt_dma iter = sgt_dma(vma);
1017 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1018 
1019 	gen8_ppgtt_insert_pte_entries(ppgtt, ppgtt->pd, &iter, &idx,
1020 				      cache_level, flags);
1021 
1022 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1023 }
1024 
1025 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1026 					   struct i915_page_directory *pml4,
1027 					   struct sgt_dma *iter,
1028 					   enum i915_cache_level cache_level,
1029 					   u32 flags)
1030 {
1031 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1032 	u64 start = vma->node.start;
1033 	dma_addr_t rem = iter->sg->length;
1034 
1035 	do {
1036 		struct gen8_insert_pte idx = gen8_insert_pte(start);
1037 		struct i915_page_directory *pdp =
1038 			i915_pdp_entry(pml4, idx.pml4e);
1039 		struct i915_page_directory *pd = i915_pd_entry(pdp, idx.pdpe);
1040 		unsigned int page_size;
1041 		bool maybe_64K = false;
1042 		gen8_pte_t encode = pte_encode;
1043 		gen8_pte_t *vaddr;
1044 		u16 index, max;
1045 
1046 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1047 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1048 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1049 			index = idx.pde;
1050 			max = I915_PDES;
1051 			page_size = I915_GTT_PAGE_SIZE_2M;
1052 
1053 			encode |= GEN8_PDE_PS_2M;
1054 
1055 			vaddr = kmap_atomic_px(pd);
1056 		} else {
1057 			struct i915_page_table *pt = i915_pt_entry(pd, idx.pde);
1058 
1059 			index = idx.pte;
1060 			max = GEN8_PTES;
1061 			page_size = I915_GTT_PAGE_SIZE;
1062 
1063 			if (!index &&
1064 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1065 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1066 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1067 			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1068 				maybe_64K = true;
1069 
1070 			vaddr = kmap_atomic_px(pt);
1071 		}
1072 
1073 		do {
1074 			GEM_BUG_ON(iter->sg->length < page_size);
1075 			vaddr[index++] = encode | iter->dma;
1076 
1077 			start += page_size;
1078 			iter->dma += page_size;
1079 			rem -= page_size;
1080 			if (iter->dma >= iter->max) {
1081 				iter->sg = __sg_next(iter->sg);
1082 				if (!iter->sg)
1083 					break;
1084 
1085 				rem = iter->sg->length;
1086 				iter->dma = sg_dma_address(iter->sg);
1087 				iter->max = iter->dma + rem;
1088 
1089 				if (maybe_64K && index < max &&
1090 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1091 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1092 				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1093 					maybe_64K = false;
1094 
1095 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1096 					break;
1097 			}
1098 		} while (rem >= page_size && index < max);
1099 
1100 		kunmap_atomic(vaddr);
1101 
1102 		/*
1103 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1104 		 * filled whole page-table with 64K entries, or filled part of
1105 		 * it and have reached the end of the sg table and we have
1106 		 * enough padding.
1107 		 */
1108 		if (maybe_64K &&
1109 		    (index == max ||
1110 		     (i915_vm_has_scratch_64K(vma->vm) &&
1111 		      !iter->sg && IS_ALIGNED(vma->node.start +
1112 					      vma->node.size,
1113 					      I915_GTT_PAGE_SIZE_2M)))) {
1114 			vaddr = kmap_atomic_px(pd);
1115 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1116 			kunmap_atomic(vaddr);
1117 			page_size = I915_GTT_PAGE_SIZE_64K;
1118 
1119 			/*
1120 			 * We write all 4K page entries, even when using 64K
1121 			 * pages. In order to verify that the HW isn't cheating
1122 			 * by using the 4K PTE instead of the 64K PTE, we want
1123 			 * to remove all the surplus entries. If the HW skipped
1124 			 * the 64K PTE, it will read/write into the scratch page
1125 			 * instead - which we detect as missing results during
1126 			 * selftests.
1127 			 */
1128 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1129 				u16 i;
1130 
1131 				encode = vma->vm->scratch_pte;
1132 				vaddr = kmap_atomic_px(i915_pt_entry(pd,
1133 								     idx.pde));
1134 
1135 				for (i = 1; i < index; i += 16)
1136 					memset64(vaddr + i, encode, 15);
1137 
1138 				kunmap_atomic(vaddr);
1139 			}
1140 		}
1141 
1142 		vma->page_sizes.gtt |= page_size;
1143 	} while (iter->sg);
1144 }
1145 
1146 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1147 				   struct i915_vma *vma,
1148 				   enum i915_cache_level cache_level,
1149 				   u32 flags)
1150 {
1151 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1152 	struct sgt_dma iter = sgt_dma(vma);
1153 	struct i915_page_directory * const pml4 = ppgtt->pd;
1154 
1155 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1156 		gen8_ppgtt_insert_huge_entries(vma, pml4, &iter, cache_level,
1157 					       flags);
1158 	} else {
1159 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1160 
1161 		while (gen8_ppgtt_insert_pte_entries(ppgtt,
1162 						     i915_pdp_entry(pml4, idx.pml4e++),
1163 						     &iter, &idx, cache_level,
1164 						     flags))
1165 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1166 
1167 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1168 	}
1169 }
1170 
1171 static void gen8_free_page_tables(struct i915_address_space *vm,
1172 				  struct i915_page_directory *pd)
1173 {
1174 	int i;
1175 
1176 	for (i = 0; i < I915_PDES; i++) {
1177 		if (pd->entry[i] != vm->scratch_pt)
1178 			free_pt(vm, pd->entry[i]);
1179 	}
1180 }
1181 
1182 static int gen8_init_scratch(struct i915_address_space *vm)
1183 {
1184 	int ret;
1185 
1186 	/*
1187 	 * If everybody agrees to not to write into the scratch page,
1188 	 * we can reuse it for all vm, keeping contexts and processes separate.
1189 	 */
1190 	if (vm->has_read_only &&
1191 	    vm->i915->kernel_context &&
1192 	    vm->i915->kernel_context->vm) {
1193 		struct i915_address_space *clone = vm->i915->kernel_context->vm;
1194 
1195 		GEM_BUG_ON(!clone->has_read_only);
1196 
1197 		vm->scratch_order = clone->scratch_order;
1198 		vm->scratch_pte = clone->scratch_pte;
1199 		vm->scratch_pt  = clone->scratch_pt;
1200 		vm->scratch_pd  = clone->scratch_pd;
1201 		vm->scratch_pdp = clone->scratch_pdp;
1202 		return 0;
1203 	}
1204 
1205 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1206 	if (ret)
1207 		return ret;
1208 
1209 	vm->scratch_pte =
1210 		gen8_pte_encode(vm->scratch_page.daddr,
1211 				I915_CACHE_LLC,
1212 				vm->has_read_only);
1213 
1214 	vm->scratch_pt = alloc_pt(vm);
1215 	if (IS_ERR(vm->scratch_pt)) {
1216 		ret = PTR_ERR(vm->scratch_pt);
1217 		goto free_scratch_page;
1218 	}
1219 
1220 	vm->scratch_pd = alloc_pd(vm);
1221 	if (IS_ERR(vm->scratch_pd)) {
1222 		ret = PTR_ERR(vm->scratch_pd);
1223 		goto free_pt;
1224 	}
1225 
1226 	if (i915_vm_is_4lvl(vm)) {
1227 		vm->scratch_pdp = alloc_pd(vm);
1228 		if (IS_ERR(vm->scratch_pdp)) {
1229 			ret = PTR_ERR(vm->scratch_pdp);
1230 			goto free_pd;
1231 		}
1232 	}
1233 
1234 	gen8_initialize_pt(vm, vm->scratch_pt);
1235 	init_pd_with_page(vm, vm->scratch_pd, vm->scratch_pt);
1236 	if (i915_vm_is_4lvl(vm))
1237 		init_pd(vm, vm->scratch_pdp, vm->scratch_pd);
1238 
1239 	return 0;
1240 
1241 free_pd:
1242 	free_pd(vm, vm->scratch_pd);
1243 free_pt:
1244 	free_pt(vm, vm->scratch_pt);
1245 free_scratch_page:
1246 	cleanup_scratch_page(vm);
1247 
1248 	return ret;
1249 }
1250 
1251 static int gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
1252 {
1253 	struct i915_address_space *vm = &ppgtt->vm;
1254 	struct drm_i915_private *dev_priv = vm->i915;
1255 	enum vgt_g2v_type msg;
1256 	int i;
1257 
1258 	if (i915_vm_is_4lvl(vm)) {
1259 		const u64 daddr = px_dma(ppgtt->pd);
1260 
1261 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1262 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1263 
1264 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1265 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1266 	} else {
1267 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1268 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1269 
1270 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1271 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1272 		}
1273 
1274 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1275 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1276 	}
1277 
1278 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1279 
1280 	return 0;
1281 }
1282 
1283 static void gen8_free_scratch(struct i915_address_space *vm)
1284 {
1285 	if (!vm->scratch_page.daddr)
1286 		return;
1287 
1288 	if (i915_vm_is_4lvl(vm))
1289 		free_pd(vm, vm->scratch_pdp);
1290 	free_pd(vm, vm->scratch_pd);
1291 	free_pt(vm, vm->scratch_pt);
1292 	cleanup_scratch_page(vm);
1293 }
1294 
1295 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1296 				    struct i915_page_directory *pdp)
1297 {
1298 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1299 	int i;
1300 
1301 	for (i = 0; i < pdpes; i++) {
1302 		if (pdp->entry[i] == vm->scratch_pd)
1303 			continue;
1304 
1305 		gen8_free_page_tables(vm, pdp->entry[i]);
1306 		free_pd(vm, pdp->entry[i]);
1307 	}
1308 
1309 	free_pd(vm, pdp);
1310 }
1311 
1312 static void gen8_ppgtt_cleanup_4lvl(struct i915_ppgtt *ppgtt)
1313 {
1314 	struct i915_page_directory * const pml4 = ppgtt->pd;
1315 	int i;
1316 
1317 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1318 		struct i915_page_directory *pdp = i915_pdp_entry(pml4, i);
1319 
1320 		if (pdp == ppgtt->vm.scratch_pdp)
1321 			continue;
1322 
1323 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, pdp);
1324 	}
1325 
1326 	free_pd(&ppgtt->vm, pml4);
1327 }
1328 
1329 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1330 {
1331 	struct drm_i915_private *i915 = vm->i915;
1332 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1333 
1334 	if (intel_vgpu_active(i915))
1335 		gen8_ppgtt_notify_vgt(ppgtt, false);
1336 
1337 	if (i915_vm_is_4lvl(vm))
1338 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1339 	else
1340 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pd);
1341 
1342 	gen8_free_scratch(vm);
1343 }
1344 
1345 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1346 			       struct i915_page_directory *pd,
1347 			       u64 start, u64 length)
1348 {
1349 	struct i915_page_table *pt, *alloc = NULL;
1350 	u64 from = start;
1351 	unsigned int pde;
1352 	int ret = 0;
1353 
1354 	spin_lock(&pd->lock);
1355 	gen8_for_each_pde(pt, pd, start, length, pde) {
1356 		const int count = gen8_pte_count(start, length);
1357 
1358 		if (pt == vm->scratch_pt) {
1359 			spin_unlock(&pd->lock);
1360 
1361 			pt = fetch_and_zero(&alloc);
1362 			if (!pt)
1363 				pt = alloc_pt(vm);
1364 			if (IS_ERR(pt)) {
1365 				ret = PTR_ERR(pt);
1366 				goto unwind;
1367 			}
1368 
1369 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1370 				gen8_initialize_pt(vm, pt);
1371 
1372 			spin_lock(&pd->lock);
1373 			if (pd->entry[pde] == vm->scratch_pt) {
1374 				gen8_ppgtt_set_pde(vm, pd, pt, pde);
1375 				pd->entry[pde] = pt;
1376 				atomic_inc(&pd->used);
1377 			} else {
1378 				alloc = pt;
1379 				pt = pd->entry[pde];
1380 			}
1381 		}
1382 
1383 		atomic_add(count, &pt->used);
1384 	}
1385 	spin_unlock(&pd->lock);
1386 	goto out;
1387 
1388 unwind:
1389 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1390 out:
1391 	if (alloc)
1392 		free_pt(vm, alloc);
1393 	return ret;
1394 }
1395 
1396 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1397 				struct i915_page_directory *pdp,
1398 				u64 start, u64 length)
1399 {
1400 	struct i915_page_directory *pd, *alloc = NULL;
1401 	u64 from = start;
1402 	unsigned int pdpe;
1403 	int ret = 0;
1404 
1405 	spin_lock(&pdp->lock);
1406 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1407 		if (pd == vm->scratch_pd) {
1408 			spin_unlock(&pdp->lock);
1409 
1410 			pd = fetch_and_zero(&alloc);
1411 			if (!pd)
1412 				pd = alloc_pd(vm);
1413 			if (IS_ERR(pd)) {
1414 				ret = PTR_ERR(pd);
1415 				goto unwind;
1416 			}
1417 
1418 			init_pd_with_page(vm, pd, vm->scratch_pt);
1419 
1420 			spin_lock(&pdp->lock);
1421 			if (pdp->entry[pdpe] == vm->scratch_pd) {
1422 				gen8_ppgtt_set_pdpe(pdp, pd, pdpe);
1423 				pdp->entry[pdpe] = pd;
1424 				atomic_inc(&pdp->used);
1425 			} else {
1426 				alloc = pd;
1427 				pd = pdp->entry[pdpe];
1428 			}
1429 		}
1430 		atomic_inc(&pd->used);
1431 		spin_unlock(&pdp->lock);
1432 
1433 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1434 		if (unlikely(ret))
1435 			goto unwind_pd;
1436 
1437 		spin_lock(&pdp->lock);
1438 		atomic_dec(&pd->used);
1439 	}
1440 	spin_unlock(&pdp->lock);
1441 	goto out;
1442 
1443 unwind_pd:
1444 	spin_lock(&pdp->lock);
1445 	if (atomic_dec_and_test(&pd->used)) {
1446 		gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
1447 		pdp->entry[pdpe] = vm->scratch_pd;
1448 		GEM_BUG_ON(!atomic_read(&pdp->used));
1449 		atomic_dec(&pdp->used);
1450 		GEM_BUG_ON(alloc);
1451 		alloc = pd; /* defer the free to after the lock */
1452 	}
1453 	spin_unlock(&pdp->lock);
1454 unwind:
1455 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1456 out:
1457 	if (alloc)
1458 		free_pd(vm, alloc);
1459 	return ret;
1460 }
1461 
1462 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1463 				 u64 start, u64 length)
1464 {
1465 	return gen8_ppgtt_alloc_pdp(vm,
1466 				    i915_vm_to_ppgtt(vm)->pd, start, length);
1467 }
1468 
1469 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1470 				 u64 start, u64 length)
1471 {
1472 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1473 	struct i915_page_directory * const pml4 = ppgtt->pd;
1474 	struct i915_page_directory *pdp, *alloc = NULL;
1475 	u64 from = start;
1476 	int ret = 0;
1477 	u32 pml4e;
1478 
1479 	spin_lock(&pml4->lock);
1480 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1481 		if (pdp == vm->scratch_pdp) {
1482 			spin_unlock(&pml4->lock);
1483 
1484 			pdp = fetch_and_zero(&alloc);
1485 			if (!pdp)
1486 				pdp = alloc_pd(vm);
1487 			if (IS_ERR(pdp)) {
1488 				ret = PTR_ERR(pdp);
1489 				goto unwind;
1490 			}
1491 
1492 			init_pd(vm, pdp, vm->scratch_pd);
1493 
1494 			spin_lock(&pml4->lock);
1495 			if (pml4->entry[pml4e] == vm->scratch_pdp) {
1496 				gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1497 				pml4->entry[pml4e] = pdp;
1498 			} else {
1499 				alloc = pdp;
1500 				pdp = pml4->entry[pml4e];
1501 			}
1502 		}
1503 		atomic_inc(&pdp->used);
1504 		spin_unlock(&pml4->lock);
1505 
1506 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1507 		if (unlikely(ret))
1508 			goto unwind_pdp;
1509 
1510 		spin_lock(&pml4->lock);
1511 		atomic_dec(&pdp->used);
1512 	}
1513 	spin_unlock(&pml4->lock);
1514 	goto out;
1515 
1516 unwind_pdp:
1517 	spin_lock(&pml4->lock);
1518 	if (atomic_dec_and_test(&pdp->used)) {
1519 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1520 		pml4->entry[pml4e] = vm->scratch_pdp;
1521 		GEM_BUG_ON(alloc);
1522 		alloc = pdp; /* defer the free until after the lock */
1523 	}
1524 	spin_unlock(&pml4->lock);
1525 unwind:
1526 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1527 out:
1528 	if (alloc)
1529 		free_pd(vm, alloc);
1530 	return ret;
1531 }
1532 
1533 static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1534 {
1535 	struct i915_address_space *vm = &ppgtt->vm;
1536 	struct i915_page_directory *pdp = ppgtt->pd;
1537 	struct i915_page_directory *pd;
1538 	u64 start = 0, length = ppgtt->vm.total;
1539 	u64 from = start;
1540 	unsigned int pdpe;
1541 
1542 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1543 		pd = alloc_pd(vm);
1544 		if (IS_ERR(pd))
1545 			goto unwind;
1546 
1547 		init_pd_with_page(vm, pd, vm->scratch_pt);
1548 		gen8_ppgtt_set_pdpe(pdp, pd, pdpe);
1549 
1550 		atomic_inc(&pdp->used);
1551 	}
1552 
1553 	atomic_inc(&pdp->used); /* never remove */
1554 
1555 	return 0;
1556 
1557 unwind:
1558 	start -= from;
1559 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1560 		gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
1561 		free_pd(vm, pd);
1562 	}
1563 	atomic_set(&pdp->used, 0);
1564 	return -ENOMEM;
1565 }
1566 
1567 static void ppgtt_init(struct drm_i915_private *i915,
1568 		       struct i915_ppgtt *ppgtt)
1569 {
1570 	ppgtt->vm.i915 = i915;
1571 	ppgtt->vm.dma = &i915->drm.pdev->dev;
1572 	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
1573 
1574 	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1575 
1576 	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1577 	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1578 	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1579 	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1580 }
1581 
1582 /*
1583  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1584  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1585  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1586  * space.
1587  *
1588  */
1589 static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1590 {
1591 	struct i915_ppgtt *ppgtt;
1592 	int err;
1593 
1594 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1595 	if (!ppgtt)
1596 		return ERR_PTR(-ENOMEM);
1597 
1598 	ppgtt_init(i915, ppgtt);
1599 
1600 	/*
1601 	 * From bdw, there is hw support for read-only pages in the PPGTT.
1602 	 *
1603 	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
1604 	 * for now.
1605 	 */
1606 	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1607 
1608 	/* There are only few exceptions for gen >=6. chv and bxt.
1609 	 * And we are not sure about the latter so play safe for now.
1610 	 */
1611 	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1612 		ppgtt->vm.pt_kmap_wc = true;
1613 
1614 	err = gen8_init_scratch(&ppgtt->vm);
1615 	if (err)
1616 		goto err_free;
1617 
1618 	ppgtt->pd = __alloc_pd();
1619 	if (!ppgtt->pd) {
1620 		err = -ENOMEM;
1621 		goto err_free_scratch;
1622 	}
1623 
1624 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1625 		err = setup_px(&ppgtt->vm, ppgtt->pd);
1626 		if (err)
1627 			goto err_free_pdp;
1628 
1629 		init_pd(&ppgtt->vm, ppgtt->pd, ppgtt->vm.scratch_pdp);
1630 
1631 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1632 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1633 		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1634 	} else {
1635 		/*
1636 		 * We don't need to setup dma for top level pdp, only
1637 		 * for entries. So point entries to scratch.
1638 		 */
1639 		memset_p(ppgtt->pd->entry, ppgtt->vm.scratch_pd,
1640 			 GEN8_3LVL_PDPES);
1641 
1642 		if (intel_vgpu_active(i915)) {
1643 			err = gen8_preallocate_top_level_pdp(ppgtt);
1644 			if (err)
1645 				goto err_free_pdp;
1646 		}
1647 
1648 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1649 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1650 		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1651 	}
1652 
1653 	if (intel_vgpu_active(i915))
1654 		gen8_ppgtt_notify_vgt(ppgtt, true);
1655 
1656 	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1657 
1658 	return ppgtt;
1659 
1660 err_free_pdp:
1661 	free_pd(&ppgtt->vm, ppgtt->pd);
1662 err_free_scratch:
1663 	gen8_free_scratch(&ppgtt->vm);
1664 err_free:
1665 	kfree(ppgtt);
1666 	return ERR_PTR(err);
1667 }
1668 
1669 /* Write pde (index) from the page directory @pd to the page table @pt */
1670 static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
1671 				  const unsigned int pde,
1672 				  const struct i915_page_table *pt)
1673 {
1674 	/* Caller needs to make sure the write completes if necessary */
1675 	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1676 		  ppgtt->pd_addr + pde);
1677 }
1678 
1679 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1680 {
1681 	struct intel_engine_cs *engine;
1682 	u32 ecochk, ecobits;
1683 	enum intel_engine_id id;
1684 
1685 	ecobits = I915_READ(GAC_ECO_BITS);
1686 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1687 
1688 	ecochk = I915_READ(GAM_ECOCHK);
1689 	if (IS_HASWELL(dev_priv)) {
1690 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1691 	} else {
1692 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1693 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1694 	}
1695 	I915_WRITE(GAM_ECOCHK, ecochk);
1696 
1697 	for_each_engine(engine, dev_priv, id) {
1698 		/* GFX_MODE is per-ring on gen7+ */
1699 		ENGINE_WRITE(engine,
1700 			     RING_MODE_GEN7,
1701 			     _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1702 	}
1703 }
1704 
1705 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1706 {
1707 	u32 ecochk, gab_ctl, ecobits;
1708 
1709 	ecobits = I915_READ(GAC_ECO_BITS);
1710 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1711 		   ECOBITS_PPGTT_CACHE64B);
1712 
1713 	gab_ctl = I915_READ(GAB_CTL);
1714 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1715 
1716 	ecochk = I915_READ(GAM_ECOCHK);
1717 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1718 
1719 	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
1720 		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1721 }
1722 
1723 /* PPGTT support for Sandybdrige/Gen6 and later */
1724 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1725 				   u64 start, u64 length)
1726 {
1727 	struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1728 	const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1729 	const gen6_pte_t scratch_pte = vm->scratch_pte;
1730 	unsigned int pde = first_entry / GEN6_PTES;
1731 	unsigned int pte = first_entry % GEN6_PTES;
1732 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1733 
1734 	while (num_entries) {
1735 		struct i915_page_table * const pt =
1736 			i915_pt_entry(ppgtt->base.pd, pde++);
1737 		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1738 		gen6_pte_t *vaddr;
1739 
1740 		GEM_BUG_ON(pt == vm->scratch_pt);
1741 
1742 		num_entries -= count;
1743 
1744 		GEM_BUG_ON(count > atomic_read(&pt->used));
1745 		if (!atomic_sub_return(count, &pt->used))
1746 			ppgtt->scan_for_unused_pt = true;
1747 
1748 		/*
1749 		 * Note that the hw doesn't support removing PDE on the fly
1750 		 * (they are cached inside the context with no means to
1751 		 * invalidate the cache), so we can only reset the PTE
1752 		 * entries back to scratch.
1753 		 */
1754 
1755 		vaddr = kmap_atomic_px(pt);
1756 		memset32(vaddr + pte, scratch_pte, count);
1757 		kunmap_atomic(vaddr);
1758 
1759 		pte = 0;
1760 	}
1761 }
1762 
1763 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1764 				      struct i915_vma *vma,
1765 				      enum i915_cache_level cache_level,
1766 				      u32 flags)
1767 {
1768 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1769 	struct i915_page_directory * const pd = ppgtt->pd;
1770 	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1771 	unsigned act_pt = first_entry / GEN6_PTES;
1772 	unsigned act_pte = first_entry % GEN6_PTES;
1773 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1774 	struct sgt_dma iter = sgt_dma(vma);
1775 	gen6_pte_t *vaddr;
1776 
1777 	GEM_BUG_ON(i915_pt_entry(pd, act_pt) == vm->scratch_pt);
1778 
1779 	vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1780 	do {
1781 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1782 
1783 		iter.dma += I915_GTT_PAGE_SIZE;
1784 		if (iter.dma == iter.max) {
1785 			iter.sg = __sg_next(iter.sg);
1786 			if (!iter.sg)
1787 				break;
1788 
1789 			iter.dma = sg_dma_address(iter.sg);
1790 			iter.max = iter.dma + iter.sg->length;
1791 		}
1792 
1793 		if (++act_pte == GEN6_PTES) {
1794 			kunmap_atomic(vaddr);
1795 			vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1796 			act_pte = 0;
1797 		}
1798 	} while (1);
1799 	kunmap_atomic(vaddr);
1800 
1801 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1802 }
1803 
1804 static int gen6_alloc_va_range(struct i915_address_space *vm,
1805 			       u64 start, u64 length)
1806 {
1807 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1808 	struct i915_page_directory * const pd = ppgtt->base.pd;
1809 	struct i915_page_table *pt, *alloc = NULL;
1810 	intel_wakeref_t wakeref;
1811 	u64 from = start;
1812 	unsigned int pde;
1813 	bool flush = false;
1814 	int ret = 0;
1815 
1816 	wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1817 
1818 	spin_lock(&pd->lock);
1819 	gen6_for_each_pde(pt, pd, start, length, pde) {
1820 		const unsigned int count = gen6_pte_count(start, length);
1821 
1822 		if (pt == vm->scratch_pt) {
1823 			spin_unlock(&pd->lock);
1824 
1825 			pt = fetch_and_zero(&alloc);
1826 			if (!pt)
1827 				pt = alloc_pt(vm);
1828 			if (IS_ERR(pt)) {
1829 				ret = PTR_ERR(pt);
1830 				goto unwind_out;
1831 			}
1832 
1833 			gen6_initialize_pt(vm, pt);
1834 
1835 			spin_lock(&pd->lock);
1836 			if (pd->entry[pde] == vm->scratch_pt) {
1837 				pd->entry[pde] = pt;
1838 				if (i915_vma_is_bound(ppgtt->vma,
1839 						      I915_VMA_GLOBAL_BIND)) {
1840 					gen6_write_pde(ppgtt, pde, pt);
1841 					flush = true;
1842 				}
1843 			} else {
1844 				alloc = pt;
1845 				pt = pd->entry[pde];
1846 			}
1847 		}
1848 
1849 		atomic_add(count, &pt->used);
1850 	}
1851 	spin_unlock(&pd->lock);
1852 
1853 	if (flush) {
1854 		mark_tlbs_dirty(&ppgtt->base);
1855 		gen6_ggtt_invalidate(vm->i915);
1856 	}
1857 
1858 	goto out;
1859 
1860 unwind_out:
1861 	gen6_ppgtt_clear_range(vm, from, start - from);
1862 out:
1863 	if (alloc)
1864 		free_pt(vm, alloc);
1865 	intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1866 	return ret;
1867 }
1868 
1869 static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1870 {
1871 	struct i915_address_space * const vm = &ppgtt->base.vm;
1872 	struct i915_page_directory * const pd = ppgtt->base.pd;
1873 	struct i915_page_table *unused;
1874 	u32 pde;
1875 	int ret;
1876 
1877 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1878 	if (ret)
1879 		return ret;
1880 
1881 	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1882 					 I915_CACHE_NONE,
1883 					 PTE_READ_ONLY);
1884 
1885 	vm->scratch_pt = alloc_pt(vm);
1886 	if (IS_ERR(vm->scratch_pt)) {
1887 		cleanup_scratch_page(vm);
1888 		return PTR_ERR(vm->scratch_pt);
1889 	}
1890 
1891 	gen6_initialize_pt(vm, vm->scratch_pt);
1892 
1893 	gen6_for_all_pdes(unused, pd, pde)
1894 		pd->entry[pde] = vm->scratch_pt;
1895 
1896 	return 0;
1897 }
1898 
1899 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1900 {
1901 	free_pt(vm, vm->scratch_pt);
1902 	cleanup_scratch_page(vm);
1903 }
1904 
1905 static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1906 {
1907 	struct i915_page_directory * const pd = ppgtt->base.pd;
1908 	struct i915_page_table *pt;
1909 	u32 pde;
1910 
1911 	gen6_for_all_pdes(pt, pd, pde)
1912 		if (pt != ppgtt->base.vm.scratch_pt)
1913 			free_pt(&ppgtt->base.vm, pt);
1914 }
1915 
1916 struct gen6_ppgtt_cleanup_work {
1917 	struct work_struct base;
1918 	struct i915_vma *vma;
1919 };
1920 
1921 static void gen6_ppgtt_cleanup_work(struct work_struct *wrk)
1922 {
1923 	struct gen6_ppgtt_cleanup_work *work =
1924 		container_of(wrk, typeof(*work), base);
1925 	/* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */
1926 	struct drm_i915_private *i915 = work->vma->vm->i915;
1927 
1928 	mutex_lock(&i915->drm.struct_mutex);
1929 	i915_vma_destroy(work->vma);
1930 	mutex_unlock(&i915->drm.struct_mutex);
1931 
1932 	kfree(work);
1933 }
1934 
1935 static int nop_set_pages(struct i915_vma *vma)
1936 {
1937 	return -ENODEV;
1938 }
1939 
1940 static void nop_clear_pages(struct i915_vma *vma)
1941 {
1942 }
1943 
1944 static int nop_bind(struct i915_vma *vma,
1945 		    enum i915_cache_level cache_level,
1946 		    u32 unused)
1947 {
1948 	return -ENODEV;
1949 }
1950 
1951 static void nop_unbind(struct i915_vma *vma)
1952 {
1953 }
1954 
1955 static const struct i915_vma_ops nop_vma_ops = {
1956 	.set_pages = nop_set_pages,
1957 	.clear_pages = nop_clear_pages,
1958 	.bind_vma = nop_bind,
1959 	.unbind_vma = nop_unbind,
1960 };
1961 
1962 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1963 {
1964 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1965 	struct gen6_ppgtt_cleanup_work *work = ppgtt->work;
1966 
1967 	/* FIXME remove the struct_mutex to bring the locking under control */
1968 	INIT_WORK(&work->base, gen6_ppgtt_cleanup_work);
1969 	work->vma = ppgtt->vma;
1970 	work->vma->ops = &nop_vma_ops;
1971 	schedule_work(&work->base);
1972 
1973 	gen6_ppgtt_free_pd(ppgtt);
1974 	gen6_ppgtt_free_scratch(vm);
1975 	kfree(ppgtt->base.pd);
1976 }
1977 
1978 static int pd_vma_set_pages(struct i915_vma *vma)
1979 {
1980 	vma->pages = ERR_PTR(-ENODEV);
1981 	return 0;
1982 }
1983 
1984 static void pd_vma_clear_pages(struct i915_vma *vma)
1985 {
1986 	GEM_BUG_ON(!vma->pages);
1987 
1988 	vma->pages = NULL;
1989 }
1990 
1991 static int pd_vma_bind(struct i915_vma *vma,
1992 		       enum i915_cache_level cache_level,
1993 		       u32 unused)
1994 {
1995 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1996 	struct gen6_ppgtt *ppgtt = vma->private;
1997 	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1998 	struct i915_page_table *pt;
1999 	unsigned int pde;
2000 
2001 	ppgtt->base.pd->base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
2002 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2003 
2004 	gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
2005 		gen6_write_pde(ppgtt, pde, pt);
2006 
2007 	mark_tlbs_dirty(&ppgtt->base);
2008 	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2009 
2010 	return 0;
2011 }
2012 
2013 static void pd_vma_unbind(struct i915_vma *vma)
2014 {
2015 	struct gen6_ppgtt *ppgtt = vma->private;
2016 	struct i915_page_directory * const pd = ppgtt->base.pd;
2017 	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
2018 	struct i915_page_table *pt;
2019 	unsigned int pde;
2020 
2021 	if (!ppgtt->scan_for_unused_pt)
2022 		return;
2023 
2024 	/* Free all no longer used page tables */
2025 	gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
2026 		if (atomic_read(&pt->used) || pt == scratch_pt)
2027 			continue;
2028 
2029 		free_pt(&ppgtt->base.vm, pt);
2030 		pd->entry[pde] = scratch_pt;
2031 	}
2032 
2033 	ppgtt->scan_for_unused_pt = false;
2034 }
2035 
2036 static const struct i915_vma_ops pd_vma_ops = {
2037 	.set_pages = pd_vma_set_pages,
2038 	.clear_pages = pd_vma_clear_pages,
2039 	.bind_vma = pd_vma_bind,
2040 	.unbind_vma = pd_vma_unbind,
2041 };
2042 
2043 static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
2044 {
2045 	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
2046 	struct i915_ggtt *ggtt = &i915->ggtt;
2047 	struct i915_vma *vma;
2048 
2049 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
2050 	GEM_BUG_ON(size > ggtt->vm.total);
2051 
2052 	vma = i915_vma_alloc();
2053 	if (!vma)
2054 		return ERR_PTR(-ENOMEM);
2055 
2056 	i915_active_init(i915, &vma->active, NULL);
2057 	INIT_ACTIVE_REQUEST(&vma->last_fence);
2058 
2059 	vma->vm = &ggtt->vm;
2060 	vma->ops = &pd_vma_ops;
2061 	vma->private = ppgtt;
2062 
2063 	vma->size = size;
2064 	vma->fence_size = size;
2065 	vma->flags = I915_VMA_GGTT;
2066 	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
2067 
2068 	INIT_LIST_HEAD(&vma->obj_link);
2069 	INIT_LIST_HEAD(&vma->closed_link);
2070 
2071 	mutex_lock(&vma->vm->mutex);
2072 	list_add(&vma->vm_link, &vma->vm->unbound_list);
2073 	mutex_unlock(&vma->vm->mutex);
2074 
2075 	return vma;
2076 }
2077 
2078 int gen6_ppgtt_pin(struct i915_ppgtt *base)
2079 {
2080 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2081 	int err;
2082 
2083 	GEM_BUG_ON(ppgtt->base.vm.closed);
2084 
2085 	/*
2086 	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
2087 	 * which will be pinned into every active context.
2088 	 * (When vma->pin_count becomes atomic, I expect we will naturally
2089 	 * need a larger, unpacked, type and kill this redundancy.)
2090 	 */
2091 	if (ppgtt->pin_count++)
2092 		return 0;
2093 
2094 	/*
2095 	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2096 	 * allocator works in address space sizes, so it's multiplied by page
2097 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2098 	 */
2099 	err = i915_vma_pin(ppgtt->vma,
2100 			   0, GEN6_PD_ALIGN,
2101 			   PIN_GLOBAL | PIN_HIGH);
2102 	if (err)
2103 		goto unpin;
2104 
2105 	return 0;
2106 
2107 unpin:
2108 	ppgtt->pin_count = 0;
2109 	return err;
2110 }
2111 
2112 void gen6_ppgtt_unpin(struct i915_ppgtt *base)
2113 {
2114 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2115 
2116 	GEM_BUG_ON(!ppgtt->pin_count);
2117 	if (--ppgtt->pin_count)
2118 		return;
2119 
2120 	i915_vma_unpin(ppgtt->vma);
2121 }
2122 
2123 void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
2124 {
2125 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2126 
2127 	if (!ppgtt->pin_count)
2128 		return;
2129 
2130 	ppgtt->pin_count = 0;
2131 	i915_vma_unpin(ppgtt->vma);
2132 }
2133 
2134 static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2135 {
2136 	struct i915_ggtt * const ggtt = &i915->ggtt;
2137 	struct gen6_ppgtt *ppgtt;
2138 	int err;
2139 
2140 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2141 	if (!ppgtt)
2142 		return ERR_PTR(-ENOMEM);
2143 
2144 	ppgtt_init(i915, &ppgtt->base);
2145 
2146 	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2147 	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2148 	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2149 	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2150 
2151 	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2152 
2153 	ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL);
2154 	if (!ppgtt->work) {
2155 		err = -ENOMEM;
2156 		goto err_free;
2157 	}
2158 
2159 	ppgtt->base.pd = __alloc_pd();
2160 	if (!ppgtt->base.pd) {
2161 		err = -ENOMEM;
2162 		goto err_work;
2163 	}
2164 
2165 	err = gen6_ppgtt_init_scratch(ppgtt);
2166 	if (err)
2167 		goto err_pd;
2168 
2169 	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2170 	if (IS_ERR(ppgtt->vma)) {
2171 		err = PTR_ERR(ppgtt->vma);
2172 		goto err_scratch;
2173 	}
2174 
2175 	return &ppgtt->base;
2176 
2177 err_scratch:
2178 	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2179 err_pd:
2180 	kfree(ppgtt->base.pd);
2181 err_work:
2182 	kfree(ppgtt->work);
2183 err_free:
2184 	kfree(ppgtt);
2185 	return ERR_PTR(err);
2186 }
2187 
2188 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2189 {
2190 	/* This function is for gtt related workarounds. This function is
2191 	 * called on driver load and after a GPU reset, so you can place
2192 	 * workarounds here even if they get overwritten by GPU reset.
2193 	 */
2194 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2195 	if (IS_BROADWELL(dev_priv))
2196 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2197 	else if (IS_CHERRYVIEW(dev_priv))
2198 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2199 	else if (IS_GEN9_LP(dev_priv))
2200 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2201 	else if (INTEL_GEN(dev_priv) >= 9)
2202 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2203 
2204 	/*
2205 	 * To support 64K PTEs we need to first enable the use of the
2206 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2207 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2208 	 * shouldn't be needed after GEN10.
2209 	 *
2210 	 * 64K pages were first introduced from BDW+, although technically they
2211 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2212 	 * 32K pages, but we don't currently have any support for it in our
2213 	 * driver.
2214 	 */
2215 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2216 	    INTEL_GEN(dev_priv) <= 10)
2217 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2218 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2219 			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2220 }
2221 
2222 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2223 {
2224 	gtt_write_workarounds(dev_priv);
2225 
2226 	if (IS_GEN(dev_priv, 6))
2227 		gen6_ppgtt_enable(dev_priv);
2228 	else if (IS_GEN(dev_priv, 7))
2229 		gen7_ppgtt_enable(dev_priv);
2230 
2231 	return 0;
2232 }
2233 
2234 static struct i915_ppgtt *
2235 __ppgtt_create(struct drm_i915_private *i915)
2236 {
2237 	if (INTEL_GEN(i915) < 8)
2238 		return gen6_ppgtt_create(i915);
2239 	else
2240 		return gen8_ppgtt_create(i915);
2241 }
2242 
2243 struct i915_ppgtt *
2244 i915_ppgtt_create(struct drm_i915_private *i915)
2245 {
2246 	struct i915_ppgtt *ppgtt;
2247 
2248 	ppgtt = __ppgtt_create(i915);
2249 	if (IS_ERR(ppgtt))
2250 		return ppgtt;
2251 
2252 	trace_i915_ppgtt_create(&ppgtt->vm);
2253 
2254 	return ppgtt;
2255 }
2256 
2257 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2258 {
2259 	struct list_head *phases[] = {
2260 		&vm->bound_list,
2261 		&vm->unbound_list,
2262 		NULL,
2263 	}, **phase;
2264 
2265 	vm->closed = true;
2266 	for (phase = phases; *phase; phase++) {
2267 		struct i915_vma *vma, *vn;
2268 
2269 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2270 			i915_vma_destroy(vma);
2271 	}
2272 }
2273 
2274 void i915_vm_release(struct kref *kref)
2275 {
2276 	struct i915_address_space *vm =
2277 		container_of(kref, struct i915_address_space, ref);
2278 
2279 	GEM_BUG_ON(i915_is_ggtt(vm));
2280 	trace_i915_ppgtt_release(vm);
2281 
2282 	ppgtt_destroy_vma(vm);
2283 
2284 	GEM_BUG_ON(!list_empty(&vm->bound_list));
2285 	GEM_BUG_ON(!list_empty(&vm->unbound_list));
2286 
2287 	vm->cleanup(vm);
2288 	i915_address_space_fini(vm);
2289 
2290 	kfree(vm);
2291 }
2292 
2293 /* Certain Gen5 chipsets require require idling the GPU before
2294  * unmapping anything from the GTT when VT-d is enabled.
2295  */
2296 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2297 {
2298 	/* Query intel_iommu to see if we need the workaround. Presumably that
2299 	 * was loaded first.
2300 	 */
2301 	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2302 }
2303 
2304 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2305 {
2306 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2307 
2308 	/* Don't bother messing with faults pre GEN6 as we have little
2309 	 * documentation supporting that it's a good idea.
2310 	 */
2311 	if (INTEL_GEN(dev_priv) < 6)
2312 		return;
2313 
2314 	i915_check_and_clear_faults(dev_priv);
2315 
2316 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2317 
2318 	i915_ggtt_invalidate(dev_priv);
2319 }
2320 
2321 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2322 			       struct sg_table *pages)
2323 {
2324 	do {
2325 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2326 				     pages->sgl, pages->nents,
2327 				     PCI_DMA_BIDIRECTIONAL,
2328 				     DMA_ATTR_NO_WARN))
2329 			return 0;
2330 
2331 		/*
2332 		 * If the DMA remap fails, one cause can be that we have
2333 		 * too many objects pinned in a small remapping table,
2334 		 * such as swiotlb. Incrementally purge all other objects and
2335 		 * try again - if there are no more pages to remove from
2336 		 * the DMA remapper, i915_gem_shrink will return 0.
2337 		 */
2338 		GEM_BUG_ON(obj->mm.pages == pages);
2339 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2340 				 obj->base.size >> PAGE_SHIFT, NULL,
2341 				 I915_SHRINK_BOUND |
2342 				 I915_SHRINK_UNBOUND));
2343 
2344 	return -ENOSPC;
2345 }
2346 
2347 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2348 {
2349 	writeq(pte, addr);
2350 }
2351 
2352 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2353 				  dma_addr_t addr,
2354 				  u64 offset,
2355 				  enum i915_cache_level level,
2356 				  u32 unused)
2357 {
2358 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2359 	gen8_pte_t __iomem *pte =
2360 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2361 
2362 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2363 
2364 	ggtt->invalidate(vm->i915);
2365 }
2366 
2367 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2368 				     struct i915_vma *vma,
2369 				     enum i915_cache_level level,
2370 				     u32 flags)
2371 {
2372 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2373 	struct sgt_iter sgt_iter;
2374 	gen8_pte_t __iomem *gtt_entries;
2375 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2376 	dma_addr_t addr;
2377 
2378 	/*
2379 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2380 	 * not to allow the user to override access to a read only page.
2381 	 */
2382 
2383 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2384 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2385 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2386 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2387 
2388 	/*
2389 	 * We want to flush the TLBs only after we're certain all the PTE
2390 	 * updates have finished.
2391 	 */
2392 	ggtt->invalidate(vm->i915);
2393 }
2394 
2395 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2396 				  dma_addr_t addr,
2397 				  u64 offset,
2398 				  enum i915_cache_level level,
2399 				  u32 flags)
2400 {
2401 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2402 	gen6_pte_t __iomem *pte =
2403 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2404 
2405 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2406 
2407 	ggtt->invalidate(vm->i915);
2408 }
2409 
2410 /*
2411  * Binds an object into the global gtt with the specified cache level. The object
2412  * will be accessible to the GPU via commands whose operands reference offsets
2413  * within the global GTT as well as accessible by the GPU through the GMADR
2414  * mapped BAR (dev_priv->mm.gtt->gtt).
2415  */
2416 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2417 				     struct i915_vma *vma,
2418 				     enum i915_cache_level level,
2419 				     u32 flags)
2420 {
2421 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2422 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2423 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2424 	struct sgt_iter iter;
2425 	dma_addr_t addr;
2426 	for_each_sgt_dma(addr, iter, vma->pages)
2427 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2428 
2429 	/*
2430 	 * We want to flush the TLBs only after we're certain all the PTE
2431 	 * updates have finished.
2432 	 */
2433 	ggtt->invalidate(vm->i915);
2434 }
2435 
2436 static void nop_clear_range(struct i915_address_space *vm,
2437 			    u64 start, u64 length)
2438 {
2439 }
2440 
2441 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2442 				  u64 start, u64 length)
2443 {
2444 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2445 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2446 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2447 	const gen8_pte_t scratch_pte = vm->scratch_pte;
2448 	gen8_pte_t __iomem *gtt_base =
2449 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2450 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2451 	int i;
2452 
2453 	if (WARN(num_entries > max_entries,
2454 		 "First entry = %d; Num entries = %d (max=%d)\n",
2455 		 first_entry, num_entries, max_entries))
2456 		num_entries = max_entries;
2457 
2458 	for (i = 0; i < num_entries; i++)
2459 		gen8_set_pte(&gtt_base[i], scratch_pte);
2460 }
2461 
2462 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2463 {
2464 	struct drm_i915_private *dev_priv = vm->i915;
2465 
2466 	/*
2467 	 * Make sure the internal GAM fifo has been cleared of all GTT
2468 	 * writes before exiting stop_machine(). This guarantees that
2469 	 * any aperture accesses waiting to start in another process
2470 	 * cannot back up behind the GTT writes causing a hang.
2471 	 * The register can be any arbitrary GAM register.
2472 	 */
2473 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2474 }
2475 
2476 struct insert_page {
2477 	struct i915_address_space *vm;
2478 	dma_addr_t addr;
2479 	u64 offset;
2480 	enum i915_cache_level level;
2481 };
2482 
2483 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2484 {
2485 	struct insert_page *arg = _arg;
2486 
2487 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2488 	bxt_vtd_ggtt_wa(arg->vm);
2489 
2490 	return 0;
2491 }
2492 
2493 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2494 					  dma_addr_t addr,
2495 					  u64 offset,
2496 					  enum i915_cache_level level,
2497 					  u32 unused)
2498 {
2499 	struct insert_page arg = { vm, addr, offset, level };
2500 
2501 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2502 }
2503 
2504 struct insert_entries {
2505 	struct i915_address_space *vm;
2506 	struct i915_vma *vma;
2507 	enum i915_cache_level level;
2508 	u32 flags;
2509 };
2510 
2511 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2512 {
2513 	struct insert_entries *arg = _arg;
2514 
2515 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2516 	bxt_vtd_ggtt_wa(arg->vm);
2517 
2518 	return 0;
2519 }
2520 
2521 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2522 					     struct i915_vma *vma,
2523 					     enum i915_cache_level level,
2524 					     u32 flags)
2525 {
2526 	struct insert_entries arg = { vm, vma, level, flags };
2527 
2528 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2529 }
2530 
2531 struct clear_range {
2532 	struct i915_address_space *vm;
2533 	u64 start;
2534 	u64 length;
2535 };
2536 
2537 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2538 {
2539 	struct clear_range *arg = _arg;
2540 
2541 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2542 	bxt_vtd_ggtt_wa(arg->vm);
2543 
2544 	return 0;
2545 }
2546 
2547 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2548 					  u64 start,
2549 					  u64 length)
2550 {
2551 	struct clear_range arg = { vm, start, length };
2552 
2553 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2554 }
2555 
2556 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2557 				  u64 start, u64 length)
2558 {
2559 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2560 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2561 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2562 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2563 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2564 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2565 	int i;
2566 
2567 	if (WARN(num_entries > max_entries,
2568 		 "First entry = %d; Num entries = %d (max=%d)\n",
2569 		 first_entry, num_entries, max_entries))
2570 		num_entries = max_entries;
2571 
2572 	scratch_pte = vm->scratch_pte;
2573 
2574 	for (i = 0; i < num_entries; i++)
2575 		iowrite32(scratch_pte, &gtt_base[i]);
2576 }
2577 
2578 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2579 				  dma_addr_t addr,
2580 				  u64 offset,
2581 				  enum i915_cache_level cache_level,
2582 				  u32 unused)
2583 {
2584 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2585 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2586 
2587 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2588 }
2589 
2590 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2591 				     struct i915_vma *vma,
2592 				     enum i915_cache_level cache_level,
2593 				     u32 unused)
2594 {
2595 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2596 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2597 
2598 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2599 				    flags);
2600 }
2601 
2602 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2603 				  u64 start, u64 length)
2604 {
2605 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2606 }
2607 
2608 static int ggtt_bind_vma(struct i915_vma *vma,
2609 			 enum i915_cache_level cache_level,
2610 			 u32 flags)
2611 {
2612 	struct drm_i915_private *i915 = vma->vm->i915;
2613 	struct drm_i915_gem_object *obj = vma->obj;
2614 	intel_wakeref_t wakeref;
2615 	u32 pte_flags;
2616 
2617 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2618 	pte_flags = 0;
2619 	if (i915_gem_object_is_readonly(obj))
2620 		pte_flags |= PTE_READ_ONLY;
2621 
2622 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2623 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2624 
2625 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2626 
2627 	/*
2628 	 * Without aliasing PPGTT there's no difference between
2629 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2630 	 * upgrade to both bound if we bind either to avoid double-binding.
2631 	 */
2632 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2633 
2634 	return 0;
2635 }
2636 
2637 static void ggtt_unbind_vma(struct i915_vma *vma)
2638 {
2639 	struct drm_i915_private *i915 = vma->vm->i915;
2640 	intel_wakeref_t wakeref;
2641 
2642 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2643 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2644 }
2645 
2646 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2647 				 enum i915_cache_level cache_level,
2648 				 u32 flags)
2649 {
2650 	struct drm_i915_private *i915 = vma->vm->i915;
2651 	u32 pte_flags;
2652 	int ret;
2653 
2654 	/* Currently applicable only to VLV */
2655 	pte_flags = 0;
2656 	if (i915_gem_object_is_readonly(vma->obj))
2657 		pte_flags |= PTE_READ_ONLY;
2658 
2659 	if (flags & I915_VMA_LOCAL_BIND) {
2660 		struct i915_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2661 
2662 		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2663 			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2664 							   vma->node.start,
2665 							   vma->size);
2666 			if (ret)
2667 				return ret;
2668 		}
2669 
2670 		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2671 					  pte_flags);
2672 	}
2673 
2674 	if (flags & I915_VMA_GLOBAL_BIND) {
2675 		intel_wakeref_t wakeref;
2676 
2677 		with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2678 			vma->vm->insert_entries(vma->vm, vma,
2679 						cache_level, pte_flags);
2680 		}
2681 	}
2682 
2683 	return 0;
2684 }
2685 
2686 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2687 {
2688 	struct drm_i915_private *i915 = vma->vm->i915;
2689 
2690 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2691 		struct i915_address_space *vm = vma->vm;
2692 		intel_wakeref_t wakeref;
2693 
2694 		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2695 			vm->clear_range(vm, vma->node.start, vma->size);
2696 	}
2697 
2698 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2699 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2700 
2701 		vm->clear_range(vm, vma->node.start, vma->size);
2702 	}
2703 }
2704 
2705 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2706 			       struct sg_table *pages)
2707 {
2708 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2709 	struct device *kdev = &dev_priv->drm.pdev->dev;
2710 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2711 
2712 	if (unlikely(ggtt->do_idle_maps)) {
2713 		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2714 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2715 			/* Wait a bit, in hopes it avoids the hang */
2716 			udelay(10);
2717 		}
2718 	}
2719 
2720 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2721 }
2722 
2723 static int ggtt_set_pages(struct i915_vma *vma)
2724 {
2725 	int ret;
2726 
2727 	GEM_BUG_ON(vma->pages);
2728 
2729 	ret = i915_get_ggtt_vma_pages(vma);
2730 	if (ret)
2731 		return ret;
2732 
2733 	vma->page_sizes = vma->obj->mm.page_sizes;
2734 
2735 	return 0;
2736 }
2737 
2738 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2739 				  unsigned long color,
2740 				  u64 *start,
2741 				  u64 *end)
2742 {
2743 	if (node->allocated && node->color != color)
2744 		*start += I915_GTT_PAGE_SIZE;
2745 
2746 	/* Also leave a space between the unallocated reserved node after the
2747 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2748 	 * to insert a guard page to prevent prefetches crossing over the
2749 	 * GTT boundary.
2750 	 */
2751 	node = list_next_entry(node, node_list);
2752 	if (node->color != color)
2753 		*end -= I915_GTT_PAGE_SIZE;
2754 }
2755 
2756 static int init_aliasing_ppgtt(struct drm_i915_private *i915)
2757 {
2758 	struct i915_ggtt *ggtt = &i915->ggtt;
2759 	struct i915_ppgtt *ppgtt;
2760 	int err;
2761 
2762 	ppgtt = i915_ppgtt_create(i915);
2763 	if (IS_ERR(ppgtt))
2764 		return PTR_ERR(ppgtt);
2765 
2766 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2767 		err = -ENODEV;
2768 		goto err_ppgtt;
2769 	}
2770 
2771 	/*
2772 	 * Note we only pre-allocate as far as the end of the global
2773 	 * GTT. On 48b / 4-level page-tables, the difference is very,
2774 	 * very significant! We have to preallocate as GVT/vgpu does
2775 	 * not like the page directory disappearing.
2776 	 */
2777 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2778 	if (err)
2779 		goto err_ppgtt;
2780 
2781 	i915->mm.aliasing_ppgtt = ppgtt;
2782 
2783 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2784 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2785 
2786 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2787 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2788 
2789 	return 0;
2790 
2791 err_ppgtt:
2792 	i915_vm_put(&ppgtt->vm);
2793 	return err;
2794 }
2795 
2796 static void fini_aliasing_ppgtt(struct drm_i915_private *i915)
2797 {
2798 	struct i915_ggtt *ggtt = &i915->ggtt;
2799 	struct i915_ppgtt *ppgtt;
2800 
2801 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2802 	if (!ppgtt)
2803 		return;
2804 
2805 	i915_vm_put(&ppgtt->vm);
2806 
2807 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2808 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2809 }
2810 
2811 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
2812 {
2813 	u64 size;
2814 	int ret;
2815 
2816 	if (!USES_GUC(ggtt->vm.i915))
2817 		return 0;
2818 
2819 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
2820 	size = ggtt->vm.total - GUC_GGTT_TOP;
2821 
2822 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
2823 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
2824 				   PIN_NOEVICT);
2825 	if (ret)
2826 		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
2827 
2828 	return ret;
2829 }
2830 
2831 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
2832 {
2833 	if (drm_mm_node_allocated(&ggtt->uc_fw))
2834 		drm_mm_remove_node(&ggtt->uc_fw);
2835 }
2836 
2837 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2838 {
2839 	/* Let GEM Manage all of the aperture.
2840 	 *
2841 	 * However, leave one page at the end still bound to the scratch page.
2842 	 * There are a number of places where the hardware apparently prefetches
2843 	 * past the end of the object, and we've seen multiple hangs with the
2844 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2845 	 * aperture.  One page should be enough to keep any prefetching inside
2846 	 * of the aperture.
2847 	 */
2848 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2849 	unsigned long hole_start, hole_end;
2850 	struct drm_mm_node *entry;
2851 	int ret;
2852 
2853 	/*
2854 	 * GuC requires all resources that we're sharing with it to be placed in
2855 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
2856 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2857 	 * why.
2858 	 */
2859 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2860 			       intel_wopcm_guc_size(&dev_priv->wopcm));
2861 
2862 	ret = intel_vgt_balloon(dev_priv);
2863 	if (ret)
2864 		return ret;
2865 
2866 	/* Reserve a mappable slot for our lockless error capture */
2867 	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2868 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2869 					  0, ggtt->mappable_end,
2870 					  DRM_MM_INSERT_LOW);
2871 	if (ret)
2872 		return ret;
2873 
2874 	/*
2875 	 * The upper portion of the GuC address space has a sizeable hole
2876 	 * (several MB) that is inaccessible by GuC. Reserve this range within
2877 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
2878 	 */
2879 	ret = ggtt_reserve_guc_top(ggtt);
2880 	if (ret)
2881 		goto err_reserve;
2882 
2883 	/* Clear any non-preallocated blocks */
2884 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2885 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2886 			      hole_start, hole_end);
2887 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
2888 				     hole_end - hole_start);
2889 	}
2890 
2891 	/* And finally clear the reserved guard page */
2892 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2893 
2894 	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2895 		ret = init_aliasing_ppgtt(dev_priv);
2896 		if (ret)
2897 			goto err_appgtt;
2898 	}
2899 
2900 	return 0;
2901 
2902 err_appgtt:
2903 	ggtt_release_guc_top(ggtt);
2904 err_reserve:
2905 	drm_mm_remove_node(&ggtt->error_capture);
2906 	return ret;
2907 }
2908 
2909 /**
2910  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2911  * @dev_priv: i915 device
2912  */
2913 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2914 {
2915 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2916 	struct i915_vma *vma, *vn;
2917 	struct pagevec *pvec;
2918 
2919 	ggtt->vm.closed = true;
2920 
2921 	mutex_lock(&dev_priv->drm.struct_mutex);
2922 	fini_aliasing_ppgtt(dev_priv);
2923 
2924 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2925 		WARN_ON(i915_vma_unbind(vma));
2926 
2927 	if (drm_mm_node_allocated(&ggtt->error_capture))
2928 		drm_mm_remove_node(&ggtt->error_capture);
2929 
2930 	ggtt_release_guc_top(ggtt);
2931 
2932 	if (drm_mm_initialized(&ggtt->vm.mm)) {
2933 		intel_vgt_deballoon(dev_priv);
2934 		i915_address_space_fini(&ggtt->vm);
2935 	}
2936 
2937 	ggtt->vm.cleanup(&ggtt->vm);
2938 
2939 	pvec = &dev_priv->mm.wc_stash.pvec;
2940 	if (pvec->nr) {
2941 		set_pages_array_wb(pvec->pages, pvec->nr);
2942 		__pagevec_release(pvec);
2943 	}
2944 
2945 	mutex_unlock(&dev_priv->drm.struct_mutex);
2946 
2947 	arch_phys_wc_del(ggtt->mtrr);
2948 	io_mapping_fini(&ggtt->iomap);
2949 
2950 	i915_gem_cleanup_stolen(dev_priv);
2951 }
2952 
2953 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2954 {
2955 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2956 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2957 	return snb_gmch_ctl << 20;
2958 }
2959 
2960 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2961 {
2962 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2963 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2964 	if (bdw_gmch_ctl)
2965 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2966 
2967 #ifdef CONFIG_X86_32
2968 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2969 	if (bdw_gmch_ctl > 4)
2970 		bdw_gmch_ctl = 4;
2971 #endif
2972 
2973 	return bdw_gmch_ctl << 20;
2974 }
2975 
2976 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2977 {
2978 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2979 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2980 
2981 	if (gmch_ctrl)
2982 		return 1 << (20 + gmch_ctrl);
2983 
2984 	return 0;
2985 }
2986 
2987 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2988 {
2989 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2990 	struct pci_dev *pdev = dev_priv->drm.pdev;
2991 	phys_addr_t phys_addr;
2992 	int ret;
2993 
2994 	/* For Modern GENs the PTEs and register space are split in the BAR */
2995 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2996 
2997 	/*
2998 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2999 	 * will be dropped. For WC mappings in general we have 64 byte burst
3000 	 * writes when the WC buffer is flushed, so we can't use it, but have to
3001 	 * resort to an uncached mapping. The WC issue is easily caught by the
3002 	 * readback check when writing GTT PTE entries.
3003 	 */
3004 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3005 		ggtt->gsm = ioremap_nocache(phys_addr, size);
3006 	else
3007 		ggtt->gsm = ioremap_wc(phys_addr, size);
3008 	if (!ggtt->gsm) {
3009 		DRM_ERROR("Failed to map the ggtt page table\n");
3010 		return -ENOMEM;
3011 	}
3012 
3013 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3014 	if (ret) {
3015 		DRM_ERROR("Scratch setup failed\n");
3016 		/* iounmap will also get called at remove, but meh */
3017 		iounmap(ggtt->gsm);
3018 		return ret;
3019 	}
3020 
3021 	ggtt->vm.scratch_pte =
3022 		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
3023 				    I915_CACHE_NONE, 0);
3024 
3025 	return 0;
3026 }
3027 
3028 static struct intel_ppat_entry *
3029 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3030 {
3031 	struct intel_ppat_entry *entry = &ppat->entries[index];
3032 
3033 	GEM_BUG_ON(index >= ppat->max_entries);
3034 	GEM_BUG_ON(test_bit(index, ppat->used));
3035 
3036 	entry->ppat = ppat;
3037 	entry->value = value;
3038 	kref_init(&entry->ref);
3039 	set_bit(index, ppat->used);
3040 	set_bit(index, ppat->dirty);
3041 
3042 	return entry;
3043 }
3044 
3045 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3046 {
3047 	struct intel_ppat *ppat = entry->ppat;
3048 	unsigned int index = entry - ppat->entries;
3049 
3050 	GEM_BUG_ON(index >= ppat->max_entries);
3051 	GEM_BUG_ON(!test_bit(index, ppat->used));
3052 
3053 	entry->value = ppat->clear_value;
3054 	clear_bit(index, ppat->used);
3055 	set_bit(index, ppat->dirty);
3056 }
3057 
3058 /**
3059  * intel_ppat_get - get a usable PPAT entry
3060  * @i915: i915 device instance
3061  * @value: the PPAT value required by the caller
3062  *
3063  * The function tries to search if there is an existing PPAT entry which
3064  * matches with the required value. If perfectly matched, the existing PPAT
3065  * entry will be used. If only partially matched, it will try to check if
3066  * there is any available PPAT index. If yes, it will allocate a new PPAT
3067  * index for the required entry and update the HW. If not, the partially
3068  * matched entry will be used.
3069  */
3070 const struct intel_ppat_entry *
3071 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3072 {
3073 	struct intel_ppat *ppat = &i915->ppat;
3074 	struct intel_ppat_entry *entry = NULL;
3075 	unsigned int scanned, best_score;
3076 	int i;
3077 
3078 	GEM_BUG_ON(!ppat->max_entries);
3079 
3080 	scanned = best_score = 0;
3081 	for_each_set_bit(i, ppat->used, ppat->max_entries) {
3082 		unsigned int score;
3083 
3084 		score = ppat->match(ppat->entries[i].value, value);
3085 		if (score > best_score) {
3086 			entry = &ppat->entries[i];
3087 			if (score == INTEL_PPAT_PERFECT_MATCH) {
3088 				kref_get(&entry->ref);
3089 				return entry;
3090 			}
3091 			best_score = score;
3092 		}
3093 		scanned++;
3094 	}
3095 
3096 	if (scanned == ppat->max_entries) {
3097 		if (!entry)
3098 			return ERR_PTR(-ENOSPC);
3099 
3100 		kref_get(&entry->ref);
3101 		return entry;
3102 	}
3103 
3104 	i = find_first_zero_bit(ppat->used, ppat->max_entries);
3105 	entry = __alloc_ppat_entry(ppat, i, value);
3106 	ppat->update_hw(i915);
3107 	return entry;
3108 }
3109 
3110 static void release_ppat(struct kref *kref)
3111 {
3112 	struct intel_ppat_entry *entry =
3113 		container_of(kref, struct intel_ppat_entry, ref);
3114 	struct drm_i915_private *i915 = entry->ppat->i915;
3115 
3116 	__free_ppat_entry(entry);
3117 	entry->ppat->update_hw(i915);
3118 }
3119 
3120 /**
3121  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3122  * @entry: an intel PPAT entry
3123  *
3124  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3125  * entry is dynamically allocated, its reference count will be decreased. Once
3126  * the reference count becomes into zero, the PPAT index becomes free again.
3127  */
3128 void intel_ppat_put(const struct intel_ppat_entry *entry)
3129 {
3130 	struct intel_ppat *ppat = entry->ppat;
3131 	unsigned int index = entry - ppat->entries;
3132 
3133 	GEM_BUG_ON(!ppat->max_entries);
3134 
3135 	kref_put(&ppat->entries[index].ref, release_ppat);
3136 }
3137 
3138 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3139 {
3140 	struct intel_ppat *ppat = &dev_priv->ppat;
3141 	int i;
3142 
3143 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3144 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3145 		clear_bit(i, ppat->dirty);
3146 	}
3147 }
3148 
3149 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3150 {
3151 	struct intel_ppat *ppat = &dev_priv->ppat;
3152 	u64 pat = 0;
3153 	int i;
3154 
3155 	for (i = 0; i < ppat->max_entries; i++)
3156 		pat |= GEN8_PPAT(i, ppat->entries[i].value);
3157 
3158 	bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3159 
3160 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3161 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3162 }
3163 
3164 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3165 {
3166 	unsigned int score = 0;
3167 	enum {
3168 		AGE_MATCH = BIT(0),
3169 		TC_MATCH = BIT(1),
3170 		CA_MATCH = BIT(2),
3171 	};
3172 
3173 	/* Cache attribute has to be matched. */
3174 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3175 		return 0;
3176 
3177 	score |= CA_MATCH;
3178 
3179 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3180 		score |= TC_MATCH;
3181 
3182 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3183 		score |= AGE_MATCH;
3184 
3185 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3186 		return INTEL_PPAT_PERFECT_MATCH;
3187 
3188 	return score;
3189 }
3190 
3191 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3192 {
3193 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3194 		INTEL_PPAT_PERFECT_MATCH : 0;
3195 }
3196 
3197 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3198 {
3199 	ppat->max_entries = 8;
3200 	ppat->update_hw = cnl_private_pat_update_hw;
3201 	ppat->match = bdw_private_pat_match;
3202 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3203 
3204 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3205 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3206 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3207 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3208 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3209 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3210 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3211 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3212 }
3213 
3214 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3215  * bits. When using advanced contexts each context stores its own PAT, but
3216  * writing this data shouldn't be harmful even in those cases. */
3217 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3218 {
3219 	ppat->max_entries = 8;
3220 	ppat->update_hw = bdw_private_pat_update_hw;
3221 	ppat->match = bdw_private_pat_match;
3222 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3223 
3224 	if (!HAS_PPGTT(ppat->i915)) {
3225 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3226 		 * so RTL will always use the value corresponding to
3227 		 * pat_sel = 000".
3228 		 * So let's disable cache for GGTT to avoid screen corruptions.
3229 		 * MOCS still can be used though.
3230 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3231 		 * before this patch, i.e. the same uncached + snooping access
3232 		 * like on gen6/7 seems to be in effect.
3233 		 * - So this just fixes blitter/render access. Again it looks
3234 		 * like it's not just uncached access, but uncached + snooping.
3235 		 * So we can still hold onto all our assumptions wrt cpu
3236 		 * clflushing on LLC machines.
3237 		 */
3238 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3239 		return;
3240 	}
3241 
3242 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3243 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3244 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3245 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3246 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3247 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3248 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3249 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3250 }
3251 
3252 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3253 {
3254 	ppat->max_entries = 8;
3255 	ppat->update_hw = bdw_private_pat_update_hw;
3256 	ppat->match = chv_private_pat_match;
3257 	ppat->clear_value = CHV_PPAT_SNOOP;
3258 
3259 	/*
3260 	 * Map WB on BDW to snooped on CHV.
3261 	 *
3262 	 * Only the snoop bit has meaning for CHV, the rest is
3263 	 * ignored.
3264 	 *
3265 	 * The hardware will never snoop for certain types of accesses:
3266 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3267 	 * - PPGTT page tables
3268 	 * - some other special cycles
3269 	 *
3270 	 * As with BDW, we also need to consider the following for GT accesses:
3271 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3272 	 * so RTL will always use the value corresponding to
3273 	 * pat_sel = 000".
3274 	 * Which means we must set the snoop bit in PAT entry 0
3275 	 * in order to keep the global status page working.
3276 	 */
3277 
3278 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3279 	__alloc_ppat_entry(ppat, 1, 0);
3280 	__alloc_ppat_entry(ppat, 2, 0);
3281 	__alloc_ppat_entry(ppat, 3, 0);
3282 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3283 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3284 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3285 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3286 }
3287 
3288 static void gen6_gmch_remove(struct i915_address_space *vm)
3289 {
3290 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3291 
3292 	iounmap(ggtt->gsm);
3293 	cleanup_scratch_page(vm);
3294 }
3295 
3296 static void setup_private_pat(struct drm_i915_private *dev_priv)
3297 {
3298 	struct intel_ppat *ppat = &dev_priv->ppat;
3299 	int i;
3300 
3301 	ppat->i915 = dev_priv;
3302 
3303 	if (INTEL_GEN(dev_priv) >= 10)
3304 		cnl_setup_private_ppat(ppat);
3305 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3306 		chv_setup_private_ppat(ppat);
3307 	else
3308 		bdw_setup_private_ppat(ppat);
3309 
3310 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3311 
3312 	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3313 		ppat->entries[i].value = ppat->clear_value;
3314 		ppat->entries[i].ppat = ppat;
3315 		set_bit(i, ppat->dirty);
3316 	}
3317 
3318 	ppat->update_hw(dev_priv);
3319 }
3320 
3321 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3322 {
3323 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3324 	struct pci_dev *pdev = dev_priv->drm.pdev;
3325 	unsigned int size;
3326 	u16 snb_gmch_ctl;
3327 	int err;
3328 
3329 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3330 	ggtt->gmadr =
3331 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3332 						 pci_resource_len(pdev, 2));
3333 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3334 
3335 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3336 	if (!err)
3337 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3338 	if (err)
3339 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3340 
3341 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3342 	if (IS_CHERRYVIEW(dev_priv))
3343 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3344 	else
3345 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3346 
3347 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3348 	ggtt->vm.cleanup = gen6_gmch_remove;
3349 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
3350 	ggtt->vm.clear_range = nop_clear_range;
3351 	if (intel_scanout_needs_vtd_wa(dev_priv))
3352 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3353 
3354 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3355 
3356 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3357 	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
3358 	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3359 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3360 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3361 		if (ggtt->vm.clear_range != nop_clear_range)
3362 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3363 
3364 		/* Prevent recursively calling stop_machine() and deadlocks. */
3365 		dev_info(dev_priv->drm.dev,
3366 			 "Disabling error capture for VT-d workaround\n");
3367 		i915_disable_error_state(dev_priv, -ENODEV);
3368 	}
3369 
3370 	ggtt->invalidate = gen6_ggtt_invalidate;
3371 
3372 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3373 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3374 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3375 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3376 
3377 	ggtt->vm.pte_encode = gen8_pte_encode;
3378 
3379 	setup_private_pat(dev_priv);
3380 
3381 	return ggtt_probe_common(ggtt, size);
3382 }
3383 
3384 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3385 {
3386 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3387 	struct pci_dev *pdev = dev_priv->drm.pdev;
3388 	unsigned int size;
3389 	u16 snb_gmch_ctl;
3390 	int err;
3391 
3392 	ggtt->gmadr =
3393 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3394 						 pci_resource_len(pdev, 2));
3395 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3396 
3397 	/* 64/512MB is the current min/max we actually know of, but this is just
3398 	 * a coarse sanity check.
3399 	 */
3400 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3401 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3402 		return -ENXIO;
3403 	}
3404 
3405 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3406 	if (!err)
3407 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3408 	if (err)
3409 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3410 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3411 
3412 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3413 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3414 
3415 	ggtt->vm.clear_range = nop_clear_range;
3416 	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3417 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3418 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
3419 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3420 	ggtt->vm.cleanup = gen6_gmch_remove;
3421 
3422 	ggtt->invalidate = gen6_ggtt_invalidate;
3423 
3424 	if (HAS_EDRAM(dev_priv))
3425 		ggtt->vm.pte_encode = iris_pte_encode;
3426 	else if (IS_HASWELL(dev_priv))
3427 		ggtt->vm.pte_encode = hsw_pte_encode;
3428 	else if (IS_VALLEYVIEW(dev_priv))
3429 		ggtt->vm.pte_encode = byt_pte_encode;
3430 	else if (INTEL_GEN(dev_priv) >= 7)
3431 		ggtt->vm.pte_encode = ivb_pte_encode;
3432 	else
3433 		ggtt->vm.pte_encode = snb_pte_encode;
3434 
3435 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3436 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3437 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3438 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3439 
3440 	return ggtt_probe_common(ggtt, size);
3441 }
3442 
3443 static void i915_gmch_remove(struct i915_address_space *vm)
3444 {
3445 	intel_gmch_remove();
3446 }
3447 
3448 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3449 {
3450 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3451 	phys_addr_t gmadr_base;
3452 	int ret;
3453 
3454 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3455 	if (!ret) {
3456 		DRM_ERROR("failed to set up gmch\n");
3457 		return -EIO;
3458 	}
3459 
3460 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3461 
3462 	ggtt->gmadr =
3463 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3464 						 ggtt->mappable_end);
3465 
3466 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3467 	ggtt->vm.insert_page = i915_ggtt_insert_page;
3468 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3469 	ggtt->vm.clear_range = i915_ggtt_clear_range;
3470 	ggtt->vm.cleanup = i915_gmch_remove;
3471 
3472 	ggtt->invalidate = gmch_ggtt_invalidate;
3473 
3474 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3475 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3476 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3477 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3478 
3479 	if (unlikely(ggtt->do_idle_maps))
3480 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3481 
3482 	return 0;
3483 }
3484 
3485 /**
3486  * i915_ggtt_probe_hw - Probe GGTT hardware location
3487  * @dev_priv: i915 device
3488  */
3489 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3490 {
3491 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3492 	int ret;
3493 
3494 	ggtt->vm.i915 = dev_priv;
3495 	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3496 
3497 	if (INTEL_GEN(dev_priv) <= 5)
3498 		ret = i915_gmch_probe(ggtt);
3499 	else if (INTEL_GEN(dev_priv) < 8)
3500 		ret = gen6_gmch_probe(ggtt);
3501 	else
3502 		ret = gen8_gmch_probe(ggtt);
3503 	if (ret)
3504 		return ret;
3505 
3506 	if ((ggtt->vm.total - 1) >> 32) {
3507 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3508 			  " of address space! Found %lldM!\n",
3509 			  ggtt->vm.total >> 20);
3510 		ggtt->vm.total = 1ULL << 32;
3511 		ggtt->mappable_end =
3512 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3513 	}
3514 
3515 	if (ggtt->mappable_end > ggtt->vm.total) {
3516 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3517 			  " aperture=%pa, total=%llx\n",
3518 			  &ggtt->mappable_end, ggtt->vm.total);
3519 		ggtt->mappable_end = ggtt->vm.total;
3520 	}
3521 
3522 	/* GMADR is the PCI mmio aperture into the global GTT. */
3523 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3524 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3525 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3526 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3527 	if (intel_vtd_active())
3528 		DRM_INFO("VT-d active for gfx access\n");
3529 
3530 	return 0;
3531 }
3532 
3533 /**
3534  * i915_ggtt_init_hw - Initialize GGTT hardware
3535  * @dev_priv: i915 device
3536  */
3537 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3538 {
3539 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3540 	int ret;
3541 
3542 	stash_init(&dev_priv->mm.wc_stash);
3543 
3544 	/* Note that we use page colouring to enforce a guard page at the
3545 	 * end of the address space. This is required as the CS may prefetch
3546 	 * beyond the end of the batch buffer, across the page boundary,
3547 	 * and beyond the end of the GTT if we do not provide a guard.
3548 	 */
3549 	mutex_lock(&dev_priv->drm.struct_mutex);
3550 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3551 
3552 	ggtt->vm.is_ggtt = true;
3553 
3554 	/* Only VLV supports read-only GGTT mappings */
3555 	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
3556 
3557 	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3558 		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3559 	mutex_unlock(&dev_priv->drm.struct_mutex);
3560 
3561 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3562 				dev_priv->ggtt.gmadr.start,
3563 				dev_priv->ggtt.mappable_end)) {
3564 		ret = -EIO;
3565 		goto out_gtt_cleanup;
3566 	}
3567 
3568 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3569 
3570 	i915_ggtt_init_fences(ggtt);
3571 
3572 	/*
3573 	 * Initialise stolen early so that we may reserve preallocated
3574 	 * objects for the BIOS to KMS transition.
3575 	 */
3576 	ret = i915_gem_init_stolen(dev_priv);
3577 	if (ret)
3578 		goto out_gtt_cleanup;
3579 
3580 	return 0;
3581 
3582 out_gtt_cleanup:
3583 	ggtt->vm.cleanup(&ggtt->vm);
3584 	return ret;
3585 }
3586 
3587 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3588 {
3589 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3590 		return -EIO;
3591 
3592 	return 0;
3593 }
3594 
3595 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3596 {
3597 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3598 
3599 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3600 
3601 	i915_ggtt_invalidate(i915);
3602 }
3603 
3604 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3605 {
3606 	/* XXX Temporary pardon for error unload */
3607 	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
3608 		return;
3609 
3610 	/* We should only be called after i915_ggtt_enable_guc() */
3611 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3612 
3613 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3614 
3615 	i915_ggtt_invalidate(i915);
3616 }
3617 
3618 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3619 {
3620 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3621 	struct i915_vma *vma, *vn;
3622 
3623 	i915_check_and_clear_faults(dev_priv);
3624 
3625 	mutex_lock(&ggtt->vm.mutex);
3626 
3627 	/* First fill our portion of the GTT with scratch pages */
3628 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3629 	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3630 
3631 	/* clflush objects bound into the GGTT and rebind them. */
3632 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3633 		struct drm_i915_gem_object *obj = vma->obj;
3634 
3635 		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3636 			continue;
3637 
3638 		mutex_unlock(&ggtt->vm.mutex);
3639 
3640 		if (!i915_vma_unbind(vma))
3641 			goto lock;
3642 
3643 		WARN_ON(i915_vma_bind(vma,
3644 				      obj ? obj->cache_level : 0,
3645 				      PIN_UPDATE));
3646 		if (obj) {
3647 			i915_gem_object_lock(obj);
3648 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3649 			i915_gem_object_unlock(obj);
3650 		}
3651 
3652 lock:
3653 		mutex_lock(&ggtt->vm.mutex);
3654 	}
3655 
3656 	ggtt->vm.closed = false;
3657 	i915_ggtt_invalidate(dev_priv);
3658 
3659 	mutex_unlock(&ggtt->vm.mutex);
3660 
3661 	if (INTEL_GEN(dev_priv) >= 8) {
3662 		struct intel_ppat *ppat = &dev_priv->ppat;
3663 
3664 		bitmap_set(ppat->dirty, 0, ppat->max_entries);
3665 		dev_priv->ppat.update_hw(dev_priv);
3666 		return;
3667 	}
3668 }
3669 
3670 static struct scatterlist *
3671 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3672 	     unsigned int width, unsigned int height,
3673 	     unsigned int stride,
3674 	     struct sg_table *st, struct scatterlist *sg)
3675 {
3676 	unsigned int column, row;
3677 	unsigned int src_idx;
3678 
3679 	for (column = 0; column < width; column++) {
3680 		src_idx = stride * (height - 1) + column + offset;
3681 		for (row = 0; row < height; row++) {
3682 			st->nents++;
3683 			/* We don't need the pages, but need to initialize
3684 			 * the entries so the sg list can be happily traversed.
3685 			 * The only thing we need are DMA addresses.
3686 			 */
3687 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3688 			sg_dma_address(sg) =
3689 				i915_gem_object_get_dma_address(obj, src_idx);
3690 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3691 			sg = sg_next(sg);
3692 			src_idx -= stride;
3693 		}
3694 	}
3695 
3696 	return sg;
3697 }
3698 
3699 static noinline struct sg_table *
3700 intel_rotate_pages(struct intel_rotation_info *rot_info,
3701 		   struct drm_i915_gem_object *obj)
3702 {
3703 	unsigned int size = intel_rotation_info_size(rot_info);
3704 	struct sg_table *st;
3705 	struct scatterlist *sg;
3706 	int ret = -ENOMEM;
3707 	int i;
3708 
3709 	/* Allocate target SG list. */
3710 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3711 	if (!st)
3712 		goto err_st_alloc;
3713 
3714 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3715 	if (ret)
3716 		goto err_sg_alloc;
3717 
3718 	st->nents = 0;
3719 	sg = st->sgl;
3720 
3721 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3722 		sg = rotate_pages(obj, rot_info->plane[i].offset,
3723 				  rot_info->plane[i].width, rot_info->plane[i].height,
3724 				  rot_info->plane[i].stride, st, sg);
3725 	}
3726 
3727 	return st;
3728 
3729 err_sg_alloc:
3730 	kfree(st);
3731 err_st_alloc:
3732 
3733 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3734 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3735 
3736 	return ERR_PTR(ret);
3737 }
3738 
3739 static struct scatterlist *
3740 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3741 	    unsigned int width, unsigned int height,
3742 	    unsigned int stride,
3743 	    struct sg_table *st, struct scatterlist *sg)
3744 {
3745 	unsigned int row;
3746 
3747 	for (row = 0; row < height; row++) {
3748 		unsigned int left = width * I915_GTT_PAGE_SIZE;
3749 
3750 		while (left) {
3751 			dma_addr_t addr;
3752 			unsigned int length;
3753 
3754 			/* We don't need the pages, but need to initialize
3755 			 * the entries so the sg list can be happily traversed.
3756 			 * The only thing we need are DMA addresses.
3757 			 */
3758 
3759 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
3760 
3761 			length = min(left, length);
3762 
3763 			st->nents++;
3764 
3765 			sg_set_page(sg, NULL, length, 0);
3766 			sg_dma_address(sg) = addr;
3767 			sg_dma_len(sg) = length;
3768 			sg = sg_next(sg);
3769 
3770 			offset += length / I915_GTT_PAGE_SIZE;
3771 			left -= length;
3772 		}
3773 
3774 		offset += stride - width;
3775 	}
3776 
3777 	return sg;
3778 }
3779 
3780 static noinline struct sg_table *
3781 intel_remap_pages(struct intel_remapped_info *rem_info,
3782 		  struct drm_i915_gem_object *obj)
3783 {
3784 	unsigned int size = intel_remapped_info_size(rem_info);
3785 	struct sg_table *st;
3786 	struct scatterlist *sg;
3787 	int ret = -ENOMEM;
3788 	int i;
3789 
3790 	/* Allocate target SG list. */
3791 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3792 	if (!st)
3793 		goto err_st_alloc;
3794 
3795 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3796 	if (ret)
3797 		goto err_sg_alloc;
3798 
3799 	st->nents = 0;
3800 	sg = st->sgl;
3801 
3802 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
3803 		sg = remap_pages(obj, rem_info->plane[i].offset,
3804 				 rem_info->plane[i].width, rem_info->plane[i].height,
3805 				 rem_info->plane[i].stride, st, sg);
3806 	}
3807 
3808 	i915_sg_trim(st);
3809 
3810 	return st;
3811 
3812 err_sg_alloc:
3813 	kfree(st);
3814 err_st_alloc:
3815 
3816 	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3817 			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
3818 
3819 	return ERR_PTR(ret);
3820 }
3821 
3822 static noinline struct sg_table *
3823 intel_partial_pages(const struct i915_ggtt_view *view,
3824 		    struct drm_i915_gem_object *obj)
3825 {
3826 	struct sg_table *st;
3827 	struct scatterlist *sg, *iter;
3828 	unsigned int count = view->partial.size;
3829 	unsigned int offset;
3830 	int ret = -ENOMEM;
3831 
3832 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3833 	if (!st)
3834 		goto err_st_alloc;
3835 
3836 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3837 	if (ret)
3838 		goto err_sg_alloc;
3839 
3840 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3841 	GEM_BUG_ON(!iter);
3842 
3843 	sg = st->sgl;
3844 	st->nents = 0;
3845 	do {
3846 		unsigned int len;
3847 
3848 		len = min(iter->length - (offset << PAGE_SHIFT),
3849 			  count << PAGE_SHIFT);
3850 		sg_set_page(sg, NULL, len, 0);
3851 		sg_dma_address(sg) =
3852 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3853 		sg_dma_len(sg) = len;
3854 
3855 		st->nents++;
3856 		count -= len >> PAGE_SHIFT;
3857 		if (count == 0) {
3858 			sg_mark_end(sg);
3859 			i915_sg_trim(st); /* Drop any unused tail entries. */
3860 
3861 			return st;
3862 		}
3863 
3864 		sg = __sg_next(sg);
3865 		iter = __sg_next(iter);
3866 		offset = 0;
3867 	} while (1);
3868 
3869 err_sg_alloc:
3870 	kfree(st);
3871 err_st_alloc:
3872 	return ERR_PTR(ret);
3873 }
3874 
3875 static int
3876 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3877 {
3878 	int ret;
3879 
3880 	/* The vma->pages are only valid within the lifespan of the borrowed
3881 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3882 	 * must be the vma->pages. A simple rule is that vma->pages must only
3883 	 * be accessed when the obj->mm.pages are pinned.
3884 	 */
3885 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3886 
3887 	switch (vma->ggtt_view.type) {
3888 	default:
3889 		GEM_BUG_ON(vma->ggtt_view.type);
3890 		/* fall through */
3891 	case I915_GGTT_VIEW_NORMAL:
3892 		vma->pages = vma->obj->mm.pages;
3893 		return 0;
3894 
3895 	case I915_GGTT_VIEW_ROTATED:
3896 		vma->pages =
3897 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3898 		break;
3899 
3900 	case I915_GGTT_VIEW_REMAPPED:
3901 		vma->pages =
3902 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
3903 		break;
3904 
3905 	case I915_GGTT_VIEW_PARTIAL:
3906 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3907 		break;
3908 	}
3909 
3910 	ret = 0;
3911 	if (IS_ERR(vma->pages)) {
3912 		ret = PTR_ERR(vma->pages);
3913 		vma->pages = NULL;
3914 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3915 			  vma->ggtt_view.type, ret);
3916 	}
3917 	return ret;
3918 }
3919 
3920 /**
3921  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3922  * @vm: the &struct i915_address_space
3923  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3924  * @size: how much space to allocate inside the GTT,
3925  *        must be #I915_GTT_PAGE_SIZE aligned
3926  * @offset: where to insert inside the GTT,
3927  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3928  *          (@offset + @size) must fit within the address space
3929  * @color: color to apply to node, if this node is not from a VMA,
3930  *         color must be #I915_COLOR_UNEVICTABLE
3931  * @flags: control search and eviction behaviour
3932  *
3933  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3934  * the address space (using @size and @color). If the @node does not fit, it
3935  * tries to evict any overlapping nodes from the GTT, including any
3936  * neighbouring nodes if the colors do not match (to ensure guard pages between
3937  * differing domains). See i915_gem_evict_for_node() for the gory details
3938  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3939  * evicting active overlapping objects, and any overlapping node that is pinned
3940  * or marked as unevictable will also result in failure.
3941  *
3942  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3943  * asked to wait for eviction and interrupted.
3944  */
3945 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3946 			 struct drm_mm_node *node,
3947 			 u64 size, u64 offset, unsigned long color,
3948 			 unsigned int flags)
3949 {
3950 	int err;
3951 
3952 	GEM_BUG_ON(!size);
3953 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3954 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3955 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3956 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3957 	GEM_BUG_ON(drm_mm_node_allocated(node));
3958 
3959 	node->size = size;
3960 	node->start = offset;
3961 	node->color = color;
3962 
3963 	err = drm_mm_reserve_node(&vm->mm, node);
3964 	if (err != -ENOSPC)
3965 		return err;
3966 
3967 	if (flags & PIN_NOEVICT)
3968 		return -ENOSPC;
3969 
3970 	err = i915_gem_evict_for_node(vm, node, flags);
3971 	if (err == 0)
3972 		err = drm_mm_reserve_node(&vm->mm, node);
3973 
3974 	return err;
3975 }
3976 
3977 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3978 {
3979 	u64 range, addr;
3980 
3981 	GEM_BUG_ON(range_overflows(start, len, end));
3982 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3983 
3984 	range = round_down(end - len, align) - round_up(start, align);
3985 	if (range) {
3986 		if (sizeof(unsigned long) == sizeof(u64)) {
3987 			addr = get_random_long();
3988 		} else {
3989 			addr = get_random_int();
3990 			if (range > U32_MAX) {
3991 				addr <<= 32;
3992 				addr |= get_random_int();
3993 			}
3994 		}
3995 		div64_u64_rem(addr, range, &addr);
3996 		start += addr;
3997 	}
3998 
3999 	return round_up(start, align);
4000 }
4001 
4002 /**
4003  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
4004  * @vm: the &struct i915_address_space
4005  * @node: the &struct drm_mm_node (typically i915_vma.node)
4006  * @size: how much space to allocate inside the GTT,
4007  *        must be #I915_GTT_PAGE_SIZE aligned
4008  * @alignment: required alignment of starting offset, may be 0 but
4009  *             if specified, this must be a power-of-two and at least
4010  *             #I915_GTT_MIN_ALIGNMENT
4011  * @color: color to apply to node
4012  * @start: start of any range restriction inside GTT (0 for all),
4013  *         must be #I915_GTT_PAGE_SIZE aligned
4014  * @end: end of any range restriction inside GTT (U64_MAX for all),
4015  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
4016  * @flags: control search and eviction behaviour
4017  *
4018  * i915_gem_gtt_insert() first searches for an available hole into which
4019  * is can insert the node. The hole address is aligned to @alignment and
4020  * its @size must then fit entirely within the [@start, @end] bounds. The
4021  * nodes on either side of the hole must match @color, or else a guard page
4022  * will be inserted between the two nodes (or the node evicted). If no
4023  * suitable hole is found, first a victim is randomly selected and tested
4024  * for eviction, otherwise then the LRU list of objects within the GTT
4025  * is scanned to find the first set of replacement nodes to create the hole.
4026  * Those old overlapping nodes are evicted from the GTT (and so must be
4027  * rebound before any future use). Any node that is currently pinned cannot
4028  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
4029  * active and #PIN_NONBLOCK is specified, that node is also skipped when
4030  * searching for an eviction candidate. See i915_gem_evict_something() for
4031  * the gory details on the eviction algorithm.
4032  *
4033  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
4034  * asked to wait for eviction and interrupted.
4035  */
4036 int i915_gem_gtt_insert(struct i915_address_space *vm,
4037 			struct drm_mm_node *node,
4038 			u64 size, u64 alignment, unsigned long color,
4039 			u64 start, u64 end, unsigned int flags)
4040 {
4041 	enum drm_mm_insert_mode mode;
4042 	u64 offset;
4043 	int err;
4044 
4045 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
4046 	GEM_BUG_ON(!size);
4047 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
4048 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
4049 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
4050 	GEM_BUG_ON(start >= end);
4051 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
4052 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4053 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4054 	GEM_BUG_ON(drm_mm_node_allocated(node));
4055 
4056 	if (unlikely(range_overflows(start, size, end)))
4057 		return -ENOSPC;
4058 
4059 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
4060 		return -ENOSPC;
4061 
4062 	mode = DRM_MM_INSERT_BEST;
4063 	if (flags & PIN_HIGH)
4064 		mode = DRM_MM_INSERT_HIGHEST;
4065 	if (flags & PIN_MAPPABLE)
4066 		mode = DRM_MM_INSERT_LOW;
4067 
4068 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
4069 	 * so we know that we always have a minimum alignment of 4096.
4070 	 * The drm_mm range manager is optimised to return results
4071 	 * with zero alignment, so where possible use the optimal
4072 	 * path.
4073 	 */
4074 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
4075 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
4076 		alignment = 0;
4077 
4078 	err = drm_mm_insert_node_in_range(&vm->mm, node,
4079 					  size, alignment, color,
4080 					  start, end, mode);
4081 	if (err != -ENOSPC)
4082 		return err;
4083 
4084 	if (mode & DRM_MM_INSERT_ONCE) {
4085 		err = drm_mm_insert_node_in_range(&vm->mm, node,
4086 						  size, alignment, color,
4087 						  start, end,
4088 						  DRM_MM_INSERT_BEST);
4089 		if (err != -ENOSPC)
4090 			return err;
4091 	}
4092 
4093 	if (flags & PIN_NOEVICT)
4094 		return -ENOSPC;
4095 
4096 	/* No free space, pick a slot at random.
4097 	 *
4098 	 * There is a pathological case here using a GTT shared between
4099 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4100 	 *
4101 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4102 	 *         (64k objects)             (448k objects)
4103 	 *
4104 	 * Now imagine that the eviction LRU is ordered top-down (just because
4105 	 * pathology meets real life), and that we need to evict an object to
4106 	 * make room inside the aperture. The eviction scan then has to walk
4107 	 * the 448k list before it finds one within range. And now imagine that
4108 	 * it has to search for a new hole between every byte inside the memcpy,
4109 	 * for several simultaneous clients.
4110 	 *
4111 	 * On a full-ppgtt system, if we have run out of available space, there
4112 	 * will be lots and lots of objects in the eviction list! Again,
4113 	 * searching that LRU list may be slow if we are also applying any
4114 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
4115 	 * simplicity and similarilty between different GTT, try the single
4116 	 * random replacement first.
4117 	 */
4118 	offset = random_offset(start, end,
4119 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4120 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4121 	if (err != -ENOSPC)
4122 		return err;
4123 
4124 	/* Randomly selected placement is pinned, do a search */
4125 	err = i915_gem_evict_something(vm, size, alignment, color,
4126 				       start, end, flags);
4127 	if (err)
4128 		return err;
4129 
4130 	return drm_mm_insert_node_in_range(&vm->mm, node,
4131 					   size, alignment, color,
4132 					   start, end, DRM_MM_INSERT_EVICT);
4133 }
4134 
4135 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4136 #include "selftests/mock_gtt.c"
4137 #include "selftests/i915_gem_gtt.c"
4138 #endif
4139