1 /* 2 * Copyright © 2010 Daniel Vetter 3 * Copyright © 2011-2014 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 27 28 #include <linux/fault-inject.h> 29 #include <linux/log2.h> 30 #include <linux/random.h> 31 #include <linux/seq_file.h> 32 #include <linux/stop_machine.h> 33 34 #include <asm/set_memory.h> 35 36 #include <drm/drmP.h> 37 #include <drm/i915_drm.h> 38 39 #include "i915_drv.h" 40 #include "i915_vgpu.h" 41 #include "i915_trace.h" 42 #include "intel_drv.h" 43 #include "intel_frontbuffer.h" 44 45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM) 46 47 /** 48 * DOC: Global GTT views 49 * 50 * Background and previous state 51 * 52 * Historically objects could exists (be bound) in global GTT space only as 53 * singular instances with a view representing all of the object's backing pages 54 * in a linear fashion. This view will be called a normal view. 55 * 56 * To support multiple views of the same object, where the number of mapped 57 * pages is not equal to the backing store, or where the layout of the pages 58 * is not linear, concept of a GGTT view was added. 59 * 60 * One example of an alternative view is a stereo display driven by a single 61 * image. In this case we would have a framebuffer looking like this 62 * (2x2 pages): 63 * 64 * 12 65 * 34 66 * 67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU 68 * rendering. In contrast, fed to the display engine would be an alternative 69 * view which could look something like this: 70 * 71 * 1212 72 * 3434 73 * 74 * In this example both the size and layout of pages in the alternative view is 75 * different from the normal view. 76 * 77 * Implementation and usage 78 * 79 * GGTT views are implemented using VMAs and are distinguished via enum 80 * i915_ggtt_view_type and struct i915_ggtt_view. 81 * 82 * A new flavour of core GEM functions which work with GGTT bound objects were 83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid 84 * renaming in large amounts of code. They take the struct i915_ggtt_view 85 * parameter encapsulating all metadata required to implement a view. 86 * 87 * As a helper for callers which are only interested in the normal view, 88 * globally const i915_ggtt_view_normal singleton instance exists. All old core 89 * GEM API functions, the ones not taking the view parameter, are operating on, 90 * or with the normal GGTT view. 91 * 92 * Code wanting to add or use a new GGTT view needs to: 93 * 94 * 1. Add a new enum with a suitable name. 95 * 2. Extend the metadata in the i915_ggtt_view structure if required. 96 * 3. Add support to i915_get_vma_pages(). 97 * 98 * New views are required to build a scatter-gather table from within the 99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and 100 * exists for the lifetime of an VMA. 101 * 102 * Core API is designed to have copy semantics which means that passed in 103 * struct i915_ggtt_view does not need to be persistent (left around after 104 * calling the core API functions). 105 * 106 */ 107 108 static int 109 i915_get_ggtt_vma_pages(struct i915_vma *vma); 110 111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv) 112 { 113 /* Note that as an uncached mmio write, this should flush the 114 * WCB of the writes into the GGTT before it triggers the invalidate. 115 */ 116 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 117 } 118 119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv) 120 { 121 gen6_ggtt_invalidate(dev_priv); 122 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); 123 } 124 125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv) 126 { 127 intel_gtt_chipset_flush(); 128 } 129 130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915) 131 { 132 i915->ggtt.invalidate(i915); 133 } 134 135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 136 int enable_ppgtt) 137 { 138 bool has_aliasing_ppgtt; 139 bool has_full_ppgtt; 140 bool has_full_48bit_ppgtt; 141 142 has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt; 143 has_full_ppgtt = dev_priv->info.has_full_ppgtt; 144 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt; 145 146 if (intel_vgpu_active(dev_priv)) { 147 /* emulation is too hard */ 148 has_full_ppgtt = false; 149 has_full_48bit_ppgtt = false; 150 } 151 152 if (!has_aliasing_ppgtt) 153 return 0; 154 155 /* 156 * We don't allow disabling PPGTT for gen9+ as it's a requirement for 157 * execlists, the sole mechanism available to submit work. 158 */ 159 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9) 160 return 0; 161 162 if (enable_ppgtt == 1) 163 return 1; 164 165 if (enable_ppgtt == 2 && has_full_ppgtt) 166 return 2; 167 168 if (enable_ppgtt == 3 && has_full_48bit_ppgtt) 169 return 3; 170 171 #ifdef CONFIG_INTEL_IOMMU 172 /* Disable ppgtt on SNB if VT-d is on. */ 173 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) { 174 DRM_INFO("Disabling PPGTT because VT-d is on\n"); 175 return 0; 176 } 177 #endif 178 179 /* Early VLV doesn't have this */ 180 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) { 181 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); 182 return 0; 183 } 184 185 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt) 186 return has_full_48bit_ppgtt ? 3 : 2; 187 else 188 return has_aliasing_ppgtt ? 1 : 0; 189 } 190 191 static int ppgtt_bind_vma(struct i915_vma *vma, 192 enum i915_cache_level cache_level, 193 u32 unused) 194 { 195 u32 pte_flags; 196 int ret; 197 198 if (!(vma->flags & I915_VMA_LOCAL_BIND)) { 199 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start, 200 vma->size); 201 if (ret) 202 return ret; 203 } 204 205 vma->pages = vma->obj->mm.pages; 206 207 /* Currently applicable only to VLV */ 208 pte_flags = 0; 209 if (vma->obj->gt_ro) 210 pte_flags |= PTE_READ_ONLY; 211 212 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start, 213 cache_level, pte_flags); 214 215 return 0; 216 } 217 218 static void ppgtt_unbind_vma(struct i915_vma *vma) 219 { 220 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 221 } 222 223 static gen8_pte_t gen8_pte_encode(dma_addr_t addr, 224 enum i915_cache_level level) 225 { 226 gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW; 227 pte |= addr; 228 229 switch (level) { 230 case I915_CACHE_NONE: 231 pte |= PPAT_UNCACHED_INDEX; 232 break; 233 case I915_CACHE_WT: 234 pte |= PPAT_DISPLAY_ELLC_INDEX; 235 break; 236 default: 237 pte |= PPAT_CACHED_INDEX; 238 break; 239 } 240 241 return pte; 242 } 243 244 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, 245 const enum i915_cache_level level) 246 { 247 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; 248 pde |= addr; 249 if (level != I915_CACHE_NONE) 250 pde |= PPAT_CACHED_PDE_INDEX; 251 else 252 pde |= PPAT_UNCACHED_INDEX; 253 return pde; 254 } 255 256 #define gen8_pdpe_encode gen8_pde_encode 257 #define gen8_pml4e_encode gen8_pde_encode 258 259 static gen6_pte_t snb_pte_encode(dma_addr_t addr, 260 enum i915_cache_level level, 261 u32 unused) 262 { 263 gen6_pte_t pte = GEN6_PTE_VALID; 264 pte |= GEN6_PTE_ADDR_ENCODE(addr); 265 266 switch (level) { 267 case I915_CACHE_L3_LLC: 268 case I915_CACHE_LLC: 269 pte |= GEN6_PTE_CACHE_LLC; 270 break; 271 case I915_CACHE_NONE: 272 pte |= GEN6_PTE_UNCACHED; 273 break; 274 default: 275 MISSING_CASE(level); 276 } 277 278 return pte; 279 } 280 281 static gen6_pte_t ivb_pte_encode(dma_addr_t addr, 282 enum i915_cache_level level, 283 u32 unused) 284 { 285 gen6_pte_t pte = GEN6_PTE_VALID; 286 pte |= GEN6_PTE_ADDR_ENCODE(addr); 287 288 switch (level) { 289 case I915_CACHE_L3_LLC: 290 pte |= GEN7_PTE_CACHE_L3_LLC; 291 break; 292 case I915_CACHE_LLC: 293 pte |= GEN6_PTE_CACHE_LLC; 294 break; 295 case I915_CACHE_NONE: 296 pte |= GEN6_PTE_UNCACHED; 297 break; 298 default: 299 MISSING_CASE(level); 300 } 301 302 return pte; 303 } 304 305 static gen6_pte_t byt_pte_encode(dma_addr_t addr, 306 enum i915_cache_level level, 307 u32 flags) 308 { 309 gen6_pte_t pte = GEN6_PTE_VALID; 310 pte |= GEN6_PTE_ADDR_ENCODE(addr); 311 312 if (!(flags & PTE_READ_ONLY)) 313 pte |= BYT_PTE_WRITEABLE; 314 315 if (level != I915_CACHE_NONE) 316 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 317 318 return pte; 319 } 320 321 static gen6_pte_t hsw_pte_encode(dma_addr_t addr, 322 enum i915_cache_level level, 323 u32 unused) 324 { 325 gen6_pte_t pte = GEN6_PTE_VALID; 326 pte |= HSW_PTE_ADDR_ENCODE(addr); 327 328 if (level != I915_CACHE_NONE) 329 pte |= HSW_WB_LLC_AGE3; 330 331 return pte; 332 } 333 334 static gen6_pte_t iris_pte_encode(dma_addr_t addr, 335 enum i915_cache_level level, 336 u32 unused) 337 { 338 gen6_pte_t pte = GEN6_PTE_VALID; 339 pte |= HSW_PTE_ADDR_ENCODE(addr); 340 341 switch (level) { 342 case I915_CACHE_NONE: 343 break; 344 case I915_CACHE_WT: 345 pte |= HSW_WT_ELLC_LLC_AGE3; 346 break; 347 default: 348 pte |= HSW_WB_ELLC_LLC_AGE3; 349 break; 350 } 351 352 return pte; 353 } 354 355 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp) 356 { 357 struct page *page; 358 359 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 360 i915_gem_shrink_all(vm->i915); 361 362 if (vm->free_pages.nr) 363 return vm->free_pages.pages[--vm->free_pages.nr]; 364 365 page = alloc_page(gfp); 366 if (!page) 367 return NULL; 368 369 if (vm->pt_kmap_wc) 370 set_pages_array_wc(&page, 1); 371 372 return page; 373 } 374 375 static void vm_free_pages_release(struct i915_address_space *vm) 376 { 377 GEM_BUG_ON(!pagevec_count(&vm->free_pages)); 378 379 if (vm->pt_kmap_wc) 380 set_pages_array_wb(vm->free_pages.pages, 381 pagevec_count(&vm->free_pages)); 382 383 __pagevec_release(&vm->free_pages); 384 } 385 386 static void vm_free_page(struct i915_address_space *vm, struct page *page) 387 { 388 if (!pagevec_add(&vm->free_pages, page)) 389 vm_free_pages_release(vm); 390 } 391 392 static int __setup_page_dma(struct i915_address_space *vm, 393 struct i915_page_dma *p, 394 gfp_t gfp) 395 { 396 p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY); 397 if (unlikely(!p->page)) 398 return -ENOMEM; 399 400 p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE, 401 PCI_DMA_BIDIRECTIONAL); 402 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) { 403 vm_free_page(vm, p->page); 404 return -ENOMEM; 405 } 406 407 return 0; 408 } 409 410 static int setup_page_dma(struct i915_address_space *vm, 411 struct i915_page_dma *p) 412 { 413 return __setup_page_dma(vm, p, I915_GFP_DMA); 414 } 415 416 static void cleanup_page_dma(struct i915_address_space *vm, 417 struct i915_page_dma *p) 418 { 419 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 420 vm_free_page(vm, p->page); 421 } 422 423 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page) 424 425 #define setup_px(vm, px) setup_page_dma((vm), px_base(px)) 426 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px)) 427 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v)) 428 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v)) 429 430 static void fill_page_dma(struct i915_address_space *vm, 431 struct i915_page_dma *p, 432 const u64 val) 433 { 434 u64 * const vaddr = kmap_atomic(p->page); 435 int i; 436 437 for (i = 0; i < 512; i++) 438 vaddr[i] = val; 439 440 kunmap_atomic(vaddr); 441 } 442 443 static void fill_page_dma_32(struct i915_address_space *vm, 444 struct i915_page_dma *p, 445 const u32 v) 446 { 447 fill_page_dma(vm, p, (u64)v << 32 | v); 448 } 449 450 static int 451 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp) 452 { 453 return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO); 454 } 455 456 static void cleanup_scratch_page(struct i915_address_space *vm) 457 { 458 cleanup_page_dma(vm, &vm->scratch_page); 459 } 460 461 static struct i915_page_table *alloc_pt(struct i915_address_space *vm) 462 { 463 struct i915_page_table *pt; 464 465 pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN); 466 if (unlikely(!pt)) 467 return ERR_PTR(-ENOMEM); 468 469 if (unlikely(setup_px(vm, pt))) { 470 kfree(pt); 471 return ERR_PTR(-ENOMEM); 472 } 473 474 pt->used_ptes = 0; 475 return pt; 476 } 477 478 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt) 479 { 480 cleanup_px(vm, pt); 481 kfree(pt); 482 } 483 484 static void gen8_initialize_pt(struct i915_address_space *vm, 485 struct i915_page_table *pt) 486 { 487 fill_px(vm, pt, 488 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC)); 489 } 490 491 static void gen6_initialize_pt(struct i915_address_space *vm, 492 struct i915_page_table *pt) 493 { 494 fill32_px(vm, pt, 495 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0)); 496 } 497 498 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm) 499 { 500 struct i915_page_directory *pd; 501 502 pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN); 503 if (unlikely(!pd)) 504 return ERR_PTR(-ENOMEM); 505 506 if (unlikely(setup_px(vm, pd))) { 507 kfree(pd); 508 return ERR_PTR(-ENOMEM); 509 } 510 511 pd->used_pdes = 0; 512 return pd; 513 } 514 515 static void free_pd(struct i915_address_space *vm, 516 struct i915_page_directory *pd) 517 { 518 cleanup_px(vm, pd); 519 kfree(pd); 520 } 521 522 static void gen8_initialize_pd(struct i915_address_space *vm, 523 struct i915_page_directory *pd) 524 { 525 unsigned int i; 526 527 fill_px(vm, pd, 528 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC)); 529 for (i = 0; i < I915_PDES; i++) 530 pd->page_table[i] = vm->scratch_pt; 531 } 532 533 static int __pdp_init(struct i915_address_space *vm, 534 struct i915_page_directory_pointer *pdp) 535 { 536 const unsigned int pdpes = i915_pdpes_per_pdp(vm); 537 unsigned int i; 538 539 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory), 540 GFP_KERNEL | __GFP_NOWARN); 541 if (unlikely(!pdp->page_directory)) 542 return -ENOMEM; 543 544 for (i = 0; i < pdpes; i++) 545 pdp->page_directory[i] = vm->scratch_pd; 546 547 return 0; 548 } 549 550 static void __pdp_fini(struct i915_page_directory_pointer *pdp) 551 { 552 kfree(pdp->page_directory); 553 pdp->page_directory = NULL; 554 } 555 556 static inline bool use_4lvl(const struct i915_address_space *vm) 557 { 558 return i915_vm_is_48bit(vm); 559 } 560 561 static struct i915_page_directory_pointer * 562 alloc_pdp(struct i915_address_space *vm) 563 { 564 struct i915_page_directory_pointer *pdp; 565 int ret = -ENOMEM; 566 567 WARN_ON(!use_4lvl(vm)); 568 569 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL); 570 if (!pdp) 571 return ERR_PTR(-ENOMEM); 572 573 ret = __pdp_init(vm, pdp); 574 if (ret) 575 goto fail_bitmap; 576 577 ret = setup_px(vm, pdp); 578 if (ret) 579 goto fail_page_m; 580 581 return pdp; 582 583 fail_page_m: 584 __pdp_fini(pdp); 585 fail_bitmap: 586 kfree(pdp); 587 588 return ERR_PTR(ret); 589 } 590 591 static void free_pdp(struct i915_address_space *vm, 592 struct i915_page_directory_pointer *pdp) 593 { 594 __pdp_fini(pdp); 595 596 if (!use_4lvl(vm)) 597 return; 598 599 cleanup_px(vm, pdp); 600 kfree(pdp); 601 } 602 603 static void gen8_initialize_pdp(struct i915_address_space *vm, 604 struct i915_page_directory_pointer *pdp) 605 { 606 gen8_ppgtt_pdpe_t scratch_pdpe; 607 608 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC); 609 610 fill_px(vm, pdp, scratch_pdpe); 611 } 612 613 static void gen8_initialize_pml4(struct i915_address_space *vm, 614 struct i915_pml4 *pml4) 615 { 616 unsigned int i; 617 618 fill_px(vm, pml4, 619 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC)); 620 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) 621 pml4->pdps[i] = vm->scratch_pdp; 622 } 623 624 /* Broadwell Page Directory Pointer Descriptors */ 625 static int gen8_write_pdp(struct drm_i915_gem_request *req, 626 unsigned entry, 627 dma_addr_t addr) 628 { 629 struct intel_engine_cs *engine = req->engine; 630 u32 *cs; 631 632 BUG_ON(entry >= 4); 633 634 cs = intel_ring_begin(req, 6); 635 if (IS_ERR(cs)) 636 return PTR_ERR(cs); 637 638 *cs++ = MI_LOAD_REGISTER_IMM(1); 639 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry)); 640 *cs++ = upper_32_bits(addr); 641 *cs++ = MI_LOAD_REGISTER_IMM(1); 642 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry)); 643 *cs++ = lower_32_bits(addr); 644 intel_ring_advance(req, cs); 645 646 return 0; 647 } 648 649 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt, 650 struct drm_i915_gem_request *req) 651 { 652 int i, ret; 653 654 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) { 655 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); 656 657 ret = gen8_write_pdp(req, i, pd_daddr); 658 if (ret) 659 return ret; 660 } 661 662 return 0; 663 } 664 665 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt, 666 struct drm_i915_gem_request *req) 667 { 668 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4)); 669 } 670 671 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify 672 * the page table structures, we mark them dirty so that 673 * context switching/execlist queuing code takes extra steps 674 * to ensure that tlbs are flushed. 675 */ 676 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) 677 { 678 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask; 679 } 680 681 /* Removes entries from a single page table, releasing it if it's empty. 682 * Caller can use the return value to update higher-level entries. 683 */ 684 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm, 685 struct i915_page_table *pt, 686 u64 start, u64 length) 687 { 688 unsigned int num_entries = gen8_pte_count(start, length); 689 unsigned int pte = gen8_pte_index(start); 690 unsigned int pte_end = pte + num_entries; 691 const gen8_pte_t scratch_pte = 692 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); 693 gen8_pte_t *vaddr; 694 695 GEM_BUG_ON(num_entries > pt->used_ptes); 696 697 pt->used_ptes -= num_entries; 698 if (!pt->used_ptes) 699 return true; 700 701 vaddr = kmap_atomic_px(pt); 702 while (pte < pte_end) 703 vaddr[pte++] = scratch_pte; 704 kunmap_atomic(vaddr); 705 706 return false; 707 } 708 709 static void gen8_ppgtt_set_pde(struct i915_address_space *vm, 710 struct i915_page_directory *pd, 711 struct i915_page_table *pt, 712 unsigned int pde) 713 { 714 gen8_pde_t *vaddr; 715 716 pd->page_table[pde] = pt; 717 718 vaddr = kmap_atomic_px(pd); 719 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC); 720 kunmap_atomic(vaddr); 721 } 722 723 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm, 724 struct i915_page_directory *pd, 725 u64 start, u64 length) 726 { 727 struct i915_page_table *pt; 728 u32 pde; 729 730 gen8_for_each_pde(pt, pd, start, length, pde) { 731 GEM_BUG_ON(pt == vm->scratch_pt); 732 733 if (!gen8_ppgtt_clear_pt(vm, pt, start, length)) 734 continue; 735 736 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde); 737 GEM_BUG_ON(!pd->used_pdes); 738 pd->used_pdes--; 739 740 free_pt(vm, pt); 741 } 742 743 return !pd->used_pdes; 744 } 745 746 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm, 747 struct i915_page_directory_pointer *pdp, 748 struct i915_page_directory *pd, 749 unsigned int pdpe) 750 { 751 gen8_ppgtt_pdpe_t *vaddr; 752 753 pdp->page_directory[pdpe] = pd; 754 if (!use_4lvl(vm)) 755 return; 756 757 vaddr = kmap_atomic_px(pdp); 758 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); 759 kunmap_atomic(vaddr); 760 } 761 762 /* Removes entries from a single page dir pointer, releasing it if it's empty. 763 * Caller can use the return value to update higher-level entries 764 */ 765 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm, 766 struct i915_page_directory_pointer *pdp, 767 u64 start, u64 length) 768 { 769 struct i915_page_directory *pd; 770 unsigned int pdpe; 771 772 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 773 GEM_BUG_ON(pd == vm->scratch_pd); 774 775 if (!gen8_ppgtt_clear_pd(vm, pd, start, length)) 776 continue; 777 778 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 779 GEM_BUG_ON(!pdp->used_pdpes); 780 pdp->used_pdpes--; 781 782 free_pd(vm, pd); 783 } 784 785 return !pdp->used_pdpes; 786 } 787 788 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm, 789 u64 start, u64 length) 790 { 791 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length); 792 } 793 794 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4, 795 struct i915_page_directory_pointer *pdp, 796 unsigned int pml4e) 797 { 798 gen8_ppgtt_pml4e_t *vaddr; 799 800 pml4->pdps[pml4e] = pdp; 801 802 vaddr = kmap_atomic_px(pml4); 803 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); 804 kunmap_atomic(vaddr); 805 } 806 807 /* Removes entries from a single pml4. 808 * This is the top-level structure in 4-level page tables used on gen8+. 809 * Empty entries are always scratch pml4e. 810 */ 811 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm, 812 u64 start, u64 length) 813 { 814 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 815 struct i915_pml4 *pml4 = &ppgtt->pml4; 816 struct i915_page_directory_pointer *pdp; 817 unsigned int pml4e; 818 819 GEM_BUG_ON(!use_4lvl(vm)); 820 821 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 822 GEM_BUG_ON(pdp == vm->scratch_pdp); 823 824 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length)) 825 continue; 826 827 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); 828 829 free_pdp(vm, pdp); 830 } 831 } 832 833 struct sgt_dma { 834 struct scatterlist *sg; 835 dma_addr_t dma, max; 836 }; 837 838 struct gen8_insert_pte { 839 u16 pml4e; 840 u16 pdpe; 841 u16 pde; 842 u16 pte; 843 }; 844 845 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start) 846 { 847 return (struct gen8_insert_pte) { 848 gen8_pml4e_index(start), 849 gen8_pdpe_index(start), 850 gen8_pde_index(start), 851 gen8_pte_index(start), 852 }; 853 } 854 855 static __always_inline bool 856 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt, 857 struct i915_page_directory_pointer *pdp, 858 struct sgt_dma *iter, 859 struct gen8_insert_pte *idx, 860 enum i915_cache_level cache_level) 861 { 862 struct i915_page_directory *pd; 863 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level); 864 gen8_pte_t *vaddr; 865 bool ret; 866 867 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base)); 868 pd = pdp->page_directory[idx->pdpe]; 869 vaddr = kmap_atomic_px(pd->page_table[idx->pde]); 870 do { 871 vaddr[idx->pte] = pte_encode | iter->dma; 872 873 iter->dma += PAGE_SIZE; 874 if (iter->dma >= iter->max) { 875 iter->sg = __sg_next(iter->sg); 876 if (!iter->sg) { 877 ret = false; 878 break; 879 } 880 881 iter->dma = sg_dma_address(iter->sg); 882 iter->max = iter->dma + iter->sg->length; 883 } 884 885 if (++idx->pte == GEN8_PTES) { 886 idx->pte = 0; 887 888 if (++idx->pde == I915_PDES) { 889 idx->pde = 0; 890 891 /* Limited by sg length for 3lvl */ 892 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) { 893 idx->pdpe = 0; 894 ret = true; 895 break; 896 } 897 898 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base)); 899 pd = pdp->page_directory[idx->pdpe]; 900 } 901 902 kunmap_atomic(vaddr); 903 vaddr = kmap_atomic_px(pd->page_table[idx->pde]); 904 } 905 } while (1); 906 kunmap_atomic(vaddr); 907 908 return ret; 909 } 910 911 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm, 912 struct sg_table *pages, 913 u64 start, 914 enum i915_cache_level cache_level, 915 u32 unused) 916 { 917 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 918 struct sgt_dma iter = { 919 .sg = pages->sgl, 920 .dma = sg_dma_address(iter.sg), 921 .max = iter.dma + iter.sg->length, 922 }; 923 struct gen8_insert_pte idx = gen8_insert_pte(start); 924 925 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx, 926 cache_level); 927 } 928 929 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm, 930 struct sg_table *pages, 931 u64 start, 932 enum i915_cache_level cache_level, 933 u32 unused) 934 { 935 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 936 struct sgt_dma iter = { 937 .sg = pages->sgl, 938 .dma = sg_dma_address(iter.sg), 939 .max = iter.dma + iter.sg->length, 940 }; 941 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps; 942 struct gen8_insert_pte idx = gen8_insert_pte(start); 943 944 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter, 945 &idx, cache_level)) 946 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4); 947 } 948 949 static void gen8_free_page_tables(struct i915_address_space *vm, 950 struct i915_page_directory *pd) 951 { 952 int i; 953 954 if (!px_page(pd)) 955 return; 956 957 for (i = 0; i < I915_PDES; i++) { 958 if (pd->page_table[i] != vm->scratch_pt) 959 free_pt(vm, pd->page_table[i]); 960 } 961 } 962 963 static int gen8_init_scratch(struct i915_address_space *vm) 964 { 965 int ret; 966 967 ret = setup_scratch_page(vm, I915_GFP_DMA); 968 if (ret) 969 return ret; 970 971 vm->scratch_pt = alloc_pt(vm); 972 if (IS_ERR(vm->scratch_pt)) { 973 ret = PTR_ERR(vm->scratch_pt); 974 goto free_scratch_page; 975 } 976 977 vm->scratch_pd = alloc_pd(vm); 978 if (IS_ERR(vm->scratch_pd)) { 979 ret = PTR_ERR(vm->scratch_pd); 980 goto free_pt; 981 } 982 983 if (use_4lvl(vm)) { 984 vm->scratch_pdp = alloc_pdp(vm); 985 if (IS_ERR(vm->scratch_pdp)) { 986 ret = PTR_ERR(vm->scratch_pdp); 987 goto free_pd; 988 } 989 } 990 991 gen8_initialize_pt(vm, vm->scratch_pt); 992 gen8_initialize_pd(vm, vm->scratch_pd); 993 if (use_4lvl(vm)) 994 gen8_initialize_pdp(vm, vm->scratch_pdp); 995 996 return 0; 997 998 free_pd: 999 free_pd(vm, vm->scratch_pd); 1000 free_pt: 1001 free_pt(vm, vm->scratch_pt); 1002 free_scratch_page: 1003 cleanup_scratch_page(vm); 1004 1005 return ret; 1006 } 1007 1008 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create) 1009 { 1010 struct i915_address_space *vm = &ppgtt->base; 1011 struct drm_i915_private *dev_priv = vm->i915; 1012 enum vgt_g2v_type msg; 1013 int i; 1014 1015 if (use_4lvl(vm)) { 1016 const u64 daddr = px_dma(&ppgtt->pml4); 1017 1018 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); 1019 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); 1020 1021 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : 1022 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); 1023 } else { 1024 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1025 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i); 1026 1027 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); 1028 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); 1029 } 1030 1031 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : 1032 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); 1033 } 1034 1035 I915_WRITE(vgtif_reg(g2v_notify), msg); 1036 1037 return 0; 1038 } 1039 1040 static void gen8_free_scratch(struct i915_address_space *vm) 1041 { 1042 if (use_4lvl(vm)) 1043 free_pdp(vm, vm->scratch_pdp); 1044 free_pd(vm, vm->scratch_pd); 1045 free_pt(vm, vm->scratch_pt); 1046 cleanup_scratch_page(vm); 1047 } 1048 1049 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm, 1050 struct i915_page_directory_pointer *pdp) 1051 { 1052 const unsigned int pdpes = i915_pdpes_per_pdp(vm); 1053 int i; 1054 1055 for (i = 0; i < pdpes; i++) { 1056 if (pdp->page_directory[i] == vm->scratch_pd) 1057 continue; 1058 1059 gen8_free_page_tables(vm, pdp->page_directory[i]); 1060 free_pd(vm, pdp->page_directory[i]); 1061 } 1062 1063 free_pdp(vm, pdp); 1064 } 1065 1066 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt) 1067 { 1068 int i; 1069 1070 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) { 1071 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp) 1072 continue; 1073 1074 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]); 1075 } 1076 1077 cleanup_px(&ppgtt->base, &ppgtt->pml4); 1078 } 1079 1080 static void gen8_ppgtt_cleanup(struct i915_address_space *vm) 1081 { 1082 struct drm_i915_private *dev_priv = vm->i915; 1083 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1084 1085 if (intel_vgpu_active(dev_priv)) 1086 gen8_ppgtt_notify_vgt(ppgtt, false); 1087 1088 if (use_4lvl(vm)) 1089 gen8_ppgtt_cleanup_4lvl(ppgtt); 1090 else 1091 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp); 1092 1093 gen8_free_scratch(vm); 1094 } 1095 1096 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm, 1097 struct i915_page_directory *pd, 1098 u64 start, u64 length) 1099 { 1100 struct i915_page_table *pt; 1101 u64 from = start; 1102 unsigned int pde; 1103 1104 gen8_for_each_pde(pt, pd, start, length, pde) { 1105 if (pt == vm->scratch_pt) { 1106 pt = alloc_pt(vm); 1107 if (IS_ERR(pt)) 1108 goto unwind; 1109 1110 gen8_initialize_pt(vm, pt); 1111 1112 gen8_ppgtt_set_pde(vm, pd, pt, pde); 1113 pd->used_pdes++; 1114 GEM_BUG_ON(pd->used_pdes > I915_PDES); 1115 } 1116 1117 pt->used_ptes += gen8_pte_count(start, length); 1118 } 1119 return 0; 1120 1121 unwind: 1122 gen8_ppgtt_clear_pd(vm, pd, from, start - from); 1123 return -ENOMEM; 1124 } 1125 1126 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm, 1127 struct i915_page_directory_pointer *pdp, 1128 u64 start, u64 length) 1129 { 1130 struct i915_page_directory *pd; 1131 u64 from = start; 1132 unsigned int pdpe; 1133 int ret; 1134 1135 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1136 if (pd == vm->scratch_pd) { 1137 pd = alloc_pd(vm); 1138 if (IS_ERR(pd)) 1139 goto unwind; 1140 1141 gen8_initialize_pd(vm, pd); 1142 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); 1143 pdp->used_pdpes++; 1144 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm)); 1145 1146 mark_tlbs_dirty(i915_vm_to_ppgtt(vm)); 1147 } 1148 1149 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length); 1150 if (unlikely(ret)) 1151 goto unwind_pd; 1152 } 1153 1154 return 0; 1155 1156 unwind_pd: 1157 if (!pd->used_pdes) { 1158 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 1159 GEM_BUG_ON(!pdp->used_pdpes); 1160 pdp->used_pdpes--; 1161 free_pd(vm, pd); 1162 } 1163 unwind: 1164 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from); 1165 return -ENOMEM; 1166 } 1167 1168 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm, 1169 u64 start, u64 length) 1170 { 1171 return gen8_ppgtt_alloc_pdp(vm, 1172 &i915_vm_to_ppgtt(vm)->pdp, start, length); 1173 } 1174 1175 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm, 1176 u64 start, u64 length) 1177 { 1178 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1179 struct i915_pml4 *pml4 = &ppgtt->pml4; 1180 struct i915_page_directory_pointer *pdp; 1181 u64 from = start; 1182 u32 pml4e; 1183 int ret; 1184 1185 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 1186 if (pml4->pdps[pml4e] == vm->scratch_pdp) { 1187 pdp = alloc_pdp(vm); 1188 if (IS_ERR(pdp)) 1189 goto unwind; 1190 1191 gen8_initialize_pdp(vm, pdp); 1192 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e); 1193 } 1194 1195 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length); 1196 if (unlikely(ret)) 1197 goto unwind_pdp; 1198 } 1199 1200 return 0; 1201 1202 unwind_pdp: 1203 if (!pdp->used_pdpes) { 1204 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); 1205 free_pdp(vm, pdp); 1206 } 1207 unwind: 1208 gen8_ppgtt_clear_4lvl(vm, from, start - from); 1209 return -ENOMEM; 1210 } 1211 1212 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt, 1213 struct i915_page_directory_pointer *pdp, 1214 u64 start, u64 length, 1215 gen8_pte_t scratch_pte, 1216 struct seq_file *m) 1217 { 1218 struct i915_address_space *vm = &ppgtt->base; 1219 struct i915_page_directory *pd; 1220 u32 pdpe; 1221 1222 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1223 struct i915_page_table *pt; 1224 u64 pd_len = length; 1225 u64 pd_start = start; 1226 u32 pde; 1227 1228 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd) 1229 continue; 1230 1231 seq_printf(m, "\tPDPE #%d\n", pdpe); 1232 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { 1233 u32 pte; 1234 gen8_pte_t *pt_vaddr; 1235 1236 if (pd->page_table[pde] == ppgtt->base.scratch_pt) 1237 continue; 1238 1239 pt_vaddr = kmap_atomic_px(pt); 1240 for (pte = 0; pte < GEN8_PTES; pte += 4) { 1241 u64 va = (pdpe << GEN8_PDPE_SHIFT | 1242 pde << GEN8_PDE_SHIFT | 1243 pte << GEN8_PTE_SHIFT); 1244 int i; 1245 bool found = false; 1246 1247 for (i = 0; i < 4; i++) 1248 if (pt_vaddr[pte + i] != scratch_pte) 1249 found = true; 1250 if (!found) 1251 continue; 1252 1253 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte); 1254 for (i = 0; i < 4; i++) { 1255 if (pt_vaddr[pte + i] != scratch_pte) 1256 seq_printf(m, " %llx", pt_vaddr[pte + i]); 1257 else 1258 seq_puts(m, " SCRATCH "); 1259 } 1260 seq_puts(m, "\n"); 1261 } 1262 kunmap_atomic(pt_vaddr); 1263 } 1264 } 1265 } 1266 1267 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) 1268 { 1269 struct i915_address_space *vm = &ppgtt->base; 1270 const gen8_pte_t scratch_pte = 1271 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); 1272 u64 start = 0, length = ppgtt->base.total; 1273 1274 if (use_4lvl(vm)) { 1275 u64 pml4e; 1276 struct i915_pml4 *pml4 = &ppgtt->pml4; 1277 struct i915_page_directory_pointer *pdp; 1278 1279 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 1280 if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp) 1281 continue; 1282 1283 seq_printf(m, " PML4E #%llu\n", pml4e); 1284 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m); 1285 } 1286 } else { 1287 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m); 1288 } 1289 } 1290 1291 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt) 1292 { 1293 struct i915_address_space *vm = &ppgtt->base; 1294 struct i915_page_directory_pointer *pdp = &ppgtt->pdp; 1295 struct i915_page_directory *pd; 1296 u64 start = 0, length = ppgtt->base.total; 1297 u64 from = start; 1298 unsigned int pdpe; 1299 1300 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1301 pd = alloc_pd(vm); 1302 if (IS_ERR(pd)) 1303 goto unwind; 1304 1305 gen8_initialize_pd(vm, pd); 1306 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); 1307 pdp->used_pdpes++; 1308 } 1309 1310 pdp->used_pdpes++; /* never remove */ 1311 return 0; 1312 1313 unwind: 1314 start -= from; 1315 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) { 1316 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 1317 free_pd(vm, pd); 1318 } 1319 pdp->used_pdpes = 0; 1320 return -ENOMEM; 1321 } 1322 1323 /* 1324 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers 1325 * with a net effect resembling a 2-level page table in normal x86 terms. Each 1326 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address 1327 * space. 1328 * 1329 */ 1330 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt) 1331 { 1332 struct i915_address_space *vm = &ppgtt->base; 1333 struct drm_i915_private *dev_priv = vm->i915; 1334 int ret; 1335 1336 ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ? 1337 1ULL << 48 : 1338 1ULL << 32; 1339 1340 ret = gen8_init_scratch(&ppgtt->base); 1341 if (ret) { 1342 ppgtt->base.total = 0; 1343 return ret; 1344 } 1345 1346 /* There are only few exceptions for gen >=6. chv and bxt. 1347 * And we are not sure about the latter so play safe for now. 1348 */ 1349 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv)) 1350 ppgtt->base.pt_kmap_wc = true; 1351 1352 if (use_4lvl(vm)) { 1353 ret = setup_px(&ppgtt->base, &ppgtt->pml4); 1354 if (ret) 1355 goto free_scratch; 1356 1357 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4); 1358 1359 ppgtt->switch_mm = gen8_mm_switch_4lvl; 1360 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl; 1361 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl; 1362 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl; 1363 } else { 1364 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp); 1365 if (ret) 1366 goto free_scratch; 1367 1368 if (intel_vgpu_active(dev_priv)) { 1369 ret = gen8_preallocate_top_level_pdp(ppgtt); 1370 if (ret) { 1371 __pdp_fini(&ppgtt->pdp); 1372 goto free_scratch; 1373 } 1374 } 1375 1376 ppgtt->switch_mm = gen8_mm_switch_3lvl; 1377 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl; 1378 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl; 1379 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl; 1380 } 1381 1382 if (intel_vgpu_active(dev_priv)) 1383 gen8_ppgtt_notify_vgt(ppgtt, true); 1384 1385 ppgtt->base.cleanup = gen8_ppgtt_cleanup; 1386 ppgtt->base.unbind_vma = ppgtt_unbind_vma; 1387 ppgtt->base.bind_vma = ppgtt_bind_vma; 1388 ppgtt->debug_dump = gen8_dump_ppgtt; 1389 1390 return 0; 1391 1392 free_scratch: 1393 gen8_free_scratch(&ppgtt->base); 1394 return ret; 1395 } 1396 1397 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) 1398 { 1399 struct i915_address_space *vm = &ppgtt->base; 1400 struct i915_page_table *unused; 1401 gen6_pte_t scratch_pte; 1402 u32 pd_entry, pte, pde; 1403 u32 start = 0, length = ppgtt->base.total; 1404 1405 scratch_pte = vm->pte_encode(vm->scratch_page.daddr, 1406 I915_CACHE_LLC, 0); 1407 1408 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) { 1409 u32 expected; 1410 gen6_pte_t *pt_vaddr; 1411 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]); 1412 pd_entry = readl(ppgtt->pd_addr + pde); 1413 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID); 1414 1415 if (pd_entry != expected) 1416 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", 1417 pde, 1418 pd_entry, 1419 expected); 1420 seq_printf(m, "\tPDE: %x\n", pd_entry); 1421 1422 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]); 1423 1424 for (pte = 0; pte < GEN6_PTES; pte+=4) { 1425 unsigned long va = 1426 (pde * PAGE_SIZE * GEN6_PTES) + 1427 (pte * PAGE_SIZE); 1428 int i; 1429 bool found = false; 1430 for (i = 0; i < 4; i++) 1431 if (pt_vaddr[pte + i] != scratch_pte) 1432 found = true; 1433 if (!found) 1434 continue; 1435 1436 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte); 1437 for (i = 0; i < 4; i++) { 1438 if (pt_vaddr[pte + i] != scratch_pte) 1439 seq_printf(m, " %08x", pt_vaddr[pte + i]); 1440 else 1441 seq_puts(m, " SCRATCH "); 1442 } 1443 seq_puts(m, "\n"); 1444 } 1445 kunmap_atomic(pt_vaddr); 1446 } 1447 } 1448 1449 /* Write pde (index) from the page directory @pd to the page table @pt */ 1450 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt, 1451 const unsigned int pde, 1452 const struct i915_page_table *pt) 1453 { 1454 /* Caller needs to make sure the write completes if necessary */ 1455 writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID, 1456 ppgtt->pd_addr + pde); 1457 } 1458 1459 /* Write all the page tables found in the ppgtt structure to incrementing page 1460 * directories. */ 1461 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt, 1462 u32 start, u32 length) 1463 { 1464 struct i915_page_table *pt; 1465 unsigned int pde; 1466 1467 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) 1468 gen6_write_pde(ppgtt, pde, pt); 1469 1470 mark_tlbs_dirty(ppgtt); 1471 wmb(); 1472 } 1473 1474 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt) 1475 { 1476 GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f); 1477 return ppgtt->pd.base.ggtt_offset << 10; 1478 } 1479 1480 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt, 1481 struct drm_i915_gem_request *req) 1482 { 1483 struct intel_engine_cs *engine = req->engine; 1484 u32 *cs; 1485 1486 /* NB: TLBs must be flushed and invalidated before a switch */ 1487 cs = intel_ring_begin(req, 6); 1488 if (IS_ERR(cs)) 1489 return PTR_ERR(cs); 1490 1491 *cs++ = MI_LOAD_REGISTER_IMM(2); 1492 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine)); 1493 *cs++ = PP_DIR_DCLV_2G; 1494 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine)); 1495 *cs++ = get_pd_offset(ppgtt); 1496 *cs++ = MI_NOOP; 1497 intel_ring_advance(req, cs); 1498 1499 return 0; 1500 } 1501 1502 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt, 1503 struct drm_i915_gem_request *req) 1504 { 1505 struct intel_engine_cs *engine = req->engine; 1506 u32 *cs; 1507 1508 /* NB: TLBs must be flushed and invalidated before a switch */ 1509 cs = intel_ring_begin(req, 6); 1510 if (IS_ERR(cs)) 1511 return PTR_ERR(cs); 1512 1513 *cs++ = MI_LOAD_REGISTER_IMM(2); 1514 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine)); 1515 *cs++ = PP_DIR_DCLV_2G; 1516 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine)); 1517 *cs++ = get_pd_offset(ppgtt); 1518 *cs++ = MI_NOOP; 1519 intel_ring_advance(req, cs); 1520 1521 return 0; 1522 } 1523 1524 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt, 1525 struct drm_i915_gem_request *req) 1526 { 1527 struct intel_engine_cs *engine = req->engine; 1528 struct drm_i915_private *dev_priv = req->i915; 1529 1530 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G); 1531 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt)); 1532 return 0; 1533 } 1534 1535 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv) 1536 { 1537 struct intel_engine_cs *engine; 1538 enum intel_engine_id id; 1539 1540 for_each_engine(engine, dev_priv, id) { 1541 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ? 1542 GEN8_GFX_PPGTT_48B : 0; 1543 I915_WRITE(RING_MODE_GEN7(engine), 1544 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level)); 1545 } 1546 } 1547 1548 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv) 1549 { 1550 struct intel_engine_cs *engine; 1551 u32 ecochk, ecobits; 1552 enum intel_engine_id id; 1553 1554 ecobits = I915_READ(GAC_ECO_BITS); 1555 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); 1556 1557 ecochk = I915_READ(GAM_ECOCHK); 1558 if (IS_HASWELL(dev_priv)) { 1559 ecochk |= ECOCHK_PPGTT_WB_HSW; 1560 } else { 1561 ecochk |= ECOCHK_PPGTT_LLC_IVB; 1562 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; 1563 } 1564 I915_WRITE(GAM_ECOCHK, ecochk); 1565 1566 for_each_engine(engine, dev_priv, id) { 1567 /* GFX_MODE is per-ring on gen7+ */ 1568 I915_WRITE(RING_MODE_GEN7(engine), 1569 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1570 } 1571 } 1572 1573 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv) 1574 { 1575 u32 ecochk, gab_ctl, ecobits; 1576 1577 ecobits = I915_READ(GAC_ECO_BITS); 1578 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | 1579 ECOBITS_PPGTT_CACHE64B); 1580 1581 gab_ctl = I915_READ(GAB_CTL); 1582 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); 1583 1584 ecochk = I915_READ(GAM_ECOCHK); 1585 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); 1586 1587 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1588 } 1589 1590 /* PPGTT support for Sandybdrige/Gen6 and later */ 1591 static void gen6_ppgtt_clear_range(struct i915_address_space *vm, 1592 u64 start, u64 length) 1593 { 1594 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1595 unsigned int first_entry = start >> PAGE_SHIFT; 1596 unsigned int pde = first_entry / GEN6_PTES; 1597 unsigned int pte = first_entry % GEN6_PTES; 1598 unsigned int num_entries = length >> PAGE_SHIFT; 1599 gen6_pte_t scratch_pte = 1600 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); 1601 1602 while (num_entries) { 1603 struct i915_page_table *pt = ppgtt->pd.page_table[pde++]; 1604 unsigned int end = min(pte + num_entries, GEN6_PTES); 1605 gen6_pte_t *vaddr; 1606 1607 num_entries -= end - pte; 1608 1609 /* Note that the hw doesn't support removing PDE on the fly 1610 * (they are cached inside the context with no means to 1611 * invalidate the cache), so we can only reset the PTE 1612 * entries back to scratch. 1613 */ 1614 1615 vaddr = kmap_atomic_px(pt); 1616 do { 1617 vaddr[pte++] = scratch_pte; 1618 } while (pte < end); 1619 kunmap_atomic(vaddr); 1620 1621 pte = 0; 1622 } 1623 } 1624 1625 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, 1626 struct sg_table *pages, 1627 u64 start, 1628 enum i915_cache_level cache_level, 1629 u32 flags) 1630 { 1631 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1632 unsigned first_entry = start >> PAGE_SHIFT; 1633 unsigned act_pt = first_entry / GEN6_PTES; 1634 unsigned act_pte = first_entry % GEN6_PTES; 1635 const u32 pte_encode = vm->pte_encode(0, cache_level, flags); 1636 struct sgt_dma iter; 1637 gen6_pte_t *vaddr; 1638 1639 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]); 1640 iter.sg = pages->sgl; 1641 iter.dma = sg_dma_address(iter.sg); 1642 iter.max = iter.dma + iter.sg->length; 1643 do { 1644 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma); 1645 1646 iter.dma += PAGE_SIZE; 1647 if (iter.dma == iter.max) { 1648 iter.sg = __sg_next(iter.sg); 1649 if (!iter.sg) 1650 break; 1651 1652 iter.dma = sg_dma_address(iter.sg); 1653 iter.max = iter.dma + iter.sg->length; 1654 } 1655 1656 if (++act_pte == GEN6_PTES) { 1657 kunmap_atomic(vaddr); 1658 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]); 1659 act_pte = 0; 1660 } 1661 } while (1); 1662 kunmap_atomic(vaddr); 1663 } 1664 1665 static int gen6_alloc_va_range(struct i915_address_space *vm, 1666 u64 start, u64 length) 1667 { 1668 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1669 struct i915_page_table *pt; 1670 u64 from = start; 1671 unsigned int pde; 1672 bool flush = false; 1673 1674 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) { 1675 if (pt == vm->scratch_pt) { 1676 pt = alloc_pt(vm); 1677 if (IS_ERR(pt)) 1678 goto unwind_out; 1679 1680 gen6_initialize_pt(vm, pt); 1681 ppgtt->pd.page_table[pde] = pt; 1682 gen6_write_pde(ppgtt, pde, pt); 1683 flush = true; 1684 } 1685 } 1686 1687 if (flush) { 1688 mark_tlbs_dirty(ppgtt); 1689 wmb(); 1690 } 1691 1692 return 0; 1693 1694 unwind_out: 1695 gen6_ppgtt_clear_range(vm, from, start); 1696 return -ENOMEM; 1697 } 1698 1699 static int gen6_init_scratch(struct i915_address_space *vm) 1700 { 1701 int ret; 1702 1703 ret = setup_scratch_page(vm, I915_GFP_DMA); 1704 if (ret) 1705 return ret; 1706 1707 vm->scratch_pt = alloc_pt(vm); 1708 if (IS_ERR(vm->scratch_pt)) { 1709 cleanup_scratch_page(vm); 1710 return PTR_ERR(vm->scratch_pt); 1711 } 1712 1713 gen6_initialize_pt(vm, vm->scratch_pt); 1714 1715 return 0; 1716 } 1717 1718 static void gen6_free_scratch(struct i915_address_space *vm) 1719 { 1720 free_pt(vm, vm->scratch_pt); 1721 cleanup_scratch_page(vm); 1722 } 1723 1724 static void gen6_ppgtt_cleanup(struct i915_address_space *vm) 1725 { 1726 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1727 struct i915_page_directory *pd = &ppgtt->pd; 1728 struct i915_page_table *pt; 1729 u32 pde; 1730 1731 drm_mm_remove_node(&ppgtt->node); 1732 1733 gen6_for_all_pdes(pt, pd, pde) 1734 if (pt != vm->scratch_pt) 1735 free_pt(vm, pt); 1736 1737 gen6_free_scratch(vm); 1738 } 1739 1740 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt) 1741 { 1742 struct i915_address_space *vm = &ppgtt->base; 1743 struct drm_i915_private *dev_priv = ppgtt->base.i915; 1744 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1745 int ret; 1746 1747 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The 1748 * allocator works in address space sizes, so it's multiplied by page 1749 * size. We allocate at the top of the GTT to avoid fragmentation. 1750 */ 1751 BUG_ON(!drm_mm_initialized(&ggtt->base.mm)); 1752 1753 ret = gen6_init_scratch(vm); 1754 if (ret) 1755 return ret; 1756 1757 ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node, 1758 GEN6_PD_SIZE, GEN6_PD_ALIGN, 1759 I915_COLOR_UNEVICTABLE, 1760 0, ggtt->base.total, 1761 PIN_HIGH); 1762 if (ret) 1763 goto err_out; 1764 1765 if (ppgtt->node.start < ggtt->mappable_end) 1766 DRM_DEBUG("Forced to use aperture for PDEs\n"); 1767 1768 ppgtt->pd.base.ggtt_offset = 1769 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t); 1770 1771 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + 1772 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t); 1773 1774 return 0; 1775 1776 err_out: 1777 gen6_free_scratch(vm); 1778 return ret; 1779 } 1780 1781 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt) 1782 { 1783 return gen6_ppgtt_allocate_page_directories(ppgtt); 1784 } 1785 1786 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt, 1787 u64 start, u64 length) 1788 { 1789 struct i915_page_table *unused; 1790 u32 pde; 1791 1792 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) 1793 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt; 1794 } 1795 1796 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) 1797 { 1798 struct drm_i915_private *dev_priv = ppgtt->base.i915; 1799 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1800 int ret; 1801 1802 ppgtt->base.pte_encode = ggtt->base.pte_encode; 1803 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv)) 1804 ppgtt->switch_mm = gen6_mm_switch; 1805 else if (IS_HASWELL(dev_priv)) 1806 ppgtt->switch_mm = hsw_mm_switch; 1807 else if (IS_GEN7(dev_priv)) 1808 ppgtt->switch_mm = gen7_mm_switch; 1809 else 1810 BUG(); 1811 1812 ret = gen6_ppgtt_alloc(ppgtt); 1813 if (ret) 1814 return ret; 1815 1816 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE; 1817 1818 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total); 1819 gen6_write_page_range(ppgtt, 0, ppgtt->base.total); 1820 1821 ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total); 1822 if (ret) { 1823 gen6_ppgtt_cleanup(&ppgtt->base); 1824 return ret; 1825 } 1826 1827 ppgtt->base.clear_range = gen6_ppgtt_clear_range; 1828 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; 1829 ppgtt->base.unbind_vma = ppgtt_unbind_vma; 1830 ppgtt->base.bind_vma = ppgtt_bind_vma; 1831 ppgtt->base.cleanup = gen6_ppgtt_cleanup; 1832 ppgtt->debug_dump = gen6_dump_ppgtt; 1833 1834 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n", 1835 ppgtt->node.size >> 20, 1836 ppgtt->node.start / PAGE_SIZE); 1837 1838 DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n", 1839 ppgtt->pd.base.ggtt_offset << 10); 1840 1841 return 0; 1842 } 1843 1844 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt, 1845 struct drm_i915_private *dev_priv) 1846 { 1847 ppgtt->base.i915 = dev_priv; 1848 ppgtt->base.dma = &dev_priv->drm.pdev->dev; 1849 1850 if (INTEL_INFO(dev_priv)->gen < 8) 1851 return gen6_ppgtt_init(ppgtt); 1852 else 1853 return gen8_ppgtt_init(ppgtt); 1854 } 1855 1856 static void i915_address_space_init(struct i915_address_space *vm, 1857 struct drm_i915_private *dev_priv, 1858 const char *name) 1859 { 1860 i915_gem_timeline_init(dev_priv, &vm->timeline, name); 1861 1862 drm_mm_init(&vm->mm, 0, vm->total); 1863 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 1864 1865 INIT_LIST_HEAD(&vm->active_list); 1866 INIT_LIST_HEAD(&vm->inactive_list); 1867 INIT_LIST_HEAD(&vm->unbound_list); 1868 1869 list_add_tail(&vm->global_link, &dev_priv->vm_list); 1870 pagevec_init(&vm->free_pages, false); 1871 } 1872 1873 static void i915_address_space_fini(struct i915_address_space *vm) 1874 { 1875 if (pagevec_count(&vm->free_pages)) 1876 vm_free_pages_release(vm); 1877 1878 i915_gem_timeline_fini(&vm->timeline); 1879 drm_mm_takedown(&vm->mm); 1880 list_del(&vm->global_link); 1881 } 1882 1883 static void gtt_write_workarounds(struct drm_i915_private *dev_priv) 1884 { 1885 /* This function is for gtt related workarounds. This function is 1886 * called on driver load and after a GPU reset, so you can place 1887 * workarounds here even if they get overwritten by GPU reset. 1888 */ 1889 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk */ 1890 if (IS_BROADWELL(dev_priv)) 1891 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 1892 else if (IS_CHERRYVIEW(dev_priv)) 1893 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 1894 else if (IS_GEN9_BC(dev_priv)) 1895 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 1896 else if (IS_GEN9_LP(dev_priv)) 1897 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 1898 } 1899 1900 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv) 1901 { 1902 gtt_write_workarounds(dev_priv); 1903 1904 /* In the case of execlists, PPGTT is enabled by the context descriptor 1905 * and the PDPs are contained within the context itself. We don't 1906 * need to do anything here. */ 1907 if (i915.enable_execlists) 1908 return 0; 1909 1910 if (!USES_PPGTT(dev_priv)) 1911 return 0; 1912 1913 if (IS_GEN6(dev_priv)) 1914 gen6_ppgtt_enable(dev_priv); 1915 else if (IS_GEN7(dev_priv)) 1916 gen7_ppgtt_enable(dev_priv); 1917 else if (INTEL_GEN(dev_priv) >= 8) 1918 gen8_ppgtt_enable(dev_priv); 1919 else 1920 MISSING_CASE(INTEL_GEN(dev_priv)); 1921 1922 return 0; 1923 } 1924 1925 struct i915_hw_ppgtt * 1926 i915_ppgtt_create(struct drm_i915_private *dev_priv, 1927 struct drm_i915_file_private *fpriv, 1928 const char *name) 1929 { 1930 struct i915_hw_ppgtt *ppgtt; 1931 int ret; 1932 1933 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); 1934 if (!ppgtt) 1935 return ERR_PTR(-ENOMEM); 1936 1937 ret = __hw_ppgtt_init(ppgtt, dev_priv); 1938 if (ret) { 1939 kfree(ppgtt); 1940 return ERR_PTR(ret); 1941 } 1942 1943 kref_init(&ppgtt->ref); 1944 i915_address_space_init(&ppgtt->base, dev_priv, name); 1945 ppgtt->base.file = fpriv; 1946 1947 trace_i915_ppgtt_create(&ppgtt->base); 1948 1949 return ppgtt; 1950 } 1951 1952 void i915_ppgtt_close(struct i915_address_space *vm) 1953 { 1954 struct list_head *phases[] = { 1955 &vm->active_list, 1956 &vm->inactive_list, 1957 &vm->unbound_list, 1958 NULL, 1959 }, **phase; 1960 1961 GEM_BUG_ON(vm->closed); 1962 vm->closed = true; 1963 1964 for (phase = phases; *phase; phase++) { 1965 struct i915_vma *vma, *vn; 1966 1967 list_for_each_entry_safe(vma, vn, *phase, vm_link) 1968 if (!i915_vma_is_closed(vma)) 1969 i915_vma_close(vma); 1970 } 1971 } 1972 1973 void i915_ppgtt_release(struct kref *kref) 1974 { 1975 struct i915_hw_ppgtt *ppgtt = 1976 container_of(kref, struct i915_hw_ppgtt, ref); 1977 1978 trace_i915_ppgtt_release(&ppgtt->base); 1979 1980 /* vmas should already be unbound and destroyed */ 1981 WARN_ON(!list_empty(&ppgtt->base.active_list)); 1982 WARN_ON(!list_empty(&ppgtt->base.inactive_list)); 1983 WARN_ON(!list_empty(&ppgtt->base.unbound_list)); 1984 1985 ppgtt->base.cleanup(&ppgtt->base); 1986 i915_address_space_fini(&ppgtt->base); 1987 kfree(ppgtt); 1988 } 1989 1990 /* Certain Gen5 chipsets require require idling the GPU before 1991 * unmapping anything from the GTT when VT-d is enabled. 1992 */ 1993 static bool needs_idle_maps(struct drm_i915_private *dev_priv) 1994 { 1995 #ifdef CONFIG_INTEL_IOMMU 1996 /* Query intel_iommu to see if we need the workaround. Presumably that 1997 * was loaded first. 1998 */ 1999 if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped) 2000 return true; 2001 #endif 2002 return false; 2003 } 2004 2005 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv) 2006 { 2007 struct intel_engine_cs *engine; 2008 enum intel_engine_id id; 2009 2010 if (INTEL_INFO(dev_priv)->gen < 6) 2011 return; 2012 2013 for_each_engine(engine, dev_priv, id) { 2014 u32 fault_reg; 2015 fault_reg = I915_READ(RING_FAULT_REG(engine)); 2016 if (fault_reg & RING_FAULT_VALID) { 2017 DRM_DEBUG_DRIVER("Unexpected fault\n" 2018 "\tAddr: 0x%08lx\n" 2019 "\tAddress space: %s\n" 2020 "\tSource ID: %d\n" 2021 "\tType: %d\n", 2022 fault_reg & PAGE_MASK, 2023 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", 2024 RING_FAULT_SRCID(fault_reg), 2025 RING_FAULT_FAULT_TYPE(fault_reg)); 2026 I915_WRITE(RING_FAULT_REG(engine), 2027 fault_reg & ~RING_FAULT_VALID); 2028 } 2029 } 2030 2031 /* Engine specific init may not have been done till this point. */ 2032 if (dev_priv->engine[RCS]) 2033 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS])); 2034 } 2035 2036 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv) 2037 { 2038 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2039 2040 /* Don't bother messing with faults pre GEN6 as we have little 2041 * documentation supporting that it's a good idea. 2042 */ 2043 if (INTEL_GEN(dev_priv) < 6) 2044 return; 2045 2046 i915_check_and_clear_faults(dev_priv); 2047 2048 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total); 2049 2050 i915_ggtt_invalidate(dev_priv); 2051 } 2052 2053 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, 2054 struct sg_table *pages) 2055 { 2056 do { 2057 if (dma_map_sg(&obj->base.dev->pdev->dev, 2058 pages->sgl, pages->nents, 2059 PCI_DMA_BIDIRECTIONAL)) 2060 return 0; 2061 2062 /* If the DMA remap fails, one cause can be that we have 2063 * too many objects pinned in a small remapping table, 2064 * such as swiotlb. Incrementally purge all other objects and 2065 * try again - if there are no more pages to remove from 2066 * the DMA remapper, i915_gem_shrink will return 0. 2067 */ 2068 GEM_BUG_ON(obj->mm.pages == pages); 2069 } while (i915_gem_shrink(to_i915(obj->base.dev), 2070 obj->base.size >> PAGE_SHIFT, 2071 I915_SHRINK_BOUND | 2072 I915_SHRINK_UNBOUND | 2073 I915_SHRINK_ACTIVE)); 2074 2075 return -ENOSPC; 2076 } 2077 2078 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 2079 { 2080 writeq(pte, addr); 2081 } 2082 2083 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 2084 dma_addr_t addr, 2085 u64 offset, 2086 enum i915_cache_level level, 2087 u32 unused) 2088 { 2089 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2090 gen8_pte_t __iomem *pte = 2091 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); 2092 2093 gen8_set_pte(pte, gen8_pte_encode(addr, level)); 2094 2095 ggtt->invalidate(vm->i915); 2096 } 2097 2098 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 2099 struct sg_table *st, 2100 u64 start, 2101 enum i915_cache_level level, 2102 u32 unused) 2103 { 2104 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2105 struct sgt_iter sgt_iter; 2106 gen8_pte_t __iomem *gtt_entries; 2107 const gen8_pte_t pte_encode = gen8_pte_encode(0, level); 2108 dma_addr_t addr; 2109 2110 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm; 2111 gtt_entries += start >> PAGE_SHIFT; 2112 for_each_sgt_dma(addr, sgt_iter, st) 2113 gen8_set_pte(gtt_entries++, pte_encode | addr); 2114 2115 wmb(); 2116 2117 /* This next bit makes the above posting read even more important. We 2118 * want to flush the TLBs only after we're certain all the PTE updates 2119 * have finished. 2120 */ 2121 ggtt->invalidate(vm->i915); 2122 } 2123 2124 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 2125 dma_addr_t addr, 2126 u64 offset, 2127 enum i915_cache_level level, 2128 u32 flags) 2129 { 2130 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2131 gen6_pte_t __iomem *pte = 2132 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); 2133 2134 iowrite32(vm->pte_encode(addr, level, flags), pte); 2135 2136 ggtt->invalidate(vm->i915); 2137 } 2138 2139 /* 2140 * Binds an object into the global gtt with the specified cache level. The object 2141 * will be accessible to the GPU via commands whose operands reference offsets 2142 * within the global GTT as well as accessible by the GPU through the GMADR 2143 * mapped BAR (dev_priv->mm.gtt->gtt). 2144 */ 2145 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 2146 struct sg_table *st, 2147 u64 start, 2148 enum i915_cache_level level, 2149 u32 flags) 2150 { 2151 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2152 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm; 2153 unsigned int i = start >> PAGE_SHIFT; 2154 struct sgt_iter iter; 2155 dma_addr_t addr; 2156 for_each_sgt_dma(addr, iter, st) 2157 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]); 2158 wmb(); 2159 2160 /* This next bit makes the above posting read even more important. We 2161 * want to flush the TLBs only after we're certain all the PTE updates 2162 * have finished. 2163 */ 2164 ggtt->invalidate(vm->i915); 2165 } 2166 2167 static void nop_clear_range(struct i915_address_space *vm, 2168 u64 start, u64 length) 2169 { 2170 } 2171 2172 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 2173 u64 start, u64 length) 2174 { 2175 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2176 unsigned first_entry = start >> PAGE_SHIFT; 2177 unsigned num_entries = length >> PAGE_SHIFT; 2178 const gen8_pte_t scratch_pte = 2179 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); 2180 gen8_pte_t __iomem *gtt_base = 2181 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 2182 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 2183 int i; 2184 2185 if (WARN(num_entries > max_entries, 2186 "First entry = %d; Num entries = %d (max=%d)\n", 2187 first_entry, num_entries, max_entries)) 2188 num_entries = max_entries; 2189 2190 for (i = 0; i < num_entries; i++) 2191 gen8_set_pte(>t_base[i], scratch_pte); 2192 } 2193 2194 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 2195 u64 start, u64 length) 2196 { 2197 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2198 unsigned first_entry = start >> PAGE_SHIFT; 2199 unsigned num_entries = length >> PAGE_SHIFT; 2200 gen6_pte_t scratch_pte, __iomem *gtt_base = 2201 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 2202 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 2203 int i; 2204 2205 if (WARN(num_entries > max_entries, 2206 "First entry = %d; Num entries = %d (max=%d)\n", 2207 first_entry, num_entries, max_entries)) 2208 num_entries = max_entries; 2209 2210 scratch_pte = vm->pte_encode(vm->scratch_page.daddr, 2211 I915_CACHE_LLC, 0); 2212 2213 for (i = 0; i < num_entries; i++) 2214 iowrite32(scratch_pte, >t_base[i]); 2215 } 2216 2217 static void i915_ggtt_insert_page(struct i915_address_space *vm, 2218 dma_addr_t addr, 2219 u64 offset, 2220 enum i915_cache_level cache_level, 2221 u32 unused) 2222 { 2223 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 2224 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 2225 2226 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); 2227 } 2228 2229 static void i915_ggtt_insert_entries(struct i915_address_space *vm, 2230 struct sg_table *pages, 2231 u64 start, 2232 enum i915_cache_level cache_level, 2233 u32 unused) 2234 { 2235 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 2236 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 2237 2238 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags); 2239 } 2240 2241 static void i915_ggtt_clear_range(struct i915_address_space *vm, 2242 u64 start, u64 length) 2243 { 2244 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); 2245 } 2246 2247 static int ggtt_bind_vma(struct i915_vma *vma, 2248 enum i915_cache_level cache_level, 2249 u32 flags) 2250 { 2251 struct drm_i915_private *i915 = vma->vm->i915; 2252 struct drm_i915_gem_object *obj = vma->obj; 2253 u32 pte_flags; 2254 2255 if (unlikely(!vma->pages)) { 2256 int ret = i915_get_ggtt_vma_pages(vma); 2257 if (ret) 2258 return ret; 2259 } 2260 2261 /* Currently applicable only to VLV */ 2262 pte_flags = 0; 2263 if (obj->gt_ro) 2264 pte_flags |= PTE_READ_ONLY; 2265 2266 intel_runtime_pm_get(i915); 2267 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start, 2268 cache_level, pte_flags); 2269 intel_runtime_pm_put(i915); 2270 2271 /* 2272 * Without aliasing PPGTT there's no difference between 2273 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally 2274 * upgrade to both bound if we bind either to avoid double-binding. 2275 */ 2276 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 2277 2278 return 0; 2279 } 2280 2281 static void ggtt_unbind_vma(struct i915_vma *vma) 2282 { 2283 struct drm_i915_private *i915 = vma->vm->i915; 2284 2285 intel_runtime_pm_get(i915); 2286 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 2287 intel_runtime_pm_put(i915); 2288 } 2289 2290 static int aliasing_gtt_bind_vma(struct i915_vma *vma, 2291 enum i915_cache_level cache_level, 2292 u32 flags) 2293 { 2294 struct drm_i915_private *i915 = vma->vm->i915; 2295 u32 pte_flags; 2296 int ret; 2297 2298 if (unlikely(!vma->pages)) { 2299 ret = i915_get_ggtt_vma_pages(vma); 2300 if (ret) 2301 return ret; 2302 } 2303 2304 /* Currently applicable only to VLV */ 2305 pte_flags = 0; 2306 if (vma->obj->gt_ro) 2307 pte_flags |= PTE_READ_ONLY; 2308 2309 if (flags & I915_VMA_LOCAL_BIND) { 2310 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt; 2311 2312 if (!(vma->flags & I915_VMA_LOCAL_BIND) && 2313 appgtt->base.allocate_va_range) { 2314 ret = appgtt->base.allocate_va_range(&appgtt->base, 2315 vma->node.start, 2316 vma->node.size); 2317 if (ret) 2318 goto err_pages; 2319 } 2320 2321 appgtt->base.insert_entries(&appgtt->base, 2322 vma->pages, vma->node.start, 2323 cache_level, pte_flags); 2324 } 2325 2326 if (flags & I915_VMA_GLOBAL_BIND) { 2327 intel_runtime_pm_get(i915); 2328 vma->vm->insert_entries(vma->vm, 2329 vma->pages, vma->node.start, 2330 cache_level, pte_flags); 2331 intel_runtime_pm_put(i915); 2332 } 2333 2334 return 0; 2335 2336 err_pages: 2337 if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) { 2338 if (vma->pages != vma->obj->mm.pages) { 2339 GEM_BUG_ON(!vma->pages); 2340 sg_free_table(vma->pages); 2341 kfree(vma->pages); 2342 } 2343 vma->pages = NULL; 2344 } 2345 return ret; 2346 } 2347 2348 static void aliasing_gtt_unbind_vma(struct i915_vma *vma) 2349 { 2350 struct drm_i915_private *i915 = vma->vm->i915; 2351 2352 if (vma->flags & I915_VMA_GLOBAL_BIND) { 2353 intel_runtime_pm_get(i915); 2354 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 2355 intel_runtime_pm_put(i915); 2356 } 2357 2358 if (vma->flags & I915_VMA_LOCAL_BIND) { 2359 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base; 2360 2361 vm->clear_range(vm, vma->node.start, vma->size); 2362 } 2363 } 2364 2365 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, 2366 struct sg_table *pages) 2367 { 2368 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2369 struct device *kdev = &dev_priv->drm.pdev->dev; 2370 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2371 2372 if (unlikely(ggtt->do_idle_maps)) { 2373 if (i915_gem_wait_for_idle(dev_priv, 0)) { 2374 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); 2375 /* Wait a bit, in hopes it avoids the hang */ 2376 udelay(10); 2377 } 2378 } 2379 2380 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL); 2381 } 2382 2383 static void i915_gtt_color_adjust(const struct drm_mm_node *node, 2384 unsigned long color, 2385 u64 *start, 2386 u64 *end) 2387 { 2388 if (node->allocated && node->color != color) 2389 *start += I915_GTT_PAGE_SIZE; 2390 2391 /* Also leave a space between the unallocated reserved node after the 2392 * GTT and any objects within the GTT, i.e. we use the color adjustment 2393 * to insert a guard page to prevent prefetches crossing over the 2394 * GTT boundary. 2395 */ 2396 node = list_next_entry(node, node_list); 2397 if (node->color != color) 2398 *end -= I915_GTT_PAGE_SIZE; 2399 } 2400 2401 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915) 2402 { 2403 struct i915_ggtt *ggtt = &i915->ggtt; 2404 struct i915_hw_ppgtt *ppgtt; 2405 int err; 2406 2407 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]"); 2408 if (IS_ERR(ppgtt)) 2409 return PTR_ERR(ppgtt); 2410 2411 if (WARN_ON(ppgtt->base.total < ggtt->base.total)) { 2412 err = -ENODEV; 2413 goto err_ppgtt; 2414 } 2415 2416 if (ppgtt->base.allocate_va_range) { 2417 /* Note we only pre-allocate as far as the end of the global 2418 * GTT. On 48b / 4-level page-tables, the difference is very, 2419 * very significant! We have to preallocate as GVT/vgpu does 2420 * not like the page directory disappearing. 2421 */ 2422 err = ppgtt->base.allocate_va_range(&ppgtt->base, 2423 0, ggtt->base.total); 2424 if (err) 2425 goto err_ppgtt; 2426 } 2427 2428 i915->mm.aliasing_ppgtt = ppgtt; 2429 2430 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma); 2431 ggtt->base.bind_vma = aliasing_gtt_bind_vma; 2432 2433 WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma); 2434 ggtt->base.unbind_vma = aliasing_gtt_unbind_vma; 2435 2436 return 0; 2437 2438 err_ppgtt: 2439 i915_ppgtt_put(ppgtt); 2440 return err; 2441 } 2442 2443 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915) 2444 { 2445 struct i915_ggtt *ggtt = &i915->ggtt; 2446 struct i915_hw_ppgtt *ppgtt; 2447 2448 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt); 2449 if (!ppgtt) 2450 return; 2451 2452 i915_ppgtt_put(ppgtt); 2453 2454 ggtt->base.bind_vma = ggtt_bind_vma; 2455 ggtt->base.unbind_vma = ggtt_unbind_vma; 2456 } 2457 2458 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) 2459 { 2460 /* Let GEM Manage all of the aperture. 2461 * 2462 * However, leave one page at the end still bound to the scratch page. 2463 * There are a number of places where the hardware apparently prefetches 2464 * past the end of the object, and we've seen multiple hangs with the 2465 * GPU head pointer stuck in a batchbuffer bound at the last page of the 2466 * aperture. One page should be enough to keep any prefetching inside 2467 * of the aperture. 2468 */ 2469 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2470 unsigned long hole_start, hole_end; 2471 struct drm_mm_node *entry; 2472 int ret; 2473 2474 ret = intel_vgt_balloon(dev_priv); 2475 if (ret) 2476 return ret; 2477 2478 /* Reserve a mappable slot for our lockless error capture */ 2479 ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture, 2480 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 2481 0, ggtt->mappable_end, 2482 DRM_MM_INSERT_LOW); 2483 if (ret) 2484 return ret; 2485 2486 /* Clear any non-preallocated blocks */ 2487 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) { 2488 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", 2489 hole_start, hole_end); 2490 ggtt->base.clear_range(&ggtt->base, hole_start, 2491 hole_end - hole_start); 2492 } 2493 2494 /* And finally clear the reserved guard page */ 2495 ggtt->base.clear_range(&ggtt->base, 2496 ggtt->base.total - PAGE_SIZE, PAGE_SIZE); 2497 2498 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) { 2499 ret = i915_gem_init_aliasing_ppgtt(dev_priv); 2500 if (ret) 2501 goto err; 2502 } 2503 2504 return 0; 2505 2506 err: 2507 drm_mm_remove_node(&ggtt->error_capture); 2508 return ret; 2509 } 2510 2511 /** 2512 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization 2513 * @dev_priv: i915 device 2514 */ 2515 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) 2516 { 2517 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2518 struct i915_vma *vma, *vn; 2519 2520 ggtt->base.closed = true; 2521 2522 mutex_lock(&dev_priv->drm.struct_mutex); 2523 WARN_ON(!list_empty(&ggtt->base.active_list)); 2524 list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link) 2525 WARN_ON(i915_vma_unbind(vma)); 2526 mutex_unlock(&dev_priv->drm.struct_mutex); 2527 2528 i915_gem_cleanup_stolen(&dev_priv->drm); 2529 2530 mutex_lock(&dev_priv->drm.struct_mutex); 2531 i915_gem_fini_aliasing_ppgtt(dev_priv); 2532 2533 if (drm_mm_node_allocated(&ggtt->error_capture)) 2534 drm_mm_remove_node(&ggtt->error_capture); 2535 2536 if (drm_mm_initialized(&ggtt->base.mm)) { 2537 intel_vgt_deballoon(dev_priv); 2538 i915_address_space_fini(&ggtt->base); 2539 } 2540 2541 ggtt->base.cleanup(&ggtt->base); 2542 mutex_unlock(&dev_priv->drm.struct_mutex); 2543 2544 arch_phys_wc_del(ggtt->mtrr); 2545 io_mapping_fini(&ggtt->mappable); 2546 } 2547 2548 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 2549 { 2550 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 2551 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 2552 return snb_gmch_ctl << 20; 2553 } 2554 2555 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 2556 { 2557 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 2558 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 2559 if (bdw_gmch_ctl) 2560 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 2561 2562 #ifdef CONFIG_X86_32 2563 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */ 2564 if (bdw_gmch_ctl > 4) 2565 bdw_gmch_ctl = 4; 2566 #endif 2567 2568 return bdw_gmch_ctl << 20; 2569 } 2570 2571 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 2572 { 2573 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 2574 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 2575 2576 if (gmch_ctrl) 2577 return 1 << (20 + gmch_ctrl); 2578 2579 return 0; 2580 } 2581 2582 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl) 2583 { 2584 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; 2585 snb_gmch_ctl &= SNB_GMCH_GMS_MASK; 2586 return snb_gmch_ctl << 25; /* 32 MB units */ 2587 } 2588 2589 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) 2590 { 2591 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; 2592 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; 2593 return bdw_gmch_ctl << 25; /* 32 MB units */ 2594 } 2595 2596 static size_t chv_get_stolen_size(u16 gmch_ctrl) 2597 { 2598 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT; 2599 gmch_ctrl &= SNB_GMCH_GMS_MASK; 2600 2601 /* 2602 * 0x0 to 0x10: 32MB increments starting at 0MB 2603 * 0x11 to 0x16: 4MB increments starting at 8MB 2604 * 0x17 to 0x1d: 4MB increments start at 36MB 2605 */ 2606 if (gmch_ctrl < 0x11) 2607 return gmch_ctrl << 25; 2608 else if (gmch_ctrl < 0x17) 2609 return (gmch_ctrl - 0x11 + 2) << 22; 2610 else 2611 return (gmch_ctrl - 0x17 + 9) << 22; 2612 } 2613 2614 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl) 2615 { 2616 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; 2617 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK; 2618 2619 if (gen9_gmch_ctl < 0xf0) 2620 return gen9_gmch_ctl << 25; /* 32 MB units */ 2621 else 2622 /* 4MB increments starting at 0xf0 for 4MB */ 2623 return (gen9_gmch_ctl - 0xf0 + 1) << 22; 2624 } 2625 2626 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 2627 { 2628 struct drm_i915_private *dev_priv = ggtt->base.i915; 2629 struct pci_dev *pdev = dev_priv->drm.pdev; 2630 phys_addr_t phys_addr; 2631 int ret; 2632 2633 /* For Modern GENs the PTEs and register space are split in the BAR */ 2634 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; 2635 2636 /* 2637 * On BXT writes larger than 64 bit to the GTT pagetable range will be 2638 * dropped. For WC mappings in general we have 64 byte burst writes 2639 * when the WC buffer is flushed, so we can't use it, but have to 2640 * resort to an uncached mapping. The WC issue is easily caught by the 2641 * readback check when writing GTT PTE entries. 2642 */ 2643 if (IS_GEN9_LP(dev_priv)) 2644 ggtt->gsm = ioremap_nocache(phys_addr, size); 2645 else 2646 ggtt->gsm = ioremap_wc(phys_addr, size); 2647 if (!ggtt->gsm) { 2648 DRM_ERROR("Failed to map the ggtt page table\n"); 2649 return -ENOMEM; 2650 } 2651 2652 ret = setup_scratch_page(&ggtt->base, GFP_DMA32); 2653 if (ret) { 2654 DRM_ERROR("Scratch setup failed\n"); 2655 /* iounmap will also get called at remove, but meh */ 2656 iounmap(ggtt->gsm); 2657 return ret; 2658 } 2659 2660 return 0; 2661 } 2662 2663 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 2664 * bits. When using advanced contexts each context stores its own PAT, but 2665 * writing this data shouldn't be harmful even in those cases. */ 2666 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv) 2667 { 2668 u64 pat; 2669 2670 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ 2671 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ 2672 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ 2673 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ 2674 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | 2675 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | 2676 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | 2677 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 2678 2679 if (!USES_PPGTT(dev_priv)) 2680 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, 2681 * so RTL will always use the value corresponding to 2682 * pat_sel = 000". 2683 * So let's disable cache for GGTT to avoid screen corruptions. 2684 * MOCS still can be used though. 2685 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work 2686 * before this patch, i.e. the same uncached + snooping access 2687 * like on gen6/7 seems to be in effect. 2688 * - So this just fixes blitter/render access. Again it looks 2689 * like it's not just uncached access, but uncached + snooping. 2690 * So we can still hold onto all our assumptions wrt cpu 2691 * clflushing on LLC machines. 2692 */ 2693 pat = GEN8_PPAT(0, GEN8_PPAT_UC); 2694 2695 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b 2696 * write would work. */ 2697 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat); 2698 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32); 2699 } 2700 2701 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv) 2702 { 2703 u64 pat; 2704 2705 /* 2706 * Map WB on BDW to snooped on CHV. 2707 * 2708 * Only the snoop bit has meaning for CHV, the rest is 2709 * ignored. 2710 * 2711 * The hardware will never snoop for certain types of accesses: 2712 * - CPU GTT (GMADR->GGTT->no snoop->memory) 2713 * - PPGTT page tables 2714 * - some other special cycles 2715 * 2716 * As with BDW, we also need to consider the following for GT accesses: 2717 * "For GGTT, there is NO pat_sel[2:0] from the entry, 2718 * so RTL will always use the value corresponding to 2719 * pat_sel = 000". 2720 * Which means we must set the snoop bit in PAT entry 0 2721 * in order to keep the global status page working. 2722 */ 2723 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | 2724 GEN8_PPAT(1, 0) | 2725 GEN8_PPAT(2, 0) | 2726 GEN8_PPAT(3, 0) | 2727 GEN8_PPAT(4, CHV_PPAT_SNOOP) | 2728 GEN8_PPAT(5, CHV_PPAT_SNOOP) | 2729 GEN8_PPAT(6, CHV_PPAT_SNOOP) | 2730 GEN8_PPAT(7, CHV_PPAT_SNOOP); 2731 2732 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat); 2733 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32); 2734 } 2735 2736 static void gen6_gmch_remove(struct i915_address_space *vm) 2737 { 2738 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2739 2740 iounmap(ggtt->gsm); 2741 cleanup_scratch_page(vm); 2742 } 2743 2744 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 2745 { 2746 struct drm_i915_private *dev_priv = ggtt->base.i915; 2747 struct pci_dev *pdev = dev_priv->drm.pdev; 2748 unsigned int size; 2749 u16 snb_gmch_ctl; 2750 2751 /* TODO: We're not aware of mappable constraints on gen8 yet */ 2752 ggtt->mappable_base = pci_resource_start(pdev, 2); 2753 ggtt->mappable_end = pci_resource_len(pdev, 2); 2754 2755 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39))) 2756 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); 2757 2758 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 2759 2760 if (INTEL_GEN(dev_priv) >= 9) { 2761 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl); 2762 size = gen8_get_total_gtt_size(snb_gmch_ctl); 2763 } else if (IS_CHERRYVIEW(dev_priv)) { 2764 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl); 2765 size = chv_get_total_gtt_size(snb_gmch_ctl); 2766 } else { 2767 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl); 2768 size = gen8_get_total_gtt_size(snb_gmch_ctl); 2769 } 2770 2771 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT; 2772 2773 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) 2774 chv_setup_private_ppat(dev_priv); 2775 else 2776 bdw_setup_private_ppat(dev_priv); 2777 2778 ggtt->base.cleanup = gen6_gmch_remove; 2779 ggtt->base.bind_vma = ggtt_bind_vma; 2780 ggtt->base.unbind_vma = ggtt_unbind_vma; 2781 ggtt->base.insert_page = gen8_ggtt_insert_page; 2782 ggtt->base.clear_range = nop_clear_range; 2783 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv)) 2784 ggtt->base.clear_range = gen8_ggtt_clear_range; 2785 2786 ggtt->base.insert_entries = gen8_ggtt_insert_entries; 2787 2788 ggtt->invalidate = gen6_ggtt_invalidate; 2789 2790 return ggtt_probe_common(ggtt, size); 2791 } 2792 2793 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 2794 { 2795 struct drm_i915_private *dev_priv = ggtt->base.i915; 2796 struct pci_dev *pdev = dev_priv->drm.pdev; 2797 unsigned int size; 2798 u16 snb_gmch_ctl; 2799 2800 ggtt->mappable_base = pci_resource_start(pdev, 2); 2801 ggtt->mappable_end = pci_resource_len(pdev, 2); 2802 2803 /* 64/512MB is the current min/max we actually know of, but this is just 2804 * a coarse sanity check. 2805 */ 2806 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { 2807 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end); 2808 return -ENXIO; 2809 } 2810 2811 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40))) 2812 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); 2813 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 2814 2815 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl); 2816 2817 size = gen6_get_total_gtt_size(snb_gmch_ctl); 2818 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT; 2819 2820 ggtt->base.clear_range = gen6_ggtt_clear_range; 2821 ggtt->base.insert_page = gen6_ggtt_insert_page; 2822 ggtt->base.insert_entries = gen6_ggtt_insert_entries; 2823 ggtt->base.bind_vma = ggtt_bind_vma; 2824 ggtt->base.unbind_vma = ggtt_unbind_vma; 2825 ggtt->base.cleanup = gen6_gmch_remove; 2826 2827 ggtt->invalidate = gen6_ggtt_invalidate; 2828 2829 if (HAS_EDRAM(dev_priv)) 2830 ggtt->base.pte_encode = iris_pte_encode; 2831 else if (IS_HASWELL(dev_priv)) 2832 ggtt->base.pte_encode = hsw_pte_encode; 2833 else if (IS_VALLEYVIEW(dev_priv)) 2834 ggtt->base.pte_encode = byt_pte_encode; 2835 else if (INTEL_GEN(dev_priv) >= 7) 2836 ggtt->base.pte_encode = ivb_pte_encode; 2837 else 2838 ggtt->base.pte_encode = snb_pte_encode; 2839 2840 return ggtt_probe_common(ggtt, size); 2841 } 2842 2843 static void i915_gmch_remove(struct i915_address_space *vm) 2844 { 2845 intel_gmch_remove(); 2846 } 2847 2848 static int i915_gmch_probe(struct i915_ggtt *ggtt) 2849 { 2850 struct drm_i915_private *dev_priv = ggtt->base.i915; 2851 int ret; 2852 2853 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); 2854 if (!ret) { 2855 DRM_ERROR("failed to set up gmch\n"); 2856 return -EIO; 2857 } 2858 2859 intel_gtt_get(&ggtt->base.total, 2860 &ggtt->stolen_size, 2861 &ggtt->mappable_base, 2862 &ggtt->mappable_end); 2863 2864 ggtt->do_idle_maps = needs_idle_maps(dev_priv); 2865 ggtt->base.insert_page = i915_ggtt_insert_page; 2866 ggtt->base.insert_entries = i915_ggtt_insert_entries; 2867 ggtt->base.clear_range = i915_ggtt_clear_range; 2868 ggtt->base.bind_vma = ggtt_bind_vma; 2869 ggtt->base.unbind_vma = ggtt_unbind_vma; 2870 ggtt->base.cleanup = i915_gmch_remove; 2871 2872 ggtt->invalidate = gmch_ggtt_invalidate; 2873 2874 if (unlikely(ggtt->do_idle_maps)) 2875 DRM_INFO("applying Ironlake quirks for intel_iommu\n"); 2876 2877 return 0; 2878 } 2879 2880 /** 2881 * i915_ggtt_probe_hw - Probe GGTT hardware location 2882 * @dev_priv: i915 device 2883 */ 2884 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) 2885 { 2886 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2887 int ret; 2888 2889 ggtt->base.i915 = dev_priv; 2890 ggtt->base.dma = &dev_priv->drm.pdev->dev; 2891 2892 if (INTEL_GEN(dev_priv) <= 5) 2893 ret = i915_gmch_probe(ggtt); 2894 else if (INTEL_GEN(dev_priv) < 8) 2895 ret = gen6_gmch_probe(ggtt); 2896 else 2897 ret = gen8_gmch_probe(ggtt); 2898 if (ret) 2899 return ret; 2900 2901 /* Trim the GGTT to fit the GuC mappable upper range (when enabled). 2902 * This is easier than doing range restriction on the fly, as we 2903 * currently don't have any bits spare to pass in this upper 2904 * restriction! 2905 */ 2906 if (HAS_GUC(dev_priv) && i915.enable_guc_loading) { 2907 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP); 2908 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total); 2909 } 2910 2911 if ((ggtt->base.total - 1) >> 32) { 2912 DRM_ERROR("We never expected a Global GTT with more than 32bits" 2913 " of address space! Found %lldM!\n", 2914 ggtt->base.total >> 20); 2915 ggtt->base.total = 1ULL << 32; 2916 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total); 2917 } 2918 2919 if (ggtt->mappable_end > ggtt->base.total) { 2920 DRM_ERROR("mappable aperture extends past end of GGTT," 2921 " aperture=%llx, total=%llx\n", 2922 ggtt->mappable_end, ggtt->base.total); 2923 ggtt->mappable_end = ggtt->base.total; 2924 } 2925 2926 /* GMADR is the PCI mmio aperture into the global GTT. */ 2927 DRM_INFO("Memory usable by graphics device = %lluM\n", 2928 ggtt->base.total >> 20); 2929 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20); 2930 DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20); 2931 #ifdef CONFIG_INTEL_IOMMU 2932 if (intel_iommu_gfx_mapped) 2933 DRM_INFO("VT-d active for gfx access\n"); 2934 #endif 2935 2936 return 0; 2937 } 2938 2939 /** 2940 * i915_ggtt_init_hw - Initialize GGTT hardware 2941 * @dev_priv: i915 device 2942 */ 2943 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) 2944 { 2945 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2946 int ret; 2947 2948 INIT_LIST_HEAD(&dev_priv->vm_list); 2949 2950 /* Note that we use page colouring to enforce a guard page at the 2951 * end of the address space. This is required as the CS may prefetch 2952 * beyond the end of the batch buffer, across the page boundary, 2953 * and beyond the end of the GTT if we do not provide a guard. 2954 */ 2955 mutex_lock(&dev_priv->drm.struct_mutex); 2956 i915_address_space_init(&ggtt->base, dev_priv, "[global]"); 2957 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv)) 2958 ggtt->base.mm.color_adjust = i915_gtt_color_adjust; 2959 mutex_unlock(&dev_priv->drm.struct_mutex); 2960 2961 if (!io_mapping_init_wc(&dev_priv->ggtt.mappable, 2962 dev_priv->ggtt.mappable_base, 2963 dev_priv->ggtt.mappable_end)) { 2964 ret = -EIO; 2965 goto out_gtt_cleanup; 2966 } 2967 2968 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end); 2969 2970 /* 2971 * Initialise stolen early so that we may reserve preallocated 2972 * objects for the BIOS to KMS transition. 2973 */ 2974 ret = i915_gem_init_stolen(dev_priv); 2975 if (ret) 2976 goto out_gtt_cleanup; 2977 2978 return 0; 2979 2980 out_gtt_cleanup: 2981 ggtt->base.cleanup(&ggtt->base); 2982 return ret; 2983 } 2984 2985 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) 2986 { 2987 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) 2988 return -EIO; 2989 2990 return 0; 2991 } 2992 2993 void i915_ggtt_enable_guc(struct drm_i915_private *i915) 2994 { 2995 i915->ggtt.invalidate = guc_ggtt_invalidate; 2996 } 2997 2998 void i915_ggtt_disable_guc(struct drm_i915_private *i915) 2999 { 3000 i915->ggtt.invalidate = gen6_ggtt_invalidate; 3001 } 3002 3003 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv) 3004 { 3005 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3006 struct drm_i915_gem_object *obj, *on; 3007 3008 i915_check_and_clear_faults(dev_priv); 3009 3010 /* First fill our portion of the GTT with scratch pages */ 3011 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total); 3012 3013 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */ 3014 3015 /* clflush objects bound into the GGTT and rebind them. */ 3016 list_for_each_entry_safe(obj, on, 3017 &dev_priv->mm.bound_list, global_link) { 3018 bool ggtt_bound = false; 3019 struct i915_vma *vma; 3020 3021 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3022 if (vma->vm != &ggtt->base) 3023 continue; 3024 3025 if (!i915_vma_unbind(vma)) 3026 continue; 3027 3028 WARN_ON(i915_vma_bind(vma, obj->cache_level, 3029 PIN_UPDATE)); 3030 ggtt_bound = true; 3031 } 3032 3033 if (ggtt_bound) 3034 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); 3035 } 3036 3037 ggtt->base.closed = false; 3038 3039 if (INTEL_GEN(dev_priv) >= 8) { 3040 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) 3041 chv_setup_private_ppat(dev_priv); 3042 else 3043 bdw_setup_private_ppat(dev_priv); 3044 3045 return; 3046 } 3047 3048 if (USES_PPGTT(dev_priv)) { 3049 struct i915_address_space *vm; 3050 3051 list_for_each_entry(vm, &dev_priv->vm_list, global_link) { 3052 struct i915_hw_ppgtt *ppgtt; 3053 3054 if (i915_is_ggtt(vm)) 3055 ppgtt = dev_priv->mm.aliasing_ppgtt; 3056 else 3057 ppgtt = i915_vm_to_ppgtt(vm); 3058 3059 gen6_write_page_range(ppgtt, 0, ppgtt->base.total); 3060 } 3061 } 3062 3063 i915_ggtt_invalidate(dev_priv); 3064 } 3065 3066 static struct scatterlist * 3067 rotate_pages(const dma_addr_t *in, unsigned int offset, 3068 unsigned int width, unsigned int height, 3069 unsigned int stride, 3070 struct sg_table *st, struct scatterlist *sg) 3071 { 3072 unsigned int column, row; 3073 unsigned int src_idx; 3074 3075 for (column = 0; column < width; column++) { 3076 src_idx = stride * (height - 1) + column; 3077 for (row = 0; row < height; row++) { 3078 st->nents++; 3079 /* We don't need the pages, but need to initialize 3080 * the entries so the sg list can be happily traversed. 3081 * The only thing we need are DMA addresses. 3082 */ 3083 sg_set_page(sg, NULL, PAGE_SIZE, 0); 3084 sg_dma_address(sg) = in[offset + src_idx]; 3085 sg_dma_len(sg) = PAGE_SIZE; 3086 sg = sg_next(sg); 3087 src_idx -= stride; 3088 } 3089 } 3090 3091 return sg; 3092 } 3093 3094 static noinline struct sg_table * 3095 intel_rotate_pages(struct intel_rotation_info *rot_info, 3096 struct drm_i915_gem_object *obj) 3097 { 3098 const unsigned long n_pages = obj->base.size / PAGE_SIZE; 3099 unsigned int size = intel_rotation_info_size(rot_info); 3100 struct sgt_iter sgt_iter; 3101 dma_addr_t dma_addr; 3102 unsigned long i; 3103 dma_addr_t *page_addr_list; 3104 struct sg_table *st; 3105 struct scatterlist *sg; 3106 int ret = -ENOMEM; 3107 3108 /* Allocate a temporary list of source pages for random access. */ 3109 page_addr_list = drm_malloc_gfp(n_pages, 3110 sizeof(dma_addr_t), 3111 GFP_TEMPORARY); 3112 if (!page_addr_list) 3113 return ERR_PTR(ret); 3114 3115 /* Allocate target SG list. */ 3116 st = kmalloc(sizeof(*st), GFP_KERNEL); 3117 if (!st) 3118 goto err_st_alloc; 3119 3120 ret = sg_alloc_table(st, size, GFP_KERNEL); 3121 if (ret) 3122 goto err_sg_alloc; 3123 3124 /* Populate source page list from the object. */ 3125 i = 0; 3126 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages) 3127 page_addr_list[i++] = dma_addr; 3128 3129 GEM_BUG_ON(i != n_pages); 3130 st->nents = 0; 3131 sg = st->sgl; 3132 3133 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { 3134 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset, 3135 rot_info->plane[i].width, rot_info->plane[i].height, 3136 rot_info->plane[i].stride, st, sg); 3137 } 3138 3139 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n", 3140 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); 3141 3142 drm_free_large(page_addr_list); 3143 3144 return st; 3145 3146 err_sg_alloc: 3147 kfree(st); 3148 err_st_alloc: 3149 drm_free_large(page_addr_list); 3150 3151 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 3152 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); 3153 3154 return ERR_PTR(ret); 3155 } 3156 3157 static noinline struct sg_table * 3158 intel_partial_pages(const struct i915_ggtt_view *view, 3159 struct drm_i915_gem_object *obj) 3160 { 3161 struct sg_table *st; 3162 struct scatterlist *sg, *iter; 3163 unsigned int count = view->partial.size; 3164 unsigned int offset; 3165 int ret = -ENOMEM; 3166 3167 st = kmalloc(sizeof(*st), GFP_KERNEL); 3168 if (!st) 3169 goto err_st_alloc; 3170 3171 ret = sg_alloc_table(st, count, GFP_KERNEL); 3172 if (ret) 3173 goto err_sg_alloc; 3174 3175 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); 3176 GEM_BUG_ON(!iter); 3177 3178 sg = st->sgl; 3179 st->nents = 0; 3180 do { 3181 unsigned int len; 3182 3183 len = min(iter->length - (offset << PAGE_SHIFT), 3184 count << PAGE_SHIFT); 3185 sg_set_page(sg, NULL, len, 0); 3186 sg_dma_address(sg) = 3187 sg_dma_address(iter) + (offset << PAGE_SHIFT); 3188 sg_dma_len(sg) = len; 3189 3190 st->nents++; 3191 count -= len >> PAGE_SHIFT; 3192 if (count == 0) { 3193 sg_mark_end(sg); 3194 return st; 3195 } 3196 3197 sg = __sg_next(sg); 3198 iter = __sg_next(iter); 3199 offset = 0; 3200 } while (1); 3201 3202 err_sg_alloc: 3203 kfree(st); 3204 err_st_alloc: 3205 return ERR_PTR(ret); 3206 } 3207 3208 static int 3209 i915_get_ggtt_vma_pages(struct i915_vma *vma) 3210 { 3211 int ret; 3212 3213 /* The vma->pages are only valid within the lifespan of the borrowed 3214 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 3215 * must be the vma->pages. A simple rule is that vma->pages must only 3216 * be accessed when the obj->mm.pages are pinned. 3217 */ 3218 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 3219 3220 switch (vma->ggtt_view.type) { 3221 case I915_GGTT_VIEW_NORMAL: 3222 vma->pages = vma->obj->mm.pages; 3223 return 0; 3224 3225 case I915_GGTT_VIEW_ROTATED: 3226 vma->pages = 3227 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); 3228 break; 3229 3230 case I915_GGTT_VIEW_PARTIAL: 3231 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); 3232 break; 3233 3234 default: 3235 WARN_ONCE(1, "GGTT view %u not implemented!\n", 3236 vma->ggtt_view.type); 3237 return -EINVAL; 3238 } 3239 3240 ret = 0; 3241 if (unlikely(IS_ERR(vma->pages))) { 3242 ret = PTR_ERR(vma->pages); 3243 vma->pages = NULL; 3244 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", 3245 vma->ggtt_view.type, ret); 3246 } 3247 return ret; 3248 } 3249 3250 /** 3251 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT) 3252 * @vm: the &struct i915_address_space 3253 * @node: the &struct drm_mm_node (typically i915_vma.mode) 3254 * @size: how much space to allocate inside the GTT, 3255 * must be #I915_GTT_PAGE_SIZE aligned 3256 * @offset: where to insert inside the GTT, 3257 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node 3258 * (@offset + @size) must fit within the address space 3259 * @color: color to apply to node, if this node is not from a VMA, 3260 * color must be #I915_COLOR_UNEVICTABLE 3261 * @flags: control search and eviction behaviour 3262 * 3263 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside 3264 * the address space (using @size and @color). If the @node does not fit, it 3265 * tries to evict any overlapping nodes from the GTT, including any 3266 * neighbouring nodes if the colors do not match (to ensure guard pages between 3267 * differing domains). See i915_gem_evict_for_node() for the gory details 3268 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on 3269 * evicting active overlapping objects, and any overlapping node that is pinned 3270 * or marked as unevictable will also result in failure. 3271 * 3272 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if 3273 * asked to wait for eviction and interrupted. 3274 */ 3275 int i915_gem_gtt_reserve(struct i915_address_space *vm, 3276 struct drm_mm_node *node, 3277 u64 size, u64 offset, unsigned long color, 3278 unsigned int flags) 3279 { 3280 int err; 3281 3282 GEM_BUG_ON(!size); 3283 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 3284 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT)); 3285 GEM_BUG_ON(range_overflows(offset, size, vm->total)); 3286 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base); 3287 GEM_BUG_ON(drm_mm_node_allocated(node)); 3288 3289 node->size = size; 3290 node->start = offset; 3291 node->color = color; 3292 3293 err = drm_mm_reserve_node(&vm->mm, node); 3294 if (err != -ENOSPC) 3295 return err; 3296 3297 err = i915_gem_evict_for_node(vm, node, flags); 3298 if (err == 0) 3299 err = drm_mm_reserve_node(&vm->mm, node); 3300 3301 return err; 3302 } 3303 3304 static u64 random_offset(u64 start, u64 end, u64 len, u64 align) 3305 { 3306 u64 range, addr; 3307 3308 GEM_BUG_ON(range_overflows(start, len, end)); 3309 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align)); 3310 3311 range = round_down(end - len, align) - round_up(start, align); 3312 if (range) { 3313 if (sizeof(unsigned long) == sizeof(u64)) { 3314 addr = get_random_long(); 3315 } else { 3316 addr = get_random_int(); 3317 if (range > U32_MAX) { 3318 addr <<= 32; 3319 addr |= get_random_int(); 3320 } 3321 } 3322 div64_u64_rem(addr, range, &addr); 3323 start += addr; 3324 } 3325 3326 return round_up(start, align); 3327 } 3328 3329 /** 3330 * i915_gem_gtt_insert - insert a node into an address_space (GTT) 3331 * @vm: the &struct i915_address_space 3332 * @node: the &struct drm_mm_node (typically i915_vma.node) 3333 * @size: how much space to allocate inside the GTT, 3334 * must be #I915_GTT_PAGE_SIZE aligned 3335 * @alignment: required alignment of starting offset, may be 0 but 3336 * if specified, this must be a power-of-two and at least 3337 * #I915_GTT_MIN_ALIGNMENT 3338 * @color: color to apply to node 3339 * @start: start of any range restriction inside GTT (0 for all), 3340 * must be #I915_GTT_PAGE_SIZE aligned 3341 * @end: end of any range restriction inside GTT (U64_MAX for all), 3342 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX 3343 * @flags: control search and eviction behaviour 3344 * 3345 * i915_gem_gtt_insert() first searches for an available hole into which 3346 * is can insert the node. The hole address is aligned to @alignment and 3347 * its @size must then fit entirely within the [@start, @end] bounds. The 3348 * nodes on either side of the hole must match @color, or else a guard page 3349 * will be inserted between the two nodes (or the node evicted). If no 3350 * suitable hole is found, first a victim is randomly selected and tested 3351 * for eviction, otherwise then the LRU list of objects within the GTT 3352 * is scanned to find the first set of replacement nodes to create the hole. 3353 * Those old overlapping nodes are evicted from the GTT (and so must be 3354 * rebound before any future use). Any node that is currently pinned cannot 3355 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently 3356 * active and #PIN_NONBLOCK is specified, that node is also skipped when 3357 * searching for an eviction candidate. See i915_gem_evict_something() for 3358 * the gory details on the eviction algorithm. 3359 * 3360 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if 3361 * asked to wait for eviction and interrupted. 3362 */ 3363 int i915_gem_gtt_insert(struct i915_address_space *vm, 3364 struct drm_mm_node *node, 3365 u64 size, u64 alignment, unsigned long color, 3366 u64 start, u64 end, unsigned int flags) 3367 { 3368 enum drm_mm_insert_mode mode; 3369 u64 offset; 3370 int err; 3371 3372 lockdep_assert_held(&vm->i915->drm.struct_mutex); 3373 GEM_BUG_ON(!size); 3374 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 3375 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 3376 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 3377 GEM_BUG_ON(start >= end); 3378 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 3379 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 3380 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base); 3381 GEM_BUG_ON(drm_mm_node_allocated(node)); 3382 3383 if (unlikely(range_overflows(start, size, end))) 3384 return -ENOSPC; 3385 3386 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment))) 3387 return -ENOSPC; 3388 3389 mode = DRM_MM_INSERT_BEST; 3390 if (flags & PIN_HIGH) 3391 mode = DRM_MM_INSERT_HIGH; 3392 if (flags & PIN_MAPPABLE) 3393 mode = DRM_MM_INSERT_LOW; 3394 3395 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, 3396 * so we know that we always have a minimum alignment of 4096. 3397 * The drm_mm range manager is optimised to return results 3398 * with zero alignment, so where possible use the optimal 3399 * path. 3400 */ 3401 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE); 3402 if (alignment <= I915_GTT_MIN_ALIGNMENT) 3403 alignment = 0; 3404 3405 err = drm_mm_insert_node_in_range(&vm->mm, node, 3406 size, alignment, color, 3407 start, end, mode); 3408 if (err != -ENOSPC) 3409 return err; 3410 3411 /* No free space, pick a slot at random. 3412 * 3413 * There is a pathological case here using a GTT shared between 3414 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt): 3415 * 3416 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->| 3417 * (64k objects) (448k objects) 3418 * 3419 * Now imagine that the eviction LRU is ordered top-down (just because 3420 * pathology meets real life), and that we need to evict an object to 3421 * make room inside the aperture. The eviction scan then has to walk 3422 * the 448k list before it finds one within range. And now imagine that 3423 * it has to search for a new hole between every byte inside the memcpy, 3424 * for several simultaneous clients. 3425 * 3426 * On a full-ppgtt system, if we have run out of available space, there 3427 * will be lots and lots of objects in the eviction list! Again, 3428 * searching that LRU list may be slow if we are also applying any 3429 * range restrictions (e.g. restriction to low 4GiB) and so, for 3430 * simplicity and similarilty between different GTT, try the single 3431 * random replacement first. 3432 */ 3433 offset = random_offset(start, end, 3434 size, alignment ?: I915_GTT_MIN_ALIGNMENT); 3435 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags); 3436 if (err != -ENOSPC) 3437 return err; 3438 3439 /* Randomly selected placement is pinned, do a search */ 3440 err = i915_gem_evict_something(vm, size, alignment, color, 3441 start, end, flags); 3442 if (err) 3443 return err; 3444 3445 return drm_mm_insert_node_in_range(&vm->mm, node, 3446 size, alignment, color, 3447 start, end, DRM_MM_INSERT_EVICT); 3448 } 3449 3450 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3451 #include "selftests/mock_gtt.c" 3452 #include "selftests/i915_gem_gtt.c" 3453 #endif 3454