xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision d5e7cafd)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 			       bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48 
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 				 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 					 struct drm_i915_fence_reg *fence,
53 					 bool enable);
54 
55 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
56 					     struct shrink_control *sc);
57 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
58 					    struct shrink_control *sc);
59 static int i915_gem_shrinker_oom(struct notifier_block *nb,
60 				 unsigned long event,
61 				 void *ptr);
62 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
63 
64 static bool cpu_cache_is_coherent(struct drm_device *dev,
65 				  enum i915_cache_level level)
66 {
67 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
68 }
69 
70 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
71 {
72 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
73 		return true;
74 
75 	return obj->pin_display;
76 }
77 
78 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
79 {
80 	if (obj->tiling_mode)
81 		i915_gem_release_mmap(obj);
82 
83 	/* As we do not have an associated fence register, we will force
84 	 * a tiling change if we ever need to acquire one.
85 	 */
86 	obj->fence_dirty = false;
87 	obj->fence_reg = I915_FENCE_REG_NONE;
88 }
89 
90 /* some bookkeeping */
91 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
92 				  size_t size)
93 {
94 	spin_lock(&dev_priv->mm.object_stat_lock);
95 	dev_priv->mm.object_count++;
96 	dev_priv->mm.object_memory += size;
97 	spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99 
100 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
101 				     size_t size)
102 {
103 	spin_lock(&dev_priv->mm.object_stat_lock);
104 	dev_priv->mm.object_count--;
105 	dev_priv->mm.object_memory -= size;
106 	spin_unlock(&dev_priv->mm.object_stat_lock);
107 }
108 
109 static int
110 i915_gem_wait_for_error(struct i915_gpu_error *error)
111 {
112 	int ret;
113 
114 #define EXIT_COND (!i915_reset_in_progress(error) || \
115 		   i915_terminally_wedged(error))
116 	if (EXIT_COND)
117 		return 0;
118 
119 	/*
120 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
121 	 * userspace. If it takes that long something really bad is going on and
122 	 * we should simply try to bail out and fail as gracefully as possible.
123 	 */
124 	ret = wait_event_interruptible_timeout(error->reset_queue,
125 					       EXIT_COND,
126 					       10*HZ);
127 	if (ret == 0) {
128 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
129 		return -EIO;
130 	} else if (ret < 0) {
131 		return ret;
132 	}
133 #undef EXIT_COND
134 
135 	return 0;
136 }
137 
138 int i915_mutex_lock_interruptible(struct drm_device *dev)
139 {
140 	struct drm_i915_private *dev_priv = dev->dev_private;
141 	int ret;
142 
143 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
144 	if (ret)
145 		return ret;
146 
147 	ret = mutex_lock_interruptible(&dev->struct_mutex);
148 	if (ret)
149 		return ret;
150 
151 	WARN_ON(i915_verify_lists(dev));
152 	return 0;
153 }
154 
155 int
156 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
157 			    struct drm_file *file)
158 {
159 	struct drm_i915_private *dev_priv = dev->dev_private;
160 	struct drm_i915_gem_get_aperture *args = data;
161 	struct drm_i915_gem_object *obj;
162 	size_t pinned;
163 
164 	pinned = 0;
165 	mutex_lock(&dev->struct_mutex);
166 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
167 		if (i915_gem_obj_is_pinned(obj))
168 			pinned += i915_gem_obj_ggtt_size(obj);
169 	mutex_unlock(&dev->struct_mutex);
170 
171 	args->aper_size = dev_priv->gtt.base.total;
172 	args->aper_available_size = args->aper_size - pinned;
173 
174 	return 0;
175 }
176 
177 static int
178 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
179 {
180 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
181 	char *vaddr = obj->phys_handle->vaddr;
182 	struct sg_table *st;
183 	struct scatterlist *sg;
184 	int i;
185 
186 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
187 		return -EINVAL;
188 
189 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 		struct page *page;
191 		char *src;
192 
193 		page = shmem_read_mapping_page(mapping, i);
194 		if (IS_ERR(page))
195 			return PTR_ERR(page);
196 
197 		src = kmap_atomic(page);
198 		memcpy(vaddr, src, PAGE_SIZE);
199 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
200 		kunmap_atomic(src);
201 
202 		page_cache_release(page);
203 		vaddr += PAGE_SIZE;
204 	}
205 
206 	i915_gem_chipset_flush(obj->base.dev);
207 
208 	st = kmalloc(sizeof(*st), GFP_KERNEL);
209 	if (st == NULL)
210 		return -ENOMEM;
211 
212 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
213 		kfree(st);
214 		return -ENOMEM;
215 	}
216 
217 	sg = st->sgl;
218 	sg->offset = 0;
219 	sg->length = obj->base.size;
220 
221 	sg_dma_address(sg) = obj->phys_handle->busaddr;
222 	sg_dma_len(sg) = obj->base.size;
223 
224 	obj->pages = st;
225 	obj->has_dma_mapping = true;
226 	return 0;
227 }
228 
229 static void
230 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
231 {
232 	int ret;
233 
234 	BUG_ON(obj->madv == __I915_MADV_PURGED);
235 
236 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
237 	if (ret) {
238 		/* In the event of a disaster, abandon all caches and
239 		 * hope for the best.
240 		 */
241 		WARN_ON(ret != -EIO);
242 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
243 	}
244 
245 	if (obj->madv == I915_MADV_DONTNEED)
246 		obj->dirty = 0;
247 
248 	if (obj->dirty) {
249 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
250 		char *vaddr = obj->phys_handle->vaddr;
251 		int i;
252 
253 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
254 			struct page *page;
255 			char *dst;
256 
257 			page = shmem_read_mapping_page(mapping, i);
258 			if (IS_ERR(page))
259 				continue;
260 
261 			dst = kmap_atomic(page);
262 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
263 			memcpy(dst, vaddr, PAGE_SIZE);
264 			kunmap_atomic(dst);
265 
266 			set_page_dirty(page);
267 			if (obj->madv == I915_MADV_WILLNEED)
268 				mark_page_accessed(page);
269 			page_cache_release(page);
270 			vaddr += PAGE_SIZE;
271 		}
272 		obj->dirty = 0;
273 	}
274 
275 	sg_free_table(obj->pages);
276 	kfree(obj->pages);
277 
278 	obj->has_dma_mapping = false;
279 }
280 
281 static void
282 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
283 {
284 	drm_pci_free(obj->base.dev, obj->phys_handle);
285 }
286 
287 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
288 	.get_pages = i915_gem_object_get_pages_phys,
289 	.put_pages = i915_gem_object_put_pages_phys,
290 	.release = i915_gem_object_release_phys,
291 };
292 
293 static int
294 drop_pages(struct drm_i915_gem_object *obj)
295 {
296 	struct i915_vma *vma, *next;
297 	int ret;
298 
299 	drm_gem_object_reference(&obj->base);
300 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
301 		if (i915_vma_unbind(vma))
302 			break;
303 
304 	ret = i915_gem_object_put_pages(obj);
305 	drm_gem_object_unreference(&obj->base);
306 
307 	return ret;
308 }
309 
310 int
311 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
312 			    int align)
313 {
314 	drm_dma_handle_t *phys;
315 	int ret;
316 
317 	if (obj->phys_handle) {
318 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
319 			return -EBUSY;
320 
321 		return 0;
322 	}
323 
324 	if (obj->madv != I915_MADV_WILLNEED)
325 		return -EFAULT;
326 
327 	if (obj->base.filp == NULL)
328 		return -EINVAL;
329 
330 	ret = drop_pages(obj);
331 	if (ret)
332 		return ret;
333 
334 	/* create a new object */
335 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
336 	if (!phys)
337 		return -ENOMEM;
338 
339 	obj->phys_handle = phys;
340 	obj->ops = &i915_gem_phys_ops;
341 
342 	return i915_gem_object_get_pages(obj);
343 }
344 
345 static int
346 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
347 		     struct drm_i915_gem_pwrite *args,
348 		     struct drm_file *file_priv)
349 {
350 	struct drm_device *dev = obj->base.dev;
351 	void *vaddr = obj->phys_handle->vaddr + args->offset;
352 	char __user *user_data = to_user_ptr(args->data_ptr);
353 	int ret;
354 
355 	/* We manually control the domain here and pretend that it
356 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
357 	 */
358 	ret = i915_gem_object_wait_rendering(obj, false);
359 	if (ret)
360 		return ret;
361 
362 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
363 		unsigned long unwritten;
364 
365 		/* The physical object once assigned is fixed for the lifetime
366 		 * of the obj, so we can safely drop the lock and continue
367 		 * to access vaddr.
368 		 */
369 		mutex_unlock(&dev->struct_mutex);
370 		unwritten = copy_from_user(vaddr, user_data, args->size);
371 		mutex_lock(&dev->struct_mutex);
372 		if (unwritten)
373 			return -EFAULT;
374 	}
375 
376 	drm_clflush_virt_range(vaddr, args->size);
377 	i915_gem_chipset_flush(dev);
378 	return 0;
379 }
380 
381 void *i915_gem_object_alloc(struct drm_device *dev)
382 {
383 	struct drm_i915_private *dev_priv = dev->dev_private;
384 	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
385 }
386 
387 void i915_gem_object_free(struct drm_i915_gem_object *obj)
388 {
389 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
390 	kmem_cache_free(dev_priv->slab, obj);
391 }
392 
393 static int
394 i915_gem_create(struct drm_file *file,
395 		struct drm_device *dev,
396 		uint64_t size,
397 		uint32_t *handle_p)
398 {
399 	struct drm_i915_gem_object *obj;
400 	int ret;
401 	u32 handle;
402 
403 	size = roundup(size, PAGE_SIZE);
404 	if (size == 0)
405 		return -EINVAL;
406 
407 	/* Allocate the new object */
408 	obj = i915_gem_alloc_object(dev, size);
409 	if (obj == NULL)
410 		return -ENOMEM;
411 
412 	ret = drm_gem_handle_create(file, &obj->base, &handle);
413 	/* drop reference from allocate - handle holds it now */
414 	drm_gem_object_unreference_unlocked(&obj->base);
415 	if (ret)
416 		return ret;
417 
418 	*handle_p = handle;
419 	return 0;
420 }
421 
422 int
423 i915_gem_dumb_create(struct drm_file *file,
424 		     struct drm_device *dev,
425 		     struct drm_mode_create_dumb *args)
426 {
427 	/* have to work out size/pitch and return them */
428 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
429 	args->size = args->pitch * args->height;
430 	return i915_gem_create(file, dev,
431 			       args->size, &args->handle);
432 }
433 
434 /**
435  * Creates a new mm object and returns a handle to it.
436  */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 		      struct drm_file *file)
440 {
441 	struct drm_i915_gem_create *args = data;
442 
443 	return i915_gem_create(file, dev,
444 			       args->size, &args->handle);
445 }
446 
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449 			const char *gpu_vaddr, int gpu_offset,
450 			int length)
451 {
452 	int ret, cpu_offset = 0;
453 
454 	while (length > 0) {
455 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 		int this_length = min(cacheline_end - gpu_offset, length);
457 		int swizzled_gpu_offset = gpu_offset ^ 64;
458 
459 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 				     gpu_vaddr + swizzled_gpu_offset,
461 				     this_length);
462 		if (ret)
463 			return ret + length;
464 
465 		cpu_offset += this_length;
466 		gpu_offset += this_length;
467 		length -= this_length;
468 	}
469 
470 	return 0;
471 }
472 
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 			  const char __user *cpu_vaddr,
476 			  int length)
477 {
478 	int ret, cpu_offset = 0;
479 
480 	while (length > 0) {
481 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 		int this_length = min(cacheline_end - gpu_offset, length);
483 		int swizzled_gpu_offset = gpu_offset ^ 64;
484 
485 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 				       cpu_vaddr + cpu_offset,
487 				       this_length);
488 		if (ret)
489 			return ret + length;
490 
491 		cpu_offset += this_length;
492 		gpu_offset += this_length;
493 		length -= this_length;
494 	}
495 
496 	return 0;
497 }
498 
499 /*
500  * Pins the specified object's pages and synchronizes the object with
501  * GPU accesses. Sets needs_clflush to non-zero if the caller should
502  * flush the object from the CPU cache.
503  */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 				    int *needs_clflush)
506 {
507 	int ret;
508 
509 	*needs_clflush = 0;
510 
511 	if (!obj->base.filp)
512 		return -EINVAL;
513 
514 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 		/* If we're not in the cpu read domain, set ourself into the gtt
516 		 * read domain and manually flush cachelines (if required). This
517 		 * optimizes for the case when the gpu will dirty the data
518 		 * anyway again before the next pread happens. */
519 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 							obj->cache_level);
521 		ret = i915_gem_object_wait_rendering(obj, true);
522 		if (ret)
523 			return ret;
524 
525 		i915_gem_object_retire(obj);
526 	}
527 
528 	ret = i915_gem_object_get_pages(obj);
529 	if (ret)
530 		return ret;
531 
532 	i915_gem_object_pin_pages(obj);
533 
534 	return ret;
535 }
536 
537 /* Per-page copy function for the shmem pread fastpath.
538  * Flushes invalid cachelines before reading the target if
539  * needs_clflush is set. */
540 static int
541 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
542 		 char __user *user_data,
543 		 bool page_do_bit17_swizzling, bool needs_clflush)
544 {
545 	char *vaddr;
546 	int ret;
547 
548 	if (unlikely(page_do_bit17_swizzling))
549 		return -EINVAL;
550 
551 	vaddr = kmap_atomic(page);
552 	if (needs_clflush)
553 		drm_clflush_virt_range(vaddr + shmem_page_offset,
554 				       page_length);
555 	ret = __copy_to_user_inatomic(user_data,
556 				      vaddr + shmem_page_offset,
557 				      page_length);
558 	kunmap_atomic(vaddr);
559 
560 	return ret ? -EFAULT : 0;
561 }
562 
563 static void
564 shmem_clflush_swizzled_range(char *addr, unsigned long length,
565 			     bool swizzled)
566 {
567 	if (unlikely(swizzled)) {
568 		unsigned long start = (unsigned long) addr;
569 		unsigned long end = (unsigned long) addr + length;
570 
571 		/* For swizzling simply ensure that we always flush both
572 		 * channels. Lame, but simple and it works. Swizzled
573 		 * pwrite/pread is far from a hotpath - current userspace
574 		 * doesn't use it at all. */
575 		start = round_down(start, 128);
576 		end = round_up(end, 128);
577 
578 		drm_clflush_virt_range((void *)start, end - start);
579 	} else {
580 		drm_clflush_virt_range(addr, length);
581 	}
582 
583 }
584 
585 /* Only difference to the fast-path function is that this can handle bit17
586  * and uses non-atomic copy and kmap functions. */
587 static int
588 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
589 		 char __user *user_data,
590 		 bool page_do_bit17_swizzling, bool needs_clflush)
591 {
592 	char *vaddr;
593 	int ret;
594 
595 	vaddr = kmap(page);
596 	if (needs_clflush)
597 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
598 					     page_length,
599 					     page_do_bit17_swizzling);
600 
601 	if (page_do_bit17_swizzling)
602 		ret = __copy_to_user_swizzled(user_data,
603 					      vaddr, shmem_page_offset,
604 					      page_length);
605 	else
606 		ret = __copy_to_user(user_data,
607 				     vaddr + shmem_page_offset,
608 				     page_length);
609 	kunmap(page);
610 
611 	return ret ? - EFAULT : 0;
612 }
613 
614 static int
615 i915_gem_shmem_pread(struct drm_device *dev,
616 		     struct drm_i915_gem_object *obj,
617 		     struct drm_i915_gem_pread *args,
618 		     struct drm_file *file)
619 {
620 	char __user *user_data;
621 	ssize_t remain;
622 	loff_t offset;
623 	int shmem_page_offset, page_length, ret = 0;
624 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
625 	int prefaulted = 0;
626 	int needs_clflush = 0;
627 	struct sg_page_iter sg_iter;
628 
629 	user_data = to_user_ptr(args->data_ptr);
630 	remain = args->size;
631 
632 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
633 
634 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
635 	if (ret)
636 		return ret;
637 
638 	offset = args->offset;
639 
640 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
641 			 offset >> PAGE_SHIFT) {
642 		struct page *page = sg_page_iter_page(&sg_iter);
643 
644 		if (remain <= 0)
645 			break;
646 
647 		/* Operation in this page
648 		 *
649 		 * shmem_page_offset = offset within page in shmem file
650 		 * page_length = bytes to copy for this page
651 		 */
652 		shmem_page_offset = offset_in_page(offset);
653 		page_length = remain;
654 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
655 			page_length = PAGE_SIZE - shmem_page_offset;
656 
657 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
658 			(page_to_phys(page) & (1 << 17)) != 0;
659 
660 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
661 				       user_data, page_do_bit17_swizzling,
662 				       needs_clflush);
663 		if (ret == 0)
664 			goto next_page;
665 
666 		mutex_unlock(&dev->struct_mutex);
667 
668 		if (likely(!i915.prefault_disable) && !prefaulted) {
669 			ret = fault_in_multipages_writeable(user_data, remain);
670 			/* Userspace is tricking us, but we've already clobbered
671 			 * its pages with the prefault and promised to write the
672 			 * data up to the first fault. Hence ignore any errors
673 			 * and just continue. */
674 			(void)ret;
675 			prefaulted = 1;
676 		}
677 
678 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
679 				       user_data, page_do_bit17_swizzling,
680 				       needs_clflush);
681 
682 		mutex_lock(&dev->struct_mutex);
683 
684 		if (ret)
685 			goto out;
686 
687 next_page:
688 		remain -= page_length;
689 		user_data += page_length;
690 		offset += page_length;
691 	}
692 
693 out:
694 	i915_gem_object_unpin_pages(obj);
695 
696 	return ret;
697 }
698 
699 /**
700  * Reads data from the object referenced by handle.
701  *
702  * On error, the contents of *data are undefined.
703  */
704 int
705 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
706 		     struct drm_file *file)
707 {
708 	struct drm_i915_gem_pread *args = data;
709 	struct drm_i915_gem_object *obj;
710 	int ret = 0;
711 
712 	if (args->size == 0)
713 		return 0;
714 
715 	if (!access_ok(VERIFY_WRITE,
716 		       to_user_ptr(args->data_ptr),
717 		       args->size))
718 		return -EFAULT;
719 
720 	ret = i915_mutex_lock_interruptible(dev);
721 	if (ret)
722 		return ret;
723 
724 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
725 	if (&obj->base == NULL) {
726 		ret = -ENOENT;
727 		goto unlock;
728 	}
729 
730 	/* Bounds check source.  */
731 	if (args->offset > obj->base.size ||
732 	    args->size > obj->base.size - args->offset) {
733 		ret = -EINVAL;
734 		goto out;
735 	}
736 
737 	/* prime objects have no backing filp to GEM pread/pwrite
738 	 * pages from.
739 	 */
740 	if (!obj->base.filp) {
741 		ret = -EINVAL;
742 		goto out;
743 	}
744 
745 	trace_i915_gem_object_pread(obj, args->offset, args->size);
746 
747 	ret = i915_gem_shmem_pread(dev, obj, args, file);
748 
749 out:
750 	drm_gem_object_unreference(&obj->base);
751 unlock:
752 	mutex_unlock(&dev->struct_mutex);
753 	return ret;
754 }
755 
756 /* This is the fast write path which cannot handle
757  * page faults in the source data
758  */
759 
760 static inline int
761 fast_user_write(struct io_mapping *mapping,
762 		loff_t page_base, int page_offset,
763 		char __user *user_data,
764 		int length)
765 {
766 	void __iomem *vaddr_atomic;
767 	void *vaddr;
768 	unsigned long unwritten;
769 
770 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
771 	/* We can use the cpu mem copy function because this is X86. */
772 	vaddr = (void __force*)vaddr_atomic + page_offset;
773 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
774 						      user_data, length);
775 	io_mapping_unmap_atomic(vaddr_atomic);
776 	return unwritten;
777 }
778 
779 /**
780  * This is the fast pwrite path, where we copy the data directly from the
781  * user into the GTT, uncached.
782  */
783 static int
784 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
785 			 struct drm_i915_gem_object *obj,
786 			 struct drm_i915_gem_pwrite *args,
787 			 struct drm_file *file)
788 {
789 	struct drm_i915_private *dev_priv = dev->dev_private;
790 	ssize_t remain;
791 	loff_t offset, page_base;
792 	char __user *user_data;
793 	int page_offset, page_length, ret;
794 
795 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
796 	if (ret)
797 		goto out;
798 
799 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
800 	if (ret)
801 		goto out_unpin;
802 
803 	ret = i915_gem_object_put_fence(obj);
804 	if (ret)
805 		goto out_unpin;
806 
807 	user_data = to_user_ptr(args->data_ptr);
808 	remain = args->size;
809 
810 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
811 
812 	while (remain > 0) {
813 		/* Operation in this page
814 		 *
815 		 * page_base = page offset within aperture
816 		 * page_offset = offset within page
817 		 * page_length = bytes to copy for this page
818 		 */
819 		page_base = offset & PAGE_MASK;
820 		page_offset = offset_in_page(offset);
821 		page_length = remain;
822 		if ((page_offset + remain) > PAGE_SIZE)
823 			page_length = PAGE_SIZE - page_offset;
824 
825 		/* If we get a fault while copying data, then (presumably) our
826 		 * source page isn't available.  Return the error and we'll
827 		 * retry in the slow path.
828 		 */
829 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
830 				    page_offset, user_data, page_length)) {
831 			ret = -EFAULT;
832 			goto out_unpin;
833 		}
834 
835 		remain -= page_length;
836 		user_data += page_length;
837 		offset += page_length;
838 	}
839 
840 out_unpin:
841 	i915_gem_object_ggtt_unpin(obj);
842 out:
843 	return ret;
844 }
845 
846 /* Per-page copy function for the shmem pwrite fastpath.
847  * Flushes invalid cachelines before writing to the target if
848  * needs_clflush_before is set and flushes out any written cachelines after
849  * writing if needs_clflush is set. */
850 static int
851 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
852 		  char __user *user_data,
853 		  bool page_do_bit17_swizzling,
854 		  bool needs_clflush_before,
855 		  bool needs_clflush_after)
856 {
857 	char *vaddr;
858 	int ret;
859 
860 	if (unlikely(page_do_bit17_swizzling))
861 		return -EINVAL;
862 
863 	vaddr = kmap_atomic(page);
864 	if (needs_clflush_before)
865 		drm_clflush_virt_range(vaddr + shmem_page_offset,
866 				       page_length);
867 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
868 					user_data, page_length);
869 	if (needs_clflush_after)
870 		drm_clflush_virt_range(vaddr + shmem_page_offset,
871 				       page_length);
872 	kunmap_atomic(vaddr);
873 
874 	return ret ? -EFAULT : 0;
875 }
876 
877 /* Only difference to the fast-path function is that this can handle bit17
878  * and uses non-atomic copy and kmap functions. */
879 static int
880 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
881 		  char __user *user_data,
882 		  bool page_do_bit17_swizzling,
883 		  bool needs_clflush_before,
884 		  bool needs_clflush_after)
885 {
886 	char *vaddr;
887 	int ret;
888 
889 	vaddr = kmap(page);
890 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
891 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
892 					     page_length,
893 					     page_do_bit17_swizzling);
894 	if (page_do_bit17_swizzling)
895 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
896 						user_data,
897 						page_length);
898 	else
899 		ret = __copy_from_user(vaddr + shmem_page_offset,
900 				       user_data,
901 				       page_length);
902 	if (needs_clflush_after)
903 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
904 					     page_length,
905 					     page_do_bit17_swizzling);
906 	kunmap(page);
907 
908 	return ret ? -EFAULT : 0;
909 }
910 
911 static int
912 i915_gem_shmem_pwrite(struct drm_device *dev,
913 		      struct drm_i915_gem_object *obj,
914 		      struct drm_i915_gem_pwrite *args,
915 		      struct drm_file *file)
916 {
917 	ssize_t remain;
918 	loff_t offset;
919 	char __user *user_data;
920 	int shmem_page_offset, page_length, ret = 0;
921 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
922 	int hit_slowpath = 0;
923 	int needs_clflush_after = 0;
924 	int needs_clflush_before = 0;
925 	struct sg_page_iter sg_iter;
926 
927 	user_data = to_user_ptr(args->data_ptr);
928 	remain = args->size;
929 
930 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
931 
932 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
933 		/* If we're not in the cpu write domain, set ourself into the gtt
934 		 * write domain and manually flush cachelines (if required). This
935 		 * optimizes for the case when the gpu will use the data
936 		 * right away and we therefore have to clflush anyway. */
937 		needs_clflush_after = cpu_write_needs_clflush(obj);
938 		ret = i915_gem_object_wait_rendering(obj, false);
939 		if (ret)
940 			return ret;
941 
942 		i915_gem_object_retire(obj);
943 	}
944 	/* Same trick applies to invalidate partially written cachelines read
945 	 * before writing. */
946 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
947 		needs_clflush_before =
948 			!cpu_cache_is_coherent(dev, obj->cache_level);
949 
950 	ret = i915_gem_object_get_pages(obj);
951 	if (ret)
952 		return ret;
953 
954 	i915_gem_object_pin_pages(obj);
955 
956 	offset = args->offset;
957 	obj->dirty = 1;
958 
959 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
960 			 offset >> PAGE_SHIFT) {
961 		struct page *page = sg_page_iter_page(&sg_iter);
962 		int partial_cacheline_write;
963 
964 		if (remain <= 0)
965 			break;
966 
967 		/* Operation in this page
968 		 *
969 		 * shmem_page_offset = offset within page in shmem file
970 		 * page_length = bytes to copy for this page
971 		 */
972 		shmem_page_offset = offset_in_page(offset);
973 
974 		page_length = remain;
975 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
976 			page_length = PAGE_SIZE - shmem_page_offset;
977 
978 		/* If we don't overwrite a cacheline completely we need to be
979 		 * careful to have up-to-date data by first clflushing. Don't
980 		 * overcomplicate things and flush the entire patch. */
981 		partial_cacheline_write = needs_clflush_before &&
982 			((shmem_page_offset | page_length)
983 				& (boot_cpu_data.x86_clflush_size - 1));
984 
985 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
986 			(page_to_phys(page) & (1 << 17)) != 0;
987 
988 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
989 					user_data, page_do_bit17_swizzling,
990 					partial_cacheline_write,
991 					needs_clflush_after);
992 		if (ret == 0)
993 			goto next_page;
994 
995 		hit_slowpath = 1;
996 		mutex_unlock(&dev->struct_mutex);
997 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
998 					user_data, page_do_bit17_swizzling,
999 					partial_cacheline_write,
1000 					needs_clflush_after);
1001 
1002 		mutex_lock(&dev->struct_mutex);
1003 
1004 		if (ret)
1005 			goto out;
1006 
1007 next_page:
1008 		remain -= page_length;
1009 		user_data += page_length;
1010 		offset += page_length;
1011 	}
1012 
1013 out:
1014 	i915_gem_object_unpin_pages(obj);
1015 
1016 	if (hit_slowpath) {
1017 		/*
1018 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1019 		 * cachelines in-line while writing and the object moved
1020 		 * out of the cpu write domain while we've dropped the lock.
1021 		 */
1022 		if (!needs_clflush_after &&
1023 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1024 			if (i915_gem_clflush_object(obj, obj->pin_display))
1025 				i915_gem_chipset_flush(dev);
1026 		}
1027 	}
1028 
1029 	if (needs_clflush_after)
1030 		i915_gem_chipset_flush(dev);
1031 
1032 	return ret;
1033 }
1034 
1035 /**
1036  * Writes data to the object referenced by handle.
1037  *
1038  * On error, the contents of the buffer that were to be modified are undefined.
1039  */
1040 int
1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042 		      struct drm_file *file)
1043 {
1044 	struct drm_i915_private *dev_priv = dev->dev_private;
1045 	struct drm_i915_gem_pwrite *args = data;
1046 	struct drm_i915_gem_object *obj;
1047 	int ret;
1048 
1049 	if (args->size == 0)
1050 		return 0;
1051 
1052 	if (!access_ok(VERIFY_READ,
1053 		       to_user_ptr(args->data_ptr),
1054 		       args->size))
1055 		return -EFAULT;
1056 
1057 	if (likely(!i915.prefault_disable)) {
1058 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 						   args->size);
1060 		if (ret)
1061 			return -EFAULT;
1062 	}
1063 
1064 	intel_runtime_pm_get(dev_priv);
1065 
1066 	ret = i915_mutex_lock_interruptible(dev);
1067 	if (ret)
1068 		goto put_rpm;
1069 
1070 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071 	if (&obj->base == NULL) {
1072 		ret = -ENOENT;
1073 		goto unlock;
1074 	}
1075 
1076 	/* Bounds check destination. */
1077 	if (args->offset > obj->base.size ||
1078 	    args->size > obj->base.size - args->offset) {
1079 		ret = -EINVAL;
1080 		goto out;
1081 	}
1082 
1083 	/* prime objects have no backing filp to GEM pread/pwrite
1084 	 * pages from.
1085 	 */
1086 	if (!obj->base.filp) {
1087 		ret = -EINVAL;
1088 		goto out;
1089 	}
1090 
1091 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092 
1093 	ret = -EFAULT;
1094 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 	 * it would end up going through the fenced access, and we'll get
1096 	 * different detiling behavior between reading and writing.
1097 	 * pread/pwrite currently are reading and writing from the CPU
1098 	 * perspective, requiring manual detiling by the client.
1099 	 */
1100 	if (obj->tiling_mode == I915_TILING_NONE &&
1101 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 	    cpu_write_needs_clflush(obj)) {
1103 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104 		/* Note that the gtt paths might fail with non-page-backed user
1105 		 * pointers (e.g. gtt mappings when moving data between
1106 		 * textures). Fallback to the shmem path in that case. */
1107 	}
1108 
1109 	if (ret == -EFAULT || ret == -ENOSPC) {
1110 		if (obj->phys_handle)
1111 			ret = i915_gem_phys_pwrite(obj, args, file);
1112 		else
1113 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 	}
1115 
1116 out:
1117 	drm_gem_object_unreference(&obj->base);
1118 unlock:
1119 	mutex_unlock(&dev->struct_mutex);
1120 put_rpm:
1121 	intel_runtime_pm_put(dev_priv);
1122 
1123 	return ret;
1124 }
1125 
1126 int
1127 i915_gem_check_wedge(struct i915_gpu_error *error,
1128 		     bool interruptible)
1129 {
1130 	if (i915_reset_in_progress(error)) {
1131 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1132 		 * -EIO unconditionally for these. */
1133 		if (!interruptible)
1134 			return -EIO;
1135 
1136 		/* Recovery complete, but the reset failed ... */
1137 		if (i915_terminally_wedged(error))
1138 			return -EIO;
1139 
1140 		/*
1141 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 		 * to work properly to reinit the hw state while the gpu is
1143 		 * still marked as reset-in-progress. Handle this with a flag.
1144 		 */
1145 		if (!error->reload_in_reset)
1146 			return -EAGAIN;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 /*
1153  * Compare arbitrary request against outstanding lazy request. Emit on match.
1154  */
1155 int
1156 i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 {
1158 	int ret;
1159 
1160 	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161 
1162 	ret = 0;
1163 	if (req == req->ring->outstanding_lazy_request)
1164 		ret = i915_add_request(req->ring);
1165 
1166 	return ret;
1167 }
1168 
1169 static void fake_irq(unsigned long data)
1170 {
1171 	wake_up_process((struct task_struct *)data);
1172 }
1173 
1174 static bool missed_irq(struct drm_i915_private *dev_priv,
1175 		       struct intel_engine_cs *ring)
1176 {
1177 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1178 }
1179 
1180 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1181 {
1182 	if (file_priv == NULL)
1183 		return true;
1184 
1185 	return !atomic_xchg(&file_priv->rps_wait_boost, true);
1186 }
1187 
1188 /**
1189  * __i915_wait_request - wait until execution of request has finished
1190  * @req: duh!
1191  * @reset_counter: reset sequence associated with the given request
1192  * @interruptible: do an interruptible wait (normally yes)
1193  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1194  *
1195  * Note: It is of utmost importance that the passed in seqno and reset_counter
1196  * values have been read by the caller in an smp safe manner. Where read-side
1197  * locks are involved, it is sufficient to read the reset_counter before
1198  * unlocking the lock that protects the seqno. For lockless tricks, the
1199  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1200  * inserted.
1201  *
1202  * Returns 0 if the request was found within the alloted time. Else returns the
1203  * errno with remaining time filled in timeout argument.
1204  */
1205 int __i915_wait_request(struct drm_i915_gem_request *req,
1206 			unsigned reset_counter,
1207 			bool interruptible,
1208 			s64 *timeout,
1209 			struct drm_i915_file_private *file_priv)
1210 {
1211 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1212 	struct drm_device *dev = ring->dev;
1213 	struct drm_i915_private *dev_priv = dev->dev_private;
1214 	const bool irq_test_in_progress =
1215 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1216 	DEFINE_WAIT(wait);
1217 	unsigned long timeout_expire;
1218 	s64 before, now;
1219 	int ret;
1220 
1221 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1222 
1223 	if (i915_gem_request_completed(req, true))
1224 		return 0;
1225 
1226 	timeout_expire = timeout ?
1227 		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1228 
1229 	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1230 		gen6_rps_boost(dev_priv);
1231 		if (file_priv)
1232 			mod_delayed_work(dev_priv->wq,
1233 					 &file_priv->mm.idle_work,
1234 					 msecs_to_jiffies(100));
1235 	}
1236 
1237 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1238 		return -ENODEV;
1239 
1240 	/* Record current time in case interrupted by signal, or wedged */
1241 	trace_i915_gem_request_wait_begin(req);
1242 	before = ktime_get_raw_ns();
1243 	for (;;) {
1244 		struct timer_list timer;
1245 
1246 		prepare_to_wait(&ring->irq_queue, &wait,
1247 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1248 
1249 		/* We need to check whether any gpu reset happened in between
1250 		 * the caller grabbing the seqno and now ... */
1251 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1252 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1253 			 * is truely gone. */
1254 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1255 			if (ret == 0)
1256 				ret = -EAGAIN;
1257 			break;
1258 		}
1259 
1260 		if (i915_gem_request_completed(req, false)) {
1261 			ret = 0;
1262 			break;
1263 		}
1264 
1265 		if (interruptible && signal_pending(current)) {
1266 			ret = -ERESTARTSYS;
1267 			break;
1268 		}
1269 
1270 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1271 			ret = -ETIME;
1272 			break;
1273 		}
1274 
1275 		timer.function = NULL;
1276 		if (timeout || missed_irq(dev_priv, ring)) {
1277 			unsigned long expire;
1278 
1279 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1280 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1281 			mod_timer(&timer, expire);
1282 		}
1283 
1284 		io_schedule();
1285 
1286 		if (timer.function) {
1287 			del_singleshot_timer_sync(&timer);
1288 			destroy_timer_on_stack(&timer);
1289 		}
1290 	}
1291 	now = ktime_get_raw_ns();
1292 	trace_i915_gem_request_wait_end(req);
1293 
1294 	if (!irq_test_in_progress)
1295 		ring->irq_put(ring);
1296 
1297 	finish_wait(&ring->irq_queue, &wait);
1298 
1299 	if (timeout) {
1300 		s64 tres = *timeout - (now - before);
1301 
1302 		*timeout = tres < 0 ? 0 : tres;
1303 
1304 		/*
1305 		 * Apparently ktime isn't accurate enough and occasionally has a
1306 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1307 		 * things up to make the test happy. We allow up to 1 jiffy.
1308 		 *
1309 		 * This is a regrssion from the timespec->ktime conversion.
1310 		 */
1311 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1312 			*timeout = 0;
1313 	}
1314 
1315 	return ret;
1316 }
1317 
1318 /**
1319  * Waits for a request to be signaled, and cleans up the
1320  * request and object lists appropriately for that event.
1321  */
1322 int
1323 i915_wait_request(struct drm_i915_gem_request *req)
1324 {
1325 	struct drm_device *dev;
1326 	struct drm_i915_private *dev_priv;
1327 	bool interruptible;
1328 	unsigned reset_counter;
1329 	int ret;
1330 
1331 	BUG_ON(req == NULL);
1332 
1333 	dev = req->ring->dev;
1334 	dev_priv = dev->dev_private;
1335 	interruptible = dev_priv->mm.interruptible;
1336 
1337 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1338 
1339 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1340 	if (ret)
1341 		return ret;
1342 
1343 	ret = i915_gem_check_olr(req);
1344 	if (ret)
1345 		return ret;
1346 
1347 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1348 	i915_gem_request_reference(req);
1349 	ret = __i915_wait_request(req, reset_counter,
1350 				  interruptible, NULL, NULL);
1351 	i915_gem_request_unreference(req);
1352 	return ret;
1353 }
1354 
1355 static int
1356 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1357 {
1358 	if (!obj->active)
1359 		return 0;
1360 
1361 	/* Manually manage the write flush as we may have not yet
1362 	 * retired the buffer.
1363 	 *
1364 	 * Note that the last_write_req is always the earlier of
1365 	 * the two (read/write) requests, so if we haved successfully waited,
1366 	 * we know we have passed the last write.
1367 	 */
1368 	i915_gem_request_assign(&obj->last_write_req, NULL);
1369 
1370 	return 0;
1371 }
1372 
1373 /**
1374  * Ensures that all rendering to the object has completed and the object is
1375  * safe to unbind from the GTT or access from the CPU.
1376  */
1377 static __must_check int
1378 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1379 			       bool readonly)
1380 {
1381 	struct drm_i915_gem_request *req;
1382 	int ret;
1383 
1384 	req = readonly ? obj->last_write_req : obj->last_read_req;
1385 	if (!req)
1386 		return 0;
1387 
1388 	ret = i915_wait_request(req);
1389 	if (ret)
1390 		return ret;
1391 
1392 	return i915_gem_object_wait_rendering__tail(obj);
1393 }
1394 
1395 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1396  * as the object state may change during this call.
1397  */
1398 static __must_check int
1399 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1400 					    struct drm_i915_file_private *file_priv,
1401 					    bool readonly)
1402 {
1403 	struct drm_i915_gem_request *req;
1404 	struct drm_device *dev = obj->base.dev;
1405 	struct drm_i915_private *dev_priv = dev->dev_private;
1406 	unsigned reset_counter;
1407 	int ret;
1408 
1409 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1410 	BUG_ON(!dev_priv->mm.interruptible);
1411 
1412 	req = readonly ? obj->last_write_req : obj->last_read_req;
1413 	if (!req)
1414 		return 0;
1415 
1416 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1417 	if (ret)
1418 		return ret;
1419 
1420 	ret = i915_gem_check_olr(req);
1421 	if (ret)
1422 		return ret;
1423 
1424 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1425 	i915_gem_request_reference(req);
1426 	mutex_unlock(&dev->struct_mutex);
1427 	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1428 	mutex_lock(&dev->struct_mutex);
1429 	i915_gem_request_unreference(req);
1430 	if (ret)
1431 		return ret;
1432 
1433 	return i915_gem_object_wait_rendering__tail(obj);
1434 }
1435 
1436 /**
1437  * Called when user space prepares to use an object with the CPU, either
1438  * through the mmap ioctl's mapping or a GTT mapping.
1439  */
1440 int
1441 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1442 			  struct drm_file *file)
1443 {
1444 	struct drm_i915_gem_set_domain *args = data;
1445 	struct drm_i915_gem_object *obj;
1446 	uint32_t read_domains = args->read_domains;
1447 	uint32_t write_domain = args->write_domain;
1448 	int ret;
1449 
1450 	/* Only handle setting domains to types used by the CPU. */
1451 	if (write_domain & I915_GEM_GPU_DOMAINS)
1452 		return -EINVAL;
1453 
1454 	if (read_domains & I915_GEM_GPU_DOMAINS)
1455 		return -EINVAL;
1456 
1457 	/* Having something in the write domain implies it's in the read
1458 	 * domain, and only that read domain.  Enforce that in the request.
1459 	 */
1460 	if (write_domain != 0 && read_domains != write_domain)
1461 		return -EINVAL;
1462 
1463 	ret = i915_mutex_lock_interruptible(dev);
1464 	if (ret)
1465 		return ret;
1466 
1467 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1468 	if (&obj->base == NULL) {
1469 		ret = -ENOENT;
1470 		goto unlock;
1471 	}
1472 
1473 	/* Try to flush the object off the GPU without holding the lock.
1474 	 * We will repeat the flush holding the lock in the normal manner
1475 	 * to catch cases where we are gazumped.
1476 	 */
1477 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1478 							  file->driver_priv,
1479 							  !write_domain);
1480 	if (ret)
1481 		goto unref;
1482 
1483 	if (read_domains & I915_GEM_DOMAIN_GTT)
1484 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1485 	else
1486 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1487 
1488 unref:
1489 	drm_gem_object_unreference(&obj->base);
1490 unlock:
1491 	mutex_unlock(&dev->struct_mutex);
1492 	return ret;
1493 }
1494 
1495 /**
1496  * Called when user space has done writes to this buffer
1497  */
1498 int
1499 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1500 			 struct drm_file *file)
1501 {
1502 	struct drm_i915_gem_sw_finish *args = data;
1503 	struct drm_i915_gem_object *obj;
1504 	int ret = 0;
1505 
1506 	ret = i915_mutex_lock_interruptible(dev);
1507 	if (ret)
1508 		return ret;
1509 
1510 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1511 	if (&obj->base == NULL) {
1512 		ret = -ENOENT;
1513 		goto unlock;
1514 	}
1515 
1516 	/* Pinned buffers may be scanout, so flush the cache */
1517 	if (obj->pin_display)
1518 		i915_gem_object_flush_cpu_write_domain(obj);
1519 
1520 	drm_gem_object_unreference(&obj->base);
1521 unlock:
1522 	mutex_unlock(&dev->struct_mutex);
1523 	return ret;
1524 }
1525 
1526 /**
1527  * Maps the contents of an object, returning the address it is mapped
1528  * into.
1529  *
1530  * While the mapping holds a reference on the contents of the object, it doesn't
1531  * imply a ref on the object itself.
1532  *
1533  * IMPORTANT:
1534  *
1535  * DRM driver writers who look a this function as an example for how to do GEM
1536  * mmap support, please don't implement mmap support like here. The modern way
1537  * to implement DRM mmap support is with an mmap offset ioctl (like
1538  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1539  * That way debug tooling like valgrind will understand what's going on, hiding
1540  * the mmap call in a driver private ioctl will break that. The i915 driver only
1541  * does cpu mmaps this way because we didn't know better.
1542  */
1543 int
1544 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1545 		    struct drm_file *file)
1546 {
1547 	struct drm_i915_gem_mmap *args = data;
1548 	struct drm_gem_object *obj;
1549 	unsigned long addr;
1550 
1551 	if (args->flags & ~(I915_MMAP_WC))
1552 		return -EINVAL;
1553 
1554 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1555 		return -ENODEV;
1556 
1557 	obj = drm_gem_object_lookup(dev, file, args->handle);
1558 	if (obj == NULL)
1559 		return -ENOENT;
1560 
1561 	/* prime objects have no backing filp to GEM mmap
1562 	 * pages from.
1563 	 */
1564 	if (!obj->filp) {
1565 		drm_gem_object_unreference_unlocked(obj);
1566 		return -EINVAL;
1567 	}
1568 
1569 	addr = vm_mmap(obj->filp, 0, args->size,
1570 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1571 		       args->offset);
1572 	if (args->flags & I915_MMAP_WC) {
1573 		struct mm_struct *mm = current->mm;
1574 		struct vm_area_struct *vma;
1575 
1576 		down_write(&mm->mmap_sem);
1577 		vma = find_vma(mm, addr);
1578 		if (vma)
1579 			vma->vm_page_prot =
1580 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1581 		else
1582 			addr = -ENOMEM;
1583 		up_write(&mm->mmap_sem);
1584 	}
1585 	drm_gem_object_unreference_unlocked(obj);
1586 	if (IS_ERR((void *)addr))
1587 		return addr;
1588 
1589 	args->addr_ptr = (uint64_t) addr;
1590 
1591 	return 0;
1592 }
1593 
1594 /**
1595  * i915_gem_fault - fault a page into the GTT
1596  * vma: VMA in question
1597  * vmf: fault info
1598  *
1599  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1600  * from userspace.  The fault handler takes care of binding the object to
1601  * the GTT (if needed), allocating and programming a fence register (again,
1602  * only if needed based on whether the old reg is still valid or the object
1603  * is tiled) and inserting a new PTE into the faulting process.
1604  *
1605  * Note that the faulting process may involve evicting existing objects
1606  * from the GTT and/or fence registers to make room.  So performance may
1607  * suffer if the GTT working set is large or there are few fence registers
1608  * left.
1609  */
1610 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1611 {
1612 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1613 	struct drm_device *dev = obj->base.dev;
1614 	struct drm_i915_private *dev_priv = dev->dev_private;
1615 	pgoff_t page_offset;
1616 	unsigned long pfn;
1617 	int ret = 0;
1618 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1619 
1620 	intel_runtime_pm_get(dev_priv);
1621 
1622 	/* We don't use vmf->pgoff since that has the fake offset */
1623 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1624 		PAGE_SHIFT;
1625 
1626 	ret = i915_mutex_lock_interruptible(dev);
1627 	if (ret)
1628 		goto out;
1629 
1630 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1631 
1632 	/* Try to flush the object off the GPU first without holding the lock.
1633 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1634 	 * repeat the flush holding the lock in the normal manner to catch cases
1635 	 * where we are gazumped.
1636 	 */
1637 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1638 	if (ret)
1639 		goto unlock;
1640 
1641 	/* Access to snoopable pages through the GTT is incoherent. */
1642 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1643 		ret = -EFAULT;
1644 		goto unlock;
1645 	}
1646 
1647 	/* Now bind it into the GTT if needed */
1648 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1649 	if (ret)
1650 		goto unlock;
1651 
1652 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1653 	if (ret)
1654 		goto unpin;
1655 
1656 	ret = i915_gem_object_get_fence(obj);
1657 	if (ret)
1658 		goto unpin;
1659 
1660 	/* Finally, remap it using the new GTT offset */
1661 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1662 	pfn >>= PAGE_SHIFT;
1663 
1664 	if (!obj->fault_mappable) {
1665 		unsigned long size = min_t(unsigned long,
1666 					   vma->vm_end - vma->vm_start,
1667 					   obj->base.size);
1668 		int i;
1669 
1670 		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1671 			ret = vm_insert_pfn(vma,
1672 					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1673 					    pfn + i);
1674 			if (ret)
1675 				break;
1676 		}
1677 
1678 		obj->fault_mappable = true;
1679 	} else
1680 		ret = vm_insert_pfn(vma,
1681 				    (unsigned long)vmf->virtual_address,
1682 				    pfn + page_offset);
1683 unpin:
1684 	i915_gem_object_ggtt_unpin(obj);
1685 unlock:
1686 	mutex_unlock(&dev->struct_mutex);
1687 out:
1688 	switch (ret) {
1689 	case -EIO:
1690 		/*
1691 		 * We eat errors when the gpu is terminally wedged to avoid
1692 		 * userspace unduly crashing (gl has no provisions for mmaps to
1693 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1694 		 * and so needs to be reported.
1695 		 */
1696 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1697 			ret = VM_FAULT_SIGBUS;
1698 			break;
1699 		}
1700 	case -EAGAIN:
1701 		/*
1702 		 * EAGAIN means the gpu is hung and we'll wait for the error
1703 		 * handler to reset everything when re-faulting in
1704 		 * i915_mutex_lock_interruptible.
1705 		 */
1706 	case 0:
1707 	case -ERESTARTSYS:
1708 	case -EINTR:
1709 	case -EBUSY:
1710 		/*
1711 		 * EBUSY is ok: this just means that another thread
1712 		 * already did the job.
1713 		 */
1714 		ret = VM_FAULT_NOPAGE;
1715 		break;
1716 	case -ENOMEM:
1717 		ret = VM_FAULT_OOM;
1718 		break;
1719 	case -ENOSPC:
1720 	case -EFAULT:
1721 		ret = VM_FAULT_SIGBUS;
1722 		break;
1723 	default:
1724 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1725 		ret = VM_FAULT_SIGBUS;
1726 		break;
1727 	}
1728 
1729 	intel_runtime_pm_put(dev_priv);
1730 	return ret;
1731 }
1732 
1733 /**
1734  * i915_gem_release_mmap - remove physical page mappings
1735  * @obj: obj in question
1736  *
1737  * Preserve the reservation of the mmapping with the DRM core code, but
1738  * relinquish ownership of the pages back to the system.
1739  *
1740  * It is vital that we remove the page mapping if we have mapped a tiled
1741  * object through the GTT and then lose the fence register due to
1742  * resource pressure. Similarly if the object has been moved out of the
1743  * aperture, than pages mapped into userspace must be revoked. Removing the
1744  * mapping will then trigger a page fault on the next user access, allowing
1745  * fixup by i915_gem_fault().
1746  */
1747 void
1748 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1749 {
1750 	if (!obj->fault_mappable)
1751 		return;
1752 
1753 	drm_vma_node_unmap(&obj->base.vma_node,
1754 			   obj->base.dev->anon_inode->i_mapping);
1755 	obj->fault_mappable = false;
1756 }
1757 
1758 void
1759 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1760 {
1761 	struct drm_i915_gem_object *obj;
1762 
1763 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1764 		i915_gem_release_mmap(obj);
1765 }
1766 
1767 uint32_t
1768 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1769 {
1770 	uint32_t gtt_size;
1771 
1772 	if (INTEL_INFO(dev)->gen >= 4 ||
1773 	    tiling_mode == I915_TILING_NONE)
1774 		return size;
1775 
1776 	/* Previous chips need a power-of-two fence region when tiling */
1777 	if (INTEL_INFO(dev)->gen == 3)
1778 		gtt_size = 1024*1024;
1779 	else
1780 		gtt_size = 512*1024;
1781 
1782 	while (gtt_size < size)
1783 		gtt_size <<= 1;
1784 
1785 	return gtt_size;
1786 }
1787 
1788 /**
1789  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1790  * @obj: object to check
1791  *
1792  * Return the required GTT alignment for an object, taking into account
1793  * potential fence register mapping.
1794  */
1795 uint32_t
1796 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1797 			   int tiling_mode, bool fenced)
1798 {
1799 	/*
1800 	 * Minimum alignment is 4k (GTT page size), but might be greater
1801 	 * if a fence register is needed for the object.
1802 	 */
1803 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1804 	    tiling_mode == I915_TILING_NONE)
1805 		return 4096;
1806 
1807 	/*
1808 	 * Previous chips need to be aligned to the size of the smallest
1809 	 * fence register that can contain the object.
1810 	 */
1811 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1812 }
1813 
1814 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1815 {
1816 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1817 	int ret;
1818 
1819 	if (drm_vma_node_has_offset(&obj->base.vma_node))
1820 		return 0;
1821 
1822 	dev_priv->mm.shrinker_no_lock_stealing = true;
1823 
1824 	ret = drm_gem_create_mmap_offset(&obj->base);
1825 	if (ret != -ENOSPC)
1826 		goto out;
1827 
1828 	/* Badly fragmented mmap space? The only way we can recover
1829 	 * space is by destroying unwanted objects. We can't randomly release
1830 	 * mmap_offsets as userspace expects them to be persistent for the
1831 	 * lifetime of the objects. The closest we can is to release the
1832 	 * offsets on purgeable objects by truncating it and marking it purged,
1833 	 * which prevents userspace from ever using that object again.
1834 	 */
1835 	i915_gem_shrink(dev_priv,
1836 			obj->base.size >> PAGE_SHIFT,
1837 			I915_SHRINK_BOUND |
1838 			I915_SHRINK_UNBOUND |
1839 			I915_SHRINK_PURGEABLE);
1840 	ret = drm_gem_create_mmap_offset(&obj->base);
1841 	if (ret != -ENOSPC)
1842 		goto out;
1843 
1844 	i915_gem_shrink_all(dev_priv);
1845 	ret = drm_gem_create_mmap_offset(&obj->base);
1846 out:
1847 	dev_priv->mm.shrinker_no_lock_stealing = false;
1848 
1849 	return ret;
1850 }
1851 
1852 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1853 {
1854 	drm_gem_free_mmap_offset(&obj->base);
1855 }
1856 
1857 int
1858 i915_gem_mmap_gtt(struct drm_file *file,
1859 		  struct drm_device *dev,
1860 		  uint32_t handle,
1861 		  uint64_t *offset)
1862 {
1863 	struct drm_i915_private *dev_priv = dev->dev_private;
1864 	struct drm_i915_gem_object *obj;
1865 	int ret;
1866 
1867 	ret = i915_mutex_lock_interruptible(dev);
1868 	if (ret)
1869 		return ret;
1870 
1871 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1872 	if (&obj->base == NULL) {
1873 		ret = -ENOENT;
1874 		goto unlock;
1875 	}
1876 
1877 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1878 		ret = -E2BIG;
1879 		goto out;
1880 	}
1881 
1882 	if (obj->madv != I915_MADV_WILLNEED) {
1883 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1884 		ret = -EFAULT;
1885 		goto out;
1886 	}
1887 
1888 	ret = i915_gem_object_create_mmap_offset(obj);
1889 	if (ret)
1890 		goto out;
1891 
1892 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1893 
1894 out:
1895 	drm_gem_object_unreference(&obj->base);
1896 unlock:
1897 	mutex_unlock(&dev->struct_mutex);
1898 	return ret;
1899 }
1900 
1901 /**
1902  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1903  * @dev: DRM device
1904  * @data: GTT mapping ioctl data
1905  * @file: GEM object info
1906  *
1907  * Simply returns the fake offset to userspace so it can mmap it.
1908  * The mmap call will end up in drm_gem_mmap(), which will set things
1909  * up so we can get faults in the handler above.
1910  *
1911  * The fault handler will take care of binding the object into the GTT
1912  * (since it may have been evicted to make room for something), allocating
1913  * a fence register, and mapping the appropriate aperture address into
1914  * userspace.
1915  */
1916 int
1917 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1918 			struct drm_file *file)
1919 {
1920 	struct drm_i915_gem_mmap_gtt *args = data;
1921 
1922 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1923 }
1924 
1925 static inline int
1926 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1927 {
1928 	return obj->madv == I915_MADV_DONTNEED;
1929 }
1930 
1931 /* Immediately discard the backing storage */
1932 static void
1933 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1934 {
1935 	i915_gem_object_free_mmap_offset(obj);
1936 
1937 	if (obj->base.filp == NULL)
1938 		return;
1939 
1940 	/* Our goal here is to return as much of the memory as
1941 	 * is possible back to the system as we are called from OOM.
1942 	 * To do this we must instruct the shmfs to drop all of its
1943 	 * backing pages, *now*.
1944 	 */
1945 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1946 	obj->madv = __I915_MADV_PURGED;
1947 }
1948 
1949 /* Try to discard unwanted pages */
1950 static void
1951 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1952 {
1953 	struct address_space *mapping;
1954 
1955 	switch (obj->madv) {
1956 	case I915_MADV_DONTNEED:
1957 		i915_gem_object_truncate(obj);
1958 	case __I915_MADV_PURGED:
1959 		return;
1960 	}
1961 
1962 	if (obj->base.filp == NULL)
1963 		return;
1964 
1965 	mapping = file_inode(obj->base.filp)->i_mapping,
1966 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1967 }
1968 
1969 static void
1970 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1971 {
1972 	struct sg_page_iter sg_iter;
1973 	int ret;
1974 
1975 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1976 
1977 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1978 	if (ret) {
1979 		/* In the event of a disaster, abandon all caches and
1980 		 * hope for the best.
1981 		 */
1982 		WARN_ON(ret != -EIO);
1983 		i915_gem_clflush_object(obj, true);
1984 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1985 	}
1986 
1987 	if (i915_gem_object_needs_bit17_swizzle(obj))
1988 		i915_gem_object_save_bit_17_swizzle(obj);
1989 
1990 	if (obj->madv == I915_MADV_DONTNEED)
1991 		obj->dirty = 0;
1992 
1993 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1994 		struct page *page = sg_page_iter_page(&sg_iter);
1995 
1996 		if (obj->dirty)
1997 			set_page_dirty(page);
1998 
1999 		if (obj->madv == I915_MADV_WILLNEED)
2000 			mark_page_accessed(page);
2001 
2002 		page_cache_release(page);
2003 	}
2004 	obj->dirty = 0;
2005 
2006 	sg_free_table(obj->pages);
2007 	kfree(obj->pages);
2008 }
2009 
2010 int
2011 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2012 {
2013 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2014 
2015 	if (obj->pages == NULL)
2016 		return 0;
2017 
2018 	if (obj->pages_pin_count)
2019 		return -EBUSY;
2020 
2021 	BUG_ON(i915_gem_obj_bound_any(obj));
2022 
2023 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2024 	 * array, hence protect them from being reaped by removing them from gtt
2025 	 * lists early. */
2026 	list_del(&obj->global_list);
2027 
2028 	ops->put_pages(obj);
2029 	obj->pages = NULL;
2030 
2031 	i915_gem_object_invalidate(obj);
2032 
2033 	return 0;
2034 }
2035 
2036 unsigned long
2037 i915_gem_shrink(struct drm_i915_private *dev_priv,
2038 		long target, unsigned flags)
2039 {
2040 	const struct {
2041 		struct list_head *list;
2042 		unsigned int bit;
2043 	} phases[] = {
2044 		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2045 		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2046 		{ NULL, 0 },
2047 	}, *phase;
2048 	unsigned long count = 0;
2049 
2050 	/*
2051 	 * As we may completely rewrite the (un)bound list whilst unbinding
2052 	 * (due to retiring requests) we have to strictly process only
2053 	 * one element of the list at the time, and recheck the list
2054 	 * on every iteration.
2055 	 *
2056 	 * In particular, we must hold a reference whilst removing the
2057 	 * object as we may end up waiting for and/or retiring the objects.
2058 	 * This might release the final reference (held by the active list)
2059 	 * and result in the object being freed from under us. This is
2060 	 * similar to the precautions the eviction code must take whilst
2061 	 * removing objects.
2062 	 *
2063 	 * Also note that although these lists do not hold a reference to
2064 	 * the object we can safely grab one here: The final object
2065 	 * unreferencing and the bound_list are both protected by the
2066 	 * dev->struct_mutex and so we won't ever be able to observe an
2067 	 * object on the bound_list with a reference count equals 0.
2068 	 */
2069 	for (phase = phases; phase->list; phase++) {
2070 		struct list_head still_in_list;
2071 
2072 		if ((flags & phase->bit) == 0)
2073 			continue;
2074 
2075 		INIT_LIST_HEAD(&still_in_list);
2076 		while (count < target && !list_empty(phase->list)) {
2077 			struct drm_i915_gem_object *obj;
2078 			struct i915_vma *vma, *v;
2079 
2080 			obj = list_first_entry(phase->list,
2081 					       typeof(*obj), global_list);
2082 			list_move_tail(&obj->global_list, &still_in_list);
2083 
2084 			if (flags & I915_SHRINK_PURGEABLE &&
2085 			    !i915_gem_object_is_purgeable(obj))
2086 				continue;
2087 
2088 			drm_gem_object_reference(&obj->base);
2089 
2090 			/* For the unbound phase, this should be a no-op! */
2091 			list_for_each_entry_safe(vma, v,
2092 						 &obj->vma_list, vma_link)
2093 				if (i915_vma_unbind(vma))
2094 					break;
2095 
2096 			if (i915_gem_object_put_pages(obj) == 0)
2097 				count += obj->base.size >> PAGE_SHIFT;
2098 
2099 			drm_gem_object_unreference(&obj->base);
2100 		}
2101 		list_splice(&still_in_list, phase->list);
2102 	}
2103 
2104 	return count;
2105 }
2106 
2107 static unsigned long
2108 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2109 {
2110 	i915_gem_evict_everything(dev_priv->dev);
2111 	return i915_gem_shrink(dev_priv, LONG_MAX,
2112 			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2113 }
2114 
2115 static int
2116 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2117 {
2118 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2119 	int page_count, i;
2120 	struct address_space *mapping;
2121 	struct sg_table *st;
2122 	struct scatterlist *sg;
2123 	struct sg_page_iter sg_iter;
2124 	struct page *page;
2125 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2126 	gfp_t gfp;
2127 
2128 	/* Assert that the object is not currently in any GPU domain. As it
2129 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2130 	 * a GPU cache
2131 	 */
2132 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2133 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2134 
2135 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2136 	if (st == NULL)
2137 		return -ENOMEM;
2138 
2139 	page_count = obj->base.size / PAGE_SIZE;
2140 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2141 		kfree(st);
2142 		return -ENOMEM;
2143 	}
2144 
2145 	/* Get the list of pages out of our struct file.  They'll be pinned
2146 	 * at this point until we release them.
2147 	 *
2148 	 * Fail silently without starting the shrinker
2149 	 */
2150 	mapping = file_inode(obj->base.filp)->i_mapping;
2151 	gfp = mapping_gfp_mask(mapping);
2152 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2153 	gfp &= ~(__GFP_IO | __GFP_WAIT);
2154 	sg = st->sgl;
2155 	st->nents = 0;
2156 	for (i = 0; i < page_count; i++) {
2157 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2158 		if (IS_ERR(page)) {
2159 			i915_gem_shrink(dev_priv,
2160 					page_count,
2161 					I915_SHRINK_BOUND |
2162 					I915_SHRINK_UNBOUND |
2163 					I915_SHRINK_PURGEABLE);
2164 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2165 		}
2166 		if (IS_ERR(page)) {
2167 			/* We've tried hard to allocate the memory by reaping
2168 			 * our own buffer, now let the real VM do its job and
2169 			 * go down in flames if truly OOM.
2170 			 */
2171 			i915_gem_shrink_all(dev_priv);
2172 			page = shmem_read_mapping_page(mapping, i);
2173 			if (IS_ERR(page))
2174 				goto err_pages;
2175 		}
2176 #ifdef CONFIG_SWIOTLB
2177 		if (swiotlb_nr_tbl()) {
2178 			st->nents++;
2179 			sg_set_page(sg, page, PAGE_SIZE, 0);
2180 			sg = sg_next(sg);
2181 			continue;
2182 		}
2183 #endif
2184 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2185 			if (i)
2186 				sg = sg_next(sg);
2187 			st->nents++;
2188 			sg_set_page(sg, page, PAGE_SIZE, 0);
2189 		} else {
2190 			sg->length += PAGE_SIZE;
2191 		}
2192 		last_pfn = page_to_pfn(page);
2193 
2194 		/* Check that the i965g/gm workaround works. */
2195 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2196 	}
2197 #ifdef CONFIG_SWIOTLB
2198 	if (!swiotlb_nr_tbl())
2199 #endif
2200 		sg_mark_end(sg);
2201 	obj->pages = st;
2202 
2203 	if (i915_gem_object_needs_bit17_swizzle(obj))
2204 		i915_gem_object_do_bit_17_swizzle(obj);
2205 
2206 	if (obj->tiling_mode != I915_TILING_NONE &&
2207 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2208 		i915_gem_object_pin_pages(obj);
2209 
2210 	return 0;
2211 
2212 err_pages:
2213 	sg_mark_end(sg);
2214 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2215 		page_cache_release(sg_page_iter_page(&sg_iter));
2216 	sg_free_table(st);
2217 	kfree(st);
2218 
2219 	/* shmemfs first checks if there is enough memory to allocate the page
2220 	 * and reports ENOSPC should there be insufficient, along with the usual
2221 	 * ENOMEM for a genuine allocation failure.
2222 	 *
2223 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2224 	 * space and so want to translate the error from shmemfs back to our
2225 	 * usual understanding of ENOMEM.
2226 	 */
2227 	if (PTR_ERR(page) == -ENOSPC)
2228 		return -ENOMEM;
2229 	else
2230 		return PTR_ERR(page);
2231 }
2232 
2233 /* Ensure that the associated pages are gathered from the backing storage
2234  * and pinned into our object. i915_gem_object_get_pages() may be called
2235  * multiple times before they are released by a single call to
2236  * i915_gem_object_put_pages() - once the pages are no longer referenced
2237  * either as a result of memory pressure (reaping pages under the shrinker)
2238  * or as the object is itself released.
2239  */
2240 int
2241 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2242 {
2243 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2244 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2245 	int ret;
2246 
2247 	if (obj->pages)
2248 		return 0;
2249 
2250 	if (obj->madv != I915_MADV_WILLNEED) {
2251 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2252 		return -EFAULT;
2253 	}
2254 
2255 	BUG_ON(obj->pages_pin_count);
2256 
2257 	ret = ops->get_pages(obj);
2258 	if (ret)
2259 		return ret;
2260 
2261 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2262 	return 0;
2263 }
2264 
2265 static void
2266 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2267 			       struct intel_engine_cs *ring)
2268 {
2269 	struct drm_i915_gem_request *req;
2270 	struct intel_engine_cs *old_ring;
2271 
2272 	BUG_ON(ring == NULL);
2273 
2274 	req = intel_ring_get_request(ring);
2275 	old_ring = i915_gem_request_get_ring(obj->last_read_req);
2276 
2277 	if (old_ring != ring && obj->last_write_req) {
2278 		/* Keep the request relative to the current ring */
2279 		i915_gem_request_assign(&obj->last_write_req, req);
2280 	}
2281 
2282 	/* Add a reference if we're newly entering the active list. */
2283 	if (!obj->active) {
2284 		drm_gem_object_reference(&obj->base);
2285 		obj->active = 1;
2286 	}
2287 
2288 	list_move_tail(&obj->ring_list, &ring->active_list);
2289 
2290 	i915_gem_request_assign(&obj->last_read_req, req);
2291 }
2292 
2293 void i915_vma_move_to_active(struct i915_vma *vma,
2294 			     struct intel_engine_cs *ring)
2295 {
2296 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2297 	return i915_gem_object_move_to_active(vma->obj, ring);
2298 }
2299 
2300 static void
2301 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2302 {
2303 	struct i915_vma *vma;
2304 
2305 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2306 	BUG_ON(!obj->active);
2307 
2308 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
2309 		if (!list_empty(&vma->mm_list))
2310 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2311 	}
2312 
2313 	intel_fb_obj_flush(obj, true);
2314 
2315 	list_del_init(&obj->ring_list);
2316 
2317 	i915_gem_request_assign(&obj->last_read_req, NULL);
2318 	i915_gem_request_assign(&obj->last_write_req, NULL);
2319 	obj->base.write_domain = 0;
2320 
2321 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2322 
2323 	obj->active = 0;
2324 	drm_gem_object_unreference(&obj->base);
2325 
2326 	WARN_ON(i915_verify_lists(dev));
2327 }
2328 
2329 static void
2330 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2331 {
2332 	if (obj->last_read_req == NULL)
2333 		return;
2334 
2335 	if (i915_gem_request_completed(obj->last_read_req, true))
2336 		i915_gem_object_move_to_inactive(obj);
2337 }
2338 
2339 static int
2340 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2341 {
2342 	struct drm_i915_private *dev_priv = dev->dev_private;
2343 	struct intel_engine_cs *ring;
2344 	int ret, i, j;
2345 
2346 	/* Carefully retire all requests without writing to the rings */
2347 	for_each_ring(ring, dev_priv, i) {
2348 		ret = intel_ring_idle(ring);
2349 		if (ret)
2350 			return ret;
2351 	}
2352 	i915_gem_retire_requests(dev);
2353 
2354 	/* Finally reset hw state */
2355 	for_each_ring(ring, dev_priv, i) {
2356 		intel_ring_init_seqno(ring, seqno);
2357 
2358 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2359 			ring->semaphore.sync_seqno[j] = 0;
2360 	}
2361 
2362 	return 0;
2363 }
2364 
2365 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2366 {
2367 	struct drm_i915_private *dev_priv = dev->dev_private;
2368 	int ret;
2369 
2370 	if (seqno == 0)
2371 		return -EINVAL;
2372 
2373 	/* HWS page needs to be set less than what we
2374 	 * will inject to ring
2375 	 */
2376 	ret = i915_gem_init_seqno(dev, seqno - 1);
2377 	if (ret)
2378 		return ret;
2379 
2380 	/* Carefully set the last_seqno value so that wrap
2381 	 * detection still works
2382 	 */
2383 	dev_priv->next_seqno = seqno;
2384 	dev_priv->last_seqno = seqno - 1;
2385 	if (dev_priv->last_seqno == 0)
2386 		dev_priv->last_seqno--;
2387 
2388 	return 0;
2389 }
2390 
2391 int
2392 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2393 {
2394 	struct drm_i915_private *dev_priv = dev->dev_private;
2395 
2396 	/* reserve 0 for non-seqno */
2397 	if (dev_priv->next_seqno == 0) {
2398 		int ret = i915_gem_init_seqno(dev, 0);
2399 		if (ret)
2400 			return ret;
2401 
2402 		dev_priv->next_seqno = 1;
2403 	}
2404 
2405 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2406 	return 0;
2407 }
2408 
2409 int __i915_add_request(struct intel_engine_cs *ring,
2410 		       struct drm_file *file,
2411 		       struct drm_i915_gem_object *obj)
2412 {
2413 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2414 	struct drm_i915_gem_request *request;
2415 	struct intel_ringbuffer *ringbuf;
2416 	u32 request_start;
2417 	int ret;
2418 
2419 	request = ring->outstanding_lazy_request;
2420 	if (WARN_ON(request == NULL))
2421 		return -ENOMEM;
2422 
2423 	if (i915.enable_execlists) {
2424 		ringbuf = request->ctx->engine[ring->id].ringbuf;
2425 	} else
2426 		ringbuf = ring->buffer;
2427 
2428 	request_start = intel_ring_get_tail(ringbuf);
2429 	/*
2430 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2431 	 * after having emitted the batchbuffer command. Hence we need to fix
2432 	 * things up similar to emitting the lazy request. The difference here
2433 	 * is that the flush _must_ happen before the next request, no matter
2434 	 * what.
2435 	 */
2436 	if (i915.enable_execlists) {
2437 		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2438 		if (ret)
2439 			return ret;
2440 	} else {
2441 		ret = intel_ring_flush_all_caches(ring);
2442 		if (ret)
2443 			return ret;
2444 	}
2445 
2446 	/* Record the position of the start of the request so that
2447 	 * should we detect the updated seqno part-way through the
2448 	 * GPU processing the request, we never over-estimate the
2449 	 * position of the head.
2450 	 */
2451 	request->postfix = intel_ring_get_tail(ringbuf);
2452 
2453 	if (i915.enable_execlists) {
2454 		ret = ring->emit_request(ringbuf, request);
2455 		if (ret)
2456 			return ret;
2457 	} else {
2458 		ret = ring->add_request(ring);
2459 		if (ret)
2460 			return ret;
2461 	}
2462 
2463 	request->head = request_start;
2464 	request->tail = intel_ring_get_tail(ringbuf);
2465 
2466 	/* Whilst this request exists, batch_obj will be on the
2467 	 * active_list, and so will hold the active reference. Only when this
2468 	 * request is retired will the the batch_obj be moved onto the
2469 	 * inactive_list and lose its active reference. Hence we do not need
2470 	 * to explicitly hold another reference here.
2471 	 */
2472 	request->batch_obj = obj;
2473 
2474 	if (!i915.enable_execlists) {
2475 		/* Hold a reference to the current context so that we can inspect
2476 		 * it later in case a hangcheck error event fires.
2477 		 */
2478 		request->ctx = ring->last_context;
2479 		if (request->ctx)
2480 			i915_gem_context_reference(request->ctx);
2481 	}
2482 
2483 	request->emitted_jiffies = jiffies;
2484 	list_add_tail(&request->list, &ring->request_list);
2485 	request->file_priv = NULL;
2486 
2487 	if (file) {
2488 		struct drm_i915_file_private *file_priv = file->driver_priv;
2489 
2490 		spin_lock(&file_priv->mm.lock);
2491 		request->file_priv = file_priv;
2492 		list_add_tail(&request->client_list,
2493 			      &file_priv->mm.request_list);
2494 		spin_unlock(&file_priv->mm.lock);
2495 	}
2496 
2497 	trace_i915_gem_request_add(request);
2498 	ring->outstanding_lazy_request = NULL;
2499 
2500 	i915_queue_hangcheck(ring->dev);
2501 
2502 	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2503 	queue_delayed_work(dev_priv->wq,
2504 			   &dev_priv->mm.retire_work,
2505 			   round_jiffies_up_relative(HZ));
2506 	intel_mark_busy(dev_priv->dev);
2507 
2508 	return 0;
2509 }
2510 
2511 static inline void
2512 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2513 {
2514 	struct drm_i915_file_private *file_priv = request->file_priv;
2515 
2516 	if (!file_priv)
2517 		return;
2518 
2519 	spin_lock(&file_priv->mm.lock);
2520 	list_del(&request->client_list);
2521 	request->file_priv = NULL;
2522 	spin_unlock(&file_priv->mm.lock);
2523 }
2524 
2525 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2526 				   const struct intel_context *ctx)
2527 {
2528 	unsigned long elapsed;
2529 
2530 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2531 
2532 	if (ctx->hang_stats.banned)
2533 		return true;
2534 
2535 	if (ctx->hang_stats.ban_period_seconds &&
2536 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2537 		if (!i915_gem_context_is_default(ctx)) {
2538 			DRM_DEBUG("context hanging too fast, banning!\n");
2539 			return true;
2540 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2541 			if (i915_stop_ring_allow_warn(dev_priv))
2542 				DRM_ERROR("gpu hanging too fast, banning!\n");
2543 			return true;
2544 		}
2545 	}
2546 
2547 	return false;
2548 }
2549 
2550 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2551 				  struct intel_context *ctx,
2552 				  const bool guilty)
2553 {
2554 	struct i915_ctx_hang_stats *hs;
2555 
2556 	if (WARN_ON(!ctx))
2557 		return;
2558 
2559 	hs = &ctx->hang_stats;
2560 
2561 	if (guilty) {
2562 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2563 		hs->batch_active++;
2564 		hs->guilty_ts = get_seconds();
2565 	} else {
2566 		hs->batch_pending++;
2567 	}
2568 }
2569 
2570 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2571 {
2572 	list_del(&request->list);
2573 	i915_gem_request_remove_from_client(request);
2574 
2575 	i915_gem_request_unreference(request);
2576 }
2577 
2578 void i915_gem_request_free(struct kref *req_ref)
2579 {
2580 	struct drm_i915_gem_request *req = container_of(req_ref,
2581 						 typeof(*req), ref);
2582 	struct intel_context *ctx = req->ctx;
2583 
2584 	if (ctx) {
2585 		if (i915.enable_execlists) {
2586 			struct intel_engine_cs *ring = req->ring;
2587 
2588 			if (ctx != ring->default_context)
2589 				intel_lr_context_unpin(ring, ctx);
2590 		}
2591 
2592 		i915_gem_context_unreference(ctx);
2593 	}
2594 
2595 	kfree(req);
2596 }
2597 
2598 struct drm_i915_gem_request *
2599 i915_gem_find_active_request(struct intel_engine_cs *ring)
2600 {
2601 	struct drm_i915_gem_request *request;
2602 
2603 	list_for_each_entry(request, &ring->request_list, list) {
2604 		if (i915_gem_request_completed(request, false))
2605 			continue;
2606 
2607 		return request;
2608 	}
2609 
2610 	return NULL;
2611 }
2612 
2613 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2614 				       struct intel_engine_cs *ring)
2615 {
2616 	struct drm_i915_gem_request *request;
2617 	bool ring_hung;
2618 
2619 	request = i915_gem_find_active_request(ring);
2620 
2621 	if (request == NULL)
2622 		return;
2623 
2624 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2625 
2626 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2627 
2628 	list_for_each_entry_continue(request, &ring->request_list, list)
2629 		i915_set_reset_status(dev_priv, request->ctx, false);
2630 }
2631 
2632 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2633 					struct intel_engine_cs *ring)
2634 {
2635 	while (!list_empty(&ring->active_list)) {
2636 		struct drm_i915_gem_object *obj;
2637 
2638 		obj = list_first_entry(&ring->active_list,
2639 				       struct drm_i915_gem_object,
2640 				       ring_list);
2641 
2642 		i915_gem_object_move_to_inactive(obj);
2643 	}
2644 
2645 	/*
2646 	 * Clear the execlists queue up before freeing the requests, as those
2647 	 * are the ones that keep the context and ringbuffer backing objects
2648 	 * pinned in place.
2649 	 */
2650 	while (!list_empty(&ring->execlist_queue)) {
2651 		struct drm_i915_gem_request *submit_req;
2652 
2653 		submit_req = list_first_entry(&ring->execlist_queue,
2654 				struct drm_i915_gem_request,
2655 				execlist_link);
2656 		list_del(&submit_req->execlist_link);
2657 		intel_runtime_pm_put(dev_priv);
2658 
2659 		if (submit_req->ctx != ring->default_context)
2660 			intel_lr_context_unpin(ring, submit_req->ctx);
2661 
2662 		i915_gem_request_unreference(submit_req);
2663 	}
2664 
2665 	/*
2666 	 * We must free the requests after all the corresponding objects have
2667 	 * been moved off active lists. Which is the same order as the normal
2668 	 * retire_requests function does. This is important if object hold
2669 	 * implicit references on things like e.g. ppgtt address spaces through
2670 	 * the request.
2671 	 */
2672 	while (!list_empty(&ring->request_list)) {
2673 		struct drm_i915_gem_request *request;
2674 
2675 		request = list_first_entry(&ring->request_list,
2676 					   struct drm_i915_gem_request,
2677 					   list);
2678 
2679 		i915_gem_free_request(request);
2680 	}
2681 
2682 	/* This may not have been flushed before the reset, so clean it now */
2683 	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2684 }
2685 
2686 void i915_gem_restore_fences(struct drm_device *dev)
2687 {
2688 	struct drm_i915_private *dev_priv = dev->dev_private;
2689 	int i;
2690 
2691 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2692 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2693 
2694 		/*
2695 		 * Commit delayed tiling changes if we have an object still
2696 		 * attached to the fence, otherwise just clear the fence.
2697 		 */
2698 		if (reg->obj) {
2699 			i915_gem_object_update_fence(reg->obj, reg,
2700 						     reg->obj->tiling_mode);
2701 		} else {
2702 			i915_gem_write_fence(dev, i, NULL);
2703 		}
2704 	}
2705 }
2706 
2707 void i915_gem_reset(struct drm_device *dev)
2708 {
2709 	struct drm_i915_private *dev_priv = dev->dev_private;
2710 	struct intel_engine_cs *ring;
2711 	int i;
2712 
2713 	/*
2714 	 * Before we free the objects from the requests, we need to inspect
2715 	 * them for finding the guilty party. As the requests only borrow
2716 	 * their reference to the objects, the inspection must be done first.
2717 	 */
2718 	for_each_ring(ring, dev_priv, i)
2719 		i915_gem_reset_ring_status(dev_priv, ring);
2720 
2721 	for_each_ring(ring, dev_priv, i)
2722 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2723 
2724 	i915_gem_context_reset(dev);
2725 
2726 	i915_gem_restore_fences(dev);
2727 }
2728 
2729 /**
2730  * This function clears the request list as sequence numbers are passed.
2731  */
2732 void
2733 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2734 {
2735 	if (list_empty(&ring->request_list))
2736 		return;
2737 
2738 	WARN_ON(i915_verify_lists(ring->dev));
2739 
2740 	/* Move any buffers on the active list that are no longer referenced
2741 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2742 	 * before we free the context associated with the requests.
2743 	 */
2744 	while (!list_empty(&ring->active_list)) {
2745 		struct drm_i915_gem_object *obj;
2746 
2747 		obj = list_first_entry(&ring->active_list,
2748 				      struct drm_i915_gem_object,
2749 				      ring_list);
2750 
2751 		if (!i915_gem_request_completed(obj->last_read_req, true))
2752 			break;
2753 
2754 		i915_gem_object_move_to_inactive(obj);
2755 	}
2756 
2757 
2758 	while (!list_empty(&ring->request_list)) {
2759 		struct drm_i915_gem_request *request;
2760 		struct intel_ringbuffer *ringbuf;
2761 
2762 		request = list_first_entry(&ring->request_list,
2763 					   struct drm_i915_gem_request,
2764 					   list);
2765 
2766 		if (!i915_gem_request_completed(request, true))
2767 			break;
2768 
2769 		trace_i915_gem_request_retire(request);
2770 
2771 		/* This is one of the few common intersection points
2772 		 * between legacy ringbuffer submission and execlists:
2773 		 * we need to tell them apart in order to find the correct
2774 		 * ringbuffer to which the request belongs to.
2775 		 */
2776 		if (i915.enable_execlists) {
2777 			struct intel_context *ctx = request->ctx;
2778 			ringbuf = ctx->engine[ring->id].ringbuf;
2779 		} else
2780 			ringbuf = ring->buffer;
2781 
2782 		/* We know the GPU must have read the request to have
2783 		 * sent us the seqno + interrupt, so use the position
2784 		 * of tail of the request to update the last known position
2785 		 * of the GPU head.
2786 		 */
2787 		ringbuf->last_retired_head = request->postfix;
2788 
2789 		i915_gem_free_request(request);
2790 	}
2791 
2792 	if (unlikely(ring->trace_irq_req &&
2793 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2794 		ring->irq_put(ring);
2795 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2796 	}
2797 
2798 	WARN_ON(i915_verify_lists(ring->dev));
2799 }
2800 
2801 bool
2802 i915_gem_retire_requests(struct drm_device *dev)
2803 {
2804 	struct drm_i915_private *dev_priv = dev->dev_private;
2805 	struct intel_engine_cs *ring;
2806 	bool idle = true;
2807 	int i;
2808 
2809 	for_each_ring(ring, dev_priv, i) {
2810 		i915_gem_retire_requests_ring(ring);
2811 		idle &= list_empty(&ring->request_list);
2812 		if (i915.enable_execlists) {
2813 			unsigned long flags;
2814 
2815 			spin_lock_irqsave(&ring->execlist_lock, flags);
2816 			idle &= list_empty(&ring->execlist_queue);
2817 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
2818 
2819 			intel_execlists_retire_requests(ring);
2820 		}
2821 	}
2822 
2823 	if (idle)
2824 		mod_delayed_work(dev_priv->wq,
2825 				   &dev_priv->mm.idle_work,
2826 				   msecs_to_jiffies(100));
2827 
2828 	return idle;
2829 }
2830 
2831 static void
2832 i915_gem_retire_work_handler(struct work_struct *work)
2833 {
2834 	struct drm_i915_private *dev_priv =
2835 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2836 	struct drm_device *dev = dev_priv->dev;
2837 	bool idle;
2838 
2839 	/* Come back later if the device is busy... */
2840 	idle = false;
2841 	if (mutex_trylock(&dev->struct_mutex)) {
2842 		idle = i915_gem_retire_requests(dev);
2843 		mutex_unlock(&dev->struct_mutex);
2844 	}
2845 	if (!idle)
2846 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2847 				   round_jiffies_up_relative(HZ));
2848 }
2849 
2850 static void
2851 i915_gem_idle_work_handler(struct work_struct *work)
2852 {
2853 	struct drm_i915_private *dev_priv =
2854 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2855 
2856 	intel_mark_idle(dev_priv->dev);
2857 }
2858 
2859 /**
2860  * Ensures that an object will eventually get non-busy by flushing any required
2861  * write domains, emitting any outstanding lazy request and retiring and
2862  * completed requests.
2863  */
2864 static int
2865 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2866 {
2867 	struct intel_engine_cs *ring;
2868 	int ret;
2869 
2870 	if (obj->active) {
2871 		ring = i915_gem_request_get_ring(obj->last_read_req);
2872 
2873 		ret = i915_gem_check_olr(obj->last_read_req);
2874 		if (ret)
2875 			return ret;
2876 
2877 		i915_gem_retire_requests_ring(ring);
2878 	}
2879 
2880 	return 0;
2881 }
2882 
2883 /**
2884  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2885  * @DRM_IOCTL_ARGS: standard ioctl arguments
2886  *
2887  * Returns 0 if successful, else an error is returned with the remaining time in
2888  * the timeout parameter.
2889  *  -ETIME: object is still busy after timeout
2890  *  -ERESTARTSYS: signal interrupted the wait
2891  *  -ENONENT: object doesn't exist
2892  * Also possible, but rare:
2893  *  -EAGAIN: GPU wedged
2894  *  -ENOMEM: damn
2895  *  -ENODEV: Internal IRQ fail
2896  *  -E?: The add request failed
2897  *
2898  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2899  * non-zero timeout parameter the wait ioctl will wait for the given number of
2900  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2901  * without holding struct_mutex the object may become re-busied before this
2902  * function completes. A similar but shorter * race condition exists in the busy
2903  * ioctl
2904  */
2905 int
2906 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2907 {
2908 	struct drm_i915_private *dev_priv = dev->dev_private;
2909 	struct drm_i915_gem_wait *args = data;
2910 	struct drm_i915_gem_object *obj;
2911 	struct drm_i915_gem_request *req;
2912 	unsigned reset_counter;
2913 	int ret = 0;
2914 
2915 	if (args->flags != 0)
2916 		return -EINVAL;
2917 
2918 	ret = i915_mutex_lock_interruptible(dev);
2919 	if (ret)
2920 		return ret;
2921 
2922 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2923 	if (&obj->base == NULL) {
2924 		mutex_unlock(&dev->struct_mutex);
2925 		return -ENOENT;
2926 	}
2927 
2928 	/* Need to make sure the object gets inactive eventually. */
2929 	ret = i915_gem_object_flush_active(obj);
2930 	if (ret)
2931 		goto out;
2932 
2933 	if (!obj->active || !obj->last_read_req)
2934 		goto out;
2935 
2936 	req = obj->last_read_req;
2937 
2938 	/* Do this after OLR check to make sure we make forward progress polling
2939 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2940 	 */
2941 	if (args->timeout_ns == 0) {
2942 		ret = -ETIME;
2943 		goto out;
2944 	}
2945 
2946 	drm_gem_object_unreference(&obj->base);
2947 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2948 	i915_gem_request_reference(req);
2949 	mutex_unlock(&dev->struct_mutex);
2950 
2951 	ret = __i915_wait_request(req, reset_counter, true,
2952 				  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2953 				  file->driver_priv);
2954 	mutex_lock(&dev->struct_mutex);
2955 	i915_gem_request_unreference(req);
2956 	mutex_unlock(&dev->struct_mutex);
2957 	return ret;
2958 
2959 out:
2960 	drm_gem_object_unreference(&obj->base);
2961 	mutex_unlock(&dev->struct_mutex);
2962 	return ret;
2963 }
2964 
2965 /**
2966  * i915_gem_object_sync - sync an object to a ring.
2967  *
2968  * @obj: object which may be in use on another ring.
2969  * @to: ring we wish to use the object on. May be NULL.
2970  *
2971  * This code is meant to abstract object synchronization with the GPU.
2972  * Calling with NULL implies synchronizing the object with the CPU
2973  * rather than a particular GPU ring.
2974  *
2975  * Returns 0 if successful, else propagates up the lower layer error.
2976  */
2977 int
2978 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2979 		     struct intel_engine_cs *to)
2980 {
2981 	struct intel_engine_cs *from;
2982 	u32 seqno;
2983 	int ret, idx;
2984 
2985 	from = i915_gem_request_get_ring(obj->last_read_req);
2986 
2987 	if (from == NULL || to == from)
2988 		return 0;
2989 
2990 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2991 		return i915_gem_object_wait_rendering(obj, false);
2992 
2993 	idx = intel_ring_sync_index(from, to);
2994 
2995 	seqno = i915_gem_request_get_seqno(obj->last_read_req);
2996 	/* Optimization: Avoid semaphore sync when we are sure we already
2997 	 * waited for an object with higher seqno */
2998 	if (seqno <= from->semaphore.sync_seqno[idx])
2999 		return 0;
3000 
3001 	ret = i915_gem_check_olr(obj->last_read_req);
3002 	if (ret)
3003 		return ret;
3004 
3005 	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3006 	ret = to->semaphore.sync_to(to, from, seqno);
3007 	if (!ret)
3008 		/* We use last_read_req because sync_to()
3009 		 * might have just caused seqno wrap under
3010 		 * the radar.
3011 		 */
3012 		from->semaphore.sync_seqno[idx] =
3013 				i915_gem_request_get_seqno(obj->last_read_req);
3014 
3015 	return ret;
3016 }
3017 
3018 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3019 {
3020 	u32 old_write_domain, old_read_domains;
3021 
3022 	/* Force a pagefault for domain tracking on next user access */
3023 	i915_gem_release_mmap(obj);
3024 
3025 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3026 		return;
3027 
3028 	/* Wait for any direct GTT access to complete */
3029 	mb();
3030 
3031 	old_read_domains = obj->base.read_domains;
3032 	old_write_domain = obj->base.write_domain;
3033 
3034 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3035 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3036 
3037 	trace_i915_gem_object_change_domain(obj,
3038 					    old_read_domains,
3039 					    old_write_domain);
3040 }
3041 
3042 int i915_vma_unbind(struct i915_vma *vma)
3043 {
3044 	struct drm_i915_gem_object *obj = vma->obj;
3045 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3046 	int ret;
3047 
3048 	if (list_empty(&vma->vma_link))
3049 		return 0;
3050 
3051 	if (!drm_mm_node_allocated(&vma->node)) {
3052 		i915_gem_vma_destroy(vma);
3053 		return 0;
3054 	}
3055 
3056 	if (vma->pin_count)
3057 		return -EBUSY;
3058 
3059 	BUG_ON(obj->pages == NULL);
3060 
3061 	ret = i915_gem_object_finish_gpu(obj);
3062 	if (ret)
3063 		return ret;
3064 	/* Continue on if we fail due to EIO, the GPU is hung so we
3065 	 * should be safe and we need to cleanup or else we might
3066 	 * cause memory corruption through use-after-free.
3067 	 */
3068 
3069 	if (i915_is_ggtt(vma->vm) &&
3070 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3071 		i915_gem_object_finish_gtt(obj);
3072 
3073 		/* release the fence reg _after_ flushing */
3074 		ret = i915_gem_object_put_fence(obj);
3075 		if (ret)
3076 			return ret;
3077 	}
3078 
3079 	trace_i915_vma_unbind(vma);
3080 
3081 	vma->unbind_vma(vma);
3082 
3083 	list_del_init(&vma->mm_list);
3084 	if (i915_is_ggtt(vma->vm)) {
3085 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3086 			obj->map_and_fenceable = false;
3087 		} else if (vma->ggtt_view.pages) {
3088 			sg_free_table(vma->ggtt_view.pages);
3089 			kfree(vma->ggtt_view.pages);
3090 			vma->ggtt_view.pages = NULL;
3091 		}
3092 	}
3093 
3094 	drm_mm_remove_node(&vma->node);
3095 	i915_gem_vma_destroy(vma);
3096 
3097 	/* Since the unbound list is global, only move to that list if
3098 	 * no more VMAs exist. */
3099 	if (list_empty(&obj->vma_list)) {
3100 		/* Throw away the active reference before
3101 		 * moving to the unbound list. */
3102 		i915_gem_object_retire(obj);
3103 
3104 		i915_gem_gtt_finish_object(obj);
3105 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3106 	}
3107 
3108 	/* And finally now the object is completely decoupled from this vma,
3109 	 * we can drop its hold on the backing storage and allow it to be
3110 	 * reaped by the shrinker.
3111 	 */
3112 	i915_gem_object_unpin_pages(obj);
3113 
3114 	return 0;
3115 }
3116 
3117 int i915_gpu_idle(struct drm_device *dev)
3118 {
3119 	struct drm_i915_private *dev_priv = dev->dev_private;
3120 	struct intel_engine_cs *ring;
3121 	int ret, i;
3122 
3123 	/* Flush everything onto the inactive list. */
3124 	for_each_ring(ring, dev_priv, i) {
3125 		if (!i915.enable_execlists) {
3126 			ret = i915_switch_context(ring, ring->default_context);
3127 			if (ret)
3128 				return ret;
3129 		}
3130 
3131 		ret = intel_ring_idle(ring);
3132 		if (ret)
3133 			return ret;
3134 	}
3135 
3136 	return 0;
3137 }
3138 
3139 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3140 				 struct drm_i915_gem_object *obj)
3141 {
3142 	struct drm_i915_private *dev_priv = dev->dev_private;
3143 	int fence_reg;
3144 	int fence_pitch_shift;
3145 
3146 	if (INTEL_INFO(dev)->gen >= 6) {
3147 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
3148 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3149 	} else {
3150 		fence_reg = FENCE_REG_965_0;
3151 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3152 	}
3153 
3154 	fence_reg += reg * 8;
3155 
3156 	/* To w/a incoherency with non-atomic 64-bit register updates,
3157 	 * we split the 64-bit update into two 32-bit writes. In order
3158 	 * for a partial fence not to be evaluated between writes, we
3159 	 * precede the update with write to turn off the fence register,
3160 	 * and only enable the fence as the last step.
3161 	 *
3162 	 * For extra levels of paranoia, we make sure each step lands
3163 	 * before applying the next step.
3164 	 */
3165 	I915_WRITE(fence_reg, 0);
3166 	POSTING_READ(fence_reg);
3167 
3168 	if (obj) {
3169 		u32 size = i915_gem_obj_ggtt_size(obj);
3170 		uint64_t val;
3171 
3172 		/* Adjust fence size to match tiled area */
3173 		if (obj->tiling_mode != I915_TILING_NONE) {
3174 			uint32_t row_size = obj->stride *
3175 				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3176 			size = (size / row_size) * row_size;
3177 		}
3178 
3179 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3180 				 0xfffff000) << 32;
3181 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3182 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3183 		if (obj->tiling_mode == I915_TILING_Y)
3184 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3185 		val |= I965_FENCE_REG_VALID;
3186 
3187 		I915_WRITE(fence_reg + 4, val >> 32);
3188 		POSTING_READ(fence_reg + 4);
3189 
3190 		I915_WRITE(fence_reg + 0, val);
3191 		POSTING_READ(fence_reg);
3192 	} else {
3193 		I915_WRITE(fence_reg + 4, 0);
3194 		POSTING_READ(fence_reg + 4);
3195 	}
3196 }
3197 
3198 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3199 				 struct drm_i915_gem_object *obj)
3200 {
3201 	struct drm_i915_private *dev_priv = dev->dev_private;
3202 	u32 val;
3203 
3204 	if (obj) {
3205 		u32 size = i915_gem_obj_ggtt_size(obj);
3206 		int pitch_val;
3207 		int tile_width;
3208 
3209 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3210 		     (size & -size) != size ||
3211 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3212 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3213 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3214 
3215 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3216 			tile_width = 128;
3217 		else
3218 			tile_width = 512;
3219 
3220 		/* Note: pitch better be a power of two tile widths */
3221 		pitch_val = obj->stride / tile_width;
3222 		pitch_val = ffs(pitch_val) - 1;
3223 
3224 		val = i915_gem_obj_ggtt_offset(obj);
3225 		if (obj->tiling_mode == I915_TILING_Y)
3226 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3227 		val |= I915_FENCE_SIZE_BITS(size);
3228 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3229 		val |= I830_FENCE_REG_VALID;
3230 	} else
3231 		val = 0;
3232 
3233 	if (reg < 8)
3234 		reg = FENCE_REG_830_0 + reg * 4;
3235 	else
3236 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
3237 
3238 	I915_WRITE(reg, val);
3239 	POSTING_READ(reg);
3240 }
3241 
3242 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3243 				struct drm_i915_gem_object *obj)
3244 {
3245 	struct drm_i915_private *dev_priv = dev->dev_private;
3246 	uint32_t val;
3247 
3248 	if (obj) {
3249 		u32 size = i915_gem_obj_ggtt_size(obj);
3250 		uint32_t pitch_val;
3251 
3252 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3253 		     (size & -size) != size ||
3254 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3255 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3256 		     i915_gem_obj_ggtt_offset(obj), size);
3257 
3258 		pitch_val = obj->stride / 128;
3259 		pitch_val = ffs(pitch_val) - 1;
3260 
3261 		val = i915_gem_obj_ggtt_offset(obj);
3262 		if (obj->tiling_mode == I915_TILING_Y)
3263 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3264 		val |= I830_FENCE_SIZE_BITS(size);
3265 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3266 		val |= I830_FENCE_REG_VALID;
3267 	} else
3268 		val = 0;
3269 
3270 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3271 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
3272 }
3273 
3274 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3275 {
3276 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3277 }
3278 
3279 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3280 				 struct drm_i915_gem_object *obj)
3281 {
3282 	struct drm_i915_private *dev_priv = dev->dev_private;
3283 
3284 	/* Ensure that all CPU reads are completed before installing a fence
3285 	 * and all writes before removing the fence.
3286 	 */
3287 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3288 		mb();
3289 
3290 	WARN(obj && (!obj->stride || !obj->tiling_mode),
3291 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3292 	     obj->stride, obj->tiling_mode);
3293 
3294 	if (IS_GEN2(dev))
3295 		i830_write_fence_reg(dev, reg, obj);
3296 	else if (IS_GEN3(dev))
3297 		i915_write_fence_reg(dev, reg, obj);
3298 	else if (INTEL_INFO(dev)->gen >= 4)
3299 		i965_write_fence_reg(dev, reg, obj);
3300 
3301 	/* And similarly be paranoid that no direct access to this region
3302 	 * is reordered to before the fence is installed.
3303 	 */
3304 	if (i915_gem_object_needs_mb(obj))
3305 		mb();
3306 }
3307 
3308 static inline int fence_number(struct drm_i915_private *dev_priv,
3309 			       struct drm_i915_fence_reg *fence)
3310 {
3311 	return fence - dev_priv->fence_regs;
3312 }
3313 
3314 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3315 					 struct drm_i915_fence_reg *fence,
3316 					 bool enable)
3317 {
3318 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3319 	int reg = fence_number(dev_priv, fence);
3320 
3321 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3322 
3323 	if (enable) {
3324 		obj->fence_reg = reg;
3325 		fence->obj = obj;
3326 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3327 	} else {
3328 		obj->fence_reg = I915_FENCE_REG_NONE;
3329 		fence->obj = NULL;
3330 		list_del_init(&fence->lru_list);
3331 	}
3332 	obj->fence_dirty = false;
3333 }
3334 
3335 static int
3336 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3337 {
3338 	if (obj->last_fenced_req) {
3339 		int ret = i915_wait_request(obj->last_fenced_req);
3340 		if (ret)
3341 			return ret;
3342 
3343 		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3344 	}
3345 
3346 	return 0;
3347 }
3348 
3349 int
3350 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3351 {
3352 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3353 	struct drm_i915_fence_reg *fence;
3354 	int ret;
3355 
3356 	ret = i915_gem_object_wait_fence(obj);
3357 	if (ret)
3358 		return ret;
3359 
3360 	if (obj->fence_reg == I915_FENCE_REG_NONE)
3361 		return 0;
3362 
3363 	fence = &dev_priv->fence_regs[obj->fence_reg];
3364 
3365 	if (WARN_ON(fence->pin_count))
3366 		return -EBUSY;
3367 
3368 	i915_gem_object_fence_lost(obj);
3369 	i915_gem_object_update_fence(obj, fence, false);
3370 
3371 	return 0;
3372 }
3373 
3374 static struct drm_i915_fence_reg *
3375 i915_find_fence_reg(struct drm_device *dev)
3376 {
3377 	struct drm_i915_private *dev_priv = dev->dev_private;
3378 	struct drm_i915_fence_reg *reg, *avail;
3379 	int i;
3380 
3381 	/* First try to find a free reg */
3382 	avail = NULL;
3383 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3384 		reg = &dev_priv->fence_regs[i];
3385 		if (!reg->obj)
3386 			return reg;
3387 
3388 		if (!reg->pin_count)
3389 			avail = reg;
3390 	}
3391 
3392 	if (avail == NULL)
3393 		goto deadlock;
3394 
3395 	/* None available, try to steal one or wait for a user to finish */
3396 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3397 		if (reg->pin_count)
3398 			continue;
3399 
3400 		return reg;
3401 	}
3402 
3403 deadlock:
3404 	/* Wait for completion of pending flips which consume fences */
3405 	if (intel_has_pending_fb_unpin(dev))
3406 		return ERR_PTR(-EAGAIN);
3407 
3408 	return ERR_PTR(-EDEADLK);
3409 }
3410 
3411 /**
3412  * i915_gem_object_get_fence - set up fencing for an object
3413  * @obj: object to map through a fence reg
3414  *
3415  * When mapping objects through the GTT, userspace wants to be able to write
3416  * to them without having to worry about swizzling if the object is tiled.
3417  * This function walks the fence regs looking for a free one for @obj,
3418  * stealing one if it can't find any.
3419  *
3420  * It then sets up the reg based on the object's properties: address, pitch
3421  * and tiling format.
3422  *
3423  * For an untiled surface, this removes any existing fence.
3424  */
3425 int
3426 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3427 {
3428 	struct drm_device *dev = obj->base.dev;
3429 	struct drm_i915_private *dev_priv = dev->dev_private;
3430 	bool enable = obj->tiling_mode != I915_TILING_NONE;
3431 	struct drm_i915_fence_reg *reg;
3432 	int ret;
3433 
3434 	/* Have we updated the tiling parameters upon the object and so
3435 	 * will need to serialise the write to the associated fence register?
3436 	 */
3437 	if (obj->fence_dirty) {
3438 		ret = i915_gem_object_wait_fence(obj);
3439 		if (ret)
3440 			return ret;
3441 	}
3442 
3443 	/* Just update our place in the LRU if our fence is getting reused. */
3444 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3445 		reg = &dev_priv->fence_regs[obj->fence_reg];
3446 		if (!obj->fence_dirty) {
3447 			list_move_tail(&reg->lru_list,
3448 				       &dev_priv->mm.fence_list);
3449 			return 0;
3450 		}
3451 	} else if (enable) {
3452 		if (WARN_ON(!obj->map_and_fenceable))
3453 			return -EINVAL;
3454 
3455 		reg = i915_find_fence_reg(dev);
3456 		if (IS_ERR(reg))
3457 			return PTR_ERR(reg);
3458 
3459 		if (reg->obj) {
3460 			struct drm_i915_gem_object *old = reg->obj;
3461 
3462 			ret = i915_gem_object_wait_fence(old);
3463 			if (ret)
3464 				return ret;
3465 
3466 			i915_gem_object_fence_lost(old);
3467 		}
3468 	} else
3469 		return 0;
3470 
3471 	i915_gem_object_update_fence(obj, reg, enable);
3472 
3473 	return 0;
3474 }
3475 
3476 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3477 				     unsigned long cache_level)
3478 {
3479 	struct drm_mm_node *gtt_space = &vma->node;
3480 	struct drm_mm_node *other;
3481 
3482 	/*
3483 	 * On some machines we have to be careful when putting differing types
3484 	 * of snoopable memory together to avoid the prefetcher crossing memory
3485 	 * domains and dying. During vm initialisation, we decide whether or not
3486 	 * these constraints apply and set the drm_mm.color_adjust
3487 	 * appropriately.
3488 	 */
3489 	if (vma->vm->mm.color_adjust == NULL)
3490 		return true;
3491 
3492 	if (!drm_mm_node_allocated(gtt_space))
3493 		return true;
3494 
3495 	if (list_empty(&gtt_space->node_list))
3496 		return true;
3497 
3498 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3499 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3500 		return false;
3501 
3502 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3503 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3504 		return false;
3505 
3506 	return true;
3507 }
3508 
3509 /**
3510  * Finds free space in the GTT aperture and binds the object there.
3511  */
3512 static struct i915_vma *
3513 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3514 			   struct i915_address_space *vm,
3515 			   unsigned alignment,
3516 			   uint64_t flags,
3517 			   const struct i915_ggtt_view *view)
3518 {
3519 	struct drm_device *dev = obj->base.dev;
3520 	struct drm_i915_private *dev_priv = dev->dev_private;
3521 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3522 	unsigned long start =
3523 		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3524 	unsigned long end =
3525 		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3526 	struct i915_vma *vma;
3527 	int ret;
3528 
3529 	fence_size = i915_gem_get_gtt_size(dev,
3530 					   obj->base.size,
3531 					   obj->tiling_mode);
3532 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3533 						     obj->base.size,
3534 						     obj->tiling_mode, true);
3535 	unfenced_alignment =
3536 		i915_gem_get_gtt_alignment(dev,
3537 					   obj->base.size,
3538 					   obj->tiling_mode, false);
3539 
3540 	if (alignment == 0)
3541 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3542 						unfenced_alignment;
3543 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3544 		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3545 		return ERR_PTR(-EINVAL);
3546 	}
3547 
3548 	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3549 
3550 	/* If the object is bigger than the entire aperture, reject it early
3551 	 * before evicting everything in a vain attempt to find space.
3552 	 */
3553 	if (obj->base.size > end) {
3554 		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3555 			  obj->base.size,
3556 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3557 			  end);
3558 		return ERR_PTR(-E2BIG);
3559 	}
3560 
3561 	ret = i915_gem_object_get_pages(obj);
3562 	if (ret)
3563 		return ERR_PTR(ret);
3564 
3565 	i915_gem_object_pin_pages(obj);
3566 
3567 	vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3568 	if (IS_ERR(vma))
3569 		goto err_unpin;
3570 
3571 search_free:
3572 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3573 						  size, alignment,
3574 						  obj->cache_level,
3575 						  start, end,
3576 						  DRM_MM_SEARCH_DEFAULT,
3577 						  DRM_MM_CREATE_DEFAULT);
3578 	if (ret) {
3579 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3580 					       obj->cache_level,
3581 					       start, end,
3582 					       flags);
3583 		if (ret == 0)
3584 			goto search_free;
3585 
3586 		goto err_free_vma;
3587 	}
3588 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3589 		ret = -EINVAL;
3590 		goto err_remove_node;
3591 	}
3592 
3593 	ret = i915_gem_gtt_prepare_object(obj);
3594 	if (ret)
3595 		goto err_remove_node;
3596 
3597 	trace_i915_vma_bind(vma, flags);
3598 	ret = i915_vma_bind(vma, obj->cache_level,
3599 			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3600 	if (ret)
3601 		goto err_finish_gtt;
3602 
3603 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3604 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3605 
3606 	return vma;
3607 
3608 err_finish_gtt:
3609 	i915_gem_gtt_finish_object(obj);
3610 err_remove_node:
3611 	drm_mm_remove_node(&vma->node);
3612 err_free_vma:
3613 	i915_gem_vma_destroy(vma);
3614 	vma = ERR_PTR(ret);
3615 err_unpin:
3616 	i915_gem_object_unpin_pages(obj);
3617 	return vma;
3618 }
3619 
3620 bool
3621 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3622 			bool force)
3623 {
3624 	/* If we don't have a page list set up, then we're not pinned
3625 	 * to GPU, and we can ignore the cache flush because it'll happen
3626 	 * again at bind time.
3627 	 */
3628 	if (obj->pages == NULL)
3629 		return false;
3630 
3631 	/*
3632 	 * Stolen memory is always coherent with the GPU as it is explicitly
3633 	 * marked as wc by the system, or the system is cache-coherent.
3634 	 */
3635 	if (obj->stolen || obj->phys_handle)
3636 		return false;
3637 
3638 	/* If the GPU is snooping the contents of the CPU cache,
3639 	 * we do not need to manually clear the CPU cache lines.  However,
3640 	 * the caches are only snooped when the render cache is
3641 	 * flushed/invalidated.  As we always have to emit invalidations
3642 	 * and flushes when moving into and out of the RENDER domain, correct
3643 	 * snooping behaviour occurs naturally as the result of our domain
3644 	 * tracking.
3645 	 */
3646 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3647 		obj->cache_dirty = true;
3648 		return false;
3649 	}
3650 
3651 	trace_i915_gem_object_clflush(obj);
3652 	drm_clflush_sg(obj->pages);
3653 	obj->cache_dirty = false;
3654 
3655 	return true;
3656 }
3657 
3658 /** Flushes the GTT write domain for the object if it's dirty. */
3659 static void
3660 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3661 {
3662 	uint32_t old_write_domain;
3663 
3664 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3665 		return;
3666 
3667 	/* No actual flushing is required for the GTT write domain.  Writes
3668 	 * to it immediately go to main memory as far as we know, so there's
3669 	 * no chipset flush.  It also doesn't land in render cache.
3670 	 *
3671 	 * However, we do have to enforce the order so that all writes through
3672 	 * the GTT land before any writes to the device, such as updates to
3673 	 * the GATT itself.
3674 	 */
3675 	wmb();
3676 
3677 	old_write_domain = obj->base.write_domain;
3678 	obj->base.write_domain = 0;
3679 
3680 	intel_fb_obj_flush(obj, false);
3681 
3682 	trace_i915_gem_object_change_domain(obj,
3683 					    obj->base.read_domains,
3684 					    old_write_domain);
3685 }
3686 
3687 /** Flushes the CPU write domain for the object if it's dirty. */
3688 static void
3689 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3690 {
3691 	uint32_t old_write_domain;
3692 
3693 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3694 		return;
3695 
3696 	if (i915_gem_clflush_object(obj, obj->pin_display))
3697 		i915_gem_chipset_flush(obj->base.dev);
3698 
3699 	old_write_domain = obj->base.write_domain;
3700 	obj->base.write_domain = 0;
3701 
3702 	intel_fb_obj_flush(obj, false);
3703 
3704 	trace_i915_gem_object_change_domain(obj,
3705 					    obj->base.read_domains,
3706 					    old_write_domain);
3707 }
3708 
3709 /**
3710  * Moves a single object to the GTT read, and possibly write domain.
3711  *
3712  * This function returns when the move is complete, including waiting on
3713  * flushes to occur.
3714  */
3715 int
3716 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3717 {
3718 	uint32_t old_write_domain, old_read_domains;
3719 	struct i915_vma *vma;
3720 	int ret;
3721 
3722 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3723 		return 0;
3724 
3725 	ret = i915_gem_object_wait_rendering(obj, !write);
3726 	if (ret)
3727 		return ret;
3728 
3729 	i915_gem_object_retire(obj);
3730 
3731 	/* Flush and acquire obj->pages so that we are coherent through
3732 	 * direct access in memory with previous cached writes through
3733 	 * shmemfs and that our cache domain tracking remains valid.
3734 	 * For example, if the obj->filp was moved to swap without us
3735 	 * being notified and releasing the pages, we would mistakenly
3736 	 * continue to assume that the obj remained out of the CPU cached
3737 	 * domain.
3738 	 */
3739 	ret = i915_gem_object_get_pages(obj);
3740 	if (ret)
3741 		return ret;
3742 
3743 	i915_gem_object_flush_cpu_write_domain(obj);
3744 
3745 	/* Serialise direct access to this object with the barriers for
3746 	 * coherent writes from the GPU, by effectively invalidating the
3747 	 * GTT domain upon first access.
3748 	 */
3749 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3750 		mb();
3751 
3752 	old_write_domain = obj->base.write_domain;
3753 	old_read_domains = obj->base.read_domains;
3754 
3755 	/* It should now be out of any other write domains, and we can update
3756 	 * the domain values for our changes.
3757 	 */
3758 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3759 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3760 	if (write) {
3761 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3762 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3763 		obj->dirty = 1;
3764 	}
3765 
3766 	if (write)
3767 		intel_fb_obj_invalidate(obj, NULL);
3768 
3769 	trace_i915_gem_object_change_domain(obj,
3770 					    old_read_domains,
3771 					    old_write_domain);
3772 
3773 	/* And bump the LRU for this access */
3774 	vma = i915_gem_obj_to_ggtt(obj);
3775 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3776 		list_move_tail(&vma->mm_list,
3777 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3778 
3779 	return 0;
3780 }
3781 
3782 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3783 				    enum i915_cache_level cache_level)
3784 {
3785 	struct drm_device *dev = obj->base.dev;
3786 	struct i915_vma *vma, *next;
3787 	int ret;
3788 
3789 	if (obj->cache_level == cache_level)
3790 		return 0;
3791 
3792 	if (i915_gem_obj_is_pinned(obj)) {
3793 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3794 		return -EBUSY;
3795 	}
3796 
3797 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3798 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3799 			ret = i915_vma_unbind(vma);
3800 			if (ret)
3801 				return ret;
3802 		}
3803 	}
3804 
3805 	if (i915_gem_obj_bound_any(obj)) {
3806 		ret = i915_gem_object_finish_gpu(obj);
3807 		if (ret)
3808 			return ret;
3809 
3810 		i915_gem_object_finish_gtt(obj);
3811 
3812 		/* Before SandyBridge, you could not use tiling or fence
3813 		 * registers with snooped memory, so relinquish any fences
3814 		 * currently pointing to our region in the aperture.
3815 		 */
3816 		if (INTEL_INFO(dev)->gen < 6) {
3817 			ret = i915_gem_object_put_fence(obj);
3818 			if (ret)
3819 				return ret;
3820 		}
3821 
3822 		list_for_each_entry(vma, &obj->vma_list, vma_link)
3823 			if (drm_mm_node_allocated(&vma->node)) {
3824 				ret = i915_vma_bind(vma, cache_level,
3825 						    vma->bound & GLOBAL_BIND);
3826 				if (ret)
3827 					return ret;
3828 			}
3829 	}
3830 
3831 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3832 		vma->node.color = cache_level;
3833 	obj->cache_level = cache_level;
3834 
3835 	if (obj->cache_dirty &&
3836 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3837 	    cpu_write_needs_clflush(obj)) {
3838 		if (i915_gem_clflush_object(obj, true))
3839 			i915_gem_chipset_flush(obj->base.dev);
3840 	}
3841 
3842 	return 0;
3843 }
3844 
3845 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3846 			       struct drm_file *file)
3847 {
3848 	struct drm_i915_gem_caching *args = data;
3849 	struct drm_i915_gem_object *obj;
3850 	int ret;
3851 
3852 	ret = i915_mutex_lock_interruptible(dev);
3853 	if (ret)
3854 		return ret;
3855 
3856 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3857 	if (&obj->base == NULL) {
3858 		ret = -ENOENT;
3859 		goto unlock;
3860 	}
3861 
3862 	switch (obj->cache_level) {
3863 	case I915_CACHE_LLC:
3864 	case I915_CACHE_L3_LLC:
3865 		args->caching = I915_CACHING_CACHED;
3866 		break;
3867 
3868 	case I915_CACHE_WT:
3869 		args->caching = I915_CACHING_DISPLAY;
3870 		break;
3871 
3872 	default:
3873 		args->caching = I915_CACHING_NONE;
3874 		break;
3875 	}
3876 
3877 	drm_gem_object_unreference(&obj->base);
3878 unlock:
3879 	mutex_unlock(&dev->struct_mutex);
3880 	return ret;
3881 }
3882 
3883 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3884 			       struct drm_file *file)
3885 {
3886 	struct drm_i915_gem_caching *args = data;
3887 	struct drm_i915_gem_object *obj;
3888 	enum i915_cache_level level;
3889 	int ret;
3890 
3891 	switch (args->caching) {
3892 	case I915_CACHING_NONE:
3893 		level = I915_CACHE_NONE;
3894 		break;
3895 	case I915_CACHING_CACHED:
3896 		level = I915_CACHE_LLC;
3897 		break;
3898 	case I915_CACHING_DISPLAY:
3899 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3900 		break;
3901 	default:
3902 		return -EINVAL;
3903 	}
3904 
3905 	ret = i915_mutex_lock_interruptible(dev);
3906 	if (ret)
3907 		return ret;
3908 
3909 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3910 	if (&obj->base == NULL) {
3911 		ret = -ENOENT;
3912 		goto unlock;
3913 	}
3914 
3915 	ret = i915_gem_object_set_cache_level(obj, level);
3916 
3917 	drm_gem_object_unreference(&obj->base);
3918 unlock:
3919 	mutex_unlock(&dev->struct_mutex);
3920 	return ret;
3921 }
3922 
3923 static bool is_pin_display(struct drm_i915_gem_object *obj)
3924 {
3925 	struct i915_vma *vma;
3926 
3927 	vma = i915_gem_obj_to_ggtt(obj);
3928 	if (!vma)
3929 		return false;
3930 
3931 	/* There are 2 sources that pin objects:
3932 	 *   1. The display engine (scanouts, sprites, cursors);
3933 	 *   2. Reservations for execbuffer;
3934 	 *
3935 	 * We can ignore reservations as we hold the struct_mutex and
3936 	 * are only called outside of the reservation path.
3937 	 */
3938 	return vma->pin_count;
3939 }
3940 
3941 /*
3942  * Prepare buffer for display plane (scanout, cursors, etc).
3943  * Can be called from an uninterruptible phase (modesetting) and allows
3944  * any flushes to be pipelined (for pageflips).
3945  */
3946 int
3947 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3948 				     u32 alignment,
3949 				     struct intel_engine_cs *pipelined)
3950 {
3951 	u32 old_read_domains, old_write_domain;
3952 	bool was_pin_display;
3953 	int ret;
3954 
3955 	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3956 		ret = i915_gem_object_sync(obj, pipelined);
3957 		if (ret)
3958 			return ret;
3959 	}
3960 
3961 	/* Mark the pin_display early so that we account for the
3962 	 * display coherency whilst setting up the cache domains.
3963 	 */
3964 	was_pin_display = obj->pin_display;
3965 	obj->pin_display = true;
3966 
3967 	/* The display engine is not coherent with the LLC cache on gen6.  As
3968 	 * a result, we make sure that the pinning that is about to occur is
3969 	 * done with uncached PTEs. This is lowest common denominator for all
3970 	 * chipsets.
3971 	 *
3972 	 * However for gen6+, we could do better by using the GFDT bit instead
3973 	 * of uncaching, which would allow us to flush all the LLC-cached data
3974 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3975 	 */
3976 	ret = i915_gem_object_set_cache_level(obj,
3977 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3978 	if (ret)
3979 		goto err_unpin_display;
3980 
3981 	/* As the user may map the buffer once pinned in the display plane
3982 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3983 	 * always use map_and_fenceable for all scanout buffers.
3984 	 */
3985 	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3986 	if (ret)
3987 		goto err_unpin_display;
3988 
3989 	i915_gem_object_flush_cpu_write_domain(obj);
3990 
3991 	old_write_domain = obj->base.write_domain;
3992 	old_read_domains = obj->base.read_domains;
3993 
3994 	/* It should now be out of any other write domains, and we can update
3995 	 * the domain values for our changes.
3996 	 */
3997 	obj->base.write_domain = 0;
3998 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3999 
4000 	trace_i915_gem_object_change_domain(obj,
4001 					    old_read_domains,
4002 					    old_write_domain);
4003 
4004 	return 0;
4005 
4006 err_unpin_display:
4007 	WARN_ON(was_pin_display != is_pin_display(obj));
4008 	obj->pin_display = was_pin_display;
4009 	return ret;
4010 }
4011 
4012 void
4013 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4014 {
4015 	i915_gem_object_ggtt_unpin(obj);
4016 	obj->pin_display = is_pin_display(obj);
4017 }
4018 
4019 int
4020 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4021 {
4022 	int ret;
4023 
4024 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4025 		return 0;
4026 
4027 	ret = i915_gem_object_wait_rendering(obj, false);
4028 	if (ret)
4029 		return ret;
4030 
4031 	/* Ensure that we invalidate the GPU's caches and TLBs. */
4032 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4033 	return 0;
4034 }
4035 
4036 /**
4037  * Moves a single object to the CPU read, and possibly write domain.
4038  *
4039  * This function returns when the move is complete, including waiting on
4040  * flushes to occur.
4041  */
4042 int
4043 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4044 {
4045 	uint32_t old_write_domain, old_read_domains;
4046 	int ret;
4047 
4048 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4049 		return 0;
4050 
4051 	ret = i915_gem_object_wait_rendering(obj, !write);
4052 	if (ret)
4053 		return ret;
4054 
4055 	i915_gem_object_retire(obj);
4056 	i915_gem_object_flush_gtt_write_domain(obj);
4057 
4058 	old_write_domain = obj->base.write_domain;
4059 	old_read_domains = obj->base.read_domains;
4060 
4061 	/* Flush the CPU cache if it's still invalid. */
4062 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4063 		i915_gem_clflush_object(obj, false);
4064 
4065 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4066 	}
4067 
4068 	/* It should now be out of any other write domains, and we can update
4069 	 * the domain values for our changes.
4070 	 */
4071 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4072 
4073 	/* If we're writing through the CPU, then the GPU read domains will
4074 	 * need to be invalidated at next use.
4075 	 */
4076 	if (write) {
4077 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4078 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4079 	}
4080 
4081 	if (write)
4082 		intel_fb_obj_invalidate(obj, NULL);
4083 
4084 	trace_i915_gem_object_change_domain(obj,
4085 					    old_read_domains,
4086 					    old_write_domain);
4087 
4088 	return 0;
4089 }
4090 
4091 /* Throttle our rendering by waiting until the ring has completed our requests
4092  * emitted over 20 msec ago.
4093  *
4094  * Note that if we were to use the current jiffies each time around the loop,
4095  * we wouldn't escape the function with any frames outstanding if the time to
4096  * render a frame was over 20ms.
4097  *
4098  * This should get us reasonable parallelism between CPU and GPU but also
4099  * relatively low latency when blocking on a particular request to finish.
4100  */
4101 static int
4102 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4103 {
4104 	struct drm_i915_private *dev_priv = dev->dev_private;
4105 	struct drm_i915_file_private *file_priv = file->driver_priv;
4106 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4107 	struct drm_i915_gem_request *request, *target = NULL;
4108 	unsigned reset_counter;
4109 	int ret;
4110 
4111 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4112 	if (ret)
4113 		return ret;
4114 
4115 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4116 	if (ret)
4117 		return ret;
4118 
4119 	spin_lock(&file_priv->mm.lock);
4120 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4121 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4122 			break;
4123 
4124 		target = request;
4125 	}
4126 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4127 	if (target)
4128 		i915_gem_request_reference(target);
4129 	spin_unlock(&file_priv->mm.lock);
4130 
4131 	if (target == NULL)
4132 		return 0;
4133 
4134 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4135 	if (ret == 0)
4136 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4137 
4138 	mutex_lock(&dev->struct_mutex);
4139 	i915_gem_request_unreference(target);
4140 	mutex_unlock(&dev->struct_mutex);
4141 
4142 	return ret;
4143 }
4144 
4145 static bool
4146 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4147 {
4148 	struct drm_i915_gem_object *obj = vma->obj;
4149 
4150 	if (alignment &&
4151 	    vma->node.start & (alignment - 1))
4152 		return true;
4153 
4154 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4155 		return true;
4156 
4157 	if (flags & PIN_OFFSET_BIAS &&
4158 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4159 		return true;
4160 
4161 	return false;
4162 }
4163 
4164 int
4165 i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4166 			 struct i915_address_space *vm,
4167 			 uint32_t alignment,
4168 			 uint64_t flags,
4169 			 const struct i915_ggtt_view *view)
4170 {
4171 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4172 	struct i915_vma *vma;
4173 	unsigned bound;
4174 	int ret;
4175 
4176 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4177 		return -ENODEV;
4178 
4179 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4180 		return -EINVAL;
4181 
4182 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4183 		return -EINVAL;
4184 
4185 	vma = i915_gem_obj_to_vma_view(obj, vm, view);
4186 	if (vma) {
4187 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4188 			return -EBUSY;
4189 
4190 		if (i915_vma_misplaced(vma, alignment, flags)) {
4191 			WARN(vma->pin_count,
4192 			     "bo is already pinned with incorrect alignment:"
4193 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4194 			     " obj->map_and_fenceable=%d\n",
4195 			     i915_gem_obj_offset_view(obj, vm, view->type),
4196 			     alignment,
4197 			     !!(flags & PIN_MAPPABLE),
4198 			     obj->map_and_fenceable);
4199 			ret = i915_vma_unbind(vma);
4200 			if (ret)
4201 				return ret;
4202 
4203 			vma = NULL;
4204 		}
4205 	}
4206 
4207 	bound = vma ? vma->bound : 0;
4208 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4209 		vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4210 						 flags, view);
4211 		if (IS_ERR(vma))
4212 			return PTR_ERR(vma);
4213 	}
4214 
4215 	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4216 		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4217 		if (ret)
4218 			return ret;
4219 	}
4220 
4221 	if ((bound ^ vma->bound) & GLOBAL_BIND) {
4222 		bool mappable, fenceable;
4223 		u32 fence_size, fence_alignment;
4224 
4225 		fence_size = i915_gem_get_gtt_size(obj->base.dev,
4226 						   obj->base.size,
4227 						   obj->tiling_mode);
4228 		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4229 							     obj->base.size,
4230 							     obj->tiling_mode,
4231 							     true);
4232 
4233 		fenceable = (vma->node.size == fence_size &&
4234 			     (vma->node.start & (fence_alignment - 1)) == 0);
4235 
4236 		mappable = (vma->node.start + obj->base.size <=
4237 			    dev_priv->gtt.mappable_end);
4238 
4239 		obj->map_and_fenceable = mappable && fenceable;
4240 	}
4241 
4242 	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4243 
4244 	vma->pin_count++;
4245 	if (flags & PIN_MAPPABLE)
4246 		obj->pin_mappable |= true;
4247 
4248 	return 0;
4249 }
4250 
4251 void
4252 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4253 {
4254 	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4255 
4256 	BUG_ON(!vma);
4257 	BUG_ON(vma->pin_count == 0);
4258 	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4259 
4260 	if (--vma->pin_count == 0)
4261 		obj->pin_mappable = false;
4262 }
4263 
4264 bool
4265 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4266 {
4267 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
4268 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4269 		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4270 
4271 		WARN_ON(!ggtt_vma ||
4272 			dev_priv->fence_regs[obj->fence_reg].pin_count >
4273 			ggtt_vma->pin_count);
4274 		dev_priv->fence_regs[obj->fence_reg].pin_count++;
4275 		return true;
4276 	} else
4277 		return false;
4278 }
4279 
4280 void
4281 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4282 {
4283 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
4284 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4285 		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4286 		dev_priv->fence_regs[obj->fence_reg].pin_count--;
4287 	}
4288 }
4289 
4290 int
4291 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4292 		    struct drm_file *file)
4293 {
4294 	struct drm_i915_gem_busy *args = data;
4295 	struct drm_i915_gem_object *obj;
4296 	int ret;
4297 
4298 	ret = i915_mutex_lock_interruptible(dev);
4299 	if (ret)
4300 		return ret;
4301 
4302 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4303 	if (&obj->base == NULL) {
4304 		ret = -ENOENT;
4305 		goto unlock;
4306 	}
4307 
4308 	/* Count all active objects as busy, even if they are currently not used
4309 	 * by the gpu. Users of this interface expect objects to eventually
4310 	 * become non-busy without any further actions, therefore emit any
4311 	 * necessary flushes here.
4312 	 */
4313 	ret = i915_gem_object_flush_active(obj);
4314 
4315 	args->busy = obj->active;
4316 	if (obj->last_read_req) {
4317 		struct intel_engine_cs *ring;
4318 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4319 		ring = i915_gem_request_get_ring(obj->last_read_req);
4320 		args->busy |= intel_ring_flag(ring) << 16;
4321 	}
4322 
4323 	drm_gem_object_unreference(&obj->base);
4324 unlock:
4325 	mutex_unlock(&dev->struct_mutex);
4326 	return ret;
4327 }
4328 
4329 int
4330 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4331 			struct drm_file *file_priv)
4332 {
4333 	return i915_gem_ring_throttle(dev, file_priv);
4334 }
4335 
4336 int
4337 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4338 		       struct drm_file *file_priv)
4339 {
4340 	struct drm_i915_private *dev_priv = dev->dev_private;
4341 	struct drm_i915_gem_madvise *args = data;
4342 	struct drm_i915_gem_object *obj;
4343 	int ret;
4344 
4345 	switch (args->madv) {
4346 	case I915_MADV_DONTNEED:
4347 	case I915_MADV_WILLNEED:
4348 	    break;
4349 	default:
4350 	    return -EINVAL;
4351 	}
4352 
4353 	ret = i915_mutex_lock_interruptible(dev);
4354 	if (ret)
4355 		return ret;
4356 
4357 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4358 	if (&obj->base == NULL) {
4359 		ret = -ENOENT;
4360 		goto unlock;
4361 	}
4362 
4363 	if (i915_gem_obj_is_pinned(obj)) {
4364 		ret = -EINVAL;
4365 		goto out;
4366 	}
4367 
4368 	if (obj->pages &&
4369 	    obj->tiling_mode != I915_TILING_NONE &&
4370 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4371 		if (obj->madv == I915_MADV_WILLNEED)
4372 			i915_gem_object_unpin_pages(obj);
4373 		if (args->madv == I915_MADV_WILLNEED)
4374 			i915_gem_object_pin_pages(obj);
4375 	}
4376 
4377 	if (obj->madv != __I915_MADV_PURGED)
4378 		obj->madv = args->madv;
4379 
4380 	/* if the object is no longer attached, discard its backing storage */
4381 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4382 		i915_gem_object_truncate(obj);
4383 
4384 	args->retained = obj->madv != __I915_MADV_PURGED;
4385 
4386 out:
4387 	drm_gem_object_unreference(&obj->base);
4388 unlock:
4389 	mutex_unlock(&dev->struct_mutex);
4390 	return ret;
4391 }
4392 
4393 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4394 			  const struct drm_i915_gem_object_ops *ops)
4395 {
4396 	INIT_LIST_HEAD(&obj->global_list);
4397 	INIT_LIST_HEAD(&obj->ring_list);
4398 	INIT_LIST_HEAD(&obj->obj_exec_link);
4399 	INIT_LIST_HEAD(&obj->vma_list);
4400 	INIT_LIST_HEAD(&obj->batch_pool_list);
4401 
4402 	obj->ops = ops;
4403 
4404 	obj->fence_reg = I915_FENCE_REG_NONE;
4405 	obj->madv = I915_MADV_WILLNEED;
4406 
4407 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4408 }
4409 
4410 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4411 	.get_pages = i915_gem_object_get_pages_gtt,
4412 	.put_pages = i915_gem_object_put_pages_gtt,
4413 };
4414 
4415 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4416 						  size_t size)
4417 {
4418 	struct drm_i915_gem_object *obj;
4419 	struct address_space *mapping;
4420 	gfp_t mask;
4421 
4422 	obj = i915_gem_object_alloc(dev);
4423 	if (obj == NULL)
4424 		return NULL;
4425 
4426 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4427 		i915_gem_object_free(obj);
4428 		return NULL;
4429 	}
4430 
4431 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4432 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4433 		/* 965gm cannot relocate objects above 4GiB. */
4434 		mask &= ~__GFP_HIGHMEM;
4435 		mask |= __GFP_DMA32;
4436 	}
4437 
4438 	mapping = file_inode(obj->base.filp)->i_mapping;
4439 	mapping_set_gfp_mask(mapping, mask);
4440 
4441 	i915_gem_object_init(obj, &i915_gem_object_ops);
4442 
4443 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4444 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4445 
4446 	if (HAS_LLC(dev)) {
4447 		/* On some devices, we can have the GPU use the LLC (the CPU
4448 		 * cache) for about a 10% performance improvement
4449 		 * compared to uncached.  Graphics requests other than
4450 		 * display scanout are coherent with the CPU in
4451 		 * accessing this cache.  This means in this mode we
4452 		 * don't need to clflush on the CPU side, and on the
4453 		 * GPU side we only need to flush internal caches to
4454 		 * get data visible to the CPU.
4455 		 *
4456 		 * However, we maintain the display planes as UC, and so
4457 		 * need to rebind when first used as such.
4458 		 */
4459 		obj->cache_level = I915_CACHE_LLC;
4460 	} else
4461 		obj->cache_level = I915_CACHE_NONE;
4462 
4463 	trace_i915_gem_object_create(obj);
4464 
4465 	return obj;
4466 }
4467 
4468 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4469 {
4470 	/* If we are the last user of the backing storage (be it shmemfs
4471 	 * pages or stolen etc), we know that the pages are going to be
4472 	 * immediately released. In this case, we can then skip copying
4473 	 * back the contents from the GPU.
4474 	 */
4475 
4476 	if (obj->madv != I915_MADV_WILLNEED)
4477 		return false;
4478 
4479 	if (obj->base.filp == NULL)
4480 		return true;
4481 
4482 	/* At first glance, this looks racy, but then again so would be
4483 	 * userspace racing mmap against close. However, the first external
4484 	 * reference to the filp can only be obtained through the
4485 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4486 	 * acquiring such a reference whilst we are in the middle of
4487 	 * freeing the object.
4488 	 */
4489 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4490 }
4491 
4492 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4493 {
4494 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4495 	struct drm_device *dev = obj->base.dev;
4496 	struct drm_i915_private *dev_priv = dev->dev_private;
4497 	struct i915_vma *vma, *next;
4498 
4499 	intel_runtime_pm_get(dev_priv);
4500 
4501 	trace_i915_gem_object_destroy(obj);
4502 
4503 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4504 		int ret;
4505 
4506 		vma->pin_count = 0;
4507 		ret = i915_vma_unbind(vma);
4508 		if (WARN_ON(ret == -ERESTARTSYS)) {
4509 			bool was_interruptible;
4510 
4511 			was_interruptible = dev_priv->mm.interruptible;
4512 			dev_priv->mm.interruptible = false;
4513 
4514 			WARN_ON(i915_vma_unbind(vma));
4515 
4516 			dev_priv->mm.interruptible = was_interruptible;
4517 		}
4518 	}
4519 
4520 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4521 	 * before progressing. */
4522 	if (obj->stolen)
4523 		i915_gem_object_unpin_pages(obj);
4524 
4525 	WARN_ON(obj->frontbuffer_bits);
4526 
4527 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4528 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4529 	    obj->tiling_mode != I915_TILING_NONE)
4530 		i915_gem_object_unpin_pages(obj);
4531 
4532 	if (WARN_ON(obj->pages_pin_count))
4533 		obj->pages_pin_count = 0;
4534 	if (discard_backing_storage(obj))
4535 		obj->madv = I915_MADV_DONTNEED;
4536 	i915_gem_object_put_pages(obj);
4537 	i915_gem_object_free_mmap_offset(obj);
4538 
4539 	BUG_ON(obj->pages);
4540 
4541 	if (obj->base.import_attach)
4542 		drm_prime_gem_destroy(&obj->base, NULL);
4543 
4544 	if (obj->ops->release)
4545 		obj->ops->release(obj);
4546 
4547 	drm_gem_object_release(&obj->base);
4548 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4549 
4550 	kfree(obj->bit_17);
4551 	i915_gem_object_free(obj);
4552 
4553 	intel_runtime_pm_put(dev_priv);
4554 }
4555 
4556 struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4557 					  struct i915_address_space *vm,
4558 					  const struct i915_ggtt_view *view)
4559 {
4560 	struct i915_vma *vma;
4561 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4562 		if (vma->vm == vm && vma->ggtt_view.type == view->type)
4563 			return vma;
4564 
4565 	return NULL;
4566 }
4567 
4568 void i915_gem_vma_destroy(struct i915_vma *vma)
4569 {
4570 	struct i915_address_space *vm = NULL;
4571 	WARN_ON(vma->node.allocated);
4572 
4573 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4574 	if (!list_empty(&vma->exec_list))
4575 		return;
4576 
4577 	vm = vma->vm;
4578 
4579 	if (!i915_is_ggtt(vm))
4580 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4581 
4582 	list_del(&vma->vma_link);
4583 
4584 	kfree(vma);
4585 }
4586 
4587 static void
4588 i915_gem_stop_ringbuffers(struct drm_device *dev)
4589 {
4590 	struct drm_i915_private *dev_priv = dev->dev_private;
4591 	struct intel_engine_cs *ring;
4592 	int i;
4593 
4594 	for_each_ring(ring, dev_priv, i)
4595 		dev_priv->gt.stop_ring(ring);
4596 }
4597 
4598 int
4599 i915_gem_suspend(struct drm_device *dev)
4600 {
4601 	struct drm_i915_private *dev_priv = dev->dev_private;
4602 	int ret = 0;
4603 
4604 	mutex_lock(&dev->struct_mutex);
4605 	ret = i915_gpu_idle(dev);
4606 	if (ret)
4607 		goto err;
4608 
4609 	i915_gem_retire_requests(dev);
4610 
4611 	/* Under UMS, be paranoid and evict. */
4612 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4613 		i915_gem_evict_everything(dev);
4614 
4615 	i915_gem_stop_ringbuffers(dev);
4616 	mutex_unlock(&dev->struct_mutex);
4617 
4618 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4619 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4620 	flush_delayed_work(&dev_priv->mm.idle_work);
4621 
4622 	/* Assert that we sucessfully flushed all the work and
4623 	 * reset the GPU back to its idle, low power state.
4624 	 */
4625 	WARN_ON(dev_priv->mm.busy);
4626 
4627 	return 0;
4628 
4629 err:
4630 	mutex_unlock(&dev->struct_mutex);
4631 	return ret;
4632 }
4633 
4634 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4635 {
4636 	struct drm_device *dev = ring->dev;
4637 	struct drm_i915_private *dev_priv = dev->dev_private;
4638 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4639 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4640 	int i, ret;
4641 
4642 	if (!HAS_L3_DPF(dev) || !remap_info)
4643 		return 0;
4644 
4645 	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4646 	if (ret)
4647 		return ret;
4648 
4649 	/*
4650 	 * Note: We do not worry about the concurrent register cacheline hang
4651 	 * here because no other code should access these registers other than
4652 	 * at initialization time.
4653 	 */
4654 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4655 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4656 		intel_ring_emit(ring, reg_base + i);
4657 		intel_ring_emit(ring, remap_info[i/4]);
4658 	}
4659 
4660 	intel_ring_advance(ring);
4661 
4662 	return ret;
4663 }
4664 
4665 void i915_gem_init_swizzling(struct drm_device *dev)
4666 {
4667 	struct drm_i915_private *dev_priv = dev->dev_private;
4668 
4669 	if (INTEL_INFO(dev)->gen < 5 ||
4670 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4671 		return;
4672 
4673 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4674 				 DISP_TILE_SURFACE_SWIZZLING);
4675 
4676 	if (IS_GEN5(dev))
4677 		return;
4678 
4679 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4680 	if (IS_GEN6(dev))
4681 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4682 	else if (IS_GEN7(dev))
4683 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4684 	else if (IS_GEN8(dev))
4685 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4686 	else
4687 		BUG();
4688 }
4689 
4690 static bool
4691 intel_enable_blt(struct drm_device *dev)
4692 {
4693 	if (!HAS_BLT(dev))
4694 		return false;
4695 
4696 	/* The blitter was dysfunctional on early prototypes */
4697 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4698 		DRM_INFO("BLT not supported on this pre-production hardware;"
4699 			 " graphics performance will be degraded.\n");
4700 		return false;
4701 	}
4702 
4703 	return true;
4704 }
4705 
4706 static void init_unused_ring(struct drm_device *dev, u32 base)
4707 {
4708 	struct drm_i915_private *dev_priv = dev->dev_private;
4709 
4710 	I915_WRITE(RING_CTL(base), 0);
4711 	I915_WRITE(RING_HEAD(base), 0);
4712 	I915_WRITE(RING_TAIL(base), 0);
4713 	I915_WRITE(RING_START(base), 0);
4714 }
4715 
4716 static void init_unused_rings(struct drm_device *dev)
4717 {
4718 	if (IS_I830(dev)) {
4719 		init_unused_ring(dev, PRB1_BASE);
4720 		init_unused_ring(dev, SRB0_BASE);
4721 		init_unused_ring(dev, SRB1_BASE);
4722 		init_unused_ring(dev, SRB2_BASE);
4723 		init_unused_ring(dev, SRB3_BASE);
4724 	} else if (IS_GEN2(dev)) {
4725 		init_unused_ring(dev, SRB0_BASE);
4726 		init_unused_ring(dev, SRB1_BASE);
4727 	} else if (IS_GEN3(dev)) {
4728 		init_unused_ring(dev, PRB1_BASE);
4729 		init_unused_ring(dev, PRB2_BASE);
4730 	}
4731 }
4732 
4733 int i915_gem_init_rings(struct drm_device *dev)
4734 {
4735 	struct drm_i915_private *dev_priv = dev->dev_private;
4736 	int ret;
4737 
4738 	ret = intel_init_render_ring_buffer(dev);
4739 	if (ret)
4740 		return ret;
4741 
4742 	if (HAS_BSD(dev)) {
4743 		ret = intel_init_bsd_ring_buffer(dev);
4744 		if (ret)
4745 			goto cleanup_render_ring;
4746 	}
4747 
4748 	if (intel_enable_blt(dev)) {
4749 		ret = intel_init_blt_ring_buffer(dev);
4750 		if (ret)
4751 			goto cleanup_bsd_ring;
4752 	}
4753 
4754 	if (HAS_VEBOX(dev)) {
4755 		ret = intel_init_vebox_ring_buffer(dev);
4756 		if (ret)
4757 			goto cleanup_blt_ring;
4758 	}
4759 
4760 	if (HAS_BSD2(dev)) {
4761 		ret = intel_init_bsd2_ring_buffer(dev);
4762 		if (ret)
4763 			goto cleanup_vebox_ring;
4764 	}
4765 
4766 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4767 	if (ret)
4768 		goto cleanup_bsd2_ring;
4769 
4770 	return 0;
4771 
4772 cleanup_bsd2_ring:
4773 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4774 cleanup_vebox_ring:
4775 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4776 cleanup_blt_ring:
4777 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4778 cleanup_bsd_ring:
4779 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4780 cleanup_render_ring:
4781 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4782 
4783 	return ret;
4784 }
4785 
4786 int
4787 i915_gem_init_hw(struct drm_device *dev)
4788 {
4789 	struct drm_i915_private *dev_priv = dev->dev_private;
4790 	struct intel_engine_cs *ring;
4791 	int ret, i;
4792 
4793 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4794 		return -EIO;
4795 
4796 	/* Double layer security blanket, see i915_gem_init() */
4797 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4798 
4799 	if (dev_priv->ellc_size)
4800 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4801 
4802 	if (IS_HASWELL(dev))
4803 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4804 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4805 
4806 	if (HAS_PCH_NOP(dev)) {
4807 		if (IS_IVYBRIDGE(dev)) {
4808 			u32 temp = I915_READ(GEN7_MSG_CTL);
4809 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4810 			I915_WRITE(GEN7_MSG_CTL, temp);
4811 		} else if (INTEL_INFO(dev)->gen >= 7) {
4812 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4813 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4814 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4815 		}
4816 	}
4817 
4818 	i915_gem_init_swizzling(dev);
4819 
4820 	/*
4821 	 * At least 830 can leave some of the unused rings
4822 	 * "active" (ie. head != tail) after resume which
4823 	 * will prevent c3 entry. Makes sure all unused rings
4824 	 * are totally idle.
4825 	 */
4826 	init_unused_rings(dev);
4827 
4828 	for_each_ring(ring, dev_priv, i) {
4829 		ret = ring->init_hw(ring);
4830 		if (ret)
4831 			goto out;
4832 	}
4833 
4834 	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4835 		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4836 
4837 	ret = i915_ppgtt_init_hw(dev);
4838 	if (ret && ret != -EIO) {
4839 		DRM_ERROR("PPGTT enable failed %d\n", ret);
4840 		i915_gem_cleanup_ringbuffer(dev);
4841 	}
4842 
4843 	ret = i915_gem_context_enable(dev_priv);
4844 	if (ret && ret != -EIO) {
4845 		DRM_ERROR("Context enable failed %d\n", ret);
4846 		i915_gem_cleanup_ringbuffer(dev);
4847 
4848 		goto out;
4849 	}
4850 
4851 out:
4852 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4853 	return ret;
4854 }
4855 
4856 int i915_gem_init(struct drm_device *dev)
4857 {
4858 	struct drm_i915_private *dev_priv = dev->dev_private;
4859 	int ret;
4860 
4861 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4862 			i915.enable_execlists);
4863 
4864 	mutex_lock(&dev->struct_mutex);
4865 
4866 	if (IS_VALLEYVIEW(dev)) {
4867 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4868 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4869 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4870 			      VLV_GTLC_ALLOWWAKEACK), 10))
4871 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4872 	}
4873 
4874 	if (!i915.enable_execlists) {
4875 		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4876 		dev_priv->gt.init_rings = i915_gem_init_rings;
4877 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4878 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4879 	} else {
4880 		dev_priv->gt.do_execbuf = intel_execlists_submission;
4881 		dev_priv->gt.init_rings = intel_logical_rings_init;
4882 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4883 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4884 	}
4885 
4886 	/* This is just a security blanket to placate dragons.
4887 	 * On some systems, we very sporadically observe that the first TLBs
4888 	 * used by the CS may be stale, despite us poking the TLB reset. If
4889 	 * we hold the forcewake during initialisation these problems
4890 	 * just magically go away.
4891 	 */
4892 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4893 
4894 	ret = i915_gem_init_userptr(dev);
4895 	if (ret)
4896 		goto out_unlock;
4897 
4898 	i915_gem_init_global_gtt(dev);
4899 
4900 	ret = i915_gem_context_init(dev);
4901 	if (ret)
4902 		goto out_unlock;
4903 
4904 	ret = dev_priv->gt.init_rings(dev);
4905 	if (ret)
4906 		goto out_unlock;
4907 
4908 	ret = i915_gem_init_hw(dev);
4909 	if (ret == -EIO) {
4910 		/* Allow ring initialisation to fail by marking the GPU as
4911 		 * wedged. But we only want to do this where the GPU is angry,
4912 		 * for all other failure, such as an allocation failure, bail.
4913 		 */
4914 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4915 		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4916 		ret = 0;
4917 	}
4918 
4919 out_unlock:
4920 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4921 	mutex_unlock(&dev->struct_mutex);
4922 
4923 	return ret;
4924 }
4925 
4926 void
4927 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4928 {
4929 	struct drm_i915_private *dev_priv = dev->dev_private;
4930 	struct intel_engine_cs *ring;
4931 	int i;
4932 
4933 	for_each_ring(ring, dev_priv, i)
4934 		dev_priv->gt.cleanup_ring(ring);
4935 }
4936 
4937 static void
4938 init_ring_lists(struct intel_engine_cs *ring)
4939 {
4940 	INIT_LIST_HEAD(&ring->active_list);
4941 	INIT_LIST_HEAD(&ring->request_list);
4942 }
4943 
4944 void i915_init_vm(struct drm_i915_private *dev_priv,
4945 		  struct i915_address_space *vm)
4946 {
4947 	if (!i915_is_ggtt(vm))
4948 		drm_mm_init(&vm->mm, vm->start, vm->total);
4949 	vm->dev = dev_priv->dev;
4950 	INIT_LIST_HEAD(&vm->active_list);
4951 	INIT_LIST_HEAD(&vm->inactive_list);
4952 	INIT_LIST_HEAD(&vm->global_link);
4953 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
4954 }
4955 
4956 void
4957 i915_gem_load(struct drm_device *dev)
4958 {
4959 	struct drm_i915_private *dev_priv = dev->dev_private;
4960 	int i;
4961 
4962 	dev_priv->slab =
4963 		kmem_cache_create("i915_gem_object",
4964 				  sizeof(struct drm_i915_gem_object), 0,
4965 				  SLAB_HWCACHE_ALIGN,
4966 				  NULL);
4967 
4968 	INIT_LIST_HEAD(&dev_priv->vm_list);
4969 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4970 
4971 	INIT_LIST_HEAD(&dev_priv->context_list);
4972 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4973 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4974 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4975 	for (i = 0; i < I915_NUM_RINGS; i++)
4976 		init_ring_lists(&dev_priv->ring[i]);
4977 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4978 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4979 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4980 			  i915_gem_retire_work_handler);
4981 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4982 			  i915_gem_idle_work_handler);
4983 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4984 
4985 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4986 	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4987 		I915_WRITE(MI_ARB_STATE,
4988 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4989 	}
4990 
4991 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4992 
4993 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4994 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4995 		dev_priv->fence_reg_start = 3;
4996 
4997 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4998 		dev_priv->num_fence_regs = 32;
4999 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5000 		dev_priv->num_fence_regs = 16;
5001 	else
5002 		dev_priv->num_fence_regs = 8;
5003 
5004 	/* Initialize fence registers to zero */
5005 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5006 	i915_gem_restore_fences(dev);
5007 
5008 	i915_gem_detect_bit_6_swizzle(dev);
5009 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5010 
5011 	dev_priv->mm.interruptible = true;
5012 
5013 	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5014 	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5015 	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5016 	register_shrinker(&dev_priv->mm.shrinker);
5017 
5018 	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5019 	register_oom_notifier(&dev_priv->mm.oom_notifier);
5020 
5021 	i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5022 
5023 	mutex_init(&dev_priv->fb_tracking.lock);
5024 }
5025 
5026 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5027 {
5028 	struct drm_i915_file_private *file_priv = file->driver_priv;
5029 
5030 	cancel_delayed_work_sync(&file_priv->mm.idle_work);
5031 
5032 	/* Clean up our request list when the client is going away, so that
5033 	 * later retire_requests won't dereference our soon-to-be-gone
5034 	 * file_priv.
5035 	 */
5036 	spin_lock(&file_priv->mm.lock);
5037 	while (!list_empty(&file_priv->mm.request_list)) {
5038 		struct drm_i915_gem_request *request;
5039 
5040 		request = list_first_entry(&file_priv->mm.request_list,
5041 					   struct drm_i915_gem_request,
5042 					   client_list);
5043 		list_del(&request->client_list);
5044 		request->file_priv = NULL;
5045 	}
5046 	spin_unlock(&file_priv->mm.lock);
5047 }
5048 
5049 static void
5050 i915_gem_file_idle_work_handler(struct work_struct *work)
5051 {
5052 	struct drm_i915_file_private *file_priv =
5053 		container_of(work, typeof(*file_priv), mm.idle_work.work);
5054 
5055 	atomic_set(&file_priv->rps_wait_boost, false);
5056 }
5057 
5058 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5059 {
5060 	struct drm_i915_file_private *file_priv;
5061 	int ret;
5062 
5063 	DRM_DEBUG_DRIVER("\n");
5064 
5065 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5066 	if (!file_priv)
5067 		return -ENOMEM;
5068 
5069 	file->driver_priv = file_priv;
5070 	file_priv->dev_priv = dev->dev_private;
5071 	file_priv->file = file;
5072 
5073 	spin_lock_init(&file_priv->mm.lock);
5074 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5075 	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5076 			  i915_gem_file_idle_work_handler);
5077 
5078 	ret = i915_gem_context_open(dev, file);
5079 	if (ret)
5080 		kfree(file_priv);
5081 
5082 	return ret;
5083 }
5084 
5085 /**
5086  * i915_gem_track_fb - update frontbuffer tracking
5087  * old: current GEM buffer for the frontbuffer slots
5088  * new: new GEM buffer for the frontbuffer slots
5089  * frontbuffer_bits: bitmask of frontbuffer slots
5090  *
5091  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5092  * from @old and setting them in @new. Both @old and @new can be NULL.
5093  */
5094 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5095 		       struct drm_i915_gem_object *new,
5096 		       unsigned frontbuffer_bits)
5097 {
5098 	if (old) {
5099 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5100 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5101 		old->frontbuffer_bits &= ~frontbuffer_bits;
5102 	}
5103 
5104 	if (new) {
5105 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5106 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5107 		new->frontbuffer_bits |= frontbuffer_bits;
5108 	}
5109 }
5110 
5111 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5112 {
5113 	if (!mutex_is_locked(mutex))
5114 		return false;
5115 
5116 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5117 	return mutex->owner == task;
5118 #else
5119 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
5120 	return false;
5121 #endif
5122 }
5123 
5124 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5125 {
5126 	if (!mutex_trylock(&dev->struct_mutex)) {
5127 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
5128 			return false;
5129 
5130 		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5131 			return false;
5132 
5133 		*unlock = false;
5134 	} else
5135 		*unlock = true;
5136 
5137 	return true;
5138 }
5139 
5140 static int num_vma_bound(struct drm_i915_gem_object *obj)
5141 {
5142 	struct i915_vma *vma;
5143 	int count = 0;
5144 
5145 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5146 		if (drm_mm_node_allocated(&vma->node))
5147 			count++;
5148 
5149 	return count;
5150 }
5151 
5152 static unsigned long
5153 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5154 {
5155 	struct drm_i915_private *dev_priv =
5156 		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5157 	struct drm_device *dev = dev_priv->dev;
5158 	struct drm_i915_gem_object *obj;
5159 	unsigned long count;
5160 	bool unlock;
5161 
5162 	if (!i915_gem_shrinker_lock(dev, &unlock))
5163 		return 0;
5164 
5165 	count = 0;
5166 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5167 		if (obj->pages_pin_count == 0)
5168 			count += obj->base.size >> PAGE_SHIFT;
5169 
5170 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5171 		if (!i915_gem_obj_is_pinned(obj) &&
5172 		    obj->pages_pin_count == num_vma_bound(obj))
5173 			count += obj->base.size >> PAGE_SHIFT;
5174 	}
5175 
5176 	if (unlock)
5177 		mutex_unlock(&dev->struct_mutex);
5178 
5179 	return count;
5180 }
5181 
5182 /* All the new VM stuff */
5183 unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5184 				       struct i915_address_space *vm,
5185 				       enum i915_ggtt_view_type view)
5186 {
5187 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5188 	struct i915_vma *vma;
5189 
5190 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5191 
5192 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5193 		if (vma->vm == vm && vma->ggtt_view.type == view)
5194 			return vma->node.start;
5195 
5196 	}
5197 	WARN(1, "%s vma for this object not found.\n",
5198 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5199 	return -1;
5200 }
5201 
5202 bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5203 			     struct i915_address_space *vm,
5204 			     enum i915_ggtt_view_type view)
5205 {
5206 	struct i915_vma *vma;
5207 
5208 	list_for_each_entry(vma, &o->vma_list, vma_link)
5209 		if (vma->vm == vm &&
5210 		    vma->ggtt_view.type == view &&
5211 		    drm_mm_node_allocated(&vma->node))
5212 			return true;
5213 
5214 	return false;
5215 }
5216 
5217 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5218 {
5219 	struct i915_vma *vma;
5220 
5221 	list_for_each_entry(vma, &o->vma_list, vma_link)
5222 		if (drm_mm_node_allocated(&vma->node))
5223 			return true;
5224 
5225 	return false;
5226 }
5227 
5228 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5229 				struct i915_address_space *vm)
5230 {
5231 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5232 	struct i915_vma *vma;
5233 
5234 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5235 
5236 	BUG_ON(list_empty(&o->vma_list));
5237 
5238 	list_for_each_entry(vma, &o->vma_list, vma_link)
5239 		if (vma->vm == vm)
5240 			return vma->node.size;
5241 
5242 	return 0;
5243 }
5244 
5245 static unsigned long
5246 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5247 {
5248 	struct drm_i915_private *dev_priv =
5249 		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5250 	struct drm_device *dev = dev_priv->dev;
5251 	unsigned long freed;
5252 	bool unlock;
5253 
5254 	if (!i915_gem_shrinker_lock(dev, &unlock))
5255 		return SHRINK_STOP;
5256 
5257 	freed = i915_gem_shrink(dev_priv,
5258 				sc->nr_to_scan,
5259 				I915_SHRINK_BOUND |
5260 				I915_SHRINK_UNBOUND |
5261 				I915_SHRINK_PURGEABLE);
5262 	if (freed < sc->nr_to_scan)
5263 		freed += i915_gem_shrink(dev_priv,
5264 					 sc->nr_to_scan - freed,
5265 					 I915_SHRINK_BOUND |
5266 					 I915_SHRINK_UNBOUND);
5267 	if (unlock)
5268 		mutex_unlock(&dev->struct_mutex);
5269 
5270 	return freed;
5271 }
5272 
5273 static int
5274 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5275 {
5276 	struct drm_i915_private *dev_priv =
5277 		container_of(nb, struct drm_i915_private, mm.oom_notifier);
5278 	struct drm_device *dev = dev_priv->dev;
5279 	struct drm_i915_gem_object *obj;
5280 	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5281 	unsigned long pinned, bound, unbound, freed_pages;
5282 	bool was_interruptible;
5283 	bool unlock;
5284 
5285 	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5286 		schedule_timeout_killable(1);
5287 		if (fatal_signal_pending(current))
5288 			return NOTIFY_DONE;
5289 	}
5290 	if (timeout == 0) {
5291 		pr_err("Unable to purge GPU memory due lock contention.\n");
5292 		return NOTIFY_DONE;
5293 	}
5294 
5295 	was_interruptible = dev_priv->mm.interruptible;
5296 	dev_priv->mm.interruptible = false;
5297 
5298 	freed_pages = i915_gem_shrink_all(dev_priv);
5299 
5300 	dev_priv->mm.interruptible = was_interruptible;
5301 
5302 	/* Because we may be allocating inside our own driver, we cannot
5303 	 * assert that there are no objects with pinned pages that are not
5304 	 * being pointed to by hardware.
5305 	 */
5306 	unbound = bound = pinned = 0;
5307 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5308 		if (!obj->base.filp) /* not backed by a freeable object */
5309 			continue;
5310 
5311 		if (obj->pages_pin_count)
5312 			pinned += obj->base.size;
5313 		else
5314 			unbound += obj->base.size;
5315 	}
5316 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5317 		if (!obj->base.filp)
5318 			continue;
5319 
5320 		if (obj->pages_pin_count)
5321 			pinned += obj->base.size;
5322 		else
5323 			bound += obj->base.size;
5324 	}
5325 
5326 	if (unlock)
5327 		mutex_unlock(&dev->struct_mutex);
5328 
5329 	if (freed_pages || unbound || bound)
5330 		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5331 			freed_pages << PAGE_SHIFT, pinned);
5332 	if (unbound || bound)
5333 		pr_err("%lu and %lu bytes still available in the "
5334 		       "bound and unbound GPU page lists.\n",
5335 		       bound, unbound);
5336 
5337 	*(unsigned long *)ptr += freed_pages;
5338 	return NOTIFY_DONE;
5339 }
5340 
5341 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5342 {
5343 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5344 	struct i915_vma *vma;
5345 
5346 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5347 		if (vma->vm == ggtt &&
5348 		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5349 			return vma;
5350 
5351 	return NULL;
5352 }
5353