1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/* Note that as an uncached mmio write, this should flush the
114 	 * WCB of the writes into the GGTT before it triggers the invalidate.
115 	 */
116 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118 
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121 	gen6_ggtt_invalidate(dev_priv);
122 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124 
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127 	intel_gtt_chipset_flush();
128 }
129 
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132 	i915->ggtt.invalidate(i915);
133 }
134 
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136 			       	int enable_ppgtt)
137 {
138 	bool has_aliasing_ppgtt;
139 	bool has_full_ppgtt;
140 	bool has_full_48bit_ppgtt;
141 
142 	has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
143 	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
144 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
145 
146 	if (intel_vgpu_active(dev_priv)) {
147 		/* emulation is too hard */
148 		has_full_ppgtt = false;
149 		has_full_48bit_ppgtt = false;
150 	}
151 
152 	if (!has_aliasing_ppgtt)
153 		return 0;
154 
155 	/*
156 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
157 	 * execlists, the sole mechanism available to submit work.
158 	 */
159 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
160 		return 0;
161 
162 	if (enable_ppgtt == 1)
163 		return 1;
164 
165 	if (enable_ppgtt == 2 && has_full_ppgtt)
166 		return 2;
167 
168 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
169 		return 3;
170 
171 #ifdef CONFIG_INTEL_IOMMU
172 	/* Disable ppgtt on SNB if VT-d is on. */
173 	if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
174 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
175 		return 0;
176 	}
177 #endif
178 
179 	/* Early VLV doesn't have this */
180 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
181 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
182 		return 0;
183 	}
184 
185 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
186 		return has_full_48bit_ppgtt ? 3 : 2;
187 	else
188 		return has_aliasing_ppgtt ? 1 : 0;
189 }
190 
191 static int ppgtt_bind_vma(struct i915_vma *vma,
192 			  enum i915_cache_level cache_level,
193 			  u32 unused)
194 {
195 	u32 pte_flags;
196 	int ret;
197 
198 	ret = vma->vm->allocate_va_range(vma->vm, vma->node.start, vma->size);
199 	if (ret)
200 		return ret;
201 
202 	vma->pages = vma->obj->mm.pages;
203 
204 	/* Currently applicable only to VLV */
205 	pte_flags = 0;
206 	if (vma->obj->gt_ro)
207 		pte_flags |= PTE_READ_ONLY;
208 
209 	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
210 				cache_level, pte_flags);
211 
212 	return 0;
213 }
214 
215 static void ppgtt_unbind_vma(struct i915_vma *vma)
216 {
217 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
218 }
219 
220 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
221 				  enum i915_cache_level level)
222 {
223 	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
224 	pte |= addr;
225 
226 	switch (level) {
227 	case I915_CACHE_NONE:
228 		pte |= PPAT_UNCACHED_INDEX;
229 		break;
230 	case I915_CACHE_WT:
231 		pte |= PPAT_DISPLAY_ELLC_INDEX;
232 		break;
233 	default:
234 		pte |= PPAT_CACHED_INDEX;
235 		break;
236 	}
237 
238 	return pte;
239 }
240 
241 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
242 				  const enum i915_cache_level level)
243 {
244 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
245 	pde |= addr;
246 	if (level != I915_CACHE_NONE)
247 		pde |= PPAT_CACHED_PDE_INDEX;
248 	else
249 		pde |= PPAT_UNCACHED_INDEX;
250 	return pde;
251 }
252 
253 #define gen8_pdpe_encode gen8_pde_encode
254 #define gen8_pml4e_encode gen8_pde_encode
255 
256 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
257 				 enum i915_cache_level level,
258 				 u32 unused)
259 {
260 	gen6_pte_t pte = GEN6_PTE_VALID;
261 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
262 
263 	switch (level) {
264 	case I915_CACHE_L3_LLC:
265 	case I915_CACHE_LLC:
266 		pte |= GEN6_PTE_CACHE_LLC;
267 		break;
268 	case I915_CACHE_NONE:
269 		pte |= GEN6_PTE_UNCACHED;
270 		break;
271 	default:
272 		MISSING_CASE(level);
273 	}
274 
275 	return pte;
276 }
277 
278 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
279 				 enum i915_cache_level level,
280 				 u32 unused)
281 {
282 	gen6_pte_t pte = GEN6_PTE_VALID;
283 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
284 
285 	switch (level) {
286 	case I915_CACHE_L3_LLC:
287 		pte |= GEN7_PTE_CACHE_L3_LLC;
288 		break;
289 	case I915_CACHE_LLC:
290 		pte |= GEN6_PTE_CACHE_LLC;
291 		break;
292 	case I915_CACHE_NONE:
293 		pte |= GEN6_PTE_UNCACHED;
294 		break;
295 	default:
296 		MISSING_CASE(level);
297 	}
298 
299 	return pte;
300 }
301 
302 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
303 				 enum i915_cache_level level,
304 				 u32 flags)
305 {
306 	gen6_pte_t pte = GEN6_PTE_VALID;
307 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
308 
309 	if (!(flags & PTE_READ_ONLY))
310 		pte |= BYT_PTE_WRITEABLE;
311 
312 	if (level != I915_CACHE_NONE)
313 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
314 
315 	return pte;
316 }
317 
318 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
319 				 enum i915_cache_level level,
320 				 u32 unused)
321 {
322 	gen6_pte_t pte = GEN6_PTE_VALID;
323 	pte |= HSW_PTE_ADDR_ENCODE(addr);
324 
325 	if (level != I915_CACHE_NONE)
326 		pte |= HSW_WB_LLC_AGE3;
327 
328 	return pte;
329 }
330 
331 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
332 				  enum i915_cache_level level,
333 				  u32 unused)
334 {
335 	gen6_pte_t pte = GEN6_PTE_VALID;
336 	pte |= HSW_PTE_ADDR_ENCODE(addr);
337 
338 	switch (level) {
339 	case I915_CACHE_NONE:
340 		break;
341 	case I915_CACHE_WT:
342 		pte |= HSW_WT_ELLC_LLC_AGE3;
343 		break;
344 	default:
345 		pte |= HSW_WB_ELLC_LLC_AGE3;
346 		break;
347 	}
348 
349 	return pte;
350 }
351 
352 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
353 {
354 	struct page *page;
355 
356 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
357 		i915_gem_shrink_all(vm->i915);
358 
359 	if (vm->free_pages.nr)
360 		return vm->free_pages.pages[--vm->free_pages.nr];
361 
362 	page = alloc_page(gfp);
363 	if (!page)
364 		return NULL;
365 
366 	if (vm->pt_kmap_wc)
367 		set_pages_array_wc(&page, 1);
368 
369 	return page;
370 }
371 
372 static void vm_free_pages_release(struct i915_address_space *vm)
373 {
374 	GEM_BUG_ON(!pagevec_count(&vm->free_pages));
375 
376 	if (vm->pt_kmap_wc)
377 		set_pages_array_wb(vm->free_pages.pages,
378 				   pagevec_count(&vm->free_pages));
379 
380 	__pagevec_release(&vm->free_pages);
381 }
382 
383 static void vm_free_page(struct i915_address_space *vm, struct page *page)
384 {
385 	if (!pagevec_add(&vm->free_pages, page))
386 		vm_free_pages_release(vm);
387 }
388 
389 static int __setup_page_dma(struct i915_address_space *vm,
390 			    struct i915_page_dma *p,
391 			    gfp_t gfp)
392 {
393 	p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
394 	if (unlikely(!p->page))
395 		return -ENOMEM;
396 
397 	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
398 				PCI_DMA_BIDIRECTIONAL);
399 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
400 		vm_free_page(vm, p->page);
401 		return -ENOMEM;
402 	}
403 
404 	return 0;
405 }
406 
407 static int setup_page_dma(struct i915_address_space *vm,
408 			  struct i915_page_dma *p)
409 {
410 	return __setup_page_dma(vm, p, I915_GFP_DMA);
411 }
412 
413 static void cleanup_page_dma(struct i915_address_space *vm,
414 			     struct i915_page_dma *p)
415 {
416 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
417 	vm_free_page(vm, p->page);
418 }
419 
420 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
421 
422 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
423 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
424 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
425 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
426 
427 static void fill_page_dma(struct i915_address_space *vm,
428 			  struct i915_page_dma *p,
429 			  const u64 val)
430 {
431 	u64 * const vaddr = kmap_atomic(p->page);
432 	int i;
433 
434 	for (i = 0; i < 512; i++)
435 		vaddr[i] = val;
436 
437 	kunmap_atomic(vaddr);
438 }
439 
440 static void fill_page_dma_32(struct i915_address_space *vm,
441 			     struct i915_page_dma *p,
442 			     const u32 v)
443 {
444 	fill_page_dma(vm, p, (u64)v << 32 | v);
445 }
446 
447 static int
448 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
449 {
450 	return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO);
451 }
452 
453 static void cleanup_scratch_page(struct i915_address_space *vm)
454 {
455 	cleanup_page_dma(vm, &vm->scratch_page);
456 }
457 
458 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
459 {
460 	struct i915_page_table *pt;
461 
462 	pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
463 	if (unlikely(!pt))
464 		return ERR_PTR(-ENOMEM);
465 
466 	if (unlikely(setup_px(vm, pt))) {
467 		kfree(pt);
468 		return ERR_PTR(-ENOMEM);
469 	}
470 
471 	pt->used_ptes = 0;
472 	return pt;
473 }
474 
475 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
476 {
477 	cleanup_px(vm, pt);
478 	kfree(pt);
479 }
480 
481 static void gen8_initialize_pt(struct i915_address_space *vm,
482 			       struct i915_page_table *pt)
483 {
484 	fill_px(vm, pt,
485 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
486 }
487 
488 static void gen6_initialize_pt(struct i915_address_space *vm,
489 			       struct i915_page_table *pt)
490 {
491 	fill32_px(vm, pt,
492 		  vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
493 }
494 
495 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
496 {
497 	struct i915_page_directory *pd;
498 
499 	pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
500 	if (unlikely(!pd))
501 		return ERR_PTR(-ENOMEM);
502 
503 	if (unlikely(setup_px(vm, pd))) {
504 		kfree(pd);
505 		return ERR_PTR(-ENOMEM);
506 	}
507 
508 	pd->used_pdes = 0;
509 	return pd;
510 }
511 
512 static void free_pd(struct i915_address_space *vm,
513 		    struct i915_page_directory *pd)
514 {
515 	cleanup_px(vm, pd);
516 	kfree(pd);
517 }
518 
519 static void gen8_initialize_pd(struct i915_address_space *vm,
520 			       struct i915_page_directory *pd)
521 {
522 	unsigned int i;
523 
524 	fill_px(vm, pd,
525 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
526 	for (i = 0; i < I915_PDES; i++)
527 		pd->page_table[i] = vm->scratch_pt;
528 }
529 
530 static int __pdp_init(struct i915_address_space *vm,
531 		      struct i915_page_directory_pointer *pdp)
532 {
533 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
534 	unsigned int i;
535 
536 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
537 					    GFP_KERNEL | __GFP_NOWARN);
538 	if (unlikely(!pdp->page_directory))
539 		return -ENOMEM;
540 
541 	for (i = 0; i < pdpes; i++)
542 		pdp->page_directory[i] = vm->scratch_pd;
543 
544 	return 0;
545 }
546 
547 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
548 {
549 	kfree(pdp->page_directory);
550 	pdp->page_directory = NULL;
551 }
552 
553 static inline bool use_4lvl(const struct i915_address_space *vm)
554 {
555 	return i915_vm_is_48bit(vm);
556 }
557 
558 static struct i915_page_directory_pointer *
559 alloc_pdp(struct i915_address_space *vm)
560 {
561 	struct i915_page_directory_pointer *pdp;
562 	int ret = -ENOMEM;
563 
564 	WARN_ON(!use_4lvl(vm));
565 
566 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
567 	if (!pdp)
568 		return ERR_PTR(-ENOMEM);
569 
570 	ret = __pdp_init(vm, pdp);
571 	if (ret)
572 		goto fail_bitmap;
573 
574 	ret = setup_px(vm, pdp);
575 	if (ret)
576 		goto fail_page_m;
577 
578 	return pdp;
579 
580 fail_page_m:
581 	__pdp_fini(pdp);
582 fail_bitmap:
583 	kfree(pdp);
584 
585 	return ERR_PTR(ret);
586 }
587 
588 static void free_pdp(struct i915_address_space *vm,
589 		     struct i915_page_directory_pointer *pdp)
590 {
591 	__pdp_fini(pdp);
592 
593 	if (!use_4lvl(vm))
594 		return;
595 
596 	cleanup_px(vm, pdp);
597 	kfree(pdp);
598 }
599 
600 static void gen8_initialize_pdp(struct i915_address_space *vm,
601 				struct i915_page_directory_pointer *pdp)
602 {
603 	gen8_ppgtt_pdpe_t scratch_pdpe;
604 
605 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
606 
607 	fill_px(vm, pdp, scratch_pdpe);
608 }
609 
610 static void gen8_initialize_pml4(struct i915_address_space *vm,
611 				 struct i915_pml4 *pml4)
612 {
613 	unsigned int i;
614 
615 	fill_px(vm, pml4,
616 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
617 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
618 		pml4->pdps[i] = vm->scratch_pdp;
619 }
620 
621 /* Broadwell Page Directory Pointer Descriptors */
622 static int gen8_write_pdp(struct drm_i915_gem_request *req,
623 			  unsigned entry,
624 			  dma_addr_t addr)
625 {
626 	struct intel_engine_cs *engine = req->engine;
627 	u32 *cs;
628 
629 	BUG_ON(entry >= 4);
630 
631 	cs = intel_ring_begin(req, 6);
632 	if (IS_ERR(cs))
633 		return PTR_ERR(cs);
634 
635 	*cs++ = MI_LOAD_REGISTER_IMM(1);
636 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
637 	*cs++ = upper_32_bits(addr);
638 	*cs++ = MI_LOAD_REGISTER_IMM(1);
639 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
640 	*cs++ = lower_32_bits(addr);
641 	intel_ring_advance(req, cs);
642 
643 	return 0;
644 }
645 
646 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
647 			       struct drm_i915_gem_request *req)
648 {
649 	int i, ret;
650 
651 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
652 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
653 
654 		ret = gen8_write_pdp(req, i, pd_daddr);
655 		if (ret)
656 			return ret;
657 	}
658 
659 	return 0;
660 }
661 
662 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
663 			       struct drm_i915_gem_request *req)
664 {
665 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
666 }
667 
668 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
669  * the page table structures, we mark them dirty so that
670  * context switching/execlist queuing code takes extra steps
671  * to ensure that tlbs are flushed.
672  */
673 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
674 {
675 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
676 }
677 
678 /* Removes entries from a single page table, releasing it if it's empty.
679  * Caller can use the return value to update higher-level entries.
680  */
681 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
682 				struct i915_page_table *pt,
683 				u64 start, u64 length)
684 {
685 	unsigned int num_entries = gen8_pte_count(start, length);
686 	unsigned int pte = gen8_pte_index(start);
687 	unsigned int pte_end = pte + num_entries;
688 	const gen8_pte_t scratch_pte =
689 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
690 	gen8_pte_t *vaddr;
691 
692 	GEM_BUG_ON(num_entries > pt->used_ptes);
693 
694 	pt->used_ptes -= num_entries;
695 	if (!pt->used_ptes)
696 		return true;
697 
698 	vaddr = kmap_atomic_px(pt);
699 	while (pte < pte_end)
700 		vaddr[pte++] = scratch_pte;
701 	kunmap_atomic(vaddr);
702 
703 	return false;
704 }
705 
706 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
707 			       struct i915_page_directory *pd,
708 			       struct i915_page_table *pt,
709 			       unsigned int pde)
710 {
711 	gen8_pde_t *vaddr;
712 
713 	pd->page_table[pde] = pt;
714 
715 	vaddr = kmap_atomic_px(pd);
716 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
717 	kunmap_atomic(vaddr);
718 }
719 
720 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
721 				struct i915_page_directory *pd,
722 				u64 start, u64 length)
723 {
724 	struct i915_page_table *pt;
725 	u32 pde;
726 
727 	gen8_for_each_pde(pt, pd, start, length, pde) {
728 		GEM_BUG_ON(pt == vm->scratch_pt);
729 
730 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
731 			continue;
732 
733 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
734 		GEM_BUG_ON(!pd->used_pdes);
735 		pd->used_pdes--;
736 
737 		free_pt(vm, pt);
738 	}
739 
740 	return !pd->used_pdes;
741 }
742 
743 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
744 				struct i915_page_directory_pointer *pdp,
745 				struct i915_page_directory *pd,
746 				unsigned int pdpe)
747 {
748 	gen8_ppgtt_pdpe_t *vaddr;
749 
750 	pdp->page_directory[pdpe] = pd;
751 	if (!use_4lvl(vm))
752 		return;
753 
754 	vaddr = kmap_atomic_px(pdp);
755 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
756 	kunmap_atomic(vaddr);
757 }
758 
759 /* Removes entries from a single page dir pointer, releasing it if it's empty.
760  * Caller can use the return value to update higher-level entries
761  */
762 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
763 				 struct i915_page_directory_pointer *pdp,
764 				 u64 start, u64 length)
765 {
766 	struct i915_page_directory *pd;
767 	unsigned int pdpe;
768 
769 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
770 		GEM_BUG_ON(pd == vm->scratch_pd);
771 
772 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
773 			continue;
774 
775 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
776 		GEM_BUG_ON(!pdp->used_pdpes);
777 		pdp->used_pdpes--;
778 
779 		free_pd(vm, pd);
780 	}
781 
782 	return !pdp->used_pdpes;
783 }
784 
785 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
786 				  u64 start, u64 length)
787 {
788 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
789 }
790 
791 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
792 				 struct i915_page_directory_pointer *pdp,
793 				 unsigned int pml4e)
794 {
795 	gen8_ppgtt_pml4e_t *vaddr;
796 
797 	pml4->pdps[pml4e] = pdp;
798 
799 	vaddr = kmap_atomic_px(pml4);
800 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
801 	kunmap_atomic(vaddr);
802 }
803 
804 /* Removes entries from a single pml4.
805  * This is the top-level structure in 4-level page tables used on gen8+.
806  * Empty entries are always scratch pml4e.
807  */
808 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
809 				  u64 start, u64 length)
810 {
811 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
812 	struct i915_pml4 *pml4 = &ppgtt->pml4;
813 	struct i915_page_directory_pointer *pdp;
814 	unsigned int pml4e;
815 
816 	GEM_BUG_ON(!use_4lvl(vm));
817 
818 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
819 		GEM_BUG_ON(pdp == vm->scratch_pdp);
820 
821 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
822 			continue;
823 
824 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
825 
826 		free_pdp(vm, pdp);
827 	}
828 }
829 
830 struct sgt_dma {
831 	struct scatterlist *sg;
832 	dma_addr_t dma, max;
833 };
834 
835 struct gen8_insert_pte {
836 	u16 pml4e;
837 	u16 pdpe;
838 	u16 pde;
839 	u16 pte;
840 };
841 
842 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
843 {
844 	return (struct gen8_insert_pte) {
845 		 gen8_pml4e_index(start),
846 		 gen8_pdpe_index(start),
847 		 gen8_pde_index(start),
848 		 gen8_pte_index(start),
849 	};
850 }
851 
852 static __always_inline bool
853 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
854 			      struct i915_page_directory_pointer *pdp,
855 			      struct sgt_dma *iter,
856 			      struct gen8_insert_pte *idx,
857 			      enum i915_cache_level cache_level)
858 {
859 	struct i915_page_directory *pd;
860 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
861 	gen8_pte_t *vaddr;
862 	bool ret;
863 
864 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
865 	pd = pdp->page_directory[idx->pdpe];
866 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
867 	do {
868 		vaddr[idx->pte] = pte_encode | iter->dma;
869 
870 		iter->dma += PAGE_SIZE;
871 		if (iter->dma >= iter->max) {
872 			iter->sg = __sg_next(iter->sg);
873 			if (!iter->sg) {
874 				ret = false;
875 				break;
876 			}
877 
878 			iter->dma = sg_dma_address(iter->sg);
879 			iter->max = iter->dma + iter->sg->length;
880 		}
881 
882 		if (++idx->pte == GEN8_PTES) {
883 			idx->pte = 0;
884 
885 			if (++idx->pde == I915_PDES) {
886 				idx->pde = 0;
887 
888 				/* Limited by sg length for 3lvl */
889 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
890 					idx->pdpe = 0;
891 					ret = true;
892 					break;
893 				}
894 
895 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
896 				pd = pdp->page_directory[idx->pdpe];
897 			}
898 
899 			kunmap_atomic(vaddr);
900 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
901 		}
902 	} while (1);
903 	kunmap_atomic(vaddr);
904 
905 	return ret;
906 }
907 
908 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
909 				   struct sg_table *pages,
910 				   u64 start,
911 				   enum i915_cache_level cache_level,
912 				   u32 unused)
913 {
914 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
915 	struct sgt_dma iter = {
916 		.sg = pages->sgl,
917 		.dma = sg_dma_address(iter.sg),
918 		.max = iter.dma + iter.sg->length,
919 	};
920 	struct gen8_insert_pte idx = gen8_insert_pte(start);
921 
922 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
923 				      cache_level);
924 }
925 
926 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
927 				   struct sg_table *pages,
928 				   u64 start,
929 				   enum i915_cache_level cache_level,
930 				   u32 unused)
931 {
932 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
933 	struct sgt_dma iter = {
934 		.sg = pages->sgl,
935 		.dma = sg_dma_address(iter.sg),
936 		.max = iter.dma + iter.sg->length,
937 	};
938 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
939 	struct gen8_insert_pte idx = gen8_insert_pte(start);
940 
941 	while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter,
942 					     &idx, cache_level))
943 		GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
944 }
945 
946 static void gen8_free_page_tables(struct i915_address_space *vm,
947 				  struct i915_page_directory *pd)
948 {
949 	int i;
950 
951 	if (!px_page(pd))
952 		return;
953 
954 	for (i = 0; i < I915_PDES; i++) {
955 		if (pd->page_table[i] != vm->scratch_pt)
956 			free_pt(vm, pd->page_table[i]);
957 	}
958 }
959 
960 static int gen8_init_scratch(struct i915_address_space *vm)
961 {
962 	int ret;
963 
964 	ret = setup_scratch_page(vm, I915_GFP_DMA);
965 	if (ret)
966 		return ret;
967 
968 	vm->scratch_pt = alloc_pt(vm);
969 	if (IS_ERR(vm->scratch_pt)) {
970 		ret = PTR_ERR(vm->scratch_pt);
971 		goto free_scratch_page;
972 	}
973 
974 	vm->scratch_pd = alloc_pd(vm);
975 	if (IS_ERR(vm->scratch_pd)) {
976 		ret = PTR_ERR(vm->scratch_pd);
977 		goto free_pt;
978 	}
979 
980 	if (use_4lvl(vm)) {
981 		vm->scratch_pdp = alloc_pdp(vm);
982 		if (IS_ERR(vm->scratch_pdp)) {
983 			ret = PTR_ERR(vm->scratch_pdp);
984 			goto free_pd;
985 		}
986 	}
987 
988 	gen8_initialize_pt(vm, vm->scratch_pt);
989 	gen8_initialize_pd(vm, vm->scratch_pd);
990 	if (use_4lvl(vm))
991 		gen8_initialize_pdp(vm, vm->scratch_pdp);
992 
993 	return 0;
994 
995 free_pd:
996 	free_pd(vm, vm->scratch_pd);
997 free_pt:
998 	free_pt(vm, vm->scratch_pt);
999 free_scratch_page:
1000 	cleanup_scratch_page(vm);
1001 
1002 	return ret;
1003 }
1004 
1005 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1006 {
1007 	struct i915_address_space *vm = &ppgtt->base;
1008 	struct drm_i915_private *dev_priv = vm->i915;
1009 	enum vgt_g2v_type msg;
1010 	int i;
1011 
1012 	if (use_4lvl(vm)) {
1013 		const u64 daddr = px_dma(&ppgtt->pml4);
1014 
1015 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1016 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1017 
1018 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1019 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1020 	} else {
1021 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1022 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1023 
1024 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1025 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1026 		}
1027 
1028 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1029 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1030 	}
1031 
1032 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1033 
1034 	return 0;
1035 }
1036 
1037 static void gen8_free_scratch(struct i915_address_space *vm)
1038 {
1039 	if (use_4lvl(vm))
1040 		free_pdp(vm, vm->scratch_pdp);
1041 	free_pd(vm, vm->scratch_pd);
1042 	free_pt(vm, vm->scratch_pt);
1043 	cleanup_scratch_page(vm);
1044 }
1045 
1046 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1047 				    struct i915_page_directory_pointer *pdp)
1048 {
1049 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1050 	int i;
1051 
1052 	for (i = 0; i < pdpes; i++) {
1053 		if (pdp->page_directory[i] == vm->scratch_pd)
1054 			continue;
1055 
1056 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1057 		free_pd(vm, pdp->page_directory[i]);
1058 	}
1059 
1060 	free_pdp(vm, pdp);
1061 }
1062 
1063 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1064 {
1065 	int i;
1066 
1067 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1068 		if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1069 			continue;
1070 
1071 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1072 	}
1073 
1074 	cleanup_px(&ppgtt->base, &ppgtt->pml4);
1075 }
1076 
1077 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1078 {
1079 	struct drm_i915_private *dev_priv = vm->i915;
1080 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1081 
1082 	if (intel_vgpu_active(dev_priv))
1083 		gen8_ppgtt_notify_vgt(ppgtt, false);
1084 
1085 	if (use_4lvl(vm))
1086 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1087 	else
1088 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1089 
1090 	gen8_free_scratch(vm);
1091 }
1092 
1093 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1094 			       struct i915_page_directory *pd,
1095 			       u64 start, u64 length)
1096 {
1097 	struct i915_page_table *pt;
1098 	u64 from = start;
1099 	unsigned int pde;
1100 
1101 	gen8_for_each_pde(pt, pd, start, length, pde) {
1102 		if (pt == vm->scratch_pt) {
1103 			pt = alloc_pt(vm);
1104 			if (IS_ERR(pt))
1105 				goto unwind;
1106 
1107 			gen8_initialize_pt(vm, pt);
1108 
1109 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1110 			pd->used_pdes++;
1111 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1112 		}
1113 
1114 		pt->used_ptes += gen8_pte_count(start, length);
1115 	}
1116 	return 0;
1117 
1118 unwind:
1119 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1120 	return -ENOMEM;
1121 }
1122 
1123 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1124 				struct i915_page_directory_pointer *pdp,
1125 				u64 start, u64 length)
1126 {
1127 	struct i915_page_directory *pd;
1128 	u64 from = start;
1129 	unsigned int pdpe;
1130 	int ret;
1131 
1132 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1133 		if (pd == vm->scratch_pd) {
1134 			pd = alloc_pd(vm);
1135 			if (IS_ERR(pd))
1136 				goto unwind;
1137 
1138 			gen8_initialize_pd(vm, pd);
1139 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1140 			pdp->used_pdpes++;
1141 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1142 
1143 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1144 		}
1145 
1146 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1147 		if (unlikely(ret))
1148 			goto unwind_pd;
1149 	}
1150 
1151 	return 0;
1152 
1153 unwind_pd:
1154 	if (!pd->used_pdes) {
1155 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1156 		GEM_BUG_ON(!pdp->used_pdpes);
1157 		pdp->used_pdpes--;
1158 		free_pd(vm, pd);
1159 	}
1160 unwind:
1161 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1162 	return -ENOMEM;
1163 }
1164 
1165 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1166 				 u64 start, u64 length)
1167 {
1168 	return gen8_ppgtt_alloc_pdp(vm,
1169 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1170 }
1171 
1172 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1173 				 u64 start, u64 length)
1174 {
1175 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1176 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1177 	struct i915_page_directory_pointer *pdp;
1178 	u64 from = start;
1179 	u32 pml4e;
1180 	int ret;
1181 
1182 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1183 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1184 			pdp = alloc_pdp(vm);
1185 			if (IS_ERR(pdp))
1186 				goto unwind;
1187 
1188 			gen8_initialize_pdp(vm, pdp);
1189 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1190 		}
1191 
1192 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1193 		if (unlikely(ret))
1194 			goto unwind_pdp;
1195 	}
1196 
1197 	return 0;
1198 
1199 unwind_pdp:
1200 	if (!pdp->used_pdpes) {
1201 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1202 		free_pdp(vm, pdp);
1203 	}
1204 unwind:
1205 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1206 	return -ENOMEM;
1207 }
1208 
1209 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1210 			  struct i915_page_directory_pointer *pdp,
1211 			  u64 start, u64 length,
1212 			  gen8_pte_t scratch_pte,
1213 			  struct seq_file *m)
1214 {
1215 	struct i915_address_space *vm = &ppgtt->base;
1216 	struct i915_page_directory *pd;
1217 	u32 pdpe;
1218 
1219 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1220 		struct i915_page_table *pt;
1221 		u64 pd_len = length;
1222 		u64 pd_start = start;
1223 		u32 pde;
1224 
1225 		if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1226 			continue;
1227 
1228 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1229 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1230 			u32 pte;
1231 			gen8_pte_t *pt_vaddr;
1232 
1233 			if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1234 				continue;
1235 
1236 			pt_vaddr = kmap_atomic_px(pt);
1237 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1238 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1239 					  pde << GEN8_PDE_SHIFT |
1240 					  pte << GEN8_PTE_SHIFT);
1241 				int i;
1242 				bool found = false;
1243 
1244 				for (i = 0; i < 4; i++)
1245 					if (pt_vaddr[pte + i] != scratch_pte)
1246 						found = true;
1247 				if (!found)
1248 					continue;
1249 
1250 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1251 				for (i = 0; i < 4; i++) {
1252 					if (pt_vaddr[pte + i] != scratch_pte)
1253 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1254 					else
1255 						seq_puts(m, "  SCRATCH ");
1256 				}
1257 				seq_puts(m, "\n");
1258 			}
1259 			kunmap_atomic(pt_vaddr);
1260 		}
1261 	}
1262 }
1263 
1264 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1265 {
1266 	struct i915_address_space *vm = &ppgtt->base;
1267 	const gen8_pte_t scratch_pte =
1268 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1269 	u64 start = 0, length = ppgtt->base.total;
1270 
1271 	if (use_4lvl(vm)) {
1272 		u64 pml4e;
1273 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1274 		struct i915_page_directory_pointer *pdp;
1275 
1276 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1277 			if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1278 				continue;
1279 
1280 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1281 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1282 		}
1283 	} else {
1284 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1285 	}
1286 }
1287 
1288 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1289 {
1290 	struct i915_address_space *vm = &ppgtt->base;
1291 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1292 	struct i915_page_directory *pd;
1293 	u64 start = 0, length = ppgtt->base.total;
1294 	u64 from = start;
1295 	unsigned int pdpe;
1296 
1297 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1298 		pd = alloc_pd(vm);
1299 		if (IS_ERR(pd))
1300 			goto unwind;
1301 
1302 		gen8_initialize_pd(vm, pd);
1303 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1304 		pdp->used_pdpes++;
1305 	}
1306 
1307 	pdp->used_pdpes++; /* never remove */
1308 	return 0;
1309 
1310 unwind:
1311 	start -= from;
1312 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1313 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1314 		free_pd(vm, pd);
1315 	}
1316 	pdp->used_pdpes = 0;
1317 	return -ENOMEM;
1318 }
1319 
1320 /*
1321  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1322  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1323  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1324  * space.
1325  *
1326  */
1327 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1328 {
1329 	struct i915_address_space *vm = &ppgtt->base;
1330 	struct drm_i915_private *dev_priv = vm->i915;
1331 	int ret;
1332 
1333 	ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1334 		1ULL << 48 :
1335 		1ULL << 32;
1336 
1337 	ret = gen8_init_scratch(&ppgtt->base);
1338 	if (ret) {
1339 		ppgtt->base.total = 0;
1340 		return ret;
1341 	}
1342 
1343 	/* There are only few exceptions for gen >=6. chv and bxt.
1344 	 * And we are not sure about the latter so play safe for now.
1345 	 */
1346 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1347 		ppgtt->base.pt_kmap_wc = true;
1348 
1349 	if (use_4lvl(vm)) {
1350 		ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1351 		if (ret)
1352 			goto free_scratch;
1353 
1354 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1355 
1356 		ppgtt->switch_mm = gen8_mm_switch_4lvl;
1357 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1358 		ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1359 		ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1360 	} else {
1361 		ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1362 		if (ret)
1363 			goto free_scratch;
1364 
1365 		if (intel_vgpu_active(dev_priv)) {
1366 			ret = gen8_preallocate_top_level_pdp(ppgtt);
1367 			if (ret) {
1368 				__pdp_fini(&ppgtt->pdp);
1369 				goto free_scratch;
1370 			}
1371 		}
1372 
1373 		ppgtt->switch_mm = gen8_mm_switch_3lvl;
1374 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1375 		ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1376 		ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1377 	}
1378 
1379 	if (intel_vgpu_active(dev_priv))
1380 		gen8_ppgtt_notify_vgt(ppgtt, true);
1381 
1382 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1383 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1384 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1385 	ppgtt->debug_dump = gen8_dump_ppgtt;
1386 
1387 	return 0;
1388 
1389 free_scratch:
1390 	gen8_free_scratch(&ppgtt->base);
1391 	return ret;
1392 }
1393 
1394 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1395 {
1396 	struct i915_address_space *vm = &ppgtt->base;
1397 	struct i915_page_table *unused;
1398 	gen6_pte_t scratch_pte;
1399 	u32 pd_entry, pte, pde;
1400 	u32 start = 0, length = ppgtt->base.total;
1401 
1402 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1403 				     I915_CACHE_LLC, 0);
1404 
1405 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1406 		u32 expected;
1407 		gen6_pte_t *pt_vaddr;
1408 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1409 		pd_entry = readl(ppgtt->pd_addr + pde);
1410 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1411 
1412 		if (pd_entry != expected)
1413 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1414 				   pde,
1415 				   pd_entry,
1416 				   expected);
1417 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1418 
1419 		pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1420 
1421 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1422 			unsigned long va =
1423 				(pde * PAGE_SIZE * GEN6_PTES) +
1424 				(pte * PAGE_SIZE);
1425 			int i;
1426 			bool found = false;
1427 			for (i = 0; i < 4; i++)
1428 				if (pt_vaddr[pte + i] != scratch_pte)
1429 					found = true;
1430 			if (!found)
1431 				continue;
1432 
1433 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1434 			for (i = 0; i < 4; i++) {
1435 				if (pt_vaddr[pte + i] != scratch_pte)
1436 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1437 				else
1438 					seq_puts(m, "  SCRATCH ");
1439 			}
1440 			seq_puts(m, "\n");
1441 		}
1442 		kunmap_atomic(pt_vaddr);
1443 	}
1444 }
1445 
1446 /* Write pde (index) from the page directory @pd to the page table @pt */
1447 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1448 				  const unsigned int pde,
1449 				  const struct i915_page_table *pt)
1450 {
1451 	/* Caller needs to make sure the write completes if necessary */
1452 	writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1453 		       ppgtt->pd_addr + pde);
1454 }
1455 
1456 /* Write all the page tables found in the ppgtt structure to incrementing page
1457  * directories. */
1458 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1459 				  u32 start, u32 length)
1460 {
1461 	struct i915_page_table *pt;
1462 	unsigned int pde;
1463 
1464 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1465 		gen6_write_pde(ppgtt, pde, pt);
1466 
1467 	mark_tlbs_dirty(ppgtt);
1468 	wmb();
1469 }
1470 
1471 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1472 {
1473 	GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1474 	return ppgtt->pd.base.ggtt_offset << 10;
1475 }
1476 
1477 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1478 			 struct drm_i915_gem_request *req)
1479 {
1480 	struct intel_engine_cs *engine = req->engine;
1481 	u32 *cs;
1482 
1483 	/* NB: TLBs must be flushed and invalidated before a switch */
1484 	cs = intel_ring_begin(req, 6);
1485 	if (IS_ERR(cs))
1486 		return PTR_ERR(cs);
1487 
1488 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1489 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1490 	*cs++ = PP_DIR_DCLV_2G;
1491 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1492 	*cs++ = get_pd_offset(ppgtt);
1493 	*cs++ = MI_NOOP;
1494 	intel_ring_advance(req, cs);
1495 
1496 	return 0;
1497 }
1498 
1499 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1500 			  struct drm_i915_gem_request *req)
1501 {
1502 	struct intel_engine_cs *engine = req->engine;
1503 	u32 *cs;
1504 
1505 	/* NB: TLBs must be flushed and invalidated before a switch */
1506 	cs = intel_ring_begin(req, 6);
1507 	if (IS_ERR(cs))
1508 		return PTR_ERR(cs);
1509 
1510 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1511 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1512 	*cs++ = PP_DIR_DCLV_2G;
1513 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1514 	*cs++ = get_pd_offset(ppgtt);
1515 	*cs++ = MI_NOOP;
1516 	intel_ring_advance(req, cs);
1517 
1518 	return 0;
1519 }
1520 
1521 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1522 			  struct drm_i915_gem_request *req)
1523 {
1524 	struct intel_engine_cs *engine = req->engine;
1525 	struct drm_i915_private *dev_priv = req->i915;
1526 
1527 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1528 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1529 	return 0;
1530 }
1531 
1532 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1533 {
1534 	struct intel_engine_cs *engine;
1535 	enum intel_engine_id id;
1536 
1537 	for_each_engine(engine, dev_priv, id) {
1538 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1539 				 GEN8_GFX_PPGTT_48B : 0;
1540 		I915_WRITE(RING_MODE_GEN7(engine),
1541 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1542 	}
1543 }
1544 
1545 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1546 {
1547 	struct intel_engine_cs *engine;
1548 	u32 ecochk, ecobits;
1549 	enum intel_engine_id id;
1550 
1551 	ecobits = I915_READ(GAC_ECO_BITS);
1552 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1553 
1554 	ecochk = I915_READ(GAM_ECOCHK);
1555 	if (IS_HASWELL(dev_priv)) {
1556 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1557 	} else {
1558 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1559 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1560 	}
1561 	I915_WRITE(GAM_ECOCHK, ecochk);
1562 
1563 	for_each_engine(engine, dev_priv, id) {
1564 		/* GFX_MODE is per-ring on gen7+ */
1565 		I915_WRITE(RING_MODE_GEN7(engine),
1566 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1567 	}
1568 }
1569 
1570 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1571 {
1572 	u32 ecochk, gab_ctl, ecobits;
1573 
1574 	ecobits = I915_READ(GAC_ECO_BITS);
1575 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1576 		   ECOBITS_PPGTT_CACHE64B);
1577 
1578 	gab_ctl = I915_READ(GAB_CTL);
1579 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1580 
1581 	ecochk = I915_READ(GAM_ECOCHK);
1582 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1583 
1584 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1585 }
1586 
1587 /* PPGTT support for Sandybdrige/Gen6 and later */
1588 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1589 				   u64 start, u64 length)
1590 {
1591 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1592 	unsigned int first_entry = start >> PAGE_SHIFT;
1593 	unsigned int pde = first_entry / GEN6_PTES;
1594 	unsigned int pte = first_entry % GEN6_PTES;
1595 	unsigned int num_entries = length >> PAGE_SHIFT;
1596 	gen6_pte_t scratch_pte =
1597 		vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1598 
1599 	while (num_entries) {
1600 		struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1601 		unsigned int end = min(pte + num_entries, GEN6_PTES);
1602 		gen6_pte_t *vaddr;
1603 
1604 		num_entries -= end - pte;
1605 
1606 		/* Note that the hw doesn't support removing PDE on the fly
1607 		 * (they are cached inside the context with no means to
1608 		 * invalidate the cache), so we can only reset the PTE
1609 		 * entries back to scratch.
1610 		 */
1611 
1612 		vaddr = kmap_atomic_px(pt);
1613 		do {
1614 			vaddr[pte++] = scratch_pte;
1615 		} while (pte < end);
1616 		kunmap_atomic(vaddr);
1617 
1618 		pte = 0;
1619 	}
1620 }
1621 
1622 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1623 				      struct sg_table *pages,
1624 				      u64 start,
1625 				      enum i915_cache_level cache_level,
1626 				      u32 flags)
1627 {
1628 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1629 	unsigned first_entry = start >> PAGE_SHIFT;
1630 	unsigned act_pt = first_entry / GEN6_PTES;
1631 	unsigned act_pte = first_entry % GEN6_PTES;
1632 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1633 	struct sgt_dma iter;
1634 	gen6_pte_t *vaddr;
1635 
1636 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1637 	iter.sg = pages->sgl;
1638 	iter.dma = sg_dma_address(iter.sg);
1639 	iter.max = iter.dma + iter.sg->length;
1640 	do {
1641 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1642 
1643 		iter.dma += PAGE_SIZE;
1644 		if (iter.dma == iter.max) {
1645 			iter.sg = __sg_next(iter.sg);
1646 			if (!iter.sg)
1647 				break;
1648 
1649 			iter.dma = sg_dma_address(iter.sg);
1650 			iter.max = iter.dma + iter.sg->length;
1651 		}
1652 
1653 		if (++act_pte == GEN6_PTES) {
1654 			kunmap_atomic(vaddr);
1655 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1656 			act_pte = 0;
1657 		}
1658 	} while (1);
1659 	kunmap_atomic(vaddr);
1660 }
1661 
1662 static int gen6_alloc_va_range(struct i915_address_space *vm,
1663 			       u64 start, u64 length)
1664 {
1665 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1666 	struct i915_page_table *pt;
1667 	u64 from = start;
1668 	unsigned int pde;
1669 	bool flush = false;
1670 
1671 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1672 		if (pt == vm->scratch_pt) {
1673 			pt = alloc_pt(vm);
1674 			if (IS_ERR(pt))
1675 				goto unwind_out;
1676 
1677 			gen6_initialize_pt(vm, pt);
1678 			ppgtt->pd.page_table[pde] = pt;
1679 			gen6_write_pde(ppgtt, pde, pt);
1680 			flush = true;
1681 		}
1682 	}
1683 
1684 	if (flush) {
1685 		mark_tlbs_dirty(ppgtt);
1686 		wmb();
1687 	}
1688 
1689 	return 0;
1690 
1691 unwind_out:
1692 	gen6_ppgtt_clear_range(vm, from, start);
1693 	return -ENOMEM;
1694 }
1695 
1696 static int gen6_init_scratch(struct i915_address_space *vm)
1697 {
1698 	int ret;
1699 
1700 	ret = setup_scratch_page(vm, I915_GFP_DMA);
1701 	if (ret)
1702 		return ret;
1703 
1704 	vm->scratch_pt = alloc_pt(vm);
1705 	if (IS_ERR(vm->scratch_pt)) {
1706 		cleanup_scratch_page(vm);
1707 		return PTR_ERR(vm->scratch_pt);
1708 	}
1709 
1710 	gen6_initialize_pt(vm, vm->scratch_pt);
1711 
1712 	return 0;
1713 }
1714 
1715 static void gen6_free_scratch(struct i915_address_space *vm)
1716 {
1717 	free_pt(vm, vm->scratch_pt);
1718 	cleanup_scratch_page(vm);
1719 }
1720 
1721 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1722 {
1723 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1724 	struct i915_page_directory *pd = &ppgtt->pd;
1725 	struct i915_page_table *pt;
1726 	u32 pde;
1727 
1728 	drm_mm_remove_node(&ppgtt->node);
1729 
1730 	gen6_for_all_pdes(pt, pd, pde)
1731 		if (pt != vm->scratch_pt)
1732 			free_pt(vm, pt);
1733 
1734 	gen6_free_scratch(vm);
1735 }
1736 
1737 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1738 {
1739 	struct i915_address_space *vm = &ppgtt->base;
1740 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1741 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1742 	int ret;
1743 
1744 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1745 	 * allocator works in address space sizes, so it's multiplied by page
1746 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1747 	 */
1748 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1749 
1750 	ret = gen6_init_scratch(vm);
1751 	if (ret)
1752 		return ret;
1753 
1754 	ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1755 				  GEN6_PD_SIZE, GEN6_PD_ALIGN,
1756 				  I915_COLOR_UNEVICTABLE,
1757 				  0, ggtt->base.total,
1758 				  PIN_HIGH);
1759 	if (ret)
1760 		goto err_out;
1761 
1762 	if (ppgtt->node.start < ggtt->mappable_end)
1763 		DRM_DEBUG("Forced to use aperture for PDEs\n");
1764 
1765 	ppgtt->pd.base.ggtt_offset =
1766 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1767 
1768 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
1769 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1770 
1771 	return 0;
1772 
1773 err_out:
1774 	gen6_free_scratch(vm);
1775 	return ret;
1776 }
1777 
1778 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1779 {
1780 	return gen6_ppgtt_allocate_page_directories(ppgtt);
1781 }
1782 
1783 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1784 				  u64 start, u64 length)
1785 {
1786 	struct i915_page_table *unused;
1787 	u32 pde;
1788 
1789 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
1790 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1791 }
1792 
1793 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1794 {
1795 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1796 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1797 	int ret;
1798 
1799 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
1800 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
1801 		ppgtt->switch_mm = gen6_mm_switch;
1802 	else if (IS_HASWELL(dev_priv))
1803 		ppgtt->switch_mm = hsw_mm_switch;
1804 	else if (IS_GEN7(dev_priv))
1805 		ppgtt->switch_mm = gen7_mm_switch;
1806 	else
1807 		BUG();
1808 
1809 	ret = gen6_ppgtt_alloc(ppgtt);
1810 	if (ret)
1811 		return ret;
1812 
1813 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1814 
1815 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1816 	gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
1817 
1818 	ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
1819 	if (ret) {
1820 		gen6_ppgtt_cleanup(&ppgtt->base);
1821 		return ret;
1822 	}
1823 
1824 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1825 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1826 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1827 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1828 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1829 	ppgtt->debug_dump = gen6_dump_ppgtt;
1830 
1831 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1832 			 ppgtt->node.size >> 20,
1833 			 ppgtt->node.start / PAGE_SIZE);
1834 
1835 	DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
1836 			 ppgtt->pd.base.ggtt_offset << 10);
1837 
1838 	return 0;
1839 }
1840 
1841 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
1842 			   struct drm_i915_private *dev_priv)
1843 {
1844 	ppgtt->base.i915 = dev_priv;
1845 	ppgtt->base.dma = &dev_priv->drm.pdev->dev;
1846 
1847 	if (INTEL_INFO(dev_priv)->gen < 8)
1848 		return gen6_ppgtt_init(ppgtt);
1849 	else
1850 		return gen8_ppgtt_init(ppgtt);
1851 }
1852 
1853 static void i915_address_space_init(struct i915_address_space *vm,
1854 				    struct drm_i915_private *dev_priv,
1855 				    const char *name)
1856 {
1857 	i915_gem_timeline_init(dev_priv, &vm->timeline, name);
1858 
1859 	drm_mm_init(&vm->mm, 0, vm->total);
1860 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
1861 
1862 	INIT_LIST_HEAD(&vm->active_list);
1863 	INIT_LIST_HEAD(&vm->inactive_list);
1864 	INIT_LIST_HEAD(&vm->unbound_list);
1865 
1866 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
1867 	pagevec_init(&vm->free_pages, false);
1868 }
1869 
1870 static void i915_address_space_fini(struct i915_address_space *vm)
1871 {
1872 	if (pagevec_count(&vm->free_pages))
1873 		vm_free_pages_release(vm);
1874 
1875 	i915_gem_timeline_fini(&vm->timeline);
1876 	drm_mm_takedown(&vm->mm);
1877 	list_del(&vm->global_link);
1878 }
1879 
1880 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
1881 {
1882 	/* This function is for gtt related workarounds. This function is
1883 	 * called on driver load and after a GPU reset, so you can place
1884 	 * workarounds here even if they get overwritten by GPU reset.
1885 	 */
1886 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk */
1887 	if (IS_BROADWELL(dev_priv))
1888 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
1889 	else if (IS_CHERRYVIEW(dev_priv))
1890 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
1891 	else if (IS_GEN9_BC(dev_priv))
1892 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
1893 	else if (IS_GEN9_LP(dev_priv))
1894 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
1895 }
1896 
1897 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
1898 {
1899 	gtt_write_workarounds(dev_priv);
1900 
1901 	/* In the case of execlists, PPGTT is enabled by the context descriptor
1902 	 * and the PDPs are contained within the context itself.  We don't
1903 	 * need to do anything here. */
1904 	if (i915.enable_execlists)
1905 		return 0;
1906 
1907 	if (!USES_PPGTT(dev_priv))
1908 		return 0;
1909 
1910 	if (IS_GEN6(dev_priv))
1911 		gen6_ppgtt_enable(dev_priv);
1912 	else if (IS_GEN7(dev_priv))
1913 		gen7_ppgtt_enable(dev_priv);
1914 	else if (INTEL_GEN(dev_priv) >= 8)
1915 		gen8_ppgtt_enable(dev_priv);
1916 	else
1917 		MISSING_CASE(INTEL_GEN(dev_priv));
1918 
1919 	return 0;
1920 }
1921 
1922 struct i915_hw_ppgtt *
1923 i915_ppgtt_create(struct drm_i915_private *dev_priv,
1924 		  struct drm_i915_file_private *fpriv,
1925 		  const char *name)
1926 {
1927 	struct i915_hw_ppgtt *ppgtt;
1928 	int ret;
1929 
1930 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1931 	if (!ppgtt)
1932 		return ERR_PTR(-ENOMEM);
1933 
1934 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
1935 	if (ret) {
1936 		kfree(ppgtt);
1937 		return ERR_PTR(ret);
1938 	}
1939 
1940 	kref_init(&ppgtt->ref);
1941 	i915_address_space_init(&ppgtt->base, dev_priv, name);
1942 	ppgtt->base.file = fpriv;
1943 
1944 	trace_i915_ppgtt_create(&ppgtt->base);
1945 
1946 	return ppgtt;
1947 }
1948 
1949 void i915_ppgtt_close(struct i915_address_space *vm)
1950 {
1951 	struct list_head *phases[] = {
1952 		&vm->active_list,
1953 		&vm->inactive_list,
1954 		&vm->unbound_list,
1955 		NULL,
1956 	}, **phase;
1957 
1958 	GEM_BUG_ON(vm->closed);
1959 	vm->closed = true;
1960 
1961 	for (phase = phases; *phase; phase++) {
1962 		struct i915_vma *vma, *vn;
1963 
1964 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
1965 			if (!i915_vma_is_closed(vma))
1966 				i915_vma_close(vma);
1967 	}
1968 }
1969 
1970 void i915_ppgtt_release(struct kref *kref)
1971 {
1972 	struct i915_hw_ppgtt *ppgtt =
1973 		container_of(kref, struct i915_hw_ppgtt, ref);
1974 
1975 	trace_i915_ppgtt_release(&ppgtt->base);
1976 
1977 	/* vmas should already be unbound and destroyed */
1978 	WARN_ON(!list_empty(&ppgtt->base.active_list));
1979 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1980 	WARN_ON(!list_empty(&ppgtt->base.unbound_list));
1981 
1982 	ppgtt->base.cleanup(&ppgtt->base);
1983 	i915_address_space_fini(&ppgtt->base);
1984 	kfree(ppgtt);
1985 }
1986 
1987 /* Certain Gen5 chipsets require require idling the GPU before
1988  * unmapping anything from the GTT when VT-d is enabled.
1989  */
1990 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
1991 {
1992 #ifdef CONFIG_INTEL_IOMMU
1993 	/* Query intel_iommu to see if we need the workaround. Presumably that
1994 	 * was loaded first.
1995 	 */
1996 	if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
1997 		return true;
1998 #endif
1999 	return false;
2000 }
2001 
2002 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2003 {
2004 	struct intel_engine_cs *engine;
2005 	enum intel_engine_id id;
2006 
2007 	if (INTEL_INFO(dev_priv)->gen < 6)
2008 		return;
2009 
2010 	for_each_engine(engine, dev_priv, id) {
2011 		u32 fault_reg;
2012 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2013 		if (fault_reg & RING_FAULT_VALID) {
2014 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2015 					 "\tAddr: 0x%08lx\n"
2016 					 "\tAddress space: %s\n"
2017 					 "\tSource ID: %d\n"
2018 					 "\tType: %d\n",
2019 					 fault_reg & PAGE_MASK,
2020 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2021 					 RING_FAULT_SRCID(fault_reg),
2022 					 RING_FAULT_FAULT_TYPE(fault_reg));
2023 			I915_WRITE(RING_FAULT_REG(engine),
2024 				   fault_reg & ~RING_FAULT_VALID);
2025 		}
2026 	}
2027 
2028 	/* Engine specific init may not have been done till this point. */
2029 	if (dev_priv->engine[RCS])
2030 		POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2031 }
2032 
2033 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2034 {
2035 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2036 
2037 	/* Don't bother messing with faults pre GEN6 as we have little
2038 	 * documentation supporting that it's a good idea.
2039 	 */
2040 	if (INTEL_GEN(dev_priv) < 6)
2041 		return;
2042 
2043 	i915_check_and_clear_faults(dev_priv);
2044 
2045 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2046 
2047 	i915_ggtt_invalidate(dev_priv);
2048 }
2049 
2050 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2051 			       struct sg_table *pages)
2052 {
2053 	do {
2054 		if (dma_map_sg(&obj->base.dev->pdev->dev,
2055 			       pages->sgl, pages->nents,
2056 			       PCI_DMA_BIDIRECTIONAL))
2057 			return 0;
2058 
2059 		/* If the DMA remap fails, one cause can be that we have
2060 		 * too many objects pinned in a small remapping table,
2061 		 * such as swiotlb. Incrementally purge all other objects and
2062 		 * try again - if there are no more pages to remove from
2063 		 * the DMA remapper, i915_gem_shrink will return 0.
2064 		 */
2065 		GEM_BUG_ON(obj->mm.pages == pages);
2066 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2067 				 obj->base.size >> PAGE_SHIFT,
2068 				 I915_SHRINK_BOUND |
2069 				 I915_SHRINK_UNBOUND |
2070 				 I915_SHRINK_ACTIVE));
2071 
2072 	return -ENOSPC;
2073 }
2074 
2075 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2076 {
2077 	writeq(pte, addr);
2078 }
2079 
2080 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2081 				  dma_addr_t addr,
2082 				  u64 offset,
2083 				  enum i915_cache_level level,
2084 				  u32 unused)
2085 {
2086 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2087 	gen8_pte_t __iomem *pte =
2088 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2089 
2090 	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2091 
2092 	ggtt->invalidate(vm->i915);
2093 }
2094 
2095 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2096 				     struct sg_table *st,
2097 				     u64 start,
2098 				     enum i915_cache_level level,
2099 				     u32 unused)
2100 {
2101 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2102 	struct sgt_iter sgt_iter;
2103 	gen8_pte_t __iomem *gtt_entries;
2104 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2105 	dma_addr_t addr;
2106 
2107 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2108 	gtt_entries += start >> PAGE_SHIFT;
2109 	for_each_sgt_dma(addr, sgt_iter, st)
2110 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2111 
2112 	wmb();
2113 
2114 	/* This next bit makes the above posting read even more important. We
2115 	 * want to flush the TLBs only after we're certain all the PTE updates
2116 	 * have finished.
2117 	 */
2118 	ggtt->invalidate(vm->i915);
2119 }
2120 
2121 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2122 				  dma_addr_t addr,
2123 				  u64 offset,
2124 				  enum i915_cache_level level,
2125 				  u32 flags)
2126 {
2127 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2128 	gen6_pte_t __iomem *pte =
2129 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2130 
2131 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2132 
2133 	ggtt->invalidate(vm->i915);
2134 }
2135 
2136 /*
2137  * Binds an object into the global gtt with the specified cache level. The object
2138  * will be accessible to the GPU via commands whose operands reference offsets
2139  * within the global GTT as well as accessible by the GPU through the GMADR
2140  * mapped BAR (dev_priv->mm.gtt->gtt).
2141  */
2142 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2143 				     struct sg_table *st,
2144 				     u64 start,
2145 				     enum i915_cache_level level,
2146 				     u32 flags)
2147 {
2148 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2149 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2150 	unsigned int i = start >> PAGE_SHIFT;
2151 	struct sgt_iter iter;
2152 	dma_addr_t addr;
2153 	for_each_sgt_dma(addr, iter, st)
2154 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2155 	wmb();
2156 
2157 	/* This next bit makes the above posting read even more important. We
2158 	 * want to flush the TLBs only after we're certain all the PTE updates
2159 	 * have finished.
2160 	 */
2161 	ggtt->invalidate(vm->i915);
2162 }
2163 
2164 static void nop_clear_range(struct i915_address_space *vm,
2165 			    u64 start, u64 length)
2166 {
2167 }
2168 
2169 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2170 				  u64 start, u64 length)
2171 {
2172 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2173 	unsigned first_entry = start >> PAGE_SHIFT;
2174 	unsigned num_entries = length >> PAGE_SHIFT;
2175 	const gen8_pte_t scratch_pte =
2176 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2177 	gen8_pte_t __iomem *gtt_base =
2178 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2179 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2180 	int i;
2181 
2182 	if (WARN(num_entries > max_entries,
2183 		 "First entry = %d; Num entries = %d (max=%d)\n",
2184 		 first_entry, num_entries, max_entries))
2185 		num_entries = max_entries;
2186 
2187 	for (i = 0; i < num_entries; i++)
2188 		gen8_set_pte(&gtt_base[i], scratch_pte);
2189 }
2190 
2191 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2192 				  u64 start, u64 length)
2193 {
2194 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2195 	unsigned first_entry = start >> PAGE_SHIFT;
2196 	unsigned num_entries = length >> PAGE_SHIFT;
2197 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2198 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2199 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2200 	int i;
2201 
2202 	if (WARN(num_entries > max_entries,
2203 		 "First entry = %d; Num entries = %d (max=%d)\n",
2204 		 first_entry, num_entries, max_entries))
2205 		num_entries = max_entries;
2206 
2207 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2208 				     I915_CACHE_LLC, 0);
2209 
2210 	for (i = 0; i < num_entries; i++)
2211 		iowrite32(scratch_pte, &gtt_base[i]);
2212 }
2213 
2214 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2215 				  dma_addr_t addr,
2216 				  u64 offset,
2217 				  enum i915_cache_level cache_level,
2218 				  u32 unused)
2219 {
2220 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2221 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2222 
2223 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2224 }
2225 
2226 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2227 				     struct sg_table *pages,
2228 				     u64 start,
2229 				     enum i915_cache_level cache_level,
2230 				     u32 unused)
2231 {
2232 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2233 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2234 
2235 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2236 }
2237 
2238 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2239 				  u64 start, u64 length)
2240 {
2241 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2242 }
2243 
2244 static int ggtt_bind_vma(struct i915_vma *vma,
2245 			 enum i915_cache_level cache_level,
2246 			 u32 flags)
2247 {
2248 	struct drm_i915_private *i915 = vma->vm->i915;
2249 	struct drm_i915_gem_object *obj = vma->obj;
2250 	u32 pte_flags;
2251 
2252 	if (unlikely(!vma->pages)) {
2253 		int ret = i915_get_ggtt_vma_pages(vma);
2254 		if (ret)
2255 			return ret;
2256 	}
2257 
2258 	/* Currently applicable only to VLV */
2259 	pte_flags = 0;
2260 	if (obj->gt_ro)
2261 		pte_flags |= PTE_READ_ONLY;
2262 
2263 	intel_runtime_pm_get(i915);
2264 	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2265 				cache_level, pte_flags);
2266 	intel_runtime_pm_put(i915);
2267 
2268 	/*
2269 	 * Without aliasing PPGTT there's no difference between
2270 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2271 	 * upgrade to both bound if we bind either to avoid double-binding.
2272 	 */
2273 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2274 
2275 	return 0;
2276 }
2277 
2278 static void ggtt_unbind_vma(struct i915_vma *vma)
2279 {
2280 	struct drm_i915_private *i915 = vma->vm->i915;
2281 
2282 	intel_runtime_pm_get(i915);
2283 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2284 	intel_runtime_pm_put(i915);
2285 }
2286 
2287 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2288 				 enum i915_cache_level cache_level,
2289 				 u32 flags)
2290 {
2291 	struct drm_i915_private *i915 = vma->vm->i915;
2292 	u32 pte_flags;
2293 	int ret;
2294 
2295 	if (unlikely(!vma->pages)) {
2296 		ret = i915_get_ggtt_vma_pages(vma);
2297 		if (ret)
2298 			return ret;
2299 	}
2300 
2301 	/* Currently applicable only to VLV */
2302 	pte_flags = 0;
2303 	if (vma->obj->gt_ro)
2304 		pte_flags |= PTE_READ_ONLY;
2305 
2306 	if (flags & I915_VMA_LOCAL_BIND) {
2307 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2308 
2309 		if (appgtt->base.allocate_va_range) {
2310 			ret = appgtt->base.allocate_va_range(&appgtt->base,
2311 							     vma->node.start,
2312 							     vma->node.size);
2313 			if (ret)
2314 				goto err_pages;
2315 		}
2316 
2317 		appgtt->base.insert_entries(&appgtt->base,
2318 					    vma->pages, vma->node.start,
2319 					    cache_level, pte_flags);
2320 	}
2321 
2322 	if (flags & I915_VMA_GLOBAL_BIND) {
2323 		intel_runtime_pm_get(i915);
2324 		vma->vm->insert_entries(vma->vm,
2325 					vma->pages, vma->node.start,
2326 					cache_level, pte_flags);
2327 		intel_runtime_pm_put(i915);
2328 	}
2329 
2330 	return 0;
2331 
2332 err_pages:
2333 	if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) {
2334 		if (vma->pages != vma->obj->mm.pages) {
2335 			GEM_BUG_ON(!vma->pages);
2336 			sg_free_table(vma->pages);
2337 			kfree(vma->pages);
2338 		}
2339 		vma->pages = NULL;
2340 	}
2341 	return ret;
2342 }
2343 
2344 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2345 {
2346 	struct drm_i915_private *i915 = vma->vm->i915;
2347 
2348 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2349 		intel_runtime_pm_get(i915);
2350 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2351 		intel_runtime_pm_put(i915);
2352 	}
2353 
2354 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2355 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2356 
2357 		vm->clear_range(vm, vma->node.start, vma->size);
2358 	}
2359 }
2360 
2361 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2362 			       struct sg_table *pages)
2363 {
2364 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2365 	struct device *kdev = &dev_priv->drm.pdev->dev;
2366 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2367 
2368 	if (unlikely(ggtt->do_idle_maps)) {
2369 		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2370 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2371 			/* Wait a bit, in hopes it avoids the hang */
2372 			udelay(10);
2373 		}
2374 	}
2375 
2376 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2377 }
2378 
2379 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2380 				  unsigned long color,
2381 				  u64 *start,
2382 				  u64 *end)
2383 {
2384 	if (node->allocated && node->color != color)
2385 		*start += I915_GTT_PAGE_SIZE;
2386 
2387 	/* Also leave a space between the unallocated reserved node after the
2388 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2389 	 * to insert a guard page to prevent prefetches crossing over the
2390 	 * GTT boundary.
2391 	 */
2392 	node = list_next_entry(node, node_list);
2393 	if (node->color != color)
2394 		*end -= I915_GTT_PAGE_SIZE;
2395 }
2396 
2397 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2398 {
2399 	struct i915_ggtt *ggtt = &i915->ggtt;
2400 	struct i915_hw_ppgtt *ppgtt;
2401 	int err;
2402 
2403 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2404 	if (IS_ERR(ppgtt))
2405 		return PTR_ERR(ppgtt);
2406 
2407 	if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2408 		err = -ENODEV;
2409 		goto err_ppgtt;
2410 	}
2411 
2412 	if (ppgtt->base.allocate_va_range) {
2413 		/* Note we only pre-allocate as far as the end of the global
2414 		 * GTT. On 48b / 4-level page-tables, the difference is very,
2415 		 * very significant! We have to preallocate as GVT/vgpu does
2416 		 * not like the page directory disappearing.
2417 		 */
2418 		err = ppgtt->base.allocate_va_range(&ppgtt->base,
2419 						    0, ggtt->base.total);
2420 		if (err)
2421 			goto err_ppgtt;
2422 	}
2423 
2424 	i915->mm.aliasing_ppgtt = ppgtt;
2425 
2426 	WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2427 	ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2428 
2429 	WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2430 	ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2431 
2432 	return 0;
2433 
2434 err_ppgtt:
2435 	i915_ppgtt_put(ppgtt);
2436 	return err;
2437 }
2438 
2439 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2440 {
2441 	struct i915_ggtt *ggtt = &i915->ggtt;
2442 	struct i915_hw_ppgtt *ppgtt;
2443 
2444 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2445 	if (!ppgtt)
2446 		return;
2447 
2448 	i915_ppgtt_put(ppgtt);
2449 
2450 	ggtt->base.bind_vma = ggtt_bind_vma;
2451 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2452 }
2453 
2454 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2455 {
2456 	/* Let GEM Manage all of the aperture.
2457 	 *
2458 	 * However, leave one page at the end still bound to the scratch page.
2459 	 * There are a number of places where the hardware apparently prefetches
2460 	 * past the end of the object, and we've seen multiple hangs with the
2461 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2462 	 * aperture.  One page should be enough to keep any prefetching inside
2463 	 * of the aperture.
2464 	 */
2465 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2466 	unsigned long hole_start, hole_end;
2467 	struct drm_mm_node *entry;
2468 	int ret;
2469 
2470 	ret = intel_vgt_balloon(dev_priv);
2471 	if (ret)
2472 		return ret;
2473 
2474 	/* Reserve a mappable slot for our lockless error capture */
2475 	ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2476 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2477 					  0, ggtt->mappable_end,
2478 					  DRM_MM_INSERT_LOW);
2479 	if (ret)
2480 		return ret;
2481 
2482 	/* Clear any non-preallocated blocks */
2483 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2484 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2485 			      hole_start, hole_end);
2486 		ggtt->base.clear_range(&ggtt->base, hole_start,
2487 				       hole_end - hole_start);
2488 	}
2489 
2490 	/* And finally clear the reserved guard page */
2491 	ggtt->base.clear_range(&ggtt->base,
2492 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2493 
2494 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2495 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2496 		if (ret)
2497 			goto err;
2498 	}
2499 
2500 	return 0;
2501 
2502 err:
2503 	drm_mm_remove_node(&ggtt->error_capture);
2504 	return ret;
2505 }
2506 
2507 /**
2508  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2509  * @dev_priv: i915 device
2510  */
2511 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2512 {
2513 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2514 	struct i915_vma *vma, *vn;
2515 
2516 	ggtt->base.closed = true;
2517 
2518 	mutex_lock(&dev_priv->drm.struct_mutex);
2519 	WARN_ON(!list_empty(&ggtt->base.active_list));
2520 	list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2521 		WARN_ON(i915_vma_unbind(vma));
2522 	mutex_unlock(&dev_priv->drm.struct_mutex);
2523 
2524 	i915_gem_cleanup_stolen(&dev_priv->drm);
2525 
2526 	mutex_lock(&dev_priv->drm.struct_mutex);
2527 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2528 
2529 	if (drm_mm_node_allocated(&ggtt->error_capture))
2530 		drm_mm_remove_node(&ggtt->error_capture);
2531 
2532 	if (drm_mm_initialized(&ggtt->base.mm)) {
2533 		intel_vgt_deballoon(dev_priv);
2534 		i915_address_space_fini(&ggtt->base);
2535 	}
2536 
2537 	ggtt->base.cleanup(&ggtt->base);
2538 	mutex_unlock(&dev_priv->drm.struct_mutex);
2539 
2540 	arch_phys_wc_del(ggtt->mtrr);
2541 	io_mapping_fini(&ggtt->mappable);
2542 }
2543 
2544 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2545 {
2546 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2547 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2548 	return snb_gmch_ctl << 20;
2549 }
2550 
2551 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2552 {
2553 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2554 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2555 	if (bdw_gmch_ctl)
2556 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2557 
2558 #ifdef CONFIG_X86_32
2559 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2560 	if (bdw_gmch_ctl > 4)
2561 		bdw_gmch_ctl = 4;
2562 #endif
2563 
2564 	return bdw_gmch_ctl << 20;
2565 }
2566 
2567 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2568 {
2569 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2570 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2571 
2572 	if (gmch_ctrl)
2573 		return 1 << (20 + gmch_ctrl);
2574 
2575 	return 0;
2576 }
2577 
2578 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2579 {
2580 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2581 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2582 	return snb_gmch_ctl << 25; /* 32 MB units */
2583 }
2584 
2585 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2586 {
2587 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2588 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2589 	return bdw_gmch_ctl << 25; /* 32 MB units */
2590 }
2591 
2592 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2593 {
2594 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2595 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2596 
2597 	/*
2598 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2599 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2600 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2601 	 */
2602 	if (gmch_ctrl < 0x11)
2603 		return gmch_ctrl << 25;
2604 	else if (gmch_ctrl < 0x17)
2605 		return (gmch_ctrl - 0x11 + 2) << 22;
2606 	else
2607 		return (gmch_ctrl - 0x17 + 9) << 22;
2608 }
2609 
2610 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2611 {
2612 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2613 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2614 
2615 	if (gen9_gmch_ctl < 0xf0)
2616 		return gen9_gmch_ctl << 25; /* 32 MB units */
2617 	else
2618 		/* 4MB increments starting at 0xf0 for 4MB */
2619 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2620 }
2621 
2622 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2623 {
2624 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2625 	struct pci_dev *pdev = dev_priv->drm.pdev;
2626 	phys_addr_t phys_addr;
2627 	int ret;
2628 
2629 	/* For Modern GENs the PTEs and register space are split in the BAR */
2630 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2631 
2632 	/*
2633 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2634 	 * dropped. For WC mappings in general we have 64 byte burst writes
2635 	 * when the WC buffer is flushed, so we can't use it, but have to
2636 	 * resort to an uncached mapping. The WC issue is easily caught by the
2637 	 * readback check when writing GTT PTE entries.
2638 	 */
2639 	if (IS_GEN9_LP(dev_priv))
2640 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2641 	else
2642 		ggtt->gsm = ioremap_wc(phys_addr, size);
2643 	if (!ggtt->gsm) {
2644 		DRM_ERROR("Failed to map the ggtt page table\n");
2645 		return -ENOMEM;
2646 	}
2647 
2648 	ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2649 	if (ret) {
2650 		DRM_ERROR("Scratch setup failed\n");
2651 		/* iounmap will also get called at remove, but meh */
2652 		iounmap(ggtt->gsm);
2653 		return ret;
2654 	}
2655 
2656 	return 0;
2657 }
2658 
2659 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2660  * bits. When using advanced contexts each context stores its own PAT, but
2661  * writing this data shouldn't be harmful even in those cases. */
2662 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2663 {
2664 	u64 pat;
2665 
2666 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2667 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2668 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2669 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2670 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2671 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2672 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2673 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2674 
2675 	if (!USES_PPGTT(dev_priv))
2676 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2677 		 * so RTL will always use the value corresponding to
2678 		 * pat_sel = 000".
2679 		 * So let's disable cache for GGTT to avoid screen corruptions.
2680 		 * MOCS still can be used though.
2681 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2682 		 * before this patch, i.e. the same uncached + snooping access
2683 		 * like on gen6/7 seems to be in effect.
2684 		 * - So this just fixes blitter/render access. Again it looks
2685 		 * like it's not just uncached access, but uncached + snooping.
2686 		 * So we can still hold onto all our assumptions wrt cpu
2687 		 * clflushing on LLC machines.
2688 		 */
2689 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2690 
2691 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2692 	 * write would work. */
2693 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2694 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2695 }
2696 
2697 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2698 {
2699 	u64 pat;
2700 
2701 	/*
2702 	 * Map WB on BDW to snooped on CHV.
2703 	 *
2704 	 * Only the snoop bit has meaning for CHV, the rest is
2705 	 * ignored.
2706 	 *
2707 	 * The hardware will never snoop for certain types of accesses:
2708 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2709 	 * - PPGTT page tables
2710 	 * - some other special cycles
2711 	 *
2712 	 * As with BDW, we also need to consider the following for GT accesses:
2713 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2714 	 * so RTL will always use the value corresponding to
2715 	 * pat_sel = 000".
2716 	 * Which means we must set the snoop bit in PAT entry 0
2717 	 * in order to keep the global status page working.
2718 	 */
2719 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2720 	      GEN8_PPAT(1, 0) |
2721 	      GEN8_PPAT(2, 0) |
2722 	      GEN8_PPAT(3, 0) |
2723 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2724 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2725 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2726 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2727 
2728 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2729 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2730 }
2731 
2732 static void gen6_gmch_remove(struct i915_address_space *vm)
2733 {
2734 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2735 
2736 	iounmap(ggtt->gsm);
2737 	cleanup_scratch_page(vm);
2738 }
2739 
2740 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2741 {
2742 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2743 	struct pci_dev *pdev = dev_priv->drm.pdev;
2744 	unsigned int size;
2745 	u16 snb_gmch_ctl;
2746 
2747 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2748 	ggtt->mappable_base = pci_resource_start(pdev, 2);
2749 	ggtt->mappable_end = pci_resource_len(pdev, 2);
2750 
2751 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
2752 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2753 
2754 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2755 
2756 	if (INTEL_GEN(dev_priv) >= 9) {
2757 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
2758 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
2759 	} else if (IS_CHERRYVIEW(dev_priv)) {
2760 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
2761 		size = chv_get_total_gtt_size(snb_gmch_ctl);
2762 	} else {
2763 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
2764 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
2765 	}
2766 
2767 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2768 
2769 	if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2770 		chv_setup_private_ppat(dev_priv);
2771 	else
2772 		bdw_setup_private_ppat(dev_priv);
2773 
2774 	ggtt->base.cleanup = gen6_gmch_remove;
2775 	ggtt->base.bind_vma = ggtt_bind_vma;
2776 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2777 	ggtt->base.insert_page = gen8_ggtt_insert_page;
2778 	ggtt->base.clear_range = nop_clear_range;
2779 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
2780 		ggtt->base.clear_range = gen8_ggtt_clear_range;
2781 
2782 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
2783 
2784 	ggtt->invalidate = gen6_ggtt_invalidate;
2785 
2786 	return ggtt_probe_common(ggtt, size);
2787 }
2788 
2789 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
2790 {
2791 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2792 	struct pci_dev *pdev = dev_priv->drm.pdev;
2793 	unsigned int size;
2794 	u16 snb_gmch_ctl;
2795 
2796 	ggtt->mappable_base = pci_resource_start(pdev, 2);
2797 	ggtt->mappable_end = pci_resource_len(pdev, 2);
2798 
2799 	/* 64/512MB is the current min/max we actually know of, but this is just
2800 	 * a coarse sanity check.
2801 	 */
2802 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
2803 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
2804 		return -ENXIO;
2805 	}
2806 
2807 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
2808 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
2809 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2810 
2811 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
2812 
2813 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
2814 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2815 
2816 	ggtt->base.clear_range = gen6_ggtt_clear_range;
2817 	ggtt->base.insert_page = gen6_ggtt_insert_page;
2818 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
2819 	ggtt->base.bind_vma = ggtt_bind_vma;
2820 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2821 	ggtt->base.cleanup = gen6_gmch_remove;
2822 
2823 	ggtt->invalidate = gen6_ggtt_invalidate;
2824 
2825 	if (HAS_EDRAM(dev_priv))
2826 		ggtt->base.pte_encode = iris_pte_encode;
2827 	else if (IS_HASWELL(dev_priv))
2828 		ggtt->base.pte_encode = hsw_pte_encode;
2829 	else if (IS_VALLEYVIEW(dev_priv))
2830 		ggtt->base.pte_encode = byt_pte_encode;
2831 	else if (INTEL_GEN(dev_priv) >= 7)
2832 		ggtt->base.pte_encode = ivb_pte_encode;
2833 	else
2834 		ggtt->base.pte_encode = snb_pte_encode;
2835 
2836 	return ggtt_probe_common(ggtt, size);
2837 }
2838 
2839 static void i915_gmch_remove(struct i915_address_space *vm)
2840 {
2841 	intel_gmch_remove();
2842 }
2843 
2844 static int i915_gmch_probe(struct i915_ggtt *ggtt)
2845 {
2846 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2847 	int ret;
2848 
2849 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
2850 	if (!ret) {
2851 		DRM_ERROR("failed to set up gmch\n");
2852 		return -EIO;
2853 	}
2854 
2855 	intel_gtt_get(&ggtt->base.total,
2856 		      &ggtt->stolen_size,
2857 		      &ggtt->mappable_base,
2858 		      &ggtt->mappable_end);
2859 
2860 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
2861 	ggtt->base.insert_page = i915_ggtt_insert_page;
2862 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
2863 	ggtt->base.clear_range = i915_ggtt_clear_range;
2864 	ggtt->base.bind_vma = ggtt_bind_vma;
2865 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2866 	ggtt->base.cleanup = i915_gmch_remove;
2867 
2868 	ggtt->invalidate = gmch_ggtt_invalidate;
2869 
2870 	if (unlikely(ggtt->do_idle_maps))
2871 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2872 
2873 	return 0;
2874 }
2875 
2876 /**
2877  * i915_ggtt_probe_hw - Probe GGTT hardware location
2878  * @dev_priv: i915 device
2879  */
2880 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
2881 {
2882 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2883 	int ret;
2884 
2885 	ggtt->base.i915 = dev_priv;
2886 	ggtt->base.dma = &dev_priv->drm.pdev->dev;
2887 
2888 	if (INTEL_GEN(dev_priv) <= 5)
2889 		ret = i915_gmch_probe(ggtt);
2890 	else if (INTEL_GEN(dev_priv) < 8)
2891 		ret = gen6_gmch_probe(ggtt);
2892 	else
2893 		ret = gen8_gmch_probe(ggtt);
2894 	if (ret)
2895 		return ret;
2896 
2897 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
2898 	 * This is easier than doing range restriction on the fly, as we
2899 	 * currently don't have any bits spare to pass in this upper
2900 	 * restriction!
2901 	 */
2902 	if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
2903 		ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
2904 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
2905 	}
2906 
2907 	if ((ggtt->base.total - 1) >> 32) {
2908 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
2909 			  " of address space! Found %lldM!\n",
2910 			  ggtt->base.total >> 20);
2911 		ggtt->base.total = 1ULL << 32;
2912 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
2913 	}
2914 
2915 	if (ggtt->mappable_end > ggtt->base.total) {
2916 		DRM_ERROR("mappable aperture extends past end of GGTT,"
2917 			  " aperture=%llx, total=%llx\n",
2918 			  ggtt->mappable_end, ggtt->base.total);
2919 		ggtt->mappable_end = ggtt->base.total;
2920 	}
2921 
2922 	/* GMADR is the PCI mmio aperture into the global GTT. */
2923 	DRM_INFO("Memory usable by graphics device = %lluM\n",
2924 		 ggtt->base.total >> 20);
2925 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
2926 	DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
2927 #ifdef CONFIG_INTEL_IOMMU
2928 	if (intel_iommu_gfx_mapped)
2929 		DRM_INFO("VT-d active for gfx access\n");
2930 #endif
2931 
2932 	return 0;
2933 }
2934 
2935 /**
2936  * i915_ggtt_init_hw - Initialize GGTT hardware
2937  * @dev_priv: i915 device
2938  */
2939 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
2940 {
2941 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2942 	int ret;
2943 
2944 	INIT_LIST_HEAD(&dev_priv->vm_list);
2945 
2946 	/* Note that we use page colouring to enforce a guard page at the
2947 	 * end of the address space. This is required as the CS may prefetch
2948 	 * beyond the end of the batch buffer, across the page boundary,
2949 	 * and beyond the end of the GTT if we do not provide a guard.
2950 	 */
2951 	mutex_lock(&dev_priv->drm.struct_mutex);
2952 	i915_address_space_init(&ggtt->base, dev_priv, "[global]");
2953 	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
2954 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2955 	mutex_unlock(&dev_priv->drm.struct_mutex);
2956 
2957 	if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
2958 				dev_priv->ggtt.mappable_base,
2959 				dev_priv->ggtt.mappable_end)) {
2960 		ret = -EIO;
2961 		goto out_gtt_cleanup;
2962 	}
2963 
2964 	ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
2965 
2966 	/*
2967 	 * Initialise stolen early so that we may reserve preallocated
2968 	 * objects for the BIOS to KMS transition.
2969 	 */
2970 	ret = i915_gem_init_stolen(dev_priv);
2971 	if (ret)
2972 		goto out_gtt_cleanup;
2973 
2974 	return 0;
2975 
2976 out_gtt_cleanup:
2977 	ggtt->base.cleanup(&ggtt->base);
2978 	return ret;
2979 }
2980 
2981 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
2982 {
2983 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
2984 		return -EIO;
2985 
2986 	return 0;
2987 }
2988 
2989 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
2990 {
2991 	i915->ggtt.invalidate = guc_ggtt_invalidate;
2992 }
2993 
2994 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
2995 {
2996 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
2997 }
2998 
2999 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3000 {
3001 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3002 	struct drm_i915_gem_object *obj, *on;
3003 
3004 	i915_check_and_clear_faults(dev_priv);
3005 
3006 	/* First fill our portion of the GTT with scratch pages */
3007 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3008 
3009 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3010 
3011 	/* clflush objects bound into the GGTT and rebind them. */
3012 	list_for_each_entry_safe(obj, on,
3013 				 &dev_priv->mm.bound_list, global_link) {
3014 		bool ggtt_bound = false;
3015 		struct i915_vma *vma;
3016 
3017 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3018 			if (vma->vm != &ggtt->base)
3019 				continue;
3020 
3021 			if (!i915_vma_unbind(vma))
3022 				continue;
3023 
3024 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3025 					      PIN_UPDATE));
3026 			ggtt_bound = true;
3027 		}
3028 
3029 		if (ggtt_bound)
3030 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3031 	}
3032 
3033 	ggtt->base.closed = false;
3034 
3035 	if (INTEL_GEN(dev_priv) >= 8) {
3036 		if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3037 			chv_setup_private_ppat(dev_priv);
3038 		else
3039 			bdw_setup_private_ppat(dev_priv);
3040 
3041 		return;
3042 	}
3043 
3044 	if (USES_PPGTT(dev_priv)) {
3045 		struct i915_address_space *vm;
3046 
3047 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3048 			struct i915_hw_ppgtt *ppgtt;
3049 
3050 			if (i915_is_ggtt(vm))
3051 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3052 			else
3053 				ppgtt = i915_vm_to_ppgtt(vm);
3054 
3055 			gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3056 		}
3057 	}
3058 
3059 	i915_ggtt_invalidate(dev_priv);
3060 }
3061 
3062 static struct scatterlist *
3063 rotate_pages(const dma_addr_t *in, unsigned int offset,
3064 	     unsigned int width, unsigned int height,
3065 	     unsigned int stride,
3066 	     struct sg_table *st, struct scatterlist *sg)
3067 {
3068 	unsigned int column, row;
3069 	unsigned int src_idx;
3070 
3071 	for (column = 0; column < width; column++) {
3072 		src_idx = stride * (height - 1) + column;
3073 		for (row = 0; row < height; row++) {
3074 			st->nents++;
3075 			/* We don't need the pages, but need to initialize
3076 			 * the entries so the sg list can be happily traversed.
3077 			 * The only thing we need are DMA addresses.
3078 			 */
3079 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3080 			sg_dma_address(sg) = in[offset + src_idx];
3081 			sg_dma_len(sg) = PAGE_SIZE;
3082 			sg = sg_next(sg);
3083 			src_idx -= stride;
3084 		}
3085 	}
3086 
3087 	return sg;
3088 }
3089 
3090 static noinline struct sg_table *
3091 intel_rotate_pages(struct intel_rotation_info *rot_info,
3092 		   struct drm_i915_gem_object *obj)
3093 {
3094 	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3095 	unsigned int size = intel_rotation_info_size(rot_info);
3096 	struct sgt_iter sgt_iter;
3097 	dma_addr_t dma_addr;
3098 	unsigned long i;
3099 	dma_addr_t *page_addr_list;
3100 	struct sg_table *st;
3101 	struct scatterlist *sg;
3102 	int ret = -ENOMEM;
3103 
3104 	/* Allocate a temporary list of source pages for random access. */
3105 	page_addr_list = drm_malloc_gfp(n_pages,
3106 					sizeof(dma_addr_t),
3107 					GFP_TEMPORARY);
3108 	if (!page_addr_list)
3109 		return ERR_PTR(ret);
3110 
3111 	/* Allocate target SG list. */
3112 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3113 	if (!st)
3114 		goto err_st_alloc;
3115 
3116 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3117 	if (ret)
3118 		goto err_sg_alloc;
3119 
3120 	/* Populate source page list from the object. */
3121 	i = 0;
3122 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3123 		page_addr_list[i++] = dma_addr;
3124 
3125 	GEM_BUG_ON(i != n_pages);
3126 	st->nents = 0;
3127 	sg = st->sgl;
3128 
3129 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3130 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3131 				  rot_info->plane[i].width, rot_info->plane[i].height,
3132 				  rot_info->plane[i].stride, st, sg);
3133 	}
3134 
3135 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3136 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3137 
3138 	drm_free_large(page_addr_list);
3139 
3140 	return st;
3141 
3142 err_sg_alloc:
3143 	kfree(st);
3144 err_st_alloc:
3145 	drm_free_large(page_addr_list);
3146 
3147 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3148 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3149 
3150 	return ERR_PTR(ret);
3151 }
3152 
3153 static noinline struct sg_table *
3154 intel_partial_pages(const struct i915_ggtt_view *view,
3155 		    struct drm_i915_gem_object *obj)
3156 {
3157 	struct sg_table *st;
3158 	struct scatterlist *sg, *iter;
3159 	unsigned int count = view->partial.size;
3160 	unsigned int offset;
3161 	int ret = -ENOMEM;
3162 
3163 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3164 	if (!st)
3165 		goto err_st_alloc;
3166 
3167 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3168 	if (ret)
3169 		goto err_sg_alloc;
3170 
3171 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3172 	GEM_BUG_ON(!iter);
3173 
3174 	sg = st->sgl;
3175 	st->nents = 0;
3176 	do {
3177 		unsigned int len;
3178 
3179 		len = min(iter->length - (offset << PAGE_SHIFT),
3180 			  count << PAGE_SHIFT);
3181 		sg_set_page(sg, NULL, len, 0);
3182 		sg_dma_address(sg) =
3183 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3184 		sg_dma_len(sg) = len;
3185 
3186 		st->nents++;
3187 		count -= len >> PAGE_SHIFT;
3188 		if (count == 0) {
3189 			sg_mark_end(sg);
3190 			return st;
3191 		}
3192 
3193 		sg = __sg_next(sg);
3194 		iter = __sg_next(iter);
3195 		offset = 0;
3196 	} while (1);
3197 
3198 err_sg_alloc:
3199 	kfree(st);
3200 err_st_alloc:
3201 	return ERR_PTR(ret);
3202 }
3203 
3204 static int
3205 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3206 {
3207 	int ret;
3208 
3209 	/* The vma->pages are only valid within the lifespan of the borrowed
3210 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3211 	 * must be the vma->pages. A simple rule is that vma->pages must only
3212 	 * be accessed when the obj->mm.pages are pinned.
3213 	 */
3214 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3215 
3216 	switch (vma->ggtt_view.type) {
3217 	case I915_GGTT_VIEW_NORMAL:
3218 		vma->pages = vma->obj->mm.pages;
3219 		return 0;
3220 
3221 	case I915_GGTT_VIEW_ROTATED:
3222 		vma->pages =
3223 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3224 		break;
3225 
3226 	case I915_GGTT_VIEW_PARTIAL:
3227 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3228 		break;
3229 
3230 	default:
3231 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3232 			  vma->ggtt_view.type);
3233 		return -EINVAL;
3234 	}
3235 
3236 	ret = 0;
3237 	if (unlikely(IS_ERR(vma->pages))) {
3238 		ret = PTR_ERR(vma->pages);
3239 		vma->pages = NULL;
3240 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3241 			  vma->ggtt_view.type, ret);
3242 	}
3243 	return ret;
3244 }
3245 
3246 /**
3247  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3248  * @vm: the &struct i915_address_space
3249  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3250  * @size: how much space to allocate inside the GTT,
3251  *        must be #I915_GTT_PAGE_SIZE aligned
3252  * @offset: where to insert inside the GTT,
3253  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3254  *          (@offset + @size) must fit within the address space
3255  * @color: color to apply to node, if this node is not from a VMA,
3256  *         color must be #I915_COLOR_UNEVICTABLE
3257  * @flags: control search and eviction behaviour
3258  *
3259  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3260  * the address space (using @size and @color). If the @node does not fit, it
3261  * tries to evict any overlapping nodes from the GTT, including any
3262  * neighbouring nodes if the colors do not match (to ensure guard pages between
3263  * differing domains). See i915_gem_evict_for_node() for the gory details
3264  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3265  * evicting active overlapping objects, and any overlapping node that is pinned
3266  * or marked as unevictable will also result in failure.
3267  *
3268  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3269  * asked to wait for eviction and interrupted.
3270  */
3271 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3272 			 struct drm_mm_node *node,
3273 			 u64 size, u64 offset, unsigned long color,
3274 			 unsigned int flags)
3275 {
3276 	int err;
3277 
3278 	GEM_BUG_ON(!size);
3279 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3280 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3281 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3282 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3283 	GEM_BUG_ON(drm_mm_node_allocated(node));
3284 
3285 	node->size = size;
3286 	node->start = offset;
3287 	node->color = color;
3288 
3289 	err = drm_mm_reserve_node(&vm->mm, node);
3290 	if (err != -ENOSPC)
3291 		return err;
3292 
3293 	err = i915_gem_evict_for_node(vm, node, flags);
3294 	if (err == 0)
3295 		err = drm_mm_reserve_node(&vm->mm, node);
3296 
3297 	return err;
3298 }
3299 
3300 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3301 {
3302 	u64 range, addr;
3303 
3304 	GEM_BUG_ON(range_overflows(start, len, end));
3305 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3306 
3307 	range = round_down(end - len, align) - round_up(start, align);
3308 	if (range) {
3309 		if (sizeof(unsigned long) == sizeof(u64)) {
3310 			addr = get_random_long();
3311 		} else {
3312 			addr = get_random_int();
3313 			if (range > U32_MAX) {
3314 				addr <<= 32;
3315 				addr |= get_random_int();
3316 			}
3317 		}
3318 		div64_u64_rem(addr, range, &addr);
3319 		start += addr;
3320 	}
3321 
3322 	return round_up(start, align);
3323 }
3324 
3325 /**
3326  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3327  * @vm: the &struct i915_address_space
3328  * @node: the &struct drm_mm_node (typically i915_vma.node)
3329  * @size: how much space to allocate inside the GTT,
3330  *        must be #I915_GTT_PAGE_SIZE aligned
3331  * @alignment: required alignment of starting offset, may be 0 but
3332  *             if specified, this must be a power-of-two and at least
3333  *             #I915_GTT_MIN_ALIGNMENT
3334  * @color: color to apply to node
3335  * @start: start of any range restriction inside GTT (0 for all),
3336  *         must be #I915_GTT_PAGE_SIZE aligned
3337  * @end: end of any range restriction inside GTT (U64_MAX for all),
3338  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3339  * @flags: control search and eviction behaviour
3340  *
3341  * i915_gem_gtt_insert() first searches for an available hole into which
3342  * is can insert the node. The hole address is aligned to @alignment and
3343  * its @size must then fit entirely within the [@start, @end] bounds. The
3344  * nodes on either side of the hole must match @color, or else a guard page
3345  * will be inserted between the two nodes (or the node evicted). If no
3346  * suitable hole is found, first a victim is randomly selected and tested
3347  * for eviction, otherwise then the LRU list of objects within the GTT
3348  * is scanned to find the first set of replacement nodes to create the hole.
3349  * Those old overlapping nodes are evicted from the GTT (and so must be
3350  * rebound before any future use). Any node that is currently pinned cannot
3351  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3352  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3353  * searching for an eviction candidate. See i915_gem_evict_something() for
3354  * the gory details on the eviction algorithm.
3355  *
3356  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3357  * asked to wait for eviction and interrupted.
3358  */
3359 int i915_gem_gtt_insert(struct i915_address_space *vm,
3360 			struct drm_mm_node *node,
3361 			u64 size, u64 alignment, unsigned long color,
3362 			u64 start, u64 end, unsigned int flags)
3363 {
3364 	enum drm_mm_insert_mode mode;
3365 	u64 offset;
3366 	int err;
3367 
3368 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3369 	GEM_BUG_ON(!size);
3370 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3371 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3372 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3373 	GEM_BUG_ON(start >= end);
3374 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3375 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3376 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3377 	GEM_BUG_ON(drm_mm_node_allocated(node));
3378 
3379 	if (unlikely(range_overflows(start, size, end)))
3380 		return -ENOSPC;
3381 
3382 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3383 		return -ENOSPC;
3384 
3385 	mode = DRM_MM_INSERT_BEST;
3386 	if (flags & PIN_HIGH)
3387 		mode = DRM_MM_INSERT_HIGH;
3388 	if (flags & PIN_MAPPABLE)
3389 		mode = DRM_MM_INSERT_LOW;
3390 
3391 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3392 	 * so we know that we always have a minimum alignment of 4096.
3393 	 * The drm_mm range manager is optimised to return results
3394 	 * with zero alignment, so where possible use the optimal
3395 	 * path.
3396 	 */
3397 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3398 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3399 		alignment = 0;
3400 
3401 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3402 					  size, alignment, color,
3403 					  start, end, mode);
3404 	if (err != -ENOSPC)
3405 		return err;
3406 
3407 	/* No free space, pick a slot at random.
3408 	 *
3409 	 * There is a pathological case here using a GTT shared between
3410 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3411 	 *
3412 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3413 	 *         (64k objects)             (448k objects)
3414 	 *
3415 	 * Now imagine that the eviction LRU is ordered top-down (just because
3416 	 * pathology meets real life), and that we need to evict an object to
3417 	 * make room inside the aperture. The eviction scan then has to walk
3418 	 * the 448k list before it finds one within range. And now imagine that
3419 	 * it has to search for a new hole between every byte inside the memcpy,
3420 	 * for several simultaneous clients.
3421 	 *
3422 	 * On a full-ppgtt system, if we have run out of available space, there
3423 	 * will be lots and lots of objects in the eviction list! Again,
3424 	 * searching that LRU list may be slow if we are also applying any
3425 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
3426 	 * simplicity and similarilty between different GTT, try the single
3427 	 * random replacement first.
3428 	 */
3429 	offset = random_offset(start, end,
3430 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3431 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3432 	if (err != -ENOSPC)
3433 		return err;
3434 
3435 	/* Randomly selected placement is pinned, do a search */
3436 	err = i915_gem_evict_something(vm, size, alignment, color,
3437 				       start, end, flags);
3438 	if (err)
3439 		return err;
3440 
3441 	return drm_mm_insert_node_in_range(&vm->mm, node,
3442 					   size, alignment, color,
3443 					   start, end, DRM_MM_INSERT_EVICT);
3444 }
3445 
3446 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3447 #include "selftests/mock_gtt.c"
3448 #include "selftests/i915_gem_gtt.c"
3449 #endif
3450