xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision e3b9f1e8)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
48 
49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50 
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
52 {
53 	if (obj->cache_dirty)
54 		return false;
55 
56 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 		return true;
58 
59 	return obj->pin_global; /* currently in use by HW, keep flushed */
60 }
61 
62 static int
63 insert_mappable_node(struct i915_ggtt *ggtt,
64                      struct drm_mm_node *node, u32 size)
65 {
66 	memset(node, 0, sizeof(*node));
67 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 					   size, 0, I915_COLOR_UNEVICTABLE,
69 					   0, ggtt->mappable_end,
70 					   DRM_MM_INSERT_LOW);
71 }
72 
73 static void
74 remove_mappable_node(struct drm_mm_node *node)
75 {
76 	drm_mm_remove_node(node);
77 }
78 
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81 				  u64 size)
82 {
83 	spin_lock(&dev_priv->mm.object_stat_lock);
84 	dev_priv->mm.object_count++;
85 	dev_priv->mm.object_memory += size;
86 	spin_unlock(&dev_priv->mm.object_stat_lock);
87 }
88 
89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90 				     u64 size)
91 {
92 	spin_lock(&dev_priv->mm.object_stat_lock);
93 	dev_priv->mm.object_count--;
94 	dev_priv->mm.object_memory -= size;
95 	spin_unlock(&dev_priv->mm.object_stat_lock);
96 }
97 
98 static int
99 i915_gem_wait_for_error(struct i915_gpu_error *error)
100 {
101 	int ret;
102 
103 	might_sleep();
104 
105 	/*
106 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 	 * userspace. If it takes that long something really bad is going on and
108 	 * we should simply try to bail out and fail as gracefully as possible.
109 	 */
110 	ret = wait_event_interruptible_timeout(error->reset_queue,
111 					       !i915_reset_backoff(error),
112 					       I915_RESET_TIMEOUT);
113 	if (ret == 0) {
114 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 		return -EIO;
116 	} else if (ret < 0) {
117 		return ret;
118 	} else {
119 		return 0;
120 	}
121 }
122 
123 int i915_mutex_lock_interruptible(struct drm_device *dev)
124 {
125 	struct drm_i915_private *dev_priv = to_i915(dev);
126 	int ret;
127 
128 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 	if (ret)
130 		return ret;
131 
132 	ret = mutex_lock_interruptible(&dev->struct_mutex);
133 	if (ret)
134 		return ret;
135 
136 	return 0;
137 }
138 
139 int
140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141 			    struct drm_file *file)
142 {
143 	struct drm_i915_private *dev_priv = to_i915(dev);
144 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
145 	struct drm_i915_gem_get_aperture *args = data;
146 	struct i915_vma *vma;
147 	u64 pinned;
148 
149 	pinned = ggtt->base.reserved;
150 	mutex_lock(&dev->struct_mutex);
151 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152 		if (i915_vma_is_pinned(vma))
153 			pinned += vma->node.size;
154 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155 		if (i915_vma_is_pinned(vma))
156 			pinned += vma->node.size;
157 	mutex_unlock(&dev->struct_mutex);
158 
159 	args->aper_size = ggtt->base.total;
160 	args->aper_available_size = args->aper_size - pinned;
161 
162 	return 0;
163 }
164 
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167 	struct address_space *mapping = obj->base.filp->f_mapping;
168 	drm_dma_handle_t *phys;
169 	struct sg_table *st;
170 	struct scatterlist *sg;
171 	char *vaddr;
172 	int i;
173 	int err;
174 
175 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176 		return -EINVAL;
177 
178 	/* Always aligning to the object size, allows a single allocation
179 	 * to handle all possible callers, and given typical object sizes,
180 	 * the alignment of the buddy allocation will naturally match.
181 	 */
182 	phys = drm_pci_alloc(obj->base.dev,
183 			     roundup_pow_of_two(obj->base.size),
184 			     roundup_pow_of_two(obj->base.size));
185 	if (!phys)
186 		return -ENOMEM;
187 
188 	vaddr = phys->vaddr;
189 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 		struct page *page;
191 		char *src;
192 
193 		page = shmem_read_mapping_page(mapping, i);
194 		if (IS_ERR(page)) {
195 			err = PTR_ERR(page);
196 			goto err_phys;
197 		}
198 
199 		src = kmap_atomic(page);
200 		memcpy(vaddr, src, PAGE_SIZE);
201 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
202 		kunmap_atomic(src);
203 
204 		put_page(page);
205 		vaddr += PAGE_SIZE;
206 	}
207 
208 	i915_gem_chipset_flush(to_i915(obj->base.dev));
209 
210 	st = kmalloc(sizeof(*st), GFP_KERNEL);
211 	if (!st) {
212 		err = -ENOMEM;
213 		goto err_phys;
214 	}
215 
216 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217 		kfree(st);
218 		err = -ENOMEM;
219 		goto err_phys;
220 	}
221 
222 	sg = st->sgl;
223 	sg->offset = 0;
224 	sg->length = obj->base.size;
225 
226 	sg_dma_address(sg) = phys->busaddr;
227 	sg_dma_len(sg) = obj->base.size;
228 
229 	obj->phys_handle = phys;
230 
231 	__i915_gem_object_set_pages(obj, st, sg->length);
232 
233 	return 0;
234 
235 err_phys:
236 	drm_pci_free(obj->base.dev, phys);
237 
238 	return err;
239 }
240 
241 static void __start_cpu_write(struct drm_i915_gem_object *obj)
242 {
243 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
244 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
245 	if (cpu_write_needs_clflush(obj))
246 		obj->cache_dirty = true;
247 }
248 
249 static void
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 				struct sg_table *pages,
252 				bool needs_clflush)
253 {
254 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255 
256 	if (obj->mm.madv == I915_MADV_DONTNEED)
257 		obj->mm.dirty = false;
258 
259 	if (needs_clflush &&
260 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262 		drm_clflush_sg(pages);
263 
264 	__start_cpu_write(obj);
265 }
266 
267 static void
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 			       struct sg_table *pages)
270 {
271 	__i915_gem_object_release_shmem(obj, pages, false);
272 
273 	if (obj->mm.dirty) {
274 		struct address_space *mapping = obj->base.filp->f_mapping;
275 		char *vaddr = obj->phys_handle->vaddr;
276 		int i;
277 
278 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 			struct page *page;
280 			char *dst;
281 
282 			page = shmem_read_mapping_page(mapping, i);
283 			if (IS_ERR(page))
284 				continue;
285 
286 			dst = kmap_atomic(page);
287 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 			memcpy(dst, vaddr, PAGE_SIZE);
289 			kunmap_atomic(dst);
290 
291 			set_page_dirty(page);
292 			if (obj->mm.madv == I915_MADV_WILLNEED)
293 				mark_page_accessed(page);
294 			put_page(page);
295 			vaddr += PAGE_SIZE;
296 		}
297 		obj->mm.dirty = false;
298 	}
299 
300 	sg_free_table(pages);
301 	kfree(pages);
302 
303 	drm_pci_free(obj->base.dev, obj->phys_handle);
304 }
305 
306 static void
307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308 {
309 	i915_gem_object_unpin_pages(obj);
310 }
311 
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 	.get_pages = i915_gem_object_get_pages_phys,
314 	.put_pages = i915_gem_object_put_pages_phys,
315 	.release = i915_gem_object_release_phys,
316 };
317 
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
319 
320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 {
322 	struct i915_vma *vma;
323 	LIST_HEAD(still_in_list);
324 	int ret;
325 
326 	lockdep_assert_held(&obj->base.dev->struct_mutex);
327 
328 	/* Closed vma are removed from the obj->vma_list - but they may
329 	 * still have an active binding on the object. To remove those we
330 	 * must wait for all rendering to complete to the object (as unbinding
331 	 * must anyway), and retire the requests.
332 	 */
333 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
334 	if (ret)
335 		return ret;
336 
337 	while ((vma = list_first_entry_or_null(&obj->vma_list,
338 					       struct i915_vma,
339 					       obj_link))) {
340 		list_move_tail(&vma->obj_link, &still_in_list);
341 		ret = i915_vma_unbind(vma);
342 		if (ret)
343 			break;
344 	}
345 	list_splice(&still_in_list, &obj->vma_list);
346 
347 	return ret;
348 }
349 
350 static long
351 i915_gem_object_wait_fence(struct dma_fence *fence,
352 			   unsigned int flags,
353 			   long timeout,
354 			   struct intel_rps_client *rps_client)
355 {
356 	struct drm_i915_gem_request *rq;
357 
358 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359 
360 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361 		return timeout;
362 
363 	if (!dma_fence_is_i915(fence))
364 		return dma_fence_wait_timeout(fence,
365 					      flags & I915_WAIT_INTERRUPTIBLE,
366 					      timeout);
367 
368 	rq = to_request(fence);
369 	if (i915_gem_request_completed(rq))
370 		goto out;
371 
372 	/* This client is about to stall waiting for the GPU. In many cases
373 	 * this is undesirable and limits the throughput of the system, as
374 	 * many clients cannot continue processing user input/output whilst
375 	 * blocked. RPS autotuning may take tens of milliseconds to respond
376 	 * to the GPU load and thus incurs additional latency for the client.
377 	 * We can circumvent that by promoting the GPU frequency to maximum
378 	 * before we wait. This makes the GPU throttle up much more quickly
379 	 * (good for benchmarks and user experience, e.g. window animations),
380 	 * but at a cost of spending more power processing the workload
381 	 * (bad for battery). Not all clients even want their results
382 	 * immediately and for them we should just let the GPU select its own
383 	 * frequency to maximise efficiency. To prevent a single client from
384 	 * forcing the clocks too high for the whole system, we only allow
385 	 * each client to waitboost once in a busy period.
386 	 */
387 	if (rps_client) {
388 		if (INTEL_GEN(rq->i915) >= 6)
389 			gen6_rps_boost(rq, rps_client);
390 		else
391 			rps_client = NULL;
392 	}
393 
394 	timeout = i915_wait_request(rq, flags, timeout);
395 
396 out:
397 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
398 		i915_gem_request_retire_upto(rq);
399 
400 	return timeout;
401 }
402 
403 static long
404 i915_gem_object_wait_reservation(struct reservation_object *resv,
405 				 unsigned int flags,
406 				 long timeout,
407 				 struct intel_rps_client *rps_client)
408 {
409 	unsigned int seq = __read_seqcount_begin(&resv->seq);
410 	struct dma_fence *excl;
411 	bool prune_fences = false;
412 
413 	if (flags & I915_WAIT_ALL) {
414 		struct dma_fence **shared;
415 		unsigned int count, i;
416 		int ret;
417 
418 		ret = reservation_object_get_fences_rcu(resv,
419 							&excl, &count, &shared);
420 		if (ret)
421 			return ret;
422 
423 		for (i = 0; i < count; i++) {
424 			timeout = i915_gem_object_wait_fence(shared[i],
425 							     flags, timeout,
426 							     rps_client);
427 			if (timeout < 0)
428 				break;
429 
430 			dma_fence_put(shared[i]);
431 		}
432 
433 		for (; i < count; i++)
434 			dma_fence_put(shared[i]);
435 		kfree(shared);
436 
437 		prune_fences = count && timeout >= 0;
438 	} else {
439 		excl = reservation_object_get_excl_rcu(resv);
440 	}
441 
442 	if (excl && timeout >= 0) {
443 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
444 						     rps_client);
445 		prune_fences = timeout >= 0;
446 	}
447 
448 	dma_fence_put(excl);
449 
450 	/* Oportunistically prune the fences iff we know they have *all* been
451 	 * signaled and that the reservation object has not been changed (i.e.
452 	 * no new fences have been added).
453 	 */
454 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
455 		if (reservation_object_trylock(resv)) {
456 			if (!__read_seqcount_retry(&resv->seq, seq))
457 				reservation_object_add_excl_fence(resv, NULL);
458 			reservation_object_unlock(resv);
459 		}
460 	}
461 
462 	return timeout;
463 }
464 
465 static void __fence_set_priority(struct dma_fence *fence, int prio)
466 {
467 	struct drm_i915_gem_request *rq;
468 	struct intel_engine_cs *engine;
469 
470 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
471 		return;
472 
473 	rq = to_request(fence);
474 	engine = rq->engine;
475 	if (!engine->schedule)
476 		return;
477 
478 	engine->schedule(rq, prio);
479 }
480 
481 static void fence_set_priority(struct dma_fence *fence, int prio)
482 {
483 	/* Recurse once into a fence-array */
484 	if (dma_fence_is_array(fence)) {
485 		struct dma_fence_array *array = to_dma_fence_array(fence);
486 		int i;
487 
488 		for (i = 0; i < array->num_fences; i++)
489 			__fence_set_priority(array->fences[i], prio);
490 	} else {
491 		__fence_set_priority(fence, prio);
492 	}
493 }
494 
495 int
496 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
497 			      unsigned int flags,
498 			      int prio)
499 {
500 	struct dma_fence *excl;
501 
502 	if (flags & I915_WAIT_ALL) {
503 		struct dma_fence **shared;
504 		unsigned int count, i;
505 		int ret;
506 
507 		ret = reservation_object_get_fences_rcu(obj->resv,
508 							&excl, &count, &shared);
509 		if (ret)
510 			return ret;
511 
512 		for (i = 0; i < count; i++) {
513 			fence_set_priority(shared[i], prio);
514 			dma_fence_put(shared[i]);
515 		}
516 
517 		kfree(shared);
518 	} else {
519 		excl = reservation_object_get_excl_rcu(obj->resv);
520 	}
521 
522 	if (excl) {
523 		fence_set_priority(excl, prio);
524 		dma_fence_put(excl);
525 	}
526 	return 0;
527 }
528 
529 /**
530  * Waits for rendering to the object to be completed
531  * @obj: i915 gem object
532  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
533  * @timeout: how long to wait
534  * @rps_client: client (user process) to charge for any waitboosting
535  */
536 int
537 i915_gem_object_wait(struct drm_i915_gem_object *obj,
538 		     unsigned int flags,
539 		     long timeout,
540 		     struct intel_rps_client *rps_client)
541 {
542 	might_sleep();
543 #if IS_ENABLED(CONFIG_LOCKDEP)
544 	GEM_BUG_ON(debug_locks &&
545 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
546 		   !!(flags & I915_WAIT_LOCKED));
547 #endif
548 	GEM_BUG_ON(timeout < 0);
549 
550 	timeout = i915_gem_object_wait_reservation(obj->resv,
551 						   flags, timeout,
552 						   rps_client);
553 	return timeout < 0 ? timeout : 0;
554 }
555 
556 static struct intel_rps_client *to_rps_client(struct drm_file *file)
557 {
558 	struct drm_i915_file_private *fpriv = file->driver_priv;
559 
560 	return &fpriv->rps_client;
561 }
562 
563 static int
564 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
565 		     struct drm_i915_gem_pwrite *args,
566 		     struct drm_file *file)
567 {
568 	void *vaddr = obj->phys_handle->vaddr + args->offset;
569 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
570 
571 	/* We manually control the domain here and pretend that it
572 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
573 	 */
574 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
575 	if (copy_from_user(vaddr, user_data, args->size))
576 		return -EFAULT;
577 
578 	drm_clflush_virt_range(vaddr, args->size);
579 	i915_gem_chipset_flush(to_i915(obj->base.dev));
580 
581 	intel_fb_obj_flush(obj, ORIGIN_CPU);
582 	return 0;
583 }
584 
585 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
586 {
587 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
588 }
589 
590 void i915_gem_object_free(struct drm_i915_gem_object *obj)
591 {
592 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
593 	kmem_cache_free(dev_priv->objects, obj);
594 }
595 
596 static int
597 i915_gem_create(struct drm_file *file,
598 		struct drm_i915_private *dev_priv,
599 		uint64_t size,
600 		uint32_t *handle_p)
601 {
602 	struct drm_i915_gem_object *obj;
603 	int ret;
604 	u32 handle;
605 
606 	size = roundup(size, PAGE_SIZE);
607 	if (size == 0)
608 		return -EINVAL;
609 
610 	/* Allocate the new object */
611 	obj = i915_gem_object_create(dev_priv, size);
612 	if (IS_ERR(obj))
613 		return PTR_ERR(obj);
614 
615 	ret = drm_gem_handle_create(file, &obj->base, &handle);
616 	/* drop reference from allocate - handle holds it now */
617 	i915_gem_object_put(obj);
618 	if (ret)
619 		return ret;
620 
621 	*handle_p = handle;
622 	return 0;
623 }
624 
625 int
626 i915_gem_dumb_create(struct drm_file *file,
627 		     struct drm_device *dev,
628 		     struct drm_mode_create_dumb *args)
629 {
630 	/* have to work out size/pitch and return them */
631 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
632 	args->size = args->pitch * args->height;
633 	return i915_gem_create(file, to_i915(dev),
634 			       args->size, &args->handle);
635 }
636 
637 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
638 {
639 	return !(obj->cache_level == I915_CACHE_NONE ||
640 		 obj->cache_level == I915_CACHE_WT);
641 }
642 
643 /**
644  * Creates a new mm object and returns a handle to it.
645  * @dev: drm device pointer
646  * @data: ioctl data blob
647  * @file: drm file pointer
648  */
649 int
650 i915_gem_create_ioctl(struct drm_device *dev, void *data,
651 		      struct drm_file *file)
652 {
653 	struct drm_i915_private *dev_priv = to_i915(dev);
654 	struct drm_i915_gem_create *args = data;
655 
656 	i915_gem_flush_free_objects(dev_priv);
657 
658 	return i915_gem_create(file, dev_priv,
659 			       args->size, &args->handle);
660 }
661 
662 static inline enum fb_op_origin
663 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
664 {
665 	return (domain == I915_GEM_DOMAIN_GTT ?
666 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
667 }
668 
669 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
670 {
671 	/*
672 	 * No actual flushing is required for the GTT write domain for reads
673 	 * from the GTT domain. Writes to it "immediately" go to main memory
674 	 * as far as we know, so there's no chipset flush. It also doesn't
675 	 * land in the GPU render cache.
676 	 *
677 	 * However, we do have to enforce the order so that all writes through
678 	 * the GTT land before any writes to the device, such as updates to
679 	 * the GATT itself.
680 	 *
681 	 * We also have to wait a bit for the writes to land from the GTT.
682 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
683 	 * timing. This issue has only been observed when switching quickly
684 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
685 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
686 	 * system agents we cannot reproduce this behaviour, until Cannonlake
687 	 * that was!).
688 	 */
689 
690 	wmb();
691 
692 	intel_runtime_pm_get(dev_priv);
693 	spin_lock_irq(&dev_priv->uncore.lock);
694 
695 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
696 
697 	spin_unlock_irq(&dev_priv->uncore.lock);
698 	intel_runtime_pm_put(dev_priv);
699 }
700 
701 static void
702 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
703 {
704 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
705 	struct i915_vma *vma;
706 
707 	if (!(obj->base.write_domain & flush_domains))
708 		return;
709 
710 	switch (obj->base.write_domain) {
711 	case I915_GEM_DOMAIN_GTT:
712 		i915_gem_flush_ggtt_writes(dev_priv);
713 
714 		intel_fb_obj_flush(obj,
715 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
716 
717 		for_each_ggtt_vma(vma, obj) {
718 			if (vma->iomap)
719 				continue;
720 
721 			i915_vma_unset_ggtt_write(vma);
722 		}
723 		break;
724 
725 	case I915_GEM_DOMAIN_CPU:
726 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
727 		break;
728 
729 	case I915_GEM_DOMAIN_RENDER:
730 		if (gpu_write_needs_clflush(obj))
731 			obj->cache_dirty = true;
732 		break;
733 	}
734 
735 	obj->base.write_domain = 0;
736 }
737 
738 static inline int
739 __copy_to_user_swizzled(char __user *cpu_vaddr,
740 			const char *gpu_vaddr, int gpu_offset,
741 			int length)
742 {
743 	int ret, cpu_offset = 0;
744 
745 	while (length > 0) {
746 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
747 		int this_length = min(cacheline_end - gpu_offset, length);
748 		int swizzled_gpu_offset = gpu_offset ^ 64;
749 
750 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
751 				     gpu_vaddr + swizzled_gpu_offset,
752 				     this_length);
753 		if (ret)
754 			return ret + length;
755 
756 		cpu_offset += this_length;
757 		gpu_offset += this_length;
758 		length -= this_length;
759 	}
760 
761 	return 0;
762 }
763 
764 static inline int
765 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
766 			  const char __user *cpu_vaddr,
767 			  int length)
768 {
769 	int ret, cpu_offset = 0;
770 
771 	while (length > 0) {
772 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
773 		int this_length = min(cacheline_end - gpu_offset, length);
774 		int swizzled_gpu_offset = gpu_offset ^ 64;
775 
776 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
777 				       cpu_vaddr + cpu_offset,
778 				       this_length);
779 		if (ret)
780 			return ret + length;
781 
782 		cpu_offset += this_length;
783 		gpu_offset += this_length;
784 		length -= this_length;
785 	}
786 
787 	return 0;
788 }
789 
790 /*
791  * Pins the specified object's pages and synchronizes the object with
792  * GPU accesses. Sets needs_clflush to non-zero if the caller should
793  * flush the object from the CPU cache.
794  */
795 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
796 				    unsigned int *needs_clflush)
797 {
798 	int ret;
799 
800 	lockdep_assert_held(&obj->base.dev->struct_mutex);
801 
802 	*needs_clflush = 0;
803 	if (!i915_gem_object_has_struct_page(obj))
804 		return -ENODEV;
805 
806 	ret = i915_gem_object_wait(obj,
807 				   I915_WAIT_INTERRUPTIBLE |
808 				   I915_WAIT_LOCKED,
809 				   MAX_SCHEDULE_TIMEOUT,
810 				   NULL);
811 	if (ret)
812 		return ret;
813 
814 	ret = i915_gem_object_pin_pages(obj);
815 	if (ret)
816 		return ret;
817 
818 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
819 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
820 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
821 		if (ret)
822 			goto err_unpin;
823 		else
824 			goto out;
825 	}
826 
827 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
828 
829 	/* If we're not in the cpu read domain, set ourself into the gtt
830 	 * read domain and manually flush cachelines (if required). This
831 	 * optimizes for the case when the gpu will dirty the data
832 	 * anyway again before the next pread happens.
833 	 */
834 	if (!obj->cache_dirty &&
835 	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
836 		*needs_clflush = CLFLUSH_BEFORE;
837 
838 out:
839 	/* return with the pages pinned */
840 	return 0;
841 
842 err_unpin:
843 	i915_gem_object_unpin_pages(obj);
844 	return ret;
845 }
846 
847 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
848 				     unsigned int *needs_clflush)
849 {
850 	int ret;
851 
852 	lockdep_assert_held(&obj->base.dev->struct_mutex);
853 
854 	*needs_clflush = 0;
855 	if (!i915_gem_object_has_struct_page(obj))
856 		return -ENODEV;
857 
858 	ret = i915_gem_object_wait(obj,
859 				   I915_WAIT_INTERRUPTIBLE |
860 				   I915_WAIT_LOCKED |
861 				   I915_WAIT_ALL,
862 				   MAX_SCHEDULE_TIMEOUT,
863 				   NULL);
864 	if (ret)
865 		return ret;
866 
867 	ret = i915_gem_object_pin_pages(obj);
868 	if (ret)
869 		return ret;
870 
871 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
872 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
873 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
874 		if (ret)
875 			goto err_unpin;
876 		else
877 			goto out;
878 	}
879 
880 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
881 
882 	/* If we're not in the cpu write domain, set ourself into the
883 	 * gtt write domain and manually flush cachelines (as required).
884 	 * This optimizes for the case when the gpu will use the data
885 	 * right away and we therefore have to clflush anyway.
886 	 */
887 	if (!obj->cache_dirty) {
888 		*needs_clflush |= CLFLUSH_AFTER;
889 
890 		/*
891 		 * Same trick applies to invalidate partially written
892 		 * cachelines read before writing.
893 		 */
894 		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
895 			*needs_clflush |= CLFLUSH_BEFORE;
896 	}
897 
898 out:
899 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
900 	obj->mm.dirty = true;
901 	/* return with the pages pinned */
902 	return 0;
903 
904 err_unpin:
905 	i915_gem_object_unpin_pages(obj);
906 	return ret;
907 }
908 
909 static void
910 shmem_clflush_swizzled_range(char *addr, unsigned long length,
911 			     bool swizzled)
912 {
913 	if (unlikely(swizzled)) {
914 		unsigned long start = (unsigned long) addr;
915 		unsigned long end = (unsigned long) addr + length;
916 
917 		/* For swizzling simply ensure that we always flush both
918 		 * channels. Lame, but simple and it works. Swizzled
919 		 * pwrite/pread is far from a hotpath - current userspace
920 		 * doesn't use it at all. */
921 		start = round_down(start, 128);
922 		end = round_up(end, 128);
923 
924 		drm_clflush_virt_range((void *)start, end - start);
925 	} else {
926 		drm_clflush_virt_range(addr, length);
927 	}
928 
929 }
930 
931 /* Only difference to the fast-path function is that this can handle bit17
932  * and uses non-atomic copy and kmap functions. */
933 static int
934 shmem_pread_slow(struct page *page, int offset, int length,
935 		 char __user *user_data,
936 		 bool page_do_bit17_swizzling, bool needs_clflush)
937 {
938 	char *vaddr;
939 	int ret;
940 
941 	vaddr = kmap(page);
942 	if (needs_clflush)
943 		shmem_clflush_swizzled_range(vaddr + offset, length,
944 					     page_do_bit17_swizzling);
945 
946 	if (page_do_bit17_swizzling)
947 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
948 	else
949 		ret = __copy_to_user(user_data, vaddr + offset, length);
950 	kunmap(page);
951 
952 	return ret ? - EFAULT : 0;
953 }
954 
955 static int
956 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
957 	    bool page_do_bit17_swizzling, bool needs_clflush)
958 {
959 	int ret;
960 
961 	ret = -ENODEV;
962 	if (!page_do_bit17_swizzling) {
963 		char *vaddr = kmap_atomic(page);
964 
965 		if (needs_clflush)
966 			drm_clflush_virt_range(vaddr + offset, length);
967 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
968 		kunmap_atomic(vaddr);
969 	}
970 	if (ret == 0)
971 		return 0;
972 
973 	return shmem_pread_slow(page, offset, length, user_data,
974 				page_do_bit17_swizzling, needs_clflush);
975 }
976 
977 static int
978 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
979 		     struct drm_i915_gem_pread *args)
980 {
981 	char __user *user_data;
982 	u64 remain;
983 	unsigned int obj_do_bit17_swizzling;
984 	unsigned int needs_clflush;
985 	unsigned int idx, offset;
986 	int ret;
987 
988 	obj_do_bit17_swizzling = 0;
989 	if (i915_gem_object_needs_bit17_swizzle(obj))
990 		obj_do_bit17_swizzling = BIT(17);
991 
992 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
993 	if (ret)
994 		return ret;
995 
996 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
997 	mutex_unlock(&obj->base.dev->struct_mutex);
998 	if (ret)
999 		return ret;
1000 
1001 	remain = args->size;
1002 	user_data = u64_to_user_ptr(args->data_ptr);
1003 	offset = offset_in_page(args->offset);
1004 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1005 		struct page *page = i915_gem_object_get_page(obj, idx);
1006 		int length;
1007 
1008 		length = remain;
1009 		if (offset + length > PAGE_SIZE)
1010 			length = PAGE_SIZE - offset;
1011 
1012 		ret = shmem_pread(page, offset, length, user_data,
1013 				  page_to_phys(page) & obj_do_bit17_swizzling,
1014 				  needs_clflush);
1015 		if (ret)
1016 			break;
1017 
1018 		remain -= length;
1019 		user_data += length;
1020 		offset = 0;
1021 	}
1022 
1023 	i915_gem_obj_finish_shmem_access(obj);
1024 	return ret;
1025 }
1026 
1027 static inline bool
1028 gtt_user_read(struct io_mapping *mapping,
1029 	      loff_t base, int offset,
1030 	      char __user *user_data, int length)
1031 {
1032 	void __iomem *vaddr;
1033 	unsigned long unwritten;
1034 
1035 	/* We can use the cpu mem copy function because this is X86. */
1036 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1037 	unwritten = __copy_to_user_inatomic(user_data,
1038 					    (void __force *)vaddr + offset,
1039 					    length);
1040 	io_mapping_unmap_atomic(vaddr);
1041 	if (unwritten) {
1042 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1043 		unwritten = copy_to_user(user_data,
1044 					 (void __force *)vaddr + offset,
1045 					 length);
1046 		io_mapping_unmap(vaddr);
1047 	}
1048 	return unwritten;
1049 }
1050 
1051 static int
1052 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1053 		   const struct drm_i915_gem_pread *args)
1054 {
1055 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1056 	struct i915_ggtt *ggtt = &i915->ggtt;
1057 	struct drm_mm_node node;
1058 	struct i915_vma *vma;
1059 	void __user *user_data;
1060 	u64 remain, offset;
1061 	int ret;
1062 
1063 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1064 	if (ret)
1065 		return ret;
1066 
1067 	intel_runtime_pm_get(i915);
1068 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1069 				       PIN_MAPPABLE |
1070 				       PIN_NONFAULT |
1071 				       PIN_NONBLOCK);
1072 	if (!IS_ERR(vma)) {
1073 		node.start = i915_ggtt_offset(vma);
1074 		node.allocated = false;
1075 		ret = i915_vma_put_fence(vma);
1076 		if (ret) {
1077 			i915_vma_unpin(vma);
1078 			vma = ERR_PTR(ret);
1079 		}
1080 	}
1081 	if (IS_ERR(vma)) {
1082 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1083 		if (ret)
1084 			goto out_unlock;
1085 		GEM_BUG_ON(!node.allocated);
1086 	}
1087 
1088 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1089 	if (ret)
1090 		goto out_unpin;
1091 
1092 	mutex_unlock(&i915->drm.struct_mutex);
1093 
1094 	user_data = u64_to_user_ptr(args->data_ptr);
1095 	remain = args->size;
1096 	offset = args->offset;
1097 
1098 	while (remain > 0) {
1099 		/* Operation in this page
1100 		 *
1101 		 * page_base = page offset within aperture
1102 		 * page_offset = offset within page
1103 		 * page_length = bytes to copy for this page
1104 		 */
1105 		u32 page_base = node.start;
1106 		unsigned page_offset = offset_in_page(offset);
1107 		unsigned page_length = PAGE_SIZE - page_offset;
1108 		page_length = remain < page_length ? remain : page_length;
1109 		if (node.allocated) {
1110 			wmb();
1111 			ggtt->base.insert_page(&ggtt->base,
1112 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1113 					       node.start, I915_CACHE_NONE, 0);
1114 			wmb();
1115 		} else {
1116 			page_base += offset & PAGE_MASK;
1117 		}
1118 
1119 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1120 				  user_data, page_length)) {
1121 			ret = -EFAULT;
1122 			break;
1123 		}
1124 
1125 		remain -= page_length;
1126 		user_data += page_length;
1127 		offset += page_length;
1128 	}
1129 
1130 	mutex_lock(&i915->drm.struct_mutex);
1131 out_unpin:
1132 	if (node.allocated) {
1133 		wmb();
1134 		ggtt->base.clear_range(&ggtt->base,
1135 				       node.start, node.size);
1136 		remove_mappable_node(&node);
1137 	} else {
1138 		i915_vma_unpin(vma);
1139 	}
1140 out_unlock:
1141 	intel_runtime_pm_put(i915);
1142 	mutex_unlock(&i915->drm.struct_mutex);
1143 
1144 	return ret;
1145 }
1146 
1147 /**
1148  * Reads data from the object referenced by handle.
1149  * @dev: drm device pointer
1150  * @data: ioctl data blob
1151  * @file: drm file pointer
1152  *
1153  * On error, the contents of *data are undefined.
1154  */
1155 int
1156 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1157 		     struct drm_file *file)
1158 {
1159 	struct drm_i915_gem_pread *args = data;
1160 	struct drm_i915_gem_object *obj;
1161 	int ret;
1162 
1163 	if (args->size == 0)
1164 		return 0;
1165 
1166 	if (!access_ok(VERIFY_WRITE,
1167 		       u64_to_user_ptr(args->data_ptr),
1168 		       args->size))
1169 		return -EFAULT;
1170 
1171 	obj = i915_gem_object_lookup(file, args->handle);
1172 	if (!obj)
1173 		return -ENOENT;
1174 
1175 	/* Bounds check source.  */
1176 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1177 		ret = -EINVAL;
1178 		goto out;
1179 	}
1180 
1181 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1182 
1183 	ret = i915_gem_object_wait(obj,
1184 				   I915_WAIT_INTERRUPTIBLE,
1185 				   MAX_SCHEDULE_TIMEOUT,
1186 				   to_rps_client(file));
1187 	if (ret)
1188 		goto out;
1189 
1190 	ret = i915_gem_object_pin_pages(obj);
1191 	if (ret)
1192 		goto out;
1193 
1194 	ret = i915_gem_shmem_pread(obj, args);
1195 	if (ret == -EFAULT || ret == -ENODEV)
1196 		ret = i915_gem_gtt_pread(obj, args);
1197 
1198 	i915_gem_object_unpin_pages(obj);
1199 out:
1200 	i915_gem_object_put(obj);
1201 	return ret;
1202 }
1203 
1204 /* This is the fast write path which cannot handle
1205  * page faults in the source data
1206  */
1207 
1208 static inline bool
1209 ggtt_write(struct io_mapping *mapping,
1210 	   loff_t base, int offset,
1211 	   char __user *user_data, int length)
1212 {
1213 	void __iomem *vaddr;
1214 	unsigned long unwritten;
1215 
1216 	/* We can use the cpu mem copy function because this is X86. */
1217 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1218 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1219 						      user_data, length);
1220 	io_mapping_unmap_atomic(vaddr);
1221 	if (unwritten) {
1222 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1223 		unwritten = copy_from_user((void __force *)vaddr + offset,
1224 					   user_data, length);
1225 		io_mapping_unmap(vaddr);
1226 	}
1227 
1228 	return unwritten;
1229 }
1230 
1231 /**
1232  * This is the fast pwrite path, where we copy the data directly from the
1233  * user into the GTT, uncached.
1234  * @obj: i915 GEM object
1235  * @args: pwrite arguments structure
1236  */
1237 static int
1238 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1239 			 const struct drm_i915_gem_pwrite *args)
1240 {
1241 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1242 	struct i915_ggtt *ggtt = &i915->ggtt;
1243 	struct drm_mm_node node;
1244 	struct i915_vma *vma;
1245 	u64 remain, offset;
1246 	void __user *user_data;
1247 	int ret;
1248 
1249 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1250 	if (ret)
1251 		return ret;
1252 
1253 	if (i915_gem_object_has_struct_page(obj)) {
1254 		/*
1255 		 * Avoid waking the device up if we can fallback, as
1256 		 * waking/resuming is very slow (worst-case 10-100 ms
1257 		 * depending on PCI sleeps and our own resume time).
1258 		 * This easily dwarfs any performance advantage from
1259 		 * using the cache bypass of indirect GGTT access.
1260 		 */
1261 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1262 			ret = -EFAULT;
1263 			goto out_unlock;
1264 		}
1265 	} else {
1266 		/* No backing pages, no fallback, we must force GGTT access */
1267 		intel_runtime_pm_get(i915);
1268 	}
1269 
1270 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1271 				       PIN_MAPPABLE |
1272 				       PIN_NONFAULT |
1273 				       PIN_NONBLOCK);
1274 	if (!IS_ERR(vma)) {
1275 		node.start = i915_ggtt_offset(vma);
1276 		node.allocated = false;
1277 		ret = i915_vma_put_fence(vma);
1278 		if (ret) {
1279 			i915_vma_unpin(vma);
1280 			vma = ERR_PTR(ret);
1281 		}
1282 	}
1283 	if (IS_ERR(vma)) {
1284 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1285 		if (ret)
1286 			goto out_rpm;
1287 		GEM_BUG_ON(!node.allocated);
1288 	}
1289 
1290 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1291 	if (ret)
1292 		goto out_unpin;
1293 
1294 	mutex_unlock(&i915->drm.struct_mutex);
1295 
1296 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1297 
1298 	user_data = u64_to_user_ptr(args->data_ptr);
1299 	offset = args->offset;
1300 	remain = args->size;
1301 	while (remain) {
1302 		/* Operation in this page
1303 		 *
1304 		 * page_base = page offset within aperture
1305 		 * page_offset = offset within page
1306 		 * page_length = bytes to copy for this page
1307 		 */
1308 		u32 page_base = node.start;
1309 		unsigned int page_offset = offset_in_page(offset);
1310 		unsigned int page_length = PAGE_SIZE - page_offset;
1311 		page_length = remain < page_length ? remain : page_length;
1312 		if (node.allocated) {
1313 			wmb(); /* flush the write before we modify the GGTT */
1314 			ggtt->base.insert_page(&ggtt->base,
1315 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1316 					       node.start, I915_CACHE_NONE, 0);
1317 			wmb(); /* flush modifications to the GGTT (insert_page) */
1318 		} else {
1319 			page_base += offset & PAGE_MASK;
1320 		}
1321 		/* If we get a fault while copying data, then (presumably) our
1322 		 * source page isn't available.  Return the error and we'll
1323 		 * retry in the slow path.
1324 		 * If the object is non-shmem backed, we retry again with the
1325 		 * path that handles page fault.
1326 		 */
1327 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1328 			       user_data, page_length)) {
1329 			ret = -EFAULT;
1330 			break;
1331 		}
1332 
1333 		remain -= page_length;
1334 		user_data += page_length;
1335 		offset += page_length;
1336 	}
1337 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1338 
1339 	mutex_lock(&i915->drm.struct_mutex);
1340 out_unpin:
1341 	if (node.allocated) {
1342 		wmb();
1343 		ggtt->base.clear_range(&ggtt->base,
1344 				       node.start, node.size);
1345 		remove_mappable_node(&node);
1346 	} else {
1347 		i915_vma_unpin(vma);
1348 	}
1349 out_rpm:
1350 	intel_runtime_pm_put(i915);
1351 out_unlock:
1352 	mutex_unlock(&i915->drm.struct_mutex);
1353 	return ret;
1354 }
1355 
1356 static int
1357 shmem_pwrite_slow(struct page *page, int offset, int length,
1358 		  char __user *user_data,
1359 		  bool page_do_bit17_swizzling,
1360 		  bool needs_clflush_before,
1361 		  bool needs_clflush_after)
1362 {
1363 	char *vaddr;
1364 	int ret;
1365 
1366 	vaddr = kmap(page);
1367 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1368 		shmem_clflush_swizzled_range(vaddr + offset, length,
1369 					     page_do_bit17_swizzling);
1370 	if (page_do_bit17_swizzling)
1371 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1372 						length);
1373 	else
1374 		ret = __copy_from_user(vaddr + offset, user_data, length);
1375 	if (needs_clflush_after)
1376 		shmem_clflush_swizzled_range(vaddr + offset, length,
1377 					     page_do_bit17_swizzling);
1378 	kunmap(page);
1379 
1380 	return ret ? -EFAULT : 0;
1381 }
1382 
1383 /* Per-page copy function for the shmem pwrite fastpath.
1384  * Flushes invalid cachelines before writing to the target if
1385  * needs_clflush_before is set and flushes out any written cachelines after
1386  * writing if needs_clflush is set.
1387  */
1388 static int
1389 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1390 	     bool page_do_bit17_swizzling,
1391 	     bool needs_clflush_before,
1392 	     bool needs_clflush_after)
1393 {
1394 	int ret;
1395 
1396 	ret = -ENODEV;
1397 	if (!page_do_bit17_swizzling) {
1398 		char *vaddr = kmap_atomic(page);
1399 
1400 		if (needs_clflush_before)
1401 			drm_clflush_virt_range(vaddr + offset, len);
1402 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1403 		if (needs_clflush_after)
1404 			drm_clflush_virt_range(vaddr + offset, len);
1405 
1406 		kunmap_atomic(vaddr);
1407 	}
1408 	if (ret == 0)
1409 		return ret;
1410 
1411 	return shmem_pwrite_slow(page, offset, len, user_data,
1412 				 page_do_bit17_swizzling,
1413 				 needs_clflush_before,
1414 				 needs_clflush_after);
1415 }
1416 
1417 static int
1418 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1419 		      const struct drm_i915_gem_pwrite *args)
1420 {
1421 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1422 	void __user *user_data;
1423 	u64 remain;
1424 	unsigned int obj_do_bit17_swizzling;
1425 	unsigned int partial_cacheline_write;
1426 	unsigned int needs_clflush;
1427 	unsigned int offset, idx;
1428 	int ret;
1429 
1430 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1431 	if (ret)
1432 		return ret;
1433 
1434 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1435 	mutex_unlock(&i915->drm.struct_mutex);
1436 	if (ret)
1437 		return ret;
1438 
1439 	obj_do_bit17_swizzling = 0;
1440 	if (i915_gem_object_needs_bit17_swizzle(obj))
1441 		obj_do_bit17_swizzling = BIT(17);
1442 
1443 	/* If we don't overwrite a cacheline completely we need to be
1444 	 * careful to have up-to-date data by first clflushing. Don't
1445 	 * overcomplicate things and flush the entire patch.
1446 	 */
1447 	partial_cacheline_write = 0;
1448 	if (needs_clflush & CLFLUSH_BEFORE)
1449 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1450 
1451 	user_data = u64_to_user_ptr(args->data_ptr);
1452 	remain = args->size;
1453 	offset = offset_in_page(args->offset);
1454 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1455 		struct page *page = i915_gem_object_get_page(obj, idx);
1456 		int length;
1457 
1458 		length = remain;
1459 		if (offset + length > PAGE_SIZE)
1460 			length = PAGE_SIZE - offset;
1461 
1462 		ret = shmem_pwrite(page, offset, length, user_data,
1463 				   page_to_phys(page) & obj_do_bit17_swizzling,
1464 				   (offset | length) & partial_cacheline_write,
1465 				   needs_clflush & CLFLUSH_AFTER);
1466 		if (ret)
1467 			break;
1468 
1469 		remain -= length;
1470 		user_data += length;
1471 		offset = 0;
1472 	}
1473 
1474 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1475 	i915_gem_obj_finish_shmem_access(obj);
1476 	return ret;
1477 }
1478 
1479 /**
1480  * Writes data to the object referenced by handle.
1481  * @dev: drm device
1482  * @data: ioctl data blob
1483  * @file: drm file
1484  *
1485  * On error, the contents of the buffer that were to be modified are undefined.
1486  */
1487 int
1488 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1489 		      struct drm_file *file)
1490 {
1491 	struct drm_i915_gem_pwrite *args = data;
1492 	struct drm_i915_gem_object *obj;
1493 	int ret;
1494 
1495 	if (args->size == 0)
1496 		return 0;
1497 
1498 	if (!access_ok(VERIFY_READ,
1499 		       u64_to_user_ptr(args->data_ptr),
1500 		       args->size))
1501 		return -EFAULT;
1502 
1503 	obj = i915_gem_object_lookup(file, args->handle);
1504 	if (!obj)
1505 		return -ENOENT;
1506 
1507 	/* Bounds check destination. */
1508 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1509 		ret = -EINVAL;
1510 		goto err;
1511 	}
1512 
1513 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1514 
1515 	ret = -ENODEV;
1516 	if (obj->ops->pwrite)
1517 		ret = obj->ops->pwrite(obj, args);
1518 	if (ret != -ENODEV)
1519 		goto err;
1520 
1521 	ret = i915_gem_object_wait(obj,
1522 				   I915_WAIT_INTERRUPTIBLE |
1523 				   I915_WAIT_ALL,
1524 				   MAX_SCHEDULE_TIMEOUT,
1525 				   to_rps_client(file));
1526 	if (ret)
1527 		goto err;
1528 
1529 	ret = i915_gem_object_pin_pages(obj);
1530 	if (ret)
1531 		goto err;
1532 
1533 	ret = -EFAULT;
1534 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1535 	 * it would end up going through the fenced access, and we'll get
1536 	 * different detiling behavior between reading and writing.
1537 	 * pread/pwrite currently are reading and writing from the CPU
1538 	 * perspective, requiring manual detiling by the client.
1539 	 */
1540 	if (!i915_gem_object_has_struct_page(obj) ||
1541 	    cpu_write_needs_clflush(obj))
1542 		/* Note that the gtt paths might fail with non-page-backed user
1543 		 * pointers (e.g. gtt mappings when moving data between
1544 		 * textures). Fallback to the shmem path in that case.
1545 		 */
1546 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1547 
1548 	if (ret == -EFAULT || ret == -ENOSPC) {
1549 		if (obj->phys_handle)
1550 			ret = i915_gem_phys_pwrite(obj, args, file);
1551 		else
1552 			ret = i915_gem_shmem_pwrite(obj, args);
1553 	}
1554 
1555 	i915_gem_object_unpin_pages(obj);
1556 err:
1557 	i915_gem_object_put(obj);
1558 	return ret;
1559 }
1560 
1561 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1562 {
1563 	struct drm_i915_private *i915;
1564 	struct list_head *list;
1565 	struct i915_vma *vma;
1566 
1567 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1568 
1569 	for_each_ggtt_vma(vma, obj) {
1570 		if (i915_vma_is_active(vma))
1571 			continue;
1572 
1573 		if (!drm_mm_node_allocated(&vma->node))
1574 			continue;
1575 
1576 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1577 	}
1578 
1579 	i915 = to_i915(obj->base.dev);
1580 	spin_lock(&i915->mm.obj_lock);
1581 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1582 	list_move_tail(&obj->mm.link, list);
1583 	spin_unlock(&i915->mm.obj_lock);
1584 }
1585 
1586 /**
1587  * Called when user space prepares to use an object with the CPU, either
1588  * through the mmap ioctl's mapping or a GTT mapping.
1589  * @dev: drm device
1590  * @data: ioctl data blob
1591  * @file: drm file
1592  */
1593 int
1594 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1595 			  struct drm_file *file)
1596 {
1597 	struct drm_i915_gem_set_domain *args = data;
1598 	struct drm_i915_gem_object *obj;
1599 	uint32_t read_domains = args->read_domains;
1600 	uint32_t write_domain = args->write_domain;
1601 	int err;
1602 
1603 	/* Only handle setting domains to types used by the CPU. */
1604 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1605 		return -EINVAL;
1606 
1607 	/* Having something in the write domain implies it's in the read
1608 	 * domain, and only that read domain.  Enforce that in the request.
1609 	 */
1610 	if (write_domain != 0 && read_domains != write_domain)
1611 		return -EINVAL;
1612 
1613 	obj = i915_gem_object_lookup(file, args->handle);
1614 	if (!obj)
1615 		return -ENOENT;
1616 
1617 	/* Try to flush the object off the GPU without holding the lock.
1618 	 * We will repeat the flush holding the lock in the normal manner
1619 	 * to catch cases where we are gazumped.
1620 	 */
1621 	err = i915_gem_object_wait(obj,
1622 				   I915_WAIT_INTERRUPTIBLE |
1623 				   (write_domain ? I915_WAIT_ALL : 0),
1624 				   MAX_SCHEDULE_TIMEOUT,
1625 				   to_rps_client(file));
1626 	if (err)
1627 		goto out;
1628 
1629 	/*
1630 	 * Proxy objects do not control access to the backing storage, ergo
1631 	 * they cannot be used as a means to manipulate the cache domain
1632 	 * tracking for that backing storage. The proxy object is always
1633 	 * considered to be outside of any cache domain.
1634 	 */
1635 	if (i915_gem_object_is_proxy(obj)) {
1636 		err = -ENXIO;
1637 		goto out;
1638 	}
1639 
1640 	/*
1641 	 * Flush and acquire obj->pages so that we are coherent through
1642 	 * direct access in memory with previous cached writes through
1643 	 * shmemfs and that our cache domain tracking remains valid.
1644 	 * For example, if the obj->filp was moved to swap without us
1645 	 * being notified and releasing the pages, we would mistakenly
1646 	 * continue to assume that the obj remained out of the CPU cached
1647 	 * domain.
1648 	 */
1649 	err = i915_gem_object_pin_pages(obj);
1650 	if (err)
1651 		goto out;
1652 
1653 	err = i915_mutex_lock_interruptible(dev);
1654 	if (err)
1655 		goto out_unpin;
1656 
1657 	if (read_domains & I915_GEM_DOMAIN_WC)
1658 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1659 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1660 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1661 	else
1662 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1663 
1664 	/* And bump the LRU for this access */
1665 	i915_gem_object_bump_inactive_ggtt(obj);
1666 
1667 	mutex_unlock(&dev->struct_mutex);
1668 
1669 	if (write_domain != 0)
1670 		intel_fb_obj_invalidate(obj,
1671 					fb_write_origin(obj, write_domain));
1672 
1673 out_unpin:
1674 	i915_gem_object_unpin_pages(obj);
1675 out:
1676 	i915_gem_object_put(obj);
1677 	return err;
1678 }
1679 
1680 /**
1681  * Called when user space has done writes to this buffer
1682  * @dev: drm device
1683  * @data: ioctl data blob
1684  * @file: drm file
1685  */
1686 int
1687 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1688 			 struct drm_file *file)
1689 {
1690 	struct drm_i915_gem_sw_finish *args = data;
1691 	struct drm_i915_gem_object *obj;
1692 
1693 	obj = i915_gem_object_lookup(file, args->handle);
1694 	if (!obj)
1695 		return -ENOENT;
1696 
1697 	/*
1698 	 * Proxy objects are barred from CPU access, so there is no
1699 	 * need to ban sw_finish as it is a nop.
1700 	 */
1701 
1702 	/* Pinned buffers may be scanout, so flush the cache */
1703 	i915_gem_object_flush_if_display(obj);
1704 	i915_gem_object_put(obj);
1705 
1706 	return 0;
1707 }
1708 
1709 /**
1710  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1711  *			 it is mapped to.
1712  * @dev: drm device
1713  * @data: ioctl data blob
1714  * @file: drm file
1715  *
1716  * While the mapping holds a reference on the contents of the object, it doesn't
1717  * imply a ref on the object itself.
1718  *
1719  * IMPORTANT:
1720  *
1721  * DRM driver writers who look a this function as an example for how to do GEM
1722  * mmap support, please don't implement mmap support like here. The modern way
1723  * to implement DRM mmap support is with an mmap offset ioctl (like
1724  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1725  * That way debug tooling like valgrind will understand what's going on, hiding
1726  * the mmap call in a driver private ioctl will break that. The i915 driver only
1727  * does cpu mmaps this way because we didn't know better.
1728  */
1729 int
1730 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1731 		    struct drm_file *file)
1732 {
1733 	struct drm_i915_gem_mmap *args = data;
1734 	struct drm_i915_gem_object *obj;
1735 	unsigned long addr;
1736 
1737 	if (args->flags & ~(I915_MMAP_WC))
1738 		return -EINVAL;
1739 
1740 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1741 		return -ENODEV;
1742 
1743 	obj = i915_gem_object_lookup(file, args->handle);
1744 	if (!obj)
1745 		return -ENOENT;
1746 
1747 	/* prime objects have no backing filp to GEM mmap
1748 	 * pages from.
1749 	 */
1750 	if (!obj->base.filp) {
1751 		i915_gem_object_put(obj);
1752 		return -ENXIO;
1753 	}
1754 
1755 	addr = vm_mmap(obj->base.filp, 0, args->size,
1756 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1757 		       args->offset);
1758 	if (args->flags & I915_MMAP_WC) {
1759 		struct mm_struct *mm = current->mm;
1760 		struct vm_area_struct *vma;
1761 
1762 		if (down_write_killable(&mm->mmap_sem)) {
1763 			i915_gem_object_put(obj);
1764 			return -EINTR;
1765 		}
1766 		vma = find_vma(mm, addr);
1767 		if (vma)
1768 			vma->vm_page_prot =
1769 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1770 		else
1771 			addr = -ENOMEM;
1772 		up_write(&mm->mmap_sem);
1773 
1774 		/* This may race, but that's ok, it only gets set */
1775 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1776 	}
1777 	i915_gem_object_put(obj);
1778 	if (IS_ERR((void *)addr))
1779 		return addr;
1780 
1781 	args->addr_ptr = (uint64_t) addr;
1782 
1783 	return 0;
1784 }
1785 
1786 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1787 {
1788 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1789 }
1790 
1791 /**
1792  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1793  *
1794  * A history of the GTT mmap interface:
1795  *
1796  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1797  *     aligned and suitable for fencing, and still fit into the available
1798  *     mappable space left by the pinned display objects. A classic problem
1799  *     we called the page-fault-of-doom where we would ping-pong between
1800  *     two objects that could not fit inside the GTT and so the memcpy
1801  *     would page one object in at the expense of the other between every
1802  *     single byte.
1803  *
1804  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1805  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1806  *     object is too large for the available space (or simply too large
1807  *     for the mappable aperture!), a view is created instead and faulted
1808  *     into userspace. (This view is aligned and sized appropriately for
1809  *     fenced access.)
1810  *
1811  * 2 - Recognise WC as a separate cache domain so that we can flush the
1812  *     delayed writes via GTT before performing direct access via WC.
1813  *
1814  * Restrictions:
1815  *
1816  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1817  *    hangs on some architectures, corruption on others. An attempt to service
1818  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1819  *
1820  *  * the object must be able to fit into RAM (physical memory, though no
1821  *    limited to the mappable aperture).
1822  *
1823  *
1824  * Caveats:
1825  *
1826  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1827  *    all data to system memory. Subsequent access will not be synchronized.
1828  *
1829  *  * all mappings are revoked on runtime device suspend.
1830  *
1831  *  * there are only 8, 16 or 32 fence registers to share between all users
1832  *    (older machines require fence register for display and blitter access
1833  *    as well). Contention of the fence registers will cause the previous users
1834  *    to be unmapped and any new access will generate new page faults.
1835  *
1836  *  * running out of memory while servicing a fault may generate a SIGBUS,
1837  *    rather than the expected SIGSEGV.
1838  */
1839 int i915_gem_mmap_gtt_version(void)
1840 {
1841 	return 2;
1842 }
1843 
1844 static inline struct i915_ggtt_view
1845 compute_partial_view(struct drm_i915_gem_object *obj,
1846 		     pgoff_t page_offset,
1847 		     unsigned int chunk)
1848 {
1849 	struct i915_ggtt_view view;
1850 
1851 	if (i915_gem_object_is_tiled(obj))
1852 		chunk = roundup(chunk, tile_row_pages(obj));
1853 
1854 	view.type = I915_GGTT_VIEW_PARTIAL;
1855 	view.partial.offset = rounddown(page_offset, chunk);
1856 	view.partial.size =
1857 		min_t(unsigned int, chunk,
1858 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1859 
1860 	/* If the partial covers the entire object, just create a normal VMA. */
1861 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1862 		view.type = I915_GGTT_VIEW_NORMAL;
1863 
1864 	return view;
1865 }
1866 
1867 /**
1868  * i915_gem_fault - fault a page into the GTT
1869  * @vmf: fault info
1870  *
1871  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1872  * from userspace.  The fault handler takes care of binding the object to
1873  * the GTT (if needed), allocating and programming a fence register (again,
1874  * only if needed based on whether the old reg is still valid or the object
1875  * is tiled) and inserting a new PTE into the faulting process.
1876  *
1877  * Note that the faulting process may involve evicting existing objects
1878  * from the GTT and/or fence registers to make room.  So performance may
1879  * suffer if the GTT working set is large or there are few fence registers
1880  * left.
1881  *
1882  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1883  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1884  */
1885 int i915_gem_fault(struct vm_fault *vmf)
1886 {
1887 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1888 	struct vm_area_struct *area = vmf->vma;
1889 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1890 	struct drm_device *dev = obj->base.dev;
1891 	struct drm_i915_private *dev_priv = to_i915(dev);
1892 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1893 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1894 	struct i915_vma *vma;
1895 	pgoff_t page_offset;
1896 	unsigned int flags;
1897 	int ret;
1898 
1899 	/* We don't use vmf->pgoff since that has the fake offset */
1900 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1901 
1902 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1903 
1904 	/* Try to flush the object off the GPU first without holding the lock.
1905 	 * Upon acquiring the lock, we will perform our sanity checks and then
1906 	 * repeat the flush holding the lock in the normal manner to catch cases
1907 	 * where we are gazumped.
1908 	 */
1909 	ret = i915_gem_object_wait(obj,
1910 				   I915_WAIT_INTERRUPTIBLE,
1911 				   MAX_SCHEDULE_TIMEOUT,
1912 				   NULL);
1913 	if (ret)
1914 		goto err;
1915 
1916 	ret = i915_gem_object_pin_pages(obj);
1917 	if (ret)
1918 		goto err;
1919 
1920 	intel_runtime_pm_get(dev_priv);
1921 
1922 	ret = i915_mutex_lock_interruptible(dev);
1923 	if (ret)
1924 		goto err_rpm;
1925 
1926 	/* Access to snoopable pages through the GTT is incoherent. */
1927 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1928 		ret = -EFAULT;
1929 		goto err_unlock;
1930 	}
1931 
1932 	/* If the object is smaller than a couple of partial vma, it is
1933 	 * not worth only creating a single partial vma - we may as well
1934 	 * clear enough space for the full object.
1935 	 */
1936 	flags = PIN_MAPPABLE;
1937 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1938 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1939 
1940 	/* Now pin it into the GTT as needed */
1941 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1942 	if (IS_ERR(vma)) {
1943 		/* Use a partial view if it is bigger than available space */
1944 		struct i915_ggtt_view view =
1945 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1946 
1947 		/* Userspace is now writing through an untracked VMA, abandon
1948 		 * all hope that the hardware is able to track future writes.
1949 		 */
1950 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1951 
1952 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1953 	}
1954 	if (IS_ERR(vma)) {
1955 		ret = PTR_ERR(vma);
1956 		goto err_unlock;
1957 	}
1958 
1959 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1960 	if (ret)
1961 		goto err_unpin;
1962 
1963 	ret = i915_vma_pin_fence(vma);
1964 	if (ret)
1965 		goto err_unpin;
1966 
1967 	/* Finally, remap it using the new GTT offset */
1968 	ret = remap_io_mapping(area,
1969 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1970 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1971 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1972 			       &ggtt->iomap);
1973 	if (ret)
1974 		goto err_fence;
1975 
1976 	/* Mark as being mmapped into userspace for later revocation */
1977 	assert_rpm_wakelock_held(dev_priv);
1978 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1979 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1980 	GEM_BUG_ON(!obj->userfault_count);
1981 
1982 	i915_vma_set_ggtt_write(vma);
1983 
1984 err_fence:
1985 	i915_vma_unpin_fence(vma);
1986 err_unpin:
1987 	__i915_vma_unpin(vma);
1988 err_unlock:
1989 	mutex_unlock(&dev->struct_mutex);
1990 err_rpm:
1991 	intel_runtime_pm_put(dev_priv);
1992 	i915_gem_object_unpin_pages(obj);
1993 err:
1994 	switch (ret) {
1995 	case -EIO:
1996 		/*
1997 		 * We eat errors when the gpu is terminally wedged to avoid
1998 		 * userspace unduly crashing (gl has no provisions for mmaps to
1999 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2000 		 * and so needs to be reported.
2001 		 */
2002 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2003 			ret = VM_FAULT_SIGBUS;
2004 			break;
2005 		}
2006 	case -EAGAIN:
2007 		/*
2008 		 * EAGAIN means the gpu is hung and we'll wait for the error
2009 		 * handler to reset everything when re-faulting in
2010 		 * i915_mutex_lock_interruptible.
2011 		 */
2012 	case 0:
2013 	case -ERESTARTSYS:
2014 	case -EINTR:
2015 	case -EBUSY:
2016 		/*
2017 		 * EBUSY is ok: this just means that another thread
2018 		 * already did the job.
2019 		 */
2020 		ret = VM_FAULT_NOPAGE;
2021 		break;
2022 	case -ENOMEM:
2023 		ret = VM_FAULT_OOM;
2024 		break;
2025 	case -ENOSPC:
2026 	case -EFAULT:
2027 		ret = VM_FAULT_SIGBUS;
2028 		break;
2029 	default:
2030 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2031 		ret = VM_FAULT_SIGBUS;
2032 		break;
2033 	}
2034 	return ret;
2035 }
2036 
2037 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2038 {
2039 	struct i915_vma *vma;
2040 
2041 	GEM_BUG_ON(!obj->userfault_count);
2042 
2043 	obj->userfault_count = 0;
2044 	list_del(&obj->userfault_link);
2045 	drm_vma_node_unmap(&obj->base.vma_node,
2046 			   obj->base.dev->anon_inode->i_mapping);
2047 
2048 	for_each_ggtt_vma(vma, obj)
2049 		i915_vma_unset_userfault(vma);
2050 }
2051 
2052 /**
2053  * i915_gem_release_mmap - remove physical page mappings
2054  * @obj: obj in question
2055  *
2056  * Preserve the reservation of the mmapping with the DRM core code, but
2057  * relinquish ownership of the pages back to the system.
2058  *
2059  * It is vital that we remove the page mapping if we have mapped a tiled
2060  * object through the GTT and then lose the fence register due to
2061  * resource pressure. Similarly if the object has been moved out of the
2062  * aperture, than pages mapped into userspace must be revoked. Removing the
2063  * mapping will then trigger a page fault on the next user access, allowing
2064  * fixup by i915_gem_fault().
2065  */
2066 void
2067 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2068 {
2069 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2070 
2071 	/* Serialisation between user GTT access and our code depends upon
2072 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2073 	 * pagefault then has to wait until we release the mutex.
2074 	 *
2075 	 * Note that RPM complicates somewhat by adding an additional
2076 	 * requirement that operations to the GGTT be made holding the RPM
2077 	 * wakeref.
2078 	 */
2079 	lockdep_assert_held(&i915->drm.struct_mutex);
2080 	intel_runtime_pm_get(i915);
2081 
2082 	if (!obj->userfault_count)
2083 		goto out;
2084 
2085 	__i915_gem_object_release_mmap(obj);
2086 
2087 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2088 	 * memory transactions from userspace before we return. The TLB
2089 	 * flushing implied above by changing the PTE above *should* be
2090 	 * sufficient, an extra barrier here just provides us with a bit
2091 	 * of paranoid documentation about our requirement to serialise
2092 	 * memory writes before touching registers / GSM.
2093 	 */
2094 	wmb();
2095 
2096 out:
2097 	intel_runtime_pm_put(i915);
2098 }
2099 
2100 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2101 {
2102 	struct drm_i915_gem_object *obj, *on;
2103 	int i;
2104 
2105 	/*
2106 	 * Only called during RPM suspend. All users of the userfault_list
2107 	 * must be holding an RPM wakeref to ensure that this can not
2108 	 * run concurrently with themselves (and use the struct_mutex for
2109 	 * protection between themselves).
2110 	 */
2111 
2112 	list_for_each_entry_safe(obj, on,
2113 				 &dev_priv->mm.userfault_list, userfault_link)
2114 		__i915_gem_object_release_mmap(obj);
2115 
2116 	/* The fence will be lost when the device powers down. If any were
2117 	 * in use by hardware (i.e. they are pinned), we should not be powering
2118 	 * down! All other fences will be reacquired by the user upon waking.
2119 	 */
2120 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2121 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2122 
2123 		/* Ideally we want to assert that the fence register is not
2124 		 * live at this point (i.e. that no piece of code will be
2125 		 * trying to write through fence + GTT, as that both violates
2126 		 * our tracking of activity and associated locking/barriers,
2127 		 * but also is illegal given that the hw is powered down).
2128 		 *
2129 		 * Previously we used reg->pin_count as a "liveness" indicator.
2130 		 * That is not sufficient, and we need a more fine-grained
2131 		 * tool if we want to have a sanity check here.
2132 		 */
2133 
2134 		if (!reg->vma)
2135 			continue;
2136 
2137 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2138 		reg->dirty = true;
2139 	}
2140 }
2141 
2142 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2143 {
2144 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2145 	int err;
2146 
2147 	err = drm_gem_create_mmap_offset(&obj->base);
2148 	if (likely(!err))
2149 		return 0;
2150 
2151 	/* Attempt to reap some mmap space from dead objects */
2152 	do {
2153 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2154 		if (err)
2155 			break;
2156 
2157 		i915_gem_drain_freed_objects(dev_priv);
2158 		err = drm_gem_create_mmap_offset(&obj->base);
2159 		if (!err)
2160 			break;
2161 
2162 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2163 
2164 	return err;
2165 }
2166 
2167 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2168 {
2169 	drm_gem_free_mmap_offset(&obj->base);
2170 }
2171 
2172 int
2173 i915_gem_mmap_gtt(struct drm_file *file,
2174 		  struct drm_device *dev,
2175 		  uint32_t handle,
2176 		  uint64_t *offset)
2177 {
2178 	struct drm_i915_gem_object *obj;
2179 	int ret;
2180 
2181 	obj = i915_gem_object_lookup(file, handle);
2182 	if (!obj)
2183 		return -ENOENT;
2184 
2185 	ret = i915_gem_object_create_mmap_offset(obj);
2186 	if (ret == 0)
2187 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2188 
2189 	i915_gem_object_put(obj);
2190 	return ret;
2191 }
2192 
2193 /**
2194  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2195  * @dev: DRM device
2196  * @data: GTT mapping ioctl data
2197  * @file: GEM object info
2198  *
2199  * Simply returns the fake offset to userspace so it can mmap it.
2200  * The mmap call will end up in drm_gem_mmap(), which will set things
2201  * up so we can get faults in the handler above.
2202  *
2203  * The fault handler will take care of binding the object into the GTT
2204  * (since it may have been evicted to make room for something), allocating
2205  * a fence register, and mapping the appropriate aperture address into
2206  * userspace.
2207  */
2208 int
2209 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2210 			struct drm_file *file)
2211 {
2212 	struct drm_i915_gem_mmap_gtt *args = data;
2213 
2214 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2215 }
2216 
2217 /* Immediately discard the backing storage */
2218 static void
2219 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2220 {
2221 	i915_gem_object_free_mmap_offset(obj);
2222 
2223 	if (obj->base.filp == NULL)
2224 		return;
2225 
2226 	/* Our goal here is to return as much of the memory as
2227 	 * is possible back to the system as we are called from OOM.
2228 	 * To do this we must instruct the shmfs to drop all of its
2229 	 * backing pages, *now*.
2230 	 */
2231 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2232 	obj->mm.madv = __I915_MADV_PURGED;
2233 	obj->mm.pages = ERR_PTR(-EFAULT);
2234 }
2235 
2236 /* Try to discard unwanted pages */
2237 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2238 {
2239 	struct address_space *mapping;
2240 
2241 	lockdep_assert_held(&obj->mm.lock);
2242 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2243 
2244 	switch (obj->mm.madv) {
2245 	case I915_MADV_DONTNEED:
2246 		i915_gem_object_truncate(obj);
2247 	case __I915_MADV_PURGED:
2248 		return;
2249 	}
2250 
2251 	if (obj->base.filp == NULL)
2252 		return;
2253 
2254 	mapping = obj->base.filp->f_mapping,
2255 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2256 }
2257 
2258 static void
2259 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2260 			      struct sg_table *pages)
2261 {
2262 	struct sgt_iter sgt_iter;
2263 	struct page *page;
2264 
2265 	__i915_gem_object_release_shmem(obj, pages, true);
2266 
2267 	i915_gem_gtt_finish_pages(obj, pages);
2268 
2269 	if (i915_gem_object_needs_bit17_swizzle(obj))
2270 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2271 
2272 	for_each_sgt_page(page, sgt_iter, pages) {
2273 		if (obj->mm.dirty)
2274 			set_page_dirty(page);
2275 
2276 		if (obj->mm.madv == I915_MADV_WILLNEED)
2277 			mark_page_accessed(page);
2278 
2279 		put_page(page);
2280 	}
2281 	obj->mm.dirty = false;
2282 
2283 	sg_free_table(pages);
2284 	kfree(pages);
2285 }
2286 
2287 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2288 {
2289 	struct radix_tree_iter iter;
2290 	void __rcu **slot;
2291 
2292 	rcu_read_lock();
2293 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2294 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2295 	rcu_read_unlock();
2296 }
2297 
2298 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2299 				 enum i915_mm_subclass subclass)
2300 {
2301 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2302 	struct sg_table *pages;
2303 
2304 	if (i915_gem_object_has_pinned_pages(obj))
2305 		return;
2306 
2307 	GEM_BUG_ON(obj->bind_count);
2308 	if (!i915_gem_object_has_pages(obj))
2309 		return;
2310 
2311 	/* May be called by shrinker from within get_pages() (on another bo) */
2312 	mutex_lock_nested(&obj->mm.lock, subclass);
2313 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2314 		goto unlock;
2315 
2316 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2317 	 * array, hence protect them from being reaped by removing them from gtt
2318 	 * lists early. */
2319 	pages = fetch_and_zero(&obj->mm.pages);
2320 	GEM_BUG_ON(!pages);
2321 
2322 	spin_lock(&i915->mm.obj_lock);
2323 	list_del(&obj->mm.link);
2324 	spin_unlock(&i915->mm.obj_lock);
2325 
2326 	if (obj->mm.mapping) {
2327 		void *ptr;
2328 
2329 		ptr = page_mask_bits(obj->mm.mapping);
2330 		if (is_vmalloc_addr(ptr))
2331 			vunmap(ptr);
2332 		else
2333 			kunmap(kmap_to_page(ptr));
2334 
2335 		obj->mm.mapping = NULL;
2336 	}
2337 
2338 	__i915_gem_object_reset_page_iter(obj);
2339 
2340 	if (!IS_ERR(pages))
2341 		obj->ops->put_pages(obj, pages);
2342 
2343 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2344 
2345 unlock:
2346 	mutex_unlock(&obj->mm.lock);
2347 }
2348 
2349 static bool i915_sg_trim(struct sg_table *orig_st)
2350 {
2351 	struct sg_table new_st;
2352 	struct scatterlist *sg, *new_sg;
2353 	unsigned int i;
2354 
2355 	if (orig_st->nents == orig_st->orig_nents)
2356 		return false;
2357 
2358 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2359 		return false;
2360 
2361 	new_sg = new_st.sgl;
2362 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2363 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2364 		/* called before being DMA mapped, no need to copy sg->dma_* */
2365 		new_sg = sg_next(new_sg);
2366 	}
2367 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2368 
2369 	sg_free_table(orig_st);
2370 
2371 	*orig_st = new_st;
2372 	return true;
2373 }
2374 
2375 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2376 {
2377 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2378 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2379 	unsigned long i;
2380 	struct address_space *mapping;
2381 	struct sg_table *st;
2382 	struct scatterlist *sg;
2383 	struct sgt_iter sgt_iter;
2384 	struct page *page;
2385 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2386 	unsigned int max_segment = i915_sg_segment_size();
2387 	unsigned int sg_page_sizes;
2388 	gfp_t noreclaim;
2389 	int ret;
2390 
2391 	/* Assert that the object is not currently in any GPU domain. As it
2392 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2393 	 * a GPU cache
2394 	 */
2395 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2396 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2397 
2398 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2399 	if (st == NULL)
2400 		return -ENOMEM;
2401 
2402 rebuild_st:
2403 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2404 		kfree(st);
2405 		return -ENOMEM;
2406 	}
2407 
2408 	/* Get the list of pages out of our struct file.  They'll be pinned
2409 	 * at this point until we release them.
2410 	 *
2411 	 * Fail silently without starting the shrinker
2412 	 */
2413 	mapping = obj->base.filp->f_mapping;
2414 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2415 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2416 
2417 	sg = st->sgl;
2418 	st->nents = 0;
2419 	sg_page_sizes = 0;
2420 	for (i = 0; i < page_count; i++) {
2421 		const unsigned int shrink[] = {
2422 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2423 			0,
2424 		}, *s = shrink;
2425 		gfp_t gfp = noreclaim;
2426 
2427 		do {
2428 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2429 			if (likely(!IS_ERR(page)))
2430 				break;
2431 
2432 			if (!*s) {
2433 				ret = PTR_ERR(page);
2434 				goto err_sg;
2435 			}
2436 
2437 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2438 			cond_resched();
2439 
2440 			/* We've tried hard to allocate the memory by reaping
2441 			 * our own buffer, now let the real VM do its job and
2442 			 * go down in flames if truly OOM.
2443 			 *
2444 			 * However, since graphics tend to be disposable,
2445 			 * defer the oom here by reporting the ENOMEM back
2446 			 * to userspace.
2447 			 */
2448 			if (!*s) {
2449 				/* reclaim and warn, but no oom */
2450 				gfp = mapping_gfp_mask(mapping);
2451 
2452 				/* Our bo are always dirty and so we require
2453 				 * kswapd to reclaim our pages (direct reclaim
2454 				 * does not effectively begin pageout of our
2455 				 * buffers on its own). However, direct reclaim
2456 				 * only waits for kswapd when under allocation
2457 				 * congestion. So as a result __GFP_RECLAIM is
2458 				 * unreliable and fails to actually reclaim our
2459 				 * dirty pages -- unless you try over and over
2460 				 * again with !__GFP_NORETRY. However, we still
2461 				 * want to fail this allocation rather than
2462 				 * trigger the out-of-memory killer and for
2463 				 * this we want __GFP_RETRY_MAYFAIL.
2464 				 */
2465 				gfp |= __GFP_RETRY_MAYFAIL;
2466 			}
2467 		} while (1);
2468 
2469 		if (!i ||
2470 		    sg->length >= max_segment ||
2471 		    page_to_pfn(page) != last_pfn + 1) {
2472 			if (i) {
2473 				sg_page_sizes |= sg->length;
2474 				sg = sg_next(sg);
2475 			}
2476 			st->nents++;
2477 			sg_set_page(sg, page, PAGE_SIZE, 0);
2478 		} else {
2479 			sg->length += PAGE_SIZE;
2480 		}
2481 		last_pfn = page_to_pfn(page);
2482 
2483 		/* Check that the i965g/gm workaround works. */
2484 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2485 	}
2486 	if (sg) { /* loop terminated early; short sg table */
2487 		sg_page_sizes |= sg->length;
2488 		sg_mark_end(sg);
2489 	}
2490 
2491 	/* Trim unused sg entries to avoid wasting memory. */
2492 	i915_sg_trim(st);
2493 
2494 	ret = i915_gem_gtt_prepare_pages(obj, st);
2495 	if (ret) {
2496 		/* DMA remapping failed? One possible cause is that
2497 		 * it could not reserve enough large entries, asking
2498 		 * for PAGE_SIZE chunks instead may be helpful.
2499 		 */
2500 		if (max_segment > PAGE_SIZE) {
2501 			for_each_sgt_page(page, sgt_iter, st)
2502 				put_page(page);
2503 			sg_free_table(st);
2504 
2505 			max_segment = PAGE_SIZE;
2506 			goto rebuild_st;
2507 		} else {
2508 			dev_warn(&dev_priv->drm.pdev->dev,
2509 				 "Failed to DMA remap %lu pages\n",
2510 				 page_count);
2511 			goto err_pages;
2512 		}
2513 	}
2514 
2515 	if (i915_gem_object_needs_bit17_swizzle(obj))
2516 		i915_gem_object_do_bit_17_swizzle(obj, st);
2517 
2518 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2519 
2520 	return 0;
2521 
2522 err_sg:
2523 	sg_mark_end(sg);
2524 err_pages:
2525 	for_each_sgt_page(page, sgt_iter, st)
2526 		put_page(page);
2527 	sg_free_table(st);
2528 	kfree(st);
2529 
2530 	/* shmemfs first checks if there is enough memory to allocate the page
2531 	 * and reports ENOSPC should there be insufficient, along with the usual
2532 	 * ENOMEM for a genuine allocation failure.
2533 	 *
2534 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2535 	 * space and so want to translate the error from shmemfs back to our
2536 	 * usual understanding of ENOMEM.
2537 	 */
2538 	if (ret == -ENOSPC)
2539 		ret = -ENOMEM;
2540 
2541 	return ret;
2542 }
2543 
2544 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2545 				 struct sg_table *pages,
2546 				 unsigned int sg_page_sizes)
2547 {
2548 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2549 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2550 	int i;
2551 
2552 	lockdep_assert_held(&obj->mm.lock);
2553 
2554 	obj->mm.get_page.sg_pos = pages->sgl;
2555 	obj->mm.get_page.sg_idx = 0;
2556 
2557 	obj->mm.pages = pages;
2558 
2559 	if (i915_gem_object_is_tiled(obj) &&
2560 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2561 		GEM_BUG_ON(obj->mm.quirked);
2562 		__i915_gem_object_pin_pages(obj);
2563 		obj->mm.quirked = true;
2564 	}
2565 
2566 	GEM_BUG_ON(!sg_page_sizes);
2567 	obj->mm.page_sizes.phys = sg_page_sizes;
2568 
2569 	/*
2570 	 * Calculate the supported page-sizes which fit into the given
2571 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2572 	 * to use opportunistically when later inserting into the GTT. For
2573 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2574 	 * 64K or 4K pages, although in practice this will depend on a number of
2575 	 * other factors.
2576 	 */
2577 	obj->mm.page_sizes.sg = 0;
2578 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2579 		if (obj->mm.page_sizes.phys & ~0u << i)
2580 			obj->mm.page_sizes.sg |= BIT(i);
2581 	}
2582 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2583 
2584 	spin_lock(&i915->mm.obj_lock);
2585 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2586 	spin_unlock(&i915->mm.obj_lock);
2587 }
2588 
2589 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2590 {
2591 	int err;
2592 
2593 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2594 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2595 		return -EFAULT;
2596 	}
2597 
2598 	err = obj->ops->get_pages(obj);
2599 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2600 
2601 	return err;
2602 }
2603 
2604 /* Ensure that the associated pages are gathered from the backing storage
2605  * and pinned into our object. i915_gem_object_pin_pages() may be called
2606  * multiple times before they are released by a single call to
2607  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2608  * either as a result of memory pressure (reaping pages under the shrinker)
2609  * or as the object is itself released.
2610  */
2611 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2612 {
2613 	int err;
2614 
2615 	err = mutex_lock_interruptible(&obj->mm.lock);
2616 	if (err)
2617 		return err;
2618 
2619 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2620 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2621 
2622 		err = ____i915_gem_object_get_pages(obj);
2623 		if (err)
2624 			goto unlock;
2625 
2626 		smp_mb__before_atomic();
2627 	}
2628 	atomic_inc(&obj->mm.pages_pin_count);
2629 
2630 unlock:
2631 	mutex_unlock(&obj->mm.lock);
2632 	return err;
2633 }
2634 
2635 /* The 'mapping' part of i915_gem_object_pin_map() below */
2636 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2637 				 enum i915_map_type type)
2638 {
2639 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2640 	struct sg_table *sgt = obj->mm.pages;
2641 	struct sgt_iter sgt_iter;
2642 	struct page *page;
2643 	struct page *stack_pages[32];
2644 	struct page **pages = stack_pages;
2645 	unsigned long i = 0;
2646 	pgprot_t pgprot;
2647 	void *addr;
2648 
2649 	/* A single page can always be kmapped */
2650 	if (n_pages == 1 && type == I915_MAP_WB)
2651 		return kmap(sg_page(sgt->sgl));
2652 
2653 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2654 		/* Too big for stack -- allocate temporary array instead */
2655 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2656 		if (!pages)
2657 			return NULL;
2658 	}
2659 
2660 	for_each_sgt_page(page, sgt_iter, sgt)
2661 		pages[i++] = page;
2662 
2663 	/* Check that we have the expected number of pages */
2664 	GEM_BUG_ON(i != n_pages);
2665 
2666 	switch (type) {
2667 	default:
2668 		MISSING_CASE(type);
2669 		/* fallthrough to use PAGE_KERNEL anyway */
2670 	case I915_MAP_WB:
2671 		pgprot = PAGE_KERNEL;
2672 		break;
2673 	case I915_MAP_WC:
2674 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2675 		break;
2676 	}
2677 	addr = vmap(pages, n_pages, 0, pgprot);
2678 
2679 	if (pages != stack_pages)
2680 		kvfree(pages);
2681 
2682 	return addr;
2683 }
2684 
2685 /* get, pin, and map the pages of the object into kernel space */
2686 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2687 			      enum i915_map_type type)
2688 {
2689 	enum i915_map_type has_type;
2690 	bool pinned;
2691 	void *ptr;
2692 	int ret;
2693 
2694 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2695 		return ERR_PTR(-ENXIO);
2696 
2697 	ret = mutex_lock_interruptible(&obj->mm.lock);
2698 	if (ret)
2699 		return ERR_PTR(ret);
2700 
2701 	pinned = !(type & I915_MAP_OVERRIDE);
2702 	type &= ~I915_MAP_OVERRIDE;
2703 
2704 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2705 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2706 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2707 
2708 			ret = ____i915_gem_object_get_pages(obj);
2709 			if (ret)
2710 				goto err_unlock;
2711 
2712 			smp_mb__before_atomic();
2713 		}
2714 		atomic_inc(&obj->mm.pages_pin_count);
2715 		pinned = false;
2716 	}
2717 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2718 
2719 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2720 	if (ptr && has_type != type) {
2721 		if (pinned) {
2722 			ret = -EBUSY;
2723 			goto err_unpin;
2724 		}
2725 
2726 		if (is_vmalloc_addr(ptr))
2727 			vunmap(ptr);
2728 		else
2729 			kunmap(kmap_to_page(ptr));
2730 
2731 		ptr = obj->mm.mapping = NULL;
2732 	}
2733 
2734 	if (!ptr) {
2735 		ptr = i915_gem_object_map(obj, type);
2736 		if (!ptr) {
2737 			ret = -ENOMEM;
2738 			goto err_unpin;
2739 		}
2740 
2741 		obj->mm.mapping = page_pack_bits(ptr, type);
2742 	}
2743 
2744 out_unlock:
2745 	mutex_unlock(&obj->mm.lock);
2746 	return ptr;
2747 
2748 err_unpin:
2749 	atomic_dec(&obj->mm.pages_pin_count);
2750 err_unlock:
2751 	ptr = ERR_PTR(ret);
2752 	goto out_unlock;
2753 }
2754 
2755 static int
2756 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2757 			   const struct drm_i915_gem_pwrite *arg)
2758 {
2759 	struct address_space *mapping = obj->base.filp->f_mapping;
2760 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2761 	u64 remain, offset;
2762 	unsigned int pg;
2763 
2764 	/* Before we instantiate/pin the backing store for our use, we
2765 	 * can prepopulate the shmemfs filp efficiently using a write into
2766 	 * the pagecache. We avoid the penalty of instantiating all the
2767 	 * pages, important if the user is just writing to a few and never
2768 	 * uses the object on the GPU, and using a direct write into shmemfs
2769 	 * allows it to avoid the cost of retrieving a page (either swapin
2770 	 * or clearing-before-use) before it is overwritten.
2771 	 */
2772 	if (i915_gem_object_has_pages(obj))
2773 		return -ENODEV;
2774 
2775 	if (obj->mm.madv != I915_MADV_WILLNEED)
2776 		return -EFAULT;
2777 
2778 	/* Before the pages are instantiated the object is treated as being
2779 	 * in the CPU domain. The pages will be clflushed as required before
2780 	 * use, and we can freely write into the pages directly. If userspace
2781 	 * races pwrite with any other operation; corruption will ensue -
2782 	 * that is userspace's prerogative!
2783 	 */
2784 
2785 	remain = arg->size;
2786 	offset = arg->offset;
2787 	pg = offset_in_page(offset);
2788 
2789 	do {
2790 		unsigned int len, unwritten;
2791 		struct page *page;
2792 		void *data, *vaddr;
2793 		int err;
2794 
2795 		len = PAGE_SIZE - pg;
2796 		if (len > remain)
2797 			len = remain;
2798 
2799 		err = pagecache_write_begin(obj->base.filp, mapping,
2800 					    offset, len, 0,
2801 					    &page, &data);
2802 		if (err < 0)
2803 			return err;
2804 
2805 		vaddr = kmap(page);
2806 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2807 		kunmap(page);
2808 
2809 		err = pagecache_write_end(obj->base.filp, mapping,
2810 					  offset, len, len - unwritten,
2811 					  page, data);
2812 		if (err < 0)
2813 			return err;
2814 
2815 		if (unwritten)
2816 			return -EFAULT;
2817 
2818 		remain -= len;
2819 		user_data += len;
2820 		offset += len;
2821 		pg = 0;
2822 	} while (remain);
2823 
2824 	return 0;
2825 }
2826 
2827 static bool ban_context(const struct i915_gem_context *ctx,
2828 			unsigned int score)
2829 {
2830 	return (i915_gem_context_is_bannable(ctx) &&
2831 		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2832 }
2833 
2834 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2835 {
2836 	unsigned int score;
2837 	bool banned;
2838 
2839 	atomic_inc(&ctx->guilty_count);
2840 
2841 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2842 	banned = ban_context(ctx, score);
2843 	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2844 			 ctx->name, score, yesno(banned));
2845 	if (!banned)
2846 		return;
2847 
2848 	i915_gem_context_set_banned(ctx);
2849 	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2850 		atomic_inc(&ctx->file_priv->context_bans);
2851 		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2852 				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2853 	}
2854 }
2855 
2856 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2857 {
2858 	atomic_inc(&ctx->active_count);
2859 }
2860 
2861 struct drm_i915_gem_request *
2862 i915_gem_find_active_request(struct intel_engine_cs *engine)
2863 {
2864 	struct drm_i915_gem_request *request, *active = NULL;
2865 	unsigned long flags;
2866 
2867 	/* We are called by the error capture and reset at a random
2868 	 * point in time. In particular, note that neither is crucially
2869 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2870 	 * assume that no more writes can happen (we waited long enough for
2871 	 * all writes that were in transaction to be flushed) - adding an
2872 	 * extra delay for a recent interrupt is pointless. Hence, we do
2873 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2874 	 */
2875 	spin_lock_irqsave(&engine->timeline->lock, flags);
2876 	list_for_each_entry(request, &engine->timeline->requests, link) {
2877 		if (__i915_gem_request_completed(request,
2878 						 request->global_seqno))
2879 			continue;
2880 
2881 		GEM_BUG_ON(request->engine != engine);
2882 		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2883 				    &request->fence.flags));
2884 
2885 		active = request;
2886 		break;
2887 	}
2888 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2889 
2890 	return active;
2891 }
2892 
2893 static bool engine_stalled(struct intel_engine_cs *engine)
2894 {
2895 	if (!engine->hangcheck.stalled)
2896 		return false;
2897 
2898 	/* Check for possible seqno movement after hang declaration */
2899 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2900 		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2901 		return false;
2902 	}
2903 
2904 	return true;
2905 }
2906 
2907 /*
2908  * Ensure irq handler finishes, and not run again.
2909  * Also return the active request so that we only search for it once.
2910  */
2911 struct drm_i915_gem_request *
2912 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2913 {
2914 	struct drm_i915_gem_request *request = NULL;
2915 
2916 	/*
2917 	 * During the reset sequence, we must prevent the engine from
2918 	 * entering RC6. As the context state is undefined until we restart
2919 	 * the engine, if it does enter RC6 during the reset, the state
2920 	 * written to the powercontext is undefined and so we may lose
2921 	 * GPU state upon resume, i.e. fail to restart after a reset.
2922 	 */
2923 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2924 
2925 	/*
2926 	 * Prevent the signaler thread from updating the request
2927 	 * state (by calling dma_fence_signal) as we are processing
2928 	 * the reset. The write from the GPU of the seqno is
2929 	 * asynchronous and the signaler thread may see a different
2930 	 * value to us and declare the request complete, even though
2931 	 * the reset routine have picked that request as the active
2932 	 * (incomplete) request. This conflict is not handled
2933 	 * gracefully!
2934 	 */
2935 	kthread_park(engine->breadcrumbs.signaler);
2936 
2937 	/*
2938 	 * Prevent request submission to the hardware until we have
2939 	 * completed the reset in i915_gem_reset_finish(). If a request
2940 	 * is completed by one engine, it may then queue a request
2941 	 * to a second via its execlists->tasklet *just* as we are
2942 	 * calling engine->init_hw() and also writing the ELSP.
2943 	 * Turning off the execlists->tasklet until the reset is over
2944 	 * prevents the race.
2945 	 */
2946 	tasklet_kill(&engine->execlists.tasklet);
2947 	tasklet_disable(&engine->execlists.tasklet);
2948 
2949 	/*
2950 	 * We're using worker to queue preemption requests from the tasklet in
2951 	 * GuC submission mode.
2952 	 * Even though tasklet was disabled, we may still have a worker queued.
2953 	 * Let's make sure that all workers scheduled before disabling the
2954 	 * tasklet are completed before continuing with the reset.
2955 	 */
2956 	if (engine->i915->guc.preempt_wq)
2957 		flush_workqueue(engine->i915->guc.preempt_wq);
2958 
2959 	if (engine->irq_seqno_barrier)
2960 		engine->irq_seqno_barrier(engine);
2961 
2962 	request = i915_gem_find_active_request(engine);
2963 	if (request && request->fence.error == -EIO)
2964 		request = ERR_PTR(-EIO); /* Previous reset failed! */
2965 
2966 	return request;
2967 }
2968 
2969 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2970 {
2971 	struct intel_engine_cs *engine;
2972 	struct drm_i915_gem_request *request;
2973 	enum intel_engine_id id;
2974 	int err = 0;
2975 
2976 	for_each_engine(engine, dev_priv, id) {
2977 		request = i915_gem_reset_prepare_engine(engine);
2978 		if (IS_ERR(request)) {
2979 			err = PTR_ERR(request);
2980 			continue;
2981 		}
2982 
2983 		engine->hangcheck.active_request = request;
2984 	}
2985 
2986 	i915_gem_revoke_fences(dev_priv);
2987 
2988 	return err;
2989 }
2990 
2991 static void skip_request(struct drm_i915_gem_request *request)
2992 {
2993 	void *vaddr = request->ring->vaddr;
2994 	u32 head;
2995 
2996 	/* As this request likely depends on state from the lost
2997 	 * context, clear out all the user operations leaving the
2998 	 * breadcrumb at the end (so we get the fence notifications).
2999 	 */
3000 	head = request->head;
3001 	if (request->postfix < head) {
3002 		memset(vaddr + head, 0, request->ring->size - head);
3003 		head = 0;
3004 	}
3005 	memset(vaddr + head, 0, request->postfix - head);
3006 
3007 	dma_fence_set_error(&request->fence, -EIO);
3008 }
3009 
3010 static void engine_skip_context(struct drm_i915_gem_request *request)
3011 {
3012 	struct intel_engine_cs *engine = request->engine;
3013 	struct i915_gem_context *hung_ctx = request->ctx;
3014 	struct intel_timeline *timeline;
3015 	unsigned long flags;
3016 
3017 	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
3018 
3019 	spin_lock_irqsave(&engine->timeline->lock, flags);
3020 	spin_lock(&timeline->lock);
3021 
3022 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
3023 		if (request->ctx == hung_ctx)
3024 			skip_request(request);
3025 
3026 	list_for_each_entry(request, &timeline->requests, link)
3027 		skip_request(request);
3028 
3029 	spin_unlock(&timeline->lock);
3030 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
3031 }
3032 
3033 /* Returns the request if it was guilty of the hang */
3034 static struct drm_i915_gem_request *
3035 i915_gem_reset_request(struct intel_engine_cs *engine,
3036 		       struct drm_i915_gem_request *request)
3037 {
3038 	/* The guilty request will get skipped on a hung engine.
3039 	 *
3040 	 * Users of client default contexts do not rely on logical
3041 	 * state preserved between batches so it is safe to execute
3042 	 * queued requests following the hang. Non default contexts
3043 	 * rely on preserved state, so skipping a batch loses the
3044 	 * evolution of the state and it needs to be considered corrupted.
3045 	 * Executing more queued batches on top of corrupted state is
3046 	 * risky. But we take the risk by trying to advance through
3047 	 * the queued requests in order to make the client behaviour
3048 	 * more predictable around resets, by not throwing away random
3049 	 * amount of batches it has prepared for execution. Sophisticated
3050 	 * clients can use gem_reset_stats_ioctl and dma fence status
3051 	 * (exported via sync_file info ioctl on explicit fences) to observe
3052 	 * when it loses the context state and should rebuild accordingly.
3053 	 *
3054 	 * The context ban, and ultimately the client ban, mechanism are safety
3055 	 * valves if client submission ends up resulting in nothing more than
3056 	 * subsequent hangs.
3057 	 */
3058 
3059 	if (engine_stalled(engine)) {
3060 		i915_gem_context_mark_guilty(request->ctx);
3061 		skip_request(request);
3062 
3063 		/* If this context is now banned, skip all pending requests. */
3064 		if (i915_gem_context_is_banned(request->ctx))
3065 			engine_skip_context(request);
3066 	} else {
3067 		/*
3068 		 * Since this is not the hung engine, it may have advanced
3069 		 * since the hang declaration. Double check by refinding
3070 		 * the active request at the time of the reset.
3071 		 */
3072 		request = i915_gem_find_active_request(engine);
3073 		if (request) {
3074 			i915_gem_context_mark_innocent(request->ctx);
3075 			dma_fence_set_error(&request->fence, -EAGAIN);
3076 
3077 			/* Rewind the engine to replay the incomplete rq */
3078 			spin_lock_irq(&engine->timeline->lock);
3079 			request = list_prev_entry(request, link);
3080 			if (&request->link == &engine->timeline->requests)
3081 				request = NULL;
3082 			spin_unlock_irq(&engine->timeline->lock);
3083 		}
3084 	}
3085 
3086 	return request;
3087 }
3088 
3089 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3090 			   struct drm_i915_gem_request *request)
3091 {
3092 	/*
3093 	 * Make sure this write is visible before we re-enable the interrupt
3094 	 * handlers on another CPU, as tasklet_enable() resolves to just
3095 	 * a compiler barrier which is insufficient for our purpose here.
3096 	 */
3097 	smp_store_mb(engine->irq_posted, 0);
3098 
3099 	if (request)
3100 		request = i915_gem_reset_request(engine, request);
3101 
3102 	if (request) {
3103 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3104 				 engine->name, request->global_seqno);
3105 	}
3106 
3107 	/* Setup the CS to resume from the breadcrumb of the hung request */
3108 	engine->reset_hw(engine, request);
3109 }
3110 
3111 void i915_gem_reset(struct drm_i915_private *dev_priv)
3112 {
3113 	struct intel_engine_cs *engine;
3114 	enum intel_engine_id id;
3115 
3116 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3117 
3118 	i915_gem_retire_requests(dev_priv);
3119 
3120 	for_each_engine(engine, dev_priv, id) {
3121 		struct i915_gem_context *ctx;
3122 
3123 		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3124 		ctx = fetch_and_zero(&engine->last_retired_context);
3125 		if (ctx)
3126 			engine->context_unpin(engine, ctx);
3127 
3128 		/*
3129 		 * Ostensibily, we always want a context loaded for powersaving,
3130 		 * so if the engine is idle after the reset, send a request
3131 		 * to load our scratch kernel_context.
3132 		 *
3133 		 * More mysteriously, if we leave the engine idle after a reset,
3134 		 * the next userspace batch may hang, with what appears to be
3135 		 * an incoherent read by the CS (presumably stale TLB). An
3136 		 * empty request appears sufficient to paper over the glitch.
3137 		 */
3138 		if (list_empty(&engine->timeline->requests)) {
3139 			struct drm_i915_gem_request *rq;
3140 
3141 			rq = i915_gem_request_alloc(engine,
3142 						    dev_priv->kernel_context);
3143 			if (!IS_ERR(rq))
3144 				__i915_add_request(rq, false);
3145 		}
3146 	}
3147 
3148 	i915_gem_restore_fences(dev_priv);
3149 
3150 	if (dev_priv->gt.awake) {
3151 		intel_sanitize_gt_powersave(dev_priv);
3152 		intel_enable_gt_powersave(dev_priv);
3153 		if (INTEL_GEN(dev_priv) >= 6)
3154 			gen6_rps_busy(dev_priv);
3155 	}
3156 }
3157 
3158 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3159 {
3160 	tasklet_enable(&engine->execlists.tasklet);
3161 	kthread_unpark(engine->breadcrumbs.signaler);
3162 
3163 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3164 }
3165 
3166 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3167 {
3168 	struct intel_engine_cs *engine;
3169 	enum intel_engine_id id;
3170 
3171 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3172 
3173 	for_each_engine(engine, dev_priv, id) {
3174 		engine->hangcheck.active_request = NULL;
3175 		i915_gem_reset_finish_engine(engine);
3176 	}
3177 }
3178 
3179 static void nop_submit_request(struct drm_i915_gem_request *request)
3180 {
3181 	dma_fence_set_error(&request->fence, -EIO);
3182 
3183 	i915_gem_request_submit(request);
3184 }
3185 
3186 static void nop_complete_submit_request(struct drm_i915_gem_request *request)
3187 {
3188 	unsigned long flags;
3189 
3190 	dma_fence_set_error(&request->fence, -EIO);
3191 
3192 	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3193 	__i915_gem_request_submit(request);
3194 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3195 	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3196 }
3197 
3198 void i915_gem_set_wedged(struct drm_i915_private *i915)
3199 {
3200 	struct intel_engine_cs *engine;
3201 	enum intel_engine_id id;
3202 
3203 	/*
3204 	 * First, stop submission to hw, but do not yet complete requests by
3205 	 * rolling the global seqno forward (since this would complete requests
3206 	 * for which we haven't set the fence error to EIO yet).
3207 	 */
3208 	for_each_engine(engine, i915, id)
3209 		engine->submit_request = nop_submit_request;
3210 
3211 	/*
3212 	 * Make sure no one is running the old callback before we proceed with
3213 	 * cancelling requests and resetting the completion tracking. Otherwise
3214 	 * we might submit a request to the hardware which never completes.
3215 	 */
3216 	synchronize_rcu();
3217 
3218 	for_each_engine(engine, i915, id) {
3219 		/* Mark all executing requests as skipped */
3220 		engine->cancel_requests(engine);
3221 
3222 		/*
3223 		 * Only once we've force-cancelled all in-flight requests can we
3224 		 * start to complete all requests.
3225 		 */
3226 		engine->submit_request = nop_complete_submit_request;
3227 	}
3228 
3229 	/*
3230 	 * Make sure no request can slip through without getting completed by
3231 	 * either this call here to intel_engine_init_global_seqno, or the one
3232 	 * in nop_complete_submit_request.
3233 	 */
3234 	synchronize_rcu();
3235 
3236 	for_each_engine(engine, i915, id) {
3237 		unsigned long flags;
3238 
3239 		/* Mark all pending requests as complete so that any concurrent
3240 		 * (lockless) lookup doesn't try and wait upon the request as we
3241 		 * reset it.
3242 		 */
3243 		spin_lock_irqsave(&engine->timeline->lock, flags);
3244 		intel_engine_init_global_seqno(engine,
3245 					       intel_engine_last_submit(engine));
3246 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3247 	}
3248 
3249 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3250 	wake_up_all(&i915->gpu_error.reset_queue);
3251 }
3252 
3253 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3254 {
3255 	struct i915_gem_timeline *tl;
3256 	int i;
3257 
3258 	lockdep_assert_held(&i915->drm.struct_mutex);
3259 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3260 		return true;
3261 
3262 	/* Before unwedging, make sure that all pending operations
3263 	 * are flushed and errored out - we may have requests waiting upon
3264 	 * third party fences. We marked all inflight requests as EIO, and
3265 	 * every execbuf since returned EIO, for consistency we want all
3266 	 * the currently pending requests to also be marked as EIO, which
3267 	 * is done inside our nop_submit_request - and so we must wait.
3268 	 *
3269 	 * No more can be submitted until we reset the wedged bit.
3270 	 */
3271 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3272 		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3273 			struct drm_i915_gem_request *rq;
3274 
3275 			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3276 						  &i915->drm.struct_mutex);
3277 			if (!rq)
3278 				continue;
3279 
3280 			/* We can't use our normal waiter as we want to
3281 			 * avoid recursively trying to handle the current
3282 			 * reset. The basic dma_fence_default_wait() installs
3283 			 * a callback for dma_fence_signal(), which is
3284 			 * triggered by our nop handler (indirectly, the
3285 			 * callback enables the signaler thread which is
3286 			 * woken by the nop_submit_request() advancing the seqno
3287 			 * and when the seqno passes the fence, the signaler
3288 			 * then signals the fence waking us up).
3289 			 */
3290 			if (dma_fence_default_wait(&rq->fence, true,
3291 						   MAX_SCHEDULE_TIMEOUT) < 0)
3292 				return false;
3293 		}
3294 	}
3295 
3296 	/* Undo nop_submit_request. We prevent all new i915 requests from
3297 	 * being queued (by disallowing execbuf whilst wedged) so having
3298 	 * waited for all active requests above, we know the system is idle
3299 	 * and do not have to worry about a thread being inside
3300 	 * engine->submit_request() as we swap over. So unlike installing
3301 	 * the nop_submit_request on reset, we can do this from normal
3302 	 * context and do not require stop_machine().
3303 	 */
3304 	intel_engines_reset_default_submission(i915);
3305 	i915_gem_contexts_lost(i915);
3306 
3307 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3308 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3309 
3310 	return true;
3311 }
3312 
3313 static void
3314 i915_gem_retire_work_handler(struct work_struct *work)
3315 {
3316 	struct drm_i915_private *dev_priv =
3317 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3318 	struct drm_device *dev = &dev_priv->drm;
3319 
3320 	/* Come back later if the device is busy... */
3321 	if (mutex_trylock(&dev->struct_mutex)) {
3322 		i915_gem_retire_requests(dev_priv);
3323 		mutex_unlock(&dev->struct_mutex);
3324 	}
3325 
3326 	/*
3327 	 * Keep the retire handler running until we are finally idle.
3328 	 * We do not need to do this test under locking as in the worst-case
3329 	 * we queue the retire worker once too often.
3330 	 */
3331 	if (READ_ONCE(dev_priv->gt.awake))
3332 		queue_delayed_work(dev_priv->wq,
3333 				   &dev_priv->gt.retire_work,
3334 				   round_jiffies_up_relative(HZ));
3335 }
3336 
3337 static inline bool
3338 new_requests_since_last_retire(const struct drm_i915_private *i915)
3339 {
3340 	return (READ_ONCE(i915->gt.active_requests) ||
3341 		work_pending(&i915->gt.idle_work.work));
3342 }
3343 
3344 static void
3345 i915_gem_idle_work_handler(struct work_struct *work)
3346 {
3347 	struct drm_i915_private *dev_priv =
3348 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3349 	bool rearm_hangcheck;
3350 	ktime_t end;
3351 
3352 	if (!READ_ONCE(dev_priv->gt.awake))
3353 		return;
3354 
3355 	/*
3356 	 * Wait for last execlists context complete, but bail out in case a
3357 	 * new request is submitted.
3358 	 */
3359 	end = ktime_add_ms(ktime_get(), I915_IDLE_ENGINES_TIMEOUT);
3360 	do {
3361 		if (new_requests_since_last_retire(dev_priv))
3362 			return;
3363 
3364 		if (intel_engines_are_idle(dev_priv))
3365 			break;
3366 
3367 		usleep_range(100, 500);
3368 	} while (ktime_before(ktime_get(), end));
3369 
3370 	rearm_hangcheck =
3371 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3372 
3373 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3374 		/* Currently busy, come back later */
3375 		mod_delayed_work(dev_priv->wq,
3376 				 &dev_priv->gt.idle_work,
3377 				 msecs_to_jiffies(50));
3378 		goto out_rearm;
3379 	}
3380 
3381 	/*
3382 	 * New request retired after this work handler started, extend active
3383 	 * period until next instance of the work.
3384 	 */
3385 	if (new_requests_since_last_retire(dev_priv))
3386 		goto out_unlock;
3387 
3388 	/*
3389 	 * Be paranoid and flush a concurrent interrupt to make sure
3390 	 * we don't reactivate any irq tasklets after parking.
3391 	 *
3392 	 * FIXME: Note that even though we have waited for execlists to be idle,
3393 	 * there may still be an in-flight interrupt even though the CSB
3394 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
3395 	 * is completed before we continue, but it doesn't prevent the HW from
3396 	 * raising a spurious interrupt later. To complete the shield we should
3397 	 * coordinate disabling the CS irq with flushing the interrupts.
3398 	 */
3399 	synchronize_irq(dev_priv->drm.irq);
3400 
3401 	intel_engines_park(dev_priv);
3402 	i915_gem_timelines_park(dev_priv);
3403 
3404 	i915_pmu_gt_parked(dev_priv);
3405 
3406 	GEM_BUG_ON(!dev_priv->gt.awake);
3407 	dev_priv->gt.awake = false;
3408 	rearm_hangcheck = false;
3409 
3410 	if (INTEL_GEN(dev_priv) >= 6)
3411 		gen6_rps_idle(dev_priv);
3412 
3413 	intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);
3414 
3415 	intel_runtime_pm_put(dev_priv);
3416 out_unlock:
3417 	mutex_unlock(&dev_priv->drm.struct_mutex);
3418 
3419 out_rearm:
3420 	if (rearm_hangcheck) {
3421 		GEM_BUG_ON(!dev_priv->gt.awake);
3422 		i915_queue_hangcheck(dev_priv);
3423 	}
3424 }
3425 
3426 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3427 {
3428 	struct drm_i915_private *i915 = to_i915(gem->dev);
3429 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3430 	struct drm_i915_file_private *fpriv = file->driver_priv;
3431 	struct i915_lut_handle *lut, *ln;
3432 
3433 	mutex_lock(&i915->drm.struct_mutex);
3434 
3435 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3436 		struct i915_gem_context *ctx = lut->ctx;
3437 		struct i915_vma *vma;
3438 
3439 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3440 		if (ctx->file_priv != fpriv)
3441 			continue;
3442 
3443 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3444 		GEM_BUG_ON(vma->obj != obj);
3445 
3446 		/* We allow the process to have multiple handles to the same
3447 		 * vma, in the same fd namespace, by virtue of flink/open.
3448 		 */
3449 		GEM_BUG_ON(!vma->open_count);
3450 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3451 			i915_vma_close(vma);
3452 
3453 		list_del(&lut->obj_link);
3454 		list_del(&lut->ctx_link);
3455 
3456 		kmem_cache_free(i915->luts, lut);
3457 		__i915_gem_object_release_unless_active(obj);
3458 	}
3459 
3460 	mutex_unlock(&i915->drm.struct_mutex);
3461 }
3462 
3463 static unsigned long to_wait_timeout(s64 timeout_ns)
3464 {
3465 	if (timeout_ns < 0)
3466 		return MAX_SCHEDULE_TIMEOUT;
3467 
3468 	if (timeout_ns == 0)
3469 		return 0;
3470 
3471 	return nsecs_to_jiffies_timeout(timeout_ns);
3472 }
3473 
3474 /**
3475  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3476  * @dev: drm device pointer
3477  * @data: ioctl data blob
3478  * @file: drm file pointer
3479  *
3480  * Returns 0 if successful, else an error is returned with the remaining time in
3481  * the timeout parameter.
3482  *  -ETIME: object is still busy after timeout
3483  *  -ERESTARTSYS: signal interrupted the wait
3484  *  -ENONENT: object doesn't exist
3485  * Also possible, but rare:
3486  *  -EAGAIN: incomplete, restart syscall
3487  *  -ENOMEM: damn
3488  *  -ENODEV: Internal IRQ fail
3489  *  -E?: The add request failed
3490  *
3491  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3492  * non-zero timeout parameter the wait ioctl will wait for the given number of
3493  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3494  * without holding struct_mutex the object may become re-busied before this
3495  * function completes. A similar but shorter * race condition exists in the busy
3496  * ioctl
3497  */
3498 int
3499 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3500 {
3501 	struct drm_i915_gem_wait *args = data;
3502 	struct drm_i915_gem_object *obj;
3503 	ktime_t start;
3504 	long ret;
3505 
3506 	if (args->flags != 0)
3507 		return -EINVAL;
3508 
3509 	obj = i915_gem_object_lookup(file, args->bo_handle);
3510 	if (!obj)
3511 		return -ENOENT;
3512 
3513 	start = ktime_get();
3514 
3515 	ret = i915_gem_object_wait(obj,
3516 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3517 				   to_wait_timeout(args->timeout_ns),
3518 				   to_rps_client(file));
3519 
3520 	if (args->timeout_ns > 0) {
3521 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3522 		if (args->timeout_ns < 0)
3523 			args->timeout_ns = 0;
3524 
3525 		/*
3526 		 * Apparently ktime isn't accurate enough and occasionally has a
3527 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3528 		 * things up to make the test happy. We allow up to 1 jiffy.
3529 		 *
3530 		 * This is a regression from the timespec->ktime conversion.
3531 		 */
3532 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3533 			args->timeout_ns = 0;
3534 
3535 		/* Asked to wait beyond the jiffie/scheduler precision? */
3536 		if (ret == -ETIME && args->timeout_ns)
3537 			ret = -EAGAIN;
3538 	}
3539 
3540 	i915_gem_object_put(obj);
3541 	return ret;
3542 }
3543 
3544 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3545 {
3546 	int ret, i;
3547 
3548 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3549 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3550 		if (ret)
3551 			return ret;
3552 	}
3553 
3554 	return 0;
3555 }
3556 
3557 static int wait_for_engines(struct drm_i915_private *i915)
3558 {
3559 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3560 		dev_err(i915->drm.dev,
3561 			"Failed to idle engines, declaring wedged!\n");
3562 		if (drm_debug & DRM_UT_DRIVER) {
3563 			struct drm_printer p = drm_debug_printer(__func__);
3564 			struct intel_engine_cs *engine;
3565 			enum intel_engine_id id;
3566 
3567 			for_each_engine(engine, i915, id)
3568 				intel_engine_dump(engine, &p,
3569 						  "%s", engine->name);
3570 		}
3571 
3572 		i915_gem_set_wedged(i915);
3573 		return -EIO;
3574 	}
3575 
3576 	return 0;
3577 }
3578 
3579 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3580 {
3581 	int ret;
3582 
3583 	/* If the device is asleep, we have no requests outstanding */
3584 	if (!READ_ONCE(i915->gt.awake))
3585 		return 0;
3586 
3587 	if (flags & I915_WAIT_LOCKED) {
3588 		struct i915_gem_timeline *tl;
3589 
3590 		lockdep_assert_held(&i915->drm.struct_mutex);
3591 
3592 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3593 			ret = wait_for_timeline(tl, flags);
3594 			if (ret)
3595 				return ret;
3596 		}
3597 		i915_gem_retire_requests(i915);
3598 
3599 		ret = wait_for_engines(i915);
3600 	} else {
3601 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3602 	}
3603 
3604 	return ret;
3605 }
3606 
3607 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3608 {
3609 	/*
3610 	 * We manually flush the CPU domain so that we can override and
3611 	 * force the flush for the display, and perform it asyncrhonously.
3612 	 */
3613 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3614 	if (obj->cache_dirty)
3615 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3616 	obj->base.write_domain = 0;
3617 }
3618 
3619 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3620 {
3621 	if (!READ_ONCE(obj->pin_global))
3622 		return;
3623 
3624 	mutex_lock(&obj->base.dev->struct_mutex);
3625 	__i915_gem_object_flush_for_display(obj);
3626 	mutex_unlock(&obj->base.dev->struct_mutex);
3627 }
3628 
3629 /**
3630  * Moves a single object to the WC read, and possibly write domain.
3631  * @obj: object to act on
3632  * @write: ask for write access or read only
3633  *
3634  * This function returns when the move is complete, including waiting on
3635  * flushes to occur.
3636  */
3637 int
3638 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3639 {
3640 	int ret;
3641 
3642 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3643 
3644 	ret = i915_gem_object_wait(obj,
3645 				   I915_WAIT_INTERRUPTIBLE |
3646 				   I915_WAIT_LOCKED |
3647 				   (write ? I915_WAIT_ALL : 0),
3648 				   MAX_SCHEDULE_TIMEOUT,
3649 				   NULL);
3650 	if (ret)
3651 		return ret;
3652 
3653 	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3654 		return 0;
3655 
3656 	/* Flush and acquire obj->pages so that we are coherent through
3657 	 * direct access in memory with previous cached writes through
3658 	 * shmemfs and that our cache domain tracking remains valid.
3659 	 * For example, if the obj->filp was moved to swap without us
3660 	 * being notified and releasing the pages, we would mistakenly
3661 	 * continue to assume that the obj remained out of the CPU cached
3662 	 * domain.
3663 	 */
3664 	ret = i915_gem_object_pin_pages(obj);
3665 	if (ret)
3666 		return ret;
3667 
3668 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3669 
3670 	/* Serialise direct access to this object with the barriers for
3671 	 * coherent writes from the GPU, by effectively invalidating the
3672 	 * WC domain upon first access.
3673 	 */
3674 	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3675 		mb();
3676 
3677 	/* It should now be out of any other write domains, and we can update
3678 	 * the domain values for our changes.
3679 	 */
3680 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3681 	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3682 	if (write) {
3683 		obj->base.read_domains = I915_GEM_DOMAIN_WC;
3684 		obj->base.write_domain = I915_GEM_DOMAIN_WC;
3685 		obj->mm.dirty = true;
3686 	}
3687 
3688 	i915_gem_object_unpin_pages(obj);
3689 	return 0;
3690 }
3691 
3692 /**
3693  * Moves a single object to the GTT read, and possibly write domain.
3694  * @obj: object to act on
3695  * @write: ask for write access or read only
3696  *
3697  * This function returns when the move is complete, including waiting on
3698  * flushes to occur.
3699  */
3700 int
3701 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3702 {
3703 	int ret;
3704 
3705 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3706 
3707 	ret = i915_gem_object_wait(obj,
3708 				   I915_WAIT_INTERRUPTIBLE |
3709 				   I915_WAIT_LOCKED |
3710 				   (write ? I915_WAIT_ALL : 0),
3711 				   MAX_SCHEDULE_TIMEOUT,
3712 				   NULL);
3713 	if (ret)
3714 		return ret;
3715 
3716 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3717 		return 0;
3718 
3719 	/* Flush and acquire obj->pages so that we are coherent through
3720 	 * direct access in memory with previous cached writes through
3721 	 * shmemfs and that our cache domain tracking remains valid.
3722 	 * For example, if the obj->filp was moved to swap without us
3723 	 * being notified and releasing the pages, we would mistakenly
3724 	 * continue to assume that the obj remained out of the CPU cached
3725 	 * domain.
3726 	 */
3727 	ret = i915_gem_object_pin_pages(obj);
3728 	if (ret)
3729 		return ret;
3730 
3731 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3732 
3733 	/* Serialise direct access to this object with the barriers for
3734 	 * coherent writes from the GPU, by effectively invalidating the
3735 	 * GTT domain upon first access.
3736 	 */
3737 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3738 		mb();
3739 
3740 	/* It should now be out of any other write domains, and we can update
3741 	 * the domain values for our changes.
3742 	 */
3743 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3744 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3745 	if (write) {
3746 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3747 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3748 		obj->mm.dirty = true;
3749 	}
3750 
3751 	i915_gem_object_unpin_pages(obj);
3752 	return 0;
3753 }
3754 
3755 /**
3756  * Changes the cache-level of an object across all VMA.
3757  * @obj: object to act on
3758  * @cache_level: new cache level to set for the object
3759  *
3760  * After this function returns, the object will be in the new cache-level
3761  * across all GTT and the contents of the backing storage will be coherent,
3762  * with respect to the new cache-level. In order to keep the backing storage
3763  * coherent for all users, we only allow a single cache level to be set
3764  * globally on the object and prevent it from being changed whilst the
3765  * hardware is reading from the object. That is if the object is currently
3766  * on the scanout it will be set to uncached (or equivalent display
3767  * cache coherency) and all non-MOCS GPU access will also be uncached so
3768  * that all direct access to the scanout remains coherent.
3769  */
3770 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3771 				    enum i915_cache_level cache_level)
3772 {
3773 	struct i915_vma *vma;
3774 	int ret;
3775 
3776 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3777 
3778 	if (obj->cache_level == cache_level)
3779 		return 0;
3780 
3781 	/* Inspect the list of currently bound VMA and unbind any that would
3782 	 * be invalid given the new cache-level. This is principally to
3783 	 * catch the issue of the CS prefetch crossing page boundaries and
3784 	 * reading an invalid PTE on older architectures.
3785 	 */
3786 restart:
3787 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3788 		if (!drm_mm_node_allocated(&vma->node))
3789 			continue;
3790 
3791 		if (i915_vma_is_pinned(vma)) {
3792 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3793 			return -EBUSY;
3794 		}
3795 
3796 		if (!i915_vma_is_closed(vma) &&
3797 		    i915_gem_valid_gtt_space(vma, cache_level))
3798 			continue;
3799 
3800 		ret = i915_vma_unbind(vma);
3801 		if (ret)
3802 			return ret;
3803 
3804 		/* As unbinding may affect other elements in the
3805 		 * obj->vma_list (due to side-effects from retiring
3806 		 * an active vma), play safe and restart the iterator.
3807 		 */
3808 		goto restart;
3809 	}
3810 
3811 	/* We can reuse the existing drm_mm nodes but need to change the
3812 	 * cache-level on the PTE. We could simply unbind them all and
3813 	 * rebind with the correct cache-level on next use. However since
3814 	 * we already have a valid slot, dma mapping, pages etc, we may as
3815 	 * rewrite the PTE in the belief that doing so tramples upon less
3816 	 * state and so involves less work.
3817 	 */
3818 	if (obj->bind_count) {
3819 		/* Before we change the PTE, the GPU must not be accessing it.
3820 		 * If we wait upon the object, we know that all the bound
3821 		 * VMA are no longer active.
3822 		 */
3823 		ret = i915_gem_object_wait(obj,
3824 					   I915_WAIT_INTERRUPTIBLE |
3825 					   I915_WAIT_LOCKED |
3826 					   I915_WAIT_ALL,
3827 					   MAX_SCHEDULE_TIMEOUT,
3828 					   NULL);
3829 		if (ret)
3830 			return ret;
3831 
3832 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3833 		    cache_level != I915_CACHE_NONE) {
3834 			/* Access to snoopable pages through the GTT is
3835 			 * incoherent and on some machines causes a hard
3836 			 * lockup. Relinquish the CPU mmaping to force
3837 			 * userspace to refault in the pages and we can
3838 			 * then double check if the GTT mapping is still
3839 			 * valid for that pointer access.
3840 			 */
3841 			i915_gem_release_mmap(obj);
3842 
3843 			/* As we no longer need a fence for GTT access,
3844 			 * we can relinquish it now (and so prevent having
3845 			 * to steal a fence from someone else on the next
3846 			 * fence request). Note GPU activity would have
3847 			 * dropped the fence as all snoopable access is
3848 			 * supposed to be linear.
3849 			 */
3850 			for_each_ggtt_vma(vma, obj) {
3851 				ret = i915_vma_put_fence(vma);
3852 				if (ret)
3853 					return ret;
3854 			}
3855 		} else {
3856 			/* We either have incoherent backing store and
3857 			 * so no GTT access or the architecture is fully
3858 			 * coherent. In such cases, existing GTT mmaps
3859 			 * ignore the cache bit in the PTE and we can
3860 			 * rewrite it without confusing the GPU or having
3861 			 * to force userspace to fault back in its mmaps.
3862 			 */
3863 		}
3864 
3865 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3866 			if (!drm_mm_node_allocated(&vma->node))
3867 				continue;
3868 
3869 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3870 			if (ret)
3871 				return ret;
3872 		}
3873 	}
3874 
3875 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3876 		vma->node.color = cache_level;
3877 	i915_gem_object_set_cache_coherency(obj, cache_level);
3878 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3879 
3880 	return 0;
3881 }
3882 
3883 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3884 			       struct drm_file *file)
3885 {
3886 	struct drm_i915_gem_caching *args = data;
3887 	struct drm_i915_gem_object *obj;
3888 	int err = 0;
3889 
3890 	rcu_read_lock();
3891 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3892 	if (!obj) {
3893 		err = -ENOENT;
3894 		goto out;
3895 	}
3896 
3897 	switch (obj->cache_level) {
3898 	case I915_CACHE_LLC:
3899 	case I915_CACHE_L3_LLC:
3900 		args->caching = I915_CACHING_CACHED;
3901 		break;
3902 
3903 	case I915_CACHE_WT:
3904 		args->caching = I915_CACHING_DISPLAY;
3905 		break;
3906 
3907 	default:
3908 		args->caching = I915_CACHING_NONE;
3909 		break;
3910 	}
3911 out:
3912 	rcu_read_unlock();
3913 	return err;
3914 }
3915 
3916 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3917 			       struct drm_file *file)
3918 {
3919 	struct drm_i915_private *i915 = to_i915(dev);
3920 	struct drm_i915_gem_caching *args = data;
3921 	struct drm_i915_gem_object *obj;
3922 	enum i915_cache_level level;
3923 	int ret = 0;
3924 
3925 	switch (args->caching) {
3926 	case I915_CACHING_NONE:
3927 		level = I915_CACHE_NONE;
3928 		break;
3929 	case I915_CACHING_CACHED:
3930 		/*
3931 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3932 		 * snooped mapping may leave stale data in a corresponding CPU
3933 		 * cacheline, whereas normally such cachelines would get
3934 		 * invalidated.
3935 		 */
3936 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3937 			return -ENODEV;
3938 
3939 		level = I915_CACHE_LLC;
3940 		break;
3941 	case I915_CACHING_DISPLAY:
3942 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3943 		break;
3944 	default:
3945 		return -EINVAL;
3946 	}
3947 
3948 	obj = i915_gem_object_lookup(file, args->handle);
3949 	if (!obj)
3950 		return -ENOENT;
3951 
3952 	/*
3953 	 * The caching mode of proxy object is handled by its generator, and
3954 	 * not allowed to be changed by userspace.
3955 	 */
3956 	if (i915_gem_object_is_proxy(obj)) {
3957 		ret = -ENXIO;
3958 		goto out;
3959 	}
3960 
3961 	if (obj->cache_level == level)
3962 		goto out;
3963 
3964 	ret = i915_gem_object_wait(obj,
3965 				   I915_WAIT_INTERRUPTIBLE,
3966 				   MAX_SCHEDULE_TIMEOUT,
3967 				   to_rps_client(file));
3968 	if (ret)
3969 		goto out;
3970 
3971 	ret = i915_mutex_lock_interruptible(dev);
3972 	if (ret)
3973 		goto out;
3974 
3975 	ret = i915_gem_object_set_cache_level(obj, level);
3976 	mutex_unlock(&dev->struct_mutex);
3977 
3978 out:
3979 	i915_gem_object_put(obj);
3980 	return ret;
3981 }
3982 
3983 /*
3984  * Prepare buffer for display plane (scanout, cursors, etc).
3985  * Can be called from an uninterruptible phase (modesetting) and allows
3986  * any flushes to be pipelined (for pageflips).
3987  */
3988 struct i915_vma *
3989 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3990 				     u32 alignment,
3991 				     const struct i915_ggtt_view *view)
3992 {
3993 	struct i915_vma *vma;
3994 	int ret;
3995 
3996 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3997 
3998 	/* Mark the global pin early so that we account for the
3999 	 * display coherency whilst setting up the cache domains.
4000 	 */
4001 	obj->pin_global++;
4002 
4003 	/* The display engine is not coherent with the LLC cache on gen6.  As
4004 	 * a result, we make sure that the pinning that is about to occur is
4005 	 * done with uncached PTEs. This is lowest common denominator for all
4006 	 * chipsets.
4007 	 *
4008 	 * However for gen6+, we could do better by using the GFDT bit instead
4009 	 * of uncaching, which would allow us to flush all the LLC-cached data
4010 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4011 	 */
4012 	ret = i915_gem_object_set_cache_level(obj,
4013 					      HAS_WT(to_i915(obj->base.dev)) ?
4014 					      I915_CACHE_WT : I915_CACHE_NONE);
4015 	if (ret) {
4016 		vma = ERR_PTR(ret);
4017 		goto err_unpin_global;
4018 	}
4019 
4020 	/* As the user may map the buffer once pinned in the display plane
4021 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4022 	 * always use map_and_fenceable for all scanout buffers. However,
4023 	 * it may simply be too big to fit into mappable, in which case
4024 	 * put it anyway and hope that userspace can cope (but always first
4025 	 * try to preserve the existing ABI).
4026 	 */
4027 	vma = ERR_PTR(-ENOSPC);
4028 	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
4029 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4030 					       PIN_MAPPABLE | PIN_NONBLOCK);
4031 	if (IS_ERR(vma)) {
4032 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
4033 		unsigned int flags;
4034 
4035 		/* Valleyview is definitely limited to scanning out the first
4036 		 * 512MiB. Lets presume this behaviour was inherited from the
4037 		 * g4x display engine and that all earlier gen are similarly
4038 		 * limited. Testing suggests that it is a little more
4039 		 * complicated than this. For example, Cherryview appears quite
4040 		 * happy to scanout from anywhere within its global aperture.
4041 		 */
4042 		flags = 0;
4043 		if (HAS_GMCH_DISPLAY(i915))
4044 			flags = PIN_MAPPABLE;
4045 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4046 	}
4047 	if (IS_ERR(vma))
4048 		goto err_unpin_global;
4049 
4050 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4051 
4052 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4053 	__i915_gem_object_flush_for_display(obj);
4054 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4055 
4056 	/* It should now be out of any other write domains, and we can update
4057 	 * the domain values for our changes.
4058 	 */
4059 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4060 
4061 	return vma;
4062 
4063 err_unpin_global:
4064 	obj->pin_global--;
4065 	return vma;
4066 }
4067 
4068 void
4069 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4070 {
4071 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4072 
4073 	if (WARN_ON(vma->obj->pin_global == 0))
4074 		return;
4075 
4076 	if (--vma->obj->pin_global == 0)
4077 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4078 
4079 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4080 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4081 
4082 	i915_vma_unpin(vma);
4083 }
4084 
4085 /**
4086  * Moves a single object to the CPU read, and possibly write domain.
4087  * @obj: object to act on
4088  * @write: requesting write or read-only access
4089  *
4090  * This function returns when the move is complete, including waiting on
4091  * flushes to occur.
4092  */
4093 int
4094 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4095 {
4096 	int ret;
4097 
4098 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4099 
4100 	ret = i915_gem_object_wait(obj,
4101 				   I915_WAIT_INTERRUPTIBLE |
4102 				   I915_WAIT_LOCKED |
4103 				   (write ? I915_WAIT_ALL : 0),
4104 				   MAX_SCHEDULE_TIMEOUT,
4105 				   NULL);
4106 	if (ret)
4107 		return ret;
4108 
4109 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4110 
4111 	/* Flush the CPU cache if it's still invalid. */
4112 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4113 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4114 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4115 	}
4116 
4117 	/* It should now be out of any other write domains, and we can update
4118 	 * the domain values for our changes.
4119 	 */
4120 	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4121 
4122 	/* If we're writing through the CPU, then the GPU read domains will
4123 	 * need to be invalidated at next use.
4124 	 */
4125 	if (write)
4126 		__start_cpu_write(obj);
4127 
4128 	return 0;
4129 }
4130 
4131 /* Throttle our rendering by waiting until the ring has completed our requests
4132  * emitted over 20 msec ago.
4133  *
4134  * Note that if we were to use the current jiffies each time around the loop,
4135  * we wouldn't escape the function with any frames outstanding if the time to
4136  * render a frame was over 20ms.
4137  *
4138  * This should get us reasonable parallelism between CPU and GPU but also
4139  * relatively low latency when blocking on a particular request to finish.
4140  */
4141 static int
4142 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4143 {
4144 	struct drm_i915_private *dev_priv = to_i915(dev);
4145 	struct drm_i915_file_private *file_priv = file->driver_priv;
4146 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4147 	struct drm_i915_gem_request *request, *target = NULL;
4148 	long ret;
4149 
4150 	/* ABI: return -EIO if already wedged */
4151 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4152 		return -EIO;
4153 
4154 	spin_lock(&file_priv->mm.lock);
4155 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4156 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4157 			break;
4158 
4159 		if (target) {
4160 			list_del(&target->client_link);
4161 			target->file_priv = NULL;
4162 		}
4163 
4164 		target = request;
4165 	}
4166 	if (target)
4167 		i915_gem_request_get(target);
4168 	spin_unlock(&file_priv->mm.lock);
4169 
4170 	if (target == NULL)
4171 		return 0;
4172 
4173 	ret = i915_wait_request(target,
4174 				I915_WAIT_INTERRUPTIBLE,
4175 				MAX_SCHEDULE_TIMEOUT);
4176 	i915_gem_request_put(target);
4177 
4178 	return ret < 0 ? ret : 0;
4179 }
4180 
4181 struct i915_vma *
4182 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4183 			 const struct i915_ggtt_view *view,
4184 			 u64 size,
4185 			 u64 alignment,
4186 			 u64 flags)
4187 {
4188 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4189 	struct i915_address_space *vm = &dev_priv->ggtt.base;
4190 	struct i915_vma *vma;
4191 	int ret;
4192 
4193 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4194 
4195 	if (!view && flags & PIN_MAPPABLE) {
4196 		/* If the required space is larger than the available
4197 		 * aperture, we will not able to find a slot for the
4198 		 * object and unbinding the object now will be in
4199 		 * vain. Worse, doing so may cause us to ping-pong
4200 		 * the object in and out of the Global GTT and
4201 		 * waste a lot of cycles under the mutex.
4202 		 */
4203 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4204 			return ERR_PTR(-E2BIG);
4205 
4206 		/* If NONBLOCK is set the caller is optimistically
4207 		 * trying to cache the full object within the mappable
4208 		 * aperture, and *must* have a fallback in place for
4209 		 * situations where we cannot bind the object. We
4210 		 * can be a little more lax here and use the fallback
4211 		 * more often to avoid costly migrations of ourselves
4212 		 * and other objects within the aperture.
4213 		 *
4214 		 * Half-the-aperture is used as a simple heuristic.
4215 		 * More interesting would to do search for a free
4216 		 * block prior to making the commitment to unbind.
4217 		 * That caters for the self-harm case, and with a
4218 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4219 		 * we could try to minimise harm to others.
4220 		 */
4221 		if (flags & PIN_NONBLOCK &&
4222 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4223 			return ERR_PTR(-ENOSPC);
4224 	}
4225 
4226 	vma = i915_vma_instance(obj, vm, view);
4227 	if (unlikely(IS_ERR(vma)))
4228 		return vma;
4229 
4230 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4231 		if (flags & PIN_NONBLOCK) {
4232 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4233 				return ERR_PTR(-ENOSPC);
4234 
4235 			if (flags & PIN_MAPPABLE &&
4236 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4237 				return ERR_PTR(-ENOSPC);
4238 		}
4239 
4240 		WARN(i915_vma_is_pinned(vma),
4241 		     "bo is already pinned in ggtt with incorrect alignment:"
4242 		     " offset=%08x, req.alignment=%llx,"
4243 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4244 		     i915_ggtt_offset(vma), alignment,
4245 		     !!(flags & PIN_MAPPABLE),
4246 		     i915_vma_is_map_and_fenceable(vma));
4247 		ret = i915_vma_unbind(vma);
4248 		if (ret)
4249 			return ERR_PTR(ret);
4250 	}
4251 
4252 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4253 	if (ret)
4254 		return ERR_PTR(ret);
4255 
4256 	return vma;
4257 }
4258 
4259 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4260 {
4261 	/* Note that we could alias engines in the execbuf API, but
4262 	 * that would be very unwise as it prevents userspace from
4263 	 * fine control over engine selection. Ahem.
4264 	 *
4265 	 * This should be something like EXEC_MAX_ENGINE instead of
4266 	 * I915_NUM_ENGINES.
4267 	 */
4268 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4269 	return 0x10000 << id;
4270 }
4271 
4272 static __always_inline unsigned int __busy_write_id(unsigned int id)
4273 {
4274 	/* The uABI guarantees an active writer is also amongst the read
4275 	 * engines. This would be true if we accessed the activity tracking
4276 	 * under the lock, but as we perform the lookup of the object and
4277 	 * its activity locklessly we can not guarantee that the last_write
4278 	 * being active implies that we have set the same engine flag from
4279 	 * last_read - hence we always set both read and write busy for
4280 	 * last_write.
4281 	 */
4282 	return id | __busy_read_flag(id);
4283 }
4284 
4285 static __always_inline unsigned int
4286 __busy_set_if_active(const struct dma_fence *fence,
4287 		     unsigned int (*flag)(unsigned int id))
4288 {
4289 	struct drm_i915_gem_request *rq;
4290 
4291 	/* We have to check the current hw status of the fence as the uABI
4292 	 * guarantees forward progress. We could rely on the idle worker
4293 	 * to eventually flush us, but to minimise latency just ask the
4294 	 * hardware.
4295 	 *
4296 	 * Note we only report on the status of native fences.
4297 	 */
4298 	if (!dma_fence_is_i915(fence))
4299 		return 0;
4300 
4301 	/* opencode to_request() in order to avoid const warnings */
4302 	rq = container_of(fence, struct drm_i915_gem_request, fence);
4303 	if (i915_gem_request_completed(rq))
4304 		return 0;
4305 
4306 	return flag(rq->engine->uabi_id);
4307 }
4308 
4309 static __always_inline unsigned int
4310 busy_check_reader(const struct dma_fence *fence)
4311 {
4312 	return __busy_set_if_active(fence, __busy_read_flag);
4313 }
4314 
4315 static __always_inline unsigned int
4316 busy_check_writer(const struct dma_fence *fence)
4317 {
4318 	if (!fence)
4319 		return 0;
4320 
4321 	return __busy_set_if_active(fence, __busy_write_id);
4322 }
4323 
4324 int
4325 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4326 		    struct drm_file *file)
4327 {
4328 	struct drm_i915_gem_busy *args = data;
4329 	struct drm_i915_gem_object *obj;
4330 	struct reservation_object_list *list;
4331 	unsigned int seq;
4332 	int err;
4333 
4334 	err = -ENOENT;
4335 	rcu_read_lock();
4336 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4337 	if (!obj)
4338 		goto out;
4339 
4340 	/* A discrepancy here is that we do not report the status of
4341 	 * non-i915 fences, i.e. even though we may report the object as idle,
4342 	 * a call to set-domain may still stall waiting for foreign rendering.
4343 	 * This also means that wait-ioctl may report an object as busy,
4344 	 * where busy-ioctl considers it idle.
4345 	 *
4346 	 * We trade the ability to warn of foreign fences to report on which
4347 	 * i915 engines are active for the object.
4348 	 *
4349 	 * Alternatively, we can trade that extra information on read/write
4350 	 * activity with
4351 	 *	args->busy =
4352 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4353 	 * to report the overall busyness. This is what the wait-ioctl does.
4354 	 *
4355 	 */
4356 retry:
4357 	seq = raw_read_seqcount(&obj->resv->seq);
4358 
4359 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4360 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4361 
4362 	/* Translate shared fences to READ set of engines */
4363 	list = rcu_dereference(obj->resv->fence);
4364 	if (list) {
4365 		unsigned int shared_count = list->shared_count, i;
4366 
4367 		for (i = 0; i < shared_count; ++i) {
4368 			struct dma_fence *fence =
4369 				rcu_dereference(list->shared[i]);
4370 
4371 			args->busy |= busy_check_reader(fence);
4372 		}
4373 	}
4374 
4375 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4376 		goto retry;
4377 
4378 	err = 0;
4379 out:
4380 	rcu_read_unlock();
4381 	return err;
4382 }
4383 
4384 int
4385 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4386 			struct drm_file *file_priv)
4387 {
4388 	return i915_gem_ring_throttle(dev, file_priv);
4389 }
4390 
4391 int
4392 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4393 		       struct drm_file *file_priv)
4394 {
4395 	struct drm_i915_private *dev_priv = to_i915(dev);
4396 	struct drm_i915_gem_madvise *args = data;
4397 	struct drm_i915_gem_object *obj;
4398 	int err;
4399 
4400 	switch (args->madv) {
4401 	case I915_MADV_DONTNEED:
4402 	case I915_MADV_WILLNEED:
4403 	    break;
4404 	default:
4405 	    return -EINVAL;
4406 	}
4407 
4408 	obj = i915_gem_object_lookup(file_priv, args->handle);
4409 	if (!obj)
4410 		return -ENOENT;
4411 
4412 	err = mutex_lock_interruptible(&obj->mm.lock);
4413 	if (err)
4414 		goto out;
4415 
4416 	if (i915_gem_object_has_pages(obj) &&
4417 	    i915_gem_object_is_tiled(obj) &&
4418 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4419 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4420 			GEM_BUG_ON(!obj->mm.quirked);
4421 			__i915_gem_object_unpin_pages(obj);
4422 			obj->mm.quirked = false;
4423 		}
4424 		if (args->madv == I915_MADV_WILLNEED) {
4425 			GEM_BUG_ON(obj->mm.quirked);
4426 			__i915_gem_object_pin_pages(obj);
4427 			obj->mm.quirked = true;
4428 		}
4429 	}
4430 
4431 	if (obj->mm.madv != __I915_MADV_PURGED)
4432 		obj->mm.madv = args->madv;
4433 
4434 	/* if the object is no longer attached, discard its backing storage */
4435 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4436 	    !i915_gem_object_has_pages(obj))
4437 		i915_gem_object_truncate(obj);
4438 
4439 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4440 	mutex_unlock(&obj->mm.lock);
4441 
4442 out:
4443 	i915_gem_object_put(obj);
4444 	return err;
4445 }
4446 
4447 static void
4448 frontbuffer_retire(struct i915_gem_active *active,
4449 		   struct drm_i915_gem_request *request)
4450 {
4451 	struct drm_i915_gem_object *obj =
4452 		container_of(active, typeof(*obj), frontbuffer_write);
4453 
4454 	intel_fb_obj_flush(obj, ORIGIN_CS);
4455 }
4456 
4457 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4458 			  const struct drm_i915_gem_object_ops *ops)
4459 {
4460 	mutex_init(&obj->mm.lock);
4461 
4462 	INIT_LIST_HEAD(&obj->vma_list);
4463 	INIT_LIST_HEAD(&obj->lut_list);
4464 	INIT_LIST_HEAD(&obj->batch_pool_link);
4465 
4466 	obj->ops = ops;
4467 
4468 	reservation_object_init(&obj->__builtin_resv);
4469 	obj->resv = &obj->__builtin_resv;
4470 
4471 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4472 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4473 
4474 	obj->mm.madv = I915_MADV_WILLNEED;
4475 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4476 	mutex_init(&obj->mm.get_page.lock);
4477 
4478 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4479 }
4480 
4481 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4482 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4483 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4484 
4485 	.get_pages = i915_gem_object_get_pages_gtt,
4486 	.put_pages = i915_gem_object_put_pages_gtt,
4487 
4488 	.pwrite = i915_gem_object_pwrite_gtt,
4489 };
4490 
4491 static int i915_gem_object_create_shmem(struct drm_device *dev,
4492 					struct drm_gem_object *obj,
4493 					size_t size)
4494 {
4495 	struct drm_i915_private *i915 = to_i915(dev);
4496 	unsigned long flags = VM_NORESERVE;
4497 	struct file *filp;
4498 
4499 	drm_gem_private_object_init(dev, obj, size);
4500 
4501 	if (i915->mm.gemfs)
4502 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4503 						 flags);
4504 	else
4505 		filp = shmem_file_setup("i915", size, flags);
4506 
4507 	if (IS_ERR(filp))
4508 		return PTR_ERR(filp);
4509 
4510 	obj->filp = filp;
4511 
4512 	return 0;
4513 }
4514 
4515 struct drm_i915_gem_object *
4516 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4517 {
4518 	struct drm_i915_gem_object *obj;
4519 	struct address_space *mapping;
4520 	unsigned int cache_level;
4521 	gfp_t mask;
4522 	int ret;
4523 
4524 	/* There is a prevalence of the assumption that we fit the object's
4525 	 * page count inside a 32bit _signed_ variable. Let's document this and
4526 	 * catch if we ever need to fix it. In the meantime, if you do spot
4527 	 * such a local variable, please consider fixing!
4528 	 */
4529 	if (size >> PAGE_SHIFT > INT_MAX)
4530 		return ERR_PTR(-E2BIG);
4531 
4532 	if (overflows_type(size, obj->base.size))
4533 		return ERR_PTR(-E2BIG);
4534 
4535 	obj = i915_gem_object_alloc(dev_priv);
4536 	if (obj == NULL)
4537 		return ERR_PTR(-ENOMEM);
4538 
4539 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4540 	if (ret)
4541 		goto fail;
4542 
4543 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4544 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4545 		/* 965gm cannot relocate objects above 4GiB. */
4546 		mask &= ~__GFP_HIGHMEM;
4547 		mask |= __GFP_DMA32;
4548 	}
4549 
4550 	mapping = obj->base.filp->f_mapping;
4551 	mapping_set_gfp_mask(mapping, mask);
4552 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4553 
4554 	i915_gem_object_init(obj, &i915_gem_object_ops);
4555 
4556 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4557 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4558 
4559 	if (HAS_LLC(dev_priv))
4560 		/* On some devices, we can have the GPU use the LLC (the CPU
4561 		 * cache) for about a 10% performance improvement
4562 		 * compared to uncached.  Graphics requests other than
4563 		 * display scanout are coherent with the CPU in
4564 		 * accessing this cache.  This means in this mode we
4565 		 * don't need to clflush on the CPU side, and on the
4566 		 * GPU side we only need to flush internal caches to
4567 		 * get data visible to the CPU.
4568 		 *
4569 		 * However, we maintain the display planes as UC, and so
4570 		 * need to rebind when first used as such.
4571 		 */
4572 		cache_level = I915_CACHE_LLC;
4573 	else
4574 		cache_level = I915_CACHE_NONE;
4575 
4576 	i915_gem_object_set_cache_coherency(obj, cache_level);
4577 
4578 	trace_i915_gem_object_create(obj);
4579 
4580 	return obj;
4581 
4582 fail:
4583 	i915_gem_object_free(obj);
4584 	return ERR_PTR(ret);
4585 }
4586 
4587 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4588 {
4589 	/* If we are the last user of the backing storage (be it shmemfs
4590 	 * pages or stolen etc), we know that the pages are going to be
4591 	 * immediately released. In this case, we can then skip copying
4592 	 * back the contents from the GPU.
4593 	 */
4594 
4595 	if (obj->mm.madv != I915_MADV_WILLNEED)
4596 		return false;
4597 
4598 	if (obj->base.filp == NULL)
4599 		return true;
4600 
4601 	/* At first glance, this looks racy, but then again so would be
4602 	 * userspace racing mmap against close. However, the first external
4603 	 * reference to the filp can only be obtained through the
4604 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4605 	 * acquiring such a reference whilst we are in the middle of
4606 	 * freeing the object.
4607 	 */
4608 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4609 }
4610 
4611 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4612 				    struct llist_node *freed)
4613 {
4614 	struct drm_i915_gem_object *obj, *on;
4615 
4616 	intel_runtime_pm_get(i915);
4617 	llist_for_each_entry_safe(obj, on, freed, freed) {
4618 		struct i915_vma *vma, *vn;
4619 
4620 		trace_i915_gem_object_destroy(obj);
4621 
4622 		mutex_lock(&i915->drm.struct_mutex);
4623 
4624 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4625 		list_for_each_entry_safe(vma, vn,
4626 					 &obj->vma_list, obj_link) {
4627 			GEM_BUG_ON(i915_vma_is_active(vma));
4628 			vma->flags &= ~I915_VMA_PIN_MASK;
4629 			i915_vma_close(vma);
4630 		}
4631 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4632 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4633 
4634 		/* This serializes freeing with the shrinker. Since the free
4635 		 * is delayed, first by RCU then by the workqueue, we want the
4636 		 * shrinker to be able to free pages of unreferenced objects,
4637 		 * or else we may oom whilst there are plenty of deferred
4638 		 * freed objects.
4639 		 */
4640 		if (i915_gem_object_has_pages(obj)) {
4641 			spin_lock(&i915->mm.obj_lock);
4642 			list_del_init(&obj->mm.link);
4643 			spin_unlock(&i915->mm.obj_lock);
4644 		}
4645 
4646 		mutex_unlock(&i915->drm.struct_mutex);
4647 
4648 		GEM_BUG_ON(obj->bind_count);
4649 		GEM_BUG_ON(obj->userfault_count);
4650 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4651 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4652 
4653 		if (obj->ops->release)
4654 			obj->ops->release(obj);
4655 
4656 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4657 			atomic_set(&obj->mm.pages_pin_count, 0);
4658 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4659 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4660 
4661 		if (obj->base.import_attach)
4662 			drm_prime_gem_destroy(&obj->base, NULL);
4663 
4664 		reservation_object_fini(&obj->__builtin_resv);
4665 		drm_gem_object_release(&obj->base);
4666 		i915_gem_info_remove_obj(i915, obj->base.size);
4667 
4668 		kfree(obj->bit_17);
4669 		i915_gem_object_free(obj);
4670 
4671 		if (on)
4672 			cond_resched();
4673 	}
4674 	intel_runtime_pm_put(i915);
4675 }
4676 
4677 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4678 {
4679 	struct llist_node *freed;
4680 
4681 	/* Free the oldest, most stale object to keep the free_list short */
4682 	freed = NULL;
4683 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4684 		/* Only one consumer of llist_del_first() allowed */
4685 		spin_lock(&i915->mm.free_lock);
4686 		freed = llist_del_first(&i915->mm.free_list);
4687 		spin_unlock(&i915->mm.free_lock);
4688 	}
4689 	if (unlikely(freed)) {
4690 		freed->next = NULL;
4691 		__i915_gem_free_objects(i915, freed);
4692 	}
4693 }
4694 
4695 static void __i915_gem_free_work(struct work_struct *work)
4696 {
4697 	struct drm_i915_private *i915 =
4698 		container_of(work, struct drm_i915_private, mm.free_work);
4699 	struct llist_node *freed;
4700 
4701 	/* All file-owned VMA should have been released by this point through
4702 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4703 	 * However, the object may also be bound into the global GTT (e.g.
4704 	 * older GPUs without per-process support, or for direct access through
4705 	 * the GTT either for the user or for scanout). Those VMA still need to
4706 	 * unbound now.
4707 	 */
4708 
4709 	spin_lock(&i915->mm.free_lock);
4710 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4711 		spin_unlock(&i915->mm.free_lock);
4712 
4713 		__i915_gem_free_objects(i915, freed);
4714 		if (need_resched())
4715 			return;
4716 
4717 		spin_lock(&i915->mm.free_lock);
4718 	}
4719 	spin_unlock(&i915->mm.free_lock);
4720 }
4721 
4722 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4723 {
4724 	struct drm_i915_gem_object *obj =
4725 		container_of(head, typeof(*obj), rcu);
4726 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4727 
4728 	/* We can't simply use call_rcu() from i915_gem_free_object()
4729 	 * as we need to block whilst unbinding, and the call_rcu
4730 	 * task may be called from softirq context. So we take a
4731 	 * detour through a worker.
4732 	 */
4733 	if (llist_add(&obj->freed, &i915->mm.free_list))
4734 		schedule_work(&i915->mm.free_work);
4735 }
4736 
4737 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4738 {
4739 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4740 
4741 	if (obj->mm.quirked)
4742 		__i915_gem_object_unpin_pages(obj);
4743 
4744 	if (discard_backing_storage(obj))
4745 		obj->mm.madv = I915_MADV_DONTNEED;
4746 
4747 	/* Before we free the object, make sure any pure RCU-only
4748 	 * read-side critical sections are complete, e.g.
4749 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4750 	 * lookup see i915_gem_object_lookup_rcu().
4751 	 */
4752 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4753 }
4754 
4755 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4756 {
4757 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4758 
4759 	if (!i915_gem_object_has_active_reference(obj) &&
4760 	    i915_gem_object_is_active(obj))
4761 		i915_gem_object_set_active_reference(obj);
4762 	else
4763 		i915_gem_object_put(obj);
4764 }
4765 
4766 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4767 {
4768 	struct i915_gem_context *kernel_context = i915->kernel_context;
4769 	struct intel_engine_cs *engine;
4770 	enum intel_engine_id id;
4771 
4772 	for_each_engine(engine, i915, id) {
4773 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
4774 		GEM_BUG_ON(engine->last_retired_context != kernel_context);
4775 	}
4776 }
4777 
4778 void i915_gem_sanitize(struct drm_i915_private *i915)
4779 {
4780 	if (i915_terminally_wedged(&i915->gpu_error)) {
4781 		mutex_lock(&i915->drm.struct_mutex);
4782 		i915_gem_unset_wedged(i915);
4783 		mutex_unlock(&i915->drm.struct_mutex);
4784 	}
4785 
4786 	/*
4787 	 * If we inherit context state from the BIOS or earlier occupants
4788 	 * of the GPU, the GPU may be in an inconsistent state when we
4789 	 * try to take over. The only way to remove the earlier state
4790 	 * is by resetting. However, resetting on earlier gen is tricky as
4791 	 * it may impact the display and we are uncertain about the stability
4792 	 * of the reset, so this could be applied to even earlier gen.
4793 	 */
4794 	if (INTEL_GEN(i915) >= 5) {
4795 		int reset = intel_gpu_reset(i915, ALL_ENGINES);
4796 		WARN_ON(reset && reset != -ENODEV);
4797 	}
4798 }
4799 
4800 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4801 {
4802 	struct drm_device *dev = &dev_priv->drm;
4803 	int ret;
4804 
4805 	intel_runtime_pm_get(dev_priv);
4806 	intel_suspend_gt_powersave(dev_priv);
4807 
4808 	mutex_lock(&dev->struct_mutex);
4809 
4810 	/* We have to flush all the executing contexts to main memory so
4811 	 * that they can saved in the hibernation image. To ensure the last
4812 	 * context image is coherent, we have to switch away from it. That
4813 	 * leaves the dev_priv->kernel_context still active when
4814 	 * we actually suspend, and its image in memory may not match the GPU
4815 	 * state. Fortunately, the kernel_context is disposable and we do
4816 	 * not rely on its state.
4817 	 */
4818 	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4819 		ret = i915_gem_switch_to_kernel_context(dev_priv);
4820 		if (ret)
4821 			goto err_unlock;
4822 
4823 		ret = i915_gem_wait_for_idle(dev_priv,
4824 					     I915_WAIT_INTERRUPTIBLE |
4825 					     I915_WAIT_LOCKED);
4826 		if (ret && ret != -EIO)
4827 			goto err_unlock;
4828 
4829 		assert_kernel_context_is_current(dev_priv);
4830 	}
4831 	i915_gem_contexts_lost(dev_priv);
4832 	mutex_unlock(&dev->struct_mutex);
4833 
4834 	intel_guc_suspend(dev_priv);
4835 
4836 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4837 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4838 
4839 	/* As the idle_work is rearming if it detects a race, play safe and
4840 	 * repeat the flush until it is definitely idle.
4841 	 */
4842 	drain_delayed_work(&dev_priv->gt.idle_work);
4843 
4844 	/* Assert that we sucessfully flushed all the work and
4845 	 * reset the GPU back to its idle, low power state.
4846 	 */
4847 	WARN_ON(dev_priv->gt.awake);
4848 	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4849 		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4850 
4851 	/*
4852 	 * Neither the BIOS, ourselves or any other kernel
4853 	 * expects the system to be in execlists mode on startup,
4854 	 * so we need to reset the GPU back to legacy mode. And the only
4855 	 * known way to disable logical contexts is through a GPU reset.
4856 	 *
4857 	 * So in order to leave the system in a known default configuration,
4858 	 * always reset the GPU upon unload and suspend. Afterwards we then
4859 	 * clean up the GEM state tracking, flushing off the requests and
4860 	 * leaving the system in a known idle state.
4861 	 *
4862 	 * Note that is of the upmost importance that the GPU is idle and
4863 	 * all stray writes are flushed *before* we dismantle the backing
4864 	 * storage for the pinned objects.
4865 	 *
4866 	 * However, since we are uncertain that resetting the GPU on older
4867 	 * machines is a good idea, we don't - just in case it leaves the
4868 	 * machine in an unusable condition.
4869 	 */
4870 	i915_gem_sanitize(dev_priv);
4871 
4872 	intel_runtime_pm_put(dev_priv);
4873 	return 0;
4874 
4875 err_unlock:
4876 	mutex_unlock(&dev->struct_mutex);
4877 	intel_runtime_pm_put(dev_priv);
4878 	return ret;
4879 }
4880 
4881 void i915_gem_resume(struct drm_i915_private *i915)
4882 {
4883 	WARN_ON(i915->gt.awake);
4884 
4885 	mutex_lock(&i915->drm.struct_mutex);
4886 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4887 
4888 	i915_gem_restore_gtt_mappings(i915);
4889 	i915_gem_restore_fences(i915);
4890 
4891 	/*
4892 	 * As we didn't flush the kernel context before suspend, we cannot
4893 	 * guarantee that the context image is complete. So let's just reset
4894 	 * it and start again.
4895 	 */
4896 	i915->gt.resume(i915);
4897 
4898 	if (i915_gem_init_hw(i915))
4899 		goto err_wedged;
4900 
4901 	intel_guc_resume(i915);
4902 
4903 	/* Always reload a context for powersaving. */
4904 	if (i915_gem_switch_to_kernel_context(i915))
4905 		goto err_wedged;
4906 
4907 out_unlock:
4908 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
4909 	mutex_unlock(&i915->drm.struct_mutex);
4910 	return;
4911 
4912 err_wedged:
4913 	if (!i915_terminally_wedged(&i915->gpu_error)) {
4914 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
4915 		i915_gem_set_wedged(i915);
4916 	}
4917 	goto out_unlock;
4918 }
4919 
4920 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4921 {
4922 	if (INTEL_GEN(dev_priv) < 5 ||
4923 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4924 		return;
4925 
4926 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4927 				 DISP_TILE_SURFACE_SWIZZLING);
4928 
4929 	if (IS_GEN5(dev_priv))
4930 		return;
4931 
4932 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4933 	if (IS_GEN6(dev_priv))
4934 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4935 	else if (IS_GEN7(dev_priv))
4936 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4937 	else if (IS_GEN8(dev_priv))
4938 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4939 	else
4940 		BUG();
4941 }
4942 
4943 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4944 {
4945 	I915_WRITE(RING_CTL(base), 0);
4946 	I915_WRITE(RING_HEAD(base), 0);
4947 	I915_WRITE(RING_TAIL(base), 0);
4948 	I915_WRITE(RING_START(base), 0);
4949 }
4950 
4951 static void init_unused_rings(struct drm_i915_private *dev_priv)
4952 {
4953 	if (IS_I830(dev_priv)) {
4954 		init_unused_ring(dev_priv, PRB1_BASE);
4955 		init_unused_ring(dev_priv, SRB0_BASE);
4956 		init_unused_ring(dev_priv, SRB1_BASE);
4957 		init_unused_ring(dev_priv, SRB2_BASE);
4958 		init_unused_ring(dev_priv, SRB3_BASE);
4959 	} else if (IS_GEN2(dev_priv)) {
4960 		init_unused_ring(dev_priv, SRB0_BASE);
4961 		init_unused_ring(dev_priv, SRB1_BASE);
4962 	} else if (IS_GEN3(dev_priv)) {
4963 		init_unused_ring(dev_priv, PRB1_BASE);
4964 		init_unused_ring(dev_priv, PRB2_BASE);
4965 	}
4966 }
4967 
4968 static int __i915_gem_restart_engines(void *data)
4969 {
4970 	struct drm_i915_private *i915 = data;
4971 	struct intel_engine_cs *engine;
4972 	enum intel_engine_id id;
4973 	int err;
4974 
4975 	for_each_engine(engine, i915, id) {
4976 		err = engine->init_hw(engine);
4977 		if (err)
4978 			return err;
4979 	}
4980 
4981 	return 0;
4982 }
4983 
4984 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4985 {
4986 	int ret;
4987 
4988 	dev_priv->gt.last_init_time = ktime_get();
4989 
4990 	/* Double layer security blanket, see i915_gem_init() */
4991 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4992 
4993 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4994 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4995 
4996 	if (IS_HASWELL(dev_priv))
4997 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4998 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4999 
5000 	if (HAS_PCH_NOP(dev_priv)) {
5001 		if (IS_IVYBRIDGE(dev_priv)) {
5002 			u32 temp = I915_READ(GEN7_MSG_CTL);
5003 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5004 			I915_WRITE(GEN7_MSG_CTL, temp);
5005 		} else if (INTEL_GEN(dev_priv) >= 7) {
5006 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5007 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5008 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5009 		}
5010 	}
5011 
5012 	i915_gem_init_swizzling(dev_priv);
5013 
5014 	/*
5015 	 * At least 830 can leave some of the unused rings
5016 	 * "active" (ie. head != tail) after resume which
5017 	 * will prevent c3 entry. Makes sure all unused rings
5018 	 * are totally idle.
5019 	 */
5020 	init_unused_rings(dev_priv);
5021 
5022 	BUG_ON(!dev_priv->kernel_context);
5023 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5024 		ret = -EIO;
5025 		goto out;
5026 	}
5027 
5028 	ret = i915_ppgtt_init_hw(dev_priv);
5029 	if (ret) {
5030 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5031 		goto out;
5032 	}
5033 
5034 	/* We can't enable contexts until all firmware is loaded */
5035 	ret = intel_uc_init_hw(dev_priv);
5036 	if (ret)
5037 		goto out;
5038 
5039 	intel_mocs_init_l3cc_table(dev_priv);
5040 
5041 	/* Only when the HW is re-initialised, can we replay the requests */
5042 	ret = __i915_gem_restart_engines(dev_priv);
5043 out:
5044 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5045 	return ret;
5046 }
5047 
5048 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5049 {
5050 	struct i915_gem_context *ctx;
5051 	struct intel_engine_cs *engine;
5052 	enum intel_engine_id id;
5053 	int err;
5054 
5055 	/*
5056 	 * As we reset the gpu during very early sanitisation, the current
5057 	 * register state on the GPU should reflect its defaults values.
5058 	 * We load a context onto the hw (with restore-inhibit), then switch
5059 	 * over to a second context to save that default register state. We
5060 	 * can then prime every new context with that state so they all start
5061 	 * from the same default HW values.
5062 	 */
5063 
5064 	ctx = i915_gem_context_create_kernel(i915, 0);
5065 	if (IS_ERR(ctx))
5066 		return PTR_ERR(ctx);
5067 
5068 	for_each_engine(engine, i915, id) {
5069 		struct drm_i915_gem_request *rq;
5070 
5071 		rq = i915_gem_request_alloc(engine, ctx);
5072 		if (IS_ERR(rq)) {
5073 			err = PTR_ERR(rq);
5074 			goto out_ctx;
5075 		}
5076 
5077 		err = 0;
5078 		if (engine->init_context)
5079 			err = engine->init_context(rq);
5080 
5081 		__i915_add_request(rq, true);
5082 		if (err)
5083 			goto err_active;
5084 	}
5085 
5086 	err = i915_gem_switch_to_kernel_context(i915);
5087 	if (err)
5088 		goto err_active;
5089 
5090 	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5091 	if (err)
5092 		goto err_active;
5093 
5094 	assert_kernel_context_is_current(i915);
5095 
5096 	for_each_engine(engine, i915, id) {
5097 		struct i915_vma *state;
5098 
5099 		state = ctx->engine[id].state;
5100 		if (!state)
5101 			continue;
5102 
5103 		/*
5104 		 * As we will hold a reference to the logical state, it will
5105 		 * not be torn down with the context, and importantly the
5106 		 * object will hold onto its vma (making it possible for a
5107 		 * stray GTT write to corrupt our defaults). Unmap the vma
5108 		 * from the GTT to prevent such accidents and reclaim the
5109 		 * space.
5110 		 */
5111 		err = i915_vma_unbind(state);
5112 		if (err)
5113 			goto err_active;
5114 
5115 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5116 		if (err)
5117 			goto err_active;
5118 
5119 		engine->default_state = i915_gem_object_get(state->obj);
5120 	}
5121 
5122 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5123 		unsigned int found = intel_engines_has_context_isolation(i915);
5124 
5125 		/*
5126 		 * Make sure that classes with multiple engine instances all
5127 		 * share the same basic configuration.
5128 		 */
5129 		for_each_engine(engine, i915, id) {
5130 			unsigned int bit = BIT(engine->uabi_class);
5131 			unsigned int expected = engine->default_state ? bit : 0;
5132 
5133 			if ((found & bit) != expected) {
5134 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5135 					  engine->uabi_class, engine->name);
5136 			}
5137 		}
5138 	}
5139 
5140 out_ctx:
5141 	i915_gem_context_set_closed(ctx);
5142 	i915_gem_context_put(ctx);
5143 	return err;
5144 
5145 err_active:
5146 	/*
5147 	 * If we have to abandon now, we expect the engines to be idle
5148 	 * and ready to be torn-down. First try to flush any remaining
5149 	 * request, ensure we are pointing at the kernel context and
5150 	 * then remove it.
5151 	 */
5152 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5153 		goto out_ctx;
5154 
5155 	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5156 		goto out_ctx;
5157 
5158 	i915_gem_contexts_lost(i915);
5159 	goto out_ctx;
5160 }
5161 
5162 int i915_gem_init(struct drm_i915_private *dev_priv)
5163 {
5164 	int ret;
5165 
5166 	/*
5167 	 * We need to fallback to 4K pages since gvt gtt handling doesn't
5168 	 * support huge page entries - we will need to check either hypervisor
5169 	 * mm can support huge guest page or just do emulation in gvt.
5170 	 */
5171 	if (intel_vgpu_active(dev_priv))
5172 		mkwrite_device_info(dev_priv)->page_sizes =
5173 			I915_GTT_PAGE_SIZE_4K;
5174 
5175 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5176 
5177 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5178 		dev_priv->gt.resume = intel_lr_context_resume;
5179 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5180 	} else {
5181 		dev_priv->gt.resume = intel_legacy_submission_resume;
5182 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5183 	}
5184 
5185 	ret = i915_gem_init_userptr(dev_priv);
5186 	if (ret)
5187 		return ret;
5188 
5189 	ret = intel_uc_init_wq(dev_priv);
5190 	if (ret)
5191 		return ret;
5192 
5193 	/* This is just a security blanket to placate dragons.
5194 	 * On some systems, we very sporadically observe that the first TLBs
5195 	 * used by the CS may be stale, despite us poking the TLB reset. If
5196 	 * we hold the forcewake during initialisation these problems
5197 	 * just magically go away.
5198 	 */
5199 	mutex_lock(&dev_priv->drm.struct_mutex);
5200 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5201 
5202 	ret = i915_gem_init_ggtt(dev_priv);
5203 	if (ret) {
5204 		GEM_BUG_ON(ret == -EIO);
5205 		goto err_unlock;
5206 	}
5207 
5208 	ret = i915_gem_contexts_init(dev_priv);
5209 	if (ret) {
5210 		GEM_BUG_ON(ret == -EIO);
5211 		goto err_ggtt;
5212 	}
5213 
5214 	ret = intel_engines_init(dev_priv);
5215 	if (ret) {
5216 		GEM_BUG_ON(ret == -EIO);
5217 		goto err_context;
5218 	}
5219 
5220 	intel_init_gt_powersave(dev_priv);
5221 
5222 	ret = intel_uc_init(dev_priv);
5223 	if (ret)
5224 		goto err_pm;
5225 
5226 	ret = i915_gem_init_hw(dev_priv);
5227 	if (ret)
5228 		goto err_uc_init;
5229 
5230 	/*
5231 	 * Despite its name intel_init_clock_gating applies both display
5232 	 * clock gating workarounds; GT mmio workarounds and the occasional
5233 	 * GT power context workaround. Worse, sometimes it includes a context
5234 	 * register workaround which we need to apply before we record the
5235 	 * default HW state for all contexts.
5236 	 *
5237 	 * FIXME: break up the workarounds and apply them at the right time!
5238 	 */
5239 	intel_init_clock_gating(dev_priv);
5240 
5241 	ret = __intel_engines_record_defaults(dev_priv);
5242 	if (ret)
5243 		goto err_init_hw;
5244 
5245 	if (i915_inject_load_failure()) {
5246 		ret = -ENODEV;
5247 		goto err_init_hw;
5248 	}
5249 
5250 	if (i915_inject_load_failure()) {
5251 		ret = -EIO;
5252 		goto err_init_hw;
5253 	}
5254 
5255 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5256 	mutex_unlock(&dev_priv->drm.struct_mutex);
5257 
5258 	return 0;
5259 
5260 	/*
5261 	 * Unwinding is complicated by that we want to handle -EIO to mean
5262 	 * disable GPU submission but keep KMS alive. We want to mark the
5263 	 * HW as irrevisibly wedged, but keep enough state around that the
5264 	 * driver doesn't explode during runtime.
5265 	 */
5266 err_init_hw:
5267 	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5268 	i915_gem_contexts_lost(dev_priv);
5269 	intel_uc_fini_hw(dev_priv);
5270 err_uc_init:
5271 	intel_uc_fini(dev_priv);
5272 err_pm:
5273 	if (ret != -EIO) {
5274 		intel_cleanup_gt_powersave(dev_priv);
5275 		i915_gem_cleanup_engines(dev_priv);
5276 	}
5277 err_context:
5278 	if (ret != -EIO)
5279 		i915_gem_contexts_fini(dev_priv);
5280 err_ggtt:
5281 err_unlock:
5282 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5283 	mutex_unlock(&dev_priv->drm.struct_mutex);
5284 
5285 	intel_uc_fini_wq(dev_priv);
5286 
5287 	if (ret != -EIO)
5288 		i915_gem_cleanup_userptr(dev_priv);
5289 
5290 	if (ret == -EIO) {
5291 		/*
5292 		 * Allow engine initialisation to fail by marking the GPU as
5293 		 * wedged. But we only want to do this where the GPU is angry,
5294 		 * for all other failure, such as an allocation failure, bail.
5295 		 */
5296 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5297 			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5298 			i915_gem_set_wedged(dev_priv);
5299 		}
5300 		ret = 0;
5301 	}
5302 
5303 	i915_gem_drain_freed_objects(dev_priv);
5304 	return ret;
5305 }
5306 
5307 void i915_gem_init_mmio(struct drm_i915_private *i915)
5308 {
5309 	i915_gem_sanitize(i915);
5310 }
5311 
5312 void
5313 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5314 {
5315 	struct intel_engine_cs *engine;
5316 	enum intel_engine_id id;
5317 
5318 	for_each_engine(engine, dev_priv, id)
5319 		dev_priv->gt.cleanup_engine(engine);
5320 }
5321 
5322 void
5323 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5324 {
5325 	int i;
5326 
5327 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5328 	    !IS_CHERRYVIEW(dev_priv))
5329 		dev_priv->num_fence_regs = 32;
5330 	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
5331 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5332 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5333 		dev_priv->num_fence_regs = 16;
5334 	else
5335 		dev_priv->num_fence_regs = 8;
5336 
5337 	if (intel_vgpu_active(dev_priv))
5338 		dev_priv->num_fence_regs =
5339 				I915_READ(vgtif_reg(avail_rs.fence_num));
5340 
5341 	/* Initialize fence registers to zero */
5342 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5343 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5344 
5345 		fence->i915 = dev_priv;
5346 		fence->id = i;
5347 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5348 	}
5349 	i915_gem_restore_fences(dev_priv);
5350 
5351 	i915_gem_detect_bit_6_swizzle(dev_priv);
5352 }
5353 
5354 static void i915_gem_init__mm(struct drm_i915_private *i915)
5355 {
5356 	spin_lock_init(&i915->mm.object_stat_lock);
5357 	spin_lock_init(&i915->mm.obj_lock);
5358 	spin_lock_init(&i915->mm.free_lock);
5359 
5360 	init_llist_head(&i915->mm.free_list);
5361 
5362 	INIT_LIST_HEAD(&i915->mm.unbound_list);
5363 	INIT_LIST_HEAD(&i915->mm.bound_list);
5364 	INIT_LIST_HEAD(&i915->mm.fence_list);
5365 	INIT_LIST_HEAD(&i915->mm.userfault_list);
5366 
5367 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5368 }
5369 
5370 int
5371 i915_gem_load_init(struct drm_i915_private *dev_priv)
5372 {
5373 	int err = -ENOMEM;
5374 
5375 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5376 	if (!dev_priv->objects)
5377 		goto err_out;
5378 
5379 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5380 	if (!dev_priv->vmas)
5381 		goto err_objects;
5382 
5383 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5384 	if (!dev_priv->luts)
5385 		goto err_vmas;
5386 
5387 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5388 					SLAB_HWCACHE_ALIGN |
5389 					SLAB_RECLAIM_ACCOUNT |
5390 					SLAB_TYPESAFE_BY_RCU);
5391 	if (!dev_priv->requests)
5392 		goto err_luts;
5393 
5394 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5395 					    SLAB_HWCACHE_ALIGN |
5396 					    SLAB_RECLAIM_ACCOUNT);
5397 	if (!dev_priv->dependencies)
5398 		goto err_requests;
5399 
5400 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5401 	if (!dev_priv->priorities)
5402 		goto err_dependencies;
5403 
5404 	mutex_lock(&dev_priv->drm.struct_mutex);
5405 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5406 	err = i915_gem_timeline_init__global(dev_priv);
5407 	mutex_unlock(&dev_priv->drm.struct_mutex);
5408 	if (err)
5409 		goto err_priorities;
5410 
5411 	i915_gem_init__mm(dev_priv);
5412 
5413 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5414 			  i915_gem_retire_work_handler);
5415 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5416 			  i915_gem_idle_work_handler);
5417 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5418 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5419 
5420 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5421 
5422 	spin_lock_init(&dev_priv->fb_tracking.lock);
5423 
5424 	err = i915_gemfs_init(dev_priv);
5425 	if (err)
5426 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5427 
5428 	return 0;
5429 
5430 err_priorities:
5431 	kmem_cache_destroy(dev_priv->priorities);
5432 err_dependencies:
5433 	kmem_cache_destroy(dev_priv->dependencies);
5434 err_requests:
5435 	kmem_cache_destroy(dev_priv->requests);
5436 err_luts:
5437 	kmem_cache_destroy(dev_priv->luts);
5438 err_vmas:
5439 	kmem_cache_destroy(dev_priv->vmas);
5440 err_objects:
5441 	kmem_cache_destroy(dev_priv->objects);
5442 err_out:
5443 	return err;
5444 }
5445 
5446 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5447 {
5448 	i915_gem_drain_freed_objects(dev_priv);
5449 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5450 	WARN_ON(dev_priv->mm.object_count);
5451 
5452 	mutex_lock(&dev_priv->drm.struct_mutex);
5453 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5454 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5455 	mutex_unlock(&dev_priv->drm.struct_mutex);
5456 
5457 	kmem_cache_destroy(dev_priv->priorities);
5458 	kmem_cache_destroy(dev_priv->dependencies);
5459 	kmem_cache_destroy(dev_priv->requests);
5460 	kmem_cache_destroy(dev_priv->luts);
5461 	kmem_cache_destroy(dev_priv->vmas);
5462 	kmem_cache_destroy(dev_priv->objects);
5463 
5464 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5465 	rcu_barrier();
5466 
5467 	i915_gemfs_fini(dev_priv);
5468 }
5469 
5470 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5471 {
5472 	/* Discard all purgeable objects, let userspace recover those as
5473 	 * required after resuming.
5474 	 */
5475 	i915_gem_shrink_all(dev_priv);
5476 
5477 	return 0;
5478 }
5479 
5480 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5481 {
5482 	struct drm_i915_gem_object *obj;
5483 	struct list_head *phases[] = {
5484 		&dev_priv->mm.unbound_list,
5485 		&dev_priv->mm.bound_list,
5486 		NULL
5487 	}, **p;
5488 
5489 	/* Called just before we write the hibernation image.
5490 	 *
5491 	 * We need to update the domain tracking to reflect that the CPU
5492 	 * will be accessing all the pages to create and restore from the
5493 	 * hibernation, and so upon restoration those pages will be in the
5494 	 * CPU domain.
5495 	 *
5496 	 * To make sure the hibernation image contains the latest state,
5497 	 * we update that state just before writing out the image.
5498 	 *
5499 	 * To try and reduce the hibernation image, we manually shrink
5500 	 * the objects as well, see i915_gem_freeze()
5501 	 */
5502 
5503 	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5504 	i915_gem_drain_freed_objects(dev_priv);
5505 
5506 	spin_lock(&dev_priv->mm.obj_lock);
5507 	for (p = phases; *p; p++) {
5508 		list_for_each_entry(obj, *p, mm.link)
5509 			__start_cpu_write(obj);
5510 	}
5511 	spin_unlock(&dev_priv->mm.obj_lock);
5512 
5513 	return 0;
5514 }
5515 
5516 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5517 {
5518 	struct drm_i915_file_private *file_priv = file->driver_priv;
5519 	struct drm_i915_gem_request *request;
5520 
5521 	/* Clean up our request list when the client is going away, so that
5522 	 * later retire_requests won't dereference our soon-to-be-gone
5523 	 * file_priv.
5524 	 */
5525 	spin_lock(&file_priv->mm.lock);
5526 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5527 		request->file_priv = NULL;
5528 	spin_unlock(&file_priv->mm.lock);
5529 }
5530 
5531 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5532 {
5533 	struct drm_i915_file_private *file_priv;
5534 	int ret;
5535 
5536 	DRM_DEBUG("\n");
5537 
5538 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5539 	if (!file_priv)
5540 		return -ENOMEM;
5541 
5542 	file->driver_priv = file_priv;
5543 	file_priv->dev_priv = i915;
5544 	file_priv->file = file;
5545 
5546 	spin_lock_init(&file_priv->mm.lock);
5547 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5548 
5549 	file_priv->bsd_engine = -1;
5550 
5551 	ret = i915_gem_context_open(i915, file);
5552 	if (ret)
5553 		kfree(file_priv);
5554 
5555 	return ret;
5556 }
5557 
5558 /**
5559  * i915_gem_track_fb - update frontbuffer tracking
5560  * @old: current GEM buffer for the frontbuffer slots
5561  * @new: new GEM buffer for the frontbuffer slots
5562  * @frontbuffer_bits: bitmask of frontbuffer slots
5563  *
5564  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5565  * from @old and setting them in @new. Both @old and @new can be NULL.
5566  */
5567 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5568 		       struct drm_i915_gem_object *new,
5569 		       unsigned frontbuffer_bits)
5570 {
5571 	/* Control of individual bits within the mask are guarded by
5572 	 * the owning plane->mutex, i.e. we can never see concurrent
5573 	 * manipulation of individual bits. But since the bitfield as a whole
5574 	 * is updated using RMW, we need to use atomics in order to update
5575 	 * the bits.
5576 	 */
5577 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5578 		     sizeof(atomic_t) * BITS_PER_BYTE);
5579 
5580 	if (old) {
5581 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5582 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5583 	}
5584 
5585 	if (new) {
5586 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5587 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5588 	}
5589 }
5590 
5591 /* Allocate a new GEM object and fill it with the supplied data */
5592 struct drm_i915_gem_object *
5593 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5594 			         const void *data, size_t size)
5595 {
5596 	struct drm_i915_gem_object *obj;
5597 	struct file *file;
5598 	size_t offset;
5599 	int err;
5600 
5601 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5602 	if (IS_ERR(obj))
5603 		return obj;
5604 
5605 	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5606 
5607 	file = obj->base.filp;
5608 	offset = 0;
5609 	do {
5610 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5611 		struct page *page;
5612 		void *pgdata, *vaddr;
5613 
5614 		err = pagecache_write_begin(file, file->f_mapping,
5615 					    offset, len, 0,
5616 					    &page, &pgdata);
5617 		if (err < 0)
5618 			goto fail;
5619 
5620 		vaddr = kmap(page);
5621 		memcpy(vaddr, data, len);
5622 		kunmap(page);
5623 
5624 		err = pagecache_write_end(file, file->f_mapping,
5625 					  offset, len, len,
5626 					  page, pgdata);
5627 		if (err < 0)
5628 			goto fail;
5629 
5630 		size -= len;
5631 		data += len;
5632 		offset += len;
5633 	} while (size);
5634 
5635 	return obj;
5636 
5637 fail:
5638 	i915_gem_object_put(obj);
5639 	return ERR_PTR(err);
5640 }
5641 
5642 struct scatterlist *
5643 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5644 		       unsigned int n,
5645 		       unsigned int *offset)
5646 {
5647 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5648 	struct scatterlist *sg;
5649 	unsigned int idx, count;
5650 
5651 	might_sleep();
5652 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5653 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5654 
5655 	/* As we iterate forward through the sg, we record each entry in a
5656 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5657 	 * this index previously, we will have an entry for it.
5658 	 *
5659 	 * Initial lookup is O(N), but this is amortized to O(1) for
5660 	 * sequential page access (where each new request is consecutive
5661 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5662 	 * i.e. O(1) with a large constant!
5663 	 */
5664 	if (n < READ_ONCE(iter->sg_idx))
5665 		goto lookup;
5666 
5667 	mutex_lock(&iter->lock);
5668 
5669 	/* We prefer to reuse the last sg so that repeated lookup of this
5670 	 * (or the subsequent) sg are fast - comparing against the last
5671 	 * sg is faster than going through the radixtree.
5672 	 */
5673 
5674 	sg = iter->sg_pos;
5675 	idx = iter->sg_idx;
5676 	count = __sg_page_count(sg);
5677 
5678 	while (idx + count <= n) {
5679 		unsigned long exception, i;
5680 		int ret;
5681 
5682 		/* If we cannot allocate and insert this entry, or the
5683 		 * individual pages from this range, cancel updating the
5684 		 * sg_idx so that on this lookup we are forced to linearly
5685 		 * scan onwards, but on future lookups we will try the
5686 		 * insertion again (in which case we need to be careful of
5687 		 * the error return reporting that we have already inserted
5688 		 * this index).
5689 		 */
5690 		ret = radix_tree_insert(&iter->radix, idx, sg);
5691 		if (ret && ret != -EEXIST)
5692 			goto scan;
5693 
5694 		exception =
5695 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5696 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5697 		for (i = 1; i < count; i++) {
5698 			ret = radix_tree_insert(&iter->radix, idx + i,
5699 						(void *)exception);
5700 			if (ret && ret != -EEXIST)
5701 				goto scan;
5702 		}
5703 
5704 		idx += count;
5705 		sg = ____sg_next(sg);
5706 		count = __sg_page_count(sg);
5707 	}
5708 
5709 scan:
5710 	iter->sg_pos = sg;
5711 	iter->sg_idx = idx;
5712 
5713 	mutex_unlock(&iter->lock);
5714 
5715 	if (unlikely(n < idx)) /* insertion completed by another thread */
5716 		goto lookup;
5717 
5718 	/* In case we failed to insert the entry into the radixtree, we need
5719 	 * to look beyond the current sg.
5720 	 */
5721 	while (idx + count <= n) {
5722 		idx += count;
5723 		sg = ____sg_next(sg);
5724 		count = __sg_page_count(sg);
5725 	}
5726 
5727 	*offset = n - idx;
5728 	return sg;
5729 
5730 lookup:
5731 	rcu_read_lock();
5732 
5733 	sg = radix_tree_lookup(&iter->radix, n);
5734 	GEM_BUG_ON(!sg);
5735 
5736 	/* If this index is in the middle of multi-page sg entry,
5737 	 * the radixtree will contain an exceptional entry that points
5738 	 * to the start of that range. We will return the pointer to
5739 	 * the base page and the offset of this page within the
5740 	 * sg entry's range.
5741 	 */
5742 	*offset = 0;
5743 	if (unlikely(radix_tree_exception(sg))) {
5744 		unsigned long base =
5745 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5746 
5747 		sg = radix_tree_lookup(&iter->radix, base);
5748 		GEM_BUG_ON(!sg);
5749 
5750 		*offset = n - base;
5751 	}
5752 
5753 	rcu_read_unlock();
5754 
5755 	return sg;
5756 }
5757 
5758 struct page *
5759 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5760 {
5761 	struct scatterlist *sg;
5762 	unsigned int offset;
5763 
5764 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5765 
5766 	sg = i915_gem_object_get_sg(obj, n, &offset);
5767 	return nth_page(sg_page(sg), offset);
5768 }
5769 
5770 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5771 struct page *
5772 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5773 			       unsigned int n)
5774 {
5775 	struct page *page;
5776 
5777 	page = i915_gem_object_get_page(obj, n);
5778 	if (!obj->mm.dirty)
5779 		set_page_dirty(page);
5780 
5781 	return page;
5782 }
5783 
5784 dma_addr_t
5785 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5786 				unsigned long n)
5787 {
5788 	struct scatterlist *sg;
5789 	unsigned int offset;
5790 
5791 	sg = i915_gem_object_get_sg(obj, n, &offset);
5792 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5793 }
5794 
5795 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5796 {
5797 	struct sg_table *pages;
5798 	int err;
5799 
5800 	if (align > obj->base.size)
5801 		return -EINVAL;
5802 
5803 	if (obj->ops == &i915_gem_phys_ops)
5804 		return 0;
5805 
5806 	if (obj->ops != &i915_gem_object_ops)
5807 		return -EINVAL;
5808 
5809 	err = i915_gem_object_unbind(obj);
5810 	if (err)
5811 		return err;
5812 
5813 	mutex_lock(&obj->mm.lock);
5814 
5815 	if (obj->mm.madv != I915_MADV_WILLNEED) {
5816 		err = -EFAULT;
5817 		goto err_unlock;
5818 	}
5819 
5820 	if (obj->mm.quirked) {
5821 		err = -EFAULT;
5822 		goto err_unlock;
5823 	}
5824 
5825 	if (obj->mm.mapping) {
5826 		err = -EBUSY;
5827 		goto err_unlock;
5828 	}
5829 
5830 	pages = fetch_and_zero(&obj->mm.pages);
5831 	if (pages) {
5832 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
5833 
5834 		__i915_gem_object_reset_page_iter(obj);
5835 
5836 		spin_lock(&i915->mm.obj_lock);
5837 		list_del(&obj->mm.link);
5838 		spin_unlock(&i915->mm.obj_lock);
5839 	}
5840 
5841 	obj->ops = &i915_gem_phys_ops;
5842 
5843 	err = ____i915_gem_object_get_pages(obj);
5844 	if (err)
5845 		goto err_xfer;
5846 
5847 	/* Perma-pin (until release) the physical set of pages */
5848 	__i915_gem_object_pin_pages(obj);
5849 
5850 	if (!IS_ERR_OR_NULL(pages))
5851 		i915_gem_object_ops.put_pages(obj, pages);
5852 	mutex_unlock(&obj->mm.lock);
5853 	return 0;
5854 
5855 err_xfer:
5856 	obj->ops = &i915_gem_object_ops;
5857 	obj->mm.pages = pages;
5858 err_unlock:
5859 	mutex_unlock(&obj->mm.lock);
5860 	return err;
5861 }
5862 
5863 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5864 #include "selftests/scatterlist.c"
5865 #include "selftests/mock_gem_device.c"
5866 #include "selftests/huge_gem_object.c"
5867 #include "selftests/huge_pages.c"
5868 #include "selftests/i915_gem_object.c"
5869 #include "selftests/i915_gem_coherency.c"
5870 #endif
5871