1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 #include <asm/smp.h>
36 
37 #include <drm/i915_drm.h>
38 
39 #include "display/intel_frontbuffer.h"
40 #include "gt/intel_gt.h"
41 
42 #include "i915_drv.h"
43 #include "i915_scatterlist.h"
44 #include "i915_trace.h"
45 #include "i915_vgpu.h"
46 
47 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
48 
49 #if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
50 #define DBG(...) trace_printk(__VA_ARGS__)
51 #else
52 #define DBG(...)
53 #endif
54 
55 /**
56  * DOC: Global GTT views
57  *
58  * Background and previous state
59  *
60  * Historically objects could exists (be bound) in global GTT space only as
61  * singular instances with a view representing all of the object's backing pages
62  * in a linear fashion. This view will be called a normal view.
63  *
64  * To support multiple views of the same object, where the number of mapped
65  * pages is not equal to the backing store, or where the layout of the pages
66  * is not linear, concept of a GGTT view was added.
67  *
68  * One example of an alternative view is a stereo display driven by a single
69  * image. In this case we would have a framebuffer looking like this
70  * (2x2 pages):
71  *
72  *    12
73  *    34
74  *
75  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
76  * rendering. In contrast, fed to the display engine would be an alternative
77  * view which could look something like this:
78  *
79  *   1212
80  *   3434
81  *
82  * In this example both the size and layout of pages in the alternative view is
83  * different from the normal view.
84  *
85  * Implementation and usage
86  *
87  * GGTT views are implemented using VMAs and are distinguished via enum
88  * i915_ggtt_view_type and struct i915_ggtt_view.
89  *
90  * A new flavour of core GEM functions which work with GGTT bound objects were
91  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
92  * renaming  in large amounts of code. They take the struct i915_ggtt_view
93  * parameter encapsulating all metadata required to implement a view.
94  *
95  * As a helper for callers which are only interested in the normal view,
96  * globally const i915_ggtt_view_normal singleton instance exists. All old core
97  * GEM API functions, the ones not taking the view parameter, are operating on,
98  * or with the normal GGTT view.
99  *
100  * Code wanting to add or use a new GGTT view needs to:
101  *
102  * 1. Add a new enum with a suitable name.
103  * 2. Extend the metadata in the i915_ggtt_view structure if required.
104  * 3. Add support to i915_get_vma_pages().
105  *
106  * New views are required to build a scatter-gather table from within the
107  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
108  * exists for the lifetime of an VMA.
109  *
110  * Core API is designed to have copy semantics which means that passed in
111  * struct i915_ggtt_view does not need to be persistent (left around after
112  * calling the core API functions).
113  *
114  */
115 
116 #define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt)
117 
118 static int
119 i915_get_ggtt_vma_pages(struct i915_vma *vma);
120 
121 static void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
122 {
123 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
124 
125 	/*
126 	 * Note that as an uncached mmio write, this will flush the
127 	 * WCB of the writes into the GGTT before it triggers the invalidate.
128 	 */
129 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
130 }
131 
132 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
133 {
134 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
135 
136 	gen6_ggtt_invalidate(ggtt);
137 	intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
138 }
139 
140 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
141 {
142 	intel_gtt_chipset_flush();
143 }
144 
145 static int ppgtt_bind_vma(struct i915_vma *vma,
146 			  enum i915_cache_level cache_level,
147 			  u32 unused)
148 {
149 	u32 pte_flags;
150 	int err;
151 
152 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
153 		err = vma->vm->allocate_va_range(vma->vm,
154 						 vma->node.start, vma->size);
155 		if (err)
156 			return err;
157 	}
158 
159 	/* Applicable to VLV, and gen8+ */
160 	pte_flags = 0;
161 	if (i915_gem_object_is_readonly(vma->obj))
162 		pte_flags |= PTE_READ_ONLY;
163 
164 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
165 
166 	return 0;
167 }
168 
169 static void ppgtt_unbind_vma(struct i915_vma *vma)
170 {
171 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
172 }
173 
174 static int ppgtt_set_pages(struct i915_vma *vma)
175 {
176 	GEM_BUG_ON(vma->pages);
177 
178 	vma->pages = vma->obj->mm.pages;
179 
180 	vma->page_sizes = vma->obj->mm.page_sizes;
181 
182 	return 0;
183 }
184 
185 static void clear_pages(struct i915_vma *vma)
186 {
187 	GEM_BUG_ON(!vma->pages);
188 
189 	if (vma->pages != vma->obj->mm.pages) {
190 		sg_free_table(vma->pages);
191 		kfree(vma->pages);
192 	}
193 	vma->pages = NULL;
194 
195 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
196 }
197 
198 static u64 gen8_pte_encode(dma_addr_t addr,
199 			   enum i915_cache_level level,
200 			   u32 flags)
201 {
202 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
203 
204 	if (unlikely(flags & PTE_READ_ONLY))
205 		pte &= ~_PAGE_RW;
206 
207 	switch (level) {
208 	case I915_CACHE_NONE:
209 		pte |= PPAT_UNCACHED;
210 		break;
211 	case I915_CACHE_WT:
212 		pte |= PPAT_DISPLAY_ELLC;
213 		break;
214 	default:
215 		pte |= PPAT_CACHED;
216 		break;
217 	}
218 
219 	return pte;
220 }
221 
222 static u64 gen8_pde_encode(const dma_addr_t addr,
223 			   const enum i915_cache_level level)
224 {
225 	u64 pde = _PAGE_PRESENT | _PAGE_RW;
226 	pde |= addr;
227 	if (level != I915_CACHE_NONE)
228 		pde |= PPAT_CACHED_PDE;
229 	else
230 		pde |= PPAT_UNCACHED;
231 	return pde;
232 }
233 
234 static u64 snb_pte_encode(dma_addr_t addr,
235 			  enum i915_cache_level level,
236 			  u32 flags)
237 {
238 	gen6_pte_t pte = GEN6_PTE_VALID;
239 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
240 
241 	switch (level) {
242 	case I915_CACHE_L3_LLC:
243 	case I915_CACHE_LLC:
244 		pte |= GEN6_PTE_CACHE_LLC;
245 		break;
246 	case I915_CACHE_NONE:
247 		pte |= GEN6_PTE_UNCACHED;
248 		break;
249 	default:
250 		MISSING_CASE(level);
251 	}
252 
253 	return pte;
254 }
255 
256 static u64 ivb_pte_encode(dma_addr_t addr,
257 			  enum i915_cache_level level,
258 			  u32 flags)
259 {
260 	gen6_pte_t pte = GEN6_PTE_VALID;
261 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
262 
263 	switch (level) {
264 	case I915_CACHE_L3_LLC:
265 		pte |= GEN7_PTE_CACHE_L3_LLC;
266 		break;
267 	case I915_CACHE_LLC:
268 		pte |= GEN6_PTE_CACHE_LLC;
269 		break;
270 	case I915_CACHE_NONE:
271 		pte |= GEN6_PTE_UNCACHED;
272 		break;
273 	default:
274 		MISSING_CASE(level);
275 	}
276 
277 	return pte;
278 }
279 
280 static u64 byt_pte_encode(dma_addr_t addr,
281 			  enum i915_cache_level level,
282 			  u32 flags)
283 {
284 	gen6_pte_t pte = GEN6_PTE_VALID;
285 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
286 
287 	if (!(flags & PTE_READ_ONLY))
288 		pte |= BYT_PTE_WRITEABLE;
289 
290 	if (level != I915_CACHE_NONE)
291 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
292 
293 	return pte;
294 }
295 
296 static u64 hsw_pte_encode(dma_addr_t addr,
297 			  enum i915_cache_level level,
298 			  u32 flags)
299 {
300 	gen6_pte_t pte = GEN6_PTE_VALID;
301 	pte |= HSW_PTE_ADDR_ENCODE(addr);
302 
303 	if (level != I915_CACHE_NONE)
304 		pte |= HSW_WB_LLC_AGE3;
305 
306 	return pte;
307 }
308 
309 static u64 iris_pte_encode(dma_addr_t addr,
310 			   enum i915_cache_level level,
311 			   u32 flags)
312 {
313 	gen6_pte_t pte = GEN6_PTE_VALID;
314 	pte |= HSW_PTE_ADDR_ENCODE(addr);
315 
316 	switch (level) {
317 	case I915_CACHE_NONE:
318 		break;
319 	case I915_CACHE_WT:
320 		pte |= HSW_WT_ELLC_LLC_AGE3;
321 		break;
322 	default:
323 		pte |= HSW_WB_ELLC_LLC_AGE3;
324 		break;
325 	}
326 
327 	return pte;
328 }
329 
330 static void stash_init(struct pagestash *stash)
331 {
332 	pagevec_init(&stash->pvec);
333 	spin_lock_init(&stash->lock);
334 }
335 
336 static struct page *stash_pop_page(struct pagestash *stash)
337 {
338 	struct page *page = NULL;
339 
340 	spin_lock(&stash->lock);
341 	if (likely(stash->pvec.nr))
342 		page = stash->pvec.pages[--stash->pvec.nr];
343 	spin_unlock(&stash->lock);
344 
345 	return page;
346 }
347 
348 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
349 {
350 	unsigned int nr;
351 
352 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
353 
354 	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
355 	memcpy(stash->pvec.pages + stash->pvec.nr,
356 	       pvec->pages + pvec->nr - nr,
357 	       sizeof(pvec->pages[0]) * nr);
358 	stash->pvec.nr += nr;
359 
360 	spin_unlock(&stash->lock);
361 
362 	pvec->nr -= nr;
363 }
364 
365 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
366 {
367 	struct pagevec stack;
368 	struct page *page;
369 
370 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
371 		i915_gem_shrink_all(vm->i915);
372 
373 	page = stash_pop_page(&vm->free_pages);
374 	if (page)
375 		return page;
376 
377 	if (!vm->pt_kmap_wc)
378 		return alloc_page(gfp);
379 
380 	/* Look in our global stash of WC pages... */
381 	page = stash_pop_page(&vm->i915->mm.wc_stash);
382 	if (page)
383 		return page;
384 
385 	/*
386 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
387 	 *
388 	 * We have to be careful as page allocation may trigger the shrinker
389 	 * (via direct reclaim) which will fill up the WC stash underneath us.
390 	 * So we add our WB pages into a temporary pvec on the stack and merge
391 	 * them into the WC stash after all the allocations are complete.
392 	 */
393 	pagevec_init(&stack);
394 	do {
395 		struct page *page;
396 
397 		page = alloc_page(gfp);
398 		if (unlikely(!page))
399 			break;
400 
401 		stack.pages[stack.nr++] = page;
402 	} while (pagevec_space(&stack));
403 
404 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
405 		page = stack.pages[--stack.nr];
406 
407 		/* Merge spare WC pages to the global stash */
408 		if (stack.nr)
409 			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
410 
411 		/* Push any surplus WC pages onto the local VM stash */
412 		if (stack.nr)
413 			stash_push_pagevec(&vm->free_pages, &stack);
414 	}
415 
416 	/* Return unwanted leftovers */
417 	if (unlikely(stack.nr)) {
418 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
419 		__pagevec_release(&stack);
420 	}
421 
422 	return page;
423 }
424 
425 static void vm_free_pages_release(struct i915_address_space *vm,
426 				  bool immediate)
427 {
428 	struct pagevec *pvec = &vm->free_pages.pvec;
429 	struct pagevec stack;
430 
431 	lockdep_assert_held(&vm->free_pages.lock);
432 	GEM_BUG_ON(!pagevec_count(pvec));
433 
434 	if (vm->pt_kmap_wc) {
435 		/*
436 		 * When we use WC, first fill up the global stash and then
437 		 * only if full immediately free the overflow.
438 		 */
439 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
440 
441 		/*
442 		 * As we have made some room in the VM's free_pages,
443 		 * we can wait for it to fill again. Unless we are
444 		 * inside i915_address_space_fini() and must
445 		 * immediately release the pages!
446 		 */
447 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
448 			return;
449 
450 		/*
451 		 * We have to drop the lock to allow ourselves to sleep,
452 		 * so take a copy of the pvec and clear the stash for
453 		 * others to use it as we sleep.
454 		 */
455 		stack = *pvec;
456 		pagevec_reinit(pvec);
457 		spin_unlock(&vm->free_pages.lock);
458 
459 		pvec = &stack;
460 		set_pages_array_wb(pvec->pages, pvec->nr);
461 
462 		spin_lock(&vm->free_pages.lock);
463 	}
464 
465 	__pagevec_release(pvec);
466 }
467 
468 static void vm_free_page(struct i915_address_space *vm, struct page *page)
469 {
470 	/*
471 	 * On !llc, we need to change the pages back to WB. We only do so
472 	 * in bulk, so we rarely need to change the page attributes here,
473 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
474 	 * To make detection of the possible sleep more likely, use an
475 	 * unconditional might_sleep() for everybody.
476 	 */
477 	might_sleep();
478 	spin_lock(&vm->free_pages.lock);
479 	while (!pagevec_space(&vm->free_pages.pvec))
480 		vm_free_pages_release(vm, false);
481 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
482 	pagevec_add(&vm->free_pages.pvec, page);
483 	spin_unlock(&vm->free_pages.lock);
484 }
485 
486 static void i915_address_space_fini(struct i915_address_space *vm)
487 {
488 	spin_lock(&vm->free_pages.lock);
489 	if (pagevec_count(&vm->free_pages.pvec))
490 		vm_free_pages_release(vm, true);
491 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
492 	spin_unlock(&vm->free_pages.lock);
493 
494 	drm_mm_takedown(&vm->mm);
495 
496 	mutex_destroy(&vm->mutex);
497 }
498 
499 static void ppgtt_destroy_vma(struct i915_address_space *vm)
500 {
501 	struct list_head *phases[] = {
502 		&vm->bound_list,
503 		&vm->unbound_list,
504 		NULL,
505 	}, **phase;
506 
507 	mutex_lock(&vm->i915->drm.struct_mutex);
508 	for (phase = phases; *phase; phase++) {
509 		struct i915_vma *vma, *vn;
510 
511 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
512 			i915_vma_destroy(vma);
513 	}
514 	mutex_unlock(&vm->i915->drm.struct_mutex);
515 }
516 
517 static void __i915_vm_release(struct work_struct *work)
518 {
519 	struct i915_address_space *vm =
520 		container_of(work, struct i915_address_space, rcu.work);
521 
522 	ppgtt_destroy_vma(vm);
523 
524 	GEM_BUG_ON(!list_empty(&vm->bound_list));
525 	GEM_BUG_ON(!list_empty(&vm->unbound_list));
526 
527 	vm->cleanup(vm);
528 	i915_address_space_fini(vm);
529 
530 	kfree(vm);
531 }
532 
533 void i915_vm_release(struct kref *kref)
534 {
535 	struct i915_address_space *vm =
536 		container_of(kref, struct i915_address_space, ref);
537 
538 	GEM_BUG_ON(i915_is_ggtt(vm));
539 	trace_i915_ppgtt_release(vm);
540 
541 	vm->closed = true;
542 	queue_rcu_work(vm->i915->wq, &vm->rcu);
543 }
544 
545 static void i915_address_space_init(struct i915_address_space *vm, int subclass)
546 {
547 	kref_init(&vm->ref);
548 	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
549 
550 	/*
551 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
552 	 * Do a dummy acquire now under fs_reclaim so that any allocation
553 	 * attempt holding the lock is immediately reported by lockdep.
554 	 */
555 	mutex_init(&vm->mutex);
556 	lockdep_set_subclass(&vm->mutex, subclass);
557 	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
558 
559 	GEM_BUG_ON(!vm->total);
560 	drm_mm_init(&vm->mm, 0, vm->total);
561 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
562 
563 	stash_init(&vm->free_pages);
564 
565 	INIT_LIST_HEAD(&vm->unbound_list);
566 	INIT_LIST_HEAD(&vm->bound_list);
567 }
568 
569 static int __setup_page_dma(struct i915_address_space *vm,
570 			    struct i915_page_dma *p,
571 			    gfp_t gfp)
572 {
573 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
574 	if (unlikely(!p->page))
575 		return -ENOMEM;
576 
577 	p->daddr = dma_map_page_attrs(vm->dma,
578 				      p->page, 0, PAGE_SIZE,
579 				      PCI_DMA_BIDIRECTIONAL,
580 				      DMA_ATTR_SKIP_CPU_SYNC |
581 				      DMA_ATTR_NO_WARN);
582 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
583 		vm_free_page(vm, p->page);
584 		return -ENOMEM;
585 	}
586 
587 	return 0;
588 }
589 
590 static int setup_page_dma(struct i915_address_space *vm,
591 			  struct i915_page_dma *p)
592 {
593 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
594 }
595 
596 static void cleanup_page_dma(struct i915_address_space *vm,
597 			     struct i915_page_dma *p)
598 {
599 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
600 	vm_free_page(vm, p->page);
601 }
602 
603 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
604 
605 static void
606 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
607 {
608 	kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
609 }
610 
611 #define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
612 #define fill32_px(px, v) do {						\
613 	u64 v__ = lower_32_bits(v);					\
614 	fill_px((px), v__ << 32 | v__);					\
615 } while (0)
616 
617 static int
618 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
619 {
620 	unsigned long size;
621 
622 	/*
623 	 * In order to utilize 64K pages for an object with a size < 2M, we will
624 	 * need to support a 64K scratch page, given that every 16th entry for a
625 	 * page-table operating in 64K mode must point to a properly aligned 64K
626 	 * region, including any PTEs which happen to point to scratch.
627 	 *
628 	 * This is only relevant for the 48b PPGTT where we support
629 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
630 	 * scratch (read-only) between all vm, we create one 64k scratch page
631 	 * for all.
632 	 */
633 	size = I915_GTT_PAGE_SIZE_4K;
634 	if (i915_vm_is_4lvl(vm) &&
635 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
636 		size = I915_GTT_PAGE_SIZE_64K;
637 		gfp |= __GFP_NOWARN;
638 	}
639 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
640 
641 	do {
642 		unsigned int order = get_order(size);
643 		struct page *page;
644 		dma_addr_t addr;
645 
646 		page = alloc_pages(gfp, order);
647 		if (unlikely(!page))
648 			goto skip;
649 
650 		addr = dma_map_page_attrs(vm->dma,
651 					  page, 0, size,
652 					  PCI_DMA_BIDIRECTIONAL,
653 					  DMA_ATTR_SKIP_CPU_SYNC |
654 					  DMA_ATTR_NO_WARN);
655 		if (unlikely(dma_mapping_error(vm->dma, addr)))
656 			goto free_page;
657 
658 		if (unlikely(!IS_ALIGNED(addr, size)))
659 			goto unmap_page;
660 
661 		vm->scratch[0].base.page = page;
662 		vm->scratch[0].base.daddr = addr;
663 		vm->scratch_order = order;
664 		return 0;
665 
666 unmap_page:
667 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
668 free_page:
669 		__free_pages(page, order);
670 skip:
671 		if (size == I915_GTT_PAGE_SIZE_4K)
672 			return -ENOMEM;
673 
674 		size = I915_GTT_PAGE_SIZE_4K;
675 		gfp &= ~__GFP_NOWARN;
676 	} while (1);
677 }
678 
679 static void cleanup_scratch_page(struct i915_address_space *vm)
680 {
681 	struct i915_page_dma *p = px_base(&vm->scratch[0]);
682 	unsigned int order = vm->scratch_order;
683 
684 	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
685 		       PCI_DMA_BIDIRECTIONAL);
686 	__free_pages(p->page, order);
687 }
688 
689 static void free_scratch(struct i915_address_space *vm)
690 {
691 	int i;
692 
693 	if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
694 		return;
695 
696 	for (i = 1; i <= vm->top; i++) {
697 		if (!px_dma(&vm->scratch[i]))
698 			break;
699 		cleanup_page_dma(vm, px_base(&vm->scratch[i]));
700 	}
701 
702 	cleanup_scratch_page(vm);
703 }
704 
705 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
706 {
707 	struct i915_page_table *pt;
708 
709 	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
710 	if (unlikely(!pt))
711 		return ERR_PTR(-ENOMEM);
712 
713 	if (unlikely(setup_page_dma(vm, &pt->base))) {
714 		kfree(pt);
715 		return ERR_PTR(-ENOMEM);
716 	}
717 
718 	atomic_set(&pt->used, 0);
719 	return pt;
720 }
721 
722 static struct i915_page_directory *__alloc_pd(size_t sz)
723 {
724 	struct i915_page_directory *pd;
725 
726 	pd = kzalloc(sz, I915_GFP_ALLOW_FAIL);
727 	if (unlikely(!pd))
728 		return NULL;
729 
730 	spin_lock_init(&pd->lock);
731 	return pd;
732 }
733 
734 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
735 {
736 	struct i915_page_directory *pd;
737 
738 	pd = __alloc_pd(sizeof(*pd));
739 	if (unlikely(!pd))
740 		return ERR_PTR(-ENOMEM);
741 
742 	if (unlikely(setup_page_dma(vm, px_base(pd)))) {
743 		kfree(pd);
744 		return ERR_PTR(-ENOMEM);
745 	}
746 
747 	return pd;
748 }
749 
750 static void free_pd(struct i915_address_space *vm, struct i915_page_dma *pd)
751 {
752 	cleanup_page_dma(vm, pd);
753 	kfree(pd);
754 }
755 
756 #define free_px(vm, px) free_pd(vm, px_base(px))
757 
758 static inline void
759 write_dma_entry(struct i915_page_dma * const pdma,
760 		const unsigned short idx,
761 		const u64 encoded_entry)
762 {
763 	u64 * const vaddr = kmap_atomic(pdma->page);
764 
765 	vaddr[idx] = encoded_entry;
766 	kunmap_atomic(vaddr);
767 }
768 
769 static inline void
770 __set_pd_entry(struct i915_page_directory * const pd,
771 	       const unsigned short idx,
772 	       struct i915_page_dma * const to,
773 	       u64 (*encode)(const dma_addr_t, const enum i915_cache_level))
774 {
775 	/* Each thread pre-pins the pd, and we may have a thread per pde. */
776 	GEM_BUG_ON(atomic_read(px_used(pd)) > 2 * ARRAY_SIZE(pd->entry));
777 
778 	atomic_inc(px_used(pd));
779 	pd->entry[idx] = to;
780 	write_dma_entry(px_base(pd), idx, encode(to->daddr, I915_CACHE_LLC));
781 }
782 
783 #define set_pd_entry(pd, idx, to) \
784 	__set_pd_entry((pd), (idx), px_base(to), gen8_pde_encode)
785 
786 static inline void
787 clear_pd_entry(struct i915_page_directory * const pd,
788 	       const unsigned short idx,
789 	       const struct i915_page_scratch * const scratch)
790 {
791 	GEM_BUG_ON(atomic_read(px_used(pd)) == 0);
792 
793 	write_dma_entry(px_base(pd), idx, scratch->encode);
794 	pd->entry[idx] = NULL;
795 	atomic_dec(px_used(pd));
796 }
797 
798 static bool
799 release_pd_entry(struct i915_page_directory * const pd,
800 		 const unsigned short idx,
801 		 struct i915_page_table * const pt,
802 		 const struct i915_page_scratch * const scratch)
803 {
804 	bool free = false;
805 
806 	if (atomic_add_unless(&pt->used, -1, 1))
807 		return false;
808 
809 	spin_lock(&pd->lock);
810 	if (atomic_dec_and_test(&pt->used)) {
811 		clear_pd_entry(pd, idx, scratch);
812 		free = true;
813 	}
814 	spin_unlock(&pd->lock);
815 
816 	return free;
817 }
818 
819 /*
820  * PDE TLBs are a pain to invalidate on GEN8+. When we modify
821  * the page table structures, we mark them dirty so that
822  * context switching/execlist queuing code takes extra steps
823  * to ensure that tlbs are flushed.
824  */
825 static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt)
826 {
827 	ppgtt->pd_dirty_engines = ALL_ENGINES;
828 }
829 
830 static void gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
831 {
832 	struct drm_i915_private *dev_priv = ppgtt->vm.i915;
833 	enum vgt_g2v_type msg;
834 	int i;
835 
836 	if (create)
837 		atomic_inc(px_used(ppgtt->pd)); /* never remove */
838 	else
839 		atomic_dec(px_used(ppgtt->pd));
840 
841 	mutex_lock(&dev_priv->vgpu.lock);
842 
843 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
844 		const u64 daddr = px_dma(ppgtt->pd);
845 
846 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
847 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
848 
849 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
850 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
851 	} else {
852 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
853 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
854 
855 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
856 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
857 		}
858 
859 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
860 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
861 	}
862 
863 	/* g2v_notify atomically (via hv trap) consumes the message packet. */
864 	I915_WRITE(vgtif_reg(g2v_notify), msg);
865 
866 	mutex_unlock(&dev_priv->vgpu.lock);
867 }
868 
869 /* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */
870 #define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */
871 #define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE))
872 #define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64))
873 #define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES))
874 #define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl))
875 #define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl))
876 #define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl))
877 
878 static inline unsigned int
879 gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx)
880 {
881 	const int shift = gen8_pd_shift(lvl);
882 	const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
883 
884 	GEM_BUG_ON(start >= end);
885 	end += ~mask >> gen8_pd_shift(1);
886 
887 	*idx = i915_pde_index(start, shift);
888 	if ((start ^ end) & mask)
889 		return GEN8_PDES - *idx;
890 	else
891 		return i915_pde_index(end, shift) - *idx;
892 }
893 
894 static inline bool gen8_pd_contains(u64 start, u64 end, int lvl)
895 {
896 	const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
897 
898 	GEM_BUG_ON(start >= end);
899 	return (start ^ end) & mask && (start & ~mask) == 0;
900 }
901 
902 static inline unsigned int gen8_pt_count(u64 start, u64 end)
903 {
904 	GEM_BUG_ON(start >= end);
905 	if ((start ^ end) >> gen8_pd_shift(1))
906 		return GEN8_PDES - (start & (GEN8_PDES - 1));
907 	else
908 		return end - start;
909 }
910 
911 static inline unsigned int gen8_pd_top_count(const struct i915_address_space *vm)
912 {
913 	unsigned int shift = __gen8_pte_shift(vm->top);
914 	return (vm->total + (1ull << shift) - 1) >> shift;
915 }
916 
917 static inline struct i915_page_directory *
918 gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx)
919 {
920 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
921 
922 	if (vm->top == 2)
923 		return ppgtt->pd;
924 	else
925 		return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top));
926 }
927 
928 static inline struct i915_page_directory *
929 gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr)
930 {
931 	return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT);
932 }
933 
934 static void __gen8_ppgtt_cleanup(struct i915_address_space *vm,
935 				 struct i915_page_directory *pd,
936 				 int count, int lvl)
937 {
938 	if (lvl) {
939 		void **pde = pd->entry;
940 
941 		do {
942 			if (!*pde)
943 				continue;
944 
945 			__gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1);
946 		} while (pde++, --count);
947 	}
948 
949 	free_px(vm, pd);
950 }
951 
952 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
953 {
954 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
955 
956 	if (intel_vgpu_active(vm->i915))
957 		gen8_ppgtt_notify_vgt(ppgtt, false);
958 
959 	__gen8_ppgtt_cleanup(vm, ppgtt->pd, gen8_pd_top_count(vm), vm->top);
960 	free_scratch(vm);
961 }
962 
963 static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm,
964 			      struct i915_page_directory * const pd,
965 			      u64 start, const u64 end, int lvl)
966 {
967 	const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
968 	unsigned int idx, len;
969 
970 	GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
971 
972 	len = gen8_pd_range(start, end, lvl--, &idx);
973 	DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
974 	    __func__, vm, lvl + 1, start, end,
975 	    idx, len, atomic_read(px_used(pd)));
976 	GEM_BUG_ON(!len || len >= atomic_read(px_used(pd)));
977 
978 	do {
979 		struct i915_page_table *pt = pd->entry[idx];
980 
981 		if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) &&
982 		    gen8_pd_contains(start, end, lvl)) {
983 			DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n",
984 			    __func__, vm, lvl + 1, idx, start, end);
985 			clear_pd_entry(pd, idx, scratch);
986 			__gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl);
987 			start += (u64)I915_PDES << gen8_pd_shift(lvl);
988 			continue;
989 		}
990 
991 		if (lvl) {
992 			start = __gen8_ppgtt_clear(vm, as_pd(pt),
993 						   start, end, lvl);
994 		} else {
995 			unsigned int count;
996 			u64 *vaddr;
997 
998 			count = gen8_pt_count(start, end);
999 			DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } removing pte\n",
1000 			    __func__, vm, lvl, start, end,
1001 			    gen8_pd_index(start, 0), count,
1002 			    atomic_read(&pt->used));
1003 			GEM_BUG_ON(!count || count >= atomic_read(&pt->used));
1004 
1005 			vaddr = kmap_atomic_px(pt);
1006 			memset64(vaddr + gen8_pd_index(start, 0),
1007 				 vm->scratch[0].encode,
1008 				 count);
1009 			kunmap_atomic(vaddr);
1010 
1011 			atomic_sub(count, &pt->used);
1012 			start += count;
1013 		}
1014 
1015 		if (release_pd_entry(pd, idx, pt, scratch))
1016 			free_px(vm, pt);
1017 	} while (idx++, --len);
1018 
1019 	return start;
1020 }
1021 
1022 static void gen8_ppgtt_clear(struct i915_address_space *vm,
1023 			     u64 start, u64 length)
1024 {
1025 	GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1026 	GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1027 	GEM_BUG_ON(range_overflows(start, length, vm->total));
1028 
1029 	start >>= GEN8_PTE_SHIFT;
1030 	length >>= GEN8_PTE_SHIFT;
1031 	GEM_BUG_ON(length == 0);
1032 
1033 	__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1034 			   start, start + length, vm->top);
1035 }
1036 
1037 static int __gen8_ppgtt_alloc(struct i915_address_space * const vm,
1038 			      struct i915_page_directory * const pd,
1039 			      u64 * const start, const u64 end, int lvl)
1040 {
1041 	const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
1042 	struct i915_page_table *alloc = NULL;
1043 	unsigned int idx, len;
1044 	int ret = 0;
1045 
1046 	GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
1047 
1048 	len = gen8_pd_range(*start, end, lvl--, &idx);
1049 	DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
1050 	    __func__, vm, lvl + 1, *start, end,
1051 	    idx, len, atomic_read(px_used(pd)));
1052 	GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1));
1053 
1054 	spin_lock(&pd->lock);
1055 	GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */
1056 	do {
1057 		struct i915_page_table *pt = pd->entry[idx];
1058 
1059 		if (!pt) {
1060 			spin_unlock(&pd->lock);
1061 
1062 			DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n",
1063 			    __func__, vm, lvl + 1, idx);
1064 
1065 			pt = fetch_and_zero(&alloc);
1066 			if (lvl) {
1067 				if (!pt) {
1068 					pt = &alloc_pd(vm)->pt;
1069 					if (IS_ERR(pt)) {
1070 						ret = PTR_ERR(pt);
1071 						goto out;
1072 					}
1073 				}
1074 
1075 				fill_px(pt, vm->scratch[lvl].encode);
1076 			} else {
1077 				if (!pt) {
1078 					pt = alloc_pt(vm);
1079 					if (IS_ERR(pt)) {
1080 						ret = PTR_ERR(pt);
1081 						goto out;
1082 					}
1083 				}
1084 
1085 				if (intel_vgpu_active(vm->i915) ||
1086 				    gen8_pt_count(*start, end) < I915_PDES)
1087 					fill_px(pt, vm->scratch[lvl].encode);
1088 			}
1089 
1090 			spin_lock(&pd->lock);
1091 			if (likely(!pd->entry[idx]))
1092 				set_pd_entry(pd, idx, pt);
1093 			else
1094 				alloc = pt, pt = pd->entry[idx];
1095 		}
1096 
1097 		if (lvl) {
1098 			atomic_inc(&pt->used);
1099 			spin_unlock(&pd->lock);
1100 
1101 			ret = __gen8_ppgtt_alloc(vm, as_pd(pt),
1102 						 start, end, lvl);
1103 			if (unlikely(ret)) {
1104 				if (release_pd_entry(pd, idx, pt, scratch))
1105 					free_px(vm, pt);
1106 				goto out;
1107 			}
1108 
1109 			spin_lock(&pd->lock);
1110 			atomic_dec(&pt->used);
1111 			GEM_BUG_ON(!atomic_read(&pt->used));
1112 		} else {
1113 			unsigned int count = gen8_pt_count(*start, end);
1114 
1115 			DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } inserting pte\n",
1116 			    __func__, vm, lvl, *start, end,
1117 			    gen8_pd_index(*start, 0), count,
1118 			    atomic_read(&pt->used));
1119 
1120 			atomic_add(count, &pt->used);
1121 			/* All other pdes may be simultaneously removed */
1122 			GEM_BUG_ON(atomic_read(&pt->used) > 2 * I915_PDES);
1123 			*start += count;
1124 		}
1125 	} while (idx++, --len);
1126 	spin_unlock(&pd->lock);
1127 out:
1128 	if (alloc)
1129 		free_px(vm, alloc);
1130 	return ret;
1131 }
1132 
1133 static int gen8_ppgtt_alloc(struct i915_address_space *vm,
1134 			    u64 start, u64 length)
1135 {
1136 	u64 from;
1137 	int err;
1138 
1139 	GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1140 	GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1141 	GEM_BUG_ON(range_overflows(start, length, vm->total));
1142 
1143 	start >>= GEN8_PTE_SHIFT;
1144 	length >>= GEN8_PTE_SHIFT;
1145 	GEM_BUG_ON(length == 0);
1146 	from = start;
1147 
1148 	err = __gen8_ppgtt_alloc(vm, i915_vm_to_ppgtt(vm)->pd,
1149 				 &start, start + length, vm->top);
1150 	if (unlikely(err && from != start))
1151 		__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1152 				   from, start, vm->top);
1153 
1154 	return err;
1155 }
1156 
1157 static inline struct sgt_dma {
1158 	struct scatterlist *sg;
1159 	dma_addr_t dma, max;
1160 } sgt_dma(struct i915_vma *vma) {
1161 	struct scatterlist *sg = vma->pages->sgl;
1162 	dma_addr_t addr = sg_dma_address(sg);
1163 	return (struct sgt_dma) { sg, addr, addr + sg->length };
1164 }
1165 
1166 static __always_inline u64
1167 gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt,
1168 		      struct i915_page_directory *pdp,
1169 		      struct sgt_dma *iter,
1170 		      u64 idx,
1171 		      enum i915_cache_level cache_level,
1172 		      u32 flags)
1173 {
1174 	struct i915_page_directory *pd;
1175 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1176 	gen8_pte_t *vaddr;
1177 
1178 	pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2));
1179 	vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1180 	do {
1181 		vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma;
1182 
1183 		iter->dma += I915_GTT_PAGE_SIZE;
1184 		if (iter->dma >= iter->max) {
1185 			iter->sg = __sg_next(iter->sg);
1186 			if (!iter->sg) {
1187 				idx = 0;
1188 				break;
1189 			}
1190 
1191 			iter->dma = sg_dma_address(iter->sg);
1192 			iter->max = iter->dma + iter->sg->length;
1193 		}
1194 
1195 		if (gen8_pd_index(++idx, 0) == 0) {
1196 			if (gen8_pd_index(idx, 1) == 0) {
1197 				/* Limited by sg length for 3lvl */
1198 				if (gen8_pd_index(idx, 2) == 0)
1199 					break;
1200 
1201 				pd = pdp->entry[gen8_pd_index(idx, 2)];
1202 			}
1203 
1204 			kunmap_atomic(vaddr);
1205 			vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1206 		}
1207 	} while (1);
1208 	kunmap_atomic(vaddr);
1209 
1210 	return idx;
1211 }
1212 
1213 static void gen8_ppgtt_insert_huge(struct i915_vma *vma,
1214 				   struct sgt_dma *iter,
1215 				   enum i915_cache_level cache_level,
1216 				   u32 flags)
1217 {
1218 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1219 	u64 start = vma->node.start;
1220 	dma_addr_t rem = iter->sg->length;
1221 
1222 	GEM_BUG_ON(!i915_vm_is_4lvl(vma->vm));
1223 
1224 	do {
1225 		struct i915_page_directory * const pdp =
1226 			gen8_pdp_for_page_address(vma->vm, start);
1227 		struct i915_page_directory * const pd =
1228 			i915_pd_entry(pdp, __gen8_pte_index(start, 2));
1229 		gen8_pte_t encode = pte_encode;
1230 		unsigned int maybe_64K = -1;
1231 		unsigned int page_size;
1232 		gen8_pte_t *vaddr;
1233 		u16 index;
1234 
1235 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1236 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1237 		    rem >= I915_GTT_PAGE_SIZE_2M &&
1238 		    !__gen8_pte_index(start, 0)) {
1239 			index = __gen8_pte_index(start, 1);
1240 			encode |= GEN8_PDE_PS_2M;
1241 			page_size = I915_GTT_PAGE_SIZE_2M;
1242 
1243 			vaddr = kmap_atomic_px(pd);
1244 		} else {
1245 			struct i915_page_table *pt =
1246 				i915_pt_entry(pd, __gen8_pte_index(start, 1));
1247 
1248 			index = __gen8_pte_index(start, 0);
1249 			page_size = I915_GTT_PAGE_SIZE;
1250 
1251 			if (!index &&
1252 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1253 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1254 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1255 			     rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))
1256 				maybe_64K = __gen8_pte_index(start, 1);
1257 
1258 			vaddr = kmap_atomic_px(pt);
1259 		}
1260 
1261 		do {
1262 			GEM_BUG_ON(iter->sg->length < page_size);
1263 			vaddr[index++] = encode | iter->dma;
1264 
1265 			start += page_size;
1266 			iter->dma += page_size;
1267 			rem -= page_size;
1268 			if (iter->dma >= iter->max) {
1269 				iter->sg = __sg_next(iter->sg);
1270 				if (!iter->sg)
1271 					break;
1272 
1273 				rem = iter->sg->length;
1274 				iter->dma = sg_dma_address(iter->sg);
1275 				iter->max = iter->dma + rem;
1276 
1277 				if (maybe_64K != -1 && index < I915_PDES &&
1278 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1279 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1280 				       rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)))
1281 					maybe_64K = -1;
1282 
1283 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1284 					break;
1285 			}
1286 		} while (rem >= page_size && index < I915_PDES);
1287 
1288 		kunmap_atomic(vaddr);
1289 
1290 		/*
1291 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1292 		 * filled whole page-table with 64K entries, or filled part of
1293 		 * it and have reached the end of the sg table and we have
1294 		 * enough padding.
1295 		 */
1296 		if (maybe_64K != -1 &&
1297 		    (index == I915_PDES ||
1298 		     (i915_vm_has_scratch_64K(vma->vm) &&
1299 		      !iter->sg && IS_ALIGNED(vma->node.start +
1300 					      vma->node.size,
1301 					      I915_GTT_PAGE_SIZE_2M)))) {
1302 			vaddr = kmap_atomic_px(pd);
1303 			vaddr[maybe_64K] |= GEN8_PDE_IPS_64K;
1304 			kunmap_atomic(vaddr);
1305 			page_size = I915_GTT_PAGE_SIZE_64K;
1306 
1307 			/*
1308 			 * We write all 4K page entries, even when using 64K
1309 			 * pages. In order to verify that the HW isn't cheating
1310 			 * by using the 4K PTE instead of the 64K PTE, we want
1311 			 * to remove all the surplus entries. If the HW skipped
1312 			 * the 64K PTE, it will read/write into the scratch page
1313 			 * instead - which we detect as missing results during
1314 			 * selftests.
1315 			 */
1316 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1317 				u16 i;
1318 
1319 				encode = vma->vm->scratch[0].encode;
1320 				vaddr = kmap_atomic_px(i915_pt_entry(pd, maybe_64K));
1321 
1322 				for (i = 1; i < index; i += 16)
1323 					memset64(vaddr + i, encode, 15);
1324 
1325 				kunmap_atomic(vaddr);
1326 			}
1327 		}
1328 
1329 		vma->page_sizes.gtt |= page_size;
1330 	} while (iter->sg);
1331 }
1332 
1333 static void gen8_ppgtt_insert(struct i915_address_space *vm,
1334 			      struct i915_vma *vma,
1335 			      enum i915_cache_level cache_level,
1336 			      u32 flags)
1337 {
1338 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
1339 	struct sgt_dma iter = sgt_dma(vma);
1340 
1341 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1342 		gen8_ppgtt_insert_huge(vma, &iter, cache_level, flags);
1343 	} else  {
1344 		u64 idx = vma->node.start >> GEN8_PTE_SHIFT;
1345 
1346 		do {
1347 			struct i915_page_directory * const pdp =
1348 				gen8_pdp_for_page_index(vm, idx);
1349 
1350 			idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx,
1351 						    cache_level, flags);
1352 		} while (idx);
1353 
1354 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1355 	}
1356 }
1357 
1358 static int gen8_init_scratch(struct i915_address_space *vm)
1359 {
1360 	int ret;
1361 	int i;
1362 
1363 	/*
1364 	 * If everybody agrees to not to write into the scratch page,
1365 	 * we can reuse it for all vm, keeping contexts and processes separate.
1366 	 */
1367 	if (vm->has_read_only &&
1368 	    vm->i915->kernel_context &&
1369 	    vm->i915->kernel_context->vm) {
1370 		struct i915_address_space *clone = vm->i915->kernel_context->vm;
1371 
1372 		GEM_BUG_ON(!clone->has_read_only);
1373 
1374 		vm->scratch_order = clone->scratch_order;
1375 		memcpy(vm->scratch, clone->scratch, sizeof(vm->scratch));
1376 		px_dma(&vm->scratch[0]) = 0; /* no xfer of ownership */
1377 		return 0;
1378 	}
1379 
1380 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1381 	if (ret)
1382 		return ret;
1383 
1384 	vm->scratch[0].encode =
1385 		gen8_pte_encode(px_dma(&vm->scratch[0]),
1386 				I915_CACHE_LLC, vm->has_read_only);
1387 
1388 	for (i = 1; i <= vm->top; i++) {
1389 		if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[i]))))
1390 			goto free_scratch;
1391 
1392 		fill_px(&vm->scratch[i], vm->scratch[i - 1].encode);
1393 		vm->scratch[i].encode =
1394 			gen8_pde_encode(px_dma(&vm->scratch[i]),
1395 					I915_CACHE_LLC);
1396 	}
1397 
1398 	return 0;
1399 
1400 free_scratch:
1401 	free_scratch(vm);
1402 	return -ENOMEM;
1403 }
1404 
1405 static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1406 {
1407 	struct i915_address_space *vm = &ppgtt->vm;
1408 	struct i915_page_directory *pd = ppgtt->pd;
1409 	unsigned int idx;
1410 
1411 	GEM_BUG_ON(vm->top != 2);
1412 	GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES);
1413 
1414 	for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) {
1415 		struct i915_page_directory *pde;
1416 
1417 		pde = alloc_pd(vm);
1418 		if (IS_ERR(pde))
1419 			return PTR_ERR(pde);
1420 
1421 		fill_px(pde, vm->scratch[1].encode);
1422 		set_pd_entry(pd, idx, pde);
1423 		atomic_inc(px_used(pde)); /* keep pinned */
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 static void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt)
1430 {
1431 	struct drm_i915_private *i915 = gt->i915;
1432 
1433 	ppgtt->vm.gt = gt;
1434 	ppgtt->vm.i915 = i915;
1435 	ppgtt->vm.dma = &i915->drm.pdev->dev;
1436 	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
1437 
1438 	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1439 
1440 	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1441 	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1442 	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1443 	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1444 }
1445 
1446 static struct i915_page_directory *
1447 gen8_alloc_top_pd(struct i915_address_space *vm)
1448 {
1449 	const unsigned int count = gen8_pd_top_count(vm);
1450 	struct i915_page_directory *pd;
1451 
1452 	GEM_BUG_ON(count > ARRAY_SIZE(pd->entry));
1453 
1454 	pd = __alloc_pd(offsetof(typeof(*pd), entry[count]));
1455 	if (unlikely(!pd))
1456 		return ERR_PTR(-ENOMEM);
1457 
1458 	if (unlikely(setup_page_dma(vm, px_base(pd)))) {
1459 		kfree(pd);
1460 		return ERR_PTR(-ENOMEM);
1461 	}
1462 
1463 	fill_page_dma(px_base(pd), vm->scratch[vm->top].encode, count);
1464 	atomic_inc(px_used(pd)); /* mark as pinned */
1465 	return pd;
1466 }
1467 
1468 /*
1469  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1470  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1471  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1472  * space.
1473  *
1474  */
1475 static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1476 {
1477 	struct i915_ppgtt *ppgtt;
1478 	int err;
1479 
1480 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1481 	if (!ppgtt)
1482 		return ERR_PTR(-ENOMEM);
1483 
1484 	ppgtt_init(ppgtt, &i915->gt);
1485 	ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2;
1486 
1487 	/*
1488 	 * From bdw, there is hw support for read-only pages in the PPGTT.
1489 	 *
1490 	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
1491 	 * for now.
1492 	 */
1493 	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1494 
1495 	/* There are only few exceptions for gen >=6. chv and bxt.
1496 	 * And we are not sure about the latter so play safe for now.
1497 	 */
1498 	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1499 		ppgtt->vm.pt_kmap_wc = true;
1500 
1501 	err = gen8_init_scratch(&ppgtt->vm);
1502 	if (err)
1503 		goto err_free;
1504 
1505 	ppgtt->pd = gen8_alloc_top_pd(&ppgtt->vm);
1506 	if (IS_ERR(ppgtt->pd)) {
1507 		err = PTR_ERR(ppgtt->pd);
1508 		goto err_free_scratch;
1509 	}
1510 
1511 	if (!i915_vm_is_4lvl(&ppgtt->vm)) {
1512 		if (intel_vgpu_active(i915)) {
1513 			err = gen8_preallocate_top_level_pdp(ppgtt);
1514 			if (err)
1515 				goto err_free_pd;
1516 		}
1517 	}
1518 
1519 	ppgtt->vm.insert_entries = gen8_ppgtt_insert;
1520 	ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc;
1521 	ppgtt->vm.clear_range = gen8_ppgtt_clear;
1522 
1523 	if (intel_vgpu_active(i915))
1524 		gen8_ppgtt_notify_vgt(ppgtt, true);
1525 
1526 	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1527 
1528 	return ppgtt;
1529 
1530 err_free_pd:
1531 	__gen8_ppgtt_cleanup(&ppgtt->vm, ppgtt->pd,
1532 			     gen8_pd_top_count(&ppgtt->vm), ppgtt->vm.top);
1533 err_free_scratch:
1534 	free_scratch(&ppgtt->vm);
1535 err_free:
1536 	kfree(ppgtt);
1537 	return ERR_PTR(err);
1538 }
1539 
1540 /* Write pde (index) from the page directory @pd to the page table @pt */
1541 static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
1542 				  const unsigned int pde,
1543 				  const struct i915_page_table *pt)
1544 {
1545 	/* Caller needs to make sure the write completes if necessary */
1546 	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1547 		  ppgtt->pd_addr + pde);
1548 }
1549 
1550 static void gen7_ppgtt_enable(struct intel_gt *gt)
1551 {
1552 	struct drm_i915_private *i915 = gt->i915;
1553 	struct intel_uncore *uncore = gt->uncore;
1554 	struct intel_engine_cs *engine;
1555 	enum intel_engine_id id;
1556 	u32 ecochk;
1557 
1558 	intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B);
1559 
1560 	ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
1561 	if (IS_HASWELL(i915)) {
1562 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1563 	} else {
1564 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1565 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1566 	}
1567 	intel_uncore_write(uncore, GAM_ECOCHK, ecochk);
1568 
1569 	for_each_engine(engine, i915, id) {
1570 		/* GFX_MODE is per-ring on gen7+ */
1571 		ENGINE_WRITE(engine,
1572 			     RING_MODE_GEN7,
1573 			     _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1574 	}
1575 }
1576 
1577 static void gen6_ppgtt_enable(struct intel_gt *gt)
1578 {
1579 	struct intel_uncore *uncore = gt->uncore;
1580 
1581 	intel_uncore_rmw(uncore,
1582 			 GAC_ECO_BITS,
1583 			 0,
1584 			 ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B);
1585 
1586 	intel_uncore_rmw(uncore,
1587 			 GAB_CTL,
1588 			 0,
1589 			 GAB_CTL_CONT_AFTER_PAGEFAULT);
1590 
1591 	intel_uncore_rmw(uncore,
1592 			 GAM_ECOCHK,
1593 			 0,
1594 			 ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1595 
1596 	if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */
1597 		intel_uncore_write(uncore,
1598 				   GFX_MODE,
1599 				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1600 }
1601 
1602 /* PPGTT support for Sandybdrige/Gen6 and later */
1603 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1604 				   u64 start, u64 length)
1605 {
1606 	struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1607 	const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1608 	const gen6_pte_t scratch_pte = vm->scratch[0].encode;
1609 	unsigned int pde = first_entry / GEN6_PTES;
1610 	unsigned int pte = first_entry % GEN6_PTES;
1611 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1612 
1613 	while (num_entries) {
1614 		struct i915_page_table * const pt =
1615 			i915_pt_entry(ppgtt->base.pd, pde++);
1616 		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1617 		gen6_pte_t *vaddr;
1618 
1619 		GEM_BUG_ON(px_base(pt) == px_base(&vm->scratch[1]));
1620 
1621 		num_entries -= count;
1622 
1623 		GEM_BUG_ON(count > atomic_read(&pt->used));
1624 		if (!atomic_sub_return(count, &pt->used))
1625 			ppgtt->scan_for_unused_pt = true;
1626 
1627 		/*
1628 		 * Note that the hw doesn't support removing PDE on the fly
1629 		 * (they are cached inside the context with no means to
1630 		 * invalidate the cache), so we can only reset the PTE
1631 		 * entries back to scratch.
1632 		 */
1633 
1634 		vaddr = kmap_atomic_px(pt);
1635 		memset32(vaddr + pte, scratch_pte, count);
1636 		kunmap_atomic(vaddr);
1637 
1638 		pte = 0;
1639 	}
1640 }
1641 
1642 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1643 				      struct i915_vma *vma,
1644 				      enum i915_cache_level cache_level,
1645 				      u32 flags)
1646 {
1647 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1648 	struct i915_page_directory * const pd = ppgtt->pd;
1649 	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1650 	unsigned act_pt = first_entry / GEN6_PTES;
1651 	unsigned act_pte = first_entry % GEN6_PTES;
1652 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1653 	struct sgt_dma iter = sgt_dma(vma);
1654 	gen6_pte_t *vaddr;
1655 
1656 	GEM_BUG_ON(pd->entry[act_pt] == &vm->scratch[1]);
1657 
1658 	vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1659 	do {
1660 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1661 
1662 		iter.dma += I915_GTT_PAGE_SIZE;
1663 		if (iter.dma == iter.max) {
1664 			iter.sg = __sg_next(iter.sg);
1665 			if (!iter.sg)
1666 				break;
1667 
1668 			iter.dma = sg_dma_address(iter.sg);
1669 			iter.max = iter.dma + iter.sg->length;
1670 		}
1671 
1672 		if (++act_pte == GEN6_PTES) {
1673 			kunmap_atomic(vaddr);
1674 			vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1675 			act_pte = 0;
1676 		}
1677 	} while (1);
1678 	kunmap_atomic(vaddr);
1679 
1680 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1681 }
1682 
1683 static int gen6_alloc_va_range(struct i915_address_space *vm,
1684 			       u64 start, u64 length)
1685 {
1686 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1687 	struct i915_page_directory * const pd = ppgtt->base.pd;
1688 	struct i915_page_table *pt, *alloc = NULL;
1689 	intel_wakeref_t wakeref;
1690 	u64 from = start;
1691 	unsigned int pde;
1692 	bool flush = false;
1693 	int ret = 0;
1694 
1695 	wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1696 
1697 	spin_lock(&pd->lock);
1698 	gen6_for_each_pde(pt, pd, start, length, pde) {
1699 		const unsigned int count = gen6_pte_count(start, length);
1700 
1701 		if (px_base(pt) == px_base(&vm->scratch[1])) {
1702 			spin_unlock(&pd->lock);
1703 
1704 			pt = fetch_and_zero(&alloc);
1705 			if (!pt)
1706 				pt = alloc_pt(vm);
1707 			if (IS_ERR(pt)) {
1708 				ret = PTR_ERR(pt);
1709 				goto unwind_out;
1710 			}
1711 
1712 			fill32_px(pt, vm->scratch[0].encode);
1713 
1714 			spin_lock(&pd->lock);
1715 			if (pd->entry[pde] == &vm->scratch[1]) {
1716 				pd->entry[pde] = pt;
1717 				if (i915_vma_is_bound(ppgtt->vma,
1718 						      I915_VMA_GLOBAL_BIND)) {
1719 					gen6_write_pde(ppgtt, pde, pt);
1720 					flush = true;
1721 				}
1722 			} else {
1723 				alloc = pt;
1724 				pt = pd->entry[pde];
1725 			}
1726 		}
1727 
1728 		atomic_add(count, &pt->used);
1729 	}
1730 	spin_unlock(&pd->lock);
1731 
1732 	if (flush) {
1733 		mark_tlbs_dirty(&ppgtt->base);
1734 		gen6_ggtt_invalidate(vm->gt->ggtt);
1735 	}
1736 
1737 	goto out;
1738 
1739 unwind_out:
1740 	gen6_ppgtt_clear_range(vm, from, start - from);
1741 out:
1742 	if (alloc)
1743 		free_px(vm, alloc);
1744 	intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1745 	return ret;
1746 }
1747 
1748 static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1749 {
1750 	struct i915_address_space * const vm = &ppgtt->base.vm;
1751 	struct i915_page_directory * const pd = ppgtt->base.pd;
1752 	int ret;
1753 
1754 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1755 	if (ret)
1756 		return ret;
1757 
1758 	vm->scratch[0].encode =
1759 		vm->pte_encode(px_dma(&vm->scratch[0]),
1760 			       I915_CACHE_NONE, PTE_READ_ONLY);
1761 
1762 	if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[1])))) {
1763 		cleanup_scratch_page(vm);
1764 		return -ENOMEM;
1765 	}
1766 
1767 	fill32_px(&vm->scratch[1], vm->scratch[0].encode);
1768 	memset_p(pd->entry, &vm->scratch[1], I915_PDES);
1769 
1770 	return 0;
1771 }
1772 
1773 static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1774 {
1775 	struct i915_page_directory * const pd = ppgtt->base.pd;
1776 	struct i915_page_dma * const scratch =
1777 		px_base(&ppgtt->base.vm.scratch[1]);
1778 	struct i915_page_table *pt;
1779 	u32 pde;
1780 
1781 	gen6_for_all_pdes(pt, pd, pde)
1782 		if (px_base(pt) != scratch)
1783 			free_px(&ppgtt->base.vm, pt);
1784 }
1785 
1786 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1787 {
1788 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1789 	struct drm_i915_private *i915 = vm->i915;
1790 
1791 	/* FIXME remove the struct_mutex to bring the locking under control */
1792 	mutex_lock(&i915->drm.struct_mutex);
1793 	i915_vma_destroy(ppgtt->vma);
1794 	mutex_unlock(&i915->drm.struct_mutex);
1795 
1796 	gen6_ppgtt_free_pd(ppgtt);
1797 	free_scratch(vm);
1798 	kfree(ppgtt->base.pd);
1799 }
1800 
1801 static int pd_vma_set_pages(struct i915_vma *vma)
1802 {
1803 	vma->pages = ERR_PTR(-ENODEV);
1804 	return 0;
1805 }
1806 
1807 static void pd_vma_clear_pages(struct i915_vma *vma)
1808 {
1809 	GEM_BUG_ON(!vma->pages);
1810 
1811 	vma->pages = NULL;
1812 }
1813 
1814 static int pd_vma_bind(struct i915_vma *vma,
1815 		       enum i915_cache_level cache_level,
1816 		       u32 unused)
1817 {
1818 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1819 	struct gen6_ppgtt *ppgtt = vma->private;
1820 	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1821 	struct i915_page_table *pt;
1822 	unsigned int pde;
1823 
1824 	px_base(ppgtt->base.pd)->ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1825 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1826 
1827 	gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
1828 		gen6_write_pde(ppgtt, pde, pt);
1829 
1830 	mark_tlbs_dirty(&ppgtt->base);
1831 	gen6_ggtt_invalidate(ggtt);
1832 
1833 	return 0;
1834 }
1835 
1836 static void pd_vma_unbind(struct i915_vma *vma)
1837 {
1838 	struct gen6_ppgtt *ppgtt = vma->private;
1839 	struct i915_page_directory * const pd = ppgtt->base.pd;
1840 	struct i915_page_dma * const scratch =
1841 		px_base(&ppgtt->base.vm.scratch[1]);
1842 	struct i915_page_table *pt;
1843 	unsigned int pde;
1844 
1845 	if (!ppgtt->scan_for_unused_pt)
1846 		return;
1847 
1848 	/* Free all no longer used page tables */
1849 	gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
1850 		if (px_base(pt) == scratch || atomic_read(&pt->used))
1851 			continue;
1852 
1853 		free_px(&ppgtt->base.vm, pt);
1854 		pd->entry[pde] = scratch;
1855 	}
1856 
1857 	ppgtt->scan_for_unused_pt = false;
1858 }
1859 
1860 static const struct i915_vma_ops pd_vma_ops = {
1861 	.set_pages = pd_vma_set_pages,
1862 	.clear_pages = pd_vma_clear_pages,
1863 	.bind_vma = pd_vma_bind,
1864 	.unbind_vma = pd_vma_unbind,
1865 };
1866 
1867 static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
1868 {
1869 	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
1870 	struct i915_ggtt *ggtt = ppgtt->base.vm.gt->ggtt;
1871 	struct i915_vma *vma;
1872 
1873 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
1874 	GEM_BUG_ON(size > ggtt->vm.total);
1875 
1876 	vma = i915_vma_alloc();
1877 	if (!vma)
1878 		return ERR_PTR(-ENOMEM);
1879 
1880 	i915_active_init(i915, &vma->active, NULL, NULL);
1881 
1882 	vma->vm = &ggtt->vm;
1883 	vma->ops = &pd_vma_ops;
1884 	vma->private = ppgtt;
1885 
1886 	vma->size = size;
1887 	vma->fence_size = size;
1888 	vma->flags = I915_VMA_GGTT;
1889 	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
1890 
1891 	INIT_LIST_HEAD(&vma->obj_link);
1892 	INIT_LIST_HEAD(&vma->closed_link);
1893 
1894 	mutex_lock(&vma->vm->mutex);
1895 	list_add(&vma->vm_link, &vma->vm->unbound_list);
1896 	mutex_unlock(&vma->vm->mutex);
1897 
1898 	return vma;
1899 }
1900 
1901 int gen6_ppgtt_pin(struct i915_ppgtt *base)
1902 {
1903 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1904 	int err;
1905 
1906 	GEM_BUG_ON(ppgtt->base.vm.closed);
1907 
1908 	/*
1909 	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
1910 	 * which will be pinned into every active context.
1911 	 * (When vma->pin_count becomes atomic, I expect we will naturally
1912 	 * need a larger, unpacked, type and kill this redundancy.)
1913 	 */
1914 	if (ppgtt->pin_count++)
1915 		return 0;
1916 
1917 	/*
1918 	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1919 	 * allocator works in address space sizes, so it's multiplied by page
1920 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1921 	 */
1922 	err = i915_vma_pin(ppgtt->vma,
1923 			   0, GEN6_PD_ALIGN,
1924 			   PIN_GLOBAL | PIN_HIGH);
1925 	if (err)
1926 		goto unpin;
1927 
1928 	return 0;
1929 
1930 unpin:
1931 	ppgtt->pin_count = 0;
1932 	return err;
1933 }
1934 
1935 void gen6_ppgtt_unpin(struct i915_ppgtt *base)
1936 {
1937 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1938 
1939 	GEM_BUG_ON(!ppgtt->pin_count);
1940 	if (--ppgtt->pin_count)
1941 		return;
1942 
1943 	i915_vma_unpin(ppgtt->vma);
1944 }
1945 
1946 void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
1947 {
1948 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1949 
1950 	if (!ppgtt->pin_count)
1951 		return;
1952 
1953 	ppgtt->pin_count = 0;
1954 	i915_vma_unpin(ppgtt->vma);
1955 }
1956 
1957 static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1958 {
1959 	struct i915_ggtt * const ggtt = &i915->ggtt;
1960 	struct gen6_ppgtt *ppgtt;
1961 	int err;
1962 
1963 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1964 	if (!ppgtt)
1965 		return ERR_PTR(-ENOMEM);
1966 
1967 	ppgtt_init(&ppgtt->base, &i915->gt);
1968 	ppgtt->base.vm.top = 1;
1969 
1970 	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
1971 	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
1972 	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
1973 	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
1974 
1975 	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
1976 
1977 	ppgtt->base.pd = __alloc_pd(sizeof(*ppgtt->base.pd));
1978 	if (!ppgtt->base.pd) {
1979 		err = -ENOMEM;
1980 		goto err_free;
1981 	}
1982 
1983 	err = gen6_ppgtt_init_scratch(ppgtt);
1984 	if (err)
1985 		goto err_pd;
1986 
1987 	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
1988 	if (IS_ERR(ppgtt->vma)) {
1989 		err = PTR_ERR(ppgtt->vma);
1990 		goto err_scratch;
1991 	}
1992 
1993 	return &ppgtt->base;
1994 
1995 err_scratch:
1996 	free_scratch(&ppgtt->base.vm);
1997 err_pd:
1998 	kfree(ppgtt->base.pd);
1999 err_free:
2000 	kfree(ppgtt);
2001 	return ERR_PTR(err);
2002 }
2003 
2004 static void gtt_write_workarounds(struct intel_gt *gt)
2005 {
2006 	struct drm_i915_private *i915 = gt->i915;
2007 	struct intel_uncore *uncore = gt->uncore;
2008 
2009 	/* This function is for gtt related workarounds. This function is
2010 	 * called on driver load and after a GPU reset, so you can place
2011 	 * workarounds here even if they get overwritten by GPU reset.
2012 	 */
2013 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2014 	if (IS_BROADWELL(i915))
2015 		intel_uncore_write(uncore,
2016 				   GEN8_L3_LRA_1_GPGPU,
2017 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2018 	else if (IS_CHERRYVIEW(i915))
2019 		intel_uncore_write(uncore,
2020 				   GEN8_L3_LRA_1_GPGPU,
2021 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2022 	else if (IS_GEN9_LP(i915))
2023 		intel_uncore_write(uncore,
2024 				   GEN8_L3_LRA_1_GPGPU,
2025 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2026 	else if (INTEL_GEN(i915) >= 9)
2027 		intel_uncore_write(uncore,
2028 				   GEN8_L3_LRA_1_GPGPU,
2029 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2030 
2031 	/*
2032 	 * To support 64K PTEs we need to first enable the use of the
2033 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2034 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2035 	 * shouldn't be needed after GEN10.
2036 	 *
2037 	 * 64K pages were first introduced from BDW+, although technically they
2038 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2039 	 * 32K pages, but we don't currently have any support for it in our
2040 	 * driver.
2041 	 */
2042 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
2043 	    INTEL_GEN(i915) <= 10)
2044 		intel_uncore_rmw(uncore,
2045 				 GEN8_GAMW_ECO_DEV_RW_IA,
2046 				 0,
2047 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2048 
2049 	if (IS_GEN_RANGE(i915, 8, 11)) {
2050 		bool can_use_gtt_cache = true;
2051 
2052 		/*
2053 		 * According to the BSpec if we use 2M/1G pages then we also
2054 		 * need to disable the GTT cache. At least on BDW we can see
2055 		 * visual corruption when using 2M pages, and not disabling the
2056 		 * GTT cache.
2057 		 */
2058 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
2059 			can_use_gtt_cache = false;
2060 
2061 		/* WaGttCachingOffByDefault */
2062 		intel_uncore_write(uncore,
2063 				   HSW_GTT_CACHE_EN,
2064 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
2065 		WARN_ON_ONCE(can_use_gtt_cache &&
2066 			     intel_uncore_read(uncore,
2067 					       HSW_GTT_CACHE_EN) == 0);
2068 	}
2069 }
2070 
2071 int i915_ppgtt_init_hw(struct intel_gt *gt)
2072 {
2073 	struct drm_i915_private *i915 = gt->i915;
2074 
2075 	gtt_write_workarounds(gt);
2076 
2077 	if (IS_GEN(i915, 6))
2078 		gen6_ppgtt_enable(gt);
2079 	else if (IS_GEN(i915, 7))
2080 		gen7_ppgtt_enable(gt);
2081 
2082 	return 0;
2083 }
2084 
2085 static struct i915_ppgtt *
2086 __ppgtt_create(struct drm_i915_private *i915)
2087 {
2088 	if (INTEL_GEN(i915) < 8)
2089 		return gen6_ppgtt_create(i915);
2090 	else
2091 		return gen8_ppgtt_create(i915);
2092 }
2093 
2094 struct i915_ppgtt *
2095 i915_ppgtt_create(struct drm_i915_private *i915)
2096 {
2097 	struct i915_ppgtt *ppgtt;
2098 
2099 	ppgtt = __ppgtt_create(i915);
2100 	if (IS_ERR(ppgtt))
2101 		return ppgtt;
2102 
2103 	trace_i915_ppgtt_create(&ppgtt->vm);
2104 
2105 	return ppgtt;
2106 }
2107 
2108 /* Certain Gen5 chipsets require require idling the GPU before
2109  * unmapping anything from the GTT when VT-d is enabled.
2110  */
2111 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2112 {
2113 	/* Query intel_iommu to see if we need the workaround. Presumably that
2114 	 * was loaded first.
2115 	 */
2116 	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2117 }
2118 
2119 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
2120 {
2121 	struct drm_i915_private *i915 = ggtt->vm.i915;
2122 
2123 	/* Don't bother messing with faults pre GEN6 as we have little
2124 	 * documentation supporting that it's a good idea.
2125 	 */
2126 	if (INTEL_GEN(i915) < 6)
2127 		return;
2128 
2129 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
2130 
2131 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2132 
2133 	ggtt->invalidate(ggtt);
2134 }
2135 
2136 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
2137 {
2138 	ggtt_suspend_mappings(&i915->ggtt);
2139 }
2140 
2141 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2142 			       struct sg_table *pages)
2143 {
2144 	do {
2145 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2146 				     pages->sgl, pages->nents,
2147 				     PCI_DMA_BIDIRECTIONAL,
2148 				     DMA_ATTR_NO_WARN))
2149 			return 0;
2150 
2151 		/*
2152 		 * If the DMA remap fails, one cause can be that we have
2153 		 * too many objects pinned in a small remapping table,
2154 		 * such as swiotlb. Incrementally purge all other objects and
2155 		 * try again - if there are no more pages to remove from
2156 		 * the DMA remapper, i915_gem_shrink will return 0.
2157 		 */
2158 		GEM_BUG_ON(obj->mm.pages == pages);
2159 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2160 				 obj->base.size >> PAGE_SHIFT, NULL,
2161 				 I915_SHRINK_BOUND |
2162 				 I915_SHRINK_UNBOUND));
2163 
2164 	return -ENOSPC;
2165 }
2166 
2167 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2168 {
2169 	writeq(pte, addr);
2170 }
2171 
2172 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2173 				  dma_addr_t addr,
2174 				  u64 offset,
2175 				  enum i915_cache_level level,
2176 				  u32 unused)
2177 {
2178 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2179 	gen8_pte_t __iomem *pte =
2180 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2181 
2182 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2183 
2184 	ggtt->invalidate(ggtt);
2185 }
2186 
2187 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2188 				     struct i915_vma *vma,
2189 				     enum i915_cache_level level,
2190 				     u32 flags)
2191 {
2192 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2193 	struct sgt_iter sgt_iter;
2194 	gen8_pte_t __iomem *gtt_entries;
2195 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2196 	dma_addr_t addr;
2197 
2198 	/*
2199 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2200 	 * not to allow the user to override access to a read only page.
2201 	 */
2202 
2203 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2204 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2205 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2206 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2207 
2208 	/*
2209 	 * We want to flush the TLBs only after we're certain all the PTE
2210 	 * updates have finished.
2211 	 */
2212 	ggtt->invalidate(ggtt);
2213 }
2214 
2215 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2216 				  dma_addr_t addr,
2217 				  u64 offset,
2218 				  enum i915_cache_level level,
2219 				  u32 flags)
2220 {
2221 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2222 	gen6_pte_t __iomem *pte =
2223 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2224 
2225 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2226 
2227 	ggtt->invalidate(ggtt);
2228 }
2229 
2230 /*
2231  * Binds an object into the global gtt with the specified cache level. The object
2232  * will be accessible to the GPU via commands whose operands reference offsets
2233  * within the global GTT as well as accessible by the GPU through the GMADR
2234  * mapped BAR (dev_priv->mm.gtt->gtt).
2235  */
2236 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2237 				     struct i915_vma *vma,
2238 				     enum i915_cache_level level,
2239 				     u32 flags)
2240 {
2241 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2242 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2243 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2244 	struct sgt_iter iter;
2245 	dma_addr_t addr;
2246 	for_each_sgt_dma(addr, iter, vma->pages)
2247 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2248 
2249 	/*
2250 	 * We want to flush the TLBs only after we're certain all the PTE
2251 	 * updates have finished.
2252 	 */
2253 	ggtt->invalidate(ggtt);
2254 }
2255 
2256 static void nop_clear_range(struct i915_address_space *vm,
2257 			    u64 start, u64 length)
2258 {
2259 }
2260 
2261 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2262 				  u64 start, u64 length)
2263 {
2264 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2265 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2266 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2267 	const gen8_pte_t scratch_pte = vm->scratch[0].encode;
2268 	gen8_pte_t __iomem *gtt_base =
2269 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2270 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2271 	int i;
2272 
2273 	if (WARN(num_entries > max_entries,
2274 		 "First entry = %d; Num entries = %d (max=%d)\n",
2275 		 first_entry, num_entries, max_entries))
2276 		num_entries = max_entries;
2277 
2278 	for (i = 0; i < num_entries; i++)
2279 		gen8_set_pte(&gtt_base[i], scratch_pte);
2280 }
2281 
2282 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2283 {
2284 	struct drm_i915_private *dev_priv = vm->i915;
2285 
2286 	/*
2287 	 * Make sure the internal GAM fifo has been cleared of all GTT
2288 	 * writes before exiting stop_machine(). This guarantees that
2289 	 * any aperture accesses waiting to start in another process
2290 	 * cannot back up behind the GTT writes causing a hang.
2291 	 * The register can be any arbitrary GAM register.
2292 	 */
2293 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2294 }
2295 
2296 struct insert_page {
2297 	struct i915_address_space *vm;
2298 	dma_addr_t addr;
2299 	u64 offset;
2300 	enum i915_cache_level level;
2301 };
2302 
2303 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2304 {
2305 	struct insert_page *arg = _arg;
2306 
2307 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2308 	bxt_vtd_ggtt_wa(arg->vm);
2309 
2310 	return 0;
2311 }
2312 
2313 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2314 					  dma_addr_t addr,
2315 					  u64 offset,
2316 					  enum i915_cache_level level,
2317 					  u32 unused)
2318 {
2319 	struct insert_page arg = { vm, addr, offset, level };
2320 
2321 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2322 }
2323 
2324 struct insert_entries {
2325 	struct i915_address_space *vm;
2326 	struct i915_vma *vma;
2327 	enum i915_cache_level level;
2328 	u32 flags;
2329 };
2330 
2331 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2332 {
2333 	struct insert_entries *arg = _arg;
2334 
2335 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2336 	bxt_vtd_ggtt_wa(arg->vm);
2337 
2338 	return 0;
2339 }
2340 
2341 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2342 					     struct i915_vma *vma,
2343 					     enum i915_cache_level level,
2344 					     u32 flags)
2345 {
2346 	struct insert_entries arg = { vm, vma, level, flags };
2347 
2348 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2349 }
2350 
2351 struct clear_range {
2352 	struct i915_address_space *vm;
2353 	u64 start;
2354 	u64 length;
2355 };
2356 
2357 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2358 {
2359 	struct clear_range *arg = _arg;
2360 
2361 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2362 	bxt_vtd_ggtt_wa(arg->vm);
2363 
2364 	return 0;
2365 }
2366 
2367 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2368 					  u64 start,
2369 					  u64 length)
2370 {
2371 	struct clear_range arg = { vm, start, length };
2372 
2373 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2374 }
2375 
2376 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2377 				  u64 start, u64 length)
2378 {
2379 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2380 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2381 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2382 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2383 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2384 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2385 	int i;
2386 
2387 	if (WARN(num_entries > max_entries,
2388 		 "First entry = %d; Num entries = %d (max=%d)\n",
2389 		 first_entry, num_entries, max_entries))
2390 		num_entries = max_entries;
2391 
2392 	scratch_pte = vm->scratch[0].encode;
2393 	for (i = 0; i < num_entries; i++)
2394 		iowrite32(scratch_pte, &gtt_base[i]);
2395 }
2396 
2397 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2398 				  dma_addr_t addr,
2399 				  u64 offset,
2400 				  enum i915_cache_level cache_level,
2401 				  u32 unused)
2402 {
2403 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2404 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2405 
2406 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2407 }
2408 
2409 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2410 				     struct i915_vma *vma,
2411 				     enum i915_cache_level cache_level,
2412 				     u32 unused)
2413 {
2414 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2415 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2416 
2417 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2418 				    flags);
2419 }
2420 
2421 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2422 				  u64 start, u64 length)
2423 {
2424 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2425 }
2426 
2427 static int ggtt_bind_vma(struct i915_vma *vma,
2428 			 enum i915_cache_level cache_level,
2429 			 u32 flags)
2430 {
2431 	struct drm_i915_private *i915 = vma->vm->i915;
2432 	struct drm_i915_gem_object *obj = vma->obj;
2433 	intel_wakeref_t wakeref;
2434 	u32 pte_flags;
2435 
2436 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2437 	pte_flags = 0;
2438 	if (i915_gem_object_is_readonly(obj))
2439 		pte_flags |= PTE_READ_ONLY;
2440 
2441 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2442 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2443 
2444 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2445 
2446 	/*
2447 	 * Without aliasing PPGTT there's no difference between
2448 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2449 	 * upgrade to both bound if we bind either to avoid double-binding.
2450 	 */
2451 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2452 
2453 	return 0;
2454 }
2455 
2456 static void ggtt_unbind_vma(struct i915_vma *vma)
2457 {
2458 	struct drm_i915_private *i915 = vma->vm->i915;
2459 	intel_wakeref_t wakeref;
2460 
2461 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2462 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2463 }
2464 
2465 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2466 				 enum i915_cache_level cache_level,
2467 				 u32 flags)
2468 {
2469 	struct drm_i915_private *i915 = vma->vm->i915;
2470 	u32 pte_flags;
2471 	int ret;
2472 
2473 	/* Currently applicable only to VLV */
2474 	pte_flags = 0;
2475 	if (i915_gem_object_is_readonly(vma->obj))
2476 		pte_flags |= PTE_READ_ONLY;
2477 
2478 	if (flags & I915_VMA_LOCAL_BIND) {
2479 		struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
2480 
2481 		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2482 			ret = alias->vm.allocate_va_range(&alias->vm,
2483 							  vma->node.start,
2484 							  vma->size);
2485 			if (ret)
2486 				return ret;
2487 		}
2488 
2489 		alias->vm.insert_entries(&alias->vm, vma,
2490 					 cache_level, pte_flags);
2491 	}
2492 
2493 	if (flags & I915_VMA_GLOBAL_BIND) {
2494 		intel_wakeref_t wakeref;
2495 
2496 		with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2497 			vma->vm->insert_entries(vma->vm, vma,
2498 						cache_level, pte_flags);
2499 		}
2500 	}
2501 
2502 	return 0;
2503 }
2504 
2505 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2506 {
2507 	struct drm_i915_private *i915 = vma->vm->i915;
2508 
2509 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2510 		struct i915_address_space *vm = vma->vm;
2511 		intel_wakeref_t wakeref;
2512 
2513 		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2514 			vm->clear_range(vm, vma->node.start, vma->size);
2515 	}
2516 
2517 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2518 		struct i915_address_space *vm =
2519 			&i915_vm_to_ggtt(vma->vm)->alias->vm;
2520 
2521 		vm->clear_range(vm, vma->node.start, vma->size);
2522 	}
2523 }
2524 
2525 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2526 			       struct sg_table *pages)
2527 {
2528 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2529 	struct device *kdev = &dev_priv->drm.pdev->dev;
2530 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2531 
2532 	if (unlikely(ggtt->do_idle_maps)) {
2533 		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2534 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2535 			/* Wait a bit, in hopes it avoids the hang */
2536 			udelay(10);
2537 		}
2538 	}
2539 
2540 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2541 }
2542 
2543 static int ggtt_set_pages(struct i915_vma *vma)
2544 {
2545 	int ret;
2546 
2547 	GEM_BUG_ON(vma->pages);
2548 
2549 	ret = i915_get_ggtt_vma_pages(vma);
2550 	if (ret)
2551 		return ret;
2552 
2553 	vma->page_sizes = vma->obj->mm.page_sizes;
2554 
2555 	return 0;
2556 }
2557 
2558 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2559 				  unsigned long color,
2560 				  u64 *start,
2561 				  u64 *end)
2562 {
2563 	if (node->allocated && node->color != color)
2564 		*start += I915_GTT_PAGE_SIZE;
2565 
2566 	/* Also leave a space between the unallocated reserved node after the
2567 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2568 	 * to insert a guard page to prevent prefetches crossing over the
2569 	 * GTT boundary.
2570 	 */
2571 	node = list_next_entry(node, node_list);
2572 	if (node->color != color)
2573 		*end -= I915_GTT_PAGE_SIZE;
2574 }
2575 
2576 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
2577 {
2578 	struct i915_ppgtt *ppgtt;
2579 	int err;
2580 
2581 	ppgtt = i915_ppgtt_create(ggtt->vm.i915);
2582 	if (IS_ERR(ppgtt))
2583 		return PTR_ERR(ppgtt);
2584 
2585 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2586 		err = -ENODEV;
2587 		goto err_ppgtt;
2588 	}
2589 
2590 	/*
2591 	 * Note we only pre-allocate as far as the end of the global
2592 	 * GTT. On 48b / 4-level page-tables, the difference is very,
2593 	 * very significant! We have to preallocate as GVT/vgpu does
2594 	 * not like the page directory disappearing.
2595 	 */
2596 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2597 	if (err)
2598 		goto err_ppgtt;
2599 
2600 	ggtt->alias = ppgtt;
2601 
2602 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2603 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2604 
2605 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2606 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2607 
2608 	return 0;
2609 
2610 err_ppgtt:
2611 	i915_vm_put(&ppgtt->vm);
2612 	return err;
2613 }
2614 
2615 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
2616 {
2617 	struct drm_i915_private *i915 = ggtt->vm.i915;
2618 	struct i915_ppgtt *ppgtt;
2619 
2620 	mutex_lock(&i915->drm.struct_mutex);
2621 
2622 	ppgtt = fetch_and_zero(&ggtt->alias);
2623 	if (!ppgtt)
2624 		goto out;
2625 
2626 	i915_vm_put(&ppgtt->vm);
2627 
2628 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2629 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2630 
2631 out:
2632 	mutex_unlock(&i915->drm.struct_mutex);
2633 }
2634 
2635 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
2636 {
2637 	u64 size;
2638 	int ret;
2639 
2640 	if (!USES_GUC(ggtt->vm.i915))
2641 		return 0;
2642 
2643 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
2644 	size = ggtt->vm.total - GUC_GGTT_TOP;
2645 
2646 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
2647 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
2648 				   PIN_NOEVICT);
2649 	if (ret)
2650 		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
2651 
2652 	return ret;
2653 }
2654 
2655 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
2656 {
2657 	if (drm_mm_node_allocated(&ggtt->uc_fw))
2658 		drm_mm_remove_node(&ggtt->uc_fw);
2659 }
2660 
2661 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
2662 {
2663 	ggtt_release_guc_top(ggtt);
2664 	drm_mm_remove_node(&ggtt->error_capture);
2665 }
2666 
2667 static int init_ggtt(struct i915_ggtt *ggtt)
2668 {
2669 	/* Let GEM Manage all of the aperture.
2670 	 *
2671 	 * However, leave one page at the end still bound to the scratch page.
2672 	 * There are a number of places where the hardware apparently prefetches
2673 	 * past the end of the object, and we've seen multiple hangs with the
2674 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2675 	 * aperture.  One page should be enough to keep any prefetching inside
2676 	 * of the aperture.
2677 	 */
2678 	unsigned long hole_start, hole_end;
2679 	struct drm_mm_node *entry;
2680 	int ret;
2681 
2682 	/*
2683 	 * GuC requires all resources that we're sharing with it to be placed in
2684 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
2685 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2686 	 * why.
2687 	 */
2688 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2689 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
2690 
2691 	ret = intel_vgt_balloon(ggtt);
2692 	if (ret)
2693 		return ret;
2694 
2695 	/* Reserve a mappable slot for our lockless error capture */
2696 	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2697 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2698 					  0, ggtt->mappable_end,
2699 					  DRM_MM_INSERT_LOW);
2700 	if (ret)
2701 		return ret;
2702 
2703 	/*
2704 	 * The upper portion of the GuC address space has a sizeable hole
2705 	 * (several MB) that is inaccessible by GuC. Reserve this range within
2706 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
2707 	 */
2708 	ret = ggtt_reserve_guc_top(ggtt);
2709 	if (ret)
2710 		goto err;
2711 
2712 	/* Clear any non-preallocated blocks */
2713 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2714 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2715 			      hole_start, hole_end);
2716 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
2717 				     hole_end - hole_start);
2718 	}
2719 
2720 	/* And finally clear the reserved guard page */
2721 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2722 
2723 	return 0;
2724 
2725 err:
2726 	cleanup_init_ggtt(ggtt);
2727 	return ret;
2728 }
2729 
2730 int i915_init_ggtt(struct drm_i915_private *i915)
2731 {
2732 	int ret;
2733 
2734 	ret = init_ggtt(&i915->ggtt);
2735 	if (ret)
2736 		return ret;
2737 
2738 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
2739 		ret = init_aliasing_ppgtt(&i915->ggtt);
2740 		if (ret)
2741 			cleanup_init_ggtt(&i915->ggtt);
2742 	}
2743 
2744 	return 0;
2745 }
2746 
2747 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
2748 {
2749 	struct drm_i915_private *i915 = ggtt->vm.i915;
2750 	struct i915_vma *vma, *vn;
2751 
2752 	ggtt->vm.closed = true;
2753 
2754 	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
2755 	flush_workqueue(i915->wq);
2756 
2757 	mutex_lock(&i915->drm.struct_mutex);
2758 
2759 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2760 		WARN_ON(i915_vma_unbind(vma));
2761 
2762 	if (drm_mm_node_allocated(&ggtt->error_capture))
2763 		drm_mm_remove_node(&ggtt->error_capture);
2764 
2765 	ggtt_release_guc_top(ggtt);
2766 
2767 	if (drm_mm_initialized(&ggtt->vm.mm)) {
2768 		intel_vgt_deballoon(ggtt);
2769 		i915_address_space_fini(&ggtt->vm);
2770 	}
2771 
2772 	ggtt->vm.cleanup(&ggtt->vm);
2773 
2774 	mutex_unlock(&i915->drm.struct_mutex);
2775 
2776 	arch_phys_wc_del(ggtt->mtrr);
2777 	io_mapping_fini(&ggtt->iomap);
2778 }
2779 
2780 /**
2781  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
2782  * @i915: i915 device
2783  */
2784 void i915_ggtt_driver_release(struct drm_i915_private *i915)
2785 {
2786 	struct pagevec *pvec;
2787 
2788 	fini_aliasing_ppgtt(&i915->ggtt);
2789 
2790 	ggtt_cleanup_hw(&i915->ggtt);
2791 
2792 	pvec = &i915->mm.wc_stash.pvec;
2793 	if (pvec->nr) {
2794 		set_pages_array_wb(pvec->pages, pvec->nr);
2795 		__pagevec_release(pvec);
2796 	}
2797 
2798 	i915_gem_cleanup_stolen(i915);
2799 }
2800 
2801 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2802 {
2803 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2804 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2805 	return snb_gmch_ctl << 20;
2806 }
2807 
2808 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2809 {
2810 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2811 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2812 	if (bdw_gmch_ctl)
2813 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2814 
2815 #ifdef CONFIG_X86_32
2816 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2817 	if (bdw_gmch_ctl > 4)
2818 		bdw_gmch_ctl = 4;
2819 #endif
2820 
2821 	return bdw_gmch_ctl << 20;
2822 }
2823 
2824 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2825 {
2826 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2827 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2828 
2829 	if (gmch_ctrl)
2830 		return 1 << (20 + gmch_ctrl);
2831 
2832 	return 0;
2833 }
2834 
2835 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2836 {
2837 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2838 	struct pci_dev *pdev = dev_priv->drm.pdev;
2839 	phys_addr_t phys_addr;
2840 	int ret;
2841 
2842 	/* For Modern GENs the PTEs and register space are split in the BAR */
2843 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2844 
2845 	/*
2846 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2847 	 * will be dropped. For WC mappings in general we have 64 byte burst
2848 	 * writes when the WC buffer is flushed, so we can't use it, but have to
2849 	 * resort to an uncached mapping. The WC issue is easily caught by the
2850 	 * readback check when writing GTT PTE entries.
2851 	 */
2852 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2853 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2854 	else
2855 		ggtt->gsm = ioremap_wc(phys_addr, size);
2856 	if (!ggtt->gsm) {
2857 		DRM_ERROR("Failed to map the ggtt page table\n");
2858 		return -ENOMEM;
2859 	}
2860 
2861 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2862 	if (ret) {
2863 		DRM_ERROR("Scratch setup failed\n");
2864 		/* iounmap will also get called at remove, but meh */
2865 		iounmap(ggtt->gsm);
2866 		return ret;
2867 	}
2868 
2869 	ggtt->vm.scratch[0].encode =
2870 		ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
2871 				    I915_CACHE_NONE, 0);
2872 
2873 	return 0;
2874 }
2875 
2876 static void tgl_setup_private_ppat(struct drm_i915_private *dev_priv)
2877 {
2878 	/* TGL doesn't support LLC or AGE settings */
2879 	I915_WRITE(GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
2880 	I915_WRITE(GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
2881 	I915_WRITE(GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
2882 	I915_WRITE(GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
2883 	I915_WRITE(GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
2884 	I915_WRITE(GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
2885 	I915_WRITE(GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
2886 	I915_WRITE(GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
2887 }
2888 
2889 static void cnl_setup_private_ppat(struct drm_i915_private *dev_priv)
2890 {
2891 	I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC);
2892 	I915_WRITE(GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
2893 	I915_WRITE(GEN10_PAT_INDEX(2), GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
2894 	I915_WRITE(GEN10_PAT_INDEX(3), GEN8_PPAT_UC);
2895 	I915_WRITE(GEN10_PAT_INDEX(4), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
2896 	I915_WRITE(GEN10_PAT_INDEX(5), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
2897 	I915_WRITE(GEN10_PAT_INDEX(6), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
2898 	I915_WRITE(GEN10_PAT_INDEX(7), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2899 }
2900 
2901 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2902  * bits. When using advanced contexts each context stores its own PAT, but
2903  * writing this data shouldn't be harmful even in those cases. */
2904 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2905 {
2906 	u64 pat;
2907 
2908 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
2909 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
2910 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |	/* for scanout with eLLC */
2911 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
2912 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2913 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2914 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2915 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2916 
2917 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2918 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2919 }
2920 
2921 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2922 {
2923 	u64 pat;
2924 
2925 	/*
2926 	 * Map WB on BDW to snooped on CHV.
2927 	 *
2928 	 * Only the snoop bit has meaning for CHV, the rest is
2929 	 * ignored.
2930 	 *
2931 	 * The hardware will never snoop for certain types of accesses:
2932 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2933 	 * - PPGTT page tables
2934 	 * - some other special cycles
2935 	 *
2936 	 * As with BDW, we also need to consider the following for GT accesses:
2937 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2938 	 * so RTL will always use the value corresponding to
2939 	 * pat_sel = 000".
2940 	 * Which means we must set the snoop bit in PAT entry 0
2941 	 * in order to keep the global status page working.
2942 	 */
2943 
2944 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2945 	      GEN8_PPAT(1, 0) |
2946 	      GEN8_PPAT(2, 0) |
2947 	      GEN8_PPAT(3, 0) |
2948 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2949 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2950 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2951 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2952 
2953 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2954 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2955 }
2956 
2957 static void gen6_gmch_remove(struct i915_address_space *vm)
2958 {
2959 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2960 
2961 	iounmap(ggtt->gsm);
2962 	cleanup_scratch_page(vm);
2963 }
2964 
2965 static void setup_private_pat(struct drm_i915_private *dev_priv)
2966 {
2967 	GEM_BUG_ON(INTEL_GEN(dev_priv) < 8);
2968 
2969 	if (INTEL_GEN(dev_priv) >= 12)
2970 		tgl_setup_private_ppat(dev_priv);
2971 	else if (INTEL_GEN(dev_priv) >= 10)
2972 		cnl_setup_private_ppat(dev_priv);
2973 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2974 		chv_setup_private_ppat(dev_priv);
2975 	else
2976 		bdw_setup_private_ppat(dev_priv);
2977 }
2978 
2979 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2980 {
2981 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2982 	struct pci_dev *pdev = dev_priv->drm.pdev;
2983 	unsigned int size;
2984 	u16 snb_gmch_ctl;
2985 	int err;
2986 
2987 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2988 	ggtt->gmadr =
2989 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
2990 						 pci_resource_len(pdev, 2));
2991 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
2992 
2993 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
2994 	if (!err)
2995 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2996 	if (err)
2997 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2998 
2999 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3000 	if (IS_CHERRYVIEW(dev_priv))
3001 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3002 	else
3003 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3004 
3005 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3006 	ggtt->vm.cleanup = gen6_gmch_remove;
3007 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
3008 	ggtt->vm.clear_range = nop_clear_range;
3009 	if (intel_scanout_needs_vtd_wa(dev_priv))
3010 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3011 
3012 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3013 
3014 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3015 	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
3016 	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3017 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3018 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3019 		if (ggtt->vm.clear_range != nop_clear_range)
3020 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3021 	}
3022 
3023 	ggtt->invalidate = gen6_ggtt_invalidate;
3024 
3025 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3026 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3027 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3028 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3029 
3030 	ggtt->vm.pte_encode = gen8_pte_encode;
3031 
3032 	setup_private_pat(dev_priv);
3033 
3034 	return ggtt_probe_common(ggtt, size);
3035 }
3036 
3037 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3038 {
3039 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3040 	struct pci_dev *pdev = dev_priv->drm.pdev;
3041 	unsigned int size;
3042 	u16 snb_gmch_ctl;
3043 	int err;
3044 
3045 	ggtt->gmadr =
3046 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3047 						 pci_resource_len(pdev, 2));
3048 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3049 
3050 	/* 64/512MB is the current min/max we actually know of, but this is just
3051 	 * a coarse sanity check.
3052 	 */
3053 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3054 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3055 		return -ENXIO;
3056 	}
3057 
3058 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3059 	if (!err)
3060 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3061 	if (err)
3062 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3063 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3064 
3065 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3066 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3067 
3068 	ggtt->vm.clear_range = nop_clear_range;
3069 	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3070 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3071 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
3072 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3073 	ggtt->vm.cleanup = gen6_gmch_remove;
3074 
3075 	ggtt->invalidate = gen6_ggtt_invalidate;
3076 
3077 	if (HAS_EDRAM(dev_priv))
3078 		ggtt->vm.pte_encode = iris_pte_encode;
3079 	else if (IS_HASWELL(dev_priv))
3080 		ggtt->vm.pte_encode = hsw_pte_encode;
3081 	else if (IS_VALLEYVIEW(dev_priv))
3082 		ggtt->vm.pte_encode = byt_pte_encode;
3083 	else if (INTEL_GEN(dev_priv) >= 7)
3084 		ggtt->vm.pte_encode = ivb_pte_encode;
3085 	else
3086 		ggtt->vm.pte_encode = snb_pte_encode;
3087 
3088 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3089 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3090 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3091 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3092 
3093 	return ggtt_probe_common(ggtt, size);
3094 }
3095 
3096 static void i915_gmch_remove(struct i915_address_space *vm)
3097 {
3098 	intel_gmch_remove();
3099 }
3100 
3101 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3102 {
3103 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3104 	phys_addr_t gmadr_base;
3105 	int ret;
3106 
3107 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3108 	if (!ret) {
3109 		DRM_ERROR("failed to set up gmch\n");
3110 		return -EIO;
3111 	}
3112 
3113 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3114 
3115 	ggtt->gmadr =
3116 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3117 						 ggtt->mappable_end);
3118 
3119 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3120 	ggtt->vm.insert_page = i915_ggtt_insert_page;
3121 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3122 	ggtt->vm.clear_range = i915_ggtt_clear_range;
3123 	ggtt->vm.cleanup = i915_gmch_remove;
3124 
3125 	ggtt->invalidate = gmch_ggtt_invalidate;
3126 
3127 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3128 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3129 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3130 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3131 
3132 	if (unlikely(ggtt->do_idle_maps))
3133 		dev_notice(dev_priv->drm.dev,
3134 			   "Applying Ironlake quirks for intel_iommu\n");
3135 
3136 	return 0;
3137 }
3138 
3139 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
3140 {
3141 	struct drm_i915_private *i915 = gt->i915;
3142 	int ret;
3143 
3144 	ggtt->vm.gt = gt;
3145 	ggtt->vm.i915 = i915;
3146 	ggtt->vm.dma = &i915->drm.pdev->dev;
3147 
3148 	if (INTEL_GEN(i915) <= 5)
3149 		ret = i915_gmch_probe(ggtt);
3150 	else if (INTEL_GEN(i915) < 8)
3151 		ret = gen6_gmch_probe(ggtt);
3152 	else
3153 		ret = gen8_gmch_probe(ggtt);
3154 	if (ret)
3155 		return ret;
3156 
3157 	if ((ggtt->vm.total - 1) >> 32) {
3158 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3159 			  " of address space! Found %lldM!\n",
3160 			  ggtt->vm.total >> 20);
3161 		ggtt->vm.total = 1ULL << 32;
3162 		ggtt->mappable_end =
3163 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3164 	}
3165 
3166 	if (ggtt->mappable_end > ggtt->vm.total) {
3167 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3168 			  " aperture=%pa, total=%llx\n",
3169 			  &ggtt->mappable_end, ggtt->vm.total);
3170 		ggtt->mappable_end = ggtt->vm.total;
3171 	}
3172 
3173 	/* GMADR is the PCI mmio aperture into the global GTT. */
3174 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3175 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3176 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3177 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3178 
3179 	return 0;
3180 }
3181 
3182 /**
3183  * i915_ggtt_probe_hw - Probe GGTT hardware location
3184  * @i915: i915 device
3185  */
3186 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
3187 {
3188 	int ret;
3189 
3190 	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
3191 	if (ret)
3192 		return ret;
3193 
3194 	if (intel_vtd_active())
3195 		dev_info(i915->drm.dev, "VT-d active for gfx access\n");
3196 
3197 	return 0;
3198 }
3199 
3200 static int ggtt_init_hw(struct i915_ggtt *ggtt)
3201 {
3202 	struct drm_i915_private *i915 = ggtt->vm.i915;
3203 	int ret = 0;
3204 
3205 	mutex_lock(&i915->drm.struct_mutex);
3206 
3207 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3208 
3209 	ggtt->vm.is_ggtt = true;
3210 
3211 	/* Only VLV supports read-only GGTT mappings */
3212 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
3213 
3214 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
3215 		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3216 
3217 	if (!io_mapping_init_wc(&ggtt->iomap,
3218 				ggtt->gmadr.start,
3219 				ggtt->mappable_end)) {
3220 		ggtt->vm.cleanup(&ggtt->vm);
3221 		ret = -EIO;
3222 		goto out;
3223 	}
3224 
3225 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3226 
3227 	i915_ggtt_init_fences(ggtt);
3228 
3229 out:
3230 	mutex_unlock(&i915->drm.struct_mutex);
3231 
3232 	return ret;
3233 }
3234 
3235 /**
3236  * i915_ggtt_init_hw - Initialize GGTT hardware
3237  * @dev_priv: i915 device
3238  */
3239 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3240 {
3241 	int ret;
3242 
3243 	stash_init(&dev_priv->mm.wc_stash);
3244 
3245 	/* Note that we use page colouring to enforce a guard page at the
3246 	 * end of the address space. This is required as the CS may prefetch
3247 	 * beyond the end of the batch buffer, across the page boundary,
3248 	 * and beyond the end of the GTT if we do not provide a guard.
3249 	 */
3250 	ret = ggtt_init_hw(&dev_priv->ggtt);
3251 	if (ret)
3252 		return ret;
3253 
3254 	/*
3255 	 * Initialise stolen early so that we may reserve preallocated
3256 	 * objects for the BIOS to KMS transition.
3257 	 */
3258 	ret = i915_gem_init_stolen(dev_priv);
3259 	if (ret)
3260 		goto out_gtt_cleanup;
3261 
3262 	return 0;
3263 
3264 out_gtt_cleanup:
3265 	dev_priv->ggtt.vm.cleanup(&dev_priv->ggtt.vm);
3266 	return ret;
3267 }
3268 
3269 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3270 {
3271 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3272 		return -EIO;
3273 
3274 	return 0;
3275 }
3276 
3277 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
3278 {
3279 	GEM_BUG_ON(ggtt->invalidate != gen6_ggtt_invalidate);
3280 
3281 	ggtt->invalidate = guc_ggtt_invalidate;
3282 
3283 	ggtt->invalidate(ggtt);
3284 }
3285 
3286 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
3287 {
3288 	/* XXX Temporary pardon for error unload */
3289 	if (ggtt->invalidate == gen6_ggtt_invalidate)
3290 		return;
3291 
3292 	/* We should only be called after i915_ggtt_enable_guc() */
3293 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
3294 
3295 	ggtt->invalidate = gen6_ggtt_invalidate;
3296 
3297 	ggtt->invalidate(ggtt);
3298 }
3299 
3300 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
3301 {
3302 	struct i915_vma *vma, *vn;
3303 	bool flush = false;
3304 
3305 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
3306 
3307 	mutex_lock(&ggtt->vm.mutex);
3308 
3309 	/* First fill our portion of the GTT with scratch pages */
3310 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3311 	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3312 
3313 	/* clflush objects bound into the GGTT and rebind them. */
3314 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3315 		struct drm_i915_gem_object *obj = vma->obj;
3316 
3317 		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3318 			continue;
3319 
3320 		mutex_unlock(&ggtt->vm.mutex);
3321 
3322 		if (!i915_vma_unbind(vma))
3323 			goto lock;
3324 
3325 		WARN_ON(i915_vma_bind(vma,
3326 				      obj ? obj->cache_level : 0,
3327 				      PIN_UPDATE));
3328 		if (obj) { /* only used during resume => exclusive access */
3329 			flush |= fetch_and_zero(&obj->write_domain);
3330 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
3331 		}
3332 
3333 lock:
3334 		mutex_lock(&ggtt->vm.mutex);
3335 	}
3336 
3337 	ggtt->vm.closed = false;
3338 	ggtt->invalidate(ggtt);
3339 
3340 	mutex_unlock(&ggtt->vm.mutex);
3341 
3342 	if (flush)
3343 		wbinvd_on_all_cpus();
3344 }
3345 
3346 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
3347 {
3348 	ggtt_restore_mappings(&i915->ggtt);
3349 
3350 	if (INTEL_GEN(i915) >= 8)
3351 		setup_private_pat(i915);
3352 }
3353 
3354 static struct scatterlist *
3355 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3356 	     unsigned int width, unsigned int height,
3357 	     unsigned int stride,
3358 	     struct sg_table *st, struct scatterlist *sg)
3359 {
3360 	unsigned int column, row;
3361 	unsigned int src_idx;
3362 
3363 	for (column = 0; column < width; column++) {
3364 		src_idx = stride * (height - 1) + column + offset;
3365 		for (row = 0; row < height; row++) {
3366 			st->nents++;
3367 			/* We don't need the pages, but need to initialize
3368 			 * the entries so the sg list can be happily traversed.
3369 			 * The only thing we need are DMA addresses.
3370 			 */
3371 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3372 			sg_dma_address(sg) =
3373 				i915_gem_object_get_dma_address(obj, src_idx);
3374 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3375 			sg = sg_next(sg);
3376 			src_idx -= stride;
3377 		}
3378 	}
3379 
3380 	return sg;
3381 }
3382 
3383 static noinline struct sg_table *
3384 intel_rotate_pages(struct intel_rotation_info *rot_info,
3385 		   struct drm_i915_gem_object *obj)
3386 {
3387 	unsigned int size = intel_rotation_info_size(rot_info);
3388 	struct sg_table *st;
3389 	struct scatterlist *sg;
3390 	int ret = -ENOMEM;
3391 	int i;
3392 
3393 	/* Allocate target SG list. */
3394 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3395 	if (!st)
3396 		goto err_st_alloc;
3397 
3398 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3399 	if (ret)
3400 		goto err_sg_alloc;
3401 
3402 	st->nents = 0;
3403 	sg = st->sgl;
3404 
3405 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3406 		sg = rotate_pages(obj, rot_info->plane[i].offset,
3407 				  rot_info->plane[i].width, rot_info->plane[i].height,
3408 				  rot_info->plane[i].stride, st, sg);
3409 	}
3410 
3411 	return st;
3412 
3413 err_sg_alloc:
3414 	kfree(st);
3415 err_st_alloc:
3416 
3417 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3418 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3419 
3420 	return ERR_PTR(ret);
3421 }
3422 
3423 static struct scatterlist *
3424 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3425 	    unsigned int width, unsigned int height,
3426 	    unsigned int stride,
3427 	    struct sg_table *st, struct scatterlist *sg)
3428 {
3429 	unsigned int row;
3430 
3431 	for (row = 0; row < height; row++) {
3432 		unsigned int left = width * I915_GTT_PAGE_SIZE;
3433 
3434 		while (left) {
3435 			dma_addr_t addr;
3436 			unsigned int length;
3437 
3438 			/* We don't need the pages, but need to initialize
3439 			 * the entries so the sg list can be happily traversed.
3440 			 * The only thing we need are DMA addresses.
3441 			 */
3442 
3443 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
3444 
3445 			length = min(left, length);
3446 
3447 			st->nents++;
3448 
3449 			sg_set_page(sg, NULL, length, 0);
3450 			sg_dma_address(sg) = addr;
3451 			sg_dma_len(sg) = length;
3452 			sg = sg_next(sg);
3453 
3454 			offset += length / I915_GTT_PAGE_SIZE;
3455 			left -= length;
3456 		}
3457 
3458 		offset += stride - width;
3459 	}
3460 
3461 	return sg;
3462 }
3463 
3464 static noinline struct sg_table *
3465 intel_remap_pages(struct intel_remapped_info *rem_info,
3466 		  struct drm_i915_gem_object *obj)
3467 {
3468 	unsigned int size = intel_remapped_info_size(rem_info);
3469 	struct sg_table *st;
3470 	struct scatterlist *sg;
3471 	int ret = -ENOMEM;
3472 	int i;
3473 
3474 	/* Allocate target SG list. */
3475 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3476 	if (!st)
3477 		goto err_st_alloc;
3478 
3479 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3480 	if (ret)
3481 		goto err_sg_alloc;
3482 
3483 	st->nents = 0;
3484 	sg = st->sgl;
3485 
3486 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
3487 		sg = remap_pages(obj, rem_info->plane[i].offset,
3488 				 rem_info->plane[i].width, rem_info->plane[i].height,
3489 				 rem_info->plane[i].stride, st, sg);
3490 	}
3491 
3492 	i915_sg_trim(st);
3493 
3494 	return st;
3495 
3496 err_sg_alloc:
3497 	kfree(st);
3498 err_st_alloc:
3499 
3500 	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3501 			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
3502 
3503 	return ERR_PTR(ret);
3504 }
3505 
3506 static noinline struct sg_table *
3507 intel_partial_pages(const struct i915_ggtt_view *view,
3508 		    struct drm_i915_gem_object *obj)
3509 {
3510 	struct sg_table *st;
3511 	struct scatterlist *sg, *iter;
3512 	unsigned int count = view->partial.size;
3513 	unsigned int offset;
3514 	int ret = -ENOMEM;
3515 
3516 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3517 	if (!st)
3518 		goto err_st_alloc;
3519 
3520 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3521 	if (ret)
3522 		goto err_sg_alloc;
3523 
3524 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3525 	GEM_BUG_ON(!iter);
3526 
3527 	sg = st->sgl;
3528 	st->nents = 0;
3529 	do {
3530 		unsigned int len;
3531 
3532 		len = min(iter->length - (offset << PAGE_SHIFT),
3533 			  count << PAGE_SHIFT);
3534 		sg_set_page(sg, NULL, len, 0);
3535 		sg_dma_address(sg) =
3536 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3537 		sg_dma_len(sg) = len;
3538 
3539 		st->nents++;
3540 		count -= len >> PAGE_SHIFT;
3541 		if (count == 0) {
3542 			sg_mark_end(sg);
3543 			i915_sg_trim(st); /* Drop any unused tail entries. */
3544 
3545 			return st;
3546 		}
3547 
3548 		sg = __sg_next(sg);
3549 		iter = __sg_next(iter);
3550 		offset = 0;
3551 	} while (1);
3552 
3553 err_sg_alloc:
3554 	kfree(st);
3555 err_st_alloc:
3556 	return ERR_PTR(ret);
3557 }
3558 
3559 static int
3560 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3561 {
3562 	int ret;
3563 
3564 	/* The vma->pages are only valid within the lifespan of the borrowed
3565 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3566 	 * must be the vma->pages. A simple rule is that vma->pages must only
3567 	 * be accessed when the obj->mm.pages are pinned.
3568 	 */
3569 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3570 
3571 	switch (vma->ggtt_view.type) {
3572 	default:
3573 		GEM_BUG_ON(vma->ggtt_view.type);
3574 		/* fall through */
3575 	case I915_GGTT_VIEW_NORMAL:
3576 		vma->pages = vma->obj->mm.pages;
3577 		return 0;
3578 
3579 	case I915_GGTT_VIEW_ROTATED:
3580 		vma->pages =
3581 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3582 		break;
3583 
3584 	case I915_GGTT_VIEW_REMAPPED:
3585 		vma->pages =
3586 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
3587 		break;
3588 
3589 	case I915_GGTT_VIEW_PARTIAL:
3590 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3591 		break;
3592 	}
3593 
3594 	ret = 0;
3595 	if (IS_ERR(vma->pages)) {
3596 		ret = PTR_ERR(vma->pages);
3597 		vma->pages = NULL;
3598 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3599 			  vma->ggtt_view.type, ret);
3600 	}
3601 	return ret;
3602 }
3603 
3604 /**
3605  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3606  * @vm: the &struct i915_address_space
3607  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3608  * @size: how much space to allocate inside the GTT,
3609  *        must be #I915_GTT_PAGE_SIZE aligned
3610  * @offset: where to insert inside the GTT,
3611  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3612  *          (@offset + @size) must fit within the address space
3613  * @color: color to apply to node, if this node is not from a VMA,
3614  *         color must be #I915_COLOR_UNEVICTABLE
3615  * @flags: control search and eviction behaviour
3616  *
3617  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3618  * the address space (using @size and @color). If the @node does not fit, it
3619  * tries to evict any overlapping nodes from the GTT, including any
3620  * neighbouring nodes if the colors do not match (to ensure guard pages between
3621  * differing domains). See i915_gem_evict_for_node() for the gory details
3622  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3623  * evicting active overlapping objects, and any overlapping node that is pinned
3624  * or marked as unevictable will also result in failure.
3625  *
3626  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3627  * asked to wait for eviction and interrupted.
3628  */
3629 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3630 			 struct drm_mm_node *node,
3631 			 u64 size, u64 offset, unsigned long color,
3632 			 unsigned int flags)
3633 {
3634 	int err;
3635 
3636 	GEM_BUG_ON(!size);
3637 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3638 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3639 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3640 	GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3641 	GEM_BUG_ON(drm_mm_node_allocated(node));
3642 
3643 	node->size = size;
3644 	node->start = offset;
3645 	node->color = color;
3646 
3647 	err = drm_mm_reserve_node(&vm->mm, node);
3648 	if (err != -ENOSPC)
3649 		return err;
3650 
3651 	if (flags & PIN_NOEVICT)
3652 		return -ENOSPC;
3653 
3654 	err = i915_gem_evict_for_node(vm, node, flags);
3655 	if (err == 0)
3656 		err = drm_mm_reserve_node(&vm->mm, node);
3657 
3658 	return err;
3659 }
3660 
3661 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3662 {
3663 	u64 range, addr;
3664 
3665 	GEM_BUG_ON(range_overflows(start, len, end));
3666 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3667 
3668 	range = round_down(end - len, align) - round_up(start, align);
3669 	if (range) {
3670 		if (sizeof(unsigned long) == sizeof(u64)) {
3671 			addr = get_random_long();
3672 		} else {
3673 			addr = get_random_int();
3674 			if (range > U32_MAX) {
3675 				addr <<= 32;
3676 				addr |= get_random_int();
3677 			}
3678 		}
3679 		div64_u64_rem(addr, range, &addr);
3680 		start += addr;
3681 	}
3682 
3683 	return round_up(start, align);
3684 }
3685 
3686 /**
3687  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3688  * @vm: the &struct i915_address_space
3689  * @node: the &struct drm_mm_node (typically i915_vma.node)
3690  * @size: how much space to allocate inside the GTT,
3691  *        must be #I915_GTT_PAGE_SIZE aligned
3692  * @alignment: required alignment of starting offset, may be 0 but
3693  *             if specified, this must be a power-of-two and at least
3694  *             #I915_GTT_MIN_ALIGNMENT
3695  * @color: color to apply to node
3696  * @start: start of any range restriction inside GTT (0 for all),
3697  *         must be #I915_GTT_PAGE_SIZE aligned
3698  * @end: end of any range restriction inside GTT (U64_MAX for all),
3699  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3700  * @flags: control search and eviction behaviour
3701  *
3702  * i915_gem_gtt_insert() first searches for an available hole into which
3703  * is can insert the node. The hole address is aligned to @alignment and
3704  * its @size must then fit entirely within the [@start, @end] bounds. The
3705  * nodes on either side of the hole must match @color, or else a guard page
3706  * will be inserted between the two nodes (or the node evicted). If no
3707  * suitable hole is found, first a victim is randomly selected and tested
3708  * for eviction, otherwise then the LRU list of objects within the GTT
3709  * is scanned to find the first set of replacement nodes to create the hole.
3710  * Those old overlapping nodes are evicted from the GTT (and so must be
3711  * rebound before any future use). Any node that is currently pinned cannot
3712  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3713  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3714  * searching for an eviction candidate. See i915_gem_evict_something() for
3715  * the gory details on the eviction algorithm.
3716  *
3717  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3718  * asked to wait for eviction and interrupted.
3719  */
3720 int i915_gem_gtt_insert(struct i915_address_space *vm,
3721 			struct drm_mm_node *node,
3722 			u64 size, u64 alignment, unsigned long color,
3723 			u64 start, u64 end, unsigned int flags)
3724 {
3725 	enum drm_mm_insert_mode mode;
3726 	u64 offset;
3727 	int err;
3728 
3729 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3730 	GEM_BUG_ON(!size);
3731 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3732 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3733 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3734 	GEM_BUG_ON(start >= end);
3735 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3736 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3737 	GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3738 	GEM_BUG_ON(drm_mm_node_allocated(node));
3739 
3740 	if (unlikely(range_overflows(start, size, end)))
3741 		return -ENOSPC;
3742 
3743 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3744 		return -ENOSPC;
3745 
3746 	mode = DRM_MM_INSERT_BEST;
3747 	if (flags & PIN_HIGH)
3748 		mode = DRM_MM_INSERT_HIGHEST;
3749 	if (flags & PIN_MAPPABLE)
3750 		mode = DRM_MM_INSERT_LOW;
3751 
3752 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3753 	 * so we know that we always have a minimum alignment of 4096.
3754 	 * The drm_mm range manager is optimised to return results
3755 	 * with zero alignment, so where possible use the optimal
3756 	 * path.
3757 	 */
3758 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3759 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3760 		alignment = 0;
3761 
3762 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3763 					  size, alignment, color,
3764 					  start, end, mode);
3765 	if (err != -ENOSPC)
3766 		return err;
3767 
3768 	if (mode & DRM_MM_INSERT_ONCE) {
3769 		err = drm_mm_insert_node_in_range(&vm->mm, node,
3770 						  size, alignment, color,
3771 						  start, end,
3772 						  DRM_MM_INSERT_BEST);
3773 		if (err != -ENOSPC)
3774 			return err;
3775 	}
3776 
3777 	if (flags & PIN_NOEVICT)
3778 		return -ENOSPC;
3779 
3780 	/*
3781 	 * No free space, pick a slot at random.
3782 	 *
3783 	 * There is a pathological case here using a GTT shared between
3784 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3785 	 *
3786 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3787 	 *         (64k objects)             (448k objects)
3788 	 *
3789 	 * Now imagine that the eviction LRU is ordered top-down (just because
3790 	 * pathology meets real life), and that we need to evict an object to
3791 	 * make room inside the aperture. The eviction scan then has to walk
3792 	 * the 448k list before it finds one within range. And now imagine that
3793 	 * it has to search for a new hole between every byte inside the memcpy,
3794 	 * for several simultaneous clients.
3795 	 *
3796 	 * On a full-ppgtt system, if we have run out of available space, there
3797 	 * will be lots and lots of objects in the eviction list! Again,
3798 	 * searching that LRU list may be slow if we are also applying any
3799 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
3800 	 * simplicity and similarilty between different GTT, try the single
3801 	 * random replacement first.
3802 	 */
3803 	offset = random_offset(start, end,
3804 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3805 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3806 	if (err != -ENOSPC)
3807 		return err;
3808 
3809 	if (flags & PIN_NOSEARCH)
3810 		return -ENOSPC;
3811 
3812 	/* Randomly selected placement is pinned, do a search */
3813 	err = i915_gem_evict_something(vm, size, alignment, color,
3814 				       start, end, flags);
3815 	if (err)
3816 		return err;
3817 
3818 	return drm_mm_insert_node_in_range(&vm->mm, node,
3819 					   size, alignment, color,
3820 					   start, end, DRM_MM_INSERT_EVICT);
3821 }
3822 
3823 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3824 #include "selftests/mock_gtt.c"
3825 #include "selftests/i915_gem_gtt.c"
3826 #endif
3827