1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drm_vma_manager.h> 29 #include <linux/dma-fence-array.h> 30 #include <linux/kthread.h> 31 #include <linux/dma-resv.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/slab.h> 34 #include <linux/stop_machine.h> 35 #include <linux/swap.h> 36 #include <linux/pci.h> 37 #include <linux/dma-buf.h> 38 #include <linux/mman.h> 39 40 #include "display/intel_display.h" 41 #include "display/intel_frontbuffer.h" 42 43 #include "gem/i915_gem_clflush.h" 44 #include "gem/i915_gem_context.h" 45 #include "gem/i915_gem_ioctls.h" 46 #include "gem/i915_gem_mman.h" 47 #include "gem/i915_gem_region.h" 48 #include "gt/intel_engine_user.h" 49 #include "gt/intel_gt.h" 50 #include "gt/intel_gt_pm.h" 51 #include "gt/intel_workarounds.h" 52 53 #include "i915_drv.h" 54 #include "i915_trace.h" 55 #include "i915_vgpu.h" 56 57 #include "intel_pm.h" 58 59 static int 60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size) 61 { 62 int err; 63 64 err = mutex_lock_interruptible(&ggtt->vm.mutex); 65 if (err) 66 return err; 67 68 memset(node, 0, sizeof(*node)); 69 err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node, 70 size, 0, I915_COLOR_UNEVICTABLE, 71 0, ggtt->mappable_end, 72 DRM_MM_INSERT_LOW); 73 74 mutex_unlock(&ggtt->vm.mutex); 75 76 return err; 77 } 78 79 static void 80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node) 81 { 82 mutex_lock(&ggtt->vm.mutex); 83 drm_mm_remove_node(node); 84 mutex_unlock(&ggtt->vm.mutex); 85 } 86 87 int 88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 89 struct drm_file *file) 90 { 91 struct i915_ggtt *ggtt = &to_i915(dev)->ggtt; 92 struct drm_i915_gem_get_aperture *args = data; 93 struct i915_vma *vma; 94 u64 pinned; 95 96 if (mutex_lock_interruptible(&ggtt->vm.mutex)) 97 return -EINTR; 98 99 pinned = ggtt->vm.reserved; 100 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) 101 if (i915_vma_is_pinned(vma)) 102 pinned += vma->node.size; 103 104 mutex_unlock(&ggtt->vm.mutex); 105 106 args->aper_size = ggtt->vm.total; 107 args->aper_available_size = args->aper_size - pinned; 108 109 return 0; 110 } 111 112 int i915_gem_object_unbind(struct drm_i915_gem_object *obj, 113 unsigned long flags) 114 { 115 struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm; 116 LIST_HEAD(still_in_list); 117 intel_wakeref_t wakeref; 118 struct i915_vma *vma; 119 int ret; 120 121 if (list_empty(&obj->vma.list)) 122 return 0; 123 124 /* 125 * As some machines use ACPI to handle runtime-resume callbacks, and 126 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex 127 * as they are required by the shrinker. Ergo, we wake the device up 128 * first just in case. 129 */ 130 wakeref = intel_runtime_pm_get(rpm); 131 132 try_again: 133 ret = 0; 134 spin_lock(&obj->vma.lock); 135 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list, 136 struct i915_vma, 137 obj_link))) { 138 struct i915_address_space *vm = vma->vm; 139 140 list_move_tail(&vma->obj_link, &still_in_list); 141 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) 142 continue; 143 144 if (flags & I915_GEM_OBJECT_UNBIND_TEST) { 145 ret = -EBUSY; 146 break; 147 } 148 149 ret = -EAGAIN; 150 if (!i915_vm_tryopen(vm)) 151 break; 152 153 /* Prevent vma being freed by i915_vma_parked as we unbind */ 154 vma = __i915_vma_get(vma); 155 spin_unlock(&obj->vma.lock); 156 157 if (vma) { 158 ret = -EBUSY; 159 if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE || 160 !i915_vma_is_active(vma)) { 161 if (flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK) { 162 if (mutex_trylock(&vma->vm->mutex)) { 163 ret = __i915_vma_unbind(vma); 164 mutex_unlock(&vma->vm->mutex); 165 } else { 166 ret = -EBUSY; 167 } 168 } else { 169 ret = i915_vma_unbind(vma); 170 } 171 } 172 173 __i915_vma_put(vma); 174 } 175 176 i915_vm_close(vm); 177 spin_lock(&obj->vma.lock); 178 } 179 list_splice_init(&still_in_list, &obj->vma.list); 180 spin_unlock(&obj->vma.lock); 181 182 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) { 183 rcu_barrier(); /* flush the i915_vm_release() */ 184 goto try_again; 185 } 186 187 intel_runtime_pm_put(rpm, wakeref); 188 189 return ret; 190 } 191 192 static int 193 shmem_pread(struct page *page, int offset, int len, char __user *user_data, 194 bool needs_clflush) 195 { 196 char *vaddr; 197 int ret; 198 199 vaddr = kmap(page); 200 201 if (needs_clflush) 202 drm_clflush_virt_range(vaddr + offset, len); 203 204 ret = __copy_to_user(user_data, vaddr + offset, len); 205 206 kunmap(page); 207 208 return ret ? -EFAULT : 0; 209 } 210 211 static int 212 i915_gem_shmem_pread(struct drm_i915_gem_object *obj, 213 struct drm_i915_gem_pread *args) 214 { 215 unsigned int needs_clflush; 216 unsigned int idx, offset; 217 char __user *user_data; 218 u64 remain; 219 int ret; 220 221 ret = i915_gem_object_lock_interruptible(obj, NULL); 222 if (ret) 223 return ret; 224 225 ret = i915_gem_object_pin_pages(obj); 226 if (ret) 227 goto err_unlock; 228 229 ret = i915_gem_object_prepare_read(obj, &needs_clflush); 230 if (ret) 231 goto err_unpin; 232 233 i915_gem_object_finish_access(obj); 234 i915_gem_object_unlock(obj); 235 236 remain = args->size; 237 user_data = u64_to_user_ptr(args->data_ptr); 238 offset = offset_in_page(args->offset); 239 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 240 struct page *page = i915_gem_object_get_page(obj, idx); 241 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); 242 243 ret = shmem_pread(page, offset, length, user_data, 244 needs_clflush); 245 if (ret) 246 break; 247 248 remain -= length; 249 user_data += length; 250 offset = 0; 251 } 252 253 i915_gem_object_unpin_pages(obj); 254 return ret; 255 256 err_unpin: 257 i915_gem_object_unpin_pages(obj); 258 err_unlock: 259 i915_gem_object_unlock(obj); 260 return ret; 261 } 262 263 static inline bool 264 gtt_user_read(struct io_mapping *mapping, 265 loff_t base, int offset, 266 char __user *user_data, int length) 267 { 268 void __iomem *vaddr; 269 unsigned long unwritten; 270 271 /* We can use the cpu mem copy function because this is X86. */ 272 vaddr = io_mapping_map_atomic_wc(mapping, base); 273 unwritten = __copy_to_user_inatomic(user_data, 274 (void __force *)vaddr + offset, 275 length); 276 io_mapping_unmap_atomic(vaddr); 277 if (unwritten) { 278 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 279 unwritten = copy_to_user(user_data, 280 (void __force *)vaddr + offset, 281 length); 282 io_mapping_unmap(vaddr); 283 } 284 return unwritten; 285 } 286 287 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj, 288 struct drm_mm_node *node, 289 bool write) 290 { 291 struct drm_i915_private *i915 = to_i915(obj->base.dev); 292 struct i915_ggtt *ggtt = &i915->ggtt; 293 struct i915_vma *vma; 294 struct i915_gem_ww_ctx ww; 295 int ret; 296 297 i915_gem_ww_ctx_init(&ww, true); 298 retry: 299 vma = ERR_PTR(-ENODEV); 300 ret = i915_gem_object_lock(obj, &ww); 301 if (ret) 302 goto err_ww; 303 304 ret = i915_gem_object_set_to_gtt_domain(obj, write); 305 if (ret) 306 goto err_ww; 307 308 if (!i915_gem_object_is_tiled(obj)) 309 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0, 310 PIN_MAPPABLE | 311 PIN_NONBLOCK /* NOWARN */ | 312 PIN_NOEVICT); 313 if (vma == ERR_PTR(-EDEADLK)) { 314 ret = -EDEADLK; 315 goto err_ww; 316 } else if (!IS_ERR(vma)) { 317 node->start = i915_ggtt_offset(vma); 318 node->flags = 0; 319 } else { 320 ret = insert_mappable_node(ggtt, node, PAGE_SIZE); 321 if (ret) 322 goto err_ww; 323 GEM_BUG_ON(!drm_mm_node_allocated(node)); 324 vma = NULL; 325 } 326 327 ret = i915_gem_object_pin_pages(obj); 328 if (ret) { 329 if (drm_mm_node_allocated(node)) { 330 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size); 331 remove_mappable_node(ggtt, node); 332 } else { 333 i915_vma_unpin(vma); 334 } 335 } 336 337 err_ww: 338 if (ret == -EDEADLK) { 339 ret = i915_gem_ww_ctx_backoff(&ww); 340 if (!ret) 341 goto retry; 342 } 343 i915_gem_ww_ctx_fini(&ww); 344 345 return ret ? ERR_PTR(ret) : vma; 346 } 347 348 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj, 349 struct drm_mm_node *node, 350 struct i915_vma *vma) 351 { 352 struct drm_i915_private *i915 = to_i915(obj->base.dev); 353 struct i915_ggtt *ggtt = &i915->ggtt; 354 355 i915_gem_object_unpin_pages(obj); 356 if (drm_mm_node_allocated(node)) { 357 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size); 358 remove_mappable_node(ggtt, node); 359 } else { 360 i915_vma_unpin(vma); 361 } 362 } 363 364 static int 365 i915_gem_gtt_pread(struct drm_i915_gem_object *obj, 366 const struct drm_i915_gem_pread *args) 367 { 368 struct drm_i915_private *i915 = to_i915(obj->base.dev); 369 struct i915_ggtt *ggtt = &i915->ggtt; 370 intel_wakeref_t wakeref; 371 struct drm_mm_node node; 372 void __user *user_data; 373 struct i915_vma *vma; 374 u64 remain, offset; 375 int ret = 0; 376 377 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 378 379 vma = i915_gem_gtt_prepare(obj, &node, false); 380 if (IS_ERR(vma)) { 381 ret = PTR_ERR(vma); 382 goto out_rpm; 383 } 384 385 user_data = u64_to_user_ptr(args->data_ptr); 386 remain = args->size; 387 offset = args->offset; 388 389 while (remain > 0) { 390 /* Operation in this page 391 * 392 * page_base = page offset within aperture 393 * page_offset = offset within page 394 * page_length = bytes to copy for this page 395 */ 396 u32 page_base = node.start; 397 unsigned page_offset = offset_in_page(offset); 398 unsigned page_length = PAGE_SIZE - page_offset; 399 page_length = remain < page_length ? remain : page_length; 400 if (drm_mm_node_allocated(&node)) { 401 ggtt->vm.insert_page(&ggtt->vm, 402 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 403 node.start, I915_CACHE_NONE, 0); 404 } else { 405 page_base += offset & PAGE_MASK; 406 } 407 408 if (gtt_user_read(&ggtt->iomap, page_base, page_offset, 409 user_data, page_length)) { 410 ret = -EFAULT; 411 break; 412 } 413 414 remain -= page_length; 415 user_data += page_length; 416 offset += page_length; 417 } 418 419 i915_gem_gtt_cleanup(obj, &node, vma); 420 out_rpm: 421 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 422 return ret; 423 } 424 425 /** 426 * Reads data from the object referenced by handle. 427 * @dev: drm device pointer 428 * @data: ioctl data blob 429 * @file: drm file pointer 430 * 431 * On error, the contents of *data are undefined. 432 */ 433 int 434 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 435 struct drm_file *file) 436 { 437 struct drm_i915_private *i915 = to_i915(dev); 438 struct drm_i915_gem_pread *args = data; 439 struct drm_i915_gem_object *obj; 440 int ret; 441 442 /* PREAD is disallowed for all platforms after TGL-LP. This also 443 * covers all platforms with local memory. 444 */ 445 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915)) 446 return -EOPNOTSUPP; 447 448 if (args->size == 0) 449 return 0; 450 451 if (!access_ok(u64_to_user_ptr(args->data_ptr), 452 args->size)) 453 return -EFAULT; 454 455 obj = i915_gem_object_lookup(file, args->handle); 456 if (!obj) 457 return -ENOENT; 458 459 /* Bounds check source. */ 460 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 461 ret = -EINVAL; 462 goto out; 463 } 464 465 trace_i915_gem_object_pread(obj, args->offset, args->size); 466 ret = -ENODEV; 467 if (obj->ops->pread) 468 ret = obj->ops->pread(obj, args); 469 if (ret != -ENODEV) 470 goto out; 471 472 ret = -ENODEV; 473 if (obj->ops->pread) 474 ret = obj->ops->pread(obj, args); 475 if (ret != -ENODEV) 476 goto out; 477 478 ret = i915_gem_object_wait(obj, 479 I915_WAIT_INTERRUPTIBLE, 480 MAX_SCHEDULE_TIMEOUT); 481 if (ret) 482 goto out; 483 484 ret = i915_gem_shmem_pread(obj, args); 485 if (ret == -EFAULT || ret == -ENODEV) 486 ret = i915_gem_gtt_pread(obj, args); 487 488 out: 489 i915_gem_object_put(obj); 490 return ret; 491 } 492 493 /* This is the fast write path which cannot handle 494 * page faults in the source data 495 */ 496 497 static inline bool 498 ggtt_write(struct io_mapping *mapping, 499 loff_t base, int offset, 500 char __user *user_data, int length) 501 { 502 void __iomem *vaddr; 503 unsigned long unwritten; 504 505 /* We can use the cpu mem copy function because this is X86. */ 506 vaddr = io_mapping_map_atomic_wc(mapping, base); 507 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, 508 user_data, length); 509 io_mapping_unmap_atomic(vaddr); 510 if (unwritten) { 511 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 512 unwritten = copy_from_user((void __force *)vaddr + offset, 513 user_data, length); 514 io_mapping_unmap(vaddr); 515 } 516 517 return unwritten; 518 } 519 520 /** 521 * This is the fast pwrite path, where we copy the data directly from the 522 * user into the GTT, uncached. 523 * @obj: i915 GEM object 524 * @args: pwrite arguments structure 525 */ 526 static int 527 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, 528 const struct drm_i915_gem_pwrite *args) 529 { 530 struct drm_i915_private *i915 = to_i915(obj->base.dev); 531 struct i915_ggtt *ggtt = &i915->ggtt; 532 struct intel_runtime_pm *rpm = &i915->runtime_pm; 533 intel_wakeref_t wakeref; 534 struct drm_mm_node node; 535 struct i915_vma *vma; 536 u64 remain, offset; 537 void __user *user_data; 538 int ret = 0; 539 540 if (i915_gem_object_has_struct_page(obj)) { 541 /* 542 * Avoid waking the device up if we can fallback, as 543 * waking/resuming is very slow (worst-case 10-100 ms 544 * depending on PCI sleeps and our own resume time). 545 * This easily dwarfs any performance advantage from 546 * using the cache bypass of indirect GGTT access. 547 */ 548 wakeref = intel_runtime_pm_get_if_in_use(rpm); 549 if (!wakeref) 550 return -EFAULT; 551 } else { 552 /* No backing pages, no fallback, we must force GGTT access */ 553 wakeref = intel_runtime_pm_get(rpm); 554 } 555 556 vma = i915_gem_gtt_prepare(obj, &node, true); 557 if (IS_ERR(vma)) { 558 ret = PTR_ERR(vma); 559 goto out_rpm; 560 } 561 562 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU); 563 564 user_data = u64_to_user_ptr(args->data_ptr); 565 offset = args->offset; 566 remain = args->size; 567 while (remain) { 568 /* Operation in this page 569 * 570 * page_base = page offset within aperture 571 * page_offset = offset within page 572 * page_length = bytes to copy for this page 573 */ 574 u32 page_base = node.start; 575 unsigned int page_offset = offset_in_page(offset); 576 unsigned int page_length = PAGE_SIZE - page_offset; 577 page_length = remain < page_length ? remain : page_length; 578 if (drm_mm_node_allocated(&node)) { 579 /* flush the write before we modify the GGTT */ 580 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 581 ggtt->vm.insert_page(&ggtt->vm, 582 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 583 node.start, I915_CACHE_NONE, 0); 584 wmb(); /* flush modifications to the GGTT (insert_page) */ 585 } else { 586 page_base += offset & PAGE_MASK; 587 } 588 /* If we get a fault while copying data, then (presumably) our 589 * source page isn't available. Return the error and we'll 590 * retry in the slow path. 591 * If the object is non-shmem backed, we retry again with the 592 * path that handles page fault. 593 */ 594 if (ggtt_write(&ggtt->iomap, page_base, page_offset, 595 user_data, page_length)) { 596 ret = -EFAULT; 597 break; 598 } 599 600 remain -= page_length; 601 user_data += page_length; 602 offset += page_length; 603 } 604 605 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 606 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); 607 608 i915_gem_gtt_cleanup(obj, &node, vma); 609 out_rpm: 610 intel_runtime_pm_put(rpm, wakeref); 611 return ret; 612 } 613 614 /* Per-page copy function for the shmem pwrite fastpath. 615 * Flushes invalid cachelines before writing to the target if 616 * needs_clflush_before is set and flushes out any written cachelines after 617 * writing if needs_clflush is set. 618 */ 619 static int 620 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, 621 bool needs_clflush_before, 622 bool needs_clflush_after) 623 { 624 char *vaddr; 625 int ret; 626 627 vaddr = kmap(page); 628 629 if (needs_clflush_before) 630 drm_clflush_virt_range(vaddr + offset, len); 631 632 ret = __copy_from_user(vaddr + offset, user_data, len); 633 if (!ret && needs_clflush_after) 634 drm_clflush_virt_range(vaddr + offset, len); 635 636 kunmap(page); 637 638 return ret ? -EFAULT : 0; 639 } 640 641 static int 642 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, 643 const struct drm_i915_gem_pwrite *args) 644 { 645 unsigned int partial_cacheline_write; 646 unsigned int needs_clflush; 647 unsigned int offset, idx; 648 void __user *user_data; 649 u64 remain; 650 int ret; 651 652 ret = i915_gem_object_lock_interruptible(obj, NULL); 653 if (ret) 654 return ret; 655 656 ret = i915_gem_object_pin_pages(obj); 657 if (ret) 658 goto err_unlock; 659 660 ret = i915_gem_object_prepare_write(obj, &needs_clflush); 661 if (ret) 662 goto err_unpin; 663 664 i915_gem_object_finish_access(obj); 665 i915_gem_object_unlock(obj); 666 667 /* If we don't overwrite a cacheline completely we need to be 668 * careful to have up-to-date data by first clflushing. Don't 669 * overcomplicate things and flush the entire patch. 670 */ 671 partial_cacheline_write = 0; 672 if (needs_clflush & CLFLUSH_BEFORE) 673 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; 674 675 user_data = u64_to_user_ptr(args->data_ptr); 676 remain = args->size; 677 offset = offset_in_page(args->offset); 678 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 679 struct page *page = i915_gem_object_get_page(obj, idx); 680 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); 681 682 ret = shmem_pwrite(page, offset, length, user_data, 683 (offset | length) & partial_cacheline_write, 684 needs_clflush & CLFLUSH_AFTER); 685 if (ret) 686 break; 687 688 remain -= length; 689 user_data += length; 690 offset = 0; 691 } 692 693 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); 694 695 i915_gem_object_unpin_pages(obj); 696 return ret; 697 698 err_unpin: 699 i915_gem_object_unpin_pages(obj); 700 err_unlock: 701 i915_gem_object_unlock(obj); 702 return ret; 703 } 704 705 /** 706 * Writes data to the object referenced by handle. 707 * @dev: drm device 708 * @data: ioctl data blob 709 * @file: drm file 710 * 711 * On error, the contents of the buffer that were to be modified are undefined. 712 */ 713 int 714 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 715 struct drm_file *file) 716 { 717 struct drm_i915_private *i915 = to_i915(dev); 718 struct drm_i915_gem_pwrite *args = data; 719 struct drm_i915_gem_object *obj; 720 int ret; 721 722 /* PWRITE is disallowed for all platforms after TGL-LP. This also 723 * covers all platforms with local memory. 724 */ 725 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915)) 726 return -EOPNOTSUPP; 727 728 if (args->size == 0) 729 return 0; 730 731 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) 732 return -EFAULT; 733 734 obj = i915_gem_object_lookup(file, args->handle); 735 if (!obj) 736 return -ENOENT; 737 738 /* Bounds check destination. */ 739 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 740 ret = -EINVAL; 741 goto err; 742 } 743 744 /* Writes not allowed into this read-only object */ 745 if (i915_gem_object_is_readonly(obj)) { 746 ret = -EINVAL; 747 goto err; 748 } 749 750 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 751 752 ret = -ENODEV; 753 if (obj->ops->pwrite) 754 ret = obj->ops->pwrite(obj, args); 755 if (ret != -ENODEV) 756 goto err; 757 758 ret = i915_gem_object_wait(obj, 759 I915_WAIT_INTERRUPTIBLE | 760 I915_WAIT_ALL, 761 MAX_SCHEDULE_TIMEOUT); 762 if (ret) 763 goto err; 764 765 ret = -EFAULT; 766 /* We can only do the GTT pwrite on untiled buffers, as otherwise 767 * it would end up going through the fenced access, and we'll get 768 * different detiling behavior between reading and writing. 769 * pread/pwrite currently are reading and writing from the CPU 770 * perspective, requiring manual detiling by the client. 771 */ 772 if (!i915_gem_object_has_struct_page(obj) || 773 cpu_write_needs_clflush(obj)) 774 /* Note that the gtt paths might fail with non-page-backed user 775 * pointers (e.g. gtt mappings when moving data between 776 * textures). Fallback to the shmem path in that case. 777 */ 778 ret = i915_gem_gtt_pwrite_fast(obj, args); 779 780 if (ret == -EFAULT || ret == -ENOSPC) { 781 if (i915_gem_object_has_struct_page(obj)) 782 ret = i915_gem_shmem_pwrite(obj, args); 783 } 784 785 err: 786 i915_gem_object_put(obj); 787 return ret; 788 } 789 790 /** 791 * Called when user space has done writes to this buffer 792 * @dev: drm device 793 * @data: ioctl data blob 794 * @file: drm file 795 */ 796 int 797 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 798 struct drm_file *file) 799 { 800 struct drm_i915_gem_sw_finish *args = data; 801 struct drm_i915_gem_object *obj; 802 803 obj = i915_gem_object_lookup(file, args->handle); 804 if (!obj) 805 return -ENOENT; 806 807 /* 808 * Proxy objects are barred from CPU access, so there is no 809 * need to ban sw_finish as it is a nop. 810 */ 811 812 /* Pinned buffers may be scanout, so flush the cache */ 813 i915_gem_object_flush_if_display(obj); 814 i915_gem_object_put(obj); 815 816 return 0; 817 } 818 819 void i915_gem_runtime_suspend(struct drm_i915_private *i915) 820 { 821 struct drm_i915_gem_object *obj, *on; 822 int i; 823 824 /* 825 * Only called during RPM suspend. All users of the userfault_list 826 * must be holding an RPM wakeref to ensure that this can not 827 * run concurrently with themselves (and use the struct_mutex for 828 * protection between themselves). 829 */ 830 831 list_for_each_entry_safe(obj, on, 832 &i915->ggtt.userfault_list, userfault_link) 833 __i915_gem_object_release_mmap_gtt(obj); 834 835 /* 836 * The fence will be lost when the device powers down. If any were 837 * in use by hardware (i.e. they are pinned), we should not be powering 838 * down! All other fences will be reacquired by the user upon waking. 839 */ 840 for (i = 0; i < i915->ggtt.num_fences; i++) { 841 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i]; 842 843 /* 844 * Ideally we want to assert that the fence register is not 845 * live at this point (i.e. that no piece of code will be 846 * trying to write through fence + GTT, as that both violates 847 * our tracking of activity and associated locking/barriers, 848 * but also is illegal given that the hw is powered down). 849 * 850 * Previously we used reg->pin_count as a "liveness" indicator. 851 * That is not sufficient, and we need a more fine-grained 852 * tool if we want to have a sanity check here. 853 */ 854 855 if (!reg->vma) 856 continue; 857 858 GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); 859 reg->dirty = true; 860 } 861 } 862 863 static void discard_ggtt_vma(struct i915_vma *vma) 864 { 865 struct drm_i915_gem_object *obj = vma->obj; 866 867 spin_lock(&obj->vma.lock); 868 if (!RB_EMPTY_NODE(&vma->obj_node)) { 869 rb_erase(&vma->obj_node, &obj->vma.tree); 870 RB_CLEAR_NODE(&vma->obj_node); 871 } 872 spin_unlock(&obj->vma.lock); 873 } 874 875 struct i915_vma * 876 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj, 877 struct i915_gem_ww_ctx *ww, 878 const struct i915_ggtt_view *view, 879 u64 size, u64 alignment, u64 flags) 880 { 881 struct drm_i915_private *i915 = to_i915(obj->base.dev); 882 struct i915_ggtt *ggtt = &i915->ggtt; 883 struct i915_vma *vma; 884 int ret; 885 886 if (flags & PIN_MAPPABLE && 887 (!view || view->type == I915_GGTT_VIEW_NORMAL)) { 888 /* 889 * If the required space is larger than the available 890 * aperture, we will not able to find a slot for the 891 * object and unbinding the object now will be in 892 * vain. Worse, doing so may cause us to ping-pong 893 * the object in and out of the Global GTT and 894 * waste a lot of cycles under the mutex. 895 */ 896 if (obj->base.size > ggtt->mappable_end) 897 return ERR_PTR(-E2BIG); 898 899 /* 900 * If NONBLOCK is set the caller is optimistically 901 * trying to cache the full object within the mappable 902 * aperture, and *must* have a fallback in place for 903 * situations where we cannot bind the object. We 904 * can be a little more lax here and use the fallback 905 * more often to avoid costly migrations of ourselves 906 * and other objects within the aperture. 907 * 908 * Half-the-aperture is used as a simple heuristic. 909 * More interesting would to do search for a free 910 * block prior to making the commitment to unbind. 911 * That caters for the self-harm case, and with a 912 * little more heuristics (e.g. NOFAULT, NOEVICT) 913 * we could try to minimise harm to others. 914 */ 915 if (flags & PIN_NONBLOCK && 916 obj->base.size > ggtt->mappable_end / 2) 917 return ERR_PTR(-ENOSPC); 918 } 919 920 new_vma: 921 vma = i915_vma_instance(obj, &ggtt->vm, view); 922 if (IS_ERR(vma)) 923 return vma; 924 925 if (i915_vma_misplaced(vma, size, alignment, flags)) { 926 if (flags & PIN_NONBLOCK) { 927 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) 928 return ERR_PTR(-ENOSPC); 929 930 if (flags & PIN_MAPPABLE && 931 vma->fence_size > ggtt->mappable_end / 2) 932 return ERR_PTR(-ENOSPC); 933 } 934 935 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) { 936 discard_ggtt_vma(vma); 937 goto new_vma; 938 } 939 940 ret = i915_vma_unbind(vma); 941 if (ret) 942 return ERR_PTR(ret); 943 } 944 945 if (ww) 946 ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL); 947 else 948 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); 949 950 if (ret) 951 return ERR_PTR(ret); 952 953 if (vma->fence && !i915_gem_object_is_tiled(obj)) { 954 mutex_lock(&ggtt->vm.mutex); 955 i915_vma_revoke_fence(vma); 956 mutex_unlock(&ggtt->vm.mutex); 957 } 958 959 ret = i915_vma_wait_for_bind(vma); 960 if (ret) { 961 i915_vma_unpin(vma); 962 return ERR_PTR(ret); 963 } 964 965 return vma; 966 } 967 968 int 969 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 970 struct drm_file *file_priv) 971 { 972 struct drm_i915_private *i915 = to_i915(dev); 973 struct drm_i915_gem_madvise *args = data; 974 struct drm_i915_gem_object *obj; 975 int err; 976 977 switch (args->madv) { 978 case I915_MADV_DONTNEED: 979 case I915_MADV_WILLNEED: 980 break; 981 default: 982 return -EINVAL; 983 } 984 985 obj = i915_gem_object_lookup(file_priv, args->handle); 986 if (!obj) 987 return -ENOENT; 988 989 err = i915_gem_object_lock_interruptible(obj, NULL); 990 if (err) 991 goto out; 992 993 if (i915_gem_object_has_pages(obj) && 994 i915_gem_object_is_tiled(obj) && 995 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 996 if (obj->mm.madv == I915_MADV_WILLNEED) { 997 GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj)); 998 i915_gem_object_clear_tiling_quirk(obj); 999 i915_gem_object_make_shrinkable(obj); 1000 } 1001 if (args->madv == I915_MADV_WILLNEED) { 1002 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj)); 1003 i915_gem_object_make_unshrinkable(obj); 1004 i915_gem_object_set_tiling_quirk(obj); 1005 } 1006 } 1007 1008 if (obj->mm.madv != __I915_MADV_PURGED) { 1009 obj->mm.madv = args->madv; 1010 if (obj->ops->adjust_lru) 1011 obj->ops->adjust_lru(obj); 1012 } 1013 1014 if (i915_gem_object_has_pages(obj)) { 1015 unsigned long flags; 1016 1017 spin_lock_irqsave(&i915->mm.obj_lock, flags); 1018 if (!list_empty(&obj->mm.link)) { 1019 struct list_head *list; 1020 1021 if (obj->mm.madv != I915_MADV_WILLNEED) 1022 list = &i915->mm.purge_list; 1023 else 1024 list = &i915->mm.shrink_list; 1025 list_move_tail(&obj->mm.link, list); 1026 1027 } 1028 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 1029 } 1030 1031 /* if the object is no longer attached, discard its backing storage */ 1032 if (obj->mm.madv == I915_MADV_DONTNEED && 1033 !i915_gem_object_has_pages(obj)) 1034 i915_gem_object_truncate(obj); 1035 1036 args->retained = obj->mm.madv != __I915_MADV_PURGED; 1037 1038 i915_gem_object_unlock(obj); 1039 out: 1040 i915_gem_object_put(obj); 1041 return err; 1042 } 1043 1044 int i915_gem_init(struct drm_i915_private *dev_priv) 1045 { 1046 int ret; 1047 1048 /* We need to fallback to 4K pages if host doesn't support huge gtt. */ 1049 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv)) 1050 mkwrite_device_info(dev_priv)->page_sizes = 1051 I915_GTT_PAGE_SIZE_4K; 1052 1053 ret = i915_gem_init_userptr(dev_priv); 1054 if (ret) 1055 return ret; 1056 1057 intel_uc_fetch_firmwares(&dev_priv->gt.uc); 1058 intel_wopcm_init(&dev_priv->wopcm); 1059 1060 ret = i915_init_ggtt(dev_priv); 1061 if (ret) { 1062 GEM_BUG_ON(ret == -EIO); 1063 goto err_unlock; 1064 } 1065 1066 /* 1067 * Despite its name intel_init_clock_gating applies both display 1068 * clock gating workarounds; GT mmio workarounds and the occasional 1069 * GT power context workaround. Worse, sometimes it includes a context 1070 * register workaround which we need to apply before we record the 1071 * default HW state for all contexts. 1072 * 1073 * FIXME: break up the workarounds and apply them at the right time! 1074 */ 1075 intel_init_clock_gating(dev_priv); 1076 1077 ret = intel_gt_init(&dev_priv->gt); 1078 if (ret) 1079 goto err_unlock; 1080 1081 return 0; 1082 1083 /* 1084 * Unwinding is complicated by that we want to handle -EIO to mean 1085 * disable GPU submission but keep KMS alive. We want to mark the 1086 * HW as irrevisibly wedged, but keep enough state around that the 1087 * driver doesn't explode during runtime. 1088 */ 1089 err_unlock: 1090 i915_gem_drain_workqueue(dev_priv); 1091 1092 if (ret != -EIO) 1093 intel_uc_cleanup_firmwares(&dev_priv->gt.uc); 1094 1095 if (ret == -EIO) { 1096 /* 1097 * Allow engines or uC initialisation to fail by marking the GPU 1098 * as wedged. But we only want to do this when the GPU is angry, 1099 * for all other failure, such as an allocation failure, bail. 1100 */ 1101 if (!intel_gt_is_wedged(&dev_priv->gt)) { 1102 i915_probe_error(dev_priv, 1103 "Failed to initialize GPU, declaring it wedged!\n"); 1104 intel_gt_set_wedged(&dev_priv->gt); 1105 } 1106 1107 /* Minimal basic recovery for KMS */ 1108 ret = i915_ggtt_enable_hw(dev_priv); 1109 i915_ggtt_resume(&dev_priv->ggtt); 1110 intel_init_clock_gating(dev_priv); 1111 } 1112 1113 i915_gem_drain_freed_objects(dev_priv); 1114 1115 return ret; 1116 } 1117 1118 void i915_gem_driver_register(struct drm_i915_private *i915) 1119 { 1120 i915_gem_driver_register__shrinker(i915); 1121 1122 intel_engines_driver_register(i915); 1123 } 1124 1125 void i915_gem_driver_unregister(struct drm_i915_private *i915) 1126 { 1127 i915_gem_driver_unregister__shrinker(i915); 1128 } 1129 1130 void i915_gem_driver_remove(struct drm_i915_private *dev_priv) 1131 { 1132 intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref); 1133 1134 i915_gem_suspend_late(dev_priv); 1135 intel_gt_driver_remove(&dev_priv->gt); 1136 dev_priv->uabi_engines = RB_ROOT; 1137 1138 /* Flush any outstanding unpin_work. */ 1139 i915_gem_drain_workqueue(dev_priv); 1140 1141 i915_gem_drain_freed_objects(dev_priv); 1142 } 1143 1144 void i915_gem_driver_release(struct drm_i915_private *dev_priv) 1145 { 1146 intel_gt_driver_release(&dev_priv->gt); 1147 1148 intel_wa_list_free(&dev_priv->gt_wa_list); 1149 1150 intel_uc_cleanup_firmwares(&dev_priv->gt.uc); 1151 1152 i915_gem_drain_freed_objects(dev_priv); 1153 1154 drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list)); 1155 } 1156 1157 static void i915_gem_init__mm(struct drm_i915_private *i915) 1158 { 1159 spin_lock_init(&i915->mm.obj_lock); 1160 1161 init_llist_head(&i915->mm.free_list); 1162 1163 INIT_LIST_HEAD(&i915->mm.purge_list); 1164 INIT_LIST_HEAD(&i915->mm.shrink_list); 1165 1166 i915_gem_init__objects(i915); 1167 } 1168 1169 void i915_gem_init_early(struct drm_i915_private *dev_priv) 1170 { 1171 i915_gem_init__mm(dev_priv); 1172 i915_gem_init__contexts(dev_priv); 1173 1174 spin_lock_init(&dev_priv->fb_tracking.lock); 1175 } 1176 1177 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv) 1178 { 1179 i915_gem_drain_freed_objects(dev_priv); 1180 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); 1181 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); 1182 drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count); 1183 } 1184 1185 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) 1186 { 1187 struct drm_i915_file_private *file_priv; 1188 int ret; 1189 1190 DRM_DEBUG("\n"); 1191 1192 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 1193 if (!file_priv) 1194 return -ENOMEM; 1195 1196 file->driver_priv = file_priv; 1197 file_priv->dev_priv = i915; 1198 file_priv->file = file; 1199 1200 file_priv->bsd_engine = -1; 1201 file_priv->hang_timestamp = jiffies; 1202 1203 ret = i915_gem_context_open(i915, file); 1204 if (ret) 1205 kfree(file_priv); 1206 1207 return ret; 1208 } 1209 1210 void i915_gem_ww_ctx_init(struct i915_gem_ww_ctx *ww, bool intr) 1211 { 1212 ww_acquire_init(&ww->ctx, &reservation_ww_class); 1213 INIT_LIST_HEAD(&ww->obj_list); 1214 ww->intr = intr; 1215 ww->contended = NULL; 1216 } 1217 1218 static void i915_gem_ww_ctx_unlock_all(struct i915_gem_ww_ctx *ww) 1219 { 1220 struct drm_i915_gem_object *obj; 1221 1222 while ((obj = list_first_entry_or_null(&ww->obj_list, struct drm_i915_gem_object, obj_link))) { 1223 list_del(&obj->obj_link); 1224 i915_gem_object_unlock(obj); 1225 } 1226 } 1227 1228 void i915_gem_ww_unlock_single(struct drm_i915_gem_object *obj) 1229 { 1230 list_del(&obj->obj_link); 1231 i915_gem_object_unlock(obj); 1232 } 1233 1234 void i915_gem_ww_ctx_fini(struct i915_gem_ww_ctx *ww) 1235 { 1236 i915_gem_ww_ctx_unlock_all(ww); 1237 WARN_ON(ww->contended); 1238 ww_acquire_fini(&ww->ctx); 1239 } 1240 1241 int __must_check i915_gem_ww_ctx_backoff(struct i915_gem_ww_ctx *ww) 1242 { 1243 int ret = 0; 1244 1245 if (WARN_ON(!ww->contended)) 1246 return -EINVAL; 1247 1248 i915_gem_ww_ctx_unlock_all(ww); 1249 if (ww->intr) 1250 ret = dma_resv_lock_slow_interruptible(ww->contended->base.resv, &ww->ctx); 1251 else 1252 dma_resv_lock_slow(ww->contended->base.resv, &ww->ctx); 1253 1254 if (!ret) 1255 list_add_tail(&ww->contended->obj_link, &ww->obj_list); 1256 1257 ww->contended = NULL; 1258 1259 return ret; 1260 } 1261 1262 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1263 #include "selftests/mock_gem_device.c" 1264 #include "selftests/i915_gem.c" 1265 #endif 1266