xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem_gtt.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/i915_drm.h>
37 
38 #include "display/intel_frontbuffer.h"
39 
40 #include "i915_drv.h"
41 #include "i915_scatterlist.h"
42 #include "i915_trace.h"
43 #include "i915_vgpu.h"
44 #include "intel_drv.h"
45 
46 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
47 
48 /**
49  * DOC: Global GTT views
50  *
51  * Background and previous state
52  *
53  * Historically objects could exists (be bound) in global GTT space only as
54  * singular instances with a view representing all of the object's backing pages
55  * in a linear fashion. This view will be called a normal view.
56  *
57  * To support multiple views of the same object, where the number of mapped
58  * pages is not equal to the backing store, or where the layout of the pages
59  * is not linear, concept of a GGTT view was added.
60  *
61  * One example of an alternative view is a stereo display driven by a single
62  * image. In this case we would have a framebuffer looking like this
63  * (2x2 pages):
64  *
65  *    12
66  *    34
67  *
68  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
69  * rendering. In contrast, fed to the display engine would be an alternative
70  * view which could look something like this:
71  *
72  *   1212
73  *   3434
74  *
75  * In this example both the size and layout of pages in the alternative view is
76  * different from the normal view.
77  *
78  * Implementation and usage
79  *
80  * GGTT views are implemented using VMAs and are distinguished via enum
81  * i915_ggtt_view_type and struct i915_ggtt_view.
82  *
83  * A new flavour of core GEM functions which work with GGTT bound objects were
84  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
85  * renaming  in large amounts of code. They take the struct i915_ggtt_view
86  * parameter encapsulating all metadata required to implement a view.
87  *
88  * As a helper for callers which are only interested in the normal view,
89  * globally const i915_ggtt_view_normal singleton instance exists. All old core
90  * GEM API functions, the ones not taking the view parameter, are operating on,
91  * or with the normal GGTT view.
92  *
93  * Code wanting to add or use a new GGTT view needs to:
94  *
95  * 1. Add a new enum with a suitable name.
96  * 2. Extend the metadata in the i915_ggtt_view structure if required.
97  * 3. Add support to i915_get_vma_pages().
98  *
99  * New views are required to build a scatter-gather table from within the
100  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
101  * exists for the lifetime of an VMA.
102  *
103  * Core API is designed to have copy semantics which means that passed in
104  * struct i915_ggtt_view does not need to be persistent (left around after
105  * calling the core API functions).
106  *
107  */
108 
109 static int
110 i915_get_ggtt_vma_pages(struct i915_vma *vma);
111 
112 static void gen6_ggtt_invalidate(struct drm_i915_private *i915)
113 {
114 	struct intel_uncore *uncore = &i915->uncore;
115 
116 	/*
117 	 * Note that as an uncached mmio write, this will flush the
118 	 * WCB of the writes into the GGTT before it triggers the invalidate.
119 	 */
120 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
121 }
122 
123 static void guc_ggtt_invalidate(struct drm_i915_private *i915)
124 {
125 	struct intel_uncore *uncore = &i915->uncore;
126 
127 	gen6_ggtt_invalidate(i915);
128 	intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
129 }
130 
131 static void gmch_ggtt_invalidate(struct drm_i915_private *i915)
132 {
133 	intel_gtt_chipset_flush();
134 }
135 
136 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
137 {
138 	i915->ggtt.invalidate(i915);
139 }
140 
141 static int ppgtt_bind_vma(struct i915_vma *vma,
142 			  enum i915_cache_level cache_level,
143 			  u32 unused)
144 {
145 	u32 pte_flags;
146 	int err;
147 
148 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
149 		err = vma->vm->allocate_va_range(vma->vm,
150 						 vma->node.start, vma->size);
151 		if (err)
152 			return err;
153 	}
154 
155 	/* Applicable to VLV, and gen8+ */
156 	pte_flags = 0;
157 	if (i915_gem_object_is_readonly(vma->obj))
158 		pte_flags |= PTE_READ_ONLY;
159 
160 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
161 
162 	return 0;
163 }
164 
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
168 }
169 
170 static int ppgtt_set_pages(struct i915_vma *vma)
171 {
172 	GEM_BUG_ON(vma->pages);
173 
174 	vma->pages = vma->obj->mm.pages;
175 
176 	vma->page_sizes = vma->obj->mm.page_sizes;
177 
178 	return 0;
179 }
180 
181 static void clear_pages(struct i915_vma *vma)
182 {
183 	GEM_BUG_ON(!vma->pages);
184 
185 	if (vma->pages != vma->obj->mm.pages) {
186 		sg_free_table(vma->pages);
187 		kfree(vma->pages);
188 	}
189 	vma->pages = NULL;
190 
191 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
192 }
193 
194 static u64 gen8_pte_encode(dma_addr_t addr,
195 			   enum i915_cache_level level,
196 			   u32 flags)
197 {
198 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
199 
200 	if (unlikely(flags & PTE_READ_ONLY))
201 		pte &= ~_PAGE_RW;
202 
203 	switch (level) {
204 	case I915_CACHE_NONE:
205 		pte |= PPAT_UNCACHED;
206 		break;
207 	case I915_CACHE_WT:
208 		pte |= PPAT_DISPLAY_ELLC;
209 		break;
210 	default:
211 		pte |= PPAT_CACHED;
212 		break;
213 	}
214 
215 	return pte;
216 }
217 
218 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
219 				  const enum i915_cache_level level)
220 {
221 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
222 	pde |= addr;
223 	if (level != I915_CACHE_NONE)
224 		pde |= PPAT_CACHED_PDE;
225 	else
226 		pde |= PPAT_UNCACHED;
227 	return pde;
228 }
229 
230 #define gen8_pdpe_encode gen8_pde_encode
231 #define gen8_pml4e_encode gen8_pde_encode
232 
233 static u64 snb_pte_encode(dma_addr_t addr,
234 			  enum i915_cache_level level,
235 			  u32 flags)
236 {
237 	gen6_pte_t pte = GEN6_PTE_VALID;
238 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
239 
240 	switch (level) {
241 	case I915_CACHE_L3_LLC:
242 	case I915_CACHE_LLC:
243 		pte |= GEN6_PTE_CACHE_LLC;
244 		break;
245 	case I915_CACHE_NONE:
246 		pte |= GEN6_PTE_UNCACHED;
247 		break;
248 	default:
249 		MISSING_CASE(level);
250 	}
251 
252 	return pte;
253 }
254 
255 static u64 ivb_pte_encode(dma_addr_t addr,
256 			  enum i915_cache_level level,
257 			  u32 flags)
258 {
259 	gen6_pte_t pte = GEN6_PTE_VALID;
260 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
261 
262 	switch (level) {
263 	case I915_CACHE_L3_LLC:
264 		pte |= GEN7_PTE_CACHE_L3_LLC;
265 		break;
266 	case I915_CACHE_LLC:
267 		pte |= GEN6_PTE_CACHE_LLC;
268 		break;
269 	case I915_CACHE_NONE:
270 		pte |= GEN6_PTE_UNCACHED;
271 		break;
272 	default:
273 		MISSING_CASE(level);
274 	}
275 
276 	return pte;
277 }
278 
279 static u64 byt_pte_encode(dma_addr_t addr,
280 			  enum i915_cache_level level,
281 			  u32 flags)
282 {
283 	gen6_pte_t pte = GEN6_PTE_VALID;
284 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
285 
286 	if (!(flags & PTE_READ_ONLY))
287 		pte |= BYT_PTE_WRITEABLE;
288 
289 	if (level != I915_CACHE_NONE)
290 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
291 
292 	return pte;
293 }
294 
295 static u64 hsw_pte_encode(dma_addr_t addr,
296 			  enum i915_cache_level level,
297 			  u32 flags)
298 {
299 	gen6_pte_t pte = GEN6_PTE_VALID;
300 	pte |= HSW_PTE_ADDR_ENCODE(addr);
301 
302 	if (level != I915_CACHE_NONE)
303 		pte |= HSW_WB_LLC_AGE3;
304 
305 	return pte;
306 }
307 
308 static u64 iris_pte_encode(dma_addr_t addr,
309 			   enum i915_cache_level level,
310 			   u32 flags)
311 {
312 	gen6_pte_t pte = GEN6_PTE_VALID;
313 	pte |= HSW_PTE_ADDR_ENCODE(addr);
314 
315 	switch (level) {
316 	case I915_CACHE_NONE:
317 		break;
318 	case I915_CACHE_WT:
319 		pte |= HSW_WT_ELLC_LLC_AGE3;
320 		break;
321 	default:
322 		pte |= HSW_WB_ELLC_LLC_AGE3;
323 		break;
324 	}
325 
326 	return pte;
327 }
328 
329 static void stash_init(struct pagestash *stash)
330 {
331 	pagevec_init(&stash->pvec);
332 	spin_lock_init(&stash->lock);
333 }
334 
335 static struct page *stash_pop_page(struct pagestash *stash)
336 {
337 	struct page *page = NULL;
338 
339 	spin_lock(&stash->lock);
340 	if (likely(stash->pvec.nr))
341 		page = stash->pvec.pages[--stash->pvec.nr];
342 	spin_unlock(&stash->lock);
343 
344 	return page;
345 }
346 
347 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
348 {
349 	unsigned int nr;
350 
351 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
352 
353 	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
354 	memcpy(stash->pvec.pages + stash->pvec.nr,
355 	       pvec->pages + pvec->nr - nr,
356 	       sizeof(pvec->pages[0]) * nr);
357 	stash->pvec.nr += nr;
358 
359 	spin_unlock(&stash->lock);
360 
361 	pvec->nr -= nr;
362 }
363 
364 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
365 {
366 	struct pagevec stack;
367 	struct page *page;
368 
369 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
370 		i915_gem_shrink_all(vm->i915);
371 
372 	page = stash_pop_page(&vm->free_pages);
373 	if (page)
374 		return page;
375 
376 	if (!vm->pt_kmap_wc)
377 		return alloc_page(gfp);
378 
379 	/* Look in our global stash of WC pages... */
380 	page = stash_pop_page(&vm->i915->mm.wc_stash);
381 	if (page)
382 		return page;
383 
384 	/*
385 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
386 	 *
387 	 * We have to be careful as page allocation may trigger the shrinker
388 	 * (via direct reclaim) which will fill up the WC stash underneath us.
389 	 * So we add our WB pages into a temporary pvec on the stack and merge
390 	 * them into the WC stash after all the allocations are complete.
391 	 */
392 	pagevec_init(&stack);
393 	do {
394 		struct page *page;
395 
396 		page = alloc_page(gfp);
397 		if (unlikely(!page))
398 			break;
399 
400 		stack.pages[stack.nr++] = page;
401 	} while (pagevec_space(&stack));
402 
403 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
404 		page = stack.pages[--stack.nr];
405 
406 		/* Merge spare WC pages to the global stash */
407 		if (stack.nr)
408 			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
409 
410 		/* Push any surplus WC pages onto the local VM stash */
411 		if (stack.nr)
412 			stash_push_pagevec(&vm->free_pages, &stack);
413 	}
414 
415 	/* Return unwanted leftovers */
416 	if (unlikely(stack.nr)) {
417 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
418 		__pagevec_release(&stack);
419 	}
420 
421 	return page;
422 }
423 
424 static void vm_free_pages_release(struct i915_address_space *vm,
425 				  bool immediate)
426 {
427 	struct pagevec *pvec = &vm->free_pages.pvec;
428 	struct pagevec stack;
429 
430 	lockdep_assert_held(&vm->free_pages.lock);
431 	GEM_BUG_ON(!pagevec_count(pvec));
432 
433 	if (vm->pt_kmap_wc) {
434 		/*
435 		 * When we use WC, first fill up the global stash and then
436 		 * only if full immediately free the overflow.
437 		 */
438 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
439 
440 		/*
441 		 * As we have made some room in the VM's free_pages,
442 		 * we can wait for it to fill again. Unless we are
443 		 * inside i915_address_space_fini() and must
444 		 * immediately release the pages!
445 		 */
446 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
447 			return;
448 
449 		/*
450 		 * We have to drop the lock to allow ourselves to sleep,
451 		 * so take a copy of the pvec and clear the stash for
452 		 * others to use it as we sleep.
453 		 */
454 		stack = *pvec;
455 		pagevec_reinit(pvec);
456 		spin_unlock(&vm->free_pages.lock);
457 
458 		pvec = &stack;
459 		set_pages_array_wb(pvec->pages, pvec->nr);
460 
461 		spin_lock(&vm->free_pages.lock);
462 	}
463 
464 	__pagevec_release(pvec);
465 }
466 
467 static void vm_free_page(struct i915_address_space *vm, struct page *page)
468 {
469 	/*
470 	 * On !llc, we need to change the pages back to WB. We only do so
471 	 * in bulk, so we rarely need to change the page attributes here,
472 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
473 	 * To make detection of the possible sleep more likely, use an
474 	 * unconditional might_sleep() for everybody.
475 	 */
476 	might_sleep();
477 	spin_lock(&vm->free_pages.lock);
478 	while (!pagevec_space(&vm->free_pages.pvec))
479 		vm_free_pages_release(vm, false);
480 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
481 	pagevec_add(&vm->free_pages.pvec, page);
482 	spin_unlock(&vm->free_pages.lock);
483 }
484 
485 static void i915_address_space_init(struct i915_address_space *vm, int subclass)
486 {
487 	kref_init(&vm->ref);
488 
489 	/*
490 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
491 	 * Do a dummy acquire now under fs_reclaim so that any allocation
492 	 * attempt holding the lock is immediately reported by lockdep.
493 	 */
494 	mutex_init(&vm->mutex);
495 	lockdep_set_subclass(&vm->mutex, subclass);
496 	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
497 
498 	GEM_BUG_ON(!vm->total);
499 	drm_mm_init(&vm->mm, 0, vm->total);
500 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
501 
502 	stash_init(&vm->free_pages);
503 
504 	INIT_LIST_HEAD(&vm->unbound_list);
505 	INIT_LIST_HEAD(&vm->bound_list);
506 }
507 
508 static void i915_address_space_fini(struct i915_address_space *vm)
509 {
510 	spin_lock(&vm->free_pages.lock);
511 	if (pagevec_count(&vm->free_pages.pvec))
512 		vm_free_pages_release(vm, true);
513 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
514 	spin_unlock(&vm->free_pages.lock);
515 
516 	drm_mm_takedown(&vm->mm);
517 
518 	mutex_destroy(&vm->mutex);
519 }
520 
521 static int __setup_page_dma(struct i915_address_space *vm,
522 			    struct i915_page_dma *p,
523 			    gfp_t gfp)
524 {
525 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
526 	if (unlikely(!p->page))
527 		return -ENOMEM;
528 
529 	p->daddr = dma_map_page_attrs(vm->dma,
530 				      p->page, 0, PAGE_SIZE,
531 				      PCI_DMA_BIDIRECTIONAL,
532 				      DMA_ATTR_SKIP_CPU_SYNC |
533 				      DMA_ATTR_NO_WARN);
534 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
535 		vm_free_page(vm, p->page);
536 		return -ENOMEM;
537 	}
538 
539 	return 0;
540 }
541 
542 static int setup_page_dma(struct i915_address_space *vm,
543 			  struct i915_page_dma *p)
544 {
545 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
546 }
547 
548 static void cleanup_page_dma(struct i915_address_space *vm,
549 			     struct i915_page_dma *p)
550 {
551 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
552 	vm_free_page(vm, p->page);
553 }
554 
555 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
556 
557 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
558 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
559 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
560 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
561 
562 static void fill_page_dma(struct i915_address_space *vm,
563 			  struct i915_page_dma *p,
564 			  const u64 val)
565 {
566 	u64 * const vaddr = kmap_atomic(p->page);
567 
568 	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
569 
570 	kunmap_atomic(vaddr);
571 }
572 
573 static void fill_page_dma_32(struct i915_address_space *vm,
574 			     struct i915_page_dma *p,
575 			     const u32 v)
576 {
577 	fill_page_dma(vm, p, (u64)v << 32 | v);
578 }
579 
580 static int
581 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
582 {
583 	unsigned long size;
584 
585 	/*
586 	 * In order to utilize 64K pages for an object with a size < 2M, we will
587 	 * need to support a 64K scratch page, given that every 16th entry for a
588 	 * page-table operating in 64K mode must point to a properly aligned 64K
589 	 * region, including any PTEs which happen to point to scratch.
590 	 *
591 	 * This is only relevant for the 48b PPGTT where we support
592 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
593 	 * scratch (read-only) between all vm, we create one 64k scratch page
594 	 * for all.
595 	 */
596 	size = I915_GTT_PAGE_SIZE_4K;
597 	if (i915_vm_is_4lvl(vm) &&
598 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
599 		size = I915_GTT_PAGE_SIZE_64K;
600 		gfp |= __GFP_NOWARN;
601 	}
602 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
603 
604 	do {
605 		int order = get_order(size);
606 		struct page *page;
607 		dma_addr_t addr;
608 
609 		page = alloc_pages(gfp, order);
610 		if (unlikely(!page))
611 			goto skip;
612 
613 		addr = dma_map_page_attrs(vm->dma,
614 					  page, 0, size,
615 					  PCI_DMA_BIDIRECTIONAL,
616 					  DMA_ATTR_SKIP_CPU_SYNC |
617 					  DMA_ATTR_NO_WARN);
618 		if (unlikely(dma_mapping_error(vm->dma, addr)))
619 			goto free_page;
620 
621 		if (unlikely(!IS_ALIGNED(addr, size)))
622 			goto unmap_page;
623 
624 		vm->scratch_page.page = page;
625 		vm->scratch_page.daddr = addr;
626 		vm->scratch_order = order;
627 		return 0;
628 
629 unmap_page:
630 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
631 free_page:
632 		__free_pages(page, order);
633 skip:
634 		if (size == I915_GTT_PAGE_SIZE_4K)
635 			return -ENOMEM;
636 
637 		size = I915_GTT_PAGE_SIZE_4K;
638 		gfp &= ~__GFP_NOWARN;
639 	} while (1);
640 }
641 
642 static void cleanup_scratch_page(struct i915_address_space *vm)
643 {
644 	struct i915_page_dma *p = &vm->scratch_page;
645 	int order = vm->scratch_order;
646 
647 	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
648 		       PCI_DMA_BIDIRECTIONAL);
649 	__free_pages(p->page, order);
650 }
651 
652 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
653 {
654 	struct i915_page_table *pt;
655 
656 	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
657 	if (unlikely(!pt))
658 		return ERR_PTR(-ENOMEM);
659 
660 	if (unlikely(setup_px(vm, pt))) {
661 		kfree(pt);
662 		return ERR_PTR(-ENOMEM);
663 	}
664 
665 	atomic_set(&pt->used, 0);
666 
667 	return pt;
668 }
669 
670 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
671 {
672 	cleanup_px(vm, pt);
673 	kfree(pt);
674 }
675 
676 static void gen8_initialize_pt(struct i915_address_space *vm,
677 			       struct i915_page_table *pt)
678 {
679 	fill_px(vm, pt, vm->scratch_pte);
680 }
681 
682 static void gen6_initialize_pt(struct i915_address_space *vm,
683 			       struct i915_page_table *pt)
684 {
685 	fill32_px(vm, pt, vm->scratch_pte);
686 }
687 
688 static struct i915_page_directory *__alloc_pd(void)
689 {
690 	struct i915_page_directory *pd;
691 
692 	pd = kmalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
693 
694 	if (unlikely(!pd))
695 		return NULL;
696 
697 	memset(&pd->base, 0, sizeof(pd->base));
698 	atomic_set(&pd->used, 0);
699 	spin_lock_init(&pd->lock);
700 
701 	/* for safety */
702 	pd->entry[0] = NULL;
703 
704 	return pd;
705 }
706 
707 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
708 {
709 	struct i915_page_directory *pd;
710 
711 	pd = __alloc_pd();
712 	if (unlikely(!pd))
713 		return ERR_PTR(-ENOMEM);
714 
715 	if (unlikely(setup_px(vm, pd))) {
716 		kfree(pd);
717 		return ERR_PTR(-ENOMEM);
718 	}
719 
720 	return pd;
721 }
722 
723 static inline bool pd_has_phys_page(const struct i915_page_directory * const pd)
724 {
725 	return pd->base.page;
726 }
727 
728 static void free_pd(struct i915_address_space *vm,
729 		    struct i915_page_directory *pd)
730 {
731 	if (likely(pd_has_phys_page(pd)))
732 		cleanup_px(vm, pd);
733 
734 	kfree(pd);
735 }
736 
737 static void init_pd_with_page(struct i915_address_space *vm,
738 			      struct i915_page_directory * const pd,
739 			      struct i915_page_table *pt)
740 {
741 	fill_px(vm, pd, gen8_pde_encode(px_dma(pt), I915_CACHE_LLC));
742 	memset_p(pd->entry, pt, 512);
743 }
744 
745 static void init_pd(struct i915_address_space *vm,
746 		    struct i915_page_directory * const pd,
747 		    struct i915_page_directory * const to)
748 {
749 	GEM_DEBUG_BUG_ON(!pd_has_phys_page(pd));
750 
751 	fill_px(vm, pd, gen8_pdpe_encode(px_dma(to), I915_CACHE_LLC));
752 	memset_p(pd->entry, to, 512);
753 }
754 
755 /*
756  * PDE TLBs are a pain to invalidate on GEN8+. When we modify
757  * the page table structures, we mark them dirty so that
758  * context switching/execlist queuing code takes extra steps
759  * to ensure that tlbs are flushed.
760  */
761 static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt)
762 {
763 	ppgtt->pd_dirty_engines = ALL_ENGINES;
764 }
765 
766 /* Removes entries from a single page table, releasing it if it's empty.
767  * Caller can use the return value to update higher-level entries.
768  */
769 static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
770 				struct i915_page_table *pt,
771 				u64 start, u64 length)
772 {
773 	unsigned int num_entries = gen8_pte_count(start, length);
774 	gen8_pte_t *vaddr;
775 
776 	vaddr = kmap_atomic_px(pt);
777 	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
778 	kunmap_atomic(vaddr);
779 
780 	GEM_BUG_ON(num_entries > atomic_read(&pt->used));
781 	return !atomic_sub_return(num_entries, &pt->used);
782 }
783 
784 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
785 			       struct i915_page_directory *pd,
786 			       struct i915_page_table *pt,
787 			       unsigned int pde)
788 {
789 	gen8_pde_t *vaddr;
790 
791 	vaddr = kmap_atomic_px(pd);
792 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
793 	kunmap_atomic(vaddr);
794 }
795 
796 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
797 				struct i915_page_directory *pd,
798 				u64 start, u64 length)
799 {
800 	struct i915_page_table *pt;
801 	u32 pde;
802 
803 	gen8_for_each_pde(pt, pd, start, length, pde) {
804 		bool free = false;
805 
806 		GEM_BUG_ON(pt == vm->scratch_pt);
807 
808 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
809 			continue;
810 
811 		spin_lock(&pd->lock);
812 		if (!atomic_read(&pt->used)) {
813 			gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
814 			pd->entry[pde] = vm->scratch_pt;
815 
816 			GEM_BUG_ON(!atomic_read(&pd->used));
817 			atomic_dec(&pd->used);
818 			free = true;
819 		}
820 		spin_unlock(&pd->lock);
821 		if (free)
822 			free_pt(vm, pt);
823 	}
824 
825 	return !atomic_read(&pd->used);
826 }
827 
828 static void gen8_ppgtt_set_pdpe(struct i915_page_directory *pdp,
829 				struct i915_page_directory *pd,
830 				unsigned int pdpe)
831 {
832 	gen8_ppgtt_pdpe_t *vaddr;
833 
834 	if (!pd_has_phys_page(pdp))
835 		return;
836 
837 	vaddr = kmap_atomic_px(pdp);
838 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
839 	kunmap_atomic(vaddr);
840 }
841 
842 /* Removes entries from a single page dir pointer, releasing it if it's empty.
843  * Caller can use the return value to update higher-level entries
844  */
845 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
846 				 struct i915_page_directory * const pdp,
847 				 u64 start, u64 length)
848 {
849 	struct i915_page_directory *pd;
850 	unsigned int pdpe;
851 
852 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
853 		bool free = false;
854 
855 		GEM_BUG_ON(pd == vm->scratch_pd);
856 
857 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
858 			continue;
859 
860 		spin_lock(&pdp->lock);
861 		if (!atomic_read(&pd->used)) {
862 			gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
863 			pdp->entry[pdpe] = vm->scratch_pd;
864 
865 			GEM_BUG_ON(!atomic_read(&pdp->used));
866 			atomic_dec(&pdp->used);
867 			free = true;
868 		}
869 		spin_unlock(&pdp->lock);
870 		if (free)
871 			free_pd(vm, pd);
872 	}
873 
874 	return !atomic_read(&pdp->used);
875 }
876 
877 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
878 				  u64 start, u64 length)
879 {
880 	gen8_ppgtt_clear_pdp(vm, i915_vm_to_ppgtt(vm)->pd, start, length);
881 }
882 
883 static void gen8_ppgtt_set_pml4e(struct i915_page_directory *pml4,
884 				 struct i915_page_directory *pdp,
885 				 unsigned int pml4e)
886 {
887 	gen8_ppgtt_pml4e_t *vaddr;
888 
889 	vaddr = kmap_atomic_px(pml4);
890 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
891 	kunmap_atomic(vaddr);
892 }
893 
894 /* Removes entries from a single pml4.
895  * This is the top-level structure in 4-level page tables used on gen8+.
896  * Empty entries are always scratch pml4e.
897  */
898 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
899 				  u64 start, u64 length)
900 {
901 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
902 	struct i915_page_directory * const pml4 = ppgtt->pd;
903 	struct i915_page_directory *pdp;
904 	unsigned int pml4e;
905 
906 	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
907 
908 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
909 		bool free = false;
910 		GEM_BUG_ON(pdp == vm->scratch_pdp);
911 
912 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
913 			continue;
914 
915 		spin_lock(&pml4->lock);
916 		if (!atomic_read(&pdp->used)) {
917 			gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
918 			pml4->entry[pml4e] = vm->scratch_pdp;
919 			free = true;
920 		}
921 		spin_unlock(&pml4->lock);
922 		if (free)
923 			free_pd(vm, pdp);
924 	}
925 }
926 
927 static inline struct sgt_dma {
928 	struct scatterlist *sg;
929 	dma_addr_t dma, max;
930 } sgt_dma(struct i915_vma *vma) {
931 	struct scatterlist *sg = vma->pages->sgl;
932 	dma_addr_t addr = sg_dma_address(sg);
933 	return (struct sgt_dma) { sg, addr, addr + sg->length };
934 }
935 
936 struct gen8_insert_pte {
937 	u16 pml4e;
938 	u16 pdpe;
939 	u16 pde;
940 	u16 pte;
941 };
942 
943 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
944 {
945 	return (struct gen8_insert_pte) {
946 		 gen8_pml4e_index(start),
947 		 gen8_pdpe_index(start),
948 		 gen8_pde_index(start),
949 		 gen8_pte_index(start),
950 	};
951 }
952 
953 static __always_inline bool
954 gen8_ppgtt_insert_pte_entries(struct i915_ppgtt *ppgtt,
955 			      struct i915_page_directory *pdp,
956 			      struct sgt_dma *iter,
957 			      struct gen8_insert_pte *idx,
958 			      enum i915_cache_level cache_level,
959 			      u32 flags)
960 {
961 	struct i915_page_directory *pd;
962 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
963 	gen8_pte_t *vaddr;
964 	bool ret;
965 
966 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
967 	pd = i915_pd_entry(pdp, idx->pdpe);
968 	vaddr = kmap_atomic_px(i915_pt_entry(pd, idx->pde));
969 	do {
970 		vaddr[idx->pte] = pte_encode | iter->dma;
971 
972 		iter->dma += I915_GTT_PAGE_SIZE;
973 		if (iter->dma >= iter->max) {
974 			iter->sg = __sg_next(iter->sg);
975 			if (!iter->sg) {
976 				ret = false;
977 				break;
978 			}
979 
980 			iter->dma = sg_dma_address(iter->sg);
981 			iter->max = iter->dma + iter->sg->length;
982 		}
983 
984 		if (++idx->pte == GEN8_PTES) {
985 			idx->pte = 0;
986 
987 			if (++idx->pde == I915_PDES) {
988 				idx->pde = 0;
989 
990 				/* Limited by sg length for 3lvl */
991 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
992 					idx->pdpe = 0;
993 					ret = true;
994 					break;
995 				}
996 
997 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
998 				pd = pdp->entry[idx->pdpe];
999 			}
1000 
1001 			kunmap_atomic(vaddr);
1002 			vaddr = kmap_atomic_px(i915_pt_entry(pd, idx->pde));
1003 		}
1004 	} while (1);
1005 	kunmap_atomic(vaddr);
1006 
1007 	return ret;
1008 }
1009 
1010 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1011 				   struct i915_vma *vma,
1012 				   enum i915_cache_level cache_level,
1013 				   u32 flags)
1014 {
1015 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1016 	struct sgt_dma iter = sgt_dma(vma);
1017 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1018 
1019 	gen8_ppgtt_insert_pte_entries(ppgtt, ppgtt->pd, &iter, &idx,
1020 				      cache_level, flags);
1021 
1022 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1023 }
1024 
1025 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1026 					   struct i915_page_directory *pml4,
1027 					   struct sgt_dma *iter,
1028 					   enum i915_cache_level cache_level,
1029 					   u32 flags)
1030 {
1031 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1032 	u64 start = vma->node.start;
1033 	dma_addr_t rem = iter->sg->length;
1034 
1035 	do {
1036 		struct gen8_insert_pte idx = gen8_insert_pte(start);
1037 		struct i915_page_directory *pdp =
1038 			i915_pdp_entry(pml4, idx.pml4e);
1039 		struct i915_page_directory *pd = i915_pd_entry(pdp, idx.pdpe);
1040 		unsigned int page_size;
1041 		bool maybe_64K = false;
1042 		gen8_pte_t encode = pte_encode;
1043 		gen8_pte_t *vaddr;
1044 		u16 index, max;
1045 
1046 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1047 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1048 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1049 			index = idx.pde;
1050 			max = I915_PDES;
1051 			page_size = I915_GTT_PAGE_SIZE_2M;
1052 
1053 			encode |= GEN8_PDE_PS_2M;
1054 
1055 			vaddr = kmap_atomic_px(pd);
1056 		} else {
1057 			struct i915_page_table *pt = i915_pt_entry(pd, idx.pde);
1058 
1059 			index = idx.pte;
1060 			max = GEN8_PTES;
1061 			page_size = I915_GTT_PAGE_SIZE;
1062 
1063 			if (!index &&
1064 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1065 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1066 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1067 			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1068 				maybe_64K = true;
1069 
1070 			vaddr = kmap_atomic_px(pt);
1071 		}
1072 
1073 		do {
1074 			GEM_BUG_ON(iter->sg->length < page_size);
1075 			vaddr[index++] = encode | iter->dma;
1076 
1077 			start += page_size;
1078 			iter->dma += page_size;
1079 			rem -= page_size;
1080 			if (iter->dma >= iter->max) {
1081 				iter->sg = __sg_next(iter->sg);
1082 				if (!iter->sg)
1083 					break;
1084 
1085 				rem = iter->sg->length;
1086 				iter->dma = sg_dma_address(iter->sg);
1087 				iter->max = iter->dma + rem;
1088 
1089 				if (maybe_64K && index < max &&
1090 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1091 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1092 				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1093 					maybe_64K = false;
1094 
1095 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1096 					break;
1097 			}
1098 		} while (rem >= page_size && index < max);
1099 
1100 		kunmap_atomic(vaddr);
1101 
1102 		/*
1103 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1104 		 * filled whole page-table with 64K entries, or filled part of
1105 		 * it and have reached the end of the sg table and we have
1106 		 * enough padding.
1107 		 */
1108 		if (maybe_64K &&
1109 		    (index == max ||
1110 		     (i915_vm_has_scratch_64K(vma->vm) &&
1111 		      !iter->sg && IS_ALIGNED(vma->node.start +
1112 					      vma->node.size,
1113 					      I915_GTT_PAGE_SIZE_2M)))) {
1114 			vaddr = kmap_atomic_px(pd);
1115 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1116 			kunmap_atomic(vaddr);
1117 			page_size = I915_GTT_PAGE_SIZE_64K;
1118 
1119 			/*
1120 			 * We write all 4K page entries, even when using 64K
1121 			 * pages. In order to verify that the HW isn't cheating
1122 			 * by using the 4K PTE instead of the 64K PTE, we want
1123 			 * to remove all the surplus entries. If the HW skipped
1124 			 * the 64K PTE, it will read/write into the scratch page
1125 			 * instead - which we detect as missing results during
1126 			 * selftests.
1127 			 */
1128 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1129 				u16 i;
1130 
1131 				encode = vma->vm->scratch_pte;
1132 				vaddr = kmap_atomic_px(i915_pt_entry(pd,
1133 								     idx.pde));
1134 
1135 				for (i = 1; i < index; i += 16)
1136 					memset64(vaddr + i, encode, 15);
1137 
1138 				kunmap_atomic(vaddr);
1139 			}
1140 		}
1141 
1142 		vma->page_sizes.gtt |= page_size;
1143 	} while (iter->sg);
1144 }
1145 
1146 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1147 				   struct i915_vma *vma,
1148 				   enum i915_cache_level cache_level,
1149 				   u32 flags)
1150 {
1151 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1152 	struct sgt_dma iter = sgt_dma(vma);
1153 	struct i915_page_directory * const pml4 = ppgtt->pd;
1154 
1155 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1156 		gen8_ppgtt_insert_huge_entries(vma, pml4, &iter, cache_level,
1157 					       flags);
1158 	} else {
1159 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1160 
1161 		while (gen8_ppgtt_insert_pte_entries(ppgtt,
1162 						     i915_pdp_entry(pml4, idx.pml4e++),
1163 						     &iter, &idx, cache_level,
1164 						     flags))
1165 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1166 
1167 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1168 	}
1169 }
1170 
1171 static void gen8_free_page_tables(struct i915_address_space *vm,
1172 				  struct i915_page_directory *pd)
1173 {
1174 	int i;
1175 
1176 	for (i = 0; i < I915_PDES; i++) {
1177 		if (pd->entry[i] != vm->scratch_pt)
1178 			free_pt(vm, pd->entry[i]);
1179 	}
1180 }
1181 
1182 static int gen8_init_scratch(struct i915_address_space *vm)
1183 {
1184 	int ret;
1185 
1186 	/*
1187 	 * If everybody agrees to not to write into the scratch page,
1188 	 * we can reuse it for all vm, keeping contexts and processes separate.
1189 	 */
1190 	if (vm->has_read_only &&
1191 	    vm->i915->kernel_context &&
1192 	    vm->i915->kernel_context->vm) {
1193 		struct i915_address_space *clone = vm->i915->kernel_context->vm;
1194 
1195 		GEM_BUG_ON(!clone->has_read_only);
1196 
1197 		vm->scratch_order = clone->scratch_order;
1198 		vm->scratch_pte = clone->scratch_pte;
1199 		vm->scratch_pt  = clone->scratch_pt;
1200 		vm->scratch_pd  = clone->scratch_pd;
1201 		vm->scratch_pdp = clone->scratch_pdp;
1202 		return 0;
1203 	}
1204 
1205 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1206 	if (ret)
1207 		return ret;
1208 
1209 	vm->scratch_pte =
1210 		gen8_pte_encode(vm->scratch_page.daddr,
1211 				I915_CACHE_LLC,
1212 				vm->has_read_only);
1213 
1214 	vm->scratch_pt = alloc_pt(vm);
1215 	if (IS_ERR(vm->scratch_pt)) {
1216 		ret = PTR_ERR(vm->scratch_pt);
1217 		goto free_scratch_page;
1218 	}
1219 
1220 	vm->scratch_pd = alloc_pd(vm);
1221 	if (IS_ERR(vm->scratch_pd)) {
1222 		ret = PTR_ERR(vm->scratch_pd);
1223 		goto free_pt;
1224 	}
1225 
1226 	if (i915_vm_is_4lvl(vm)) {
1227 		vm->scratch_pdp = alloc_pd(vm);
1228 		if (IS_ERR(vm->scratch_pdp)) {
1229 			ret = PTR_ERR(vm->scratch_pdp);
1230 			goto free_pd;
1231 		}
1232 	}
1233 
1234 	gen8_initialize_pt(vm, vm->scratch_pt);
1235 	init_pd_with_page(vm, vm->scratch_pd, vm->scratch_pt);
1236 	if (i915_vm_is_4lvl(vm))
1237 		init_pd(vm, vm->scratch_pdp, vm->scratch_pd);
1238 
1239 	return 0;
1240 
1241 free_pd:
1242 	free_pd(vm, vm->scratch_pd);
1243 free_pt:
1244 	free_pt(vm, vm->scratch_pt);
1245 free_scratch_page:
1246 	cleanup_scratch_page(vm);
1247 
1248 	return ret;
1249 }
1250 
1251 static int gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
1252 {
1253 	struct i915_address_space *vm = &ppgtt->vm;
1254 	struct drm_i915_private *dev_priv = vm->i915;
1255 	enum vgt_g2v_type msg;
1256 	int i;
1257 
1258 	if (i915_vm_is_4lvl(vm)) {
1259 		const u64 daddr = px_dma(ppgtt->pd);
1260 
1261 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1262 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1263 
1264 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1265 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1266 	} else {
1267 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1268 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1269 
1270 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1271 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1272 		}
1273 
1274 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1275 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1276 	}
1277 
1278 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1279 
1280 	return 0;
1281 }
1282 
1283 static void gen8_free_scratch(struct i915_address_space *vm)
1284 {
1285 	if (!vm->scratch_page.daddr)
1286 		return;
1287 
1288 	if (i915_vm_is_4lvl(vm))
1289 		free_pd(vm, vm->scratch_pdp);
1290 	free_pd(vm, vm->scratch_pd);
1291 	free_pt(vm, vm->scratch_pt);
1292 	cleanup_scratch_page(vm);
1293 }
1294 
1295 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1296 				    struct i915_page_directory *pdp)
1297 {
1298 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1299 	int i;
1300 
1301 	for (i = 0; i < pdpes; i++) {
1302 		if (pdp->entry[i] == vm->scratch_pd)
1303 			continue;
1304 
1305 		gen8_free_page_tables(vm, pdp->entry[i]);
1306 		free_pd(vm, pdp->entry[i]);
1307 	}
1308 
1309 	free_pd(vm, pdp);
1310 }
1311 
1312 static void gen8_ppgtt_cleanup_4lvl(struct i915_ppgtt *ppgtt)
1313 {
1314 	struct i915_page_directory * const pml4 = ppgtt->pd;
1315 	int i;
1316 
1317 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1318 		struct i915_page_directory *pdp = i915_pdp_entry(pml4, i);
1319 
1320 		if (pdp == ppgtt->vm.scratch_pdp)
1321 			continue;
1322 
1323 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, pdp);
1324 	}
1325 
1326 	free_pd(&ppgtt->vm, pml4);
1327 }
1328 
1329 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1330 {
1331 	struct drm_i915_private *i915 = vm->i915;
1332 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1333 
1334 	if (intel_vgpu_active(i915))
1335 		gen8_ppgtt_notify_vgt(ppgtt, false);
1336 
1337 	if (i915_vm_is_4lvl(vm))
1338 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1339 	else
1340 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pd);
1341 
1342 	gen8_free_scratch(vm);
1343 }
1344 
1345 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1346 			       struct i915_page_directory *pd,
1347 			       u64 start, u64 length)
1348 {
1349 	struct i915_page_table *pt, *alloc = NULL;
1350 	u64 from = start;
1351 	unsigned int pde;
1352 	int ret = 0;
1353 
1354 	spin_lock(&pd->lock);
1355 	gen8_for_each_pde(pt, pd, start, length, pde) {
1356 		const int count = gen8_pte_count(start, length);
1357 
1358 		if (pt == vm->scratch_pt) {
1359 			spin_unlock(&pd->lock);
1360 
1361 			pt = fetch_and_zero(&alloc);
1362 			if (!pt)
1363 				pt = alloc_pt(vm);
1364 			if (IS_ERR(pt)) {
1365 				ret = PTR_ERR(pt);
1366 				goto unwind;
1367 			}
1368 
1369 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1370 				gen8_initialize_pt(vm, pt);
1371 
1372 			spin_lock(&pd->lock);
1373 			if (pd->entry[pde] == vm->scratch_pt) {
1374 				gen8_ppgtt_set_pde(vm, pd, pt, pde);
1375 				pd->entry[pde] = pt;
1376 				atomic_inc(&pd->used);
1377 			} else {
1378 				alloc = pt;
1379 				pt = pd->entry[pde];
1380 			}
1381 		}
1382 
1383 		atomic_add(count, &pt->used);
1384 	}
1385 	spin_unlock(&pd->lock);
1386 	goto out;
1387 
1388 unwind:
1389 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1390 out:
1391 	if (alloc)
1392 		free_pt(vm, alloc);
1393 	return ret;
1394 }
1395 
1396 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1397 				struct i915_page_directory *pdp,
1398 				u64 start, u64 length)
1399 {
1400 	struct i915_page_directory *pd, *alloc = NULL;
1401 	u64 from = start;
1402 	unsigned int pdpe;
1403 	int ret = 0;
1404 
1405 	spin_lock(&pdp->lock);
1406 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1407 		if (pd == vm->scratch_pd) {
1408 			spin_unlock(&pdp->lock);
1409 
1410 			pd = fetch_and_zero(&alloc);
1411 			if (!pd)
1412 				pd = alloc_pd(vm);
1413 			if (IS_ERR(pd)) {
1414 				ret = PTR_ERR(pd);
1415 				goto unwind;
1416 			}
1417 
1418 			init_pd_with_page(vm, pd, vm->scratch_pt);
1419 
1420 			spin_lock(&pdp->lock);
1421 			if (pdp->entry[pdpe] == vm->scratch_pd) {
1422 				gen8_ppgtt_set_pdpe(pdp, pd, pdpe);
1423 				pdp->entry[pdpe] = pd;
1424 				atomic_inc(&pdp->used);
1425 			} else {
1426 				alloc = pd;
1427 				pd = pdp->entry[pdpe];
1428 			}
1429 		}
1430 		atomic_inc(&pd->used);
1431 		spin_unlock(&pdp->lock);
1432 
1433 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1434 		if (unlikely(ret))
1435 			goto unwind_pd;
1436 
1437 		spin_lock(&pdp->lock);
1438 		atomic_dec(&pd->used);
1439 	}
1440 	spin_unlock(&pdp->lock);
1441 	goto out;
1442 
1443 unwind_pd:
1444 	spin_lock(&pdp->lock);
1445 	if (atomic_dec_and_test(&pd->used)) {
1446 		gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
1447 		GEM_BUG_ON(!atomic_read(&pdp->used));
1448 		atomic_dec(&pdp->used);
1449 		free_pd(vm, pd);
1450 	}
1451 	spin_unlock(&pdp->lock);
1452 unwind:
1453 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1454 out:
1455 	if (alloc)
1456 		free_pd(vm, alloc);
1457 	return ret;
1458 }
1459 
1460 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1461 				 u64 start, u64 length)
1462 {
1463 	return gen8_ppgtt_alloc_pdp(vm,
1464 				    i915_vm_to_ppgtt(vm)->pd, start, length);
1465 }
1466 
1467 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1468 				 u64 start, u64 length)
1469 {
1470 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1471 	struct i915_page_directory * const pml4 = ppgtt->pd;
1472 	struct i915_page_directory *pdp, *alloc = NULL;
1473 	u64 from = start;
1474 	int ret = 0;
1475 	u32 pml4e;
1476 
1477 	spin_lock(&pml4->lock);
1478 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1479 		if (pdp == vm->scratch_pdp) {
1480 			spin_unlock(&pml4->lock);
1481 
1482 			pdp = fetch_and_zero(&alloc);
1483 			if (!pdp)
1484 				pdp = alloc_pd(vm);
1485 			if (IS_ERR(pdp)) {
1486 				ret = PTR_ERR(pdp);
1487 				goto unwind;
1488 			}
1489 
1490 			init_pd(vm, pdp, vm->scratch_pd);
1491 
1492 			spin_lock(&pml4->lock);
1493 			if (pml4->entry[pml4e] == vm->scratch_pdp) {
1494 				gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1495 				pml4->entry[pml4e] = pdp;
1496 			} else {
1497 				alloc = pdp;
1498 				pdp = pml4->entry[pml4e];
1499 			}
1500 		}
1501 		atomic_inc(&pdp->used);
1502 		spin_unlock(&pml4->lock);
1503 
1504 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1505 		if (unlikely(ret))
1506 			goto unwind_pdp;
1507 
1508 		spin_lock(&pml4->lock);
1509 		atomic_dec(&pdp->used);
1510 	}
1511 	spin_unlock(&pml4->lock);
1512 	goto out;
1513 
1514 unwind_pdp:
1515 	spin_lock(&pml4->lock);
1516 	if (atomic_dec_and_test(&pdp->used)) {
1517 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1518 		free_pd(vm, pdp);
1519 	}
1520 	spin_unlock(&pml4->lock);
1521 unwind:
1522 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1523 out:
1524 	if (alloc)
1525 		free_pd(vm, alloc);
1526 	return ret;
1527 }
1528 
1529 static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1530 {
1531 	struct i915_address_space *vm = &ppgtt->vm;
1532 	struct i915_page_directory *pdp = ppgtt->pd;
1533 	struct i915_page_directory *pd;
1534 	u64 start = 0, length = ppgtt->vm.total;
1535 	u64 from = start;
1536 	unsigned int pdpe;
1537 
1538 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1539 		pd = alloc_pd(vm);
1540 		if (IS_ERR(pd))
1541 			goto unwind;
1542 
1543 		init_pd_with_page(vm, pd, vm->scratch_pt);
1544 		gen8_ppgtt_set_pdpe(pdp, pd, pdpe);
1545 
1546 		atomic_inc(&pdp->used);
1547 	}
1548 
1549 	atomic_inc(&pdp->used); /* never remove */
1550 
1551 	return 0;
1552 
1553 unwind:
1554 	start -= from;
1555 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1556 		gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
1557 		free_pd(vm, pd);
1558 	}
1559 	atomic_set(&pdp->used, 0);
1560 	return -ENOMEM;
1561 }
1562 
1563 static void ppgtt_init(struct drm_i915_private *i915,
1564 		       struct i915_ppgtt *ppgtt)
1565 {
1566 	ppgtt->vm.i915 = i915;
1567 	ppgtt->vm.dma = &i915->drm.pdev->dev;
1568 	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
1569 
1570 	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1571 
1572 	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1573 	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1574 	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1575 	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1576 }
1577 
1578 /*
1579  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1580  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1581  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1582  * space.
1583  *
1584  */
1585 static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1586 {
1587 	struct i915_ppgtt *ppgtt;
1588 	int err;
1589 
1590 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1591 	if (!ppgtt)
1592 		return ERR_PTR(-ENOMEM);
1593 
1594 	ppgtt_init(i915, ppgtt);
1595 
1596 	/*
1597 	 * From bdw, there is hw support for read-only pages in the PPGTT.
1598 	 *
1599 	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
1600 	 * for now.
1601 	 */
1602 	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1603 
1604 	/* There are only few exceptions for gen >=6. chv and bxt.
1605 	 * And we are not sure about the latter so play safe for now.
1606 	 */
1607 	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1608 		ppgtt->vm.pt_kmap_wc = true;
1609 
1610 	err = gen8_init_scratch(&ppgtt->vm);
1611 	if (err)
1612 		goto err_free;
1613 
1614 	ppgtt->pd = __alloc_pd();
1615 	if (!ppgtt->pd) {
1616 		err = -ENOMEM;
1617 		goto err_free_scratch;
1618 	}
1619 
1620 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1621 		err = setup_px(&ppgtt->vm, ppgtt->pd);
1622 		if (err)
1623 			goto err_free_pdp;
1624 
1625 		init_pd(&ppgtt->vm, ppgtt->pd, ppgtt->vm.scratch_pdp);
1626 
1627 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1628 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1629 		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1630 	} else {
1631 		/*
1632 		 * We don't need to setup dma for top level pdp, only
1633 		 * for entries. So point entries to scratch.
1634 		 */
1635 		memset_p(ppgtt->pd->entry, ppgtt->vm.scratch_pd,
1636 			 GEN8_3LVL_PDPES);
1637 
1638 		if (intel_vgpu_active(i915)) {
1639 			err = gen8_preallocate_top_level_pdp(ppgtt);
1640 			if (err)
1641 				goto err_free_pdp;
1642 		}
1643 
1644 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1645 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1646 		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1647 	}
1648 
1649 	if (intel_vgpu_active(i915))
1650 		gen8_ppgtt_notify_vgt(ppgtt, true);
1651 
1652 	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1653 
1654 	return ppgtt;
1655 
1656 err_free_pdp:
1657 	free_pd(&ppgtt->vm, ppgtt->pd);
1658 err_free_scratch:
1659 	gen8_free_scratch(&ppgtt->vm);
1660 err_free:
1661 	kfree(ppgtt);
1662 	return ERR_PTR(err);
1663 }
1664 
1665 /* Write pde (index) from the page directory @pd to the page table @pt */
1666 static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
1667 				  const unsigned int pde,
1668 				  const struct i915_page_table *pt)
1669 {
1670 	/* Caller needs to make sure the write completes if necessary */
1671 	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1672 		  ppgtt->pd_addr + pde);
1673 }
1674 
1675 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1676 {
1677 	struct intel_engine_cs *engine;
1678 	u32 ecochk, ecobits;
1679 	enum intel_engine_id id;
1680 
1681 	ecobits = I915_READ(GAC_ECO_BITS);
1682 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1683 
1684 	ecochk = I915_READ(GAM_ECOCHK);
1685 	if (IS_HASWELL(dev_priv)) {
1686 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1687 	} else {
1688 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1689 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1690 	}
1691 	I915_WRITE(GAM_ECOCHK, ecochk);
1692 
1693 	for_each_engine(engine, dev_priv, id) {
1694 		/* GFX_MODE is per-ring on gen7+ */
1695 		ENGINE_WRITE(engine,
1696 			     RING_MODE_GEN7,
1697 			     _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1698 	}
1699 }
1700 
1701 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1702 {
1703 	u32 ecochk, gab_ctl, ecobits;
1704 
1705 	ecobits = I915_READ(GAC_ECO_BITS);
1706 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1707 		   ECOBITS_PPGTT_CACHE64B);
1708 
1709 	gab_ctl = I915_READ(GAB_CTL);
1710 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1711 
1712 	ecochk = I915_READ(GAM_ECOCHK);
1713 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1714 
1715 	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
1716 		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1717 }
1718 
1719 /* PPGTT support for Sandybdrige/Gen6 and later */
1720 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1721 				   u64 start, u64 length)
1722 {
1723 	struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1724 	const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1725 	const gen6_pte_t scratch_pte = vm->scratch_pte;
1726 	unsigned int pde = first_entry / GEN6_PTES;
1727 	unsigned int pte = first_entry % GEN6_PTES;
1728 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1729 
1730 	while (num_entries) {
1731 		struct i915_page_table * const pt =
1732 			i915_pt_entry(ppgtt->base.pd, pde++);
1733 		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1734 		gen6_pte_t *vaddr;
1735 
1736 		GEM_BUG_ON(pt == vm->scratch_pt);
1737 
1738 		num_entries -= count;
1739 
1740 		GEM_BUG_ON(count > atomic_read(&pt->used));
1741 		if (!atomic_sub_return(count, &pt->used))
1742 			ppgtt->scan_for_unused_pt = true;
1743 
1744 		/*
1745 		 * Note that the hw doesn't support removing PDE on the fly
1746 		 * (they are cached inside the context with no means to
1747 		 * invalidate the cache), so we can only reset the PTE
1748 		 * entries back to scratch.
1749 		 */
1750 
1751 		vaddr = kmap_atomic_px(pt);
1752 		memset32(vaddr + pte, scratch_pte, count);
1753 		kunmap_atomic(vaddr);
1754 
1755 		pte = 0;
1756 	}
1757 }
1758 
1759 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1760 				      struct i915_vma *vma,
1761 				      enum i915_cache_level cache_level,
1762 				      u32 flags)
1763 {
1764 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1765 	struct i915_page_directory * const pd = ppgtt->pd;
1766 	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1767 	unsigned act_pt = first_entry / GEN6_PTES;
1768 	unsigned act_pte = first_entry % GEN6_PTES;
1769 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1770 	struct sgt_dma iter = sgt_dma(vma);
1771 	gen6_pte_t *vaddr;
1772 
1773 	GEM_BUG_ON(i915_pt_entry(pd, act_pt) == vm->scratch_pt);
1774 
1775 	vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1776 	do {
1777 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1778 
1779 		iter.dma += I915_GTT_PAGE_SIZE;
1780 		if (iter.dma == iter.max) {
1781 			iter.sg = __sg_next(iter.sg);
1782 			if (!iter.sg)
1783 				break;
1784 
1785 			iter.dma = sg_dma_address(iter.sg);
1786 			iter.max = iter.dma + iter.sg->length;
1787 		}
1788 
1789 		if (++act_pte == GEN6_PTES) {
1790 			kunmap_atomic(vaddr);
1791 			vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1792 			act_pte = 0;
1793 		}
1794 	} while (1);
1795 	kunmap_atomic(vaddr);
1796 
1797 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1798 }
1799 
1800 static int gen6_alloc_va_range(struct i915_address_space *vm,
1801 			       u64 start, u64 length)
1802 {
1803 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1804 	struct i915_page_directory * const pd = ppgtt->base.pd;
1805 	struct i915_page_table *pt, *alloc = NULL;
1806 	intel_wakeref_t wakeref;
1807 	u64 from = start;
1808 	unsigned int pde;
1809 	bool flush = false;
1810 	int ret = 0;
1811 
1812 	wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1813 
1814 	spin_lock(&pd->lock);
1815 	gen6_for_each_pde(pt, pd, start, length, pde) {
1816 		const unsigned int count = gen6_pte_count(start, length);
1817 
1818 		if (pt == vm->scratch_pt) {
1819 			spin_unlock(&pd->lock);
1820 
1821 			pt = fetch_and_zero(&alloc);
1822 			if (!pt)
1823 				pt = alloc_pt(vm);
1824 			if (IS_ERR(pt)) {
1825 				ret = PTR_ERR(pt);
1826 				goto unwind_out;
1827 			}
1828 
1829 			gen6_initialize_pt(vm, pt);
1830 
1831 			spin_lock(&pd->lock);
1832 			if (pd->entry[pde] == vm->scratch_pt) {
1833 				pd->entry[pde] = pt;
1834 				if (i915_vma_is_bound(ppgtt->vma,
1835 						      I915_VMA_GLOBAL_BIND)) {
1836 					gen6_write_pde(ppgtt, pde, pt);
1837 					flush = true;
1838 				}
1839 			} else {
1840 				alloc = pt;
1841 				pt = pd->entry[pde];
1842 			}
1843 		}
1844 
1845 		atomic_add(count, &pt->used);
1846 	}
1847 	spin_unlock(&pd->lock);
1848 
1849 	if (flush) {
1850 		mark_tlbs_dirty(&ppgtt->base);
1851 		gen6_ggtt_invalidate(vm->i915);
1852 	}
1853 
1854 	goto out;
1855 
1856 unwind_out:
1857 	gen6_ppgtt_clear_range(vm, from, start - from);
1858 out:
1859 	if (alloc)
1860 		free_pt(vm, alloc);
1861 	intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1862 	return ret;
1863 }
1864 
1865 static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1866 {
1867 	struct i915_address_space * const vm = &ppgtt->base.vm;
1868 	struct i915_page_directory * const pd = ppgtt->base.pd;
1869 	struct i915_page_table *unused;
1870 	u32 pde;
1871 	int ret;
1872 
1873 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1874 	if (ret)
1875 		return ret;
1876 
1877 	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1878 					 I915_CACHE_NONE,
1879 					 PTE_READ_ONLY);
1880 
1881 	vm->scratch_pt = alloc_pt(vm);
1882 	if (IS_ERR(vm->scratch_pt)) {
1883 		cleanup_scratch_page(vm);
1884 		return PTR_ERR(vm->scratch_pt);
1885 	}
1886 
1887 	gen6_initialize_pt(vm, vm->scratch_pt);
1888 
1889 	gen6_for_all_pdes(unused, pd, pde)
1890 		pd->entry[pde] = vm->scratch_pt;
1891 
1892 	return 0;
1893 }
1894 
1895 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1896 {
1897 	free_pt(vm, vm->scratch_pt);
1898 	cleanup_scratch_page(vm);
1899 }
1900 
1901 static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1902 {
1903 	struct i915_page_directory * const pd = ppgtt->base.pd;
1904 	struct i915_page_table *pt;
1905 	u32 pde;
1906 
1907 	gen6_for_all_pdes(pt, pd, pde)
1908 		if (pt != ppgtt->base.vm.scratch_pt)
1909 			free_pt(&ppgtt->base.vm, pt);
1910 }
1911 
1912 struct gen6_ppgtt_cleanup_work {
1913 	struct work_struct base;
1914 	struct i915_vma *vma;
1915 };
1916 
1917 static void gen6_ppgtt_cleanup_work(struct work_struct *wrk)
1918 {
1919 	struct gen6_ppgtt_cleanup_work *work =
1920 		container_of(wrk, typeof(*work), base);
1921 	/* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */
1922 	struct drm_i915_private *i915 = work->vma->vm->i915;
1923 
1924 	mutex_lock(&i915->drm.struct_mutex);
1925 	i915_vma_destroy(work->vma);
1926 	mutex_unlock(&i915->drm.struct_mutex);
1927 
1928 	kfree(work);
1929 }
1930 
1931 static int nop_set_pages(struct i915_vma *vma)
1932 {
1933 	return -ENODEV;
1934 }
1935 
1936 static void nop_clear_pages(struct i915_vma *vma)
1937 {
1938 }
1939 
1940 static int nop_bind(struct i915_vma *vma,
1941 		    enum i915_cache_level cache_level,
1942 		    u32 unused)
1943 {
1944 	return -ENODEV;
1945 }
1946 
1947 static void nop_unbind(struct i915_vma *vma)
1948 {
1949 }
1950 
1951 static const struct i915_vma_ops nop_vma_ops = {
1952 	.set_pages = nop_set_pages,
1953 	.clear_pages = nop_clear_pages,
1954 	.bind_vma = nop_bind,
1955 	.unbind_vma = nop_unbind,
1956 };
1957 
1958 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1959 {
1960 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1961 	struct gen6_ppgtt_cleanup_work *work = ppgtt->work;
1962 
1963 	/* FIXME remove the struct_mutex to bring the locking under control */
1964 	INIT_WORK(&work->base, gen6_ppgtt_cleanup_work);
1965 	work->vma = ppgtt->vma;
1966 	work->vma->ops = &nop_vma_ops;
1967 	schedule_work(&work->base);
1968 
1969 	gen6_ppgtt_free_pd(ppgtt);
1970 	gen6_ppgtt_free_scratch(vm);
1971 	kfree(ppgtt->base.pd);
1972 }
1973 
1974 static int pd_vma_set_pages(struct i915_vma *vma)
1975 {
1976 	vma->pages = ERR_PTR(-ENODEV);
1977 	return 0;
1978 }
1979 
1980 static void pd_vma_clear_pages(struct i915_vma *vma)
1981 {
1982 	GEM_BUG_ON(!vma->pages);
1983 
1984 	vma->pages = NULL;
1985 }
1986 
1987 static int pd_vma_bind(struct i915_vma *vma,
1988 		       enum i915_cache_level cache_level,
1989 		       u32 unused)
1990 {
1991 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1992 	struct gen6_ppgtt *ppgtt = vma->private;
1993 	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1994 	struct i915_page_table *pt;
1995 	unsigned int pde;
1996 
1997 	ppgtt->base.pd->base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1998 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1999 
2000 	gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
2001 		gen6_write_pde(ppgtt, pde, pt);
2002 
2003 	mark_tlbs_dirty(&ppgtt->base);
2004 	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2005 
2006 	return 0;
2007 }
2008 
2009 static void pd_vma_unbind(struct i915_vma *vma)
2010 {
2011 	struct gen6_ppgtt *ppgtt = vma->private;
2012 	struct i915_page_directory * const pd = ppgtt->base.pd;
2013 	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
2014 	struct i915_page_table *pt;
2015 	unsigned int pde;
2016 
2017 	if (!ppgtt->scan_for_unused_pt)
2018 		return;
2019 
2020 	/* Free all no longer used page tables */
2021 	gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
2022 		if (atomic_read(&pt->used) || pt == scratch_pt)
2023 			continue;
2024 
2025 		free_pt(&ppgtt->base.vm, pt);
2026 		pd->entry[pde] = scratch_pt;
2027 	}
2028 
2029 	ppgtt->scan_for_unused_pt = false;
2030 }
2031 
2032 static const struct i915_vma_ops pd_vma_ops = {
2033 	.set_pages = pd_vma_set_pages,
2034 	.clear_pages = pd_vma_clear_pages,
2035 	.bind_vma = pd_vma_bind,
2036 	.unbind_vma = pd_vma_unbind,
2037 };
2038 
2039 static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
2040 {
2041 	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
2042 	struct i915_ggtt *ggtt = &i915->ggtt;
2043 	struct i915_vma *vma;
2044 
2045 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
2046 	GEM_BUG_ON(size > ggtt->vm.total);
2047 
2048 	vma = i915_vma_alloc();
2049 	if (!vma)
2050 		return ERR_PTR(-ENOMEM);
2051 
2052 	i915_active_init(i915, &vma->active, NULL);
2053 	INIT_ACTIVE_REQUEST(&vma->last_fence);
2054 
2055 	vma->vm = &ggtt->vm;
2056 	vma->ops = &pd_vma_ops;
2057 	vma->private = ppgtt;
2058 
2059 	vma->size = size;
2060 	vma->fence_size = size;
2061 	vma->flags = I915_VMA_GGTT;
2062 	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
2063 
2064 	INIT_LIST_HEAD(&vma->obj_link);
2065 	INIT_LIST_HEAD(&vma->closed_link);
2066 
2067 	mutex_lock(&vma->vm->mutex);
2068 	list_add(&vma->vm_link, &vma->vm->unbound_list);
2069 	mutex_unlock(&vma->vm->mutex);
2070 
2071 	return vma;
2072 }
2073 
2074 int gen6_ppgtt_pin(struct i915_ppgtt *base)
2075 {
2076 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2077 	int err;
2078 
2079 	GEM_BUG_ON(ppgtt->base.vm.closed);
2080 
2081 	/*
2082 	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
2083 	 * which will be pinned into every active context.
2084 	 * (When vma->pin_count becomes atomic, I expect we will naturally
2085 	 * need a larger, unpacked, type and kill this redundancy.)
2086 	 */
2087 	if (ppgtt->pin_count++)
2088 		return 0;
2089 
2090 	/*
2091 	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2092 	 * allocator works in address space sizes, so it's multiplied by page
2093 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2094 	 */
2095 	err = i915_vma_pin(ppgtt->vma,
2096 			   0, GEN6_PD_ALIGN,
2097 			   PIN_GLOBAL | PIN_HIGH);
2098 	if (err)
2099 		goto unpin;
2100 
2101 	return 0;
2102 
2103 unpin:
2104 	ppgtt->pin_count = 0;
2105 	return err;
2106 }
2107 
2108 void gen6_ppgtt_unpin(struct i915_ppgtt *base)
2109 {
2110 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2111 
2112 	GEM_BUG_ON(!ppgtt->pin_count);
2113 	if (--ppgtt->pin_count)
2114 		return;
2115 
2116 	i915_vma_unpin(ppgtt->vma);
2117 }
2118 
2119 void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
2120 {
2121 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2122 
2123 	if (!ppgtt->pin_count)
2124 		return;
2125 
2126 	ppgtt->pin_count = 0;
2127 	i915_vma_unpin(ppgtt->vma);
2128 }
2129 
2130 static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2131 {
2132 	struct i915_ggtt * const ggtt = &i915->ggtt;
2133 	struct gen6_ppgtt *ppgtt;
2134 	int err;
2135 
2136 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2137 	if (!ppgtt)
2138 		return ERR_PTR(-ENOMEM);
2139 
2140 	ppgtt_init(i915, &ppgtt->base);
2141 
2142 	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2143 	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2144 	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2145 	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2146 
2147 	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2148 
2149 	ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL);
2150 	if (!ppgtt->work) {
2151 		err = -ENOMEM;
2152 		goto err_free;
2153 	}
2154 
2155 	ppgtt->base.pd = __alloc_pd();
2156 	if (!ppgtt->base.pd) {
2157 		err = -ENOMEM;
2158 		goto err_work;
2159 	}
2160 
2161 	err = gen6_ppgtt_init_scratch(ppgtt);
2162 	if (err)
2163 		goto err_pd;
2164 
2165 	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2166 	if (IS_ERR(ppgtt->vma)) {
2167 		err = PTR_ERR(ppgtt->vma);
2168 		goto err_scratch;
2169 	}
2170 
2171 	return &ppgtt->base;
2172 
2173 err_scratch:
2174 	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2175 err_pd:
2176 	kfree(ppgtt->base.pd);
2177 err_work:
2178 	kfree(ppgtt->work);
2179 err_free:
2180 	kfree(ppgtt);
2181 	return ERR_PTR(err);
2182 }
2183 
2184 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2185 {
2186 	/* This function is for gtt related workarounds. This function is
2187 	 * called on driver load and after a GPU reset, so you can place
2188 	 * workarounds here even if they get overwritten by GPU reset.
2189 	 */
2190 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2191 	if (IS_BROADWELL(dev_priv))
2192 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2193 	else if (IS_CHERRYVIEW(dev_priv))
2194 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2195 	else if (IS_GEN9_LP(dev_priv))
2196 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2197 	else if (INTEL_GEN(dev_priv) >= 9)
2198 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2199 
2200 	/*
2201 	 * To support 64K PTEs we need to first enable the use of the
2202 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2203 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2204 	 * shouldn't be needed after GEN10.
2205 	 *
2206 	 * 64K pages were first introduced from BDW+, although technically they
2207 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2208 	 * 32K pages, but we don't currently have any support for it in our
2209 	 * driver.
2210 	 */
2211 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2212 	    INTEL_GEN(dev_priv) <= 10)
2213 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2214 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2215 			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2216 }
2217 
2218 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2219 {
2220 	gtt_write_workarounds(dev_priv);
2221 
2222 	if (IS_GEN(dev_priv, 6))
2223 		gen6_ppgtt_enable(dev_priv);
2224 	else if (IS_GEN(dev_priv, 7))
2225 		gen7_ppgtt_enable(dev_priv);
2226 
2227 	return 0;
2228 }
2229 
2230 static struct i915_ppgtt *
2231 __ppgtt_create(struct drm_i915_private *i915)
2232 {
2233 	if (INTEL_GEN(i915) < 8)
2234 		return gen6_ppgtt_create(i915);
2235 	else
2236 		return gen8_ppgtt_create(i915);
2237 }
2238 
2239 struct i915_ppgtt *
2240 i915_ppgtt_create(struct drm_i915_private *i915)
2241 {
2242 	struct i915_ppgtt *ppgtt;
2243 
2244 	ppgtt = __ppgtt_create(i915);
2245 	if (IS_ERR(ppgtt))
2246 		return ppgtt;
2247 
2248 	trace_i915_ppgtt_create(&ppgtt->vm);
2249 
2250 	return ppgtt;
2251 }
2252 
2253 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2254 {
2255 	struct list_head *phases[] = {
2256 		&vm->bound_list,
2257 		&vm->unbound_list,
2258 		NULL,
2259 	}, **phase;
2260 
2261 	vm->closed = true;
2262 	for (phase = phases; *phase; phase++) {
2263 		struct i915_vma *vma, *vn;
2264 
2265 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2266 			i915_vma_destroy(vma);
2267 	}
2268 }
2269 
2270 void i915_vm_release(struct kref *kref)
2271 {
2272 	struct i915_address_space *vm =
2273 		container_of(kref, struct i915_address_space, ref);
2274 
2275 	GEM_BUG_ON(i915_is_ggtt(vm));
2276 	trace_i915_ppgtt_release(vm);
2277 
2278 	ppgtt_destroy_vma(vm);
2279 
2280 	GEM_BUG_ON(!list_empty(&vm->bound_list));
2281 	GEM_BUG_ON(!list_empty(&vm->unbound_list));
2282 
2283 	vm->cleanup(vm);
2284 	i915_address_space_fini(vm);
2285 
2286 	kfree(vm);
2287 }
2288 
2289 /* Certain Gen5 chipsets require require idling the GPU before
2290  * unmapping anything from the GTT when VT-d is enabled.
2291  */
2292 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2293 {
2294 	/* Query intel_iommu to see if we need the workaround. Presumably that
2295 	 * was loaded first.
2296 	 */
2297 	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2298 }
2299 
2300 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2301 {
2302 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2303 
2304 	/* Don't bother messing with faults pre GEN6 as we have little
2305 	 * documentation supporting that it's a good idea.
2306 	 */
2307 	if (INTEL_GEN(dev_priv) < 6)
2308 		return;
2309 
2310 	i915_check_and_clear_faults(dev_priv);
2311 
2312 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2313 
2314 	i915_ggtt_invalidate(dev_priv);
2315 }
2316 
2317 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2318 			       struct sg_table *pages)
2319 {
2320 	do {
2321 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2322 				     pages->sgl, pages->nents,
2323 				     PCI_DMA_BIDIRECTIONAL,
2324 				     DMA_ATTR_NO_WARN))
2325 			return 0;
2326 
2327 		/*
2328 		 * If the DMA remap fails, one cause can be that we have
2329 		 * too many objects pinned in a small remapping table,
2330 		 * such as swiotlb. Incrementally purge all other objects and
2331 		 * try again - if there are no more pages to remove from
2332 		 * the DMA remapper, i915_gem_shrink will return 0.
2333 		 */
2334 		GEM_BUG_ON(obj->mm.pages == pages);
2335 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2336 				 obj->base.size >> PAGE_SHIFT, NULL,
2337 				 I915_SHRINK_BOUND |
2338 				 I915_SHRINK_UNBOUND));
2339 
2340 	return -ENOSPC;
2341 }
2342 
2343 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2344 {
2345 	writeq(pte, addr);
2346 }
2347 
2348 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2349 				  dma_addr_t addr,
2350 				  u64 offset,
2351 				  enum i915_cache_level level,
2352 				  u32 unused)
2353 {
2354 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2355 	gen8_pte_t __iomem *pte =
2356 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2357 
2358 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2359 
2360 	ggtt->invalidate(vm->i915);
2361 }
2362 
2363 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2364 				     struct i915_vma *vma,
2365 				     enum i915_cache_level level,
2366 				     u32 flags)
2367 {
2368 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2369 	struct sgt_iter sgt_iter;
2370 	gen8_pte_t __iomem *gtt_entries;
2371 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2372 	dma_addr_t addr;
2373 
2374 	/*
2375 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2376 	 * not to allow the user to override access to a read only page.
2377 	 */
2378 
2379 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2380 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2381 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2382 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2383 
2384 	/*
2385 	 * We want to flush the TLBs only after we're certain all the PTE
2386 	 * updates have finished.
2387 	 */
2388 	ggtt->invalidate(vm->i915);
2389 }
2390 
2391 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2392 				  dma_addr_t addr,
2393 				  u64 offset,
2394 				  enum i915_cache_level level,
2395 				  u32 flags)
2396 {
2397 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2398 	gen6_pte_t __iomem *pte =
2399 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2400 
2401 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2402 
2403 	ggtt->invalidate(vm->i915);
2404 }
2405 
2406 /*
2407  * Binds an object into the global gtt with the specified cache level. The object
2408  * will be accessible to the GPU via commands whose operands reference offsets
2409  * within the global GTT as well as accessible by the GPU through the GMADR
2410  * mapped BAR (dev_priv->mm.gtt->gtt).
2411  */
2412 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2413 				     struct i915_vma *vma,
2414 				     enum i915_cache_level level,
2415 				     u32 flags)
2416 {
2417 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2418 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2419 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2420 	struct sgt_iter iter;
2421 	dma_addr_t addr;
2422 	for_each_sgt_dma(addr, iter, vma->pages)
2423 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2424 
2425 	/*
2426 	 * We want to flush the TLBs only after we're certain all the PTE
2427 	 * updates have finished.
2428 	 */
2429 	ggtt->invalidate(vm->i915);
2430 }
2431 
2432 static void nop_clear_range(struct i915_address_space *vm,
2433 			    u64 start, u64 length)
2434 {
2435 }
2436 
2437 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2438 				  u64 start, u64 length)
2439 {
2440 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2441 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2442 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2443 	const gen8_pte_t scratch_pte = vm->scratch_pte;
2444 	gen8_pte_t __iomem *gtt_base =
2445 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2446 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2447 	int i;
2448 
2449 	if (WARN(num_entries > max_entries,
2450 		 "First entry = %d; Num entries = %d (max=%d)\n",
2451 		 first_entry, num_entries, max_entries))
2452 		num_entries = max_entries;
2453 
2454 	for (i = 0; i < num_entries; i++)
2455 		gen8_set_pte(&gtt_base[i], scratch_pte);
2456 }
2457 
2458 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2459 {
2460 	struct drm_i915_private *dev_priv = vm->i915;
2461 
2462 	/*
2463 	 * Make sure the internal GAM fifo has been cleared of all GTT
2464 	 * writes before exiting stop_machine(). This guarantees that
2465 	 * any aperture accesses waiting to start in another process
2466 	 * cannot back up behind the GTT writes causing a hang.
2467 	 * The register can be any arbitrary GAM register.
2468 	 */
2469 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2470 }
2471 
2472 struct insert_page {
2473 	struct i915_address_space *vm;
2474 	dma_addr_t addr;
2475 	u64 offset;
2476 	enum i915_cache_level level;
2477 };
2478 
2479 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2480 {
2481 	struct insert_page *arg = _arg;
2482 
2483 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2484 	bxt_vtd_ggtt_wa(arg->vm);
2485 
2486 	return 0;
2487 }
2488 
2489 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2490 					  dma_addr_t addr,
2491 					  u64 offset,
2492 					  enum i915_cache_level level,
2493 					  u32 unused)
2494 {
2495 	struct insert_page arg = { vm, addr, offset, level };
2496 
2497 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2498 }
2499 
2500 struct insert_entries {
2501 	struct i915_address_space *vm;
2502 	struct i915_vma *vma;
2503 	enum i915_cache_level level;
2504 	u32 flags;
2505 };
2506 
2507 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2508 {
2509 	struct insert_entries *arg = _arg;
2510 
2511 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2512 	bxt_vtd_ggtt_wa(arg->vm);
2513 
2514 	return 0;
2515 }
2516 
2517 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2518 					     struct i915_vma *vma,
2519 					     enum i915_cache_level level,
2520 					     u32 flags)
2521 {
2522 	struct insert_entries arg = { vm, vma, level, flags };
2523 
2524 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2525 }
2526 
2527 struct clear_range {
2528 	struct i915_address_space *vm;
2529 	u64 start;
2530 	u64 length;
2531 };
2532 
2533 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2534 {
2535 	struct clear_range *arg = _arg;
2536 
2537 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2538 	bxt_vtd_ggtt_wa(arg->vm);
2539 
2540 	return 0;
2541 }
2542 
2543 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2544 					  u64 start,
2545 					  u64 length)
2546 {
2547 	struct clear_range arg = { vm, start, length };
2548 
2549 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2550 }
2551 
2552 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2553 				  u64 start, u64 length)
2554 {
2555 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2556 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2557 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2558 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2559 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2560 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2561 	int i;
2562 
2563 	if (WARN(num_entries > max_entries,
2564 		 "First entry = %d; Num entries = %d (max=%d)\n",
2565 		 first_entry, num_entries, max_entries))
2566 		num_entries = max_entries;
2567 
2568 	scratch_pte = vm->scratch_pte;
2569 
2570 	for (i = 0; i < num_entries; i++)
2571 		iowrite32(scratch_pte, &gtt_base[i]);
2572 }
2573 
2574 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2575 				  dma_addr_t addr,
2576 				  u64 offset,
2577 				  enum i915_cache_level cache_level,
2578 				  u32 unused)
2579 {
2580 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2581 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2582 
2583 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2584 }
2585 
2586 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2587 				     struct i915_vma *vma,
2588 				     enum i915_cache_level cache_level,
2589 				     u32 unused)
2590 {
2591 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2592 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2593 
2594 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2595 				    flags);
2596 }
2597 
2598 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2599 				  u64 start, u64 length)
2600 {
2601 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2602 }
2603 
2604 static int ggtt_bind_vma(struct i915_vma *vma,
2605 			 enum i915_cache_level cache_level,
2606 			 u32 flags)
2607 {
2608 	struct drm_i915_private *i915 = vma->vm->i915;
2609 	struct drm_i915_gem_object *obj = vma->obj;
2610 	intel_wakeref_t wakeref;
2611 	u32 pte_flags;
2612 
2613 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2614 	pte_flags = 0;
2615 	if (i915_gem_object_is_readonly(obj))
2616 		pte_flags |= PTE_READ_ONLY;
2617 
2618 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2619 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2620 
2621 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2622 
2623 	/*
2624 	 * Without aliasing PPGTT there's no difference between
2625 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2626 	 * upgrade to both bound if we bind either to avoid double-binding.
2627 	 */
2628 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2629 
2630 	return 0;
2631 }
2632 
2633 static void ggtt_unbind_vma(struct i915_vma *vma)
2634 {
2635 	struct drm_i915_private *i915 = vma->vm->i915;
2636 	intel_wakeref_t wakeref;
2637 
2638 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2639 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2640 }
2641 
2642 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2643 				 enum i915_cache_level cache_level,
2644 				 u32 flags)
2645 {
2646 	struct drm_i915_private *i915 = vma->vm->i915;
2647 	u32 pte_flags;
2648 	int ret;
2649 
2650 	/* Currently applicable only to VLV */
2651 	pte_flags = 0;
2652 	if (i915_gem_object_is_readonly(vma->obj))
2653 		pte_flags |= PTE_READ_ONLY;
2654 
2655 	if (flags & I915_VMA_LOCAL_BIND) {
2656 		struct i915_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2657 
2658 		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2659 			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2660 							   vma->node.start,
2661 							   vma->size);
2662 			if (ret)
2663 				return ret;
2664 		}
2665 
2666 		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2667 					  pte_flags);
2668 	}
2669 
2670 	if (flags & I915_VMA_GLOBAL_BIND) {
2671 		intel_wakeref_t wakeref;
2672 
2673 		with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2674 			vma->vm->insert_entries(vma->vm, vma,
2675 						cache_level, pte_flags);
2676 		}
2677 	}
2678 
2679 	return 0;
2680 }
2681 
2682 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2683 {
2684 	struct drm_i915_private *i915 = vma->vm->i915;
2685 
2686 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2687 		struct i915_address_space *vm = vma->vm;
2688 		intel_wakeref_t wakeref;
2689 
2690 		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2691 			vm->clear_range(vm, vma->node.start, vma->size);
2692 	}
2693 
2694 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2695 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2696 
2697 		vm->clear_range(vm, vma->node.start, vma->size);
2698 	}
2699 }
2700 
2701 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2702 			       struct sg_table *pages)
2703 {
2704 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2705 	struct device *kdev = &dev_priv->drm.pdev->dev;
2706 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2707 
2708 	if (unlikely(ggtt->do_idle_maps)) {
2709 		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2710 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2711 			/* Wait a bit, in hopes it avoids the hang */
2712 			udelay(10);
2713 		}
2714 	}
2715 
2716 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2717 }
2718 
2719 static int ggtt_set_pages(struct i915_vma *vma)
2720 {
2721 	int ret;
2722 
2723 	GEM_BUG_ON(vma->pages);
2724 
2725 	ret = i915_get_ggtt_vma_pages(vma);
2726 	if (ret)
2727 		return ret;
2728 
2729 	vma->page_sizes = vma->obj->mm.page_sizes;
2730 
2731 	return 0;
2732 }
2733 
2734 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2735 				  unsigned long color,
2736 				  u64 *start,
2737 				  u64 *end)
2738 {
2739 	if (node->allocated && node->color != color)
2740 		*start += I915_GTT_PAGE_SIZE;
2741 
2742 	/* Also leave a space between the unallocated reserved node after the
2743 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2744 	 * to insert a guard page to prevent prefetches crossing over the
2745 	 * GTT boundary.
2746 	 */
2747 	node = list_next_entry(node, node_list);
2748 	if (node->color != color)
2749 		*end -= I915_GTT_PAGE_SIZE;
2750 }
2751 
2752 static int init_aliasing_ppgtt(struct drm_i915_private *i915)
2753 {
2754 	struct i915_ggtt *ggtt = &i915->ggtt;
2755 	struct i915_ppgtt *ppgtt;
2756 	int err;
2757 
2758 	ppgtt = i915_ppgtt_create(i915);
2759 	if (IS_ERR(ppgtt))
2760 		return PTR_ERR(ppgtt);
2761 
2762 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2763 		err = -ENODEV;
2764 		goto err_ppgtt;
2765 	}
2766 
2767 	/*
2768 	 * Note we only pre-allocate as far as the end of the global
2769 	 * GTT. On 48b / 4-level page-tables, the difference is very,
2770 	 * very significant! We have to preallocate as GVT/vgpu does
2771 	 * not like the page directory disappearing.
2772 	 */
2773 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2774 	if (err)
2775 		goto err_ppgtt;
2776 
2777 	i915->mm.aliasing_ppgtt = ppgtt;
2778 
2779 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2780 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2781 
2782 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2783 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2784 
2785 	return 0;
2786 
2787 err_ppgtt:
2788 	i915_vm_put(&ppgtt->vm);
2789 	return err;
2790 }
2791 
2792 static void fini_aliasing_ppgtt(struct drm_i915_private *i915)
2793 {
2794 	struct i915_ggtt *ggtt = &i915->ggtt;
2795 	struct i915_ppgtt *ppgtt;
2796 
2797 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2798 	if (!ppgtt)
2799 		return;
2800 
2801 	i915_vm_put(&ppgtt->vm);
2802 
2803 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2804 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2805 }
2806 
2807 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
2808 {
2809 	u64 size;
2810 	int ret;
2811 
2812 	if (!USES_GUC(ggtt->vm.i915))
2813 		return 0;
2814 
2815 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
2816 	size = ggtt->vm.total - GUC_GGTT_TOP;
2817 
2818 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
2819 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
2820 				   PIN_NOEVICT);
2821 	if (ret)
2822 		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
2823 
2824 	return ret;
2825 }
2826 
2827 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
2828 {
2829 	if (drm_mm_node_allocated(&ggtt->uc_fw))
2830 		drm_mm_remove_node(&ggtt->uc_fw);
2831 }
2832 
2833 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2834 {
2835 	/* Let GEM Manage all of the aperture.
2836 	 *
2837 	 * However, leave one page at the end still bound to the scratch page.
2838 	 * There are a number of places where the hardware apparently prefetches
2839 	 * past the end of the object, and we've seen multiple hangs with the
2840 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2841 	 * aperture.  One page should be enough to keep any prefetching inside
2842 	 * of the aperture.
2843 	 */
2844 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2845 	unsigned long hole_start, hole_end;
2846 	struct drm_mm_node *entry;
2847 	int ret;
2848 
2849 	/*
2850 	 * GuC requires all resources that we're sharing with it to be placed in
2851 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
2852 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2853 	 * why.
2854 	 */
2855 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2856 			       intel_wopcm_guc_size(&dev_priv->wopcm));
2857 
2858 	ret = intel_vgt_balloon(dev_priv);
2859 	if (ret)
2860 		return ret;
2861 
2862 	/* Reserve a mappable slot for our lockless error capture */
2863 	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2864 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2865 					  0, ggtt->mappable_end,
2866 					  DRM_MM_INSERT_LOW);
2867 	if (ret)
2868 		return ret;
2869 
2870 	/*
2871 	 * The upper portion of the GuC address space has a sizeable hole
2872 	 * (several MB) that is inaccessible by GuC. Reserve this range within
2873 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
2874 	 */
2875 	ret = ggtt_reserve_guc_top(ggtt);
2876 	if (ret)
2877 		goto err_reserve;
2878 
2879 	/* Clear any non-preallocated blocks */
2880 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2881 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2882 			      hole_start, hole_end);
2883 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
2884 				     hole_end - hole_start);
2885 	}
2886 
2887 	/* And finally clear the reserved guard page */
2888 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2889 
2890 	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2891 		ret = init_aliasing_ppgtt(dev_priv);
2892 		if (ret)
2893 			goto err_appgtt;
2894 	}
2895 
2896 	return 0;
2897 
2898 err_appgtt:
2899 	ggtt_release_guc_top(ggtt);
2900 err_reserve:
2901 	drm_mm_remove_node(&ggtt->error_capture);
2902 	return ret;
2903 }
2904 
2905 /**
2906  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2907  * @dev_priv: i915 device
2908  */
2909 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2910 {
2911 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2912 	struct i915_vma *vma, *vn;
2913 	struct pagevec *pvec;
2914 
2915 	ggtt->vm.closed = true;
2916 
2917 	mutex_lock(&dev_priv->drm.struct_mutex);
2918 	fini_aliasing_ppgtt(dev_priv);
2919 
2920 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2921 		WARN_ON(i915_vma_unbind(vma));
2922 
2923 	if (drm_mm_node_allocated(&ggtt->error_capture))
2924 		drm_mm_remove_node(&ggtt->error_capture);
2925 
2926 	ggtt_release_guc_top(ggtt);
2927 
2928 	if (drm_mm_initialized(&ggtt->vm.mm)) {
2929 		intel_vgt_deballoon(dev_priv);
2930 		i915_address_space_fini(&ggtt->vm);
2931 	}
2932 
2933 	ggtt->vm.cleanup(&ggtt->vm);
2934 
2935 	pvec = &dev_priv->mm.wc_stash.pvec;
2936 	if (pvec->nr) {
2937 		set_pages_array_wb(pvec->pages, pvec->nr);
2938 		__pagevec_release(pvec);
2939 	}
2940 
2941 	mutex_unlock(&dev_priv->drm.struct_mutex);
2942 
2943 	arch_phys_wc_del(ggtt->mtrr);
2944 	io_mapping_fini(&ggtt->iomap);
2945 
2946 	i915_gem_cleanup_stolen(dev_priv);
2947 }
2948 
2949 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2950 {
2951 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2952 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2953 	return snb_gmch_ctl << 20;
2954 }
2955 
2956 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2957 {
2958 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2959 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2960 	if (bdw_gmch_ctl)
2961 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2962 
2963 #ifdef CONFIG_X86_32
2964 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2965 	if (bdw_gmch_ctl > 4)
2966 		bdw_gmch_ctl = 4;
2967 #endif
2968 
2969 	return bdw_gmch_ctl << 20;
2970 }
2971 
2972 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2973 {
2974 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2975 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2976 
2977 	if (gmch_ctrl)
2978 		return 1 << (20 + gmch_ctrl);
2979 
2980 	return 0;
2981 }
2982 
2983 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2984 {
2985 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2986 	struct pci_dev *pdev = dev_priv->drm.pdev;
2987 	phys_addr_t phys_addr;
2988 	int ret;
2989 
2990 	/* For Modern GENs the PTEs and register space are split in the BAR */
2991 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2992 
2993 	/*
2994 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2995 	 * will be dropped. For WC mappings in general we have 64 byte burst
2996 	 * writes when the WC buffer is flushed, so we can't use it, but have to
2997 	 * resort to an uncached mapping. The WC issue is easily caught by the
2998 	 * readback check when writing GTT PTE entries.
2999 	 */
3000 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3001 		ggtt->gsm = ioremap_nocache(phys_addr, size);
3002 	else
3003 		ggtt->gsm = ioremap_wc(phys_addr, size);
3004 	if (!ggtt->gsm) {
3005 		DRM_ERROR("Failed to map the ggtt page table\n");
3006 		return -ENOMEM;
3007 	}
3008 
3009 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3010 	if (ret) {
3011 		DRM_ERROR("Scratch setup failed\n");
3012 		/* iounmap will also get called at remove, but meh */
3013 		iounmap(ggtt->gsm);
3014 		return ret;
3015 	}
3016 
3017 	ggtt->vm.scratch_pte =
3018 		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
3019 				    I915_CACHE_NONE, 0);
3020 
3021 	return 0;
3022 }
3023 
3024 static struct intel_ppat_entry *
3025 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3026 {
3027 	struct intel_ppat_entry *entry = &ppat->entries[index];
3028 
3029 	GEM_BUG_ON(index >= ppat->max_entries);
3030 	GEM_BUG_ON(test_bit(index, ppat->used));
3031 
3032 	entry->ppat = ppat;
3033 	entry->value = value;
3034 	kref_init(&entry->ref);
3035 	set_bit(index, ppat->used);
3036 	set_bit(index, ppat->dirty);
3037 
3038 	return entry;
3039 }
3040 
3041 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3042 {
3043 	struct intel_ppat *ppat = entry->ppat;
3044 	unsigned int index = entry - ppat->entries;
3045 
3046 	GEM_BUG_ON(index >= ppat->max_entries);
3047 	GEM_BUG_ON(!test_bit(index, ppat->used));
3048 
3049 	entry->value = ppat->clear_value;
3050 	clear_bit(index, ppat->used);
3051 	set_bit(index, ppat->dirty);
3052 }
3053 
3054 /**
3055  * intel_ppat_get - get a usable PPAT entry
3056  * @i915: i915 device instance
3057  * @value: the PPAT value required by the caller
3058  *
3059  * The function tries to search if there is an existing PPAT entry which
3060  * matches with the required value. If perfectly matched, the existing PPAT
3061  * entry will be used. If only partially matched, it will try to check if
3062  * there is any available PPAT index. If yes, it will allocate a new PPAT
3063  * index for the required entry and update the HW. If not, the partially
3064  * matched entry will be used.
3065  */
3066 const struct intel_ppat_entry *
3067 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3068 {
3069 	struct intel_ppat *ppat = &i915->ppat;
3070 	struct intel_ppat_entry *entry = NULL;
3071 	unsigned int scanned, best_score;
3072 	int i;
3073 
3074 	GEM_BUG_ON(!ppat->max_entries);
3075 
3076 	scanned = best_score = 0;
3077 	for_each_set_bit(i, ppat->used, ppat->max_entries) {
3078 		unsigned int score;
3079 
3080 		score = ppat->match(ppat->entries[i].value, value);
3081 		if (score > best_score) {
3082 			entry = &ppat->entries[i];
3083 			if (score == INTEL_PPAT_PERFECT_MATCH) {
3084 				kref_get(&entry->ref);
3085 				return entry;
3086 			}
3087 			best_score = score;
3088 		}
3089 		scanned++;
3090 	}
3091 
3092 	if (scanned == ppat->max_entries) {
3093 		if (!entry)
3094 			return ERR_PTR(-ENOSPC);
3095 
3096 		kref_get(&entry->ref);
3097 		return entry;
3098 	}
3099 
3100 	i = find_first_zero_bit(ppat->used, ppat->max_entries);
3101 	entry = __alloc_ppat_entry(ppat, i, value);
3102 	ppat->update_hw(i915);
3103 	return entry;
3104 }
3105 
3106 static void release_ppat(struct kref *kref)
3107 {
3108 	struct intel_ppat_entry *entry =
3109 		container_of(kref, struct intel_ppat_entry, ref);
3110 	struct drm_i915_private *i915 = entry->ppat->i915;
3111 
3112 	__free_ppat_entry(entry);
3113 	entry->ppat->update_hw(i915);
3114 }
3115 
3116 /**
3117  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3118  * @entry: an intel PPAT entry
3119  *
3120  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3121  * entry is dynamically allocated, its reference count will be decreased. Once
3122  * the reference count becomes into zero, the PPAT index becomes free again.
3123  */
3124 void intel_ppat_put(const struct intel_ppat_entry *entry)
3125 {
3126 	struct intel_ppat *ppat = entry->ppat;
3127 	unsigned int index = entry - ppat->entries;
3128 
3129 	GEM_BUG_ON(!ppat->max_entries);
3130 
3131 	kref_put(&ppat->entries[index].ref, release_ppat);
3132 }
3133 
3134 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3135 {
3136 	struct intel_ppat *ppat = &dev_priv->ppat;
3137 	int i;
3138 
3139 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3140 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3141 		clear_bit(i, ppat->dirty);
3142 	}
3143 }
3144 
3145 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3146 {
3147 	struct intel_ppat *ppat = &dev_priv->ppat;
3148 	u64 pat = 0;
3149 	int i;
3150 
3151 	for (i = 0; i < ppat->max_entries; i++)
3152 		pat |= GEN8_PPAT(i, ppat->entries[i].value);
3153 
3154 	bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3155 
3156 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3157 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3158 }
3159 
3160 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3161 {
3162 	unsigned int score = 0;
3163 	enum {
3164 		AGE_MATCH = BIT(0),
3165 		TC_MATCH = BIT(1),
3166 		CA_MATCH = BIT(2),
3167 	};
3168 
3169 	/* Cache attribute has to be matched. */
3170 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3171 		return 0;
3172 
3173 	score |= CA_MATCH;
3174 
3175 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3176 		score |= TC_MATCH;
3177 
3178 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3179 		score |= AGE_MATCH;
3180 
3181 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3182 		return INTEL_PPAT_PERFECT_MATCH;
3183 
3184 	return score;
3185 }
3186 
3187 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3188 {
3189 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3190 		INTEL_PPAT_PERFECT_MATCH : 0;
3191 }
3192 
3193 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3194 {
3195 	ppat->max_entries = 8;
3196 	ppat->update_hw = cnl_private_pat_update_hw;
3197 	ppat->match = bdw_private_pat_match;
3198 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3199 
3200 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3201 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3202 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3203 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3204 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3205 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3206 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3207 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3208 }
3209 
3210 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3211  * bits. When using advanced contexts each context stores its own PAT, but
3212  * writing this data shouldn't be harmful even in those cases. */
3213 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3214 {
3215 	ppat->max_entries = 8;
3216 	ppat->update_hw = bdw_private_pat_update_hw;
3217 	ppat->match = bdw_private_pat_match;
3218 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3219 
3220 	if (!HAS_PPGTT(ppat->i915)) {
3221 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3222 		 * so RTL will always use the value corresponding to
3223 		 * pat_sel = 000".
3224 		 * So let's disable cache for GGTT to avoid screen corruptions.
3225 		 * MOCS still can be used though.
3226 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3227 		 * before this patch, i.e. the same uncached + snooping access
3228 		 * like on gen6/7 seems to be in effect.
3229 		 * - So this just fixes blitter/render access. Again it looks
3230 		 * like it's not just uncached access, but uncached + snooping.
3231 		 * So we can still hold onto all our assumptions wrt cpu
3232 		 * clflushing on LLC machines.
3233 		 */
3234 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3235 		return;
3236 	}
3237 
3238 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3239 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3240 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3241 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3242 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3243 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3244 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3245 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3246 }
3247 
3248 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3249 {
3250 	ppat->max_entries = 8;
3251 	ppat->update_hw = bdw_private_pat_update_hw;
3252 	ppat->match = chv_private_pat_match;
3253 	ppat->clear_value = CHV_PPAT_SNOOP;
3254 
3255 	/*
3256 	 * Map WB on BDW to snooped on CHV.
3257 	 *
3258 	 * Only the snoop bit has meaning for CHV, the rest is
3259 	 * ignored.
3260 	 *
3261 	 * The hardware will never snoop for certain types of accesses:
3262 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3263 	 * - PPGTT page tables
3264 	 * - some other special cycles
3265 	 *
3266 	 * As with BDW, we also need to consider the following for GT accesses:
3267 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3268 	 * so RTL will always use the value corresponding to
3269 	 * pat_sel = 000".
3270 	 * Which means we must set the snoop bit in PAT entry 0
3271 	 * in order to keep the global status page working.
3272 	 */
3273 
3274 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3275 	__alloc_ppat_entry(ppat, 1, 0);
3276 	__alloc_ppat_entry(ppat, 2, 0);
3277 	__alloc_ppat_entry(ppat, 3, 0);
3278 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3279 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3280 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3281 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3282 }
3283 
3284 static void gen6_gmch_remove(struct i915_address_space *vm)
3285 {
3286 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3287 
3288 	iounmap(ggtt->gsm);
3289 	cleanup_scratch_page(vm);
3290 }
3291 
3292 static void setup_private_pat(struct drm_i915_private *dev_priv)
3293 {
3294 	struct intel_ppat *ppat = &dev_priv->ppat;
3295 	int i;
3296 
3297 	ppat->i915 = dev_priv;
3298 
3299 	if (INTEL_GEN(dev_priv) >= 10)
3300 		cnl_setup_private_ppat(ppat);
3301 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3302 		chv_setup_private_ppat(ppat);
3303 	else
3304 		bdw_setup_private_ppat(ppat);
3305 
3306 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3307 
3308 	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3309 		ppat->entries[i].value = ppat->clear_value;
3310 		ppat->entries[i].ppat = ppat;
3311 		set_bit(i, ppat->dirty);
3312 	}
3313 
3314 	ppat->update_hw(dev_priv);
3315 }
3316 
3317 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3318 {
3319 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3320 	struct pci_dev *pdev = dev_priv->drm.pdev;
3321 	unsigned int size;
3322 	u16 snb_gmch_ctl;
3323 	int err;
3324 
3325 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3326 	ggtt->gmadr =
3327 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3328 						 pci_resource_len(pdev, 2));
3329 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3330 
3331 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3332 	if (!err)
3333 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3334 	if (err)
3335 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3336 
3337 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3338 	if (IS_CHERRYVIEW(dev_priv))
3339 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3340 	else
3341 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3342 
3343 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3344 	ggtt->vm.cleanup = gen6_gmch_remove;
3345 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
3346 	ggtt->vm.clear_range = nop_clear_range;
3347 	if (intel_scanout_needs_vtd_wa(dev_priv))
3348 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3349 
3350 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3351 
3352 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3353 	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
3354 	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3355 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3356 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3357 		if (ggtt->vm.clear_range != nop_clear_range)
3358 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3359 
3360 		/* Prevent recursively calling stop_machine() and deadlocks. */
3361 		dev_info(dev_priv->drm.dev,
3362 			 "Disabling error capture for VT-d workaround\n");
3363 		i915_disable_error_state(dev_priv, -ENODEV);
3364 	}
3365 
3366 	ggtt->invalidate = gen6_ggtt_invalidate;
3367 
3368 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3369 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3370 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3371 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3372 
3373 	ggtt->vm.pte_encode = gen8_pte_encode;
3374 
3375 	setup_private_pat(dev_priv);
3376 
3377 	return ggtt_probe_common(ggtt, size);
3378 }
3379 
3380 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3381 {
3382 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3383 	struct pci_dev *pdev = dev_priv->drm.pdev;
3384 	unsigned int size;
3385 	u16 snb_gmch_ctl;
3386 	int err;
3387 
3388 	ggtt->gmadr =
3389 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3390 						 pci_resource_len(pdev, 2));
3391 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3392 
3393 	/* 64/512MB is the current min/max we actually know of, but this is just
3394 	 * a coarse sanity check.
3395 	 */
3396 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3397 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3398 		return -ENXIO;
3399 	}
3400 
3401 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3402 	if (!err)
3403 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3404 	if (err)
3405 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3406 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3407 
3408 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3409 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3410 
3411 	ggtt->vm.clear_range = nop_clear_range;
3412 	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3413 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3414 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
3415 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3416 	ggtt->vm.cleanup = gen6_gmch_remove;
3417 
3418 	ggtt->invalidate = gen6_ggtt_invalidate;
3419 
3420 	if (HAS_EDRAM(dev_priv))
3421 		ggtt->vm.pte_encode = iris_pte_encode;
3422 	else if (IS_HASWELL(dev_priv))
3423 		ggtt->vm.pte_encode = hsw_pte_encode;
3424 	else if (IS_VALLEYVIEW(dev_priv))
3425 		ggtt->vm.pte_encode = byt_pte_encode;
3426 	else if (INTEL_GEN(dev_priv) >= 7)
3427 		ggtt->vm.pte_encode = ivb_pte_encode;
3428 	else
3429 		ggtt->vm.pte_encode = snb_pte_encode;
3430 
3431 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3432 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3433 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3434 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3435 
3436 	return ggtt_probe_common(ggtt, size);
3437 }
3438 
3439 static void i915_gmch_remove(struct i915_address_space *vm)
3440 {
3441 	intel_gmch_remove();
3442 }
3443 
3444 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3445 {
3446 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3447 	phys_addr_t gmadr_base;
3448 	int ret;
3449 
3450 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3451 	if (!ret) {
3452 		DRM_ERROR("failed to set up gmch\n");
3453 		return -EIO;
3454 	}
3455 
3456 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3457 
3458 	ggtt->gmadr =
3459 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3460 						 ggtt->mappable_end);
3461 
3462 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3463 	ggtt->vm.insert_page = i915_ggtt_insert_page;
3464 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3465 	ggtt->vm.clear_range = i915_ggtt_clear_range;
3466 	ggtt->vm.cleanup = i915_gmch_remove;
3467 
3468 	ggtt->invalidate = gmch_ggtt_invalidate;
3469 
3470 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3471 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3472 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3473 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3474 
3475 	if (unlikely(ggtt->do_idle_maps))
3476 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3477 
3478 	return 0;
3479 }
3480 
3481 /**
3482  * i915_ggtt_probe_hw - Probe GGTT hardware location
3483  * @dev_priv: i915 device
3484  */
3485 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3486 {
3487 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3488 	int ret;
3489 
3490 	ggtt->vm.i915 = dev_priv;
3491 	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3492 
3493 	if (INTEL_GEN(dev_priv) <= 5)
3494 		ret = i915_gmch_probe(ggtt);
3495 	else if (INTEL_GEN(dev_priv) < 8)
3496 		ret = gen6_gmch_probe(ggtt);
3497 	else
3498 		ret = gen8_gmch_probe(ggtt);
3499 	if (ret)
3500 		return ret;
3501 
3502 	if ((ggtt->vm.total - 1) >> 32) {
3503 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3504 			  " of address space! Found %lldM!\n",
3505 			  ggtt->vm.total >> 20);
3506 		ggtt->vm.total = 1ULL << 32;
3507 		ggtt->mappable_end =
3508 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3509 	}
3510 
3511 	if (ggtt->mappable_end > ggtt->vm.total) {
3512 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3513 			  " aperture=%pa, total=%llx\n",
3514 			  &ggtt->mappable_end, ggtt->vm.total);
3515 		ggtt->mappable_end = ggtt->vm.total;
3516 	}
3517 
3518 	/* GMADR is the PCI mmio aperture into the global GTT. */
3519 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3520 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3521 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3522 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3523 	if (intel_vtd_active())
3524 		DRM_INFO("VT-d active for gfx access\n");
3525 
3526 	return 0;
3527 }
3528 
3529 /**
3530  * i915_ggtt_init_hw - Initialize GGTT hardware
3531  * @dev_priv: i915 device
3532  */
3533 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3534 {
3535 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3536 	int ret;
3537 
3538 	stash_init(&dev_priv->mm.wc_stash);
3539 
3540 	/* Note that we use page colouring to enforce a guard page at the
3541 	 * end of the address space. This is required as the CS may prefetch
3542 	 * beyond the end of the batch buffer, across the page boundary,
3543 	 * and beyond the end of the GTT if we do not provide a guard.
3544 	 */
3545 	mutex_lock(&dev_priv->drm.struct_mutex);
3546 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3547 
3548 	ggtt->vm.is_ggtt = true;
3549 
3550 	/* Only VLV supports read-only GGTT mappings */
3551 	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
3552 
3553 	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3554 		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3555 	mutex_unlock(&dev_priv->drm.struct_mutex);
3556 
3557 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3558 				dev_priv->ggtt.gmadr.start,
3559 				dev_priv->ggtt.mappable_end)) {
3560 		ret = -EIO;
3561 		goto out_gtt_cleanup;
3562 	}
3563 
3564 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3565 
3566 	i915_ggtt_init_fences(ggtt);
3567 
3568 	/*
3569 	 * Initialise stolen early so that we may reserve preallocated
3570 	 * objects for the BIOS to KMS transition.
3571 	 */
3572 	ret = i915_gem_init_stolen(dev_priv);
3573 	if (ret)
3574 		goto out_gtt_cleanup;
3575 
3576 	return 0;
3577 
3578 out_gtt_cleanup:
3579 	ggtt->vm.cleanup(&ggtt->vm);
3580 	return ret;
3581 }
3582 
3583 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3584 {
3585 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3586 		return -EIO;
3587 
3588 	return 0;
3589 }
3590 
3591 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3592 {
3593 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3594 
3595 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3596 
3597 	i915_ggtt_invalidate(i915);
3598 }
3599 
3600 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3601 {
3602 	/* XXX Temporary pardon for error unload */
3603 	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
3604 		return;
3605 
3606 	/* We should only be called after i915_ggtt_enable_guc() */
3607 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3608 
3609 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3610 
3611 	i915_ggtt_invalidate(i915);
3612 }
3613 
3614 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3615 {
3616 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3617 	struct i915_vma *vma, *vn;
3618 
3619 	i915_check_and_clear_faults(dev_priv);
3620 
3621 	mutex_lock(&ggtt->vm.mutex);
3622 
3623 	/* First fill our portion of the GTT with scratch pages */
3624 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3625 	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3626 
3627 	/* clflush objects bound into the GGTT and rebind them. */
3628 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3629 		struct drm_i915_gem_object *obj = vma->obj;
3630 
3631 		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3632 			continue;
3633 
3634 		mutex_unlock(&ggtt->vm.mutex);
3635 
3636 		if (!i915_vma_unbind(vma))
3637 			goto lock;
3638 
3639 		WARN_ON(i915_vma_bind(vma,
3640 				      obj ? obj->cache_level : 0,
3641 				      PIN_UPDATE));
3642 		if (obj) {
3643 			i915_gem_object_lock(obj);
3644 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3645 			i915_gem_object_unlock(obj);
3646 		}
3647 
3648 lock:
3649 		mutex_lock(&ggtt->vm.mutex);
3650 	}
3651 
3652 	ggtt->vm.closed = false;
3653 	i915_ggtt_invalidate(dev_priv);
3654 
3655 	mutex_unlock(&ggtt->vm.mutex);
3656 
3657 	if (INTEL_GEN(dev_priv) >= 8) {
3658 		struct intel_ppat *ppat = &dev_priv->ppat;
3659 
3660 		bitmap_set(ppat->dirty, 0, ppat->max_entries);
3661 		dev_priv->ppat.update_hw(dev_priv);
3662 		return;
3663 	}
3664 }
3665 
3666 static struct scatterlist *
3667 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3668 	     unsigned int width, unsigned int height,
3669 	     unsigned int stride,
3670 	     struct sg_table *st, struct scatterlist *sg)
3671 {
3672 	unsigned int column, row;
3673 	unsigned int src_idx;
3674 
3675 	for (column = 0; column < width; column++) {
3676 		src_idx = stride * (height - 1) + column + offset;
3677 		for (row = 0; row < height; row++) {
3678 			st->nents++;
3679 			/* We don't need the pages, but need to initialize
3680 			 * the entries so the sg list can be happily traversed.
3681 			 * The only thing we need are DMA addresses.
3682 			 */
3683 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3684 			sg_dma_address(sg) =
3685 				i915_gem_object_get_dma_address(obj, src_idx);
3686 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3687 			sg = sg_next(sg);
3688 			src_idx -= stride;
3689 		}
3690 	}
3691 
3692 	return sg;
3693 }
3694 
3695 static noinline struct sg_table *
3696 intel_rotate_pages(struct intel_rotation_info *rot_info,
3697 		   struct drm_i915_gem_object *obj)
3698 {
3699 	unsigned int size = intel_rotation_info_size(rot_info);
3700 	struct sg_table *st;
3701 	struct scatterlist *sg;
3702 	int ret = -ENOMEM;
3703 	int i;
3704 
3705 	/* Allocate target SG list. */
3706 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3707 	if (!st)
3708 		goto err_st_alloc;
3709 
3710 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3711 	if (ret)
3712 		goto err_sg_alloc;
3713 
3714 	st->nents = 0;
3715 	sg = st->sgl;
3716 
3717 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3718 		sg = rotate_pages(obj, rot_info->plane[i].offset,
3719 				  rot_info->plane[i].width, rot_info->plane[i].height,
3720 				  rot_info->plane[i].stride, st, sg);
3721 	}
3722 
3723 	return st;
3724 
3725 err_sg_alloc:
3726 	kfree(st);
3727 err_st_alloc:
3728 
3729 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3730 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3731 
3732 	return ERR_PTR(ret);
3733 }
3734 
3735 static struct scatterlist *
3736 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3737 	    unsigned int width, unsigned int height,
3738 	    unsigned int stride,
3739 	    struct sg_table *st, struct scatterlist *sg)
3740 {
3741 	unsigned int row;
3742 
3743 	for (row = 0; row < height; row++) {
3744 		unsigned int left = width * I915_GTT_PAGE_SIZE;
3745 
3746 		while (left) {
3747 			dma_addr_t addr;
3748 			unsigned int length;
3749 
3750 			/* We don't need the pages, but need to initialize
3751 			 * the entries so the sg list can be happily traversed.
3752 			 * The only thing we need are DMA addresses.
3753 			 */
3754 
3755 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
3756 
3757 			length = min(left, length);
3758 
3759 			st->nents++;
3760 
3761 			sg_set_page(sg, NULL, length, 0);
3762 			sg_dma_address(sg) = addr;
3763 			sg_dma_len(sg) = length;
3764 			sg = sg_next(sg);
3765 
3766 			offset += length / I915_GTT_PAGE_SIZE;
3767 			left -= length;
3768 		}
3769 
3770 		offset += stride - width;
3771 	}
3772 
3773 	return sg;
3774 }
3775 
3776 static noinline struct sg_table *
3777 intel_remap_pages(struct intel_remapped_info *rem_info,
3778 		  struct drm_i915_gem_object *obj)
3779 {
3780 	unsigned int size = intel_remapped_info_size(rem_info);
3781 	struct sg_table *st;
3782 	struct scatterlist *sg;
3783 	int ret = -ENOMEM;
3784 	int i;
3785 
3786 	/* Allocate target SG list. */
3787 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3788 	if (!st)
3789 		goto err_st_alloc;
3790 
3791 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3792 	if (ret)
3793 		goto err_sg_alloc;
3794 
3795 	st->nents = 0;
3796 	sg = st->sgl;
3797 
3798 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
3799 		sg = remap_pages(obj, rem_info->plane[i].offset,
3800 				 rem_info->plane[i].width, rem_info->plane[i].height,
3801 				 rem_info->plane[i].stride, st, sg);
3802 	}
3803 
3804 	i915_sg_trim(st);
3805 
3806 	return st;
3807 
3808 err_sg_alloc:
3809 	kfree(st);
3810 err_st_alloc:
3811 
3812 	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3813 			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
3814 
3815 	return ERR_PTR(ret);
3816 }
3817 
3818 static noinline struct sg_table *
3819 intel_partial_pages(const struct i915_ggtt_view *view,
3820 		    struct drm_i915_gem_object *obj)
3821 {
3822 	struct sg_table *st;
3823 	struct scatterlist *sg, *iter;
3824 	unsigned int count = view->partial.size;
3825 	unsigned int offset;
3826 	int ret = -ENOMEM;
3827 
3828 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3829 	if (!st)
3830 		goto err_st_alloc;
3831 
3832 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3833 	if (ret)
3834 		goto err_sg_alloc;
3835 
3836 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3837 	GEM_BUG_ON(!iter);
3838 
3839 	sg = st->sgl;
3840 	st->nents = 0;
3841 	do {
3842 		unsigned int len;
3843 
3844 		len = min(iter->length - (offset << PAGE_SHIFT),
3845 			  count << PAGE_SHIFT);
3846 		sg_set_page(sg, NULL, len, 0);
3847 		sg_dma_address(sg) =
3848 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3849 		sg_dma_len(sg) = len;
3850 
3851 		st->nents++;
3852 		count -= len >> PAGE_SHIFT;
3853 		if (count == 0) {
3854 			sg_mark_end(sg);
3855 			i915_sg_trim(st); /* Drop any unused tail entries. */
3856 
3857 			return st;
3858 		}
3859 
3860 		sg = __sg_next(sg);
3861 		iter = __sg_next(iter);
3862 		offset = 0;
3863 	} while (1);
3864 
3865 err_sg_alloc:
3866 	kfree(st);
3867 err_st_alloc:
3868 	return ERR_PTR(ret);
3869 }
3870 
3871 static int
3872 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3873 {
3874 	int ret;
3875 
3876 	/* The vma->pages are only valid within the lifespan of the borrowed
3877 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3878 	 * must be the vma->pages. A simple rule is that vma->pages must only
3879 	 * be accessed when the obj->mm.pages are pinned.
3880 	 */
3881 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3882 
3883 	switch (vma->ggtt_view.type) {
3884 	default:
3885 		GEM_BUG_ON(vma->ggtt_view.type);
3886 		/* fall through */
3887 	case I915_GGTT_VIEW_NORMAL:
3888 		vma->pages = vma->obj->mm.pages;
3889 		return 0;
3890 
3891 	case I915_GGTT_VIEW_ROTATED:
3892 		vma->pages =
3893 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3894 		break;
3895 
3896 	case I915_GGTT_VIEW_REMAPPED:
3897 		vma->pages =
3898 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
3899 		break;
3900 
3901 	case I915_GGTT_VIEW_PARTIAL:
3902 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3903 		break;
3904 	}
3905 
3906 	ret = 0;
3907 	if (IS_ERR(vma->pages)) {
3908 		ret = PTR_ERR(vma->pages);
3909 		vma->pages = NULL;
3910 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3911 			  vma->ggtt_view.type, ret);
3912 	}
3913 	return ret;
3914 }
3915 
3916 /**
3917  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3918  * @vm: the &struct i915_address_space
3919  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3920  * @size: how much space to allocate inside the GTT,
3921  *        must be #I915_GTT_PAGE_SIZE aligned
3922  * @offset: where to insert inside the GTT,
3923  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3924  *          (@offset + @size) must fit within the address space
3925  * @color: color to apply to node, if this node is not from a VMA,
3926  *         color must be #I915_COLOR_UNEVICTABLE
3927  * @flags: control search and eviction behaviour
3928  *
3929  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3930  * the address space (using @size and @color). If the @node does not fit, it
3931  * tries to evict any overlapping nodes from the GTT, including any
3932  * neighbouring nodes if the colors do not match (to ensure guard pages between
3933  * differing domains). See i915_gem_evict_for_node() for the gory details
3934  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3935  * evicting active overlapping objects, and any overlapping node that is pinned
3936  * or marked as unevictable will also result in failure.
3937  *
3938  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3939  * asked to wait for eviction and interrupted.
3940  */
3941 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3942 			 struct drm_mm_node *node,
3943 			 u64 size, u64 offset, unsigned long color,
3944 			 unsigned int flags)
3945 {
3946 	int err;
3947 
3948 	GEM_BUG_ON(!size);
3949 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3950 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3951 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3952 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3953 	GEM_BUG_ON(drm_mm_node_allocated(node));
3954 
3955 	node->size = size;
3956 	node->start = offset;
3957 	node->color = color;
3958 
3959 	err = drm_mm_reserve_node(&vm->mm, node);
3960 	if (err != -ENOSPC)
3961 		return err;
3962 
3963 	if (flags & PIN_NOEVICT)
3964 		return -ENOSPC;
3965 
3966 	err = i915_gem_evict_for_node(vm, node, flags);
3967 	if (err == 0)
3968 		err = drm_mm_reserve_node(&vm->mm, node);
3969 
3970 	return err;
3971 }
3972 
3973 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3974 {
3975 	u64 range, addr;
3976 
3977 	GEM_BUG_ON(range_overflows(start, len, end));
3978 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3979 
3980 	range = round_down(end - len, align) - round_up(start, align);
3981 	if (range) {
3982 		if (sizeof(unsigned long) == sizeof(u64)) {
3983 			addr = get_random_long();
3984 		} else {
3985 			addr = get_random_int();
3986 			if (range > U32_MAX) {
3987 				addr <<= 32;
3988 				addr |= get_random_int();
3989 			}
3990 		}
3991 		div64_u64_rem(addr, range, &addr);
3992 		start += addr;
3993 	}
3994 
3995 	return round_up(start, align);
3996 }
3997 
3998 /**
3999  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
4000  * @vm: the &struct i915_address_space
4001  * @node: the &struct drm_mm_node (typically i915_vma.node)
4002  * @size: how much space to allocate inside the GTT,
4003  *        must be #I915_GTT_PAGE_SIZE aligned
4004  * @alignment: required alignment of starting offset, may be 0 but
4005  *             if specified, this must be a power-of-two and at least
4006  *             #I915_GTT_MIN_ALIGNMENT
4007  * @color: color to apply to node
4008  * @start: start of any range restriction inside GTT (0 for all),
4009  *         must be #I915_GTT_PAGE_SIZE aligned
4010  * @end: end of any range restriction inside GTT (U64_MAX for all),
4011  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
4012  * @flags: control search and eviction behaviour
4013  *
4014  * i915_gem_gtt_insert() first searches for an available hole into which
4015  * is can insert the node. The hole address is aligned to @alignment and
4016  * its @size must then fit entirely within the [@start, @end] bounds. The
4017  * nodes on either side of the hole must match @color, or else a guard page
4018  * will be inserted between the two nodes (or the node evicted). If no
4019  * suitable hole is found, first a victim is randomly selected and tested
4020  * for eviction, otherwise then the LRU list of objects within the GTT
4021  * is scanned to find the first set of replacement nodes to create the hole.
4022  * Those old overlapping nodes are evicted from the GTT (and so must be
4023  * rebound before any future use). Any node that is currently pinned cannot
4024  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
4025  * active and #PIN_NONBLOCK is specified, that node is also skipped when
4026  * searching for an eviction candidate. See i915_gem_evict_something() for
4027  * the gory details on the eviction algorithm.
4028  *
4029  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
4030  * asked to wait for eviction and interrupted.
4031  */
4032 int i915_gem_gtt_insert(struct i915_address_space *vm,
4033 			struct drm_mm_node *node,
4034 			u64 size, u64 alignment, unsigned long color,
4035 			u64 start, u64 end, unsigned int flags)
4036 {
4037 	enum drm_mm_insert_mode mode;
4038 	u64 offset;
4039 	int err;
4040 
4041 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
4042 	GEM_BUG_ON(!size);
4043 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
4044 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
4045 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
4046 	GEM_BUG_ON(start >= end);
4047 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
4048 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4049 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4050 	GEM_BUG_ON(drm_mm_node_allocated(node));
4051 
4052 	if (unlikely(range_overflows(start, size, end)))
4053 		return -ENOSPC;
4054 
4055 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
4056 		return -ENOSPC;
4057 
4058 	mode = DRM_MM_INSERT_BEST;
4059 	if (flags & PIN_HIGH)
4060 		mode = DRM_MM_INSERT_HIGHEST;
4061 	if (flags & PIN_MAPPABLE)
4062 		mode = DRM_MM_INSERT_LOW;
4063 
4064 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
4065 	 * so we know that we always have a minimum alignment of 4096.
4066 	 * The drm_mm range manager is optimised to return results
4067 	 * with zero alignment, so where possible use the optimal
4068 	 * path.
4069 	 */
4070 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
4071 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
4072 		alignment = 0;
4073 
4074 	err = drm_mm_insert_node_in_range(&vm->mm, node,
4075 					  size, alignment, color,
4076 					  start, end, mode);
4077 	if (err != -ENOSPC)
4078 		return err;
4079 
4080 	if (mode & DRM_MM_INSERT_ONCE) {
4081 		err = drm_mm_insert_node_in_range(&vm->mm, node,
4082 						  size, alignment, color,
4083 						  start, end,
4084 						  DRM_MM_INSERT_BEST);
4085 		if (err != -ENOSPC)
4086 			return err;
4087 	}
4088 
4089 	if (flags & PIN_NOEVICT)
4090 		return -ENOSPC;
4091 
4092 	/* No free space, pick a slot at random.
4093 	 *
4094 	 * There is a pathological case here using a GTT shared between
4095 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4096 	 *
4097 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4098 	 *         (64k objects)             (448k objects)
4099 	 *
4100 	 * Now imagine that the eviction LRU is ordered top-down (just because
4101 	 * pathology meets real life), and that we need to evict an object to
4102 	 * make room inside the aperture. The eviction scan then has to walk
4103 	 * the 448k list before it finds one within range. And now imagine that
4104 	 * it has to search for a new hole between every byte inside the memcpy,
4105 	 * for several simultaneous clients.
4106 	 *
4107 	 * On a full-ppgtt system, if we have run out of available space, there
4108 	 * will be lots and lots of objects in the eviction list! Again,
4109 	 * searching that LRU list may be slow if we are also applying any
4110 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
4111 	 * simplicity and similarilty between different GTT, try the single
4112 	 * random replacement first.
4113 	 */
4114 	offset = random_offset(start, end,
4115 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4116 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4117 	if (err != -ENOSPC)
4118 		return err;
4119 
4120 	/* Randomly selected placement is pinned, do a search */
4121 	err = i915_gem_evict_something(vm, size, alignment, color,
4122 				       start, end, flags);
4123 	if (err)
4124 		return err;
4125 
4126 	return drm_mm_insert_node_in_range(&vm->mm, node,
4127 					   size, alignment, color,
4128 					   start, end, DRM_MM_INSERT_EVICT);
4129 }
4130 
4131 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4132 #include "selftests/mock_gtt.c"
4133 #include "selftests/i915_gem_gtt.c"
4134 #endif
4135