xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision f7c35abe)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47 
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51 
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
55 		return false;
56 
57 	if (!i915_gem_object_is_coherent(obj))
58 		return true;
59 
60 	return obj->pin_display;
61 }
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
140 int
141 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
142 			    struct drm_file *file)
143 {
144 	struct drm_i915_private *dev_priv = to_i915(dev);
145 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
146 	struct drm_i915_gem_get_aperture *args = data;
147 	struct i915_vma *vma;
148 	size_t pinned;
149 
150 	pinned = 0;
151 	mutex_lock(&dev->struct_mutex);
152 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
153 		if (i915_vma_is_pinned(vma))
154 			pinned += vma->node.size;
155 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
156 		if (i915_vma_is_pinned(vma))
157 			pinned += vma->node.size;
158 	mutex_unlock(&dev->struct_mutex);
159 
160 	args->aper_size = ggtt->base.total;
161 	args->aper_available_size = args->aper_size - pinned;
162 
163 	return 0;
164 }
165 
166 static struct sg_table *
167 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
168 {
169 	struct address_space *mapping = obj->base.filp->f_mapping;
170 	drm_dma_handle_t *phys;
171 	struct sg_table *st;
172 	struct scatterlist *sg;
173 	char *vaddr;
174 	int i;
175 
176 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
177 		return ERR_PTR(-EINVAL);
178 
179 	/* Always aligning to the object size, allows a single allocation
180 	 * to handle all possible callers, and given typical object sizes,
181 	 * the alignment of the buddy allocation will naturally match.
182 	 */
183 	phys = drm_pci_alloc(obj->base.dev,
184 			     obj->base.size,
185 			     roundup_pow_of_two(obj->base.size));
186 	if (!phys)
187 		return ERR_PTR(-ENOMEM);
188 
189 	vaddr = phys->vaddr;
190 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 		struct page *page;
192 		char *src;
193 
194 		page = shmem_read_mapping_page(mapping, i);
195 		if (IS_ERR(page)) {
196 			st = ERR_CAST(page);
197 			goto err_phys;
198 		}
199 
200 		src = kmap_atomic(page);
201 		memcpy(vaddr, src, PAGE_SIZE);
202 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
203 		kunmap_atomic(src);
204 
205 		put_page(page);
206 		vaddr += PAGE_SIZE;
207 	}
208 
209 	i915_gem_chipset_flush(to_i915(obj->base.dev));
210 
211 	st = kmalloc(sizeof(*st), GFP_KERNEL);
212 	if (!st) {
213 		st = ERR_PTR(-ENOMEM);
214 		goto err_phys;
215 	}
216 
217 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
218 		kfree(st);
219 		st = ERR_PTR(-ENOMEM);
220 		goto err_phys;
221 	}
222 
223 	sg = st->sgl;
224 	sg->offset = 0;
225 	sg->length = obj->base.size;
226 
227 	sg_dma_address(sg) = phys->busaddr;
228 	sg_dma_len(sg) = obj->base.size;
229 
230 	obj->phys_handle = phys;
231 	return st;
232 
233 err_phys:
234 	drm_pci_free(obj->base.dev, phys);
235 	return st;
236 }
237 
238 static void
239 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
240 				struct sg_table *pages,
241 				bool needs_clflush)
242 {
243 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
244 
245 	if (obj->mm.madv == I915_MADV_DONTNEED)
246 		obj->mm.dirty = false;
247 
248 	if (needs_clflush &&
249 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
250 	    !i915_gem_object_is_coherent(obj))
251 		drm_clflush_sg(pages);
252 
253 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
254 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
255 }
256 
257 static void
258 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
259 			       struct sg_table *pages)
260 {
261 	__i915_gem_object_release_shmem(obj, pages, false);
262 
263 	if (obj->mm.dirty) {
264 		struct address_space *mapping = obj->base.filp->f_mapping;
265 		char *vaddr = obj->phys_handle->vaddr;
266 		int i;
267 
268 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
269 			struct page *page;
270 			char *dst;
271 
272 			page = shmem_read_mapping_page(mapping, i);
273 			if (IS_ERR(page))
274 				continue;
275 
276 			dst = kmap_atomic(page);
277 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
278 			memcpy(dst, vaddr, PAGE_SIZE);
279 			kunmap_atomic(dst);
280 
281 			set_page_dirty(page);
282 			if (obj->mm.madv == I915_MADV_WILLNEED)
283 				mark_page_accessed(page);
284 			put_page(page);
285 			vaddr += PAGE_SIZE;
286 		}
287 		obj->mm.dirty = false;
288 	}
289 
290 	sg_free_table(pages);
291 	kfree(pages);
292 
293 	drm_pci_free(obj->base.dev, obj->phys_handle);
294 }
295 
296 static void
297 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
298 {
299 	i915_gem_object_unpin_pages(obj);
300 }
301 
302 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
303 	.get_pages = i915_gem_object_get_pages_phys,
304 	.put_pages = i915_gem_object_put_pages_phys,
305 	.release = i915_gem_object_release_phys,
306 };
307 
308 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
309 
310 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
311 {
312 	struct i915_vma *vma;
313 	LIST_HEAD(still_in_list);
314 	int ret;
315 
316 	lockdep_assert_held(&obj->base.dev->struct_mutex);
317 
318 	/* Closed vma are removed from the obj->vma_list - but they may
319 	 * still have an active binding on the object. To remove those we
320 	 * must wait for all rendering to complete to the object (as unbinding
321 	 * must anyway), and retire the requests.
322 	 */
323 	ret = i915_gem_object_wait(obj,
324 				   I915_WAIT_INTERRUPTIBLE |
325 				   I915_WAIT_LOCKED |
326 				   I915_WAIT_ALL,
327 				   MAX_SCHEDULE_TIMEOUT,
328 				   NULL);
329 	if (ret)
330 		return ret;
331 
332 	i915_gem_retire_requests(to_i915(obj->base.dev));
333 
334 	while ((vma = list_first_entry_or_null(&obj->vma_list,
335 					       struct i915_vma,
336 					       obj_link))) {
337 		list_move_tail(&vma->obj_link, &still_in_list);
338 		ret = i915_vma_unbind(vma);
339 		if (ret)
340 			break;
341 	}
342 	list_splice(&still_in_list, &obj->vma_list);
343 
344 	return ret;
345 }
346 
347 static long
348 i915_gem_object_wait_fence(struct dma_fence *fence,
349 			   unsigned int flags,
350 			   long timeout,
351 			   struct intel_rps_client *rps)
352 {
353 	struct drm_i915_gem_request *rq;
354 
355 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
356 
357 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
358 		return timeout;
359 
360 	if (!dma_fence_is_i915(fence))
361 		return dma_fence_wait_timeout(fence,
362 					      flags & I915_WAIT_INTERRUPTIBLE,
363 					      timeout);
364 
365 	rq = to_request(fence);
366 	if (i915_gem_request_completed(rq))
367 		goto out;
368 
369 	/* This client is about to stall waiting for the GPU. In many cases
370 	 * this is undesirable and limits the throughput of the system, as
371 	 * many clients cannot continue processing user input/output whilst
372 	 * blocked. RPS autotuning may take tens of milliseconds to respond
373 	 * to the GPU load and thus incurs additional latency for the client.
374 	 * We can circumvent that by promoting the GPU frequency to maximum
375 	 * before we wait. This makes the GPU throttle up much more quickly
376 	 * (good for benchmarks and user experience, e.g. window animations),
377 	 * but at a cost of spending more power processing the workload
378 	 * (bad for battery). Not all clients even want their results
379 	 * immediately and for them we should just let the GPU select its own
380 	 * frequency to maximise efficiency. To prevent a single client from
381 	 * forcing the clocks too high for the whole system, we only allow
382 	 * each client to waitboost once in a busy period.
383 	 */
384 	if (rps) {
385 		if (INTEL_GEN(rq->i915) >= 6)
386 			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
387 		else
388 			rps = NULL;
389 	}
390 
391 	timeout = i915_wait_request(rq, flags, timeout);
392 
393 out:
394 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
395 		i915_gem_request_retire_upto(rq);
396 
397 	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
398 		/* The GPU is now idle and this client has stalled.
399 		 * Since no other client has submitted a request in the
400 		 * meantime, assume that this client is the only one
401 		 * supplying work to the GPU but is unable to keep that
402 		 * work supplied because it is waiting. Since the GPU is
403 		 * then never kept fully busy, RPS autoclocking will
404 		 * keep the clocks relatively low, causing further delays.
405 		 * Compensate by giving the synchronous client credit for
406 		 * a waitboost next time.
407 		 */
408 		spin_lock(&rq->i915->rps.client_lock);
409 		list_del_init(&rps->link);
410 		spin_unlock(&rq->i915->rps.client_lock);
411 	}
412 
413 	return timeout;
414 }
415 
416 static long
417 i915_gem_object_wait_reservation(struct reservation_object *resv,
418 				 unsigned int flags,
419 				 long timeout,
420 				 struct intel_rps_client *rps)
421 {
422 	unsigned int seq = __read_seqcount_begin(&resv->seq);
423 	struct dma_fence *excl;
424 	bool prune_fences = false;
425 
426 	if (flags & I915_WAIT_ALL) {
427 		struct dma_fence **shared;
428 		unsigned int count, i;
429 		int ret;
430 
431 		ret = reservation_object_get_fences_rcu(resv,
432 							&excl, &count, &shared);
433 		if (ret)
434 			return ret;
435 
436 		for (i = 0; i < count; i++) {
437 			timeout = i915_gem_object_wait_fence(shared[i],
438 							     flags, timeout,
439 							     rps);
440 			if (timeout < 0)
441 				break;
442 
443 			dma_fence_put(shared[i]);
444 		}
445 
446 		for (; i < count; i++)
447 			dma_fence_put(shared[i]);
448 		kfree(shared);
449 
450 		prune_fences = count && timeout >= 0;
451 	} else {
452 		excl = reservation_object_get_excl_rcu(resv);
453 	}
454 
455 	if (excl && timeout >= 0) {
456 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
457 		prune_fences = timeout >= 0;
458 	}
459 
460 	dma_fence_put(excl);
461 
462 	/* Oportunistically prune the fences iff we know they have *all* been
463 	 * signaled and that the reservation object has not been changed (i.e.
464 	 * no new fences have been added).
465 	 */
466 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
467 		if (reservation_object_trylock(resv)) {
468 			if (!__read_seqcount_retry(&resv->seq, seq))
469 				reservation_object_add_excl_fence(resv, NULL);
470 			reservation_object_unlock(resv);
471 		}
472 	}
473 
474 	return timeout;
475 }
476 
477 static void __fence_set_priority(struct dma_fence *fence, int prio)
478 {
479 	struct drm_i915_gem_request *rq;
480 	struct intel_engine_cs *engine;
481 
482 	if (!dma_fence_is_i915(fence))
483 		return;
484 
485 	rq = to_request(fence);
486 	engine = rq->engine;
487 	if (!engine->schedule)
488 		return;
489 
490 	engine->schedule(rq, prio);
491 }
492 
493 static void fence_set_priority(struct dma_fence *fence, int prio)
494 {
495 	/* Recurse once into a fence-array */
496 	if (dma_fence_is_array(fence)) {
497 		struct dma_fence_array *array = to_dma_fence_array(fence);
498 		int i;
499 
500 		for (i = 0; i < array->num_fences; i++)
501 			__fence_set_priority(array->fences[i], prio);
502 	} else {
503 		__fence_set_priority(fence, prio);
504 	}
505 }
506 
507 int
508 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
509 			      unsigned int flags,
510 			      int prio)
511 {
512 	struct dma_fence *excl;
513 
514 	if (flags & I915_WAIT_ALL) {
515 		struct dma_fence **shared;
516 		unsigned int count, i;
517 		int ret;
518 
519 		ret = reservation_object_get_fences_rcu(obj->resv,
520 							&excl, &count, &shared);
521 		if (ret)
522 			return ret;
523 
524 		for (i = 0; i < count; i++) {
525 			fence_set_priority(shared[i], prio);
526 			dma_fence_put(shared[i]);
527 		}
528 
529 		kfree(shared);
530 	} else {
531 		excl = reservation_object_get_excl_rcu(obj->resv);
532 	}
533 
534 	if (excl) {
535 		fence_set_priority(excl, prio);
536 		dma_fence_put(excl);
537 	}
538 	return 0;
539 }
540 
541 /**
542  * Waits for rendering to the object to be completed
543  * @obj: i915 gem object
544  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
545  * @timeout: how long to wait
546  * @rps: client (user process) to charge for any waitboosting
547  */
548 int
549 i915_gem_object_wait(struct drm_i915_gem_object *obj,
550 		     unsigned int flags,
551 		     long timeout,
552 		     struct intel_rps_client *rps)
553 {
554 	might_sleep();
555 #if IS_ENABLED(CONFIG_LOCKDEP)
556 	GEM_BUG_ON(debug_locks &&
557 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
558 		   !!(flags & I915_WAIT_LOCKED));
559 #endif
560 	GEM_BUG_ON(timeout < 0);
561 
562 	timeout = i915_gem_object_wait_reservation(obj->resv,
563 						   flags, timeout,
564 						   rps);
565 	return timeout < 0 ? timeout : 0;
566 }
567 
568 static struct intel_rps_client *to_rps_client(struct drm_file *file)
569 {
570 	struct drm_i915_file_private *fpriv = file->driver_priv;
571 
572 	return &fpriv->rps;
573 }
574 
575 int
576 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
577 			    int align)
578 {
579 	int ret;
580 
581 	if (align > obj->base.size)
582 		return -EINVAL;
583 
584 	if (obj->ops == &i915_gem_phys_ops)
585 		return 0;
586 
587 	if (obj->mm.madv != I915_MADV_WILLNEED)
588 		return -EFAULT;
589 
590 	if (obj->base.filp == NULL)
591 		return -EINVAL;
592 
593 	ret = i915_gem_object_unbind(obj);
594 	if (ret)
595 		return ret;
596 
597 	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
598 	if (obj->mm.pages)
599 		return -EBUSY;
600 
601 	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
602 	obj->ops = &i915_gem_phys_ops;
603 
604 	ret = i915_gem_object_pin_pages(obj);
605 	if (ret)
606 		goto err_xfer;
607 
608 	return 0;
609 
610 err_xfer:
611 	obj->ops = &i915_gem_object_ops;
612 	return ret;
613 }
614 
615 static int
616 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
617 		     struct drm_i915_gem_pwrite *args,
618 		     struct drm_file *file)
619 {
620 	void *vaddr = obj->phys_handle->vaddr + args->offset;
621 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
622 
623 	/* We manually control the domain here and pretend that it
624 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
625 	 */
626 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
627 	if (copy_from_user(vaddr, user_data, args->size))
628 		return -EFAULT;
629 
630 	drm_clflush_virt_range(vaddr, args->size);
631 	i915_gem_chipset_flush(to_i915(obj->base.dev));
632 
633 	intel_fb_obj_flush(obj, ORIGIN_CPU);
634 	return 0;
635 }
636 
637 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
638 {
639 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
640 }
641 
642 void i915_gem_object_free(struct drm_i915_gem_object *obj)
643 {
644 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
645 	kmem_cache_free(dev_priv->objects, obj);
646 }
647 
648 static int
649 i915_gem_create(struct drm_file *file,
650 		struct drm_i915_private *dev_priv,
651 		uint64_t size,
652 		uint32_t *handle_p)
653 {
654 	struct drm_i915_gem_object *obj;
655 	int ret;
656 	u32 handle;
657 
658 	size = roundup(size, PAGE_SIZE);
659 	if (size == 0)
660 		return -EINVAL;
661 
662 	/* Allocate the new object */
663 	obj = i915_gem_object_create(dev_priv, size);
664 	if (IS_ERR(obj))
665 		return PTR_ERR(obj);
666 
667 	ret = drm_gem_handle_create(file, &obj->base, &handle);
668 	/* drop reference from allocate - handle holds it now */
669 	i915_gem_object_put(obj);
670 	if (ret)
671 		return ret;
672 
673 	*handle_p = handle;
674 	return 0;
675 }
676 
677 int
678 i915_gem_dumb_create(struct drm_file *file,
679 		     struct drm_device *dev,
680 		     struct drm_mode_create_dumb *args)
681 {
682 	/* have to work out size/pitch and return them */
683 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
684 	args->size = args->pitch * args->height;
685 	return i915_gem_create(file, to_i915(dev),
686 			       args->size, &args->handle);
687 }
688 
689 /**
690  * Creates a new mm object and returns a handle to it.
691  * @dev: drm device pointer
692  * @data: ioctl data blob
693  * @file: drm file pointer
694  */
695 int
696 i915_gem_create_ioctl(struct drm_device *dev, void *data,
697 		      struct drm_file *file)
698 {
699 	struct drm_i915_private *dev_priv = to_i915(dev);
700 	struct drm_i915_gem_create *args = data;
701 
702 	i915_gem_flush_free_objects(dev_priv);
703 
704 	return i915_gem_create(file, dev_priv,
705 			       args->size, &args->handle);
706 }
707 
708 static inline int
709 __copy_to_user_swizzled(char __user *cpu_vaddr,
710 			const char *gpu_vaddr, int gpu_offset,
711 			int length)
712 {
713 	int ret, cpu_offset = 0;
714 
715 	while (length > 0) {
716 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
717 		int this_length = min(cacheline_end - gpu_offset, length);
718 		int swizzled_gpu_offset = gpu_offset ^ 64;
719 
720 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
721 				     gpu_vaddr + swizzled_gpu_offset,
722 				     this_length);
723 		if (ret)
724 			return ret + length;
725 
726 		cpu_offset += this_length;
727 		gpu_offset += this_length;
728 		length -= this_length;
729 	}
730 
731 	return 0;
732 }
733 
734 static inline int
735 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
736 			  const char __user *cpu_vaddr,
737 			  int length)
738 {
739 	int ret, cpu_offset = 0;
740 
741 	while (length > 0) {
742 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
743 		int this_length = min(cacheline_end - gpu_offset, length);
744 		int swizzled_gpu_offset = gpu_offset ^ 64;
745 
746 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
747 				       cpu_vaddr + cpu_offset,
748 				       this_length);
749 		if (ret)
750 			return ret + length;
751 
752 		cpu_offset += this_length;
753 		gpu_offset += this_length;
754 		length -= this_length;
755 	}
756 
757 	return 0;
758 }
759 
760 /*
761  * Pins the specified object's pages and synchronizes the object with
762  * GPU accesses. Sets needs_clflush to non-zero if the caller should
763  * flush the object from the CPU cache.
764  */
765 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
766 				    unsigned int *needs_clflush)
767 {
768 	int ret;
769 
770 	lockdep_assert_held(&obj->base.dev->struct_mutex);
771 
772 	*needs_clflush = 0;
773 	if (!i915_gem_object_has_struct_page(obj))
774 		return -ENODEV;
775 
776 	ret = i915_gem_object_wait(obj,
777 				   I915_WAIT_INTERRUPTIBLE |
778 				   I915_WAIT_LOCKED,
779 				   MAX_SCHEDULE_TIMEOUT,
780 				   NULL);
781 	if (ret)
782 		return ret;
783 
784 	ret = i915_gem_object_pin_pages(obj);
785 	if (ret)
786 		return ret;
787 
788 	if (i915_gem_object_is_coherent(obj) ||
789 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
790 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
791 		if (ret)
792 			goto err_unpin;
793 		else
794 			goto out;
795 	}
796 
797 	i915_gem_object_flush_gtt_write_domain(obj);
798 
799 	/* If we're not in the cpu read domain, set ourself into the gtt
800 	 * read domain and manually flush cachelines (if required). This
801 	 * optimizes for the case when the gpu will dirty the data
802 	 * anyway again before the next pread happens.
803 	 */
804 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
805 		*needs_clflush = CLFLUSH_BEFORE;
806 
807 out:
808 	/* return with the pages pinned */
809 	return 0;
810 
811 err_unpin:
812 	i915_gem_object_unpin_pages(obj);
813 	return ret;
814 }
815 
816 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
817 				     unsigned int *needs_clflush)
818 {
819 	int ret;
820 
821 	lockdep_assert_held(&obj->base.dev->struct_mutex);
822 
823 	*needs_clflush = 0;
824 	if (!i915_gem_object_has_struct_page(obj))
825 		return -ENODEV;
826 
827 	ret = i915_gem_object_wait(obj,
828 				   I915_WAIT_INTERRUPTIBLE |
829 				   I915_WAIT_LOCKED |
830 				   I915_WAIT_ALL,
831 				   MAX_SCHEDULE_TIMEOUT,
832 				   NULL);
833 	if (ret)
834 		return ret;
835 
836 	ret = i915_gem_object_pin_pages(obj);
837 	if (ret)
838 		return ret;
839 
840 	if (i915_gem_object_is_coherent(obj) ||
841 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
842 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
843 		if (ret)
844 			goto err_unpin;
845 		else
846 			goto out;
847 	}
848 
849 	i915_gem_object_flush_gtt_write_domain(obj);
850 
851 	/* If we're not in the cpu write domain, set ourself into the
852 	 * gtt write domain and manually flush cachelines (as required).
853 	 * This optimizes for the case when the gpu will use the data
854 	 * right away and we therefore have to clflush anyway.
855 	 */
856 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
857 		*needs_clflush |= CLFLUSH_AFTER;
858 
859 	/* Same trick applies to invalidate partially written cachelines read
860 	 * before writing.
861 	 */
862 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
863 		*needs_clflush |= CLFLUSH_BEFORE;
864 
865 out:
866 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
867 	obj->mm.dirty = true;
868 	/* return with the pages pinned */
869 	return 0;
870 
871 err_unpin:
872 	i915_gem_object_unpin_pages(obj);
873 	return ret;
874 }
875 
876 static void
877 shmem_clflush_swizzled_range(char *addr, unsigned long length,
878 			     bool swizzled)
879 {
880 	if (unlikely(swizzled)) {
881 		unsigned long start = (unsigned long) addr;
882 		unsigned long end = (unsigned long) addr + length;
883 
884 		/* For swizzling simply ensure that we always flush both
885 		 * channels. Lame, but simple and it works. Swizzled
886 		 * pwrite/pread is far from a hotpath - current userspace
887 		 * doesn't use it at all. */
888 		start = round_down(start, 128);
889 		end = round_up(end, 128);
890 
891 		drm_clflush_virt_range((void *)start, end - start);
892 	} else {
893 		drm_clflush_virt_range(addr, length);
894 	}
895 
896 }
897 
898 /* Only difference to the fast-path function is that this can handle bit17
899  * and uses non-atomic copy and kmap functions. */
900 static int
901 shmem_pread_slow(struct page *page, int offset, int length,
902 		 char __user *user_data,
903 		 bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905 	char *vaddr;
906 	int ret;
907 
908 	vaddr = kmap(page);
909 	if (needs_clflush)
910 		shmem_clflush_swizzled_range(vaddr + offset, length,
911 					     page_do_bit17_swizzling);
912 
913 	if (page_do_bit17_swizzling)
914 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
915 	else
916 		ret = __copy_to_user(user_data, vaddr + offset, length);
917 	kunmap(page);
918 
919 	return ret ? - EFAULT : 0;
920 }
921 
922 static int
923 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
924 	    bool page_do_bit17_swizzling, bool needs_clflush)
925 {
926 	int ret;
927 
928 	ret = -ENODEV;
929 	if (!page_do_bit17_swizzling) {
930 		char *vaddr = kmap_atomic(page);
931 
932 		if (needs_clflush)
933 			drm_clflush_virt_range(vaddr + offset, length);
934 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
935 		kunmap_atomic(vaddr);
936 	}
937 	if (ret == 0)
938 		return 0;
939 
940 	return shmem_pread_slow(page, offset, length, user_data,
941 				page_do_bit17_swizzling, needs_clflush);
942 }
943 
944 static int
945 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
946 		     struct drm_i915_gem_pread *args)
947 {
948 	char __user *user_data;
949 	u64 remain;
950 	unsigned int obj_do_bit17_swizzling;
951 	unsigned int needs_clflush;
952 	unsigned int idx, offset;
953 	int ret;
954 
955 	obj_do_bit17_swizzling = 0;
956 	if (i915_gem_object_needs_bit17_swizzle(obj))
957 		obj_do_bit17_swizzling = BIT(17);
958 
959 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
960 	if (ret)
961 		return ret;
962 
963 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
964 	mutex_unlock(&obj->base.dev->struct_mutex);
965 	if (ret)
966 		return ret;
967 
968 	remain = args->size;
969 	user_data = u64_to_user_ptr(args->data_ptr);
970 	offset = offset_in_page(args->offset);
971 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
972 		struct page *page = i915_gem_object_get_page(obj, idx);
973 		int length;
974 
975 		length = remain;
976 		if (offset + length > PAGE_SIZE)
977 			length = PAGE_SIZE - offset;
978 
979 		ret = shmem_pread(page, offset, length, user_data,
980 				  page_to_phys(page) & obj_do_bit17_swizzling,
981 				  needs_clflush);
982 		if (ret)
983 			break;
984 
985 		remain -= length;
986 		user_data += length;
987 		offset = 0;
988 	}
989 
990 	i915_gem_obj_finish_shmem_access(obj);
991 	return ret;
992 }
993 
994 static inline bool
995 gtt_user_read(struct io_mapping *mapping,
996 	      loff_t base, int offset,
997 	      char __user *user_data, int length)
998 {
999 	void *vaddr;
1000 	unsigned long unwritten;
1001 
1002 	/* We can use the cpu mem copy function because this is X86. */
1003 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1004 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1005 	io_mapping_unmap_atomic(vaddr);
1006 	if (unwritten) {
1007 		vaddr = (void __force *)
1008 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1009 		unwritten = copy_to_user(user_data, vaddr + offset, length);
1010 		io_mapping_unmap(vaddr);
1011 	}
1012 	return unwritten;
1013 }
1014 
1015 static int
1016 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1017 		   const struct drm_i915_gem_pread *args)
1018 {
1019 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1020 	struct i915_ggtt *ggtt = &i915->ggtt;
1021 	struct drm_mm_node node;
1022 	struct i915_vma *vma;
1023 	void __user *user_data;
1024 	u64 remain, offset;
1025 	int ret;
1026 
1027 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1028 	if (ret)
1029 		return ret;
1030 
1031 	intel_runtime_pm_get(i915);
1032 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1033 				       PIN_MAPPABLE | PIN_NONBLOCK);
1034 	if (!IS_ERR(vma)) {
1035 		node.start = i915_ggtt_offset(vma);
1036 		node.allocated = false;
1037 		ret = i915_vma_put_fence(vma);
1038 		if (ret) {
1039 			i915_vma_unpin(vma);
1040 			vma = ERR_PTR(ret);
1041 		}
1042 	}
1043 	if (IS_ERR(vma)) {
1044 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1045 		if (ret)
1046 			goto out_unlock;
1047 		GEM_BUG_ON(!node.allocated);
1048 	}
1049 
1050 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1051 	if (ret)
1052 		goto out_unpin;
1053 
1054 	mutex_unlock(&i915->drm.struct_mutex);
1055 
1056 	user_data = u64_to_user_ptr(args->data_ptr);
1057 	remain = args->size;
1058 	offset = args->offset;
1059 
1060 	while (remain > 0) {
1061 		/* Operation in this page
1062 		 *
1063 		 * page_base = page offset within aperture
1064 		 * page_offset = offset within page
1065 		 * page_length = bytes to copy for this page
1066 		 */
1067 		u32 page_base = node.start;
1068 		unsigned page_offset = offset_in_page(offset);
1069 		unsigned page_length = PAGE_SIZE - page_offset;
1070 		page_length = remain < page_length ? remain : page_length;
1071 		if (node.allocated) {
1072 			wmb();
1073 			ggtt->base.insert_page(&ggtt->base,
1074 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1075 					       node.start, I915_CACHE_NONE, 0);
1076 			wmb();
1077 		} else {
1078 			page_base += offset & PAGE_MASK;
1079 		}
1080 
1081 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1082 				  user_data, page_length)) {
1083 			ret = -EFAULT;
1084 			break;
1085 		}
1086 
1087 		remain -= page_length;
1088 		user_data += page_length;
1089 		offset += page_length;
1090 	}
1091 
1092 	mutex_lock(&i915->drm.struct_mutex);
1093 out_unpin:
1094 	if (node.allocated) {
1095 		wmb();
1096 		ggtt->base.clear_range(&ggtt->base,
1097 				       node.start, node.size);
1098 		remove_mappable_node(&node);
1099 	} else {
1100 		i915_vma_unpin(vma);
1101 	}
1102 out_unlock:
1103 	intel_runtime_pm_put(i915);
1104 	mutex_unlock(&i915->drm.struct_mutex);
1105 
1106 	return ret;
1107 }
1108 
1109 /**
1110  * Reads data from the object referenced by handle.
1111  * @dev: drm device pointer
1112  * @data: ioctl data blob
1113  * @file: drm file pointer
1114  *
1115  * On error, the contents of *data are undefined.
1116  */
1117 int
1118 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1119 		     struct drm_file *file)
1120 {
1121 	struct drm_i915_gem_pread *args = data;
1122 	struct drm_i915_gem_object *obj;
1123 	int ret;
1124 
1125 	if (args->size == 0)
1126 		return 0;
1127 
1128 	if (!access_ok(VERIFY_WRITE,
1129 		       u64_to_user_ptr(args->data_ptr),
1130 		       args->size))
1131 		return -EFAULT;
1132 
1133 	obj = i915_gem_object_lookup(file, args->handle);
1134 	if (!obj)
1135 		return -ENOENT;
1136 
1137 	/* Bounds check source.  */
1138 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1139 		ret = -EINVAL;
1140 		goto out;
1141 	}
1142 
1143 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1144 
1145 	ret = i915_gem_object_wait(obj,
1146 				   I915_WAIT_INTERRUPTIBLE,
1147 				   MAX_SCHEDULE_TIMEOUT,
1148 				   to_rps_client(file));
1149 	if (ret)
1150 		goto out;
1151 
1152 	ret = i915_gem_object_pin_pages(obj);
1153 	if (ret)
1154 		goto out;
1155 
1156 	ret = i915_gem_shmem_pread(obj, args);
1157 	if (ret == -EFAULT || ret == -ENODEV)
1158 		ret = i915_gem_gtt_pread(obj, args);
1159 
1160 	i915_gem_object_unpin_pages(obj);
1161 out:
1162 	i915_gem_object_put(obj);
1163 	return ret;
1164 }
1165 
1166 /* This is the fast write path which cannot handle
1167  * page faults in the source data
1168  */
1169 
1170 static inline bool
1171 ggtt_write(struct io_mapping *mapping,
1172 	   loff_t base, int offset,
1173 	   char __user *user_data, int length)
1174 {
1175 	void *vaddr;
1176 	unsigned long unwritten;
1177 
1178 	/* We can use the cpu mem copy function because this is X86. */
1179 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1180 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1181 						      user_data, length);
1182 	io_mapping_unmap_atomic(vaddr);
1183 	if (unwritten) {
1184 		vaddr = (void __force *)
1185 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1186 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1187 		io_mapping_unmap(vaddr);
1188 	}
1189 
1190 	return unwritten;
1191 }
1192 
1193 /**
1194  * This is the fast pwrite path, where we copy the data directly from the
1195  * user into the GTT, uncached.
1196  * @obj: i915 GEM object
1197  * @args: pwrite arguments structure
1198  */
1199 static int
1200 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1201 			 const struct drm_i915_gem_pwrite *args)
1202 {
1203 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1204 	struct i915_ggtt *ggtt = &i915->ggtt;
1205 	struct drm_mm_node node;
1206 	struct i915_vma *vma;
1207 	u64 remain, offset;
1208 	void __user *user_data;
1209 	int ret;
1210 
1211 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1212 	if (ret)
1213 		return ret;
1214 
1215 	intel_runtime_pm_get(i915);
1216 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1217 				       PIN_MAPPABLE | PIN_NONBLOCK);
1218 	if (!IS_ERR(vma)) {
1219 		node.start = i915_ggtt_offset(vma);
1220 		node.allocated = false;
1221 		ret = i915_vma_put_fence(vma);
1222 		if (ret) {
1223 			i915_vma_unpin(vma);
1224 			vma = ERR_PTR(ret);
1225 		}
1226 	}
1227 	if (IS_ERR(vma)) {
1228 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1229 		if (ret)
1230 			goto out_unlock;
1231 		GEM_BUG_ON(!node.allocated);
1232 	}
1233 
1234 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1235 	if (ret)
1236 		goto out_unpin;
1237 
1238 	mutex_unlock(&i915->drm.struct_mutex);
1239 
1240 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1241 
1242 	user_data = u64_to_user_ptr(args->data_ptr);
1243 	offset = args->offset;
1244 	remain = args->size;
1245 	while (remain) {
1246 		/* Operation in this page
1247 		 *
1248 		 * page_base = page offset within aperture
1249 		 * page_offset = offset within page
1250 		 * page_length = bytes to copy for this page
1251 		 */
1252 		u32 page_base = node.start;
1253 		unsigned int page_offset = offset_in_page(offset);
1254 		unsigned int page_length = PAGE_SIZE - page_offset;
1255 		page_length = remain < page_length ? remain : page_length;
1256 		if (node.allocated) {
1257 			wmb(); /* flush the write before we modify the GGTT */
1258 			ggtt->base.insert_page(&ggtt->base,
1259 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1260 					       node.start, I915_CACHE_NONE, 0);
1261 			wmb(); /* flush modifications to the GGTT (insert_page) */
1262 		} else {
1263 			page_base += offset & PAGE_MASK;
1264 		}
1265 		/* If we get a fault while copying data, then (presumably) our
1266 		 * source page isn't available.  Return the error and we'll
1267 		 * retry in the slow path.
1268 		 * If the object is non-shmem backed, we retry again with the
1269 		 * path that handles page fault.
1270 		 */
1271 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1272 			       user_data, page_length)) {
1273 			ret = -EFAULT;
1274 			break;
1275 		}
1276 
1277 		remain -= page_length;
1278 		user_data += page_length;
1279 		offset += page_length;
1280 	}
1281 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1282 
1283 	mutex_lock(&i915->drm.struct_mutex);
1284 out_unpin:
1285 	if (node.allocated) {
1286 		wmb();
1287 		ggtt->base.clear_range(&ggtt->base,
1288 				       node.start, node.size);
1289 		remove_mappable_node(&node);
1290 	} else {
1291 		i915_vma_unpin(vma);
1292 	}
1293 out_unlock:
1294 	intel_runtime_pm_put(i915);
1295 	mutex_unlock(&i915->drm.struct_mutex);
1296 	return ret;
1297 }
1298 
1299 static int
1300 shmem_pwrite_slow(struct page *page, int offset, int length,
1301 		  char __user *user_data,
1302 		  bool page_do_bit17_swizzling,
1303 		  bool needs_clflush_before,
1304 		  bool needs_clflush_after)
1305 {
1306 	char *vaddr;
1307 	int ret;
1308 
1309 	vaddr = kmap(page);
1310 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1311 		shmem_clflush_swizzled_range(vaddr + offset, length,
1312 					     page_do_bit17_swizzling);
1313 	if (page_do_bit17_swizzling)
1314 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1315 						length);
1316 	else
1317 		ret = __copy_from_user(vaddr + offset, user_data, length);
1318 	if (needs_clflush_after)
1319 		shmem_clflush_swizzled_range(vaddr + offset, length,
1320 					     page_do_bit17_swizzling);
1321 	kunmap(page);
1322 
1323 	return ret ? -EFAULT : 0;
1324 }
1325 
1326 /* Per-page copy function for the shmem pwrite fastpath.
1327  * Flushes invalid cachelines before writing to the target if
1328  * needs_clflush_before is set and flushes out any written cachelines after
1329  * writing if needs_clflush is set.
1330  */
1331 static int
1332 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1333 	     bool page_do_bit17_swizzling,
1334 	     bool needs_clflush_before,
1335 	     bool needs_clflush_after)
1336 {
1337 	int ret;
1338 
1339 	ret = -ENODEV;
1340 	if (!page_do_bit17_swizzling) {
1341 		char *vaddr = kmap_atomic(page);
1342 
1343 		if (needs_clflush_before)
1344 			drm_clflush_virt_range(vaddr + offset, len);
1345 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1346 		if (needs_clflush_after)
1347 			drm_clflush_virt_range(vaddr + offset, len);
1348 
1349 		kunmap_atomic(vaddr);
1350 	}
1351 	if (ret == 0)
1352 		return ret;
1353 
1354 	return shmem_pwrite_slow(page, offset, len, user_data,
1355 				 page_do_bit17_swizzling,
1356 				 needs_clflush_before,
1357 				 needs_clflush_after);
1358 }
1359 
1360 static int
1361 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1362 		      const struct drm_i915_gem_pwrite *args)
1363 {
1364 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1365 	void __user *user_data;
1366 	u64 remain;
1367 	unsigned int obj_do_bit17_swizzling;
1368 	unsigned int partial_cacheline_write;
1369 	unsigned int needs_clflush;
1370 	unsigned int offset, idx;
1371 	int ret;
1372 
1373 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1374 	if (ret)
1375 		return ret;
1376 
1377 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1378 	mutex_unlock(&i915->drm.struct_mutex);
1379 	if (ret)
1380 		return ret;
1381 
1382 	obj_do_bit17_swizzling = 0;
1383 	if (i915_gem_object_needs_bit17_swizzle(obj))
1384 		obj_do_bit17_swizzling = BIT(17);
1385 
1386 	/* If we don't overwrite a cacheline completely we need to be
1387 	 * careful to have up-to-date data by first clflushing. Don't
1388 	 * overcomplicate things and flush the entire patch.
1389 	 */
1390 	partial_cacheline_write = 0;
1391 	if (needs_clflush & CLFLUSH_BEFORE)
1392 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1393 
1394 	user_data = u64_to_user_ptr(args->data_ptr);
1395 	remain = args->size;
1396 	offset = offset_in_page(args->offset);
1397 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1398 		struct page *page = i915_gem_object_get_page(obj, idx);
1399 		int length;
1400 
1401 		length = remain;
1402 		if (offset + length > PAGE_SIZE)
1403 			length = PAGE_SIZE - offset;
1404 
1405 		ret = shmem_pwrite(page, offset, length, user_data,
1406 				   page_to_phys(page) & obj_do_bit17_swizzling,
1407 				   (offset | length) & partial_cacheline_write,
1408 				   needs_clflush & CLFLUSH_AFTER);
1409 		if (ret)
1410 			break;
1411 
1412 		remain -= length;
1413 		user_data += length;
1414 		offset = 0;
1415 	}
1416 
1417 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1418 	i915_gem_obj_finish_shmem_access(obj);
1419 	return ret;
1420 }
1421 
1422 /**
1423  * Writes data to the object referenced by handle.
1424  * @dev: drm device
1425  * @data: ioctl data blob
1426  * @file: drm file
1427  *
1428  * On error, the contents of the buffer that were to be modified are undefined.
1429  */
1430 int
1431 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1432 		      struct drm_file *file)
1433 {
1434 	struct drm_i915_gem_pwrite *args = data;
1435 	struct drm_i915_gem_object *obj;
1436 	int ret;
1437 
1438 	if (args->size == 0)
1439 		return 0;
1440 
1441 	if (!access_ok(VERIFY_READ,
1442 		       u64_to_user_ptr(args->data_ptr),
1443 		       args->size))
1444 		return -EFAULT;
1445 
1446 	obj = i915_gem_object_lookup(file, args->handle);
1447 	if (!obj)
1448 		return -ENOENT;
1449 
1450 	/* Bounds check destination. */
1451 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1452 		ret = -EINVAL;
1453 		goto err;
1454 	}
1455 
1456 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1457 
1458 	ret = -ENODEV;
1459 	if (obj->ops->pwrite)
1460 		ret = obj->ops->pwrite(obj, args);
1461 	if (ret != -ENODEV)
1462 		goto err;
1463 
1464 	ret = i915_gem_object_wait(obj,
1465 				   I915_WAIT_INTERRUPTIBLE |
1466 				   I915_WAIT_ALL,
1467 				   MAX_SCHEDULE_TIMEOUT,
1468 				   to_rps_client(file));
1469 	if (ret)
1470 		goto err;
1471 
1472 	ret = i915_gem_object_pin_pages(obj);
1473 	if (ret)
1474 		goto err;
1475 
1476 	ret = -EFAULT;
1477 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1478 	 * it would end up going through the fenced access, and we'll get
1479 	 * different detiling behavior between reading and writing.
1480 	 * pread/pwrite currently are reading and writing from the CPU
1481 	 * perspective, requiring manual detiling by the client.
1482 	 */
1483 	if (!i915_gem_object_has_struct_page(obj) ||
1484 	    cpu_write_needs_clflush(obj))
1485 		/* Note that the gtt paths might fail with non-page-backed user
1486 		 * pointers (e.g. gtt mappings when moving data between
1487 		 * textures). Fallback to the shmem path in that case.
1488 		 */
1489 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1490 
1491 	if (ret == -EFAULT || ret == -ENOSPC) {
1492 		if (obj->phys_handle)
1493 			ret = i915_gem_phys_pwrite(obj, args, file);
1494 		else
1495 			ret = i915_gem_shmem_pwrite(obj, args);
1496 	}
1497 
1498 	i915_gem_object_unpin_pages(obj);
1499 err:
1500 	i915_gem_object_put(obj);
1501 	return ret;
1502 }
1503 
1504 static inline enum fb_op_origin
1505 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1506 {
1507 	return (domain == I915_GEM_DOMAIN_GTT ?
1508 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1509 }
1510 
1511 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1512 {
1513 	struct drm_i915_private *i915;
1514 	struct list_head *list;
1515 	struct i915_vma *vma;
1516 
1517 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1518 		if (!i915_vma_is_ggtt(vma))
1519 			break;
1520 
1521 		if (i915_vma_is_active(vma))
1522 			continue;
1523 
1524 		if (!drm_mm_node_allocated(&vma->node))
1525 			continue;
1526 
1527 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1528 	}
1529 
1530 	i915 = to_i915(obj->base.dev);
1531 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1532 	list_move_tail(&obj->global_link, list);
1533 }
1534 
1535 /**
1536  * Called when user space prepares to use an object with the CPU, either
1537  * through the mmap ioctl's mapping or a GTT mapping.
1538  * @dev: drm device
1539  * @data: ioctl data blob
1540  * @file: drm file
1541  */
1542 int
1543 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1544 			  struct drm_file *file)
1545 {
1546 	struct drm_i915_gem_set_domain *args = data;
1547 	struct drm_i915_gem_object *obj;
1548 	uint32_t read_domains = args->read_domains;
1549 	uint32_t write_domain = args->write_domain;
1550 	int err;
1551 
1552 	/* Only handle setting domains to types used by the CPU. */
1553 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1554 		return -EINVAL;
1555 
1556 	/* Having something in the write domain implies it's in the read
1557 	 * domain, and only that read domain.  Enforce that in the request.
1558 	 */
1559 	if (write_domain != 0 && read_domains != write_domain)
1560 		return -EINVAL;
1561 
1562 	obj = i915_gem_object_lookup(file, args->handle);
1563 	if (!obj)
1564 		return -ENOENT;
1565 
1566 	/* Try to flush the object off the GPU without holding the lock.
1567 	 * We will repeat the flush holding the lock in the normal manner
1568 	 * to catch cases where we are gazumped.
1569 	 */
1570 	err = i915_gem_object_wait(obj,
1571 				   I915_WAIT_INTERRUPTIBLE |
1572 				   (write_domain ? I915_WAIT_ALL : 0),
1573 				   MAX_SCHEDULE_TIMEOUT,
1574 				   to_rps_client(file));
1575 	if (err)
1576 		goto out;
1577 
1578 	/* Flush and acquire obj->pages so that we are coherent through
1579 	 * direct access in memory with previous cached writes through
1580 	 * shmemfs and that our cache domain tracking remains valid.
1581 	 * For example, if the obj->filp was moved to swap without us
1582 	 * being notified and releasing the pages, we would mistakenly
1583 	 * continue to assume that the obj remained out of the CPU cached
1584 	 * domain.
1585 	 */
1586 	err = i915_gem_object_pin_pages(obj);
1587 	if (err)
1588 		goto out;
1589 
1590 	err = i915_mutex_lock_interruptible(dev);
1591 	if (err)
1592 		goto out_unpin;
1593 
1594 	if (read_domains & I915_GEM_DOMAIN_GTT)
1595 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1596 	else
1597 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1598 
1599 	/* And bump the LRU for this access */
1600 	i915_gem_object_bump_inactive_ggtt(obj);
1601 
1602 	mutex_unlock(&dev->struct_mutex);
1603 
1604 	if (write_domain != 0)
1605 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1606 
1607 out_unpin:
1608 	i915_gem_object_unpin_pages(obj);
1609 out:
1610 	i915_gem_object_put(obj);
1611 	return err;
1612 }
1613 
1614 /**
1615  * Called when user space has done writes to this buffer
1616  * @dev: drm device
1617  * @data: ioctl data blob
1618  * @file: drm file
1619  */
1620 int
1621 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1622 			 struct drm_file *file)
1623 {
1624 	struct drm_i915_gem_sw_finish *args = data;
1625 	struct drm_i915_gem_object *obj;
1626 
1627 	obj = i915_gem_object_lookup(file, args->handle);
1628 	if (!obj)
1629 		return -ENOENT;
1630 
1631 	/* Pinned buffers may be scanout, so flush the cache */
1632 	i915_gem_object_flush_if_display(obj);
1633 	i915_gem_object_put(obj);
1634 
1635 	return 0;
1636 }
1637 
1638 /**
1639  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1640  *			 it is mapped to.
1641  * @dev: drm device
1642  * @data: ioctl data blob
1643  * @file: drm file
1644  *
1645  * While the mapping holds a reference on the contents of the object, it doesn't
1646  * imply a ref on the object itself.
1647  *
1648  * IMPORTANT:
1649  *
1650  * DRM driver writers who look a this function as an example for how to do GEM
1651  * mmap support, please don't implement mmap support like here. The modern way
1652  * to implement DRM mmap support is with an mmap offset ioctl (like
1653  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1654  * That way debug tooling like valgrind will understand what's going on, hiding
1655  * the mmap call in a driver private ioctl will break that. The i915 driver only
1656  * does cpu mmaps this way because we didn't know better.
1657  */
1658 int
1659 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1660 		    struct drm_file *file)
1661 {
1662 	struct drm_i915_gem_mmap *args = data;
1663 	struct drm_i915_gem_object *obj;
1664 	unsigned long addr;
1665 
1666 	if (args->flags & ~(I915_MMAP_WC))
1667 		return -EINVAL;
1668 
1669 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1670 		return -ENODEV;
1671 
1672 	obj = i915_gem_object_lookup(file, args->handle);
1673 	if (!obj)
1674 		return -ENOENT;
1675 
1676 	/* prime objects have no backing filp to GEM mmap
1677 	 * pages from.
1678 	 */
1679 	if (!obj->base.filp) {
1680 		i915_gem_object_put(obj);
1681 		return -EINVAL;
1682 	}
1683 
1684 	addr = vm_mmap(obj->base.filp, 0, args->size,
1685 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1686 		       args->offset);
1687 	if (args->flags & I915_MMAP_WC) {
1688 		struct mm_struct *mm = current->mm;
1689 		struct vm_area_struct *vma;
1690 
1691 		if (down_write_killable(&mm->mmap_sem)) {
1692 			i915_gem_object_put(obj);
1693 			return -EINTR;
1694 		}
1695 		vma = find_vma(mm, addr);
1696 		if (vma)
1697 			vma->vm_page_prot =
1698 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699 		else
1700 			addr = -ENOMEM;
1701 		up_write(&mm->mmap_sem);
1702 
1703 		/* This may race, but that's ok, it only gets set */
1704 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1705 	}
1706 	i915_gem_object_put(obj);
1707 	if (IS_ERR((void *)addr))
1708 		return addr;
1709 
1710 	args->addr_ptr = (uint64_t) addr;
1711 
1712 	return 0;
1713 }
1714 
1715 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1716 {
1717 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1718 }
1719 
1720 /**
1721  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1722  *
1723  * A history of the GTT mmap interface:
1724  *
1725  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1726  *     aligned and suitable for fencing, and still fit into the available
1727  *     mappable space left by the pinned display objects. A classic problem
1728  *     we called the page-fault-of-doom where we would ping-pong between
1729  *     two objects that could not fit inside the GTT and so the memcpy
1730  *     would page one object in at the expense of the other between every
1731  *     single byte.
1732  *
1733  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1734  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1735  *     object is too large for the available space (or simply too large
1736  *     for the mappable aperture!), a view is created instead and faulted
1737  *     into userspace. (This view is aligned and sized appropriately for
1738  *     fenced access.)
1739  *
1740  * Restrictions:
1741  *
1742  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1743  *    hangs on some architectures, corruption on others. An attempt to service
1744  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1745  *
1746  *  * the object must be able to fit into RAM (physical memory, though no
1747  *    limited to the mappable aperture).
1748  *
1749  *
1750  * Caveats:
1751  *
1752  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1753  *    all data to system memory. Subsequent access will not be synchronized.
1754  *
1755  *  * all mappings are revoked on runtime device suspend.
1756  *
1757  *  * there are only 8, 16 or 32 fence registers to share between all users
1758  *    (older machines require fence register for display and blitter access
1759  *    as well). Contention of the fence registers will cause the previous users
1760  *    to be unmapped and any new access will generate new page faults.
1761  *
1762  *  * running out of memory while servicing a fault may generate a SIGBUS,
1763  *    rather than the expected SIGSEGV.
1764  */
1765 int i915_gem_mmap_gtt_version(void)
1766 {
1767 	return 1;
1768 }
1769 
1770 static inline struct i915_ggtt_view
1771 compute_partial_view(struct drm_i915_gem_object *obj,
1772 		     pgoff_t page_offset,
1773 		     unsigned int chunk)
1774 {
1775 	struct i915_ggtt_view view;
1776 
1777 	if (i915_gem_object_is_tiled(obj))
1778 		chunk = roundup(chunk, tile_row_pages(obj));
1779 
1780 	view.type = I915_GGTT_VIEW_PARTIAL;
1781 	view.partial.offset = rounddown(page_offset, chunk);
1782 	view.partial.size =
1783 		min_t(unsigned int, chunk,
1784 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1785 
1786 	/* If the partial covers the entire object, just create a normal VMA. */
1787 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1788 		view.type = I915_GGTT_VIEW_NORMAL;
1789 
1790 	return view;
1791 }
1792 
1793 /**
1794  * i915_gem_fault - fault a page into the GTT
1795  * @vmf: fault info
1796  *
1797  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1798  * from userspace.  The fault handler takes care of binding the object to
1799  * the GTT (if needed), allocating and programming a fence register (again,
1800  * only if needed based on whether the old reg is still valid or the object
1801  * is tiled) and inserting a new PTE into the faulting process.
1802  *
1803  * Note that the faulting process may involve evicting existing objects
1804  * from the GTT and/or fence registers to make room.  So performance may
1805  * suffer if the GTT working set is large or there are few fence registers
1806  * left.
1807  *
1808  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1809  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1810  */
1811 int i915_gem_fault(struct vm_fault *vmf)
1812 {
1813 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1814 	struct vm_area_struct *area = vmf->vma;
1815 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1816 	struct drm_device *dev = obj->base.dev;
1817 	struct drm_i915_private *dev_priv = to_i915(dev);
1818 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1819 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1820 	struct i915_vma *vma;
1821 	pgoff_t page_offset;
1822 	unsigned int flags;
1823 	int ret;
1824 
1825 	/* We don't use vmf->pgoff since that has the fake offset */
1826 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1827 
1828 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1829 
1830 	/* Try to flush the object off the GPU first without holding the lock.
1831 	 * Upon acquiring the lock, we will perform our sanity checks and then
1832 	 * repeat the flush holding the lock in the normal manner to catch cases
1833 	 * where we are gazumped.
1834 	 */
1835 	ret = i915_gem_object_wait(obj,
1836 				   I915_WAIT_INTERRUPTIBLE,
1837 				   MAX_SCHEDULE_TIMEOUT,
1838 				   NULL);
1839 	if (ret)
1840 		goto err;
1841 
1842 	ret = i915_gem_object_pin_pages(obj);
1843 	if (ret)
1844 		goto err;
1845 
1846 	intel_runtime_pm_get(dev_priv);
1847 
1848 	ret = i915_mutex_lock_interruptible(dev);
1849 	if (ret)
1850 		goto err_rpm;
1851 
1852 	/* Access to snoopable pages through the GTT is incoherent. */
1853 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1854 		ret = -EFAULT;
1855 		goto err_unlock;
1856 	}
1857 
1858 	/* If the object is smaller than a couple of partial vma, it is
1859 	 * not worth only creating a single partial vma - we may as well
1860 	 * clear enough space for the full object.
1861 	 */
1862 	flags = PIN_MAPPABLE;
1863 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1864 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1865 
1866 	/* Now pin it into the GTT as needed */
1867 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1868 	if (IS_ERR(vma)) {
1869 		/* Use a partial view if it is bigger than available space */
1870 		struct i915_ggtt_view view =
1871 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1872 
1873 		/* Userspace is now writing through an untracked VMA, abandon
1874 		 * all hope that the hardware is able to track future writes.
1875 		 */
1876 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1877 
1878 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1879 	}
1880 	if (IS_ERR(vma)) {
1881 		ret = PTR_ERR(vma);
1882 		goto err_unlock;
1883 	}
1884 
1885 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1886 	if (ret)
1887 		goto err_unpin;
1888 
1889 	ret = i915_vma_get_fence(vma);
1890 	if (ret)
1891 		goto err_unpin;
1892 
1893 	/* Mark as being mmapped into userspace for later revocation */
1894 	assert_rpm_wakelock_held(dev_priv);
1895 	if (list_empty(&obj->userfault_link))
1896 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1897 
1898 	/* Finally, remap it using the new GTT offset */
1899 	ret = remap_io_mapping(area,
1900 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1901 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1902 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1903 			       &ggtt->mappable);
1904 
1905 err_unpin:
1906 	__i915_vma_unpin(vma);
1907 err_unlock:
1908 	mutex_unlock(&dev->struct_mutex);
1909 err_rpm:
1910 	intel_runtime_pm_put(dev_priv);
1911 	i915_gem_object_unpin_pages(obj);
1912 err:
1913 	switch (ret) {
1914 	case -EIO:
1915 		/*
1916 		 * We eat errors when the gpu is terminally wedged to avoid
1917 		 * userspace unduly crashing (gl has no provisions for mmaps to
1918 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1919 		 * and so needs to be reported.
1920 		 */
1921 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1922 			ret = VM_FAULT_SIGBUS;
1923 			break;
1924 		}
1925 	case -EAGAIN:
1926 		/*
1927 		 * EAGAIN means the gpu is hung and we'll wait for the error
1928 		 * handler to reset everything when re-faulting in
1929 		 * i915_mutex_lock_interruptible.
1930 		 */
1931 	case 0:
1932 	case -ERESTARTSYS:
1933 	case -EINTR:
1934 	case -EBUSY:
1935 		/*
1936 		 * EBUSY is ok: this just means that another thread
1937 		 * already did the job.
1938 		 */
1939 		ret = VM_FAULT_NOPAGE;
1940 		break;
1941 	case -ENOMEM:
1942 		ret = VM_FAULT_OOM;
1943 		break;
1944 	case -ENOSPC:
1945 	case -EFAULT:
1946 		ret = VM_FAULT_SIGBUS;
1947 		break;
1948 	default:
1949 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1950 		ret = VM_FAULT_SIGBUS;
1951 		break;
1952 	}
1953 	return ret;
1954 }
1955 
1956 /**
1957  * i915_gem_release_mmap - remove physical page mappings
1958  * @obj: obj in question
1959  *
1960  * Preserve the reservation of the mmapping with the DRM core code, but
1961  * relinquish ownership of the pages back to the system.
1962  *
1963  * It is vital that we remove the page mapping if we have mapped a tiled
1964  * object through the GTT and then lose the fence register due to
1965  * resource pressure. Similarly if the object has been moved out of the
1966  * aperture, than pages mapped into userspace must be revoked. Removing the
1967  * mapping will then trigger a page fault on the next user access, allowing
1968  * fixup by i915_gem_fault().
1969  */
1970 void
1971 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1972 {
1973 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1974 
1975 	/* Serialisation between user GTT access and our code depends upon
1976 	 * revoking the CPU's PTE whilst the mutex is held. The next user
1977 	 * pagefault then has to wait until we release the mutex.
1978 	 *
1979 	 * Note that RPM complicates somewhat by adding an additional
1980 	 * requirement that operations to the GGTT be made holding the RPM
1981 	 * wakeref.
1982 	 */
1983 	lockdep_assert_held(&i915->drm.struct_mutex);
1984 	intel_runtime_pm_get(i915);
1985 
1986 	if (list_empty(&obj->userfault_link))
1987 		goto out;
1988 
1989 	list_del_init(&obj->userfault_link);
1990 	drm_vma_node_unmap(&obj->base.vma_node,
1991 			   obj->base.dev->anon_inode->i_mapping);
1992 
1993 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
1994 	 * memory transactions from userspace before we return. The TLB
1995 	 * flushing implied above by changing the PTE above *should* be
1996 	 * sufficient, an extra barrier here just provides us with a bit
1997 	 * of paranoid documentation about our requirement to serialise
1998 	 * memory writes before touching registers / GSM.
1999 	 */
2000 	wmb();
2001 
2002 out:
2003 	intel_runtime_pm_put(i915);
2004 }
2005 
2006 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2007 {
2008 	struct drm_i915_gem_object *obj, *on;
2009 	int i;
2010 
2011 	/*
2012 	 * Only called during RPM suspend. All users of the userfault_list
2013 	 * must be holding an RPM wakeref to ensure that this can not
2014 	 * run concurrently with themselves (and use the struct_mutex for
2015 	 * protection between themselves).
2016 	 */
2017 
2018 	list_for_each_entry_safe(obj, on,
2019 				 &dev_priv->mm.userfault_list, userfault_link) {
2020 		list_del_init(&obj->userfault_link);
2021 		drm_vma_node_unmap(&obj->base.vma_node,
2022 				   obj->base.dev->anon_inode->i_mapping);
2023 	}
2024 
2025 	/* The fence will be lost when the device powers down. If any were
2026 	 * in use by hardware (i.e. they are pinned), we should not be powering
2027 	 * down! All other fences will be reacquired by the user upon waking.
2028 	 */
2029 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2030 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2031 
2032 		/* Ideally we want to assert that the fence register is not
2033 		 * live at this point (i.e. that no piece of code will be
2034 		 * trying to write through fence + GTT, as that both violates
2035 		 * our tracking of activity and associated locking/barriers,
2036 		 * but also is illegal given that the hw is powered down).
2037 		 *
2038 		 * Previously we used reg->pin_count as a "liveness" indicator.
2039 		 * That is not sufficient, and we need a more fine-grained
2040 		 * tool if we want to have a sanity check here.
2041 		 */
2042 
2043 		if (!reg->vma)
2044 			continue;
2045 
2046 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2047 		reg->dirty = true;
2048 	}
2049 }
2050 
2051 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2052 {
2053 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2054 	int err;
2055 
2056 	err = drm_gem_create_mmap_offset(&obj->base);
2057 	if (likely(!err))
2058 		return 0;
2059 
2060 	/* Attempt to reap some mmap space from dead objects */
2061 	do {
2062 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2063 		if (err)
2064 			break;
2065 
2066 		i915_gem_drain_freed_objects(dev_priv);
2067 		err = drm_gem_create_mmap_offset(&obj->base);
2068 		if (!err)
2069 			break;
2070 
2071 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2072 
2073 	return err;
2074 }
2075 
2076 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2077 {
2078 	drm_gem_free_mmap_offset(&obj->base);
2079 }
2080 
2081 int
2082 i915_gem_mmap_gtt(struct drm_file *file,
2083 		  struct drm_device *dev,
2084 		  uint32_t handle,
2085 		  uint64_t *offset)
2086 {
2087 	struct drm_i915_gem_object *obj;
2088 	int ret;
2089 
2090 	obj = i915_gem_object_lookup(file, handle);
2091 	if (!obj)
2092 		return -ENOENT;
2093 
2094 	ret = i915_gem_object_create_mmap_offset(obj);
2095 	if (ret == 0)
2096 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2097 
2098 	i915_gem_object_put(obj);
2099 	return ret;
2100 }
2101 
2102 /**
2103  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2104  * @dev: DRM device
2105  * @data: GTT mapping ioctl data
2106  * @file: GEM object info
2107  *
2108  * Simply returns the fake offset to userspace so it can mmap it.
2109  * The mmap call will end up in drm_gem_mmap(), which will set things
2110  * up so we can get faults in the handler above.
2111  *
2112  * The fault handler will take care of binding the object into the GTT
2113  * (since it may have been evicted to make room for something), allocating
2114  * a fence register, and mapping the appropriate aperture address into
2115  * userspace.
2116  */
2117 int
2118 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2119 			struct drm_file *file)
2120 {
2121 	struct drm_i915_gem_mmap_gtt *args = data;
2122 
2123 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2124 }
2125 
2126 /* Immediately discard the backing storage */
2127 static void
2128 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2129 {
2130 	i915_gem_object_free_mmap_offset(obj);
2131 
2132 	if (obj->base.filp == NULL)
2133 		return;
2134 
2135 	/* Our goal here is to return as much of the memory as
2136 	 * is possible back to the system as we are called from OOM.
2137 	 * To do this we must instruct the shmfs to drop all of its
2138 	 * backing pages, *now*.
2139 	 */
2140 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2141 	obj->mm.madv = __I915_MADV_PURGED;
2142 	obj->mm.pages = ERR_PTR(-EFAULT);
2143 }
2144 
2145 /* Try to discard unwanted pages */
2146 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2147 {
2148 	struct address_space *mapping;
2149 
2150 	lockdep_assert_held(&obj->mm.lock);
2151 	GEM_BUG_ON(obj->mm.pages);
2152 
2153 	switch (obj->mm.madv) {
2154 	case I915_MADV_DONTNEED:
2155 		i915_gem_object_truncate(obj);
2156 	case __I915_MADV_PURGED:
2157 		return;
2158 	}
2159 
2160 	if (obj->base.filp == NULL)
2161 		return;
2162 
2163 	mapping = obj->base.filp->f_mapping,
2164 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2165 }
2166 
2167 static void
2168 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2169 			      struct sg_table *pages)
2170 {
2171 	struct sgt_iter sgt_iter;
2172 	struct page *page;
2173 
2174 	__i915_gem_object_release_shmem(obj, pages, true);
2175 
2176 	i915_gem_gtt_finish_pages(obj, pages);
2177 
2178 	if (i915_gem_object_needs_bit17_swizzle(obj))
2179 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2180 
2181 	for_each_sgt_page(page, sgt_iter, pages) {
2182 		if (obj->mm.dirty)
2183 			set_page_dirty(page);
2184 
2185 		if (obj->mm.madv == I915_MADV_WILLNEED)
2186 			mark_page_accessed(page);
2187 
2188 		put_page(page);
2189 	}
2190 	obj->mm.dirty = false;
2191 
2192 	sg_free_table(pages);
2193 	kfree(pages);
2194 }
2195 
2196 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2197 {
2198 	struct radix_tree_iter iter;
2199 	void **slot;
2200 
2201 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2202 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2203 }
2204 
2205 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2206 				 enum i915_mm_subclass subclass)
2207 {
2208 	struct sg_table *pages;
2209 
2210 	if (i915_gem_object_has_pinned_pages(obj))
2211 		return;
2212 
2213 	GEM_BUG_ON(obj->bind_count);
2214 	if (!READ_ONCE(obj->mm.pages))
2215 		return;
2216 
2217 	/* May be called by shrinker from within get_pages() (on another bo) */
2218 	mutex_lock_nested(&obj->mm.lock, subclass);
2219 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2220 		goto unlock;
2221 
2222 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2223 	 * array, hence protect them from being reaped by removing them from gtt
2224 	 * lists early. */
2225 	pages = fetch_and_zero(&obj->mm.pages);
2226 	GEM_BUG_ON(!pages);
2227 
2228 	if (obj->mm.mapping) {
2229 		void *ptr;
2230 
2231 		ptr = ptr_mask_bits(obj->mm.mapping);
2232 		if (is_vmalloc_addr(ptr))
2233 			vunmap(ptr);
2234 		else
2235 			kunmap(kmap_to_page(ptr));
2236 
2237 		obj->mm.mapping = NULL;
2238 	}
2239 
2240 	__i915_gem_object_reset_page_iter(obj);
2241 
2242 	if (!IS_ERR(pages))
2243 		obj->ops->put_pages(obj, pages);
2244 
2245 unlock:
2246 	mutex_unlock(&obj->mm.lock);
2247 }
2248 
2249 static bool i915_sg_trim(struct sg_table *orig_st)
2250 {
2251 	struct sg_table new_st;
2252 	struct scatterlist *sg, *new_sg;
2253 	unsigned int i;
2254 
2255 	if (orig_st->nents == orig_st->orig_nents)
2256 		return false;
2257 
2258 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2259 		return false;
2260 
2261 	new_sg = new_st.sgl;
2262 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2263 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2264 		/* called before being DMA mapped, no need to copy sg->dma_* */
2265 		new_sg = sg_next(new_sg);
2266 	}
2267 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2268 
2269 	sg_free_table(orig_st);
2270 
2271 	*orig_st = new_st;
2272 	return true;
2273 }
2274 
2275 static struct sg_table *
2276 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2277 {
2278 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2279 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2280 	unsigned long i;
2281 	struct address_space *mapping;
2282 	struct sg_table *st;
2283 	struct scatterlist *sg;
2284 	struct sgt_iter sgt_iter;
2285 	struct page *page;
2286 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2287 	unsigned int max_segment;
2288 	int ret;
2289 	gfp_t gfp;
2290 
2291 	/* Assert that the object is not currently in any GPU domain. As it
2292 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2293 	 * a GPU cache
2294 	 */
2295 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2296 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2297 
2298 	max_segment = swiotlb_max_segment();
2299 	if (!max_segment)
2300 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2301 
2302 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2303 	if (st == NULL)
2304 		return ERR_PTR(-ENOMEM);
2305 
2306 rebuild_st:
2307 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2308 		kfree(st);
2309 		return ERR_PTR(-ENOMEM);
2310 	}
2311 
2312 	/* Get the list of pages out of our struct file.  They'll be pinned
2313 	 * at this point until we release them.
2314 	 *
2315 	 * Fail silently without starting the shrinker
2316 	 */
2317 	mapping = obj->base.filp->f_mapping;
2318 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2319 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2320 	sg = st->sgl;
2321 	st->nents = 0;
2322 	for (i = 0; i < page_count; i++) {
2323 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2324 		if (IS_ERR(page)) {
2325 			i915_gem_shrink(dev_priv,
2326 					page_count,
2327 					I915_SHRINK_BOUND |
2328 					I915_SHRINK_UNBOUND |
2329 					I915_SHRINK_PURGEABLE);
2330 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2331 		}
2332 		if (IS_ERR(page)) {
2333 			/* We've tried hard to allocate the memory by reaping
2334 			 * our own buffer, now let the real VM do its job and
2335 			 * go down in flames if truly OOM.
2336 			 */
2337 			page = shmem_read_mapping_page(mapping, i);
2338 			if (IS_ERR(page)) {
2339 				ret = PTR_ERR(page);
2340 				goto err_sg;
2341 			}
2342 		}
2343 		if (!i ||
2344 		    sg->length >= max_segment ||
2345 		    page_to_pfn(page) != last_pfn + 1) {
2346 			if (i)
2347 				sg = sg_next(sg);
2348 			st->nents++;
2349 			sg_set_page(sg, page, PAGE_SIZE, 0);
2350 		} else {
2351 			sg->length += PAGE_SIZE;
2352 		}
2353 		last_pfn = page_to_pfn(page);
2354 
2355 		/* Check that the i965g/gm workaround works. */
2356 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2357 	}
2358 	if (sg) /* loop terminated early; short sg table */
2359 		sg_mark_end(sg);
2360 
2361 	/* Trim unused sg entries to avoid wasting memory. */
2362 	i915_sg_trim(st);
2363 
2364 	ret = i915_gem_gtt_prepare_pages(obj, st);
2365 	if (ret) {
2366 		/* DMA remapping failed? One possible cause is that
2367 		 * it could not reserve enough large entries, asking
2368 		 * for PAGE_SIZE chunks instead may be helpful.
2369 		 */
2370 		if (max_segment > PAGE_SIZE) {
2371 			for_each_sgt_page(page, sgt_iter, st)
2372 				put_page(page);
2373 			sg_free_table(st);
2374 
2375 			max_segment = PAGE_SIZE;
2376 			goto rebuild_st;
2377 		} else {
2378 			dev_warn(&dev_priv->drm.pdev->dev,
2379 				 "Failed to DMA remap %lu pages\n",
2380 				 page_count);
2381 			goto err_pages;
2382 		}
2383 	}
2384 
2385 	if (i915_gem_object_needs_bit17_swizzle(obj))
2386 		i915_gem_object_do_bit_17_swizzle(obj, st);
2387 
2388 	return st;
2389 
2390 err_sg:
2391 	sg_mark_end(sg);
2392 err_pages:
2393 	for_each_sgt_page(page, sgt_iter, st)
2394 		put_page(page);
2395 	sg_free_table(st);
2396 	kfree(st);
2397 
2398 	/* shmemfs first checks if there is enough memory to allocate the page
2399 	 * and reports ENOSPC should there be insufficient, along with the usual
2400 	 * ENOMEM for a genuine allocation failure.
2401 	 *
2402 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2403 	 * space and so want to translate the error from shmemfs back to our
2404 	 * usual understanding of ENOMEM.
2405 	 */
2406 	if (ret == -ENOSPC)
2407 		ret = -ENOMEM;
2408 
2409 	return ERR_PTR(ret);
2410 }
2411 
2412 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2413 				 struct sg_table *pages)
2414 {
2415 	lockdep_assert_held(&obj->mm.lock);
2416 
2417 	obj->mm.get_page.sg_pos = pages->sgl;
2418 	obj->mm.get_page.sg_idx = 0;
2419 
2420 	obj->mm.pages = pages;
2421 
2422 	if (i915_gem_object_is_tiled(obj) &&
2423 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2424 		GEM_BUG_ON(obj->mm.quirked);
2425 		__i915_gem_object_pin_pages(obj);
2426 		obj->mm.quirked = true;
2427 	}
2428 }
2429 
2430 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2431 {
2432 	struct sg_table *pages;
2433 
2434 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2435 
2436 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2437 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2438 		return -EFAULT;
2439 	}
2440 
2441 	pages = obj->ops->get_pages(obj);
2442 	if (unlikely(IS_ERR(pages)))
2443 		return PTR_ERR(pages);
2444 
2445 	__i915_gem_object_set_pages(obj, pages);
2446 	return 0;
2447 }
2448 
2449 /* Ensure that the associated pages are gathered from the backing storage
2450  * and pinned into our object. i915_gem_object_pin_pages() may be called
2451  * multiple times before they are released by a single call to
2452  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2453  * either as a result of memory pressure (reaping pages under the shrinker)
2454  * or as the object is itself released.
2455  */
2456 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2457 {
2458 	int err;
2459 
2460 	err = mutex_lock_interruptible(&obj->mm.lock);
2461 	if (err)
2462 		return err;
2463 
2464 	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2465 		err = ____i915_gem_object_get_pages(obj);
2466 		if (err)
2467 			goto unlock;
2468 
2469 		smp_mb__before_atomic();
2470 	}
2471 	atomic_inc(&obj->mm.pages_pin_count);
2472 
2473 unlock:
2474 	mutex_unlock(&obj->mm.lock);
2475 	return err;
2476 }
2477 
2478 /* The 'mapping' part of i915_gem_object_pin_map() below */
2479 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2480 				 enum i915_map_type type)
2481 {
2482 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2483 	struct sg_table *sgt = obj->mm.pages;
2484 	struct sgt_iter sgt_iter;
2485 	struct page *page;
2486 	struct page *stack_pages[32];
2487 	struct page **pages = stack_pages;
2488 	unsigned long i = 0;
2489 	pgprot_t pgprot;
2490 	void *addr;
2491 
2492 	/* A single page can always be kmapped */
2493 	if (n_pages == 1 && type == I915_MAP_WB)
2494 		return kmap(sg_page(sgt->sgl));
2495 
2496 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2497 		/* Too big for stack -- allocate temporary array instead */
2498 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2499 		if (!pages)
2500 			return NULL;
2501 	}
2502 
2503 	for_each_sgt_page(page, sgt_iter, sgt)
2504 		pages[i++] = page;
2505 
2506 	/* Check that we have the expected number of pages */
2507 	GEM_BUG_ON(i != n_pages);
2508 
2509 	switch (type) {
2510 	case I915_MAP_WB:
2511 		pgprot = PAGE_KERNEL;
2512 		break;
2513 	case I915_MAP_WC:
2514 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2515 		break;
2516 	}
2517 	addr = vmap(pages, n_pages, 0, pgprot);
2518 
2519 	if (pages != stack_pages)
2520 		drm_free_large(pages);
2521 
2522 	return addr;
2523 }
2524 
2525 /* get, pin, and map the pages of the object into kernel space */
2526 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2527 			      enum i915_map_type type)
2528 {
2529 	enum i915_map_type has_type;
2530 	bool pinned;
2531 	void *ptr;
2532 	int ret;
2533 
2534 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2535 
2536 	ret = mutex_lock_interruptible(&obj->mm.lock);
2537 	if (ret)
2538 		return ERR_PTR(ret);
2539 
2540 	pinned = true;
2541 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2542 		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2543 			ret = ____i915_gem_object_get_pages(obj);
2544 			if (ret)
2545 				goto err_unlock;
2546 
2547 			smp_mb__before_atomic();
2548 		}
2549 		atomic_inc(&obj->mm.pages_pin_count);
2550 		pinned = false;
2551 	}
2552 	GEM_BUG_ON(!obj->mm.pages);
2553 
2554 	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2555 	if (ptr && has_type != type) {
2556 		if (pinned) {
2557 			ret = -EBUSY;
2558 			goto err_unpin;
2559 		}
2560 
2561 		if (is_vmalloc_addr(ptr))
2562 			vunmap(ptr);
2563 		else
2564 			kunmap(kmap_to_page(ptr));
2565 
2566 		ptr = obj->mm.mapping = NULL;
2567 	}
2568 
2569 	if (!ptr) {
2570 		ptr = i915_gem_object_map(obj, type);
2571 		if (!ptr) {
2572 			ret = -ENOMEM;
2573 			goto err_unpin;
2574 		}
2575 
2576 		obj->mm.mapping = ptr_pack_bits(ptr, type);
2577 	}
2578 
2579 out_unlock:
2580 	mutex_unlock(&obj->mm.lock);
2581 	return ptr;
2582 
2583 err_unpin:
2584 	atomic_dec(&obj->mm.pages_pin_count);
2585 err_unlock:
2586 	ptr = ERR_PTR(ret);
2587 	goto out_unlock;
2588 }
2589 
2590 static int
2591 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2592 			   const struct drm_i915_gem_pwrite *arg)
2593 {
2594 	struct address_space *mapping = obj->base.filp->f_mapping;
2595 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2596 	u64 remain, offset;
2597 	unsigned int pg;
2598 
2599 	/* Before we instantiate/pin the backing store for our use, we
2600 	 * can prepopulate the shmemfs filp efficiently using a write into
2601 	 * the pagecache. We avoid the penalty of instantiating all the
2602 	 * pages, important if the user is just writing to a few and never
2603 	 * uses the object on the GPU, and using a direct write into shmemfs
2604 	 * allows it to avoid the cost of retrieving a page (either swapin
2605 	 * or clearing-before-use) before it is overwritten.
2606 	 */
2607 	if (READ_ONCE(obj->mm.pages))
2608 		return -ENODEV;
2609 
2610 	/* Before the pages are instantiated the object is treated as being
2611 	 * in the CPU domain. The pages will be clflushed as required before
2612 	 * use, and we can freely write into the pages directly. If userspace
2613 	 * races pwrite with any other operation; corruption will ensue -
2614 	 * that is userspace's prerogative!
2615 	 */
2616 
2617 	remain = arg->size;
2618 	offset = arg->offset;
2619 	pg = offset_in_page(offset);
2620 
2621 	do {
2622 		unsigned int len, unwritten;
2623 		struct page *page;
2624 		void *data, *vaddr;
2625 		int err;
2626 
2627 		len = PAGE_SIZE - pg;
2628 		if (len > remain)
2629 			len = remain;
2630 
2631 		err = pagecache_write_begin(obj->base.filp, mapping,
2632 					    offset, len, 0,
2633 					    &page, &data);
2634 		if (err < 0)
2635 			return err;
2636 
2637 		vaddr = kmap(page);
2638 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2639 		kunmap(page);
2640 
2641 		err = pagecache_write_end(obj->base.filp, mapping,
2642 					  offset, len, len - unwritten,
2643 					  page, data);
2644 		if (err < 0)
2645 			return err;
2646 
2647 		if (unwritten)
2648 			return -EFAULT;
2649 
2650 		remain -= len;
2651 		user_data += len;
2652 		offset += len;
2653 		pg = 0;
2654 	} while (remain);
2655 
2656 	return 0;
2657 }
2658 
2659 static bool ban_context(const struct i915_gem_context *ctx)
2660 {
2661 	return (i915_gem_context_is_bannable(ctx) &&
2662 		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2663 }
2664 
2665 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2666 {
2667 	ctx->guilty_count++;
2668 	ctx->ban_score += CONTEXT_SCORE_GUILTY;
2669 	if (ban_context(ctx))
2670 		i915_gem_context_set_banned(ctx);
2671 
2672 	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2673 			 ctx->name, ctx->ban_score,
2674 			 yesno(i915_gem_context_is_banned(ctx)));
2675 
2676 	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2677 		return;
2678 
2679 	ctx->file_priv->context_bans++;
2680 	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2681 			 ctx->name, ctx->file_priv->context_bans);
2682 }
2683 
2684 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2685 {
2686 	ctx->active_count++;
2687 }
2688 
2689 struct drm_i915_gem_request *
2690 i915_gem_find_active_request(struct intel_engine_cs *engine)
2691 {
2692 	struct drm_i915_gem_request *request, *active = NULL;
2693 	unsigned long flags;
2694 
2695 	/* We are called by the error capture and reset at a random
2696 	 * point in time. In particular, note that neither is crucially
2697 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2698 	 * assume that no more writes can happen (we waited long enough for
2699 	 * all writes that were in transaction to be flushed) - adding an
2700 	 * extra delay for a recent interrupt is pointless. Hence, we do
2701 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2702 	 */
2703 	spin_lock_irqsave(&engine->timeline->lock, flags);
2704 	list_for_each_entry(request, &engine->timeline->requests, link) {
2705 		if (__i915_gem_request_completed(request,
2706 						 request->global_seqno))
2707 			continue;
2708 
2709 		GEM_BUG_ON(request->engine != engine);
2710 		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2711 				    &request->fence.flags));
2712 
2713 		active = request;
2714 		break;
2715 	}
2716 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2717 
2718 	return active;
2719 }
2720 
2721 static bool engine_stalled(struct intel_engine_cs *engine)
2722 {
2723 	if (!engine->hangcheck.stalled)
2724 		return false;
2725 
2726 	/* Check for possible seqno movement after hang declaration */
2727 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2728 		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2729 		return false;
2730 	}
2731 
2732 	return true;
2733 }
2734 
2735 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2736 {
2737 	struct intel_engine_cs *engine;
2738 	enum intel_engine_id id;
2739 	int err = 0;
2740 
2741 	/* Ensure irq handler finishes, and not run again. */
2742 	for_each_engine(engine, dev_priv, id) {
2743 		struct drm_i915_gem_request *request;
2744 
2745 		/* Prevent the signaler thread from updating the request
2746 		 * state (by calling dma_fence_signal) as we are processing
2747 		 * the reset. The write from the GPU of the seqno is
2748 		 * asynchronous and the signaler thread may see a different
2749 		 * value to us and declare the request complete, even though
2750 		 * the reset routine have picked that request as the active
2751 		 * (incomplete) request. This conflict is not handled
2752 		 * gracefully!
2753 		 */
2754 		kthread_park(engine->breadcrumbs.signaler);
2755 
2756 		/* Prevent request submission to the hardware until we have
2757 		 * completed the reset in i915_gem_reset_finish(). If a request
2758 		 * is completed by one engine, it may then queue a request
2759 		 * to a second via its engine->irq_tasklet *just* as we are
2760 		 * calling engine->init_hw() and also writing the ELSP.
2761 		 * Turning off the engine->irq_tasklet until the reset is over
2762 		 * prevents the race.
2763 		 */
2764 		tasklet_kill(&engine->irq_tasklet);
2765 		tasklet_disable(&engine->irq_tasklet);
2766 
2767 		if (engine->irq_seqno_barrier)
2768 			engine->irq_seqno_barrier(engine);
2769 
2770 		if (engine_stalled(engine)) {
2771 			request = i915_gem_find_active_request(engine);
2772 			if (request && request->fence.error == -EIO)
2773 				err = -EIO; /* Previous reset failed! */
2774 		}
2775 	}
2776 
2777 	i915_gem_revoke_fences(dev_priv);
2778 
2779 	return err;
2780 }
2781 
2782 static void skip_request(struct drm_i915_gem_request *request)
2783 {
2784 	void *vaddr = request->ring->vaddr;
2785 	u32 head;
2786 
2787 	/* As this request likely depends on state from the lost
2788 	 * context, clear out all the user operations leaving the
2789 	 * breadcrumb at the end (so we get the fence notifications).
2790 	 */
2791 	head = request->head;
2792 	if (request->postfix < head) {
2793 		memset(vaddr + head, 0, request->ring->size - head);
2794 		head = 0;
2795 	}
2796 	memset(vaddr + head, 0, request->postfix - head);
2797 
2798 	dma_fence_set_error(&request->fence, -EIO);
2799 }
2800 
2801 static void engine_skip_context(struct drm_i915_gem_request *request)
2802 {
2803 	struct intel_engine_cs *engine = request->engine;
2804 	struct i915_gem_context *hung_ctx = request->ctx;
2805 	struct intel_timeline *timeline;
2806 	unsigned long flags;
2807 
2808 	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2809 
2810 	spin_lock_irqsave(&engine->timeline->lock, flags);
2811 	spin_lock(&timeline->lock);
2812 
2813 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2814 		if (request->ctx == hung_ctx)
2815 			skip_request(request);
2816 
2817 	list_for_each_entry(request, &timeline->requests, link)
2818 		skip_request(request);
2819 
2820 	spin_unlock(&timeline->lock);
2821 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2822 }
2823 
2824 /* Returns true if the request was guilty of hang */
2825 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2826 {
2827 	/* Read once and return the resolution */
2828 	const bool guilty = engine_stalled(request->engine);
2829 
2830 	/* The guilty request will get skipped on a hung engine.
2831 	 *
2832 	 * Users of client default contexts do not rely on logical
2833 	 * state preserved between batches so it is safe to execute
2834 	 * queued requests following the hang. Non default contexts
2835 	 * rely on preserved state, so skipping a batch loses the
2836 	 * evolution of the state and it needs to be considered corrupted.
2837 	 * Executing more queued batches on top of corrupted state is
2838 	 * risky. But we take the risk by trying to advance through
2839 	 * the queued requests in order to make the client behaviour
2840 	 * more predictable around resets, by not throwing away random
2841 	 * amount of batches it has prepared for execution. Sophisticated
2842 	 * clients can use gem_reset_stats_ioctl and dma fence status
2843 	 * (exported via sync_file info ioctl on explicit fences) to observe
2844 	 * when it loses the context state and should rebuild accordingly.
2845 	 *
2846 	 * The context ban, and ultimately the client ban, mechanism are safety
2847 	 * valves if client submission ends up resulting in nothing more than
2848 	 * subsequent hangs.
2849 	 */
2850 
2851 	if (guilty) {
2852 		i915_gem_context_mark_guilty(request->ctx);
2853 		skip_request(request);
2854 	} else {
2855 		i915_gem_context_mark_innocent(request->ctx);
2856 		dma_fence_set_error(&request->fence, -EAGAIN);
2857 	}
2858 
2859 	return guilty;
2860 }
2861 
2862 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2863 {
2864 	struct drm_i915_gem_request *request;
2865 
2866 	request = i915_gem_find_active_request(engine);
2867 	if (request && i915_gem_reset_request(request)) {
2868 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2869 				 engine->name, request->global_seqno);
2870 
2871 		/* If this context is now banned, skip all pending requests. */
2872 		if (i915_gem_context_is_banned(request->ctx))
2873 			engine_skip_context(request);
2874 	}
2875 
2876 	/* Setup the CS to resume from the breadcrumb of the hung request */
2877 	engine->reset_hw(engine, request);
2878 }
2879 
2880 void i915_gem_reset(struct drm_i915_private *dev_priv)
2881 {
2882 	struct intel_engine_cs *engine;
2883 	enum intel_engine_id id;
2884 
2885 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2886 
2887 	i915_gem_retire_requests(dev_priv);
2888 
2889 	for_each_engine(engine, dev_priv, id) {
2890 		struct i915_gem_context *ctx;
2891 
2892 		i915_gem_reset_engine(engine);
2893 		ctx = fetch_and_zero(&engine->last_retired_context);
2894 		if (ctx)
2895 			engine->context_unpin(engine, ctx);
2896 	}
2897 
2898 	i915_gem_restore_fences(dev_priv);
2899 
2900 	if (dev_priv->gt.awake) {
2901 		intel_sanitize_gt_powersave(dev_priv);
2902 		intel_enable_gt_powersave(dev_priv);
2903 		if (INTEL_GEN(dev_priv) >= 6)
2904 			gen6_rps_busy(dev_priv);
2905 	}
2906 }
2907 
2908 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2909 {
2910 	struct intel_engine_cs *engine;
2911 	enum intel_engine_id id;
2912 
2913 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2914 
2915 	for_each_engine(engine, dev_priv, id) {
2916 		tasklet_enable(&engine->irq_tasklet);
2917 		kthread_unpark(engine->breadcrumbs.signaler);
2918 	}
2919 }
2920 
2921 static void nop_submit_request(struct drm_i915_gem_request *request)
2922 {
2923 	dma_fence_set_error(&request->fence, -EIO);
2924 	i915_gem_request_submit(request);
2925 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2926 }
2927 
2928 static void engine_set_wedged(struct intel_engine_cs *engine)
2929 {
2930 	struct drm_i915_gem_request *request;
2931 	unsigned long flags;
2932 
2933 	/* We need to be sure that no thread is running the old callback as
2934 	 * we install the nop handler (otherwise we would submit a request
2935 	 * to hardware that will never complete). In order to prevent this
2936 	 * race, we wait until the machine is idle before making the swap
2937 	 * (using stop_machine()).
2938 	 */
2939 	engine->submit_request = nop_submit_request;
2940 
2941 	/* Mark all executing requests as skipped */
2942 	spin_lock_irqsave(&engine->timeline->lock, flags);
2943 	list_for_each_entry(request, &engine->timeline->requests, link)
2944 		dma_fence_set_error(&request->fence, -EIO);
2945 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2946 
2947 	/* Mark all pending requests as complete so that any concurrent
2948 	 * (lockless) lookup doesn't try and wait upon the request as we
2949 	 * reset it.
2950 	 */
2951 	intel_engine_init_global_seqno(engine,
2952 				       intel_engine_last_submit(engine));
2953 
2954 	/*
2955 	 * Clear the execlists queue up before freeing the requests, as those
2956 	 * are the ones that keep the context and ringbuffer backing objects
2957 	 * pinned in place.
2958 	 */
2959 
2960 	if (i915.enable_execlists) {
2961 		unsigned long flags;
2962 
2963 		spin_lock_irqsave(&engine->timeline->lock, flags);
2964 
2965 		i915_gem_request_put(engine->execlist_port[0].request);
2966 		i915_gem_request_put(engine->execlist_port[1].request);
2967 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2968 		engine->execlist_queue = RB_ROOT;
2969 		engine->execlist_first = NULL;
2970 
2971 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2972 	}
2973 }
2974 
2975 static int __i915_gem_set_wedged_BKL(void *data)
2976 {
2977 	struct drm_i915_private *i915 = data;
2978 	struct intel_engine_cs *engine;
2979 	enum intel_engine_id id;
2980 
2981 	for_each_engine(engine, i915, id)
2982 		engine_set_wedged(engine);
2983 
2984 	return 0;
2985 }
2986 
2987 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2988 {
2989 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2990 	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2991 
2992 	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2993 
2994 	i915_gem_context_lost(dev_priv);
2995 	i915_gem_retire_requests(dev_priv);
2996 
2997 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2998 }
2999 
3000 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3001 {
3002 	struct i915_gem_timeline *tl;
3003 	int i;
3004 
3005 	lockdep_assert_held(&i915->drm.struct_mutex);
3006 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3007 		return true;
3008 
3009 	/* Before unwedging, make sure that all pending operations
3010 	 * are flushed and errored out - we may have requests waiting upon
3011 	 * third party fences. We marked all inflight requests as EIO, and
3012 	 * every execbuf since returned EIO, for consistency we want all
3013 	 * the currently pending requests to also be marked as EIO, which
3014 	 * is done inside our nop_submit_request - and so we must wait.
3015 	 *
3016 	 * No more can be submitted until we reset the wedged bit.
3017 	 */
3018 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3019 		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3020 			struct drm_i915_gem_request *rq;
3021 
3022 			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3023 						  &i915->drm.struct_mutex);
3024 			if (!rq)
3025 				continue;
3026 
3027 			/* We can't use our normal waiter as we want to
3028 			 * avoid recursively trying to handle the current
3029 			 * reset. The basic dma_fence_default_wait() installs
3030 			 * a callback for dma_fence_signal(), which is
3031 			 * triggered by our nop handler (indirectly, the
3032 			 * callback enables the signaler thread which is
3033 			 * woken by the nop_submit_request() advancing the seqno
3034 			 * and when the seqno passes the fence, the signaler
3035 			 * then signals the fence waking us up).
3036 			 */
3037 			if (dma_fence_default_wait(&rq->fence, true,
3038 						   MAX_SCHEDULE_TIMEOUT) < 0)
3039 				return false;
3040 		}
3041 	}
3042 
3043 	/* Undo nop_submit_request. We prevent all new i915 requests from
3044 	 * being queued (by disallowing execbuf whilst wedged) so having
3045 	 * waited for all active requests above, we know the system is idle
3046 	 * and do not have to worry about a thread being inside
3047 	 * engine->submit_request() as we swap over. So unlike installing
3048 	 * the nop_submit_request on reset, we can do this from normal
3049 	 * context and do not require stop_machine().
3050 	 */
3051 	intel_engines_reset_default_submission(i915);
3052 
3053 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3054 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3055 
3056 	return true;
3057 }
3058 
3059 static void
3060 i915_gem_retire_work_handler(struct work_struct *work)
3061 {
3062 	struct drm_i915_private *dev_priv =
3063 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3064 	struct drm_device *dev = &dev_priv->drm;
3065 
3066 	/* Come back later if the device is busy... */
3067 	if (mutex_trylock(&dev->struct_mutex)) {
3068 		i915_gem_retire_requests(dev_priv);
3069 		mutex_unlock(&dev->struct_mutex);
3070 	}
3071 
3072 	/* Keep the retire handler running until we are finally idle.
3073 	 * We do not need to do this test under locking as in the worst-case
3074 	 * we queue the retire worker once too often.
3075 	 */
3076 	if (READ_ONCE(dev_priv->gt.awake)) {
3077 		i915_queue_hangcheck(dev_priv);
3078 		queue_delayed_work(dev_priv->wq,
3079 				   &dev_priv->gt.retire_work,
3080 				   round_jiffies_up_relative(HZ));
3081 	}
3082 }
3083 
3084 static void
3085 i915_gem_idle_work_handler(struct work_struct *work)
3086 {
3087 	struct drm_i915_private *dev_priv =
3088 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3089 	struct drm_device *dev = &dev_priv->drm;
3090 	struct intel_engine_cs *engine;
3091 	enum intel_engine_id id;
3092 	bool rearm_hangcheck;
3093 
3094 	if (!READ_ONCE(dev_priv->gt.awake))
3095 		return;
3096 
3097 	/*
3098 	 * Wait for last execlists context complete, but bail out in case a
3099 	 * new request is submitted.
3100 	 */
3101 	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
3102 		 intel_engines_are_idle(dev_priv),
3103 		 10);
3104 	if (READ_ONCE(dev_priv->gt.active_requests))
3105 		return;
3106 
3107 	rearm_hangcheck =
3108 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3109 
3110 	if (!mutex_trylock(&dev->struct_mutex)) {
3111 		/* Currently busy, come back later */
3112 		mod_delayed_work(dev_priv->wq,
3113 				 &dev_priv->gt.idle_work,
3114 				 msecs_to_jiffies(50));
3115 		goto out_rearm;
3116 	}
3117 
3118 	/*
3119 	 * New request retired after this work handler started, extend active
3120 	 * period until next instance of the work.
3121 	 */
3122 	if (work_pending(work))
3123 		goto out_unlock;
3124 
3125 	if (dev_priv->gt.active_requests)
3126 		goto out_unlock;
3127 
3128 	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3129 		DRM_ERROR("Timeout waiting for engines to idle\n");
3130 
3131 	for_each_engine(engine, dev_priv, id) {
3132 		intel_engine_disarm_breadcrumbs(engine);
3133 		i915_gem_batch_pool_fini(&engine->batch_pool);
3134 	}
3135 
3136 	GEM_BUG_ON(!dev_priv->gt.awake);
3137 	dev_priv->gt.awake = false;
3138 	rearm_hangcheck = false;
3139 
3140 	if (INTEL_GEN(dev_priv) >= 6)
3141 		gen6_rps_idle(dev_priv);
3142 	intel_runtime_pm_put(dev_priv);
3143 out_unlock:
3144 	mutex_unlock(&dev->struct_mutex);
3145 
3146 out_rearm:
3147 	if (rearm_hangcheck) {
3148 		GEM_BUG_ON(!dev_priv->gt.awake);
3149 		i915_queue_hangcheck(dev_priv);
3150 	}
3151 }
3152 
3153 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3154 {
3155 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3156 	struct drm_i915_file_private *fpriv = file->driver_priv;
3157 	struct i915_vma *vma, *vn;
3158 
3159 	mutex_lock(&obj->base.dev->struct_mutex);
3160 	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3161 		if (vma->vm->file == fpriv)
3162 			i915_vma_close(vma);
3163 
3164 	if (i915_gem_object_is_active(obj) &&
3165 	    !i915_gem_object_has_active_reference(obj)) {
3166 		i915_gem_object_set_active_reference(obj);
3167 		i915_gem_object_get(obj);
3168 	}
3169 	mutex_unlock(&obj->base.dev->struct_mutex);
3170 }
3171 
3172 static unsigned long to_wait_timeout(s64 timeout_ns)
3173 {
3174 	if (timeout_ns < 0)
3175 		return MAX_SCHEDULE_TIMEOUT;
3176 
3177 	if (timeout_ns == 0)
3178 		return 0;
3179 
3180 	return nsecs_to_jiffies_timeout(timeout_ns);
3181 }
3182 
3183 /**
3184  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3185  * @dev: drm device pointer
3186  * @data: ioctl data blob
3187  * @file: drm file pointer
3188  *
3189  * Returns 0 if successful, else an error is returned with the remaining time in
3190  * the timeout parameter.
3191  *  -ETIME: object is still busy after timeout
3192  *  -ERESTARTSYS: signal interrupted the wait
3193  *  -ENONENT: object doesn't exist
3194  * Also possible, but rare:
3195  *  -EAGAIN: GPU wedged
3196  *  -ENOMEM: damn
3197  *  -ENODEV: Internal IRQ fail
3198  *  -E?: The add request failed
3199  *
3200  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3201  * non-zero timeout parameter the wait ioctl will wait for the given number of
3202  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3203  * without holding struct_mutex the object may become re-busied before this
3204  * function completes. A similar but shorter * race condition exists in the busy
3205  * ioctl
3206  */
3207 int
3208 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3209 {
3210 	struct drm_i915_gem_wait *args = data;
3211 	struct drm_i915_gem_object *obj;
3212 	ktime_t start;
3213 	long ret;
3214 
3215 	if (args->flags != 0)
3216 		return -EINVAL;
3217 
3218 	obj = i915_gem_object_lookup(file, args->bo_handle);
3219 	if (!obj)
3220 		return -ENOENT;
3221 
3222 	start = ktime_get();
3223 
3224 	ret = i915_gem_object_wait(obj,
3225 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3226 				   to_wait_timeout(args->timeout_ns),
3227 				   to_rps_client(file));
3228 
3229 	if (args->timeout_ns > 0) {
3230 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3231 		if (args->timeout_ns < 0)
3232 			args->timeout_ns = 0;
3233 
3234 		/*
3235 		 * Apparently ktime isn't accurate enough and occasionally has a
3236 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3237 		 * things up to make the test happy. We allow up to 1 jiffy.
3238 		 *
3239 		 * This is a regression from the timespec->ktime conversion.
3240 		 */
3241 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3242 			args->timeout_ns = 0;
3243 	}
3244 
3245 	i915_gem_object_put(obj);
3246 	return ret;
3247 }
3248 
3249 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3250 {
3251 	int ret, i;
3252 
3253 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3254 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3255 		if (ret)
3256 			return ret;
3257 	}
3258 
3259 	return 0;
3260 }
3261 
3262 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3263 {
3264 	int ret;
3265 
3266 	if (flags & I915_WAIT_LOCKED) {
3267 		struct i915_gem_timeline *tl;
3268 
3269 		lockdep_assert_held(&i915->drm.struct_mutex);
3270 
3271 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3272 			ret = wait_for_timeline(tl, flags);
3273 			if (ret)
3274 				return ret;
3275 		}
3276 	} else {
3277 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3278 		if (ret)
3279 			return ret;
3280 	}
3281 
3282 	return 0;
3283 }
3284 
3285 /** Flushes the GTT write domain for the object if it's dirty. */
3286 static void
3287 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3288 {
3289 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3290 
3291 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3292 		return;
3293 
3294 	/* No actual flushing is required for the GTT write domain.  Writes
3295 	 * to it "immediately" go to main memory as far as we know, so there's
3296 	 * no chipset flush.  It also doesn't land in render cache.
3297 	 *
3298 	 * However, we do have to enforce the order so that all writes through
3299 	 * the GTT land before any writes to the device, such as updates to
3300 	 * the GATT itself.
3301 	 *
3302 	 * We also have to wait a bit for the writes to land from the GTT.
3303 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3304 	 * timing. This issue has only been observed when switching quickly
3305 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
3306 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3307 	 * system agents we cannot reproduce this behaviour).
3308 	 */
3309 	wmb();
3310 	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3311 		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3312 
3313 	intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3314 
3315 	obj->base.write_domain = 0;
3316 }
3317 
3318 /** Flushes the CPU write domain for the object if it's dirty. */
3319 static void
3320 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3321 {
3322 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3323 		return;
3324 
3325 	i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3326 	obj->base.write_domain = 0;
3327 }
3328 
3329 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3330 {
3331 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3332 		return;
3333 
3334 	i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3335 	obj->base.write_domain = 0;
3336 }
3337 
3338 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3339 {
3340 	if (!READ_ONCE(obj->pin_display))
3341 		return;
3342 
3343 	mutex_lock(&obj->base.dev->struct_mutex);
3344 	__i915_gem_object_flush_for_display(obj);
3345 	mutex_unlock(&obj->base.dev->struct_mutex);
3346 }
3347 
3348 /**
3349  * Moves a single object to the GTT read, and possibly write domain.
3350  * @obj: object to act on
3351  * @write: ask for write access or read only
3352  *
3353  * This function returns when the move is complete, including waiting on
3354  * flushes to occur.
3355  */
3356 int
3357 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3358 {
3359 	int ret;
3360 
3361 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3362 
3363 	ret = i915_gem_object_wait(obj,
3364 				   I915_WAIT_INTERRUPTIBLE |
3365 				   I915_WAIT_LOCKED |
3366 				   (write ? I915_WAIT_ALL : 0),
3367 				   MAX_SCHEDULE_TIMEOUT,
3368 				   NULL);
3369 	if (ret)
3370 		return ret;
3371 
3372 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3373 		return 0;
3374 
3375 	/* Flush and acquire obj->pages so that we are coherent through
3376 	 * direct access in memory with previous cached writes through
3377 	 * shmemfs and that our cache domain tracking remains valid.
3378 	 * For example, if the obj->filp was moved to swap without us
3379 	 * being notified and releasing the pages, we would mistakenly
3380 	 * continue to assume that the obj remained out of the CPU cached
3381 	 * domain.
3382 	 */
3383 	ret = i915_gem_object_pin_pages(obj);
3384 	if (ret)
3385 		return ret;
3386 
3387 	i915_gem_object_flush_cpu_write_domain(obj);
3388 
3389 	/* Serialise direct access to this object with the barriers for
3390 	 * coherent writes from the GPU, by effectively invalidating the
3391 	 * GTT domain upon first access.
3392 	 */
3393 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3394 		mb();
3395 
3396 	/* It should now be out of any other write domains, and we can update
3397 	 * the domain values for our changes.
3398 	 */
3399 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3400 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3401 	if (write) {
3402 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3403 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3404 		obj->mm.dirty = true;
3405 	}
3406 
3407 	i915_gem_object_unpin_pages(obj);
3408 	return 0;
3409 }
3410 
3411 /**
3412  * Changes the cache-level of an object across all VMA.
3413  * @obj: object to act on
3414  * @cache_level: new cache level to set for the object
3415  *
3416  * After this function returns, the object will be in the new cache-level
3417  * across all GTT and the contents of the backing storage will be coherent,
3418  * with respect to the new cache-level. In order to keep the backing storage
3419  * coherent for all users, we only allow a single cache level to be set
3420  * globally on the object and prevent it from being changed whilst the
3421  * hardware is reading from the object. That is if the object is currently
3422  * on the scanout it will be set to uncached (or equivalent display
3423  * cache coherency) and all non-MOCS GPU access will also be uncached so
3424  * that all direct access to the scanout remains coherent.
3425  */
3426 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3427 				    enum i915_cache_level cache_level)
3428 {
3429 	struct i915_vma *vma;
3430 	int ret;
3431 
3432 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3433 
3434 	if (obj->cache_level == cache_level)
3435 		return 0;
3436 
3437 	/* Inspect the list of currently bound VMA and unbind any that would
3438 	 * be invalid given the new cache-level. This is principally to
3439 	 * catch the issue of the CS prefetch crossing page boundaries and
3440 	 * reading an invalid PTE on older architectures.
3441 	 */
3442 restart:
3443 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3444 		if (!drm_mm_node_allocated(&vma->node))
3445 			continue;
3446 
3447 		if (i915_vma_is_pinned(vma)) {
3448 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3449 			return -EBUSY;
3450 		}
3451 
3452 		if (i915_gem_valid_gtt_space(vma, cache_level))
3453 			continue;
3454 
3455 		ret = i915_vma_unbind(vma);
3456 		if (ret)
3457 			return ret;
3458 
3459 		/* As unbinding may affect other elements in the
3460 		 * obj->vma_list (due to side-effects from retiring
3461 		 * an active vma), play safe and restart the iterator.
3462 		 */
3463 		goto restart;
3464 	}
3465 
3466 	/* We can reuse the existing drm_mm nodes but need to change the
3467 	 * cache-level on the PTE. We could simply unbind them all and
3468 	 * rebind with the correct cache-level on next use. However since
3469 	 * we already have a valid slot, dma mapping, pages etc, we may as
3470 	 * rewrite the PTE in the belief that doing so tramples upon less
3471 	 * state and so involves less work.
3472 	 */
3473 	if (obj->bind_count) {
3474 		/* Before we change the PTE, the GPU must not be accessing it.
3475 		 * If we wait upon the object, we know that all the bound
3476 		 * VMA are no longer active.
3477 		 */
3478 		ret = i915_gem_object_wait(obj,
3479 					   I915_WAIT_INTERRUPTIBLE |
3480 					   I915_WAIT_LOCKED |
3481 					   I915_WAIT_ALL,
3482 					   MAX_SCHEDULE_TIMEOUT,
3483 					   NULL);
3484 		if (ret)
3485 			return ret;
3486 
3487 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3488 		    cache_level != I915_CACHE_NONE) {
3489 			/* Access to snoopable pages through the GTT is
3490 			 * incoherent and on some machines causes a hard
3491 			 * lockup. Relinquish the CPU mmaping to force
3492 			 * userspace to refault in the pages and we can
3493 			 * then double check if the GTT mapping is still
3494 			 * valid for that pointer access.
3495 			 */
3496 			i915_gem_release_mmap(obj);
3497 
3498 			/* As we no longer need a fence for GTT access,
3499 			 * we can relinquish it now (and so prevent having
3500 			 * to steal a fence from someone else on the next
3501 			 * fence request). Note GPU activity would have
3502 			 * dropped the fence as all snoopable access is
3503 			 * supposed to be linear.
3504 			 */
3505 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3506 				ret = i915_vma_put_fence(vma);
3507 				if (ret)
3508 					return ret;
3509 			}
3510 		} else {
3511 			/* We either have incoherent backing store and
3512 			 * so no GTT access or the architecture is fully
3513 			 * coherent. In such cases, existing GTT mmaps
3514 			 * ignore the cache bit in the PTE and we can
3515 			 * rewrite it without confusing the GPU or having
3516 			 * to force userspace to fault back in its mmaps.
3517 			 */
3518 		}
3519 
3520 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3521 			if (!drm_mm_node_allocated(&vma->node))
3522 				continue;
3523 
3524 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3525 			if (ret)
3526 				return ret;
3527 		}
3528 	}
3529 
3530 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3531 	    i915_gem_object_is_coherent(obj))
3532 		obj->cache_dirty = true;
3533 
3534 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3535 		vma->node.color = cache_level;
3536 	obj->cache_level = cache_level;
3537 
3538 	return 0;
3539 }
3540 
3541 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3542 			       struct drm_file *file)
3543 {
3544 	struct drm_i915_gem_caching *args = data;
3545 	struct drm_i915_gem_object *obj;
3546 	int err = 0;
3547 
3548 	rcu_read_lock();
3549 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3550 	if (!obj) {
3551 		err = -ENOENT;
3552 		goto out;
3553 	}
3554 
3555 	switch (obj->cache_level) {
3556 	case I915_CACHE_LLC:
3557 	case I915_CACHE_L3_LLC:
3558 		args->caching = I915_CACHING_CACHED;
3559 		break;
3560 
3561 	case I915_CACHE_WT:
3562 		args->caching = I915_CACHING_DISPLAY;
3563 		break;
3564 
3565 	default:
3566 		args->caching = I915_CACHING_NONE;
3567 		break;
3568 	}
3569 out:
3570 	rcu_read_unlock();
3571 	return err;
3572 }
3573 
3574 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3575 			       struct drm_file *file)
3576 {
3577 	struct drm_i915_private *i915 = to_i915(dev);
3578 	struct drm_i915_gem_caching *args = data;
3579 	struct drm_i915_gem_object *obj;
3580 	enum i915_cache_level level;
3581 	int ret = 0;
3582 
3583 	switch (args->caching) {
3584 	case I915_CACHING_NONE:
3585 		level = I915_CACHE_NONE;
3586 		break;
3587 	case I915_CACHING_CACHED:
3588 		/*
3589 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3590 		 * snooped mapping may leave stale data in a corresponding CPU
3591 		 * cacheline, whereas normally such cachelines would get
3592 		 * invalidated.
3593 		 */
3594 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3595 			return -ENODEV;
3596 
3597 		level = I915_CACHE_LLC;
3598 		break;
3599 	case I915_CACHING_DISPLAY:
3600 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3601 		break;
3602 	default:
3603 		return -EINVAL;
3604 	}
3605 
3606 	obj = i915_gem_object_lookup(file, args->handle);
3607 	if (!obj)
3608 		return -ENOENT;
3609 
3610 	if (obj->cache_level == level)
3611 		goto out;
3612 
3613 	ret = i915_gem_object_wait(obj,
3614 				   I915_WAIT_INTERRUPTIBLE,
3615 				   MAX_SCHEDULE_TIMEOUT,
3616 				   to_rps_client(file));
3617 	if (ret)
3618 		goto out;
3619 
3620 	ret = i915_mutex_lock_interruptible(dev);
3621 	if (ret)
3622 		goto out;
3623 
3624 	ret = i915_gem_object_set_cache_level(obj, level);
3625 	mutex_unlock(&dev->struct_mutex);
3626 
3627 out:
3628 	i915_gem_object_put(obj);
3629 	return ret;
3630 }
3631 
3632 /*
3633  * Prepare buffer for display plane (scanout, cursors, etc).
3634  * Can be called from an uninterruptible phase (modesetting) and allows
3635  * any flushes to be pipelined (for pageflips).
3636  */
3637 struct i915_vma *
3638 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3639 				     u32 alignment,
3640 				     const struct i915_ggtt_view *view)
3641 {
3642 	struct i915_vma *vma;
3643 	int ret;
3644 
3645 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3646 
3647 	/* Mark the pin_display early so that we account for the
3648 	 * display coherency whilst setting up the cache domains.
3649 	 */
3650 	obj->pin_display++;
3651 
3652 	/* The display engine is not coherent with the LLC cache on gen6.  As
3653 	 * a result, we make sure that the pinning that is about to occur is
3654 	 * done with uncached PTEs. This is lowest common denominator for all
3655 	 * chipsets.
3656 	 *
3657 	 * However for gen6+, we could do better by using the GFDT bit instead
3658 	 * of uncaching, which would allow us to flush all the LLC-cached data
3659 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3660 	 */
3661 	ret = i915_gem_object_set_cache_level(obj,
3662 					      HAS_WT(to_i915(obj->base.dev)) ?
3663 					      I915_CACHE_WT : I915_CACHE_NONE);
3664 	if (ret) {
3665 		vma = ERR_PTR(ret);
3666 		goto err_unpin_display;
3667 	}
3668 
3669 	/* As the user may map the buffer once pinned in the display plane
3670 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3671 	 * always use map_and_fenceable for all scanout buffers. However,
3672 	 * it may simply be too big to fit into mappable, in which case
3673 	 * put it anyway and hope that userspace can cope (but always first
3674 	 * try to preserve the existing ABI).
3675 	 */
3676 	vma = ERR_PTR(-ENOSPC);
3677 	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3678 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3679 					       PIN_MAPPABLE | PIN_NONBLOCK);
3680 	if (IS_ERR(vma)) {
3681 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3682 		unsigned int flags;
3683 
3684 		/* Valleyview is definitely limited to scanning out the first
3685 		 * 512MiB. Lets presume this behaviour was inherited from the
3686 		 * g4x display engine and that all earlier gen are similarly
3687 		 * limited. Testing suggests that it is a little more
3688 		 * complicated than this. For example, Cherryview appears quite
3689 		 * happy to scanout from anywhere within its global aperture.
3690 		 */
3691 		flags = 0;
3692 		if (HAS_GMCH_DISPLAY(i915))
3693 			flags = PIN_MAPPABLE;
3694 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3695 	}
3696 	if (IS_ERR(vma))
3697 		goto err_unpin_display;
3698 
3699 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3700 
3701 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3702 	__i915_gem_object_flush_for_display(obj);
3703 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3704 
3705 	/* It should now be out of any other write domains, and we can update
3706 	 * the domain values for our changes.
3707 	 */
3708 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3709 
3710 	return vma;
3711 
3712 err_unpin_display:
3713 	obj->pin_display--;
3714 	return vma;
3715 }
3716 
3717 void
3718 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3719 {
3720 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3721 
3722 	if (WARN_ON(vma->obj->pin_display == 0))
3723 		return;
3724 
3725 	if (--vma->obj->pin_display == 0)
3726 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3727 
3728 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3729 	i915_gem_object_bump_inactive_ggtt(vma->obj);
3730 
3731 	i915_vma_unpin(vma);
3732 }
3733 
3734 /**
3735  * Moves a single object to the CPU read, and possibly write domain.
3736  * @obj: object to act on
3737  * @write: requesting write or read-only access
3738  *
3739  * This function returns when the move is complete, including waiting on
3740  * flushes to occur.
3741  */
3742 int
3743 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3744 {
3745 	int ret;
3746 
3747 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3748 
3749 	ret = i915_gem_object_wait(obj,
3750 				   I915_WAIT_INTERRUPTIBLE |
3751 				   I915_WAIT_LOCKED |
3752 				   (write ? I915_WAIT_ALL : 0),
3753 				   MAX_SCHEDULE_TIMEOUT,
3754 				   NULL);
3755 	if (ret)
3756 		return ret;
3757 
3758 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3759 		return 0;
3760 
3761 	i915_gem_object_flush_gtt_write_domain(obj);
3762 
3763 	/* Flush the CPU cache if it's still invalid. */
3764 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3765 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3766 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3767 	}
3768 
3769 	/* It should now be out of any other write domains, and we can update
3770 	 * the domain values for our changes.
3771 	 */
3772 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3773 
3774 	/* If we're writing through the CPU, then the GPU read domains will
3775 	 * need to be invalidated at next use.
3776 	 */
3777 	if (write) {
3778 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3779 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3780 	}
3781 
3782 	return 0;
3783 }
3784 
3785 /* Throttle our rendering by waiting until the ring has completed our requests
3786  * emitted over 20 msec ago.
3787  *
3788  * Note that if we were to use the current jiffies each time around the loop,
3789  * we wouldn't escape the function with any frames outstanding if the time to
3790  * render a frame was over 20ms.
3791  *
3792  * This should get us reasonable parallelism between CPU and GPU but also
3793  * relatively low latency when blocking on a particular request to finish.
3794  */
3795 static int
3796 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3797 {
3798 	struct drm_i915_private *dev_priv = to_i915(dev);
3799 	struct drm_i915_file_private *file_priv = file->driver_priv;
3800 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3801 	struct drm_i915_gem_request *request, *target = NULL;
3802 	long ret;
3803 
3804 	/* ABI: return -EIO if already wedged */
3805 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3806 		return -EIO;
3807 
3808 	spin_lock(&file_priv->mm.lock);
3809 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3810 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3811 			break;
3812 
3813 		if (target) {
3814 			list_del(&target->client_link);
3815 			target->file_priv = NULL;
3816 		}
3817 
3818 		target = request;
3819 	}
3820 	if (target)
3821 		i915_gem_request_get(target);
3822 	spin_unlock(&file_priv->mm.lock);
3823 
3824 	if (target == NULL)
3825 		return 0;
3826 
3827 	ret = i915_wait_request(target,
3828 				I915_WAIT_INTERRUPTIBLE,
3829 				MAX_SCHEDULE_TIMEOUT);
3830 	i915_gem_request_put(target);
3831 
3832 	return ret < 0 ? ret : 0;
3833 }
3834 
3835 struct i915_vma *
3836 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3837 			 const struct i915_ggtt_view *view,
3838 			 u64 size,
3839 			 u64 alignment,
3840 			 u64 flags)
3841 {
3842 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3843 	struct i915_address_space *vm = &dev_priv->ggtt.base;
3844 	struct i915_vma *vma;
3845 	int ret;
3846 
3847 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3848 
3849 	vma = i915_vma_instance(obj, vm, view);
3850 	if (unlikely(IS_ERR(vma)))
3851 		return vma;
3852 
3853 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3854 		if (flags & PIN_NONBLOCK &&
3855 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3856 			return ERR_PTR(-ENOSPC);
3857 
3858 		if (flags & PIN_MAPPABLE) {
3859 			/* If the required space is larger than the available
3860 			 * aperture, we will not able to find a slot for the
3861 			 * object and unbinding the object now will be in
3862 			 * vain. Worse, doing so may cause us to ping-pong
3863 			 * the object in and out of the Global GTT and
3864 			 * waste a lot of cycles under the mutex.
3865 			 */
3866 			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3867 				return ERR_PTR(-E2BIG);
3868 
3869 			/* If NONBLOCK is set the caller is optimistically
3870 			 * trying to cache the full object within the mappable
3871 			 * aperture, and *must* have a fallback in place for
3872 			 * situations where we cannot bind the object. We
3873 			 * can be a little more lax here and use the fallback
3874 			 * more often to avoid costly migrations of ourselves
3875 			 * and other objects within the aperture.
3876 			 *
3877 			 * Half-the-aperture is used as a simple heuristic.
3878 			 * More interesting would to do search for a free
3879 			 * block prior to making the commitment to unbind.
3880 			 * That caters for the self-harm case, and with a
3881 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
3882 			 * we could try to minimise harm to others.
3883 			 */
3884 			if (flags & PIN_NONBLOCK &&
3885 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3886 				return ERR_PTR(-ENOSPC);
3887 		}
3888 
3889 		WARN(i915_vma_is_pinned(vma),
3890 		     "bo is already pinned in ggtt with incorrect alignment:"
3891 		     " offset=%08x, req.alignment=%llx,"
3892 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3893 		     i915_ggtt_offset(vma), alignment,
3894 		     !!(flags & PIN_MAPPABLE),
3895 		     i915_vma_is_map_and_fenceable(vma));
3896 		ret = i915_vma_unbind(vma);
3897 		if (ret)
3898 			return ERR_PTR(ret);
3899 	}
3900 
3901 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3902 	if (ret)
3903 		return ERR_PTR(ret);
3904 
3905 	return vma;
3906 }
3907 
3908 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3909 {
3910 	/* Note that we could alias engines in the execbuf API, but
3911 	 * that would be very unwise as it prevents userspace from
3912 	 * fine control over engine selection. Ahem.
3913 	 *
3914 	 * This should be something like EXEC_MAX_ENGINE instead of
3915 	 * I915_NUM_ENGINES.
3916 	 */
3917 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3918 	return 0x10000 << id;
3919 }
3920 
3921 static __always_inline unsigned int __busy_write_id(unsigned int id)
3922 {
3923 	/* The uABI guarantees an active writer is also amongst the read
3924 	 * engines. This would be true if we accessed the activity tracking
3925 	 * under the lock, but as we perform the lookup of the object and
3926 	 * its activity locklessly we can not guarantee that the last_write
3927 	 * being active implies that we have set the same engine flag from
3928 	 * last_read - hence we always set both read and write busy for
3929 	 * last_write.
3930 	 */
3931 	return id | __busy_read_flag(id);
3932 }
3933 
3934 static __always_inline unsigned int
3935 __busy_set_if_active(const struct dma_fence *fence,
3936 		     unsigned int (*flag)(unsigned int id))
3937 {
3938 	struct drm_i915_gem_request *rq;
3939 
3940 	/* We have to check the current hw status of the fence as the uABI
3941 	 * guarantees forward progress. We could rely on the idle worker
3942 	 * to eventually flush us, but to minimise latency just ask the
3943 	 * hardware.
3944 	 *
3945 	 * Note we only report on the status of native fences.
3946 	 */
3947 	if (!dma_fence_is_i915(fence))
3948 		return 0;
3949 
3950 	/* opencode to_request() in order to avoid const warnings */
3951 	rq = container_of(fence, struct drm_i915_gem_request, fence);
3952 	if (i915_gem_request_completed(rq))
3953 		return 0;
3954 
3955 	return flag(rq->engine->exec_id);
3956 }
3957 
3958 static __always_inline unsigned int
3959 busy_check_reader(const struct dma_fence *fence)
3960 {
3961 	return __busy_set_if_active(fence, __busy_read_flag);
3962 }
3963 
3964 static __always_inline unsigned int
3965 busy_check_writer(const struct dma_fence *fence)
3966 {
3967 	if (!fence)
3968 		return 0;
3969 
3970 	return __busy_set_if_active(fence, __busy_write_id);
3971 }
3972 
3973 int
3974 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3975 		    struct drm_file *file)
3976 {
3977 	struct drm_i915_gem_busy *args = data;
3978 	struct drm_i915_gem_object *obj;
3979 	struct reservation_object_list *list;
3980 	unsigned int seq;
3981 	int err;
3982 
3983 	err = -ENOENT;
3984 	rcu_read_lock();
3985 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3986 	if (!obj)
3987 		goto out;
3988 
3989 	/* A discrepancy here is that we do not report the status of
3990 	 * non-i915 fences, i.e. even though we may report the object as idle,
3991 	 * a call to set-domain may still stall waiting for foreign rendering.
3992 	 * This also means that wait-ioctl may report an object as busy,
3993 	 * where busy-ioctl considers it idle.
3994 	 *
3995 	 * We trade the ability to warn of foreign fences to report on which
3996 	 * i915 engines are active for the object.
3997 	 *
3998 	 * Alternatively, we can trade that extra information on read/write
3999 	 * activity with
4000 	 *	args->busy =
4001 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4002 	 * to report the overall busyness. This is what the wait-ioctl does.
4003 	 *
4004 	 */
4005 retry:
4006 	seq = raw_read_seqcount(&obj->resv->seq);
4007 
4008 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4009 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4010 
4011 	/* Translate shared fences to READ set of engines */
4012 	list = rcu_dereference(obj->resv->fence);
4013 	if (list) {
4014 		unsigned int shared_count = list->shared_count, i;
4015 
4016 		for (i = 0; i < shared_count; ++i) {
4017 			struct dma_fence *fence =
4018 				rcu_dereference(list->shared[i]);
4019 
4020 			args->busy |= busy_check_reader(fence);
4021 		}
4022 	}
4023 
4024 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4025 		goto retry;
4026 
4027 	err = 0;
4028 out:
4029 	rcu_read_unlock();
4030 	return err;
4031 }
4032 
4033 int
4034 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4035 			struct drm_file *file_priv)
4036 {
4037 	return i915_gem_ring_throttle(dev, file_priv);
4038 }
4039 
4040 int
4041 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4042 		       struct drm_file *file_priv)
4043 {
4044 	struct drm_i915_private *dev_priv = to_i915(dev);
4045 	struct drm_i915_gem_madvise *args = data;
4046 	struct drm_i915_gem_object *obj;
4047 	int err;
4048 
4049 	switch (args->madv) {
4050 	case I915_MADV_DONTNEED:
4051 	case I915_MADV_WILLNEED:
4052 	    break;
4053 	default:
4054 	    return -EINVAL;
4055 	}
4056 
4057 	obj = i915_gem_object_lookup(file_priv, args->handle);
4058 	if (!obj)
4059 		return -ENOENT;
4060 
4061 	err = mutex_lock_interruptible(&obj->mm.lock);
4062 	if (err)
4063 		goto out;
4064 
4065 	if (obj->mm.pages &&
4066 	    i915_gem_object_is_tiled(obj) &&
4067 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4068 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4069 			GEM_BUG_ON(!obj->mm.quirked);
4070 			__i915_gem_object_unpin_pages(obj);
4071 			obj->mm.quirked = false;
4072 		}
4073 		if (args->madv == I915_MADV_WILLNEED) {
4074 			GEM_BUG_ON(obj->mm.quirked);
4075 			__i915_gem_object_pin_pages(obj);
4076 			obj->mm.quirked = true;
4077 		}
4078 	}
4079 
4080 	if (obj->mm.madv != __I915_MADV_PURGED)
4081 		obj->mm.madv = args->madv;
4082 
4083 	/* if the object is no longer attached, discard its backing storage */
4084 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4085 		i915_gem_object_truncate(obj);
4086 
4087 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4088 	mutex_unlock(&obj->mm.lock);
4089 
4090 out:
4091 	i915_gem_object_put(obj);
4092 	return err;
4093 }
4094 
4095 static void
4096 frontbuffer_retire(struct i915_gem_active *active,
4097 		   struct drm_i915_gem_request *request)
4098 {
4099 	struct drm_i915_gem_object *obj =
4100 		container_of(active, typeof(*obj), frontbuffer_write);
4101 
4102 	intel_fb_obj_flush(obj, ORIGIN_CS);
4103 }
4104 
4105 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4106 			  const struct drm_i915_gem_object_ops *ops)
4107 {
4108 	mutex_init(&obj->mm.lock);
4109 
4110 	INIT_LIST_HEAD(&obj->global_link);
4111 	INIT_LIST_HEAD(&obj->userfault_link);
4112 	INIT_LIST_HEAD(&obj->obj_exec_link);
4113 	INIT_LIST_HEAD(&obj->vma_list);
4114 	INIT_LIST_HEAD(&obj->batch_pool_link);
4115 
4116 	obj->ops = ops;
4117 
4118 	reservation_object_init(&obj->__builtin_resv);
4119 	obj->resv = &obj->__builtin_resv;
4120 
4121 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4122 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4123 
4124 	obj->mm.madv = I915_MADV_WILLNEED;
4125 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4126 	mutex_init(&obj->mm.get_page.lock);
4127 
4128 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4129 }
4130 
4131 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4132 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4133 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4134 
4135 	.get_pages = i915_gem_object_get_pages_gtt,
4136 	.put_pages = i915_gem_object_put_pages_gtt,
4137 
4138 	.pwrite = i915_gem_object_pwrite_gtt,
4139 };
4140 
4141 struct drm_i915_gem_object *
4142 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4143 {
4144 	struct drm_i915_gem_object *obj;
4145 	struct address_space *mapping;
4146 	gfp_t mask;
4147 	int ret;
4148 
4149 	/* There is a prevalence of the assumption that we fit the object's
4150 	 * page count inside a 32bit _signed_ variable. Let's document this and
4151 	 * catch if we ever need to fix it. In the meantime, if you do spot
4152 	 * such a local variable, please consider fixing!
4153 	 */
4154 	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4155 		return ERR_PTR(-E2BIG);
4156 
4157 	if (overflows_type(size, obj->base.size))
4158 		return ERR_PTR(-E2BIG);
4159 
4160 	obj = i915_gem_object_alloc(dev_priv);
4161 	if (obj == NULL)
4162 		return ERR_PTR(-ENOMEM);
4163 
4164 	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4165 	if (ret)
4166 		goto fail;
4167 
4168 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4169 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4170 		/* 965gm cannot relocate objects above 4GiB. */
4171 		mask &= ~__GFP_HIGHMEM;
4172 		mask |= __GFP_DMA32;
4173 	}
4174 
4175 	mapping = obj->base.filp->f_mapping;
4176 	mapping_set_gfp_mask(mapping, mask);
4177 
4178 	i915_gem_object_init(obj, &i915_gem_object_ops);
4179 
4180 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4181 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4182 
4183 	if (HAS_LLC(dev_priv)) {
4184 		/* On some devices, we can have the GPU use the LLC (the CPU
4185 		 * cache) for about a 10% performance improvement
4186 		 * compared to uncached.  Graphics requests other than
4187 		 * display scanout are coherent with the CPU in
4188 		 * accessing this cache.  This means in this mode we
4189 		 * don't need to clflush on the CPU side, and on the
4190 		 * GPU side we only need to flush internal caches to
4191 		 * get data visible to the CPU.
4192 		 *
4193 		 * However, we maintain the display planes as UC, and so
4194 		 * need to rebind when first used as such.
4195 		 */
4196 		obj->cache_level = I915_CACHE_LLC;
4197 	} else
4198 		obj->cache_level = I915_CACHE_NONE;
4199 
4200 	trace_i915_gem_object_create(obj);
4201 
4202 	return obj;
4203 
4204 fail:
4205 	i915_gem_object_free(obj);
4206 	return ERR_PTR(ret);
4207 }
4208 
4209 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4210 {
4211 	/* If we are the last user of the backing storage (be it shmemfs
4212 	 * pages or stolen etc), we know that the pages are going to be
4213 	 * immediately released. In this case, we can then skip copying
4214 	 * back the contents from the GPU.
4215 	 */
4216 
4217 	if (obj->mm.madv != I915_MADV_WILLNEED)
4218 		return false;
4219 
4220 	if (obj->base.filp == NULL)
4221 		return true;
4222 
4223 	/* At first glance, this looks racy, but then again so would be
4224 	 * userspace racing mmap against close. However, the first external
4225 	 * reference to the filp can only be obtained through the
4226 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4227 	 * acquiring such a reference whilst we are in the middle of
4228 	 * freeing the object.
4229 	 */
4230 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4231 }
4232 
4233 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4234 				    struct llist_node *freed)
4235 {
4236 	struct drm_i915_gem_object *obj, *on;
4237 
4238 	mutex_lock(&i915->drm.struct_mutex);
4239 	intel_runtime_pm_get(i915);
4240 	llist_for_each_entry(obj, freed, freed) {
4241 		struct i915_vma *vma, *vn;
4242 
4243 		trace_i915_gem_object_destroy(obj);
4244 
4245 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4246 		list_for_each_entry_safe(vma, vn,
4247 					 &obj->vma_list, obj_link) {
4248 			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4249 			GEM_BUG_ON(i915_vma_is_active(vma));
4250 			vma->flags &= ~I915_VMA_PIN_MASK;
4251 			i915_vma_close(vma);
4252 		}
4253 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4254 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4255 
4256 		list_del(&obj->global_link);
4257 	}
4258 	intel_runtime_pm_put(i915);
4259 	mutex_unlock(&i915->drm.struct_mutex);
4260 
4261 	llist_for_each_entry_safe(obj, on, freed, freed) {
4262 		GEM_BUG_ON(obj->bind_count);
4263 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4264 
4265 		if (obj->ops->release)
4266 			obj->ops->release(obj);
4267 
4268 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4269 			atomic_set(&obj->mm.pages_pin_count, 0);
4270 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4271 		GEM_BUG_ON(obj->mm.pages);
4272 
4273 		if (obj->base.import_attach)
4274 			drm_prime_gem_destroy(&obj->base, NULL);
4275 
4276 		reservation_object_fini(&obj->__builtin_resv);
4277 		drm_gem_object_release(&obj->base);
4278 		i915_gem_info_remove_obj(i915, obj->base.size);
4279 
4280 		kfree(obj->bit_17);
4281 		i915_gem_object_free(obj);
4282 	}
4283 }
4284 
4285 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4286 {
4287 	struct llist_node *freed;
4288 
4289 	freed = llist_del_all(&i915->mm.free_list);
4290 	if (unlikely(freed))
4291 		__i915_gem_free_objects(i915, freed);
4292 }
4293 
4294 static void __i915_gem_free_work(struct work_struct *work)
4295 {
4296 	struct drm_i915_private *i915 =
4297 		container_of(work, struct drm_i915_private, mm.free_work);
4298 	struct llist_node *freed;
4299 
4300 	/* All file-owned VMA should have been released by this point through
4301 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4302 	 * However, the object may also be bound into the global GTT (e.g.
4303 	 * older GPUs without per-process support, or for direct access through
4304 	 * the GTT either for the user or for scanout). Those VMA still need to
4305 	 * unbound now.
4306 	 */
4307 
4308 	while ((freed = llist_del_all(&i915->mm.free_list)))
4309 		__i915_gem_free_objects(i915, freed);
4310 }
4311 
4312 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4313 {
4314 	struct drm_i915_gem_object *obj =
4315 		container_of(head, typeof(*obj), rcu);
4316 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4317 
4318 	/* We can't simply use call_rcu() from i915_gem_free_object()
4319 	 * as we need to block whilst unbinding, and the call_rcu
4320 	 * task may be called from softirq context. So we take a
4321 	 * detour through a worker.
4322 	 */
4323 	if (llist_add(&obj->freed, &i915->mm.free_list))
4324 		schedule_work(&i915->mm.free_work);
4325 }
4326 
4327 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4328 {
4329 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4330 
4331 	if (obj->mm.quirked)
4332 		__i915_gem_object_unpin_pages(obj);
4333 
4334 	if (discard_backing_storage(obj))
4335 		obj->mm.madv = I915_MADV_DONTNEED;
4336 
4337 	/* Before we free the object, make sure any pure RCU-only
4338 	 * read-side critical sections are complete, e.g.
4339 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4340 	 * lookup see i915_gem_object_lookup_rcu().
4341 	 */
4342 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4343 }
4344 
4345 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4346 {
4347 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4348 
4349 	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4350 	if (i915_gem_object_is_active(obj))
4351 		i915_gem_object_set_active_reference(obj);
4352 	else
4353 		i915_gem_object_put(obj);
4354 }
4355 
4356 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4357 {
4358 	struct intel_engine_cs *engine;
4359 	enum intel_engine_id id;
4360 
4361 	for_each_engine(engine, dev_priv, id)
4362 		GEM_BUG_ON(engine->last_retired_context &&
4363 			   !i915_gem_context_is_kernel(engine->last_retired_context));
4364 }
4365 
4366 void i915_gem_sanitize(struct drm_i915_private *i915)
4367 {
4368 	/*
4369 	 * If we inherit context state from the BIOS or earlier occupants
4370 	 * of the GPU, the GPU may be in an inconsistent state when we
4371 	 * try to take over. The only way to remove the earlier state
4372 	 * is by resetting. However, resetting on earlier gen is tricky as
4373 	 * it may impact the display and we are uncertain about the stability
4374 	 * of the reset, so we only reset recent machines with logical
4375 	 * context support (that must be reset to remove any stray contexts).
4376 	 */
4377 	if (HAS_HW_CONTEXTS(i915)) {
4378 		int reset = intel_gpu_reset(i915, ALL_ENGINES);
4379 		WARN_ON(reset && reset != -ENODEV);
4380 	}
4381 }
4382 
4383 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4384 {
4385 	struct drm_device *dev = &dev_priv->drm;
4386 	int ret;
4387 
4388 	intel_runtime_pm_get(dev_priv);
4389 	intel_suspend_gt_powersave(dev_priv);
4390 
4391 	mutex_lock(&dev->struct_mutex);
4392 
4393 	/* We have to flush all the executing contexts to main memory so
4394 	 * that they can saved in the hibernation image. To ensure the last
4395 	 * context image is coherent, we have to switch away from it. That
4396 	 * leaves the dev_priv->kernel_context still active when
4397 	 * we actually suspend, and its image in memory may not match the GPU
4398 	 * state. Fortunately, the kernel_context is disposable and we do
4399 	 * not rely on its state.
4400 	 */
4401 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4402 	if (ret)
4403 		goto err_unlock;
4404 
4405 	ret = i915_gem_wait_for_idle(dev_priv,
4406 				     I915_WAIT_INTERRUPTIBLE |
4407 				     I915_WAIT_LOCKED);
4408 	if (ret)
4409 		goto err_unlock;
4410 
4411 	i915_gem_retire_requests(dev_priv);
4412 	GEM_BUG_ON(dev_priv->gt.active_requests);
4413 
4414 	assert_kernel_context_is_current(dev_priv);
4415 	i915_gem_context_lost(dev_priv);
4416 	mutex_unlock(&dev->struct_mutex);
4417 
4418 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4419 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4420 
4421 	/* As the idle_work is rearming if it detects a race, play safe and
4422 	 * repeat the flush until it is definitely idle.
4423 	 */
4424 	while (flush_delayed_work(&dev_priv->gt.idle_work))
4425 		;
4426 
4427 	i915_gem_drain_freed_objects(dev_priv);
4428 
4429 	/* Assert that we sucessfully flushed all the work and
4430 	 * reset the GPU back to its idle, low power state.
4431 	 */
4432 	WARN_ON(dev_priv->gt.awake);
4433 	WARN_ON(!intel_engines_are_idle(dev_priv));
4434 
4435 	/*
4436 	 * Neither the BIOS, ourselves or any other kernel
4437 	 * expects the system to be in execlists mode on startup,
4438 	 * so we need to reset the GPU back to legacy mode. And the only
4439 	 * known way to disable logical contexts is through a GPU reset.
4440 	 *
4441 	 * So in order to leave the system in a known default configuration,
4442 	 * always reset the GPU upon unload and suspend. Afterwards we then
4443 	 * clean up the GEM state tracking, flushing off the requests and
4444 	 * leaving the system in a known idle state.
4445 	 *
4446 	 * Note that is of the upmost importance that the GPU is idle and
4447 	 * all stray writes are flushed *before* we dismantle the backing
4448 	 * storage for the pinned objects.
4449 	 *
4450 	 * However, since we are uncertain that resetting the GPU on older
4451 	 * machines is a good idea, we don't - just in case it leaves the
4452 	 * machine in an unusable condition.
4453 	 */
4454 	i915_gem_sanitize(dev_priv);
4455 	goto out_rpm_put;
4456 
4457 err_unlock:
4458 	mutex_unlock(&dev->struct_mutex);
4459 out_rpm_put:
4460 	intel_runtime_pm_put(dev_priv);
4461 	return ret;
4462 }
4463 
4464 void i915_gem_resume(struct drm_i915_private *dev_priv)
4465 {
4466 	struct drm_device *dev = &dev_priv->drm;
4467 
4468 	WARN_ON(dev_priv->gt.awake);
4469 
4470 	mutex_lock(&dev->struct_mutex);
4471 	i915_gem_restore_gtt_mappings(dev_priv);
4472 
4473 	/* As we didn't flush the kernel context before suspend, we cannot
4474 	 * guarantee that the context image is complete. So let's just reset
4475 	 * it and start again.
4476 	 */
4477 	dev_priv->gt.resume(dev_priv);
4478 
4479 	mutex_unlock(&dev->struct_mutex);
4480 }
4481 
4482 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4483 {
4484 	if (INTEL_GEN(dev_priv) < 5 ||
4485 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4486 		return;
4487 
4488 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4489 				 DISP_TILE_SURFACE_SWIZZLING);
4490 
4491 	if (IS_GEN5(dev_priv))
4492 		return;
4493 
4494 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4495 	if (IS_GEN6(dev_priv))
4496 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4497 	else if (IS_GEN7(dev_priv))
4498 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4499 	else if (IS_GEN8(dev_priv))
4500 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4501 	else
4502 		BUG();
4503 }
4504 
4505 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4506 {
4507 	I915_WRITE(RING_CTL(base), 0);
4508 	I915_WRITE(RING_HEAD(base), 0);
4509 	I915_WRITE(RING_TAIL(base), 0);
4510 	I915_WRITE(RING_START(base), 0);
4511 }
4512 
4513 static void init_unused_rings(struct drm_i915_private *dev_priv)
4514 {
4515 	if (IS_I830(dev_priv)) {
4516 		init_unused_ring(dev_priv, PRB1_BASE);
4517 		init_unused_ring(dev_priv, SRB0_BASE);
4518 		init_unused_ring(dev_priv, SRB1_BASE);
4519 		init_unused_ring(dev_priv, SRB2_BASE);
4520 		init_unused_ring(dev_priv, SRB3_BASE);
4521 	} else if (IS_GEN2(dev_priv)) {
4522 		init_unused_ring(dev_priv, SRB0_BASE);
4523 		init_unused_ring(dev_priv, SRB1_BASE);
4524 	} else if (IS_GEN3(dev_priv)) {
4525 		init_unused_ring(dev_priv, PRB1_BASE);
4526 		init_unused_ring(dev_priv, PRB2_BASE);
4527 	}
4528 }
4529 
4530 static int __i915_gem_restart_engines(void *data)
4531 {
4532 	struct drm_i915_private *i915 = data;
4533 	struct intel_engine_cs *engine;
4534 	enum intel_engine_id id;
4535 	int err;
4536 
4537 	for_each_engine(engine, i915, id) {
4538 		err = engine->init_hw(engine);
4539 		if (err)
4540 			return err;
4541 	}
4542 
4543 	return 0;
4544 }
4545 
4546 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4547 {
4548 	int ret;
4549 
4550 	dev_priv->gt.last_init_time = ktime_get();
4551 
4552 	/* Double layer security blanket, see i915_gem_init() */
4553 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4554 
4555 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4556 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4557 
4558 	if (IS_HASWELL(dev_priv))
4559 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4560 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4561 
4562 	if (HAS_PCH_NOP(dev_priv)) {
4563 		if (IS_IVYBRIDGE(dev_priv)) {
4564 			u32 temp = I915_READ(GEN7_MSG_CTL);
4565 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4566 			I915_WRITE(GEN7_MSG_CTL, temp);
4567 		} else if (INTEL_GEN(dev_priv) >= 7) {
4568 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4569 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4570 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4571 		}
4572 	}
4573 
4574 	i915_gem_init_swizzling(dev_priv);
4575 
4576 	/*
4577 	 * At least 830 can leave some of the unused rings
4578 	 * "active" (ie. head != tail) after resume which
4579 	 * will prevent c3 entry. Makes sure all unused rings
4580 	 * are totally idle.
4581 	 */
4582 	init_unused_rings(dev_priv);
4583 
4584 	BUG_ON(!dev_priv->kernel_context);
4585 
4586 	ret = i915_ppgtt_init_hw(dev_priv);
4587 	if (ret) {
4588 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4589 		goto out;
4590 	}
4591 
4592 	/* Need to do basic initialisation of all rings first: */
4593 	ret = __i915_gem_restart_engines(dev_priv);
4594 	if (ret)
4595 		goto out;
4596 
4597 	intel_mocs_init_l3cc_table(dev_priv);
4598 
4599 	/* We can't enable contexts until all firmware is loaded */
4600 	ret = intel_uc_init_hw(dev_priv);
4601 	if (ret)
4602 		goto out;
4603 
4604 out:
4605 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4606 	return ret;
4607 }
4608 
4609 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4610 {
4611 	if (INTEL_INFO(dev_priv)->gen < 6)
4612 		return false;
4613 
4614 	/* TODO: make semaphores and Execlists play nicely together */
4615 	if (i915.enable_execlists)
4616 		return false;
4617 
4618 	if (value >= 0)
4619 		return value;
4620 
4621 #ifdef CONFIG_INTEL_IOMMU
4622 	/* Enable semaphores on SNB when IO remapping is off */
4623 	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4624 		return false;
4625 #endif
4626 
4627 	return true;
4628 }
4629 
4630 int i915_gem_init(struct drm_i915_private *dev_priv)
4631 {
4632 	int ret;
4633 
4634 	mutex_lock(&dev_priv->drm.struct_mutex);
4635 
4636 	i915_gem_clflush_init(dev_priv);
4637 
4638 	if (!i915.enable_execlists) {
4639 		dev_priv->gt.resume = intel_legacy_submission_resume;
4640 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4641 	} else {
4642 		dev_priv->gt.resume = intel_lr_context_resume;
4643 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4644 	}
4645 
4646 	/* This is just a security blanket to placate dragons.
4647 	 * On some systems, we very sporadically observe that the first TLBs
4648 	 * used by the CS may be stale, despite us poking the TLB reset. If
4649 	 * we hold the forcewake during initialisation these problems
4650 	 * just magically go away.
4651 	 */
4652 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4653 
4654 	i915_gem_init_userptr(dev_priv);
4655 
4656 	ret = i915_gem_init_ggtt(dev_priv);
4657 	if (ret)
4658 		goto out_unlock;
4659 
4660 	ret = i915_gem_context_init(dev_priv);
4661 	if (ret)
4662 		goto out_unlock;
4663 
4664 	ret = intel_engines_init(dev_priv);
4665 	if (ret)
4666 		goto out_unlock;
4667 
4668 	ret = i915_gem_init_hw(dev_priv);
4669 	if (ret == -EIO) {
4670 		/* Allow engine initialisation to fail by marking the GPU as
4671 		 * wedged. But we only want to do this where the GPU is angry,
4672 		 * for all other failure, such as an allocation failure, bail.
4673 		 */
4674 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4675 		i915_gem_set_wedged(dev_priv);
4676 		ret = 0;
4677 	}
4678 
4679 out_unlock:
4680 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4681 	mutex_unlock(&dev_priv->drm.struct_mutex);
4682 
4683 	return ret;
4684 }
4685 
4686 void i915_gem_init_mmio(struct drm_i915_private *i915)
4687 {
4688 	i915_gem_sanitize(i915);
4689 }
4690 
4691 void
4692 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4693 {
4694 	struct intel_engine_cs *engine;
4695 	enum intel_engine_id id;
4696 
4697 	for_each_engine(engine, dev_priv, id)
4698 		dev_priv->gt.cleanup_engine(engine);
4699 }
4700 
4701 void
4702 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4703 {
4704 	int i;
4705 
4706 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4707 	    !IS_CHERRYVIEW(dev_priv))
4708 		dev_priv->num_fence_regs = 32;
4709 	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4710 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4711 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4712 		dev_priv->num_fence_regs = 16;
4713 	else
4714 		dev_priv->num_fence_regs = 8;
4715 
4716 	if (intel_vgpu_active(dev_priv))
4717 		dev_priv->num_fence_regs =
4718 				I915_READ(vgtif_reg(avail_rs.fence_num));
4719 
4720 	/* Initialize fence registers to zero */
4721 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4722 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4723 
4724 		fence->i915 = dev_priv;
4725 		fence->id = i;
4726 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4727 	}
4728 	i915_gem_restore_fences(dev_priv);
4729 
4730 	i915_gem_detect_bit_6_swizzle(dev_priv);
4731 }
4732 
4733 int
4734 i915_gem_load_init(struct drm_i915_private *dev_priv)
4735 {
4736 	int err = -ENOMEM;
4737 
4738 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4739 	if (!dev_priv->objects)
4740 		goto err_out;
4741 
4742 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4743 	if (!dev_priv->vmas)
4744 		goto err_objects;
4745 
4746 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4747 					SLAB_HWCACHE_ALIGN |
4748 					SLAB_RECLAIM_ACCOUNT |
4749 					SLAB_DESTROY_BY_RCU);
4750 	if (!dev_priv->requests)
4751 		goto err_vmas;
4752 
4753 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4754 					    SLAB_HWCACHE_ALIGN |
4755 					    SLAB_RECLAIM_ACCOUNT);
4756 	if (!dev_priv->dependencies)
4757 		goto err_requests;
4758 
4759 	mutex_lock(&dev_priv->drm.struct_mutex);
4760 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4761 	err = i915_gem_timeline_init__global(dev_priv);
4762 	mutex_unlock(&dev_priv->drm.struct_mutex);
4763 	if (err)
4764 		goto err_dependencies;
4765 
4766 	INIT_LIST_HEAD(&dev_priv->context_list);
4767 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4768 	init_llist_head(&dev_priv->mm.free_list);
4769 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4770 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4771 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4772 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4773 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4774 			  i915_gem_retire_work_handler);
4775 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4776 			  i915_gem_idle_work_handler);
4777 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4778 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4779 
4780 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4781 
4782 	dev_priv->mm.interruptible = true;
4783 
4784 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4785 
4786 	spin_lock_init(&dev_priv->fb_tracking.lock);
4787 
4788 	return 0;
4789 
4790 err_dependencies:
4791 	kmem_cache_destroy(dev_priv->dependencies);
4792 err_requests:
4793 	kmem_cache_destroy(dev_priv->requests);
4794 err_vmas:
4795 	kmem_cache_destroy(dev_priv->vmas);
4796 err_objects:
4797 	kmem_cache_destroy(dev_priv->objects);
4798 err_out:
4799 	return err;
4800 }
4801 
4802 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4803 {
4804 	i915_gem_drain_freed_objects(dev_priv);
4805 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4806 	WARN_ON(dev_priv->mm.object_count);
4807 
4808 	mutex_lock(&dev_priv->drm.struct_mutex);
4809 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4810 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4811 	mutex_unlock(&dev_priv->drm.struct_mutex);
4812 
4813 	kmem_cache_destroy(dev_priv->dependencies);
4814 	kmem_cache_destroy(dev_priv->requests);
4815 	kmem_cache_destroy(dev_priv->vmas);
4816 	kmem_cache_destroy(dev_priv->objects);
4817 
4818 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4819 	rcu_barrier();
4820 }
4821 
4822 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4823 {
4824 	mutex_lock(&dev_priv->drm.struct_mutex);
4825 	i915_gem_shrink_all(dev_priv);
4826 	mutex_unlock(&dev_priv->drm.struct_mutex);
4827 
4828 	return 0;
4829 }
4830 
4831 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4832 {
4833 	struct drm_i915_gem_object *obj;
4834 	struct list_head *phases[] = {
4835 		&dev_priv->mm.unbound_list,
4836 		&dev_priv->mm.bound_list,
4837 		NULL
4838 	}, **p;
4839 
4840 	/* Called just before we write the hibernation image.
4841 	 *
4842 	 * We need to update the domain tracking to reflect that the CPU
4843 	 * will be accessing all the pages to create and restore from the
4844 	 * hibernation, and so upon restoration those pages will be in the
4845 	 * CPU domain.
4846 	 *
4847 	 * To make sure the hibernation image contains the latest state,
4848 	 * we update that state just before writing out the image.
4849 	 *
4850 	 * To try and reduce the hibernation image, we manually shrink
4851 	 * the objects as well.
4852 	 */
4853 
4854 	mutex_lock(&dev_priv->drm.struct_mutex);
4855 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4856 
4857 	for (p = phases; *p; p++) {
4858 		list_for_each_entry(obj, *p, global_link) {
4859 			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4860 			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4861 		}
4862 	}
4863 	mutex_unlock(&dev_priv->drm.struct_mutex);
4864 
4865 	return 0;
4866 }
4867 
4868 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4869 {
4870 	struct drm_i915_file_private *file_priv = file->driver_priv;
4871 	struct drm_i915_gem_request *request;
4872 
4873 	/* Clean up our request list when the client is going away, so that
4874 	 * later retire_requests won't dereference our soon-to-be-gone
4875 	 * file_priv.
4876 	 */
4877 	spin_lock(&file_priv->mm.lock);
4878 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4879 		request->file_priv = NULL;
4880 	spin_unlock(&file_priv->mm.lock);
4881 
4882 	if (!list_empty(&file_priv->rps.link)) {
4883 		spin_lock(&to_i915(dev)->rps.client_lock);
4884 		list_del(&file_priv->rps.link);
4885 		spin_unlock(&to_i915(dev)->rps.client_lock);
4886 	}
4887 }
4888 
4889 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4890 {
4891 	struct drm_i915_file_private *file_priv;
4892 	int ret;
4893 
4894 	DRM_DEBUG("\n");
4895 
4896 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4897 	if (!file_priv)
4898 		return -ENOMEM;
4899 
4900 	file->driver_priv = file_priv;
4901 	file_priv->dev_priv = to_i915(dev);
4902 	file_priv->file = file;
4903 	INIT_LIST_HEAD(&file_priv->rps.link);
4904 
4905 	spin_lock_init(&file_priv->mm.lock);
4906 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4907 
4908 	file_priv->bsd_engine = -1;
4909 
4910 	ret = i915_gem_context_open(dev, file);
4911 	if (ret)
4912 		kfree(file_priv);
4913 
4914 	return ret;
4915 }
4916 
4917 /**
4918  * i915_gem_track_fb - update frontbuffer tracking
4919  * @old: current GEM buffer for the frontbuffer slots
4920  * @new: new GEM buffer for the frontbuffer slots
4921  * @frontbuffer_bits: bitmask of frontbuffer slots
4922  *
4923  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4924  * from @old and setting them in @new. Both @old and @new can be NULL.
4925  */
4926 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4927 		       struct drm_i915_gem_object *new,
4928 		       unsigned frontbuffer_bits)
4929 {
4930 	/* Control of individual bits within the mask are guarded by
4931 	 * the owning plane->mutex, i.e. we can never see concurrent
4932 	 * manipulation of individual bits. But since the bitfield as a whole
4933 	 * is updated using RMW, we need to use atomics in order to update
4934 	 * the bits.
4935 	 */
4936 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4937 		     sizeof(atomic_t) * BITS_PER_BYTE);
4938 
4939 	if (old) {
4940 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4941 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4942 	}
4943 
4944 	if (new) {
4945 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4946 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4947 	}
4948 }
4949 
4950 /* Allocate a new GEM object and fill it with the supplied data */
4951 struct drm_i915_gem_object *
4952 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4953 			         const void *data, size_t size)
4954 {
4955 	struct drm_i915_gem_object *obj;
4956 	struct file *file;
4957 	size_t offset;
4958 	int err;
4959 
4960 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4961 	if (IS_ERR(obj))
4962 		return obj;
4963 
4964 	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
4965 
4966 	file = obj->base.filp;
4967 	offset = 0;
4968 	do {
4969 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
4970 		struct page *page;
4971 		void *pgdata, *vaddr;
4972 
4973 		err = pagecache_write_begin(file, file->f_mapping,
4974 					    offset, len, 0,
4975 					    &page, &pgdata);
4976 		if (err < 0)
4977 			goto fail;
4978 
4979 		vaddr = kmap(page);
4980 		memcpy(vaddr, data, len);
4981 		kunmap(page);
4982 
4983 		err = pagecache_write_end(file, file->f_mapping,
4984 					  offset, len, len,
4985 					  page, pgdata);
4986 		if (err < 0)
4987 			goto fail;
4988 
4989 		size -= len;
4990 		data += len;
4991 		offset += len;
4992 	} while (size);
4993 
4994 	return obj;
4995 
4996 fail:
4997 	i915_gem_object_put(obj);
4998 	return ERR_PTR(err);
4999 }
5000 
5001 struct scatterlist *
5002 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5003 		       unsigned int n,
5004 		       unsigned int *offset)
5005 {
5006 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5007 	struct scatterlist *sg;
5008 	unsigned int idx, count;
5009 
5010 	might_sleep();
5011 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5012 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5013 
5014 	/* As we iterate forward through the sg, we record each entry in a
5015 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5016 	 * this index previously, we will have an entry for it.
5017 	 *
5018 	 * Initial lookup is O(N), but this is amortized to O(1) for
5019 	 * sequential page access (where each new request is consecutive
5020 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5021 	 * i.e. O(1) with a large constant!
5022 	 */
5023 	if (n < READ_ONCE(iter->sg_idx))
5024 		goto lookup;
5025 
5026 	mutex_lock(&iter->lock);
5027 
5028 	/* We prefer to reuse the last sg so that repeated lookup of this
5029 	 * (or the subsequent) sg are fast - comparing against the last
5030 	 * sg is faster than going through the radixtree.
5031 	 */
5032 
5033 	sg = iter->sg_pos;
5034 	idx = iter->sg_idx;
5035 	count = __sg_page_count(sg);
5036 
5037 	while (idx + count <= n) {
5038 		unsigned long exception, i;
5039 		int ret;
5040 
5041 		/* If we cannot allocate and insert this entry, or the
5042 		 * individual pages from this range, cancel updating the
5043 		 * sg_idx so that on this lookup we are forced to linearly
5044 		 * scan onwards, but on future lookups we will try the
5045 		 * insertion again (in which case we need to be careful of
5046 		 * the error return reporting that we have already inserted
5047 		 * this index).
5048 		 */
5049 		ret = radix_tree_insert(&iter->radix, idx, sg);
5050 		if (ret && ret != -EEXIST)
5051 			goto scan;
5052 
5053 		exception =
5054 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5055 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5056 		for (i = 1; i < count; i++) {
5057 			ret = radix_tree_insert(&iter->radix, idx + i,
5058 						(void *)exception);
5059 			if (ret && ret != -EEXIST)
5060 				goto scan;
5061 		}
5062 
5063 		idx += count;
5064 		sg = ____sg_next(sg);
5065 		count = __sg_page_count(sg);
5066 	}
5067 
5068 scan:
5069 	iter->sg_pos = sg;
5070 	iter->sg_idx = idx;
5071 
5072 	mutex_unlock(&iter->lock);
5073 
5074 	if (unlikely(n < idx)) /* insertion completed by another thread */
5075 		goto lookup;
5076 
5077 	/* In case we failed to insert the entry into the radixtree, we need
5078 	 * to look beyond the current sg.
5079 	 */
5080 	while (idx + count <= n) {
5081 		idx += count;
5082 		sg = ____sg_next(sg);
5083 		count = __sg_page_count(sg);
5084 	}
5085 
5086 	*offset = n - idx;
5087 	return sg;
5088 
5089 lookup:
5090 	rcu_read_lock();
5091 
5092 	sg = radix_tree_lookup(&iter->radix, n);
5093 	GEM_BUG_ON(!sg);
5094 
5095 	/* If this index is in the middle of multi-page sg entry,
5096 	 * the radixtree will contain an exceptional entry that points
5097 	 * to the start of that range. We will return the pointer to
5098 	 * the base page and the offset of this page within the
5099 	 * sg entry's range.
5100 	 */
5101 	*offset = 0;
5102 	if (unlikely(radix_tree_exception(sg))) {
5103 		unsigned long base =
5104 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5105 
5106 		sg = radix_tree_lookup(&iter->radix, base);
5107 		GEM_BUG_ON(!sg);
5108 
5109 		*offset = n - base;
5110 	}
5111 
5112 	rcu_read_unlock();
5113 
5114 	return sg;
5115 }
5116 
5117 struct page *
5118 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5119 {
5120 	struct scatterlist *sg;
5121 	unsigned int offset;
5122 
5123 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5124 
5125 	sg = i915_gem_object_get_sg(obj, n, &offset);
5126 	return nth_page(sg_page(sg), offset);
5127 }
5128 
5129 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5130 struct page *
5131 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5132 			       unsigned int n)
5133 {
5134 	struct page *page;
5135 
5136 	page = i915_gem_object_get_page(obj, n);
5137 	if (!obj->mm.dirty)
5138 		set_page_dirty(page);
5139 
5140 	return page;
5141 }
5142 
5143 dma_addr_t
5144 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5145 				unsigned long n)
5146 {
5147 	struct scatterlist *sg;
5148 	unsigned int offset;
5149 
5150 	sg = i915_gem_object_get_sg(obj, n, &offset);
5151 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5152 }
5153 
5154 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5155 #include "selftests/scatterlist.c"
5156 #include "selftests/mock_gem_device.c"
5157 #include "selftests/huge_gem_object.c"
5158 #include "selftests/i915_gem_object.c"
5159 #include "selftests/i915_gem_coherency.c"
5160 #endif
5161