1 /* 2 * Copyright © 2010 Daniel Vetter 3 * Copyright © 2011-2014 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 27 28 #include <linux/fault-inject.h> 29 #include <linux/log2.h> 30 #include <linux/random.h> 31 #include <linux/seq_file.h> 32 #include <linux/stop_machine.h> 33 34 #include <asm/set_memory.h> 35 36 #include <drm/drmP.h> 37 #include <drm/i915_drm.h> 38 39 #include "i915_drv.h" 40 #include "i915_vgpu.h" 41 #include "i915_trace.h" 42 #include "intel_drv.h" 43 #include "intel_frontbuffer.h" 44 45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM) 46 47 /** 48 * DOC: Global GTT views 49 * 50 * Background and previous state 51 * 52 * Historically objects could exists (be bound) in global GTT space only as 53 * singular instances with a view representing all of the object's backing pages 54 * in a linear fashion. This view will be called a normal view. 55 * 56 * To support multiple views of the same object, where the number of mapped 57 * pages is not equal to the backing store, or where the layout of the pages 58 * is not linear, concept of a GGTT view was added. 59 * 60 * One example of an alternative view is a stereo display driven by a single 61 * image. In this case we would have a framebuffer looking like this 62 * (2x2 pages): 63 * 64 * 12 65 * 34 66 * 67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU 68 * rendering. In contrast, fed to the display engine would be an alternative 69 * view which could look something like this: 70 * 71 * 1212 72 * 3434 73 * 74 * In this example both the size and layout of pages in the alternative view is 75 * different from the normal view. 76 * 77 * Implementation and usage 78 * 79 * GGTT views are implemented using VMAs and are distinguished via enum 80 * i915_ggtt_view_type and struct i915_ggtt_view. 81 * 82 * A new flavour of core GEM functions which work with GGTT bound objects were 83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid 84 * renaming in large amounts of code. They take the struct i915_ggtt_view 85 * parameter encapsulating all metadata required to implement a view. 86 * 87 * As a helper for callers which are only interested in the normal view, 88 * globally const i915_ggtt_view_normal singleton instance exists. All old core 89 * GEM API functions, the ones not taking the view parameter, are operating on, 90 * or with the normal GGTT view. 91 * 92 * Code wanting to add or use a new GGTT view needs to: 93 * 94 * 1. Add a new enum with a suitable name. 95 * 2. Extend the metadata in the i915_ggtt_view structure if required. 96 * 3. Add support to i915_get_vma_pages(). 97 * 98 * New views are required to build a scatter-gather table from within the 99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and 100 * exists for the lifetime of an VMA. 101 * 102 * Core API is designed to have copy semantics which means that passed in 103 * struct i915_ggtt_view does not need to be persistent (left around after 104 * calling the core API functions). 105 * 106 */ 107 108 static int 109 i915_get_ggtt_vma_pages(struct i915_vma *vma); 110 111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv) 112 { 113 /* Note that as an uncached mmio write, this should flush the 114 * WCB of the writes into the GGTT before it triggers the invalidate. 115 */ 116 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 117 } 118 119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv) 120 { 121 gen6_ggtt_invalidate(dev_priv); 122 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); 123 } 124 125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv) 126 { 127 intel_gtt_chipset_flush(); 128 } 129 130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915) 131 { 132 i915->ggtt.invalidate(i915); 133 } 134 135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 136 int enable_ppgtt) 137 { 138 bool has_aliasing_ppgtt; 139 bool has_full_ppgtt; 140 bool has_full_48bit_ppgtt; 141 142 has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt; 143 has_full_ppgtt = dev_priv->info.has_full_ppgtt; 144 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt; 145 146 if (intel_vgpu_active(dev_priv)) { 147 /* emulation is too hard */ 148 has_full_ppgtt = false; 149 has_full_48bit_ppgtt = false; 150 } 151 152 if (!has_aliasing_ppgtt) 153 return 0; 154 155 /* 156 * We don't allow disabling PPGTT for gen9+ as it's a requirement for 157 * execlists, the sole mechanism available to submit work. 158 */ 159 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9) 160 return 0; 161 162 if (enable_ppgtt == 1) 163 return 1; 164 165 if (enable_ppgtt == 2 && has_full_ppgtt) 166 return 2; 167 168 if (enable_ppgtt == 3 && has_full_48bit_ppgtt) 169 return 3; 170 171 #ifdef CONFIG_INTEL_IOMMU 172 /* Disable ppgtt on SNB if VT-d is on. */ 173 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) { 174 DRM_INFO("Disabling PPGTT because VT-d is on\n"); 175 return 0; 176 } 177 #endif 178 179 /* Early VLV doesn't have this */ 180 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) { 181 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); 182 return 0; 183 } 184 185 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt) 186 return has_full_48bit_ppgtt ? 3 : 2; 187 else 188 return has_aliasing_ppgtt ? 1 : 0; 189 } 190 191 static int ppgtt_bind_vma(struct i915_vma *vma, 192 enum i915_cache_level cache_level, 193 u32 unused) 194 { 195 u32 pte_flags; 196 int ret; 197 198 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start, vma->size); 199 if (ret) 200 return ret; 201 202 vma->pages = vma->obj->mm.pages; 203 204 /* Currently applicable only to VLV */ 205 pte_flags = 0; 206 if (vma->obj->gt_ro) 207 pte_flags |= PTE_READ_ONLY; 208 209 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start, 210 cache_level, pte_flags); 211 212 return 0; 213 } 214 215 static void ppgtt_unbind_vma(struct i915_vma *vma) 216 { 217 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 218 } 219 220 static gen8_pte_t gen8_pte_encode(dma_addr_t addr, 221 enum i915_cache_level level) 222 { 223 gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW; 224 pte |= addr; 225 226 switch (level) { 227 case I915_CACHE_NONE: 228 pte |= PPAT_UNCACHED_INDEX; 229 break; 230 case I915_CACHE_WT: 231 pte |= PPAT_DISPLAY_ELLC_INDEX; 232 break; 233 default: 234 pte |= PPAT_CACHED_INDEX; 235 break; 236 } 237 238 return pte; 239 } 240 241 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, 242 const enum i915_cache_level level) 243 { 244 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; 245 pde |= addr; 246 if (level != I915_CACHE_NONE) 247 pde |= PPAT_CACHED_PDE_INDEX; 248 else 249 pde |= PPAT_UNCACHED_INDEX; 250 return pde; 251 } 252 253 #define gen8_pdpe_encode gen8_pde_encode 254 #define gen8_pml4e_encode gen8_pde_encode 255 256 static gen6_pte_t snb_pte_encode(dma_addr_t addr, 257 enum i915_cache_level level, 258 u32 unused) 259 { 260 gen6_pte_t pte = GEN6_PTE_VALID; 261 pte |= GEN6_PTE_ADDR_ENCODE(addr); 262 263 switch (level) { 264 case I915_CACHE_L3_LLC: 265 case I915_CACHE_LLC: 266 pte |= GEN6_PTE_CACHE_LLC; 267 break; 268 case I915_CACHE_NONE: 269 pte |= GEN6_PTE_UNCACHED; 270 break; 271 default: 272 MISSING_CASE(level); 273 } 274 275 return pte; 276 } 277 278 static gen6_pte_t ivb_pte_encode(dma_addr_t addr, 279 enum i915_cache_level level, 280 u32 unused) 281 { 282 gen6_pte_t pte = GEN6_PTE_VALID; 283 pte |= GEN6_PTE_ADDR_ENCODE(addr); 284 285 switch (level) { 286 case I915_CACHE_L3_LLC: 287 pte |= GEN7_PTE_CACHE_L3_LLC; 288 break; 289 case I915_CACHE_LLC: 290 pte |= GEN6_PTE_CACHE_LLC; 291 break; 292 case I915_CACHE_NONE: 293 pte |= GEN6_PTE_UNCACHED; 294 break; 295 default: 296 MISSING_CASE(level); 297 } 298 299 return pte; 300 } 301 302 static gen6_pte_t byt_pte_encode(dma_addr_t addr, 303 enum i915_cache_level level, 304 u32 flags) 305 { 306 gen6_pte_t pte = GEN6_PTE_VALID; 307 pte |= GEN6_PTE_ADDR_ENCODE(addr); 308 309 if (!(flags & PTE_READ_ONLY)) 310 pte |= BYT_PTE_WRITEABLE; 311 312 if (level != I915_CACHE_NONE) 313 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 314 315 return pte; 316 } 317 318 static gen6_pte_t hsw_pte_encode(dma_addr_t addr, 319 enum i915_cache_level level, 320 u32 unused) 321 { 322 gen6_pte_t pte = GEN6_PTE_VALID; 323 pte |= HSW_PTE_ADDR_ENCODE(addr); 324 325 if (level != I915_CACHE_NONE) 326 pte |= HSW_WB_LLC_AGE3; 327 328 return pte; 329 } 330 331 static gen6_pte_t iris_pte_encode(dma_addr_t addr, 332 enum i915_cache_level level, 333 u32 unused) 334 { 335 gen6_pte_t pte = GEN6_PTE_VALID; 336 pte |= HSW_PTE_ADDR_ENCODE(addr); 337 338 switch (level) { 339 case I915_CACHE_NONE: 340 break; 341 case I915_CACHE_WT: 342 pte |= HSW_WT_ELLC_LLC_AGE3; 343 break; 344 default: 345 pte |= HSW_WB_ELLC_LLC_AGE3; 346 break; 347 } 348 349 return pte; 350 } 351 352 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp) 353 { 354 struct page *page; 355 356 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 357 i915_gem_shrink_all(vm->i915); 358 359 if (vm->free_pages.nr) 360 return vm->free_pages.pages[--vm->free_pages.nr]; 361 362 page = alloc_page(gfp); 363 if (!page) 364 return NULL; 365 366 if (vm->pt_kmap_wc) 367 set_pages_array_wc(&page, 1); 368 369 return page; 370 } 371 372 static void vm_free_pages_release(struct i915_address_space *vm) 373 { 374 GEM_BUG_ON(!pagevec_count(&vm->free_pages)); 375 376 if (vm->pt_kmap_wc) 377 set_pages_array_wb(vm->free_pages.pages, 378 pagevec_count(&vm->free_pages)); 379 380 __pagevec_release(&vm->free_pages); 381 } 382 383 static void vm_free_page(struct i915_address_space *vm, struct page *page) 384 { 385 if (!pagevec_add(&vm->free_pages, page)) 386 vm_free_pages_release(vm); 387 } 388 389 static int __setup_page_dma(struct i915_address_space *vm, 390 struct i915_page_dma *p, 391 gfp_t gfp) 392 { 393 p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY); 394 if (unlikely(!p->page)) 395 return -ENOMEM; 396 397 p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE, 398 PCI_DMA_BIDIRECTIONAL); 399 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) { 400 vm_free_page(vm, p->page); 401 return -ENOMEM; 402 } 403 404 return 0; 405 } 406 407 static int setup_page_dma(struct i915_address_space *vm, 408 struct i915_page_dma *p) 409 { 410 return __setup_page_dma(vm, p, I915_GFP_DMA); 411 } 412 413 static void cleanup_page_dma(struct i915_address_space *vm, 414 struct i915_page_dma *p) 415 { 416 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 417 vm_free_page(vm, p->page); 418 } 419 420 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page) 421 422 #define setup_px(vm, px) setup_page_dma((vm), px_base(px)) 423 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px)) 424 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v)) 425 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v)) 426 427 static void fill_page_dma(struct i915_address_space *vm, 428 struct i915_page_dma *p, 429 const u64 val) 430 { 431 u64 * const vaddr = kmap_atomic(p->page); 432 int i; 433 434 for (i = 0; i < 512; i++) 435 vaddr[i] = val; 436 437 kunmap_atomic(vaddr); 438 } 439 440 static void fill_page_dma_32(struct i915_address_space *vm, 441 struct i915_page_dma *p, 442 const u32 v) 443 { 444 fill_page_dma(vm, p, (u64)v << 32 | v); 445 } 446 447 static int 448 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp) 449 { 450 return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO); 451 } 452 453 static void cleanup_scratch_page(struct i915_address_space *vm) 454 { 455 cleanup_page_dma(vm, &vm->scratch_page); 456 } 457 458 static struct i915_page_table *alloc_pt(struct i915_address_space *vm) 459 { 460 struct i915_page_table *pt; 461 462 pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN); 463 if (unlikely(!pt)) 464 return ERR_PTR(-ENOMEM); 465 466 if (unlikely(setup_px(vm, pt))) { 467 kfree(pt); 468 return ERR_PTR(-ENOMEM); 469 } 470 471 pt->used_ptes = 0; 472 return pt; 473 } 474 475 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt) 476 { 477 cleanup_px(vm, pt); 478 kfree(pt); 479 } 480 481 static void gen8_initialize_pt(struct i915_address_space *vm, 482 struct i915_page_table *pt) 483 { 484 fill_px(vm, pt, 485 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC)); 486 } 487 488 static void gen6_initialize_pt(struct i915_address_space *vm, 489 struct i915_page_table *pt) 490 { 491 fill32_px(vm, pt, 492 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0)); 493 } 494 495 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm) 496 { 497 struct i915_page_directory *pd; 498 499 pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN); 500 if (unlikely(!pd)) 501 return ERR_PTR(-ENOMEM); 502 503 if (unlikely(setup_px(vm, pd))) { 504 kfree(pd); 505 return ERR_PTR(-ENOMEM); 506 } 507 508 pd->used_pdes = 0; 509 return pd; 510 } 511 512 static void free_pd(struct i915_address_space *vm, 513 struct i915_page_directory *pd) 514 { 515 cleanup_px(vm, pd); 516 kfree(pd); 517 } 518 519 static void gen8_initialize_pd(struct i915_address_space *vm, 520 struct i915_page_directory *pd) 521 { 522 unsigned int i; 523 524 fill_px(vm, pd, 525 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC)); 526 for (i = 0; i < I915_PDES; i++) 527 pd->page_table[i] = vm->scratch_pt; 528 } 529 530 static int __pdp_init(struct i915_address_space *vm, 531 struct i915_page_directory_pointer *pdp) 532 { 533 const unsigned int pdpes = i915_pdpes_per_pdp(vm); 534 unsigned int i; 535 536 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory), 537 GFP_KERNEL | __GFP_NOWARN); 538 if (unlikely(!pdp->page_directory)) 539 return -ENOMEM; 540 541 for (i = 0; i < pdpes; i++) 542 pdp->page_directory[i] = vm->scratch_pd; 543 544 return 0; 545 } 546 547 static void __pdp_fini(struct i915_page_directory_pointer *pdp) 548 { 549 kfree(pdp->page_directory); 550 pdp->page_directory = NULL; 551 } 552 553 static inline bool use_4lvl(const struct i915_address_space *vm) 554 { 555 return i915_vm_is_48bit(vm); 556 } 557 558 static struct i915_page_directory_pointer * 559 alloc_pdp(struct i915_address_space *vm) 560 { 561 struct i915_page_directory_pointer *pdp; 562 int ret = -ENOMEM; 563 564 WARN_ON(!use_4lvl(vm)); 565 566 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL); 567 if (!pdp) 568 return ERR_PTR(-ENOMEM); 569 570 ret = __pdp_init(vm, pdp); 571 if (ret) 572 goto fail_bitmap; 573 574 ret = setup_px(vm, pdp); 575 if (ret) 576 goto fail_page_m; 577 578 return pdp; 579 580 fail_page_m: 581 __pdp_fini(pdp); 582 fail_bitmap: 583 kfree(pdp); 584 585 return ERR_PTR(ret); 586 } 587 588 static void free_pdp(struct i915_address_space *vm, 589 struct i915_page_directory_pointer *pdp) 590 { 591 __pdp_fini(pdp); 592 593 if (!use_4lvl(vm)) 594 return; 595 596 cleanup_px(vm, pdp); 597 kfree(pdp); 598 } 599 600 static void gen8_initialize_pdp(struct i915_address_space *vm, 601 struct i915_page_directory_pointer *pdp) 602 { 603 gen8_ppgtt_pdpe_t scratch_pdpe; 604 605 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC); 606 607 fill_px(vm, pdp, scratch_pdpe); 608 } 609 610 static void gen8_initialize_pml4(struct i915_address_space *vm, 611 struct i915_pml4 *pml4) 612 { 613 unsigned int i; 614 615 fill_px(vm, pml4, 616 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC)); 617 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) 618 pml4->pdps[i] = vm->scratch_pdp; 619 } 620 621 /* Broadwell Page Directory Pointer Descriptors */ 622 static int gen8_write_pdp(struct drm_i915_gem_request *req, 623 unsigned entry, 624 dma_addr_t addr) 625 { 626 struct intel_engine_cs *engine = req->engine; 627 u32 *cs; 628 629 BUG_ON(entry >= 4); 630 631 cs = intel_ring_begin(req, 6); 632 if (IS_ERR(cs)) 633 return PTR_ERR(cs); 634 635 *cs++ = MI_LOAD_REGISTER_IMM(1); 636 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry)); 637 *cs++ = upper_32_bits(addr); 638 *cs++ = MI_LOAD_REGISTER_IMM(1); 639 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry)); 640 *cs++ = lower_32_bits(addr); 641 intel_ring_advance(req, cs); 642 643 return 0; 644 } 645 646 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt, 647 struct drm_i915_gem_request *req) 648 { 649 int i, ret; 650 651 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) { 652 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); 653 654 ret = gen8_write_pdp(req, i, pd_daddr); 655 if (ret) 656 return ret; 657 } 658 659 return 0; 660 } 661 662 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt, 663 struct drm_i915_gem_request *req) 664 { 665 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4)); 666 } 667 668 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify 669 * the page table structures, we mark them dirty so that 670 * context switching/execlist queuing code takes extra steps 671 * to ensure that tlbs are flushed. 672 */ 673 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) 674 { 675 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask; 676 } 677 678 /* Removes entries from a single page table, releasing it if it's empty. 679 * Caller can use the return value to update higher-level entries. 680 */ 681 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm, 682 struct i915_page_table *pt, 683 u64 start, u64 length) 684 { 685 unsigned int num_entries = gen8_pte_count(start, length); 686 unsigned int pte = gen8_pte_index(start); 687 unsigned int pte_end = pte + num_entries; 688 const gen8_pte_t scratch_pte = 689 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); 690 gen8_pte_t *vaddr; 691 692 GEM_BUG_ON(num_entries > pt->used_ptes); 693 694 pt->used_ptes -= num_entries; 695 if (!pt->used_ptes) 696 return true; 697 698 vaddr = kmap_atomic_px(pt); 699 while (pte < pte_end) 700 vaddr[pte++] = scratch_pte; 701 kunmap_atomic(vaddr); 702 703 return false; 704 } 705 706 static void gen8_ppgtt_set_pde(struct i915_address_space *vm, 707 struct i915_page_directory *pd, 708 struct i915_page_table *pt, 709 unsigned int pde) 710 { 711 gen8_pde_t *vaddr; 712 713 pd->page_table[pde] = pt; 714 715 vaddr = kmap_atomic_px(pd); 716 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC); 717 kunmap_atomic(vaddr); 718 } 719 720 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm, 721 struct i915_page_directory *pd, 722 u64 start, u64 length) 723 { 724 struct i915_page_table *pt; 725 u32 pde; 726 727 gen8_for_each_pde(pt, pd, start, length, pde) { 728 GEM_BUG_ON(pt == vm->scratch_pt); 729 730 if (!gen8_ppgtt_clear_pt(vm, pt, start, length)) 731 continue; 732 733 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde); 734 GEM_BUG_ON(!pd->used_pdes); 735 pd->used_pdes--; 736 737 free_pt(vm, pt); 738 } 739 740 return !pd->used_pdes; 741 } 742 743 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm, 744 struct i915_page_directory_pointer *pdp, 745 struct i915_page_directory *pd, 746 unsigned int pdpe) 747 { 748 gen8_ppgtt_pdpe_t *vaddr; 749 750 pdp->page_directory[pdpe] = pd; 751 if (!use_4lvl(vm)) 752 return; 753 754 vaddr = kmap_atomic_px(pdp); 755 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); 756 kunmap_atomic(vaddr); 757 } 758 759 /* Removes entries from a single page dir pointer, releasing it if it's empty. 760 * Caller can use the return value to update higher-level entries 761 */ 762 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm, 763 struct i915_page_directory_pointer *pdp, 764 u64 start, u64 length) 765 { 766 struct i915_page_directory *pd; 767 unsigned int pdpe; 768 769 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 770 GEM_BUG_ON(pd == vm->scratch_pd); 771 772 if (!gen8_ppgtt_clear_pd(vm, pd, start, length)) 773 continue; 774 775 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 776 GEM_BUG_ON(!pdp->used_pdpes); 777 pdp->used_pdpes--; 778 779 free_pd(vm, pd); 780 } 781 782 return !pdp->used_pdpes; 783 } 784 785 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm, 786 u64 start, u64 length) 787 { 788 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length); 789 } 790 791 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4, 792 struct i915_page_directory_pointer *pdp, 793 unsigned int pml4e) 794 { 795 gen8_ppgtt_pml4e_t *vaddr; 796 797 pml4->pdps[pml4e] = pdp; 798 799 vaddr = kmap_atomic_px(pml4); 800 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); 801 kunmap_atomic(vaddr); 802 } 803 804 /* Removes entries from a single pml4. 805 * This is the top-level structure in 4-level page tables used on gen8+. 806 * Empty entries are always scratch pml4e. 807 */ 808 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm, 809 u64 start, u64 length) 810 { 811 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 812 struct i915_pml4 *pml4 = &ppgtt->pml4; 813 struct i915_page_directory_pointer *pdp; 814 unsigned int pml4e; 815 816 GEM_BUG_ON(!use_4lvl(vm)); 817 818 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 819 GEM_BUG_ON(pdp == vm->scratch_pdp); 820 821 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length)) 822 continue; 823 824 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); 825 826 free_pdp(vm, pdp); 827 } 828 } 829 830 struct sgt_dma { 831 struct scatterlist *sg; 832 dma_addr_t dma, max; 833 }; 834 835 struct gen8_insert_pte { 836 u16 pml4e; 837 u16 pdpe; 838 u16 pde; 839 u16 pte; 840 }; 841 842 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start) 843 { 844 return (struct gen8_insert_pte) { 845 gen8_pml4e_index(start), 846 gen8_pdpe_index(start), 847 gen8_pde_index(start), 848 gen8_pte_index(start), 849 }; 850 } 851 852 static __always_inline bool 853 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt, 854 struct i915_page_directory_pointer *pdp, 855 struct sgt_dma *iter, 856 struct gen8_insert_pte *idx, 857 enum i915_cache_level cache_level) 858 { 859 struct i915_page_directory *pd; 860 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level); 861 gen8_pte_t *vaddr; 862 bool ret; 863 864 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base)); 865 pd = pdp->page_directory[idx->pdpe]; 866 vaddr = kmap_atomic_px(pd->page_table[idx->pde]); 867 do { 868 vaddr[idx->pte] = pte_encode | iter->dma; 869 870 iter->dma += PAGE_SIZE; 871 if (iter->dma >= iter->max) { 872 iter->sg = __sg_next(iter->sg); 873 if (!iter->sg) { 874 ret = false; 875 break; 876 } 877 878 iter->dma = sg_dma_address(iter->sg); 879 iter->max = iter->dma + iter->sg->length; 880 } 881 882 if (++idx->pte == GEN8_PTES) { 883 idx->pte = 0; 884 885 if (++idx->pde == I915_PDES) { 886 idx->pde = 0; 887 888 /* Limited by sg length for 3lvl */ 889 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) { 890 idx->pdpe = 0; 891 ret = true; 892 break; 893 } 894 895 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base)); 896 pd = pdp->page_directory[idx->pdpe]; 897 } 898 899 kunmap_atomic(vaddr); 900 vaddr = kmap_atomic_px(pd->page_table[idx->pde]); 901 } 902 } while (1); 903 kunmap_atomic(vaddr); 904 905 return ret; 906 } 907 908 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm, 909 struct sg_table *pages, 910 u64 start, 911 enum i915_cache_level cache_level, 912 u32 unused) 913 { 914 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 915 struct sgt_dma iter = { 916 .sg = pages->sgl, 917 .dma = sg_dma_address(iter.sg), 918 .max = iter.dma + iter.sg->length, 919 }; 920 struct gen8_insert_pte idx = gen8_insert_pte(start); 921 922 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx, 923 cache_level); 924 } 925 926 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm, 927 struct sg_table *pages, 928 u64 start, 929 enum i915_cache_level cache_level, 930 u32 unused) 931 { 932 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 933 struct sgt_dma iter = { 934 .sg = pages->sgl, 935 .dma = sg_dma_address(iter.sg), 936 .max = iter.dma + iter.sg->length, 937 }; 938 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps; 939 struct gen8_insert_pte idx = gen8_insert_pte(start); 940 941 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter, 942 &idx, cache_level)) 943 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4); 944 } 945 946 static void gen8_free_page_tables(struct i915_address_space *vm, 947 struct i915_page_directory *pd) 948 { 949 int i; 950 951 if (!px_page(pd)) 952 return; 953 954 for (i = 0; i < I915_PDES; i++) { 955 if (pd->page_table[i] != vm->scratch_pt) 956 free_pt(vm, pd->page_table[i]); 957 } 958 } 959 960 static int gen8_init_scratch(struct i915_address_space *vm) 961 { 962 int ret; 963 964 ret = setup_scratch_page(vm, I915_GFP_DMA); 965 if (ret) 966 return ret; 967 968 vm->scratch_pt = alloc_pt(vm); 969 if (IS_ERR(vm->scratch_pt)) { 970 ret = PTR_ERR(vm->scratch_pt); 971 goto free_scratch_page; 972 } 973 974 vm->scratch_pd = alloc_pd(vm); 975 if (IS_ERR(vm->scratch_pd)) { 976 ret = PTR_ERR(vm->scratch_pd); 977 goto free_pt; 978 } 979 980 if (use_4lvl(vm)) { 981 vm->scratch_pdp = alloc_pdp(vm); 982 if (IS_ERR(vm->scratch_pdp)) { 983 ret = PTR_ERR(vm->scratch_pdp); 984 goto free_pd; 985 } 986 } 987 988 gen8_initialize_pt(vm, vm->scratch_pt); 989 gen8_initialize_pd(vm, vm->scratch_pd); 990 if (use_4lvl(vm)) 991 gen8_initialize_pdp(vm, vm->scratch_pdp); 992 993 return 0; 994 995 free_pd: 996 free_pd(vm, vm->scratch_pd); 997 free_pt: 998 free_pt(vm, vm->scratch_pt); 999 free_scratch_page: 1000 cleanup_scratch_page(vm); 1001 1002 return ret; 1003 } 1004 1005 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create) 1006 { 1007 struct i915_address_space *vm = &ppgtt->base; 1008 struct drm_i915_private *dev_priv = vm->i915; 1009 enum vgt_g2v_type msg; 1010 int i; 1011 1012 if (use_4lvl(vm)) { 1013 const u64 daddr = px_dma(&ppgtt->pml4); 1014 1015 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); 1016 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); 1017 1018 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : 1019 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); 1020 } else { 1021 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1022 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i); 1023 1024 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); 1025 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); 1026 } 1027 1028 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : 1029 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); 1030 } 1031 1032 I915_WRITE(vgtif_reg(g2v_notify), msg); 1033 1034 return 0; 1035 } 1036 1037 static void gen8_free_scratch(struct i915_address_space *vm) 1038 { 1039 if (use_4lvl(vm)) 1040 free_pdp(vm, vm->scratch_pdp); 1041 free_pd(vm, vm->scratch_pd); 1042 free_pt(vm, vm->scratch_pt); 1043 cleanup_scratch_page(vm); 1044 } 1045 1046 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm, 1047 struct i915_page_directory_pointer *pdp) 1048 { 1049 const unsigned int pdpes = i915_pdpes_per_pdp(vm); 1050 int i; 1051 1052 for (i = 0; i < pdpes; i++) { 1053 if (pdp->page_directory[i] == vm->scratch_pd) 1054 continue; 1055 1056 gen8_free_page_tables(vm, pdp->page_directory[i]); 1057 free_pd(vm, pdp->page_directory[i]); 1058 } 1059 1060 free_pdp(vm, pdp); 1061 } 1062 1063 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt) 1064 { 1065 int i; 1066 1067 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) { 1068 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp) 1069 continue; 1070 1071 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]); 1072 } 1073 1074 cleanup_px(&ppgtt->base, &ppgtt->pml4); 1075 } 1076 1077 static void gen8_ppgtt_cleanup(struct i915_address_space *vm) 1078 { 1079 struct drm_i915_private *dev_priv = vm->i915; 1080 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1081 1082 if (intel_vgpu_active(dev_priv)) 1083 gen8_ppgtt_notify_vgt(ppgtt, false); 1084 1085 if (use_4lvl(vm)) 1086 gen8_ppgtt_cleanup_4lvl(ppgtt); 1087 else 1088 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp); 1089 1090 gen8_free_scratch(vm); 1091 } 1092 1093 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm, 1094 struct i915_page_directory *pd, 1095 u64 start, u64 length) 1096 { 1097 struct i915_page_table *pt; 1098 u64 from = start; 1099 unsigned int pde; 1100 1101 gen8_for_each_pde(pt, pd, start, length, pde) { 1102 if (pt == vm->scratch_pt) { 1103 pt = alloc_pt(vm); 1104 if (IS_ERR(pt)) 1105 goto unwind; 1106 1107 gen8_initialize_pt(vm, pt); 1108 1109 gen8_ppgtt_set_pde(vm, pd, pt, pde); 1110 pd->used_pdes++; 1111 GEM_BUG_ON(pd->used_pdes > I915_PDES); 1112 } 1113 1114 pt->used_ptes += gen8_pte_count(start, length); 1115 } 1116 return 0; 1117 1118 unwind: 1119 gen8_ppgtt_clear_pd(vm, pd, from, start - from); 1120 return -ENOMEM; 1121 } 1122 1123 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm, 1124 struct i915_page_directory_pointer *pdp, 1125 u64 start, u64 length) 1126 { 1127 struct i915_page_directory *pd; 1128 u64 from = start; 1129 unsigned int pdpe; 1130 int ret; 1131 1132 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1133 if (pd == vm->scratch_pd) { 1134 pd = alloc_pd(vm); 1135 if (IS_ERR(pd)) 1136 goto unwind; 1137 1138 gen8_initialize_pd(vm, pd); 1139 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); 1140 pdp->used_pdpes++; 1141 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm)); 1142 1143 mark_tlbs_dirty(i915_vm_to_ppgtt(vm)); 1144 } 1145 1146 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length); 1147 if (unlikely(ret)) 1148 goto unwind_pd; 1149 } 1150 1151 return 0; 1152 1153 unwind_pd: 1154 if (!pd->used_pdes) { 1155 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 1156 GEM_BUG_ON(!pdp->used_pdpes); 1157 pdp->used_pdpes--; 1158 free_pd(vm, pd); 1159 } 1160 unwind: 1161 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from); 1162 return -ENOMEM; 1163 } 1164 1165 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm, 1166 u64 start, u64 length) 1167 { 1168 return gen8_ppgtt_alloc_pdp(vm, 1169 &i915_vm_to_ppgtt(vm)->pdp, start, length); 1170 } 1171 1172 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm, 1173 u64 start, u64 length) 1174 { 1175 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1176 struct i915_pml4 *pml4 = &ppgtt->pml4; 1177 struct i915_page_directory_pointer *pdp; 1178 u64 from = start; 1179 u32 pml4e; 1180 int ret; 1181 1182 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 1183 if (pml4->pdps[pml4e] == vm->scratch_pdp) { 1184 pdp = alloc_pdp(vm); 1185 if (IS_ERR(pdp)) 1186 goto unwind; 1187 1188 gen8_initialize_pdp(vm, pdp); 1189 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e); 1190 } 1191 1192 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length); 1193 if (unlikely(ret)) 1194 goto unwind_pdp; 1195 } 1196 1197 return 0; 1198 1199 unwind_pdp: 1200 if (!pdp->used_pdpes) { 1201 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); 1202 free_pdp(vm, pdp); 1203 } 1204 unwind: 1205 gen8_ppgtt_clear_4lvl(vm, from, start - from); 1206 return -ENOMEM; 1207 } 1208 1209 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt, 1210 struct i915_page_directory_pointer *pdp, 1211 u64 start, u64 length, 1212 gen8_pte_t scratch_pte, 1213 struct seq_file *m) 1214 { 1215 struct i915_address_space *vm = &ppgtt->base; 1216 struct i915_page_directory *pd; 1217 u32 pdpe; 1218 1219 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1220 struct i915_page_table *pt; 1221 u64 pd_len = length; 1222 u64 pd_start = start; 1223 u32 pde; 1224 1225 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd) 1226 continue; 1227 1228 seq_printf(m, "\tPDPE #%d\n", pdpe); 1229 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { 1230 u32 pte; 1231 gen8_pte_t *pt_vaddr; 1232 1233 if (pd->page_table[pde] == ppgtt->base.scratch_pt) 1234 continue; 1235 1236 pt_vaddr = kmap_atomic_px(pt); 1237 for (pte = 0; pte < GEN8_PTES; pte += 4) { 1238 u64 va = (pdpe << GEN8_PDPE_SHIFT | 1239 pde << GEN8_PDE_SHIFT | 1240 pte << GEN8_PTE_SHIFT); 1241 int i; 1242 bool found = false; 1243 1244 for (i = 0; i < 4; i++) 1245 if (pt_vaddr[pte + i] != scratch_pte) 1246 found = true; 1247 if (!found) 1248 continue; 1249 1250 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte); 1251 for (i = 0; i < 4; i++) { 1252 if (pt_vaddr[pte + i] != scratch_pte) 1253 seq_printf(m, " %llx", pt_vaddr[pte + i]); 1254 else 1255 seq_puts(m, " SCRATCH "); 1256 } 1257 seq_puts(m, "\n"); 1258 } 1259 kunmap_atomic(pt_vaddr); 1260 } 1261 } 1262 } 1263 1264 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) 1265 { 1266 struct i915_address_space *vm = &ppgtt->base; 1267 const gen8_pte_t scratch_pte = 1268 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); 1269 u64 start = 0, length = ppgtt->base.total; 1270 1271 if (use_4lvl(vm)) { 1272 u64 pml4e; 1273 struct i915_pml4 *pml4 = &ppgtt->pml4; 1274 struct i915_page_directory_pointer *pdp; 1275 1276 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 1277 if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp) 1278 continue; 1279 1280 seq_printf(m, " PML4E #%llu\n", pml4e); 1281 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m); 1282 } 1283 } else { 1284 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m); 1285 } 1286 } 1287 1288 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt) 1289 { 1290 struct i915_address_space *vm = &ppgtt->base; 1291 struct i915_page_directory_pointer *pdp = &ppgtt->pdp; 1292 struct i915_page_directory *pd; 1293 u64 start = 0, length = ppgtt->base.total; 1294 u64 from = start; 1295 unsigned int pdpe; 1296 1297 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1298 pd = alloc_pd(vm); 1299 if (IS_ERR(pd)) 1300 goto unwind; 1301 1302 gen8_initialize_pd(vm, pd); 1303 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); 1304 pdp->used_pdpes++; 1305 } 1306 1307 pdp->used_pdpes++; /* never remove */ 1308 return 0; 1309 1310 unwind: 1311 start -= from; 1312 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) { 1313 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 1314 free_pd(vm, pd); 1315 } 1316 pdp->used_pdpes = 0; 1317 return -ENOMEM; 1318 } 1319 1320 /* 1321 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers 1322 * with a net effect resembling a 2-level page table in normal x86 terms. Each 1323 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address 1324 * space. 1325 * 1326 */ 1327 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt) 1328 { 1329 struct i915_address_space *vm = &ppgtt->base; 1330 struct drm_i915_private *dev_priv = vm->i915; 1331 int ret; 1332 1333 ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ? 1334 1ULL << 48 : 1335 1ULL << 32; 1336 1337 ret = gen8_init_scratch(&ppgtt->base); 1338 if (ret) { 1339 ppgtt->base.total = 0; 1340 return ret; 1341 } 1342 1343 /* There are only few exceptions for gen >=6. chv and bxt. 1344 * And we are not sure about the latter so play safe for now. 1345 */ 1346 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv)) 1347 ppgtt->base.pt_kmap_wc = true; 1348 1349 if (use_4lvl(vm)) { 1350 ret = setup_px(&ppgtt->base, &ppgtt->pml4); 1351 if (ret) 1352 goto free_scratch; 1353 1354 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4); 1355 1356 ppgtt->switch_mm = gen8_mm_switch_4lvl; 1357 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl; 1358 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl; 1359 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl; 1360 } else { 1361 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp); 1362 if (ret) 1363 goto free_scratch; 1364 1365 if (intel_vgpu_active(dev_priv)) { 1366 ret = gen8_preallocate_top_level_pdp(ppgtt); 1367 if (ret) { 1368 __pdp_fini(&ppgtt->pdp); 1369 goto free_scratch; 1370 } 1371 } 1372 1373 ppgtt->switch_mm = gen8_mm_switch_3lvl; 1374 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl; 1375 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl; 1376 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl; 1377 } 1378 1379 if (intel_vgpu_active(dev_priv)) 1380 gen8_ppgtt_notify_vgt(ppgtt, true); 1381 1382 ppgtt->base.cleanup = gen8_ppgtt_cleanup; 1383 ppgtt->base.unbind_vma = ppgtt_unbind_vma; 1384 ppgtt->base.bind_vma = ppgtt_bind_vma; 1385 ppgtt->debug_dump = gen8_dump_ppgtt; 1386 1387 return 0; 1388 1389 free_scratch: 1390 gen8_free_scratch(&ppgtt->base); 1391 return ret; 1392 } 1393 1394 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) 1395 { 1396 struct i915_address_space *vm = &ppgtt->base; 1397 struct i915_page_table *unused; 1398 gen6_pte_t scratch_pte; 1399 u32 pd_entry, pte, pde; 1400 u32 start = 0, length = ppgtt->base.total; 1401 1402 scratch_pte = vm->pte_encode(vm->scratch_page.daddr, 1403 I915_CACHE_LLC, 0); 1404 1405 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) { 1406 u32 expected; 1407 gen6_pte_t *pt_vaddr; 1408 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]); 1409 pd_entry = readl(ppgtt->pd_addr + pde); 1410 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID); 1411 1412 if (pd_entry != expected) 1413 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", 1414 pde, 1415 pd_entry, 1416 expected); 1417 seq_printf(m, "\tPDE: %x\n", pd_entry); 1418 1419 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]); 1420 1421 for (pte = 0; pte < GEN6_PTES; pte+=4) { 1422 unsigned long va = 1423 (pde * PAGE_SIZE * GEN6_PTES) + 1424 (pte * PAGE_SIZE); 1425 int i; 1426 bool found = false; 1427 for (i = 0; i < 4; i++) 1428 if (pt_vaddr[pte + i] != scratch_pte) 1429 found = true; 1430 if (!found) 1431 continue; 1432 1433 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte); 1434 for (i = 0; i < 4; i++) { 1435 if (pt_vaddr[pte + i] != scratch_pte) 1436 seq_printf(m, " %08x", pt_vaddr[pte + i]); 1437 else 1438 seq_puts(m, " SCRATCH "); 1439 } 1440 seq_puts(m, "\n"); 1441 } 1442 kunmap_atomic(pt_vaddr); 1443 } 1444 } 1445 1446 /* Write pde (index) from the page directory @pd to the page table @pt */ 1447 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt, 1448 const unsigned int pde, 1449 const struct i915_page_table *pt) 1450 { 1451 /* Caller needs to make sure the write completes if necessary */ 1452 writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID, 1453 ppgtt->pd_addr + pde); 1454 } 1455 1456 /* Write all the page tables found in the ppgtt structure to incrementing page 1457 * directories. */ 1458 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt, 1459 u32 start, u32 length) 1460 { 1461 struct i915_page_table *pt; 1462 unsigned int pde; 1463 1464 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) 1465 gen6_write_pde(ppgtt, pde, pt); 1466 1467 mark_tlbs_dirty(ppgtt); 1468 wmb(); 1469 } 1470 1471 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt) 1472 { 1473 GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f); 1474 return ppgtt->pd.base.ggtt_offset << 10; 1475 } 1476 1477 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt, 1478 struct drm_i915_gem_request *req) 1479 { 1480 struct intel_engine_cs *engine = req->engine; 1481 u32 *cs; 1482 1483 /* NB: TLBs must be flushed and invalidated before a switch */ 1484 cs = intel_ring_begin(req, 6); 1485 if (IS_ERR(cs)) 1486 return PTR_ERR(cs); 1487 1488 *cs++ = MI_LOAD_REGISTER_IMM(2); 1489 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine)); 1490 *cs++ = PP_DIR_DCLV_2G; 1491 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine)); 1492 *cs++ = get_pd_offset(ppgtt); 1493 *cs++ = MI_NOOP; 1494 intel_ring_advance(req, cs); 1495 1496 return 0; 1497 } 1498 1499 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt, 1500 struct drm_i915_gem_request *req) 1501 { 1502 struct intel_engine_cs *engine = req->engine; 1503 u32 *cs; 1504 1505 /* NB: TLBs must be flushed and invalidated before a switch */ 1506 cs = intel_ring_begin(req, 6); 1507 if (IS_ERR(cs)) 1508 return PTR_ERR(cs); 1509 1510 *cs++ = MI_LOAD_REGISTER_IMM(2); 1511 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine)); 1512 *cs++ = PP_DIR_DCLV_2G; 1513 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine)); 1514 *cs++ = get_pd_offset(ppgtt); 1515 *cs++ = MI_NOOP; 1516 intel_ring_advance(req, cs); 1517 1518 return 0; 1519 } 1520 1521 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt, 1522 struct drm_i915_gem_request *req) 1523 { 1524 struct intel_engine_cs *engine = req->engine; 1525 struct drm_i915_private *dev_priv = req->i915; 1526 1527 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G); 1528 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt)); 1529 return 0; 1530 } 1531 1532 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv) 1533 { 1534 struct intel_engine_cs *engine; 1535 enum intel_engine_id id; 1536 1537 for_each_engine(engine, dev_priv, id) { 1538 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ? 1539 GEN8_GFX_PPGTT_48B : 0; 1540 I915_WRITE(RING_MODE_GEN7(engine), 1541 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level)); 1542 } 1543 } 1544 1545 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv) 1546 { 1547 struct intel_engine_cs *engine; 1548 u32 ecochk, ecobits; 1549 enum intel_engine_id id; 1550 1551 ecobits = I915_READ(GAC_ECO_BITS); 1552 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); 1553 1554 ecochk = I915_READ(GAM_ECOCHK); 1555 if (IS_HASWELL(dev_priv)) { 1556 ecochk |= ECOCHK_PPGTT_WB_HSW; 1557 } else { 1558 ecochk |= ECOCHK_PPGTT_LLC_IVB; 1559 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; 1560 } 1561 I915_WRITE(GAM_ECOCHK, ecochk); 1562 1563 for_each_engine(engine, dev_priv, id) { 1564 /* GFX_MODE is per-ring on gen7+ */ 1565 I915_WRITE(RING_MODE_GEN7(engine), 1566 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1567 } 1568 } 1569 1570 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv) 1571 { 1572 u32 ecochk, gab_ctl, ecobits; 1573 1574 ecobits = I915_READ(GAC_ECO_BITS); 1575 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | 1576 ECOBITS_PPGTT_CACHE64B); 1577 1578 gab_ctl = I915_READ(GAB_CTL); 1579 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); 1580 1581 ecochk = I915_READ(GAM_ECOCHK); 1582 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); 1583 1584 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1585 } 1586 1587 /* PPGTT support for Sandybdrige/Gen6 and later */ 1588 static void gen6_ppgtt_clear_range(struct i915_address_space *vm, 1589 u64 start, u64 length) 1590 { 1591 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1592 unsigned int first_entry = start >> PAGE_SHIFT; 1593 unsigned int pde = first_entry / GEN6_PTES; 1594 unsigned int pte = first_entry % GEN6_PTES; 1595 unsigned int num_entries = length >> PAGE_SHIFT; 1596 gen6_pte_t scratch_pte = 1597 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); 1598 1599 while (num_entries) { 1600 struct i915_page_table *pt = ppgtt->pd.page_table[pde++]; 1601 unsigned int end = min(pte + num_entries, GEN6_PTES); 1602 gen6_pte_t *vaddr; 1603 1604 num_entries -= end - pte; 1605 1606 /* Note that the hw doesn't support removing PDE on the fly 1607 * (they are cached inside the context with no means to 1608 * invalidate the cache), so we can only reset the PTE 1609 * entries back to scratch. 1610 */ 1611 1612 vaddr = kmap_atomic_px(pt); 1613 do { 1614 vaddr[pte++] = scratch_pte; 1615 } while (pte < end); 1616 kunmap_atomic(vaddr); 1617 1618 pte = 0; 1619 } 1620 } 1621 1622 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, 1623 struct sg_table *pages, 1624 u64 start, 1625 enum i915_cache_level cache_level, 1626 u32 flags) 1627 { 1628 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1629 unsigned first_entry = start >> PAGE_SHIFT; 1630 unsigned act_pt = first_entry / GEN6_PTES; 1631 unsigned act_pte = first_entry % GEN6_PTES; 1632 const u32 pte_encode = vm->pte_encode(0, cache_level, flags); 1633 struct sgt_dma iter; 1634 gen6_pte_t *vaddr; 1635 1636 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]); 1637 iter.sg = pages->sgl; 1638 iter.dma = sg_dma_address(iter.sg); 1639 iter.max = iter.dma + iter.sg->length; 1640 do { 1641 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma); 1642 1643 iter.dma += PAGE_SIZE; 1644 if (iter.dma == iter.max) { 1645 iter.sg = __sg_next(iter.sg); 1646 if (!iter.sg) 1647 break; 1648 1649 iter.dma = sg_dma_address(iter.sg); 1650 iter.max = iter.dma + iter.sg->length; 1651 } 1652 1653 if (++act_pte == GEN6_PTES) { 1654 kunmap_atomic(vaddr); 1655 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]); 1656 act_pte = 0; 1657 } 1658 } while (1); 1659 kunmap_atomic(vaddr); 1660 } 1661 1662 static int gen6_alloc_va_range(struct i915_address_space *vm, 1663 u64 start, u64 length) 1664 { 1665 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1666 struct i915_page_table *pt; 1667 u64 from = start; 1668 unsigned int pde; 1669 bool flush = false; 1670 1671 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) { 1672 if (pt == vm->scratch_pt) { 1673 pt = alloc_pt(vm); 1674 if (IS_ERR(pt)) 1675 goto unwind_out; 1676 1677 gen6_initialize_pt(vm, pt); 1678 ppgtt->pd.page_table[pde] = pt; 1679 gen6_write_pde(ppgtt, pde, pt); 1680 flush = true; 1681 } 1682 } 1683 1684 if (flush) { 1685 mark_tlbs_dirty(ppgtt); 1686 wmb(); 1687 } 1688 1689 return 0; 1690 1691 unwind_out: 1692 gen6_ppgtt_clear_range(vm, from, start); 1693 return -ENOMEM; 1694 } 1695 1696 static int gen6_init_scratch(struct i915_address_space *vm) 1697 { 1698 int ret; 1699 1700 ret = setup_scratch_page(vm, I915_GFP_DMA); 1701 if (ret) 1702 return ret; 1703 1704 vm->scratch_pt = alloc_pt(vm); 1705 if (IS_ERR(vm->scratch_pt)) { 1706 cleanup_scratch_page(vm); 1707 return PTR_ERR(vm->scratch_pt); 1708 } 1709 1710 gen6_initialize_pt(vm, vm->scratch_pt); 1711 1712 return 0; 1713 } 1714 1715 static void gen6_free_scratch(struct i915_address_space *vm) 1716 { 1717 free_pt(vm, vm->scratch_pt); 1718 cleanup_scratch_page(vm); 1719 } 1720 1721 static void gen6_ppgtt_cleanup(struct i915_address_space *vm) 1722 { 1723 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1724 struct i915_page_directory *pd = &ppgtt->pd; 1725 struct i915_page_table *pt; 1726 u32 pde; 1727 1728 drm_mm_remove_node(&ppgtt->node); 1729 1730 gen6_for_all_pdes(pt, pd, pde) 1731 if (pt != vm->scratch_pt) 1732 free_pt(vm, pt); 1733 1734 gen6_free_scratch(vm); 1735 } 1736 1737 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt) 1738 { 1739 struct i915_address_space *vm = &ppgtt->base; 1740 struct drm_i915_private *dev_priv = ppgtt->base.i915; 1741 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1742 int ret; 1743 1744 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The 1745 * allocator works in address space sizes, so it's multiplied by page 1746 * size. We allocate at the top of the GTT to avoid fragmentation. 1747 */ 1748 BUG_ON(!drm_mm_initialized(&ggtt->base.mm)); 1749 1750 ret = gen6_init_scratch(vm); 1751 if (ret) 1752 return ret; 1753 1754 ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node, 1755 GEN6_PD_SIZE, GEN6_PD_ALIGN, 1756 I915_COLOR_UNEVICTABLE, 1757 0, ggtt->base.total, 1758 PIN_HIGH); 1759 if (ret) 1760 goto err_out; 1761 1762 if (ppgtt->node.start < ggtt->mappable_end) 1763 DRM_DEBUG("Forced to use aperture for PDEs\n"); 1764 1765 ppgtt->pd.base.ggtt_offset = 1766 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t); 1767 1768 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + 1769 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t); 1770 1771 return 0; 1772 1773 err_out: 1774 gen6_free_scratch(vm); 1775 return ret; 1776 } 1777 1778 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt) 1779 { 1780 return gen6_ppgtt_allocate_page_directories(ppgtt); 1781 } 1782 1783 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt, 1784 u64 start, u64 length) 1785 { 1786 struct i915_page_table *unused; 1787 u32 pde; 1788 1789 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) 1790 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt; 1791 } 1792 1793 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) 1794 { 1795 struct drm_i915_private *dev_priv = ppgtt->base.i915; 1796 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1797 int ret; 1798 1799 ppgtt->base.pte_encode = ggtt->base.pte_encode; 1800 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv)) 1801 ppgtt->switch_mm = gen6_mm_switch; 1802 else if (IS_HASWELL(dev_priv)) 1803 ppgtt->switch_mm = hsw_mm_switch; 1804 else if (IS_GEN7(dev_priv)) 1805 ppgtt->switch_mm = gen7_mm_switch; 1806 else 1807 BUG(); 1808 1809 ret = gen6_ppgtt_alloc(ppgtt); 1810 if (ret) 1811 return ret; 1812 1813 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE; 1814 1815 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total); 1816 gen6_write_page_range(ppgtt, 0, ppgtt->base.total); 1817 1818 ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total); 1819 if (ret) { 1820 gen6_ppgtt_cleanup(&ppgtt->base); 1821 return ret; 1822 } 1823 1824 ppgtt->base.clear_range = gen6_ppgtt_clear_range; 1825 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; 1826 ppgtt->base.unbind_vma = ppgtt_unbind_vma; 1827 ppgtt->base.bind_vma = ppgtt_bind_vma; 1828 ppgtt->base.cleanup = gen6_ppgtt_cleanup; 1829 ppgtt->debug_dump = gen6_dump_ppgtt; 1830 1831 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n", 1832 ppgtt->node.size >> 20, 1833 ppgtt->node.start / PAGE_SIZE); 1834 1835 DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n", 1836 ppgtt->pd.base.ggtt_offset << 10); 1837 1838 return 0; 1839 } 1840 1841 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt, 1842 struct drm_i915_private *dev_priv) 1843 { 1844 ppgtt->base.i915 = dev_priv; 1845 ppgtt->base.dma = &dev_priv->drm.pdev->dev; 1846 1847 if (INTEL_INFO(dev_priv)->gen < 8) 1848 return gen6_ppgtt_init(ppgtt); 1849 else 1850 return gen8_ppgtt_init(ppgtt); 1851 } 1852 1853 static void i915_address_space_init(struct i915_address_space *vm, 1854 struct drm_i915_private *dev_priv, 1855 const char *name) 1856 { 1857 i915_gem_timeline_init(dev_priv, &vm->timeline, name); 1858 1859 drm_mm_init(&vm->mm, 0, vm->total); 1860 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 1861 1862 INIT_LIST_HEAD(&vm->active_list); 1863 INIT_LIST_HEAD(&vm->inactive_list); 1864 INIT_LIST_HEAD(&vm->unbound_list); 1865 1866 list_add_tail(&vm->global_link, &dev_priv->vm_list); 1867 pagevec_init(&vm->free_pages, false); 1868 } 1869 1870 static void i915_address_space_fini(struct i915_address_space *vm) 1871 { 1872 if (pagevec_count(&vm->free_pages)) 1873 vm_free_pages_release(vm); 1874 1875 i915_gem_timeline_fini(&vm->timeline); 1876 drm_mm_takedown(&vm->mm); 1877 list_del(&vm->global_link); 1878 } 1879 1880 static void gtt_write_workarounds(struct drm_i915_private *dev_priv) 1881 { 1882 /* This function is for gtt related workarounds. This function is 1883 * called on driver load and after a GPU reset, so you can place 1884 * workarounds here even if they get overwritten by GPU reset. 1885 */ 1886 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk */ 1887 if (IS_BROADWELL(dev_priv)) 1888 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 1889 else if (IS_CHERRYVIEW(dev_priv)) 1890 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 1891 else if (IS_GEN9_BC(dev_priv)) 1892 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 1893 else if (IS_GEN9_LP(dev_priv)) 1894 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 1895 } 1896 1897 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv) 1898 { 1899 gtt_write_workarounds(dev_priv); 1900 1901 /* In the case of execlists, PPGTT is enabled by the context descriptor 1902 * and the PDPs are contained within the context itself. We don't 1903 * need to do anything here. */ 1904 if (i915.enable_execlists) 1905 return 0; 1906 1907 if (!USES_PPGTT(dev_priv)) 1908 return 0; 1909 1910 if (IS_GEN6(dev_priv)) 1911 gen6_ppgtt_enable(dev_priv); 1912 else if (IS_GEN7(dev_priv)) 1913 gen7_ppgtt_enable(dev_priv); 1914 else if (INTEL_GEN(dev_priv) >= 8) 1915 gen8_ppgtt_enable(dev_priv); 1916 else 1917 MISSING_CASE(INTEL_GEN(dev_priv)); 1918 1919 return 0; 1920 } 1921 1922 struct i915_hw_ppgtt * 1923 i915_ppgtt_create(struct drm_i915_private *dev_priv, 1924 struct drm_i915_file_private *fpriv, 1925 const char *name) 1926 { 1927 struct i915_hw_ppgtt *ppgtt; 1928 int ret; 1929 1930 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); 1931 if (!ppgtt) 1932 return ERR_PTR(-ENOMEM); 1933 1934 ret = __hw_ppgtt_init(ppgtt, dev_priv); 1935 if (ret) { 1936 kfree(ppgtt); 1937 return ERR_PTR(ret); 1938 } 1939 1940 kref_init(&ppgtt->ref); 1941 i915_address_space_init(&ppgtt->base, dev_priv, name); 1942 ppgtt->base.file = fpriv; 1943 1944 trace_i915_ppgtt_create(&ppgtt->base); 1945 1946 return ppgtt; 1947 } 1948 1949 void i915_ppgtt_close(struct i915_address_space *vm) 1950 { 1951 struct list_head *phases[] = { 1952 &vm->active_list, 1953 &vm->inactive_list, 1954 &vm->unbound_list, 1955 NULL, 1956 }, **phase; 1957 1958 GEM_BUG_ON(vm->closed); 1959 vm->closed = true; 1960 1961 for (phase = phases; *phase; phase++) { 1962 struct i915_vma *vma, *vn; 1963 1964 list_for_each_entry_safe(vma, vn, *phase, vm_link) 1965 if (!i915_vma_is_closed(vma)) 1966 i915_vma_close(vma); 1967 } 1968 } 1969 1970 void i915_ppgtt_release(struct kref *kref) 1971 { 1972 struct i915_hw_ppgtt *ppgtt = 1973 container_of(kref, struct i915_hw_ppgtt, ref); 1974 1975 trace_i915_ppgtt_release(&ppgtt->base); 1976 1977 /* vmas should already be unbound and destroyed */ 1978 WARN_ON(!list_empty(&ppgtt->base.active_list)); 1979 WARN_ON(!list_empty(&ppgtt->base.inactive_list)); 1980 WARN_ON(!list_empty(&ppgtt->base.unbound_list)); 1981 1982 ppgtt->base.cleanup(&ppgtt->base); 1983 i915_address_space_fini(&ppgtt->base); 1984 kfree(ppgtt); 1985 } 1986 1987 /* Certain Gen5 chipsets require require idling the GPU before 1988 * unmapping anything from the GTT when VT-d is enabled. 1989 */ 1990 static bool needs_idle_maps(struct drm_i915_private *dev_priv) 1991 { 1992 #ifdef CONFIG_INTEL_IOMMU 1993 /* Query intel_iommu to see if we need the workaround. Presumably that 1994 * was loaded first. 1995 */ 1996 if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped) 1997 return true; 1998 #endif 1999 return false; 2000 } 2001 2002 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv) 2003 { 2004 struct intel_engine_cs *engine; 2005 enum intel_engine_id id; 2006 2007 if (INTEL_INFO(dev_priv)->gen < 6) 2008 return; 2009 2010 for_each_engine(engine, dev_priv, id) { 2011 u32 fault_reg; 2012 fault_reg = I915_READ(RING_FAULT_REG(engine)); 2013 if (fault_reg & RING_FAULT_VALID) { 2014 DRM_DEBUG_DRIVER("Unexpected fault\n" 2015 "\tAddr: 0x%08lx\n" 2016 "\tAddress space: %s\n" 2017 "\tSource ID: %d\n" 2018 "\tType: %d\n", 2019 fault_reg & PAGE_MASK, 2020 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", 2021 RING_FAULT_SRCID(fault_reg), 2022 RING_FAULT_FAULT_TYPE(fault_reg)); 2023 I915_WRITE(RING_FAULT_REG(engine), 2024 fault_reg & ~RING_FAULT_VALID); 2025 } 2026 } 2027 2028 /* Engine specific init may not have been done till this point. */ 2029 if (dev_priv->engine[RCS]) 2030 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS])); 2031 } 2032 2033 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv) 2034 { 2035 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2036 2037 /* Don't bother messing with faults pre GEN6 as we have little 2038 * documentation supporting that it's a good idea. 2039 */ 2040 if (INTEL_GEN(dev_priv) < 6) 2041 return; 2042 2043 i915_check_and_clear_faults(dev_priv); 2044 2045 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total); 2046 2047 i915_ggtt_invalidate(dev_priv); 2048 } 2049 2050 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, 2051 struct sg_table *pages) 2052 { 2053 do { 2054 if (dma_map_sg(&obj->base.dev->pdev->dev, 2055 pages->sgl, pages->nents, 2056 PCI_DMA_BIDIRECTIONAL)) 2057 return 0; 2058 2059 /* If the DMA remap fails, one cause can be that we have 2060 * too many objects pinned in a small remapping table, 2061 * such as swiotlb. Incrementally purge all other objects and 2062 * try again - if there are no more pages to remove from 2063 * the DMA remapper, i915_gem_shrink will return 0. 2064 */ 2065 GEM_BUG_ON(obj->mm.pages == pages); 2066 } while (i915_gem_shrink(to_i915(obj->base.dev), 2067 obj->base.size >> PAGE_SHIFT, 2068 I915_SHRINK_BOUND | 2069 I915_SHRINK_UNBOUND | 2070 I915_SHRINK_ACTIVE)); 2071 2072 return -ENOSPC; 2073 } 2074 2075 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 2076 { 2077 writeq(pte, addr); 2078 } 2079 2080 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 2081 dma_addr_t addr, 2082 u64 offset, 2083 enum i915_cache_level level, 2084 u32 unused) 2085 { 2086 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2087 gen8_pte_t __iomem *pte = 2088 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); 2089 2090 gen8_set_pte(pte, gen8_pte_encode(addr, level)); 2091 2092 ggtt->invalidate(vm->i915); 2093 } 2094 2095 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 2096 struct sg_table *st, 2097 u64 start, 2098 enum i915_cache_level level, 2099 u32 unused) 2100 { 2101 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2102 struct sgt_iter sgt_iter; 2103 gen8_pte_t __iomem *gtt_entries; 2104 const gen8_pte_t pte_encode = gen8_pte_encode(0, level); 2105 dma_addr_t addr; 2106 2107 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm; 2108 gtt_entries += start >> PAGE_SHIFT; 2109 for_each_sgt_dma(addr, sgt_iter, st) 2110 gen8_set_pte(gtt_entries++, pte_encode | addr); 2111 2112 wmb(); 2113 2114 /* This next bit makes the above posting read even more important. We 2115 * want to flush the TLBs only after we're certain all the PTE updates 2116 * have finished. 2117 */ 2118 ggtt->invalidate(vm->i915); 2119 } 2120 2121 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 2122 dma_addr_t addr, 2123 u64 offset, 2124 enum i915_cache_level level, 2125 u32 flags) 2126 { 2127 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2128 gen6_pte_t __iomem *pte = 2129 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); 2130 2131 iowrite32(vm->pte_encode(addr, level, flags), pte); 2132 2133 ggtt->invalidate(vm->i915); 2134 } 2135 2136 /* 2137 * Binds an object into the global gtt with the specified cache level. The object 2138 * will be accessible to the GPU via commands whose operands reference offsets 2139 * within the global GTT as well as accessible by the GPU through the GMADR 2140 * mapped BAR (dev_priv->mm.gtt->gtt). 2141 */ 2142 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 2143 struct sg_table *st, 2144 u64 start, 2145 enum i915_cache_level level, 2146 u32 flags) 2147 { 2148 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2149 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm; 2150 unsigned int i = start >> PAGE_SHIFT; 2151 struct sgt_iter iter; 2152 dma_addr_t addr; 2153 for_each_sgt_dma(addr, iter, st) 2154 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]); 2155 wmb(); 2156 2157 /* This next bit makes the above posting read even more important. We 2158 * want to flush the TLBs only after we're certain all the PTE updates 2159 * have finished. 2160 */ 2161 ggtt->invalidate(vm->i915); 2162 } 2163 2164 static void nop_clear_range(struct i915_address_space *vm, 2165 u64 start, u64 length) 2166 { 2167 } 2168 2169 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 2170 u64 start, u64 length) 2171 { 2172 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2173 unsigned first_entry = start >> PAGE_SHIFT; 2174 unsigned num_entries = length >> PAGE_SHIFT; 2175 const gen8_pte_t scratch_pte = 2176 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); 2177 gen8_pte_t __iomem *gtt_base = 2178 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 2179 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 2180 int i; 2181 2182 if (WARN(num_entries > max_entries, 2183 "First entry = %d; Num entries = %d (max=%d)\n", 2184 first_entry, num_entries, max_entries)) 2185 num_entries = max_entries; 2186 2187 for (i = 0; i < num_entries; i++) 2188 gen8_set_pte(>t_base[i], scratch_pte); 2189 } 2190 2191 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 2192 u64 start, u64 length) 2193 { 2194 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2195 unsigned first_entry = start >> PAGE_SHIFT; 2196 unsigned num_entries = length >> PAGE_SHIFT; 2197 gen6_pte_t scratch_pte, __iomem *gtt_base = 2198 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 2199 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 2200 int i; 2201 2202 if (WARN(num_entries > max_entries, 2203 "First entry = %d; Num entries = %d (max=%d)\n", 2204 first_entry, num_entries, max_entries)) 2205 num_entries = max_entries; 2206 2207 scratch_pte = vm->pte_encode(vm->scratch_page.daddr, 2208 I915_CACHE_LLC, 0); 2209 2210 for (i = 0; i < num_entries; i++) 2211 iowrite32(scratch_pte, >t_base[i]); 2212 } 2213 2214 static void i915_ggtt_insert_page(struct i915_address_space *vm, 2215 dma_addr_t addr, 2216 u64 offset, 2217 enum i915_cache_level cache_level, 2218 u32 unused) 2219 { 2220 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 2221 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 2222 2223 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); 2224 } 2225 2226 static void i915_ggtt_insert_entries(struct i915_address_space *vm, 2227 struct sg_table *pages, 2228 u64 start, 2229 enum i915_cache_level cache_level, 2230 u32 unused) 2231 { 2232 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 2233 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 2234 2235 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags); 2236 } 2237 2238 static void i915_ggtt_clear_range(struct i915_address_space *vm, 2239 u64 start, u64 length) 2240 { 2241 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); 2242 } 2243 2244 static int ggtt_bind_vma(struct i915_vma *vma, 2245 enum i915_cache_level cache_level, 2246 u32 flags) 2247 { 2248 struct drm_i915_private *i915 = vma->vm->i915; 2249 struct drm_i915_gem_object *obj = vma->obj; 2250 u32 pte_flags; 2251 2252 if (unlikely(!vma->pages)) { 2253 int ret = i915_get_ggtt_vma_pages(vma); 2254 if (ret) 2255 return ret; 2256 } 2257 2258 /* Currently applicable only to VLV */ 2259 pte_flags = 0; 2260 if (obj->gt_ro) 2261 pte_flags |= PTE_READ_ONLY; 2262 2263 intel_runtime_pm_get(i915); 2264 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start, 2265 cache_level, pte_flags); 2266 intel_runtime_pm_put(i915); 2267 2268 /* 2269 * Without aliasing PPGTT there's no difference between 2270 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally 2271 * upgrade to both bound if we bind either to avoid double-binding. 2272 */ 2273 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 2274 2275 return 0; 2276 } 2277 2278 static void ggtt_unbind_vma(struct i915_vma *vma) 2279 { 2280 struct drm_i915_private *i915 = vma->vm->i915; 2281 2282 intel_runtime_pm_get(i915); 2283 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 2284 intel_runtime_pm_put(i915); 2285 } 2286 2287 static int aliasing_gtt_bind_vma(struct i915_vma *vma, 2288 enum i915_cache_level cache_level, 2289 u32 flags) 2290 { 2291 struct drm_i915_private *i915 = vma->vm->i915; 2292 u32 pte_flags; 2293 int ret; 2294 2295 if (unlikely(!vma->pages)) { 2296 ret = i915_get_ggtt_vma_pages(vma); 2297 if (ret) 2298 return ret; 2299 } 2300 2301 /* Currently applicable only to VLV */ 2302 pte_flags = 0; 2303 if (vma->obj->gt_ro) 2304 pte_flags |= PTE_READ_ONLY; 2305 2306 if (flags & I915_VMA_LOCAL_BIND) { 2307 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt; 2308 2309 if (appgtt->base.allocate_va_range) { 2310 ret = appgtt->base.allocate_va_range(&appgtt->base, 2311 vma->node.start, 2312 vma->node.size); 2313 if (ret) 2314 goto err_pages; 2315 } 2316 2317 appgtt->base.insert_entries(&appgtt->base, 2318 vma->pages, vma->node.start, 2319 cache_level, pte_flags); 2320 } 2321 2322 if (flags & I915_VMA_GLOBAL_BIND) { 2323 intel_runtime_pm_get(i915); 2324 vma->vm->insert_entries(vma->vm, 2325 vma->pages, vma->node.start, 2326 cache_level, pte_flags); 2327 intel_runtime_pm_put(i915); 2328 } 2329 2330 return 0; 2331 2332 err_pages: 2333 if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) { 2334 if (vma->pages != vma->obj->mm.pages) { 2335 GEM_BUG_ON(!vma->pages); 2336 sg_free_table(vma->pages); 2337 kfree(vma->pages); 2338 } 2339 vma->pages = NULL; 2340 } 2341 return ret; 2342 } 2343 2344 static void aliasing_gtt_unbind_vma(struct i915_vma *vma) 2345 { 2346 struct drm_i915_private *i915 = vma->vm->i915; 2347 2348 if (vma->flags & I915_VMA_GLOBAL_BIND) { 2349 intel_runtime_pm_get(i915); 2350 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 2351 intel_runtime_pm_put(i915); 2352 } 2353 2354 if (vma->flags & I915_VMA_LOCAL_BIND) { 2355 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base; 2356 2357 vm->clear_range(vm, vma->node.start, vma->size); 2358 } 2359 } 2360 2361 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, 2362 struct sg_table *pages) 2363 { 2364 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2365 struct device *kdev = &dev_priv->drm.pdev->dev; 2366 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2367 2368 if (unlikely(ggtt->do_idle_maps)) { 2369 if (i915_gem_wait_for_idle(dev_priv, 0)) { 2370 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); 2371 /* Wait a bit, in hopes it avoids the hang */ 2372 udelay(10); 2373 } 2374 } 2375 2376 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL); 2377 } 2378 2379 static void i915_gtt_color_adjust(const struct drm_mm_node *node, 2380 unsigned long color, 2381 u64 *start, 2382 u64 *end) 2383 { 2384 if (node->allocated && node->color != color) 2385 *start += I915_GTT_PAGE_SIZE; 2386 2387 /* Also leave a space between the unallocated reserved node after the 2388 * GTT and any objects within the GTT, i.e. we use the color adjustment 2389 * to insert a guard page to prevent prefetches crossing over the 2390 * GTT boundary. 2391 */ 2392 node = list_next_entry(node, node_list); 2393 if (node->color != color) 2394 *end -= I915_GTT_PAGE_SIZE; 2395 } 2396 2397 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915) 2398 { 2399 struct i915_ggtt *ggtt = &i915->ggtt; 2400 struct i915_hw_ppgtt *ppgtt; 2401 int err; 2402 2403 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]"); 2404 if (IS_ERR(ppgtt)) 2405 return PTR_ERR(ppgtt); 2406 2407 if (WARN_ON(ppgtt->base.total < ggtt->base.total)) { 2408 err = -ENODEV; 2409 goto err_ppgtt; 2410 } 2411 2412 if (ppgtt->base.allocate_va_range) { 2413 /* Note we only pre-allocate as far as the end of the global 2414 * GTT. On 48b / 4-level page-tables, the difference is very, 2415 * very significant! We have to preallocate as GVT/vgpu does 2416 * not like the page directory disappearing. 2417 */ 2418 err = ppgtt->base.allocate_va_range(&ppgtt->base, 2419 0, ggtt->base.total); 2420 if (err) 2421 goto err_ppgtt; 2422 } 2423 2424 i915->mm.aliasing_ppgtt = ppgtt; 2425 2426 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma); 2427 ggtt->base.bind_vma = aliasing_gtt_bind_vma; 2428 2429 WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma); 2430 ggtt->base.unbind_vma = aliasing_gtt_unbind_vma; 2431 2432 return 0; 2433 2434 err_ppgtt: 2435 i915_ppgtt_put(ppgtt); 2436 return err; 2437 } 2438 2439 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915) 2440 { 2441 struct i915_ggtt *ggtt = &i915->ggtt; 2442 struct i915_hw_ppgtt *ppgtt; 2443 2444 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt); 2445 if (!ppgtt) 2446 return; 2447 2448 i915_ppgtt_put(ppgtt); 2449 2450 ggtt->base.bind_vma = ggtt_bind_vma; 2451 ggtt->base.unbind_vma = ggtt_unbind_vma; 2452 } 2453 2454 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) 2455 { 2456 /* Let GEM Manage all of the aperture. 2457 * 2458 * However, leave one page at the end still bound to the scratch page. 2459 * There are a number of places where the hardware apparently prefetches 2460 * past the end of the object, and we've seen multiple hangs with the 2461 * GPU head pointer stuck in a batchbuffer bound at the last page of the 2462 * aperture. One page should be enough to keep any prefetching inside 2463 * of the aperture. 2464 */ 2465 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2466 unsigned long hole_start, hole_end; 2467 struct drm_mm_node *entry; 2468 int ret; 2469 2470 ret = intel_vgt_balloon(dev_priv); 2471 if (ret) 2472 return ret; 2473 2474 /* Reserve a mappable slot for our lockless error capture */ 2475 ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture, 2476 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 2477 0, ggtt->mappable_end, 2478 DRM_MM_INSERT_LOW); 2479 if (ret) 2480 return ret; 2481 2482 /* Clear any non-preallocated blocks */ 2483 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) { 2484 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", 2485 hole_start, hole_end); 2486 ggtt->base.clear_range(&ggtt->base, hole_start, 2487 hole_end - hole_start); 2488 } 2489 2490 /* And finally clear the reserved guard page */ 2491 ggtt->base.clear_range(&ggtt->base, 2492 ggtt->base.total - PAGE_SIZE, PAGE_SIZE); 2493 2494 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) { 2495 ret = i915_gem_init_aliasing_ppgtt(dev_priv); 2496 if (ret) 2497 goto err; 2498 } 2499 2500 return 0; 2501 2502 err: 2503 drm_mm_remove_node(&ggtt->error_capture); 2504 return ret; 2505 } 2506 2507 /** 2508 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization 2509 * @dev_priv: i915 device 2510 */ 2511 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) 2512 { 2513 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2514 struct i915_vma *vma, *vn; 2515 2516 ggtt->base.closed = true; 2517 2518 mutex_lock(&dev_priv->drm.struct_mutex); 2519 WARN_ON(!list_empty(&ggtt->base.active_list)); 2520 list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link) 2521 WARN_ON(i915_vma_unbind(vma)); 2522 mutex_unlock(&dev_priv->drm.struct_mutex); 2523 2524 i915_gem_cleanup_stolen(&dev_priv->drm); 2525 2526 mutex_lock(&dev_priv->drm.struct_mutex); 2527 i915_gem_fini_aliasing_ppgtt(dev_priv); 2528 2529 if (drm_mm_node_allocated(&ggtt->error_capture)) 2530 drm_mm_remove_node(&ggtt->error_capture); 2531 2532 if (drm_mm_initialized(&ggtt->base.mm)) { 2533 intel_vgt_deballoon(dev_priv); 2534 i915_address_space_fini(&ggtt->base); 2535 } 2536 2537 ggtt->base.cleanup(&ggtt->base); 2538 mutex_unlock(&dev_priv->drm.struct_mutex); 2539 2540 arch_phys_wc_del(ggtt->mtrr); 2541 io_mapping_fini(&ggtt->mappable); 2542 } 2543 2544 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 2545 { 2546 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 2547 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 2548 return snb_gmch_ctl << 20; 2549 } 2550 2551 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 2552 { 2553 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 2554 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 2555 if (bdw_gmch_ctl) 2556 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 2557 2558 #ifdef CONFIG_X86_32 2559 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */ 2560 if (bdw_gmch_ctl > 4) 2561 bdw_gmch_ctl = 4; 2562 #endif 2563 2564 return bdw_gmch_ctl << 20; 2565 } 2566 2567 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 2568 { 2569 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 2570 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 2571 2572 if (gmch_ctrl) 2573 return 1 << (20 + gmch_ctrl); 2574 2575 return 0; 2576 } 2577 2578 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl) 2579 { 2580 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; 2581 snb_gmch_ctl &= SNB_GMCH_GMS_MASK; 2582 return snb_gmch_ctl << 25; /* 32 MB units */ 2583 } 2584 2585 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) 2586 { 2587 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; 2588 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; 2589 return bdw_gmch_ctl << 25; /* 32 MB units */ 2590 } 2591 2592 static size_t chv_get_stolen_size(u16 gmch_ctrl) 2593 { 2594 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT; 2595 gmch_ctrl &= SNB_GMCH_GMS_MASK; 2596 2597 /* 2598 * 0x0 to 0x10: 32MB increments starting at 0MB 2599 * 0x11 to 0x16: 4MB increments starting at 8MB 2600 * 0x17 to 0x1d: 4MB increments start at 36MB 2601 */ 2602 if (gmch_ctrl < 0x11) 2603 return gmch_ctrl << 25; 2604 else if (gmch_ctrl < 0x17) 2605 return (gmch_ctrl - 0x11 + 2) << 22; 2606 else 2607 return (gmch_ctrl - 0x17 + 9) << 22; 2608 } 2609 2610 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl) 2611 { 2612 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; 2613 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK; 2614 2615 if (gen9_gmch_ctl < 0xf0) 2616 return gen9_gmch_ctl << 25; /* 32 MB units */ 2617 else 2618 /* 4MB increments starting at 0xf0 for 4MB */ 2619 return (gen9_gmch_ctl - 0xf0 + 1) << 22; 2620 } 2621 2622 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 2623 { 2624 struct drm_i915_private *dev_priv = ggtt->base.i915; 2625 struct pci_dev *pdev = dev_priv->drm.pdev; 2626 phys_addr_t phys_addr; 2627 int ret; 2628 2629 /* For Modern GENs the PTEs and register space are split in the BAR */ 2630 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; 2631 2632 /* 2633 * On BXT writes larger than 64 bit to the GTT pagetable range will be 2634 * dropped. For WC mappings in general we have 64 byte burst writes 2635 * when the WC buffer is flushed, so we can't use it, but have to 2636 * resort to an uncached mapping. The WC issue is easily caught by the 2637 * readback check when writing GTT PTE entries. 2638 */ 2639 if (IS_GEN9_LP(dev_priv)) 2640 ggtt->gsm = ioremap_nocache(phys_addr, size); 2641 else 2642 ggtt->gsm = ioremap_wc(phys_addr, size); 2643 if (!ggtt->gsm) { 2644 DRM_ERROR("Failed to map the ggtt page table\n"); 2645 return -ENOMEM; 2646 } 2647 2648 ret = setup_scratch_page(&ggtt->base, GFP_DMA32); 2649 if (ret) { 2650 DRM_ERROR("Scratch setup failed\n"); 2651 /* iounmap will also get called at remove, but meh */ 2652 iounmap(ggtt->gsm); 2653 return ret; 2654 } 2655 2656 return 0; 2657 } 2658 2659 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 2660 * bits. When using advanced contexts each context stores its own PAT, but 2661 * writing this data shouldn't be harmful even in those cases. */ 2662 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv) 2663 { 2664 u64 pat; 2665 2666 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ 2667 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ 2668 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ 2669 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ 2670 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | 2671 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | 2672 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | 2673 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 2674 2675 if (!USES_PPGTT(dev_priv)) 2676 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, 2677 * so RTL will always use the value corresponding to 2678 * pat_sel = 000". 2679 * So let's disable cache for GGTT to avoid screen corruptions. 2680 * MOCS still can be used though. 2681 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work 2682 * before this patch, i.e. the same uncached + snooping access 2683 * like on gen6/7 seems to be in effect. 2684 * - So this just fixes blitter/render access. Again it looks 2685 * like it's not just uncached access, but uncached + snooping. 2686 * So we can still hold onto all our assumptions wrt cpu 2687 * clflushing on LLC machines. 2688 */ 2689 pat = GEN8_PPAT(0, GEN8_PPAT_UC); 2690 2691 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b 2692 * write would work. */ 2693 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat); 2694 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32); 2695 } 2696 2697 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv) 2698 { 2699 u64 pat; 2700 2701 /* 2702 * Map WB on BDW to snooped on CHV. 2703 * 2704 * Only the snoop bit has meaning for CHV, the rest is 2705 * ignored. 2706 * 2707 * The hardware will never snoop for certain types of accesses: 2708 * - CPU GTT (GMADR->GGTT->no snoop->memory) 2709 * - PPGTT page tables 2710 * - some other special cycles 2711 * 2712 * As with BDW, we also need to consider the following for GT accesses: 2713 * "For GGTT, there is NO pat_sel[2:0] from the entry, 2714 * so RTL will always use the value corresponding to 2715 * pat_sel = 000". 2716 * Which means we must set the snoop bit in PAT entry 0 2717 * in order to keep the global status page working. 2718 */ 2719 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | 2720 GEN8_PPAT(1, 0) | 2721 GEN8_PPAT(2, 0) | 2722 GEN8_PPAT(3, 0) | 2723 GEN8_PPAT(4, CHV_PPAT_SNOOP) | 2724 GEN8_PPAT(5, CHV_PPAT_SNOOP) | 2725 GEN8_PPAT(6, CHV_PPAT_SNOOP) | 2726 GEN8_PPAT(7, CHV_PPAT_SNOOP); 2727 2728 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat); 2729 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32); 2730 } 2731 2732 static void gen6_gmch_remove(struct i915_address_space *vm) 2733 { 2734 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2735 2736 iounmap(ggtt->gsm); 2737 cleanup_scratch_page(vm); 2738 } 2739 2740 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 2741 { 2742 struct drm_i915_private *dev_priv = ggtt->base.i915; 2743 struct pci_dev *pdev = dev_priv->drm.pdev; 2744 unsigned int size; 2745 u16 snb_gmch_ctl; 2746 2747 /* TODO: We're not aware of mappable constraints on gen8 yet */ 2748 ggtt->mappable_base = pci_resource_start(pdev, 2); 2749 ggtt->mappable_end = pci_resource_len(pdev, 2); 2750 2751 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39))) 2752 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); 2753 2754 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 2755 2756 if (INTEL_GEN(dev_priv) >= 9) { 2757 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl); 2758 size = gen8_get_total_gtt_size(snb_gmch_ctl); 2759 } else if (IS_CHERRYVIEW(dev_priv)) { 2760 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl); 2761 size = chv_get_total_gtt_size(snb_gmch_ctl); 2762 } else { 2763 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl); 2764 size = gen8_get_total_gtt_size(snb_gmch_ctl); 2765 } 2766 2767 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT; 2768 2769 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) 2770 chv_setup_private_ppat(dev_priv); 2771 else 2772 bdw_setup_private_ppat(dev_priv); 2773 2774 ggtt->base.cleanup = gen6_gmch_remove; 2775 ggtt->base.bind_vma = ggtt_bind_vma; 2776 ggtt->base.unbind_vma = ggtt_unbind_vma; 2777 ggtt->base.insert_page = gen8_ggtt_insert_page; 2778 ggtt->base.clear_range = nop_clear_range; 2779 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv)) 2780 ggtt->base.clear_range = gen8_ggtt_clear_range; 2781 2782 ggtt->base.insert_entries = gen8_ggtt_insert_entries; 2783 2784 ggtt->invalidate = gen6_ggtt_invalidate; 2785 2786 return ggtt_probe_common(ggtt, size); 2787 } 2788 2789 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 2790 { 2791 struct drm_i915_private *dev_priv = ggtt->base.i915; 2792 struct pci_dev *pdev = dev_priv->drm.pdev; 2793 unsigned int size; 2794 u16 snb_gmch_ctl; 2795 2796 ggtt->mappable_base = pci_resource_start(pdev, 2); 2797 ggtt->mappable_end = pci_resource_len(pdev, 2); 2798 2799 /* 64/512MB is the current min/max we actually know of, but this is just 2800 * a coarse sanity check. 2801 */ 2802 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { 2803 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end); 2804 return -ENXIO; 2805 } 2806 2807 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40))) 2808 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); 2809 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 2810 2811 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl); 2812 2813 size = gen6_get_total_gtt_size(snb_gmch_ctl); 2814 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT; 2815 2816 ggtt->base.clear_range = gen6_ggtt_clear_range; 2817 ggtt->base.insert_page = gen6_ggtt_insert_page; 2818 ggtt->base.insert_entries = gen6_ggtt_insert_entries; 2819 ggtt->base.bind_vma = ggtt_bind_vma; 2820 ggtt->base.unbind_vma = ggtt_unbind_vma; 2821 ggtt->base.cleanup = gen6_gmch_remove; 2822 2823 ggtt->invalidate = gen6_ggtt_invalidate; 2824 2825 if (HAS_EDRAM(dev_priv)) 2826 ggtt->base.pte_encode = iris_pte_encode; 2827 else if (IS_HASWELL(dev_priv)) 2828 ggtt->base.pte_encode = hsw_pte_encode; 2829 else if (IS_VALLEYVIEW(dev_priv)) 2830 ggtt->base.pte_encode = byt_pte_encode; 2831 else if (INTEL_GEN(dev_priv) >= 7) 2832 ggtt->base.pte_encode = ivb_pte_encode; 2833 else 2834 ggtt->base.pte_encode = snb_pte_encode; 2835 2836 return ggtt_probe_common(ggtt, size); 2837 } 2838 2839 static void i915_gmch_remove(struct i915_address_space *vm) 2840 { 2841 intel_gmch_remove(); 2842 } 2843 2844 static int i915_gmch_probe(struct i915_ggtt *ggtt) 2845 { 2846 struct drm_i915_private *dev_priv = ggtt->base.i915; 2847 int ret; 2848 2849 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); 2850 if (!ret) { 2851 DRM_ERROR("failed to set up gmch\n"); 2852 return -EIO; 2853 } 2854 2855 intel_gtt_get(&ggtt->base.total, 2856 &ggtt->stolen_size, 2857 &ggtt->mappable_base, 2858 &ggtt->mappable_end); 2859 2860 ggtt->do_idle_maps = needs_idle_maps(dev_priv); 2861 ggtt->base.insert_page = i915_ggtt_insert_page; 2862 ggtt->base.insert_entries = i915_ggtt_insert_entries; 2863 ggtt->base.clear_range = i915_ggtt_clear_range; 2864 ggtt->base.bind_vma = ggtt_bind_vma; 2865 ggtt->base.unbind_vma = ggtt_unbind_vma; 2866 ggtt->base.cleanup = i915_gmch_remove; 2867 2868 ggtt->invalidate = gmch_ggtt_invalidate; 2869 2870 if (unlikely(ggtt->do_idle_maps)) 2871 DRM_INFO("applying Ironlake quirks for intel_iommu\n"); 2872 2873 return 0; 2874 } 2875 2876 /** 2877 * i915_ggtt_probe_hw - Probe GGTT hardware location 2878 * @dev_priv: i915 device 2879 */ 2880 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) 2881 { 2882 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2883 int ret; 2884 2885 ggtt->base.i915 = dev_priv; 2886 ggtt->base.dma = &dev_priv->drm.pdev->dev; 2887 2888 if (INTEL_GEN(dev_priv) <= 5) 2889 ret = i915_gmch_probe(ggtt); 2890 else if (INTEL_GEN(dev_priv) < 8) 2891 ret = gen6_gmch_probe(ggtt); 2892 else 2893 ret = gen8_gmch_probe(ggtt); 2894 if (ret) 2895 return ret; 2896 2897 /* Trim the GGTT to fit the GuC mappable upper range (when enabled). 2898 * This is easier than doing range restriction on the fly, as we 2899 * currently don't have any bits spare to pass in this upper 2900 * restriction! 2901 */ 2902 if (HAS_GUC(dev_priv) && i915.enable_guc_loading) { 2903 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP); 2904 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total); 2905 } 2906 2907 if ((ggtt->base.total - 1) >> 32) { 2908 DRM_ERROR("We never expected a Global GTT with more than 32bits" 2909 " of address space! Found %lldM!\n", 2910 ggtt->base.total >> 20); 2911 ggtt->base.total = 1ULL << 32; 2912 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total); 2913 } 2914 2915 if (ggtt->mappable_end > ggtt->base.total) { 2916 DRM_ERROR("mappable aperture extends past end of GGTT," 2917 " aperture=%llx, total=%llx\n", 2918 ggtt->mappable_end, ggtt->base.total); 2919 ggtt->mappable_end = ggtt->base.total; 2920 } 2921 2922 /* GMADR is the PCI mmio aperture into the global GTT. */ 2923 DRM_INFO("Memory usable by graphics device = %lluM\n", 2924 ggtt->base.total >> 20); 2925 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20); 2926 DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20); 2927 #ifdef CONFIG_INTEL_IOMMU 2928 if (intel_iommu_gfx_mapped) 2929 DRM_INFO("VT-d active for gfx access\n"); 2930 #endif 2931 2932 return 0; 2933 } 2934 2935 /** 2936 * i915_ggtt_init_hw - Initialize GGTT hardware 2937 * @dev_priv: i915 device 2938 */ 2939 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) 2940 { 2941 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2942 int ret; 2943 2944 INIT_LIST_HEAD(&dev_priv->vm_list); 2945 2946 /* Note that we use page colouring to enforce a guard page at the 2947 * end of the address space. This is required as the CS may prefetch 2948 * beyond the end of the batch buffer, across the page boundary, 2949 * and beyond the end of the GTT if we do not provide a guard. 2950 */ 2951 mutex_lock(&dev_priv->drm.struct_mutex); 2952 i915_address_space_init(&ggtt->base, dev_priv, "[global]"); 2953 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv)) 2954 ggtt->base.mm.color_adjust = i915_gtt_color_adjust; 2955 mutex_unlock(&dev_priv->drm.struct_mutex); 2956 2957 if (!io_mapping_init_wc(&dev_priv->ggtt.mappable, 2958 dev_priv->ggtt.mappable_base, 2959 dev_priv->ggtt.mappable_end)) { 2960 ret = -EIO; 2961 goto out_gtt_cleanup; 2962 } 2963 2964 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end); 2965 2966 /* 2967 * Initialise stolen early so that we may reserve preallocated 2968 * objects for the BIOS to KMS transition. 2969 */ 2970 ret = i915_gem_init_stolen(dev_priv); 2971 if (ret) 2972 goto out_gtt_cleanup; 2973 2974 return 0; 2975 2976 out_gtt_cleanup: 2977 ggtt->base.cleanup(&ggtt->base); 2978 return ret; 2979 } 2980 2981 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) 2982 { 2983 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) 2984 return -EIO; 2985 2986 return 0; 2987 } 2988 2989 void i915_ggtt_enable_guc(struct drm_i915_private *i915) 2990 { 2991 i915->ggtt.invalidate = guc_ggtt_invalidate; 2992 } 2993 2994 void i915_ggtt_disable_guc(struct drm_i915_private *i915) 2995 { 2996 i915->ggtt.invalidate = gen6_ggtt_invalidate; 2997 } 2998 2999 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv) 3000 { 3001 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3002 struct drm_i915_gem_object *obj, *on; 3003 3004 i915_check_and_clear_faults(dev_priv); 3005 3006 /* First fill our portion of the GTT with scratch pages */ 3007 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total); 3008 3009 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */ 3010 3011 /* clflush objects bound into the GGTT and rebind them. */ 3012 list_for_each_entry_safe(obj, on, 3013 &dev_priv->mm.bound_list, global_link) { 3014 bool ggtt_bound = false; 3015 struct i915_vma *vma; 3016 3017 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3018 if (vma->vm != &ggtt->base) 3019 continue; 3020 3021 if (!i915_vma_unbind(vma)) 3022 continue; 3023 3024 WARN_ON(i915_vma_bind(vma, obj->cache_level, 3025 PIN_UPDATE)); 3026 ggtt_bound = true; 3027 } 3028 3029 if (ggtt_bound) 3030 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); 3031 } 3032 3033 ggtt->base.closed = false; 3034 3035 if (INTEL_GEN(dev_priv) >= 8) { 3036 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) 3037 chv_setup_private_ppat(dev_priv); 3038 else 3039 bdw_setup_private_ppat(dev_priv); 3040 3041 return; 3042 } 3043 3044 if (USES_PPGTT(dev_priv)) { 3045 struct i915_address_space *vm; 3046 3047 list_for_each_entry(vm, &dev_priv->vm_list, global_link) { 3048 struct i915_hw_ppgtt *ppgtt; 3049 3050 if (i915_is_ggtt(vm)) 3051 ppgtt = dev_priv->mm.aliasing_ppgtt; 3052 else 3053 ppgtt = i915_vm_to_ppgtt(vm); 3054 3055 gen6_write_page_range(ppgtt, 0, ppgtt->base.total); 3056 } 3057 } 3058 3059 i915_ggtt_invalidate(dev_priv); 3060 } 3061 3062 static struct scatterlist * 3063 rotate_pages(const dma_addr_t *in, unsigned int offset, 3064 unsigned int width, unsigned int height, 3065 unsigned int stride, 3066 struct sg_table *st, struct scatterlist *sg) 3067 { 3068 unsigned int column, row; 3069 unsigned int src_idx; 3070 3071 for (column = 0; column < width; column++) { 3072 src_idx = stride * (height - 1) + column; 3073 for (row = 0; row < height; row++) { 3074 st->nents++; 3075 /* We don't need the pages, but need to initialize 3076 * the entries so the sg list can be happily traversed. 3077 * The only thing we need are DMA addresses. 3078 */ 3079 sg_set_page(sg, NULL, PAGE_SIZE, 0); 3080 sg_dma_address(sg) = in[offset + src_idx]; 3081 sg_dma_len(sg) = PAGE_SIZE; 3082 sg = sg_next(sg); 3083 src_idx -= stride; 3084 } 3085 } 3086 3087 return sg; 3088 } 3089 3090 static noinline struct sg_table * 3091 intel_rotate_pages(struct intel_rotation_info *rot_info, 3092 struct drm_i915_gem_object *obj) 3093 { 3094 const unsigned long n_pages = obj->base.size / PAGE_SIZE; 3095 unsigned int size = intel_rotation_info_size(rot_info); 3096 struct sgt_iter sgt_iter; 3097 dma_addr_t dma_addr; 3098 unsigned long i; 3099 dma_addr_t *page_addr_list; 3100 struct sg_table *st; 3101 struct scatterlist *sg; 3102 int ret = -ENOMEM; 3103 3104 /* Allocate a temporary list of source pages for random access. */ 3105 page_addr_list = drm_malloc_gfp(n_pages, 3106 sizeof(dma_addr_t), 3107 GFP_TEMPORARY); 3108 if (!page_addr_list) 3109 return ERR_PTR(ret); 3110 3111 /* Allocate target SG list. */ 3112 st = kmalloc(sizeof(*st), GFP_KERNEL); 3113 if (!st) 3114 goto err_st_alloc; 3115 3116 ret = sg_alloc_table(st, size, GFP_KERNEL); 3117 if (ret) 3118 goto err_sg_alloc; 3119 3120 /* Populate source page list from the object. */ 3121 i = 0; 3122 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages) 3123 page_addr_list[i++] = dma_addr; 3124 3125 GEM_BUG_ON(i != n_pages); 3126 st->nents = 0; 3127 sg = st->sgl; 3128 3129 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { 3130 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset, 3131 rot_info->plane[i].width, rot_info->plane[i].height, 3132 rot_info->plane[i].stride, st, sg); 3133 } 3134 3135 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n", 3136 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); 3137 3138 drm_free_large(page_addr_list); 3139 3140 return st; 3141 3142 err_sg_alloc: 3143 kfree(st); 3144 err_st_alloc: 3145 drm_free_large(page_addr_list); 3146 3147 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 3148 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); 3149 3150 return ERR_PTR(ret); 3151 } 3152 3153 static noinline struct sg_table * 3154 intel_partial_pages(const struct i915_ggtt_view *view, 3155 struct drm_i915_gem_object *obj) 3156 { 3157 struct sg_table *st; 3158 struct scatterlist *sg, *iter; 3159 unsigned int count = view->partial.size; 3160 unsigned int offset; 3161 int ret = -ENOMEM; 3162 3163 st = kmalloc(sizeof(*st), GFP_KERNEL); 3164 if (!st) 3165 goto err_st_alloc; 3166 3167 ret = sg_alloc_table(st, count, GFP_KERNEL); 3168 if (ret) 3169 goto err_sg_alloc; 3170 3171 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); 3172 GEM_BUG_ON(!iter); 3173 3174 sg = st->sgl; 3175 st->nents = 0; 3176 do { 3177 unsigned int len; 3178 3179 len = min(iter->length - (offset << PAGE_SHIFT), 3180 count << PAGE_SHIFT); 3181 sg_set_page(sg, NULL, len, 0); 3182 sg_dma_address(sg) = 3183 sg_dma_address(iter) + (offset << PAGE_SHIFT); 3184 sg_dma_len(sg) = len; 3185 3186 st->nents++; 3187 count -= len >> PAGE_SHIFT; 3188 if (count == 0) { 3189 sg_mark_end(sg); 3190 return st; 3191 } 3192 3193 sg = __sg_next(sg); 3194 iter = __sg_next(iter); 3195 offset = 0; 3196 } while (1); 3197 3198 err_sg_alloc: 3199 kfree(st); 3200 err_st_alloc: 3201 return ERR_PTR(ret); 3202 } 3203 3204 static int 3205 i915_get_ggtt_vma_pages(struct i915_vma *vma) 3206 { 3207 int ret; 3208 3209 /* The vma->pages are only valid within the lifespan of the borrowed 3210 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 3211 * must be the vma->pages. A simple rule is that vma->pages must only 3212 * be accessed when the obj->mm.pages are pinned. 3213 */ 3214 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 3215 3216 switch (vma->ggtt_view.type) { 3217 case I915_GGTT_VIEW_NORMAL: 3218 vma->pages = vma->obj->mm.pages; 3219 return 0; 3220 3221 case I915_GGTT_VIEW_ROTATED: 3222 vma->pages = 3223 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); 3224 break; 3225 3226 case I915_GGTT_VIEW_PARTIAL: 3227 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); 3228 break; 3229 3230 default: 3231 WARN_ONCE(1, "GGTT view %u not implemented!\n", 3232 vma->ggtt_view.type); 3233 return -EINVAL; 3234 } 3235 3236 ret = 0; 3237 if (unlikely(IS_ERR(vma->pages))) { 3238 ret = PTR_ERR(vma->pages); 3239 vma->pages = NULL; 3240 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", 3241 vma->ggtt_view.type, ret); 3242 } 3243 return ret; 3244 } 3245 3246 /** 3247 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT) 3248 * @vm: the &struct i915_address_space 3249 * @node: the &struct drm_mm_node (typically i915_vma.mode) 3250 * @size: how much space to allocate inside the GTT, 3251 * must be #I915_GTT_PAGE_SIZE aligned 3252 * @offset: where to insert inside the GTT, 3253 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node 3254 * (@offset + @size) must fit within the address space 3255 * @color: color to apply to node, if this node is not from a VMA, 3256 * color must be #I915_COLOR_UNEVICTABLE 3257 * @flags: control search and eviction behaviour 3258 * 3259 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside 3260 * the address space (using @size and @color). If the @node does not fit, it 3261 * tries to evict any overlapping nodes from the GTT, including any 3262 * neighbouring nodes if the colors do not match (to ensure guard pages between 3263 * differing domains). See i915_gem_evict_for_node() for the gory details 3264 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on 3265 * evicting active overlapping objects, and any overlapping node that is pinned 3266 * or marked as unevictable will also result in failure. 3267 * 3268 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if 3269 * asked to wait for eviction and interrupted. 3270 */ 3271 int i915_gem_gtt_reserve(struct i915_address_space *vm, 3272 struct drm_mm_node *node, 3273 u64 size, u64 offset, unsigned long color, 3274 unsigned int flags) 3275 { 3276 int err; 3277 3278 GEM_BUG_ON(!size); 3279 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 3280 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT)); 3281 GEM_BUG_ON(range_overflows(offset, size, vm->total)); 3282 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base); 3283 GEM_BUG_ON(drm_mm_node_allocated(node)); 3284 3285 node->size = size; 3286 node->start = offset; 3287 node->color = color; 3288 3289 err = drm_mm_reserve_node(&vm->mm, node); 3290 if (err != -ENOSPC) 3291 return err; 3292 3293 err = i915_gem_evict_for_node(vm, node, flags); 3294 if (err == 0) 3295 err = drm_mm_reserve_node(&vm->mm, node); 3296 3297 return err; 3298 } 3299 3300 static u64 random_offset(u64 start, u64 end, u64 len, u64 align) 3301 { 3302 u64 range, addr; 3303 3304 GEM_BUG_ON(range_overflows(start, len, end)); 3305 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align)); 3306 3307 range = round_down(end - len, align) - round_up(start, align); 3308 if (range) { 3309 if (sizeof(unsigned long) == sizeof(u64)) { 3310 addr = get_random_long(); 3311 } else { 3312 addr = get_random_int(); 3313 if (range > U32_MAX) { 3314 addr <<= 32; 3315 addr |= get_random_int(); 3316 } 3317 } 3318 div64_u64_rem(addr, range, &addr); 3319 start += addr; 3320 } 3321 3322 return round_up(start, align); 3323 } 3324 3325 /** 3326 * i915_gem_gtt_insert - insert a node into an address_space (GTT) 3327 * @vm: the &struct i915_address_space 3328 * @node: the &struct drm_mm_node (typically i915_vma.node) 3329 * @size: how much space to allocate inside the GTT, 3330 * must be #I915_GTT_PAGE_SIZE aligned 3331 * @alignment: required alignment of starting offset, may be 0 but 3332 * if specified, this must be a power-of-two and at least 3333 * #I915_GTT_MIN_ALIGNMENT 3334 * @color: color to apply to node 3335 * @start: start of any range restriction inside GTT (0 for all), 3336 * must be #I915_GTT_PAGE_SIZE aligned 3337 * @end: end of any range restriction inside GTT (U64_MAX for all), 3338 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX 3339 * @flags: control search and eviction behaviour 3340 * 3341 * i915_gem_gtt_insert() first searches for an available hole into which 3342 * is can insert the node. The hole address is aligned to @alignment and 3343 * its @size must then fit entirely within the [@start, @end] bounds. The 3344 * nodes on either side of the hole must match @color, or else a guard page 3345 * will be inserted between the two nodes (or the node evicted). If no 3346 * suitable hole is found, first a victim is randomly selected and tested 3347 * for eviction, otherwise then the LRU list of objects within the GTT 3348 * is scanned to find the first set of replacement nodes to create the hole. 3349 * Those old overlapping nodes are evicted from the GTT (and so must be 3350 * rebound before any future use). Any node that is currently pinned cannot 3351 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently 3352 * active and #PIN_NONBLOCK is specified, that node is also skipped when 3353 * searching for an eviction candidate. See i915_gem_evict_something() for 3354 * the gory details on the eviction algorithm. 3355 * 3356 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if 3357 * asked to wait for eviction and interrupted. 3358 */ 3359 int i915_gem_gtt_insert(struct i915_address_space *vm, 3360 struct drm_mm_node *node, 3361 u64 size, u64 alignment, unsigned long color, 3362 u64 start, u64 end, unsigned int flags) 3363 { 3364 enum drm_mm_insert_mode mode; 3365 u64 offset; 3366 int err; 3367 3368 lockdep_assert_held(&vm->i915->drm.struct_mutex); 3369 GEM_BUG_ON(!size); 3370 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 3371 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 3372 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 3373 GEM_BUG_ON(start >= end); 3374 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 3375 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 3376 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base); 3377 GEM_BUG_ON(drm_mm_node_allocated(node)); 3378 3379 if (unlikely(range_overflows(start, size, end))) 3380 return -ENOSPC; 3381 3382 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment))) 3383 return -ENOSPC; 3384 3385 mode = DRM_MM_INSERT_BEST; 3386 if (flags & PIN_HIGH) 3387 mode = DRM_MM_INSERT_HIGH; 3388 if (flags & PIN_MAPPABLE) 3389 mode = DRM_MM_INSERT_LOW; 3390 3391 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, 3392 * so we know that we always have a minimum alignment of 4096. 3393 * The drm_mm range manager is optimised to return results 3394 * with zero alignment, so where possible use the optimal 3395 * path. 3396 */ 3397 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE); 3398 if (alignment <= I915_GTT_MIN_ALIGNMENT) 3399 alignment = 0; 3400 3401 err = drm_mm_insert_node_in_range(&vm->mm, node, 3402 size, alignment, color, 3403 start, end, mode); 3404 if (err != -ENOSPC) 3405 return err; 3406 3407 /* No free space, pick a slot at random. 3408 * 3409 * There is a pathological case here using a GTT shared between 3410 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt): 3411 * 3412 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->| 3413 * (64k objects) (448k objects) 3414 * 3415 * Now imagine that the eviction LRU is ordered top-down (just because 3416 * pathology meets real life), and that we need to evict an object to 3417 * make room inside the aperture. The eviction scan then has to walk 3418 * the 448k list before it finds one within range. And now imagine that 3419 * it has to search for a new hole between every byte inside the memcpy, 3420 * for several simultaneous clients. 3421 * 3422 * On a full-ppgtt system, if we have run out of available space, there 3423 * will be lots and lots of objects in the eviction list! Again, 3424 * searching that LRU list may be slow if we are also applying any 3425 * range restrictions (e.g. restriction to low 4GiB) and so, for 3426 * simplicity and similarilty between different GTT, try the single 3427 * random replacement first. 3428 */ 3429 offset = random_offset(start, end, 3430 size, alignment ?: I915_GTT_MIN_ALIGNMENT); 3431 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags); 3432 if (err != -ENOSPC) 3433 return err; 3434 3435 /* Randomly selected placement is pinned, do a search */ 3436 err = i915_gem_evict_something(vm, size, alignment, color, 3437 start, end, flags); 3438 if (err) 3439 return err; 3440 3441 return drm_mm_insert_node_in_range(&vm->mm, node, 3442 size, alignment, color, 3443 start, end, DRM_MM_INSERT_EVICT); 3444 } 3445 3446 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3447 #include "selftests/mock_gtt.c" 3448 #include "selftests/i915_gem_gtt.c" 3449 #endif 3450